summaryrefslogtreecommitdiffstats
path: root/crawl-ref/source/mon-movetarget.cc
blob: 5e81010317501362b0d3fd172ae366f748fb57b5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
#include "AppHdr.h"

#include "mon-movetarget.h"

#include "act-iter.h"
#include "branch.h"
#include "coord.h"
#include "coordit.h"
#include "env.h"
#include "fprop.h"
#include "items.h"
#include "itemprop.h"
#include "libutil.h"
#include "los_def.h"
#include "losglobal.h"
#include "mon-behv.h"
#include "mon-pathfind.h"
#include "mon-place.h"
#include "random.h"
#include "state.h"
#include "terrain.h"
#include "traps.h"

// If a monster can see but not directly reach the target, and then fails to
// find a path to get there, mark all surrounding (in a radius of √8) monsters
// of the same (or greater) movement restrictions as also being unable to
// find a path, so we won't need to calculate again.
// Should there be a direct path to the target for a monster thus marked, it
// will still be able to come nearer (and the mark will then be cleared).
static void _mark_neighbours_target_unreachable(monster* mon)
{
    // Highly intelligent monsters are perfectly capable of pathfinding
    // and don't need their neighbour's advice.
    const mon_intel_type intel = mons_intel(mon);
    if (intel > I_NORMAL)
        return;

    const bool flies         = mons_flies(mon);
    const bool amphibious    = (mons_habitat(mon) == HT_AMPHIBIOUS);
    const bool amph_lava     = (mons_habitat(mon) == HT_AMPHIBIOUS_LAVA);
    const habitat_type habit = mons_primary_habitat(mon);

    for (radius_iterator ri(mon->pos(), 8, C_CIRCLE); ri; ++ri)
    {
        if (*ri == mon->pos())
            continue;

        // Don't alert monsters out of sight (e.g. on the other side of
        // a wall).
        if (!mon->see_cell(*ri))
            continue;

        monster* const m = monster_at(*ri);
        if (m == NULL)
            continue;

        // Don't restrict smarter monsters as they might find a path
        // a dumber monster wouldn't.
        if (mons_intel(m) > intel)
            continue;

        // Monsters of differing habitats might prefer different routes.
        if (mons_primary_habitat(m) != habit)
            continue;

        // Wall clinging monsters use different pathfinding.
        if (mon->can_cling_to_walls() != m->can_cling_to_walls())
            continue;

        // A flying monster has an advantage over a non-flying one.
        // Same for a swimming one.
        if (!flies && mons_flies(m)
            || !amphibious && mons_habitat(m) == HT_AMPHIBIOUS
            || !amph_lava  && mons_habitat(m) == HT_AMPHIBIOUS_LAVA)
        {
            continue;
        }

        // If the monster is trying to reach the same foe, consider their
        // foe also unreachable.
        if (m->travel_target == MTRAV_NONE && m->foe == mon->foe)
            m->travel_target = MTRAV_UNREACHABLE;
    }
}

static void _set_no_path_found(monster* mon)
{
#ifdef DEBUG_PATHFIND
    mpr("No path found!");
#endif
    if (crawl_state.game_is_zotdef() && player_in_branch(root_branch)
        && !testbits(env.pgrid(mon->pos()), FPROP_NO_RTELE_INTO))
    {
        if (you.wizard)
        {
            // You might have used a wizard power to teleport into a wall or
            // a loot chamber.
            mprf(MSGCH_ERROR, "Monster %s failed to pathfind to (%d,%d) (%s)",
                mon->name(DESC_PLAIN, true).c_str(),
                env.orb_pos.x, env.orb_pos.y,
                orb_position().origin() ? "you" : "the Orb");
        }
        else
        {
            // None of the maps allows the goal to ever become unreachable,
            // and when that happens, let's crash rather than a give an
            // effortless win with all the opposition doing nothing.

            // This is only appropriate in the zotdef map itself, though,
            // which is why we check for BRANCH_DUNGEON above.
            // (This kind of thing is totally normal in, say, a Bazaar.)
            die("ZotDef: monster %s failed to pathfind to (%d,%d) (%s)",
                mon->name(DESC_PLAIN, true).c_str(),
                env.orb_pos.x, env.orb_pos.y,
                orb_position().origin() ? "you" : "the Orb");
        }
    }

    mon->travel_target = MTRAV_UNREACHABLE;
    // Pass information on to nearby monsters.
    _mark_neighbours_target_unreachable(mon);
}

bool target_is_unreachable(monster* mon)
{
    return mon->travel_target == MTRAV_UNREACHABLE
           || mon->travel_target == MTRAV_KNOWN_UNREACHABLE;
}

//#define DEBUG_PATHFIND

// Check whether there's an unobstructed path to our foe,
// either by using an existing travel_path or calculating a new one.
// Returns true if no further handling necessary, else false.
bool try_pathfind(monster* mon)
{
    // Just because we can *see* our target, that doesn't mean
    // we can actually get there.
    // If no path is found (too far away, perhaps) set a
    // flag, so we don't directly calculate the whole thing again
    // next turn, and even extend that flag to neighbouring
    // monsters of similar movement restrictions.

    const actor* foe = (mon->friendly() && mon->foe == MHITYOU ? &you
                                                               : mon->get_foe());

    // Trying to pathfind towards nothing in particular; bail out.
    if (!foe)
        return false;

    const coord_def targpos = foe->pos();

    bool need_pathfind = !can_go_straight(mon, mon->pos(), targpos);

    // Smart monsters that can fire through obstacles won't use
    // pathfinding.
    if (need_pathfind
        && !mon->friendly()
        && mon->can_see(foe)
        && mons_has_los_ability(mon->type))
    {
        need_pathfind = false;
    }

    // Also don't use pathfinding if the monster can shoot
    // across the blocking terrain, and is smart enough to
    // realise that.
    if ((!crawl_state.game_is_zotdef()) && need_pathfind
        && !mon->friendly()
        && mons_has_ranged_attack(mon)
        && cell_see_cell(mon->pos(), targpos, LOS_SOLID_SEE))
    {
        need_pathfind = false;
    }

    if (!need_pathfind)
    {
        // The target is easily reachable.
        // Clear travel path and target, if necessary.
        if (mon->travel_target != MTRAV_PATROL
            && mon->travel_target != MTRAV_NONE)
        {
            if (mon->is_travelling())
                mon->travel_path.clear();
            mon->travel_target = MTRAV_NONE;
        }
        return false;
    }

    // If the target is "unreachable" (the monster already tried,
    // and failed, to find a path), there's a chance of trying again.
    // The chance is higher for wall clinging monsters to help them avoid
    // shallow water. Retreating monsters retry every turn.
    if (target_is_unreachable(mon) && !one_chance_in(12)
        && !(mon->can_cling_to_walls() && one_chance_in(4)))
    {
        return false;
    }

#ifdef DEBUG_PATHFIND
    mprf("%s: Target out of reach! What now?",
         mon->name(DESC_PLAIN).c_str());
#endif
    // If we're already on our way, do nothing.
    if (mon->is_travelling() && mon->travel_target == MTRAV_FOE)
    {
        const int len = mon->travel_path.size();
        const coord_def targ = mon->travel_path[len - 1];

        // Current target still valid?
        if (can_go_straight(mon, targ, targpos))
        {
            // Did we reach the target?
            if (mon->pos() == mon->travel_path[0])
            {
                // Get next waypoint.
                mon->travel_path.erase(mon->travel_path.begin());

                if (!mon->travel_path.empty())
                {
                    mon->target = mon->travel_path[0];
                    return true;
                }
            }
            else if (can_go_straight(mon, mon->pos(), mon->travel_path[0]))
            {
                mon->target = mon->travel_path[0];
                return true;
            }
        }
    }

    // Use pathfinding to find a (new) path to the target.
    const int dist = grid_distance(mon->pos(), targpos);

#ifdef DEBUG_PATHFIND
    mprf("Need to calculate a path... (dist = %d)", dist);
#endif
    // All monsters can find the Orb in Zotdef
    const int range = (crawl_state.game_is_zotdef() || mon->friendly() ? 1000 : mons_tracking_range(mon));

    if (range > 0 && dist > range)
    {
        mon->travel_target = MTRAV_UNREACHABLE;
#ifdef DEBUG_PATHFIND
        mprf("Distance too great, don't attempt pathfinding! (%s)",
             mon->name(DESC_PLAIN).c_str());
#endif
        return false;
    }

#ifdef DEBUG_PATHFIND
    mprf("Need a path for %s from (%d, %d) to (%d, %d), max. dist = %d",
         mon->name(DESC_PLAIN).c_str(), mon->pos().x, mon->pos().y,
         targpos.x, targpos.y, range);
#endif
    monster_pathfind mp;
    if (range > 0)
        mp.set_range(range);

    if (mp.init_pathfind(mon, targpos))
    {
        mon->travel_path = mp.calc_waypoints();
        if (!mon->travel_path.empty())
        {
            // Okay then, we found a path.  Let's use it!
            mon->target = mon->travel_path[0];
            mon->travel_target = MTRAV_FOE;
            return true;
        }
    }

    // We didn't find a path.
    _set_no_path_found(mon);
    return false;
}

static bool _is_level_exit(const coord_def& pos)
{
    // All types of stairs.
    if (feat_is_stair(grd(pos)))
        return true;

    // Teleportation and shaft traps.
    const trap_type tt = get_trap_type(pos);
    if (tt == TRAP_TELEPORT || tt == TRAP_TELEPORT_PERMANENT
        || tt == TRAP_SHAFT)
    {
        return true;
    }

    return false;
}

// Returns true if a monster left the level.
bool pacified_leave_level(monster* mon, vector<level_exit> e, int e_index)
{
    // If a pacified monster is leaving the level, and has reached an
    // exit (whether that exit was its target or not), handle it here.
    // Likewise, if a pacified monster is far enough away from the
    // player, make it leave the level.
    if (_is_level_exit(mon->pos())
        || (e_index != -1 && mon->pos() == e[e_index].target)
        || distance2(mon->pos(), you.pos()) >= dist_range(LOS_RADIUS * 4))
    {
        make_mons_leave_level(mon);
        return true;
    }

    return false;
}

// Assesses how desirable a spot is to a siren (preferring spaces surrounded
// by water, at least one of which is deep, and with at least one neighbour
// which is inhabitable without swimming or flight)
static int _siren_water_score(coord_def p, bool& deep)
{
    int score = 0;
    bool near_floor = false;
    deep = false;

    for (adjacent_iterator ai(p); ai; ++ai)
    {
        if (grd(*ai) == DNGN_SHALLOW_WATER)
        {
            score++;
            near_floor = true;
        }
        else if (grd(*ai) == DNGN_DEEP_WATER)
        {
            score++;
            deep = true;
        }
        else if (feat_has_solid_floor(grd(*ai)))
            near_floor = true;
    }

    // Don't prefer any locations non-adjacent to either shallow water or land
    if (!near_floor)
        return 0;

    // Greatly prefer at least one tile of neighbouring deep water
    if (deep)
        score += 6;

    // Slightly prefer standing in deep water, if possible
    if (grd(p) == DNGN_DEEP_WATER)
        score++;

    return score;
}

// Pick the nearest water grid that is surrounded by the most
// water squares within LoS.
bool find_siren_water_target(monster* mon)
{
    ASSERT(mon->type == MONS_SIREN);

    // Moving away could break the entrancement, so don't do this.
    if (distance2(mon->pos(), you.pos()) >= 6 * 6 + 1)
    {
        mon->firing_pos.reset();
        return false;
    }

    bool deep;

    // If our current location is good enough, don't bother moving towards
    // some other spot which might be somewhat better
    if (_siren_water_score(mon->pos(), deep) >= 12 && deep
        && grd(mon->pos()) == DNGN_DEEP_WATER)
    {
        mon->firing_pos = mon->pos();
        return true;
    }

    if (mon->travel_target == MTRAV_SIREN)
    {
        coord_def targ_pos(mon->travel_path[mon->travel_path.size() - 1]);
#ifdef DEBUG_PATHFIND
        mprf("siren target is (%d, %d), dist = %d",
             targ_pos.x, targ_pos.y, (int) (mon->pos() - targ_pos).rdist());
#endif
        if ((mon->pos() - targ_pos).rdist() > 2)
            return true;
    }

    int best_water_count = 0;
    coord_def best_target;
    bool first = true;

    deep = false;

    while (true)
    {
        int best_num = 0;
        for (radius_iterator ri(mon->pos(), LOS_NO_TRANS);
             ri; ++ri)
        {
            if (!feat_is_water(grd(*ri)))
                continue;

            // In the first iteration only count water grids that are
            // not closer to the player than to the siren.
            if (first && (mon->pos() - *ri).rdist() > (you.pos() - *ri).rdist())
                continue;

            // Counts deep water twice.
            const int water_count = _siren_water_score(*ri, deep);
            if (water_count < best_water_count)
                continue;

            if (water_count > best_water_count)
            {
                best_water_count = water_count;
                best_target = *ri;
                best_num = 1;
            }
            else // water_count == best_water_count
            {
                const int old_dist = (mon->pos() - best_target).rdist();
                const int new_dist = (mon->pos() - *ri).rdist();
                if (new_dist > old_dist)
                    continue;

                if (new_dist < old_dist)
                {
                    best_target = *ri;
                    best_num = 1;
                }
                else if (one_chance_in(++best_num))
                    best_target = *ri;
            }
        }

        if (!first || deep)
            break;

        // Else start the second iteration.
        first = false;
    }

    if (!best_water_count)
        return false;

    // We're already optimally placed.
    if (best_target == mon->pos())
    {
        mon->firing_pos = mon->pos();
        return true;
    }

    monster_pathfind mp;
#ifdef WIZARD
    // Remove old highlighted areas to make place for the new ones.
    if (you.wizard)
        for (rectangle_iterator ri(1); ri; ++ri)
            env.pgrid(*ri) &= ~(FPROP_HIGHLIGHT);
#endif

    if (mp.init_pathfind(mon, best_target))
    {
        mon->travel_path = mp.calc_waypoints();

        if (!mon->travel_path.empty())
        {
#ifdef WIZARD
            if (you.wizard)
                for (unsigned int i = 0; i < mon->travel_path.size(); i++)
                    env.pgrid(mon->travel_path[i]) |= FPROP_HIGHLIGHT;
#endif
#ifdef DEBUG_PATHFIND
            mprf("Found a path to (%d, %d) with %d surrounding water squares",
                 best_target.x, best_target.y, best_water_count);
#endif
            // Okay then, we found a path.  Let's use it!
            mon->firing_pos = mon->travel_path[0];
            mon->travel_target = MTRAV_SIREN;
            return true;
        }
    }

    return false;
}

// Returns true if further handling neeeded.
static bool _handle_monster_travelling(monster* mon)
{
#ifdef DEBUG_PATHFIND
    mprf("Monster %s reached target (%d, %d)",
         mon->name(DESC_PLAIN).c_str(), mon->target.x, mon->target.y);
#endif

    // Hey, we reached our first waypoint!
    if (mon->pos() == mon->travel_path[0])
    {
#ifdef DEBUG_PATHFIND
        mpr("Arrived at first waypoint.");
#endif
        mon->travel_path.erase(mon->travel_path.begin());
        if (mon->travel_path.empty())
        {
#ifdef DEBUG_PATHFIND
            mpr("We reached the end of our path: stop travelling.");
#endif
            mon->travel_target = MTRAV_NONE;
            return true;
        }
        else
        {
            mon->target = mon->travel_path[0];
#ifdef DEBUG_PATHFIND
            mprf("Next waypoint: (%d, %d)", mon->target.x, mon->target.y);
#endif
            return false;
        }
    }

    // Can we still see our next waypoint?
    if (!can_go_straight(mon, mon->pos(), mon->travel_path[0]))
    {
#ifdef DEBUG_PATHFIND
        mpr("Can't see waypoint grid.");
#endif
        // Apparently we got sidetracked a bit.
        // Check the waypoints vector backwards and pick the first waypoint
        // we can see.

        // XXX: Note that this might still not be the best thing to do
        // since another path might be even *closer* to our actual target now.
        // Not by much, though, since the original path was optimal (A*) and
        // the distance between the waypoints is rather small.

        int erase = -1;  // Erase how many waypoints?
        const int size = mon->travel_path.size();
        for (int i = size - 1; i >= 0; --i)
        {
            if (can_go_straight(mon, mon->pos(), mon->travel_path[i]))
            {
                mon->target = mon->travel_path[i];
                erase = i;
                break;
            }
        }

        if (erase > 0)
        {
#ifdef DEBUG_PATHFIND
            mprf("Need to erase %d of %d waypoints.",
                 erase, size);
#endif
            // Erase all waypoints that came earlier:
            // we don't need them anymore.
            while (0 < erase--)
                mon->travel_path.erase(mon->travel_path.begin());
        }
        else
        {
            // We can't reach our old path from our current
            // position, so calculate a new path instead.
            monster_pathfind mp;

            // The last coordinate in the path vector is our destination.
            const int len = mon->travel_path.size();
            if (mp.init_pathfind(mon, mon->travel_path[len-1]))
            {
                mon->travel_path = mp.calc_waypoints();
                if (!mon->travel_path.empty())
                {
                    mon->target = mon->travel_path[0];
#ifdef DEBUG_PATHFIND
                    mprf("Next waypoint: (%d, %d)",
                         mon->target.x, mon->target.y);
#endif
                }
                else
                {
                    mon->travel_target = MTRAV_NONE;
                    return true;
                }
            }
            else
            {
                // Or just forget about the whole thing.
                mon->travel_path.clear();
                mon->travel_target = MTRAV_NONE;
                return true;
            }
        }
    }

    // Else, we can see the next waypoint and are making good progress.
    // Carry on, then!
    return false;
}

static bool _choose_random_patrol_target_grid(monster* mon)
{
    const int intel = mons_intel(mon);

    // Zombies will occasionally just stand around.
    // This does not mean that they don't move every second turn. Rather,
    // once they reach their chosen target, there's a 50% chance they'll
    // just remain there until next turn when this function is called
    // again.
    if (intel == I_PLANT && coinflip())
        return true;

    // If there's no chance we'll find the patrol point, quit right away.
    if (distance2(mon->pos(), mon->patrol_point) > dist_range(2 * LOS_RADIUS))
        return false;

    // Can the monster see the patrol point from its current position?
    const bool patrol_seen = mon->see_cell(mon->patrol_point);

    if (intel == I_PLANT && !patrol_seen)
    {
        // Really stupid monsters won't even try to get back into the
        // patrol zone.
        return false;
    }

    // While the patrol point is in easy reach, monsters of insect/plant
    // intelligence will only use a range of 5 (distance from the patrol point).
    // Otherwise, try to get back using the full LOS.
    const int  rad      = (intel >= I_ANIMAL || !patrol_seen) ? LOS_RADIUS : 5;
    const bool is_smart = (intel >= I_NORMAL);

    los_def patrol(mon->patrol_point, opacity_monmove(*mon),
                   circle_def(rad, C_ROUND));
    patrol.update();
    los_def lm(mon->pos(), opacity_monmove(*mon));
    if (is_smart || !patrol_seen)
    {
        // For stupid monsters, don't bother if the patrol point is in sight.
        lm.update();
    }

    int count_grids = 0;
    // Don't bother for the current position. If everything fails,
    // we'll stay here anyway.
    for (radius_iterator ri(mon->patrol_point, you.current_vision, C_ROUND, true);
         ri; ++ri)
    {
        if (!in_bounds(*ri) || !mon->can_pass_through_feat(grd(*ri)))
            continue;

        // Don't bother moving to squares (currently) occupied by a
        // monster. We'll usually be able to find other target squares
        // (and if we're not, we couldn't move anyway), and this avoids
        // monsters trying to move onto a grid occupied by a plant or
        // sleeping monster.
        if (monster_at(*ri))
            continue;

        if (patrol_seen)
        {
            // If the patrol point can be easily (within LOS) reached
            // from the current position, it suffices if the target is
            // within reach of the patrol point OR the current position:
            // we can easily get there.
            // Only smart monsters will even attempt to move out of the
            // patrol area.
            // NOTE: Either of these can take us into a position where the
            // target cannot be easily reached (e.g. blocked by a wall)
            // and the patrol point is out of sight, too. Such a case
            // will be handled below, though it might take a while until
            // a monster gets out of a deadlock. (5% chance per turn.)
            if (!patrol.see_cell(*ri)
                && (!is_smart || !lm.see_cell(*ri)))
            {
                continue;
            }
        }
        else
        {
            // If, however, the patrol point is out of reach, we have to
            // make sure the new target brings us into reach of it.
            // This means that the target must be reachable BOTH from
            // the patrol point AND the current position.
            if (!patrol.see_cell(*ri)
                || !lm.see_cell(*ri))
            {
                continue;
            }

            // If this fails for all surrounding squares (probably because
            // we're too far away), we fall back to heading directly for
            // the patrol point.
        }

        bool set_target = false;
        if (intel == I_PLANT && *ri == mon->patrol_point)
        {
            // Slightly greater chance to simply head for the centre.
            count_grids += 3;
            if (x_chance_in_y(3, count_grids))
                set_target = true;
        }
        else if (one_chance_in(++count_grids))
            set_target = true;

        if (set_target)
            mon->target = *ri;
    }

    return count_grids;
}// Returns true if further handling neeeded.
static bool _handle_monster_patrolling(monster* mon)
{
    if (!_choose_random_patrol_target_grid(mon))
    {
        // If we couldn't find a target that is within easy reach
        // of the monster and close to the patrol point, head back
        // to patrol point.

        // Other than for tracking the player, there's currently
        // no distinction between smart and stupid monsters when
        // it comes to travelling back to the patrol point. This
        // is in part due to the flavour of e.g. bees finding
        // their way back to the Hive (and patrolling should
        // really be restricted to cases like this), and for the
        // other part it's not all that important because we
        // calculate the path once and then follow it home, and
        // the player won't ever see the orderly fashion the
        // bees will trudge along.
        // What he will see is them swarming back to the Hive
        // entrance after some time, and that is what matters.
        monster_pathfind mp;
        if (mp.init_pathfind(mon, mon->patrol_point))
        {
            mon->travel_path = mp.calc_waypoints();
            if (!mon->travel_path.empty())
            {
                mon->target = mon->travel_path[0];
                mon->travel_target = MTRAV_PATROL;
            }
            else
            {
                // We're so close we don't even need a path.
                mon->target = mon->patrol_point;
            }
        }
        else
        {
            // Stop patrolling.
            mon->patrol_point.reset();
            mon->travel_target = MTRAV_NONE;
            return true;
        }
    }
    else
    {
#ifdef DEBUG_PATHFIND
        mprf("Monster %s (pp: %d, %d) is now patrolling to (%d, %d)",
             mon->name(DESC_PLAIN).c_str(),
             mon->patrol_point.x, mon->patrol_point.y,
             mon->target.x, mon->target.y);
#endif
    }

    return false;
}

void set_random_target(monster* mon)
{
    mon->target = random_in_bounds(); // If we don't find anything better.
    for (int tries = 0; tries < 150; ++tries)
    {
        coord_def delta = coord_def(random2(13), random2(13)) - coord_def(6, 6);
        if (delta.origin())
            continue;

        const coord_def newtarget = delta + mon->pos();
        if (!in_bounds(newtarget))
            continue;

        if (!summon_can_attack(mon, newtarget))
            continue;

        mon->target = newtarget;
        break;
    }
}

// Try to find a band leader for the given monster
static monster * _active_band_leader(monster * mon)
{
    // Not a band member
    if (!mon->props.exists("band_leader"))
        return NULL;

    // Try to find our fearless leader.
    unsigned leader_mid = mon->props["band_leader"].get_int();

    return monster_by_mid(leader_mid);
}

// Return true if a target still needs to be set. If returns false, mon->target
// was set.
static bool _band_wander_target(monster * mon)
{
    int dist_thresh = LOS_RADIUS + HERD_COMFORT_RANGE;
    monster * band_leader = _active_band_leader(mon);
    if (band_leader == NULL)
        return true;

    int leader_dist = grid_distance(mon->pos(), band_leader->pos());
    if (leader_dist > dist_thresh)
    {
        monster_pathfind mp;
        mp.set_range(1000);

        if (mp.init_pathfind(mon, band_leader->pos()))
        {
            mon->travel_path = mp.calc_waypoints();
            if (!mon->travel_path.empty())
            {
                // Okay then, we found a path.  Let's use it!
                mon->target = mon->travel_path[0];
                mon->travel_target = MTRAV_PATROL;
                return false;
            }
            else
                return true;
        }

        return true;
    }

    vector<coord_def> positions;

    for (radius_iterator r_it(mon->pos(), LOS_NO_TRANS, true); r_it; ++r_it)
    {
        if (!in_bounds(*r_it))
            continue;

        int dist = grid_distance(*r_it, band_leader->pos());
        if (dist < HERD_COMFORT_RANGE)
            positions.push_back(*r_it);
    }

    if (positions.empty())
        return true;

    mon->target = positions[random2(positions.size())];

    ASSERT_IN_BOUNDS(mon->target);
    return false;
}

// Returns true if a movement target still needs to be set
static bool _herd_wander_target(monster * mon)
{
    vector<monster_iterator> friends;
    map<int, vector<coord_def> > distance_positions;

    int dist_thresh = LOS_RADIUS + HERD_COMFORT_RANGE;

    for (monster_iterator mit; mit; ++mit)
    {
        if (mit->mindex() == mon->mindex()
            || mons_genus(mit->type) != mons_genus(mon->type)
            || grid_distance(mit->pos(), mon->pos()) > dist_thresh)
        {
            continue;
        }

        friends.push_back(mit);
    }

    if (friends.empty())
        return true;

    for (radius_iterator r_it(mon->pos(), LOS_NO_TRANS, true); r_it; ++r_it)
    {
        if (!in_bounds(*r_it))
            continue;

        int count = 0;
        for (unsigned i = 0; i < friends.size(); i++)
        {
            if (grid_distance(friends[i]->pos(), *r_it) < HERD_COMFORT_RANGE
                && friends[i]->see_cell_no_trans(*r_it))
            {
                count++;
            }
        }
        if (count > 0)
            distance_positions[count].push_back(*r_it);
    }
    map<int, vector<coord_def> >::reverse_iterator back =
        distance_positions.rbegin();

    if (back == distance_positions.rend())
        return true;

    mon->target = back->second[random2(back->second.size())];
    return false;
}

static bool _herd_ok(monster * mon)
{
    bool in_bounds = false;
    bool intermediate_range = false;
    int intermediate_thresh = LOS_RADIUS + HERD_COMFORT_RANGE;

    // herdlings magically know others even out of LOS
    for (monster_iterator mit; mit; ++mit)
    {
        if (mit->mindex() == mon->mindex())
            continue;

        if (mons_genus(mit->type) == mons_genus(mon->type))
        {
            int g_dist = grid_distance(mit->pos(), mon->pos());
            if (g_dist < HERD_COMFORT_RANGE
                && mon->see_cell_no_trans(mit->pos()))
            {
                in_bounds = true;
                break;
            }
            else if (g_dist < intermediate_thresh)
                intermediate_range = true;
        }
    }

    return in_bounds || !intermediate_range;
}

// Return true if we don't have to do anything to keep within an ok distance
// of our band leader. (If no leader exists we don't have to do anything).
static bool _band_ok(monster * mon)
{
    // Don't have to worry about being close to the leader if no leader can be
    // found.
    monster * leader = _active_band_leader(mon);

    if (!leader)
        return true;

    int g_dist = grid_distance(leader->pos(), mon->pos());

    // If in range, or sufficiently out of range we can just wander around for
    // a while longer.
    if (g_dist < HERD_COMFORT_RANGE && mon->see_cell_no_trans(leader->pos())
        || g_dist >= (LOS_RADIUS + HERD_COMFORT_RANGE))
    {
        return true;
    }

    return false;
}

void check_wander_target(monster* mon, bool isPacified)
{
    // default wander behaviour
    if (mon->pos() == mon->target
        || mons_is_batty(mon)
        || (!isPacified && !mons_is_avatar(mon->type) && one_chance_in(20))
        || herd_monster(mon) && !_herd_ok(mon)
        || !_band_ok(mon))
    {
        bool need_target = true;

        if (mon->is_travelling())
            need_target = _handle_monster_travelling(mon);

        // If we still need a target because we're not travelling
        // (any more), check for patrol routes instead.
        if (need_target && mon->is_patrolling())
            need_target = _handle_monster_patrolling(mon);

        if (need_target && herd_monster(mon))
            need_target = _herd_wander_target(mon);

        if (need_target
            && _active_band_leader(mon) != NULL)
        {
            need_target = _band_wander_target(mon);
        }

        // XXX: This is really dumb wander behaviour... instead of
        // changing the goal square every turn, better would be to
        // have the monster store a direction and have the monster
        // head in that direction for a while, then shift the
        // direction to the left or right.  We're changing this so
        // wandering monsters at least appear to have some sort of
        // attention span.  -- bwr
        if (need_target)
            set_random_target(mon);
    }
}

static void _find_all_level_exits(vector<level_exit> &e)
{
    e.clear();

    for (rectangle_iterator ri(1); ri; ++ri)
    {
        if (!in_bounds(*ri))
            continue;

        if (_is_level_exit(*ri))
            e.push_back(level_exit(*ri, false));
    }
}

int mons_find_nearest_level_exit(const monster* mon, vector<level_exit> &e,
                                 bool reset)
{
    if (e.empty() || reset)
        _find_all_level_exits(e);

    int retval = -1;
    int old_dist = -1;

    for (unsigned int i = 0; i < e.size(); ++i)
    {
        if (e[i].unreachable)
            continue;

        int dist = distance2(mon->pos(), e[i].target);

        if (old_dist == -1 || old_dist >= dist)
        {
            // Ignore teleportation and shaft traps that the monster
            // shouldn't know about.
            if (!mons_is_native_in_branch(mon)
                && grd(e[i].target) == DNGN_UNDISCOVERED_TRAP)
            {
                continue;
            }

            retval = i;
            old_dist = dist;
        }
    }

    return retval;
}
void set_random_slime_target(monster* mon)
{
    // Strictly neutral slimes will go for the nearest item.
    for (distance_iterator ri(mon->pos(), true, false, you.current_vision);
                              ri; ++ri)
    {
        if (!in_bounds(*ri) || !mon->see_cell(*ri))
            continue;
        if (testbits(env.pgrid(*ri), FPROP_NO_JIYVA))
            continue;
        for (stack_iterator si(*ri); si; ++si)
        {
            item_def& item(*si);

            if (is_item_jelly_edible(item))
            {
                mon->target = *ri;
                goto end;
            }
        }
    }
end:
    if (mon->target == mon->pos() || mon->target == you.pos())
        set_random_target(mon);
}

static bool _can_safely_go_through(const monster * mon, const coord_def p)
{
    ASSERT(map_bounds(p));

    if (!monster_habitable_grid(mon, grd(p)))
        return false;

    // Stupid monsters don't pathfind around shallow water
    // except the clinging ones.
    if (mon->floundering_at(p)
        && (mons_intel(mon) >= I_NORMAL || mon->can_cling_to_walls()))
    {
        return false;
    }

    return true;
}

// Checks whether there is a straight path from p1 to p2 that monster can
// safely passes through.
// If it exists, such a path may be missed; on the other hand, it
// is not guaranteed that p2 is visible from p1 according to LOS rules.
// Not symmetric.
// FIXME: This is used for monster movement. It should instead be
//        something like exists_ray(p1, p2, opacity_monmove(mons)),
//        where opacity_monmove() is fixed to include opacity_immob.
bool can_go_straight(const monster* mon, const coord_def& p1,
                     const coord_def& p2)
{
    // If no distance, then trivially true
    if (p1 == p2)
        return true;

    if (distance2(p1, p2) > los_radius2)
        return false;

    // XXX: Hack to improve results for now. See FIXME above.
    ray_def ray;
    if (!find_ray(p1, p2, ray, opc_immob))
        return false;

    while (ray.advance() && ray.pos() != p2)
        if (!_can_safely_go_through(mon, ray.pos()))
            return false;

    return true;
}