pub fn fixed_xor (bytes1: &[u8], bytes2: &[u8]) -> Vec { return bytes1.iter() .zip(bytes2.iter()) .map(|(&a, &b)| { a ^ b }) .collect(); } pub fn repeating_key_xor (plaintext: &[u8], key: &[u8]) -> Vec { return fixed_xor( plaintext, &key .iter() .cycle() .take(plaintext.len()) .map(|c| *c) .collect::>()[..] ); } pub fn hamming (bytes1: &[u8], bytes2: &[u8]) -> u64 { count_bits(&fixed_xor(bytes1, bytes2)[..]) } pub fn pad_pkcs7 (block: &[u8], blocksize: u8) -> Vec { let padding_bytes = blocksize - (block.len() % blocksize as usize) as u8; return block .iter() .map(|c| *c) .chain(::std::iter::repeat(padding_bytes).take(padding_bytes as usize)) .collect(); } pub fn unpad_pkcs7 (block: &[u8]) -> Option<&[u8]> { let padding_byte = block[block.len() - 1]; let padding_len = padding_byte as usize; if padding_len > block.len() || padding_len == 0 { return None; } let real_len = block.len() - padding_len; if block[real_len..].iter().all(|&c| c == padding_byte) { return Some(&block[..real_len]); } else { return None; } } fn count_bits (bytes: &[u8]) -> u64 { bytes.iter().map(|&c| { count_bits_byte(c) }).fold(0, |acc, n| acc + n) } fn count_bits_byte (byte: u8) -> u64 { (((byte & (0x01 << 0)) >> 0) + ((byte & (0x01 << 1)) >> 1) + ((byte & (0x01 << 2)) >> 2) + ((byte & (0x01 << 3)) >> 3) + ((byte & (0x01 << 4)) >> 4) + ((byte & (0x01 << 5)) >> 5) + ((byte & (0x01 << 6)) >> 6) + ((byte & (0x01 << 7)) >> 7)) as u64 } #[test] fn test_hamming () { assert_eq!(hamming(b"this is a test", b"wokka wokka!!!"), 37); }