/* * This is a C++ port of version Stefan Gustavson's public domain * implementation of simplex noise (Version 2012-03-09), which can be * found at . * * (Simplex Noise is a new (2001) algorithm created by Ken Perlin to * replace his classic "Perlin" noise algorithm.) * * It was ported by Brendan Hickey (brendan@bhickey.net) and released on * 2012-09-16. * * It is made available under the Creative Commons CC0 license. * * A speed-improved simplex noise algorithm for 2D, 3D and 4D in C++. * * Based on example code by Stefan Gustavson (stegu@itn.liu.se). * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). * Better rank ordering method by Stefan Gustavson in 2012. * This could be speeded up even further, but it's useful as it is. * * Clumsily ported to some horrendous C/C++ mix by * Brendan Hickey (brendan@bhickey.net) * * Version 2012-09-16 * * This code was placed in the public domain by its original author, * Stefan Gustavson. You may use it as you see fit, but * attribution is appreciated. * */ #include "AppHdr.h" #include "perlin.h" #include #include namespace perlin { // Inner class to speed upp gradient computations // ([in Java,] array access is a lot slower than member access) class Grad { public: const double x, y, z, w; Grad(double _x, double _y, double _z) : x(_x), y(_y), z(_z), w(0) {} Grad(double _x, double _y, double _z, double _w) : x(_x), y(_y), z(_z), w(_w) {} }; static const Grad grad3[] = { Grad(1,1,0), Grad(-1,1,0), Grad(1,-1,0), Grad(-1,-1,0), Grad(1,0,1), Grad(-1,0,1), Grad(1,0,-1), Grad(-1,0,-1), Grad(0,1,1), Grad(0,-1,1), Grad(0,1,-1), Grad(0,-1,-1) }; static const Grad grad4[] = { Grad(0,1,1,1), Grad(0,1,1,-1), Grad(0,1,-1,1), Grad(0,1,-1,-1), Grad(0,-1,1,1), Grad(0,-1,1,-1), Grad(0,-1,-1,1), Grad(0,-1,-1,-1), Grad(1,0,1,1), Grad(1,0,1,-1), Grad(1,0,-1,1), Grad(1,0,-1,-1), Grad(-1,0,1,1), Grad(-1,0,1,-1), Grad(-1,0,-1,1), Grad(-1,0,-1,-1), Grad(1,1,0,1), Grad(1,1,0,-1), Grad(1,-1,0,1), Grad(1,-1,0,-1), Grad(-1,1,0,1), Grad(-1,1,0,-1), Grad(-1,-1,0,1), Grad(-1,-1,0,-1), Grad(1,1,1,0), Grad(1,1,-1,0), Grad(1,-1,1,0), Grad(1,-1,-1,0), Grad(-1,1,1,0), Grad(-1,1,-1,0), Grad(-1,-1,1,0), Grad(-1,-1,-1,0) }; static const uint8_t perm[] = {151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, // wrap 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180}; static IMMUTABLE uint8_t permMod12(const uint32_t x) { return perm[x] % 12; } // Skewing and unskewing factors for 2, 3, and 4 dimensions static const double F2 = 0.5 * (sqrt(3.0) - 1.0); static const double G2 = (3.0 - sqrt(3.0)) / 6.0; static const double F3 = 1.0 / 3.0; static const double G3 = 1.0 / 6.0; static const double F4 = (sqrt(5.0) - 1.0) / 4.0; static const double G4 = (5.0 - sqrt(5.0)) / 20.0; // Use uint64_t so that noise() can work sensibly for // coordinates from the full range of uint32_t; otherwise scaling, // signedness, and skew will give us considerably less than that. static uint64_t fastfloor(const double x) { uint64_t xi = (uint64_t) x; return x < xi ? xi-1 : xi; } static double dot(Grad g, double x, double y) { return g.x*x + g.y*y; } static double dot(Grad g, double x, double y, double z) { return g.x*x + g.y*y + g.z*z; } static double dot(Grad g, double x, double y, double z, double w) { return g.x*x + g.y*y + g.z*z + g.w*w; } // 2D simplex noise double noise(double xin, double yin) { double n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in double s = (xin+yin)*F2; // Hairy factor for 2D uint64_t i = fastfloor(xin+s); uint64_t j = fastfloor(yin+s); double t = (i+j)*G2; double X0 = i-t; // Unskew the cell origin back to (x,y) space double Y0 = j-t; double x0 = xin-X0; // The x,y distances from the cell origin double y0 = yin-Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) i1=1, j1=0; // lower triangle, XY order: (0,0)->(1,0)->(1,1) else i1=0, j1=1; // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords double y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = permMod12(ii+perm[jj]); int gi1 = permMod12(ii+i1+perm[jj+j1]); int gi2 = permMod12(ii+1+perm[jj+1]); // Calculate the contribution from the three corners double t0 = 0.5 - x0*x0-y0*y0; if (t0 < 0) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } double t1 = 0.5 - x1*x1-y1*y1; if (t1 < 0) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } double t2 = 0.5 - x2*x2-y2*y2; if (t2 < 0) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2); } // 3D simplex noise double noise(double xin, double yin, double zin) { double n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in double s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D uint64_t i = fastfloor(xin+s); uint64_t j = fastfloor(yin+s); uint64_t k = fastfloor(zin+s); double t = (i+j+k)*G3; double X0 = i-t; // Unskew the cell origin back to (x,y,z) space double Y0 = j-t; double Z0 = k-t; double x0 = xin-X0; // The x,y,z distances from the cell origin double y0 = yin-Y0; double z0 = zin-Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) i1=1, j1=0, k1=0, i2=1, j2=1, k2=0; // X Y Z order else if (x0 >= z0) i1=1, j1=0, k1=0, i2=1, j2=0, k2=1; // X Z Y order else i1=0, j1=0, k1=1, i2=1, j2=0, k2=1; // Z X Y order } else { // x0 < y0 if (y0 < z0) i1=0, j1=0, k1=1, i2=0, j2=1, k2=1; // Z Y X order else if (x0 < z0) i1=0, j1=1, k1=0, i2=0, j2=1, k2=1; // Y Z X order else i1=0, j1=1, k1=0, i2=1, j2=1, k2=0; // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords double y1 = y0 - j1 + G3; double z1 = z0 - k1 + G3; double x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords double y2 = y0 - j2 + 2.0*G3; double z2 = z0 - k2 + 2.0*G3; double x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords double y3 = y0 - 1.0 + 3.0*G3; double z3 = z0 - 1.0 + 3.0*G3; // Work out the hashed gradient indices of the four simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = permMod12(ii+perm[jj+perm[kk]]); int gi1 = permMod12(ii+i1+perm[jj+j1+perm[kk+k1]]); int gi2 = permMod12(ii+i2+perm[jj+j2+perm[kk+k2]]); int gi3 = permMod12(ii+1+perm[jj+1+perm[kk+1]]); // Calculate the contribution from the four corners double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0; if (t0 < 0) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); } double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1; if (t1 < 0) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); } double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2; if (t2 < 0) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); } double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3; if (t3<0) n3 = 0.0; else { t3 *= t3; n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0 * (n0 + n1 + n2 + n3); } // 4D simplex noise, better simplex rank ordering method 2012-03-09 double noise(double x, double y, double z, double w) { double n0, n1, n2, n3, n4; // Noise contributions from the five corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in double s = (x + y + z + w) * F4; // Factor for 4D skewing uint64_t i = fastfloor(x + s); uint64_t j = fastfloor(y + s); uint64_t k = fastfloor(z + s); uint64_t l = fastfloor(w + s); double t = (i + j + k + l) * G4; // Factor for 4D unskewing double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space double Y0 = j - t; double Z0 = k - t; double W0 = l - t; double x0 = x - X0; // The x,y,z,w distances from the cell origin double y0 = y - Y0; double z0 = z - Z0; double w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // Six pair-wise comparisons are performed between each possible pair // of the four coordinates, and the results are used to rank the numbers. int rankx = 0; int ranky = 0; int rankz = 0; int rankw = 0; ++(x0 > y0 ? rankx : ranky); ++(x0 > z0 ? rankx : rankz); ++(x0 > w0 ? rankx : rankw); ++(y0 > z0 ? ranky : rankz); ++(y0 > w0 ? ranky : rankw); ++(z0 > w0 ? rankz : rankw); int i1, j1, k1, l1; // The integer offsets for the second simplex corner int i2, j2, k2, l2; // The integer offsets for the third simplex corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x= 3 ? 1 : 0; j1 = ranky >= 3 ? 1 : 0; k1 = rankz >= 3 ? 1 : 0; l1 = rankw >= 3 ? 1 : 0; // Rank 2 denotes the second largest coordinate. i2 = rankx >= 2 ? 1 : 0; j2 = ranky >= 2 ? 1 : 0; k2 = rankz >= 2 ? 1 : 0; l2 = rankw >= 2 ? 1 : 0; // Rank 1 denotes the second smallest coordinate. i3 = rankx >= 1 ? 1 : 0; j3 = ranky >= 1 ? 1 : 0; k3 = rankz >= 1 ? 1 : 0; l3 = rankw >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to compute that. double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords double y1 = y0 - j1 + G4; double z1 = z0 - k1 + G4; double w1 = w0 - l1 + G4; double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords double y2 = y0 - j2 + 2.0*G4; double z2 = z0 - k2 + 2.0*G4; double w2 = w0 - l2 + 2.0*G4; double x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords double y3 = y0 - j3 + 3.0*G4; double z3 = z0 - k3 + 3.0*G4; double w3 = w0 - l3 + 3.0*G4; double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords double y4 = y0 - 1.0 + 4.0*G4; double z4 = z0 - 1.0 + 4.0*G4; double w4 = w0 - 1.0 + 4.0*G4; // Work out the hashed gradient indices of the five simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32; int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32; int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32; int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32; int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32; // Calculate the contribution from the five corners double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0; if (t0 < 0) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1; if (t1 < 0) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2; if (t2 < 0) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3; if (t3 < 0) n3 = 0.0; else { t3 *= t3; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } double t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4; if (t4 < 0) n4 = 0.0; else { t4 *= t4; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0 * (n0 + n1 + n2 + n3 + n4); } // This is *not* in Stefan Gustavson's Java original // FIXME: what does it do? double fBM(double x, double y, double z, uint32_t octaves) { if (octaves < 1) return 0.0; if (octaves == 1) return noise(x, y, z); uint32_t divisor = 1; double norm = 0.0; double value = 0; double xi = x; double yi = y; double zi = z; for (uint32_t octave = 0; octave < octaves; ++octave) { value += noise(xi / divisor, yi / divisor, zi / divisor) / divisor; norm += 1 / divisor; divisor *= 2; double xt = yi * sin(1.41421356) + cos(1.41421356); yi = yi * cos(1.41421356) + sin(1.41421356); xi = xt; zi += 1.7; } return value / norm; } }