summaryrefslogtreecommitdiffstats
path: root/crawl-ref/source/spl-util.cc
blob: fc16f7062804f2da303e84a884ea5625325b3e23 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
/*
 *  File:       spl-util.h                                           *
 *  Summary:    data handlers for player-avilable spell list         *
 *  Written by: don brodale <dbrodale@bigfootinteractive.com>        *
 *                                                                   *
 *  Modified for Crawl Reference by $Author$ on $Date$
 *
 *  Changelog(most recent first):                                    *
 *
 *  <3>     04oct2001     bwr     absorbed spells0.cc
 *  <2>     24jun2000     jmf     changed to use new data structure
 *  <1>     12jun2000     dlb     created after much thought         
 */

#include "AppHdr.h"
#include "spl-util.h"

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <limits.h>

#include "externs.h"

#include "direct.h"
#include "debug.h"
#include "stuff.h"
#include "itemname.h"
#include "macro.h"
#include "misc.h"
#include "monstuff.h"
#include "notes.h"
#include "player.h"
#include "spl-book.h"
#include "view.h"


#ifdef DOS
#include <conio.h>
#endif


static struct playerspell spelldata[] = {
#include "spl-data.h"
};

static int plyrspell_list[NUM_SPELLS];

#define PLYRSPELLDATASIZE (sizeof(spelldata)/sizeof(struct playerspell))

static struct playerspell *seekspell(int spellid);
static bool cloud_helper( int (*func) (int, int, int, int, kill_category),
                          int x, int y, 
                          int pow, int ctype, kill_category );

/*
 *             BEGIN PUBLIC FUNCTIONS
 */

// all this does is merely refresh the internal spell list {dlb}:
void init_playerspells(void)
{
    unsigned int x = 0;

    for (x = 0; x < NUM_SPELLS; x++)
        plyrspell_list[x] = -1;

    // can only use up to PLYRSPELLDATASIZE _MINUS ONE_, or the
    // last entry tries to set plyrspell_list[SPELL_NO_SPELL] 
    // which corrupts the heap.
    for (x = 0; x < PLYRSPELLDATASIZE - 1; x++)
        plyrspell_list[spelldata[x].id] = x;

    for (x = 0; x < NUM_SPELLS; x++)
    {
        if (plyrspell_list[x] == -1)
            plyrspell_list[x] = plyrspell_list[SPELL_NO_SPELL];
    }

    return;                     // return value should not matter here {dlb}
}                               // end init_playerspells()

int get_spell_slot_by_letter( char letter )
{
    ASSERT( isalpha( letter ) );

    const int index = letter_to_index( letter );

    if (you.spell_letter_table[ index ] == -1)
        return (-1);

    return (you.spell_letter_table[index]);
}

int get_spell_by_letter( char letter )
{
    ASSERT( isalpha( letter ) );

    const int slot = get_spell_slot_by_letter( letter );

    return ((slot == -1) ? SPELL_NO_SPELL : you.spells[slot]);
}

bool add_spell_to_memory( int spell )
{
    int i, j;

    // first we find a slot in our head:
    for (i = 0; i < 25; i++)
    {
        if (you.spells[i] == SPELL_NO_SPELL)
            break;
    }

    you.spells[i] = spell;

    // now we find an available label:
    for (j = 0; j < 52; j++)
    {
        if (you.spell_letter_table[j] == -1)
            break;
    }

    you.spell_letter_table[j] = i;

    you.spell_no++;

    take_note(Note(NOTE_LEARN_SPELL, spell));

    return (true);
}

bool del_spell_from_memory_by_slot( int slot )
{
    int j;

    you.spells[ slot ] = SPELL_NO_SPELL;

    for (j = 0; j < 52; j++)
    {
        if (you.spell_letter_table[j] == slot)
            you.spell_letter_table[j] = -1;

    }

    you.spell_no--;

    return (true);
}


int spell_hunger(int which_spell)
{
    int level = seekspell(which_spell)->level;

    switch (level)
    {
    case  1: return   50;
    case  2: return   95;
    case  3: return  160;
    case  4: return  250;
    case  5: return  350;
    case  6: return  550;
    case  7: return  700;
    case  8: return  850;
    case  9: return 1000;
    case 10: return 1000;
    case 11: return 1100;
    case 12: return 1250;
    case 13: return 1380;
    case 14: return 1500;
    case 15: return 1600;
    default: return 1600 + (20 * level);
    }
}                               // end spell_hunger();

// applied to spell misfires (more power = worse) and triggers
// for Xom acting (more power = more likely to grab his attention) {dlb}
int spell_mana(int which_spell)
{
    return (seekspell(which_spell)->level);
}

// applied in naughties (more difficult = higher level knowledge = worse)
// and triggers for Sif acting (same reasoning as above, just good) {dlb}
int spell_difficulty(int which_spell)
{
    return (seekspell(which_spell)->level);
}

int spell_levels_required( int which_spell )
{
    int levels = spell_difficulty( which_spell );

    if (which_spell == SPELL_DELAYED_FIREBALL
        && player_has_spell( SPELL_FIREBALL ))
    {
        levels -= spell_difficulty( SPELL_FIREBALL );
    }
    else if (which_spell == SPELL_FIREBALL
            && player_has_spell( SPELL_DELAYED_FIREBALL ))
    {
        levels = 0;
    }

    return (levels);
}

unsigned int get_spell_flags( int which_spell )
{
    return (seekspell(which_spell)->flags);
}

const char *get_spell_target_prompt( int which_spell )
{
    return (seekspell(which_spell)->target_prompt);
}

bool spell_typematch(int which_spell, unsigned int which_discipline)
{
    return (seekspell(which_spell)->disciplines & which_discipline);
}

//jmf: next two for simple bit handling
unsigned int spell_type(int spell)
{
    return (seekspell(spell)->disciplines);
}

int count_bits(unsigned int bits)
{
    unsigned int n;
    int c = 0;

    for (n = 1; n < INT_MAX; n <<= 1)
    {
        if (n & bits)
            c++;
    }

    return (c);
}

// this will probably be used often, so rather than use malloc/free
// (which may lead to memory fragmentation) I'll just use a static
// array of characters -- if/when the String changeover takes place,
// this will all shift, no doubt {dlb}
/*
  const char *spell_title( int which_spell )
  {
  static char this_title[41] = ""; // this is generous, to say the least {dlb}
  strncpy(this_title, seekspell(which_spell)->title, 41);
  // truncation better than overrun {dlb}
  return ( this_title );
  }         // end spell_title()
*/

const char *spell_title(int spell)      //jmf: ah the joys of driving ms. data
{
    return (seekspell(spell)->title);
}


// FUNCTION APPLICATORS: Idea from Juho Snellman <jsnell@lyseo.edu.ouka.fi>
//                       on the Roguelike News pages, Development section.
//                       <URL:http://www.skoardy.demon.co.uk/rlnews/>
// Here are some function applicators: sort of like brain-dead,
// home-grown iterators for the container "dungeon".

// Apply a function-pointer to all visible squares
// Returns summation of return values from passed in function.
int apply_area_visible( int (*func) (int, int, int, int), int power )
{
    int x, y;
    int rv = 0;

    //jmf: FIXME: randomly start from other quadrants, like raise_dead?
    for (x = you.x_pos - 8; x <= you.x_pos + 8; x++)
    {
        for (y = you.y_pos - 8; y <= you.y_pos + 8; y++)
        {
            if (see_grid(x, y))
                rv += func(x, y, power, 0);
        }
    }

    return (rv);
}                               // end apply_area_visible()

// Applies the effect to all nine squares around/including the target.
// Returns summation of return values from passed in function.
int apply_area_square( int (*func) (int, int, int, int), int cx, int cy, 
                        int power )
{
    int x, y;
    int rv = 0;

    for (x = cx - 1; x <= cx + 1; x++)
    {
        for (y = cy - 1; y <= cy + 1; y++)
        {
            rv += func(x, y, power, 0);
        }
    }

    return (rv);
}                               // end apply_area_square()


// Applies the effect to the eight squares beside the target.
// Returns summation of return values from passed in function.
int apply_area_around_square( int (*func) (int, int, int, int), 
                              int targ_x, int targ_y, int power)
{
    int x, y;
    int rv = 0;

    for (x = targ_x - 1; x <= targ_x + 1; x++)
    {
        for (y = targ_y - 1; y <= targ_y + 1; y++)
        {
            if (x == targ_x && y == targ_y)
                continue;
            else
                rv += func(x, y, power, 0);
        }
    }
    return (rv);
}                               // end apply_area_around_square()

// Effect up to max_targs monsters around a point, chosen randomly
// Return varies with the function called;  return values will be added up.
int apply_random_around_square( int (*func) (int, int, int, int),
                                int targ_x, int targ_y, 
                                bool hole_in_middle, int power, int max_targs )
{
    int rv = 0;

    if (max_targs <= 0)
        return 0;

    if (max_targs >= 9 && !hole_in_middle)
    {
        return (apply_area_square( func, targ_x, targ_y, power ));
    }

    if (max_targs >= 8 && hole_in_middle)
    {
        return (apply_area_around_square( func, targ_x, targ_y, power ));
    }

    FixedVector< coord_def, 8 > targs;
    int count = 0;

    for (int x = targ_x - 1; x <= targ_x + 1; x++)
    {
        for (int y = targ_y - 1; y <= targ_y + 1; y++)
        {
            if (hole_in_middle && (x == targ_x && y == targ_y)) 
                continue;

            if (mgrd[x][y] == NON_MONSTER 
                && !(x == you.x_pos && y == you.y_pos))
            {
                continue;
            }
                
            // Found target
            count++;

            // Slight differece here over the basic algorithm...
            //
            // For cases where the number of choices <= max_targs it's
            // obvious (all available choices will be selected).
            //
            // For choices > max_targs, here's a brief proof:
            //
            // Let m = max_targs, k = choices - max_targs, k > 0.
            //
            // Proof, by induction (over k):
            //
            // 1) Show n = m + 1 (k = 1) gives uniform distribution,
            //    P(new one not chosen) = 1 / (m + 1).
            //                                         m     1     1
            //    P(specific previous one replaced) = --- * --- = ---
            //                                        m+1    m    m+1
            //
            //    So the probablity is uniform (ie. any element has
            //    a 1/(m+1) chance of being in the unchosen slot).
            //
            // 2) Assume the distribution is uniform at n = m+k.
            //    (ie. the probablity that any of the found elements
            //     was chosen = m / (m+k) (the slots are symetric,
            //     so it's the sum of the probabilities of being in
            //     any of them)).
            //
            // 3) Show n = m + k + 1 gives a uniform distribution.
            //    P(new one chosen) = m / (m + k + 1)
            //    P(any specific previous choice remaining chosen)
            //    = [1 - P(swaped into m+k+1 position)] * P(prev. chosen)
            //              m      1       m
            //    = [ 1 - ----- * --- ] * ---
            //            m+k+1    m      m+k
            //
            //       m+k     m       m
            //    = ----- * ---  = -----
            //      m+k+1   m+k    m+k+1
            //
            // Therefore, it's uniform for n = m + k + 1.  QED
            //
            // The important thing to note in calculating the last
            // probability is that the chosen elements have already
            // passed tests which verify that they *don't* belong
            // in slots m+1...m+k, so the only positions an already
            // chosen element can end up in are it's original
            // position (in one of the chosen slots), or in the
            // new slot.
            //
            // The new item can, of course, be placed in any slot,
            // swapping the value there into the new slot... we
            // just don't care about the non-chosen slots enough
            // to store them, so it might look like the item
            // automatically takes the new slot when not chosen
            // (although, by symetry all the non-chosen slots are
            // the same... and similarly, by symetry, all chosen
            // slots are the same).
            //
            // Yes, that's a long comment for a short piece of
            // code, but I want people to have an understanding
            // of why this works (or at least make them wary about
            // changing it without proof and breaking this code). -- bwr

            // Accept the first max_targs choices, then when
            // new choices come up, replace one of the choices
            // at random, max_targs/count of the time (the rest
            // of the time it replaces an element in an unchosen
            // slot -- but we don't care about them).
            if (count <= max_targs)
            {
                targs[ count - 1 ].x = x;
                targs[ count - 1 ].y = y;
            }
            else if (random2( count ) < max_targs)
            {
                const int pick = random2( max_targs );  
                targs[ pick ].x = x;
                targs[ pick ].y = y;
            }
        }
    }

    const int targs_found = (count < max_targs) ? count : max_targs;

    if (targs_found)
    {
        // Used to divide the power up among the targets here, but
        // it's probably better to allow the full power through and
        // balance the called function. -- bwr
        for (int i = 0; i < targs_found; i++)
        {
            ASSERT( targs[i].x && targs[i].y );
            rv += func( targs[i].x, targs[i].y, power, 0 );
        }
    }

    return (rv);
}                               // end apply_random_around_square()

// apply func to one square of player's choice beside the player
int apply_one_neighbouring_square(int (*func) (int, int, int, int), int power)
{
    struct dist bmove;

    mpr("Which direction? [ESC to cancel]", MSGCH_PROMPT);
    direction( bmove, DIR_DIR, TARG_ENEMY );

    if (!bmove.isValid)
    {
        canned_msg(MSG_OK);
        return (-1);
    }

    int rv = func(you.x_pos + bmove.dx, you.y_pos + bmove.dy, power, 1);

    if (rv == 0)
        canned_msg(MSG_NOTHING_HAPPENS);

    return (rv);
}                               // end apply_one_neighbouring_square()

int apply_area_within_radius( int (*func) (int, int, int, int),
                              int x, int y, int pow, int radius, int ctype )
{
    int ix, iy;
    int sq_radius = radius * radius;
    int sx, sy, ex, ey;       // start and end x, y - bounds checked
    int rv = 0;

    // begin x,y
    sx = x - radius;
    sy = y - radius;
    if (sx < 0) sx = 0;
    if (sy < 0) sy = 0;

    // end x,y
    ex = x + radius;
    ey = y + radius;
    if (ex > GXM) ex = GXM;
    if (ey > GYM) ey = GYM;

    for (ix = sx; ix < ex; ix++)
    {
        for (iy = sy; iy < ey; iy++)
        {
            if (distance(x, y, ix, iy) <= sq_radius)
                rv += func(ix, iy, pow, ctype);
        }
    }

    return (rv);
}                               // end apply_area_within_radius()

// apply_area_cloud:
// Try to make a realistic cloud by expanding from a point, filling empty
// floor tiles until we run out of material (passed in as number).
// We really need some sort of a queue structure, since ideally I'd like
// to do a (shallow) breadth-first-search of the dungeon floor.
// This ought to work okay for small clouds.
void apply_area_cloud( int (*func) (int, int, int, int, kill_category),
                       int x, int y,
                       int pow, int number, int ctype, kill_category whose )
{
    int spread, clouds_left = number;
    int good_squares = 0, neighbours[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    int dx = 1, dy = 1;
    bool x_first;

    if (clouds_left && cloud_helper(func, x, y, pow, ctype, whose))
        clouds_left--;

    if (!clouds_left)
        return;

    if (coinflip())
        dx *= -1;
    if (coinflip())
        dy *= -1;

    x_first = coinflip();

    if (x_first)
    {
        if (clouds_left && cloud_helper(func, x + dx, y, pow, ctype, whose))
        {
            clouds_left--;
            good_squares++;
            neighbours[0]++;
        }

        if (clouds_left && cloud_helper(func, x - dx, y, pow, ctype, whose))
        {
            clouds_left--;
            good_squares++;
            neighbours[1]++;
        }

        if (clouds_left && cloud_helper(func, x, y + dy, pow, ctype, whose))
        {
            clouds_left--;
            good_squares++;
            neighbours[2]++;
        }

        if (clouds_left && cloud_helper(func, x, y - dy, pow, ctype, whose))
        {
            clouds_left--;
            good_squares++;
            neighbours[3]++;
        }
    }
    else
    {
        if (clouds_left && cloud_helper(func, x, y + dy, pow, ctype, whose))
        {
            clouds_left--;
            good_squares++;
            neighbours[2]++;
        }

        if (clouds_left && cloud_helper(func, x, y - dy, pow, ctype, whose))
        {
            clouds_left--;
            good_squares++;
            neighbours[3]++;
        }

        if (clouds_left && cloud_helper(func, x + dx, y, pow, ctype, whose))
        {
            clouds_left--;
            good_squares++;
            neighbours[0]++;
        }

        if (clouds_left && cloud_helper(func, x - dx, y, pow, ctype, whose))
        {
            clouds_left--;
            good_squares++;
            neighbours[1]++;
        }
    }

    // now diagonals; we could randomize dx & dy again here
    if (clouds_left && cloud_helper(func, x + dx, y + dy, pow, ctype, whose))
    {
        clouds_left--;
        good_squares++;
        neighbours[4]++;
    }

    if (clouds_left && cloud_helper(func, x - dx, y + dy, pow, ctype, whose))
    {
        clouds_left--;
        good_squares++;
        neighbours[5]++;
    }

    if (clouds_left && cloud_helper(func, x + dx, y - dy, pow, ctype, whose))
    {
        clouds_left--;
        good_squares++;
        neighbours[6]++;
    }

    if (clouds_left && cloud_helper(func, x - dx, y - dy, pow, ctype, whose))
    {
        clouds_left--;
        good_squares++;
        neighbours[7]++;
    }

    if (!(clouds_left && good_squares))
        return;

    for (int i = 0; i < 8 && clouds_left; i++)
    {
        if (neighbours[i] == 0)
            continue;

        spread = clouds_left / good_squares;
        clouds_left -= spread;
        good_squares--;

        switch (i)
        {
        case 0:
            apply_area_cloud(func, x + dx, y, pow, spread, ctype, whose);
            break;
        case 1:
            apply_area_cloud(func, x - dx, y, pow, spread, ctype, whose);
            break;
        case 2:
            apply_area_cloud(func, x, y + dy, pow, spread, ctype, whose);
            break;
        case 3:
            apply_area_cloud(func, x, y - dy, pow, spread, ctype, whose);
            break;
        case 4:
            apply_area_cloud(func, x + dx, y + dy, pow, spread, ctype, whose);
            break;
        case 5:
            apply_area_cloud(func, x - dx, y + dy, pow, spread, ctype, whose);
            break;
        case 6:
            apply_area_cloud(func, x + dx, y - dy, pow, spread, ctype, whose);
            break;
        case 7:
            apply_area_cloud(func, x - dx, y - dy, pow, spread, ctype, whose);
            break;
        }
    }
}                               // end apply_area_cloud()

char spell_direction( struct dist &spelld, struct bolt &pbolt, 
                      targeting_type restrict, int mode,
                      const char *prompt )
{
    message_current_target();

    direction( spelld, restrict, mode, false, prompt );

    if (!spelld.isValid)
    {
        // check for user cancel
        canned_msg(MSG_OK);
        return -1;
    }

    pbolt.set_target(spelld);
    pbolt.source_x = you.x_pos;
    pbolt.source_y = you.y_pos;

    return 1;
}                               // end spell_direction()

const char* spelltype_short_name( int which_spelltype ) {
    switch (which_spelltype)
    {
    case SPTYP_CONJURATION:
        return ("Conj");
    case SPTYP_ENCHANTMENT:
        return ("Ench");
    case SPTYP_FIRE:
        return ("Fire");
    case SPTYP_ICE:
        return ("Ice");
    case SPTYP_TRANSMIGRATION:
        return ("Tmgr");
    case SPTYP_NECROMANCY:
        return ("Necr");
    case SPTYP_HOLY:
        return ("Holy");
    case SPTYP_SUMMONING:
        return ("Summ");
    case SPTYP_DIVINATION:
        return ("Divn");
    case SPTYP_TRANSLOCATION:
        return ("Tloc");
    case SPTYP_POISON:
        return ("Pois");
    case SPTYP_EARTH:
        return ("Erth");
    case SPTYP_AIR:
        return ("Air");
    default:
        return "Bug";
    }
}

const char *spelltype_name(unsigned int which_spelltype)
{
    static char bug_string[80];

    switch (which_spelltype)
    {
    case SPTYP_CONJURATION:
        return ("Conjuration");
    case SPTYP_ENCHANTMENT:
        return ("Enchantment");
    case SPTYP_FIRE:
        return ("Fire");
    case SPTYP_ICE:
        return ("Ice");
    case SPTYP_TRANSMIGRATION:
        return ("Transmigration");
    case SPTYP_NECROMANCY:
        return ("Necromancy");
    case SPTYP_HOLY:
        return ("Holy");
    case SPTYP_SUMMONING:
        return ("Summoning");
    case SPTYP_DIVINATION:
        return ("Divination");
    case SPTYP_TRANSLOCATION:
        return ("Translocation");
    case SPTYP_POISON:
        return ("Poison");
    case SPTYP_EARTH:
        return ("Earth");
    case SPTYP_AIR:
        return ("Air");
    default:
        snprintf( bug_string, sizeof(bug_string), 
                  "invalid(%d)", which_spelltype );

        return (bug_string);
    }
}                               // end spelltype_name()

int spell_type2skill(unsigned int spelltype)
{
    char buffer[80];

    switch (spelltype)
    {
    case SPTYP_CONJURATION:    return (SK_CONJURATIONS);
    case SPTYP_ENCHANTMENT:    return (SK_ENCHANTMENTS);
    case SPTYP_FIRE:           return (SK_FIRE_MAGIC);
    case SPTYP_ICE:            return (SK_ICE_MAGIC);
    case SPTYP_TRANSMIGRATION: return (SK_TRANSMIGRATION);
    case SPTYP_NECROMANCY:     return (SK_NECROMANCY);
    case SPTYP_SUMMONING:      return (SK_SUMMONINGS);
    case SPTYP_DIVINATION:     return (SK_DIVINATIONS);
    case SPTYP_TRANSLOCATION:  return (SK_TRANSLOCATIONS);
    case SPTYP_POISON:         return (SK_POISON_MAGIC);
    case SPTYP_EARTH:          return (SK_EARTH_MAGIC);
    case SPTYP_AIR:            return (SK_AIR_MAGIC);

    default:
    case SPTYP_HOLY:
        snprintf( buffer, sizeof(buffer), 
                  "spell_type2skill: called with spelltype %d", spelltype );

        mpr( buffer );
        return (-1);
    }
}                               // end spell_type2skill()

/*
 **************************************************
 *                                                *
 *              END PUBLIC FUNCTIONS              *
 *                                                *
 **************************************************
 */

//jmf: simplified; moved init code to top function, init_playerspells()
static struct playerspell *seekspell(int spell)
{
    return (&spelldata[plyrspell_list[spell]]);
}

static bool cloud_helper( int (*func) (int, int, int, int, kill_category),
                          int x, int y, 
                          int pow, int ctype, kill_category whose )
{
    if (!grid_is_solid(grd[x][y]) && env.cgrid[x][y] == EMPTY_CLOUD)
    {
        func(x, y, pow, ctype, whose);
        return true;
    }

    return false;
}