summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorSteven Noonan <steven@uplinklabs.net>2009-09-29 18:20:01 -0700
committerSteven Noonan <steven@uplinklabs.net>2009-09-29 22:13:56 -0700
commit4e1c906598180045d735a9780e21a8fd7a71c204 (patch)
tree80e447566900dad9d30c1b08ad333b04337d13ab
parent0fba3e2df87fefd89ba17cc355fac643c3e8dc49 (diff)
downloadcrawl-ref-4e1c906598180045d735a9780e21a8fd7a71c204.tar.gz
crawl-ref-4e1c906598180045d735a9780e21a8fd7a71c204.zip
util/sqlite: update from v3.3.16 to v3.6.18
Why has a two year old sqlite been used this long? Signed-off-by: Steven Noonan <steven@uplinklabs.net>
-rw-r--r--crawl-ref/source/util/sqlite/sqlite3.c103404
-rw-r--r--crawl-ref/source/util/sqlite/sqlite3.h6100
2 files changed, 78647 insertions, 30857 deletions
diff --git a/crawl-ref/source/util/sqlite/sqlite3.c b/crawl-ref/source/util/sqlite/sqlite3.c
index b0310efffe..02fad82056 100644
--- a/crawl-ref/source/util/sqlite/sqlite3.c
+++ b/crawl-ref/source/util/sqlite/sqlite3.c
@@ -1,6 +1,6 @@
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
-** version 3.3.16. By combining all the individual C code files into this
+** version 3.6.18. By combining all the individual C code files into this
** single large file, the entire code can be compiled as a one translation
** unit. This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately. Performance improvements
@@ -10,16 +10,521 @@
** This file is all you need to compile SQLite. To use SQLite in other
** programs, you need this file and the "sqlite3.h" header file that defines
** the programming interface to the SQLite library. (If you do not have
-** the "sqlite3.h" header file at hand, you will find a copy in the first
-** 1885 lines past this header comment.) Additional code files may be
-** needed if you want a wrapper to interface SQLite with your choice of
-** programming language. The code for the "sqlite3" command-line shell
-** is also in a separate file. This file contains only code for the core
-** SQLite library.
+** the "sqlite3.h" header file at hand, you will find a copy embedded within
+** the text of this file. Search for "Begin file sqlite3.h" to find the start
+** of the embedded sqlite3.h header file.) Additional code files may be needed
+** if you want a wrapper to interface SQLite with your choice of programming
+** language. The code for the "sqlite3" command-line shell is also in a
+** separate file. This file contains only code for the core SQLite library.
**
-** This amalgamation was generated on 2007-04-18 15:18:29 UTC.
+** This amalgamation was generated on 2009-09-11 15:36:30 UTC.
*/
+#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
+#ifndef SQLITE_PRIVATE
+# define SQLITE_PRIVATE static
+#endif
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+/************** Begin file sqliteInt.h ***************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Internal interface definitions for SQLite.
+**
+*/
+#ifndef _SQLITEINT_H_
+#define _SQLITEINT_H_
+
+/*
+** These #defines should enable >2GB file support on POSIX if the
+** underlying operating system supports it. If the OS lacks
+** large file support, or if the OS is windows, these should be no-ops.
+**
+** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
+** system #includes. Hence, this block of code must be the very first
+** code in all source files.
+**
+** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
+** on the compiler command line. This is necessary if you are compiling
+** on a recent machine (ex: Red Hat 7.2) but you want your code to work
+** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
+** without this option, LFS is enable. But LFS does not exist in the kernel
+** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
+** portability you should omit LFS.
+**
+** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
+*/
+#ifndef SQLITE_DISABLE_LFS
+# define _LARGE_FILE 1
+# ifndef _FILE_OFFSET_BITS
+# define _FILE_OFFSET_BITS 64
+# endif
+# define _LARGEFILE_SOURCE 1
+#endif
+
+/*
+** Include the configuration header output by 'configure' if we're using the
+** autoconf-based build
+*/
+#ifdef _HAVE_SQLITE_CONFIG_H
+#include "config.h"
+#endif
+
+/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
+/************** Begin file sqliteLimit.h *************************************/
+/*
+** 2007 May 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file defines various limits of what SQLite can process.
+**
+** @(#) $Id: sqliteLimit.h,v 1.10 2009/01/10 16:15:09 danielk1977 Exp $
+*/
+
+/*
+** The maximum length of a TEXT or BLOB in bytes. This also
+** limits the size of a row in a table or index.
+**
+** The hard limit is the ability of a 32-bit signed integer
+** to count the size: 2^31-1 or 2147483647.
+*/
+#ifndef SQLITE_MAX_LENGTH
+# define SQLITE_MAX_LENGTH 1000000000
+#endif
+
+/*
+** This is the maximum number of
+**
+** * Columns in a table
+** * Columns in an index
+** * Columns in a view
+** * Terms in the SET clause of an UPDATE statement
+** * Terms in the result set of a SELECT statement
+** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
+** * Terms in the VALUES clause of an INSERT statement
+**
+** The hard upper limit here is 32676. Most database people will
+** tell you that in a well-normalized database, you usually should
+** not have more than a dozen or so columns in any table. And if
+** that is the case, there is no point in having more than a few
+** dozen values in any of the other situations described above.
+*/
+#ifndef SQLITE_MAX_COLUMN
+# define SQLITE_MAX_COLUMN 2000
+#endif
+
+/*
+** The maximum length of a single SQL statement in bytes.
+**
+** It used to be the case that setting this value to zero would
+** turn the limit off. That is no longer true. It is not possible
+** to turn this limit off.
+*/
+#ifndef SQLITE_MAX_SQL_LENGTH
+# define SQLITE_MAX_SQL_LENGTH 1000000000
+#endif
+
+/*
+** The maximum depth of an expression tree. This is limited to
+** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
+** want to place more severe limits on the complexity of an
+** expression.
+**
+** A value of 0 used to mean that the limit was not enforced.
+** But that is no longer true. The limit is now strictly enforced
+** at all times.
+*/
+#ifndef SQLITE_MAX_EXPR_DEPTH
+# define SQLITE_MAX_EXPR_DEPTH 1000
+#endif
+
+/*
+** The maximum number of terms in a compound SELECT statement.
+** The code generator for compound SELECT statements does one
+** level of recursion for each term. A stack overflow can result
+** if the number of terms is too large. In practice, most SQL
+** never has more than 3 or 4 terms. Use a value of 0 to disable
+** any limit on the number of terms in a compount SELECT.
+*/
+#ifndef SQLITE_MAX_COMPOUND_SELECT
+# define SQLITE_MAX_COMPOUND_SELECT 500
+#endif
+
+/*
+** The maximum number of opcodes in a VDBE program.
+** Not currently enforced.
+*/
+#ifndef SQLITE_MAX_VDBE_OP
+# define SQLITE_MAX_VDBE_OP 25000
+#endif
+
+/*
+** The maximum number of arguments to an SQL function.
+*/
+#ifndef SQLITE_MAX_FUNCTION_ARG
+# define SQLITE_MAX_FUNCTION_ARG 127
+#endif
+
+/*
+** The maximum number of in-memory pages to use for the main database
+** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE
+*/
+#ifndef SQLITE_DEFAULT_CACHE_SIZE
+# define SQLITE_DEFAULT_CACHE_SIZE 2000
+#endif
+#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
+# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500
+#endif
+
+/*
+** The maximum number of attached databases. This must be between 0
+** and 30. The upper bound on 30 is because a 32-bit integer bitmap
+** is used internally to track attached databases.
+*/
+#ifndef SQLITE_MAX_ATTACHED
+# define SQLITE_MAX_ATTACHED 10
+#endif
+
+
+/*
+** The maximum value of a ?nnn wildcard that the parser will accept.
+*/
+#ifndef SQLITE_MAX_VARIABLE_NUMBER
+# define SQLITE_MAX_VARIABLE_NUMBER 999
+#endif
+
+/* Maximum page size. The upper bound on this value is 32768. This a limit
+** imposed by the necessity of storing the value in a 2-byte unsigned integer
+** and the fact that the page size must be a power of 2.
+**
+** If this limit is changed, then the compiled library is technically
+** incompatible with an SQLite library compiled with a different limit. If
+** a process operating on a database with a page-size of 65536 bytes
+** crashes, then an instance of SQLite compiled with the default page-size
+** limit will not be able to rollback the aborted transaction. This could
+** lead to database corruption.
+*/
+#ifndef SQLITE_MAX_PAGE_SIZE
+# define SQLITE_MAX_PAGE_SIZE 32768
+#endif
+
+
+/*
+** The default size of a database page.
+*/
+#ifndef SQLITE_DEFAULT_PAGE_SIZE
+# define SQLITE_DEFAULT_PAGE_SIZE 1024
+#endif
+#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_DEFAULT_PAGE_SIZE
+# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
+#endif
+
+/*
+** Ordinarily, if no value is explicitly provided, SQLite creates databases
+** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
+** device characteristics (sector-size and atomic write() support),
+** SQLite may choose a larger value. This constant is the maximum value
+** SQLite will choose on its own.
+*/
+#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
+# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
+#endif
+#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
+# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
+#endif
+
+
+/*
+** Maximum number of pages in one database file.
+**
+** This is really just the default value for the max_page_count pragma.
+** This value can be lowered (or raised) at run-time using that the
+** max_page_count macro.
+*/
+#ifndef SQLITE_MAX_PAGE_COUNT
+# define SQLITE_MAX_PAGE_COUNT 1073741823
+#endif
+
+/*
+** Maximum length (in bytes) of the pattern in a LIKE or GLOB
+** operator.
+*/
+#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
+# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
+#endif
+
+/*
+** Maximum depth of recursion for triggers.
+*/
+#ifndef SQLITE_MAX_TRIGGER_DEPTH
+#if defined(SQLITE_SMALL_STACK)
+# define SQLITE_MAX_TRIGGER_DEPTH 10
+#else
+# define SQLITE_MAX_TRIGGER_DEPTH 1000
+#endif
+#endif
+
+/************** End of sqliteLimit.h *****************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/* Disable nuisance warnings on Borland compilers */
+#if defined(__BORLANDC__)
+#pragma warn -rch /* unreachable code */
+#pragma warn -ccc /* Condition is always true or false */
+#pragma warn -aus /* Assigned value is never used */
+#pragma warn -csu /* Comparing signed and unsigned */
+#pragma warn -spa /* Suspicious pointer arithmetic */
+#endif
+
+/* Needed for various definitions... */
+#ifndef _GNU_SOURCE
+# define _GNU_SOURCE
+#endif
+
+/*
+** Include standard header files as necessary
+*/
+#ifdef HAVE_STDINT_H
+#include <stdint.h>
+#endif
+#ifdef HAVE_INTTYPES_H
+#include <inttypes.h>
+#endif
+
+#define SQLITE_INDEX_SAMPLES 10
+
+/*
+** This macro is used to "hide" some ugliness in casting an int
+** value to a ptr value under the MSVC 64-bit compiler. Casting
+** non 64-bit values to ptr types results in a "hard" error with
+** the MSVC 64-bit compiler which this attempts to avoid.
+**
+** A simple compiler pragma or casting sequence could not be found
+** to correct this in all situations, so this macro was introduced.
+**
+** It could be argued that the intptr_t type could be used in this
+** case, but that type is not available on all compilers, or
+** requires the #include of specific headers which differs between
+** platforms.
+**
+** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on
+** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)).
+** So we have to define the macros in different ways depending on the
+** compiler.
+*/
+#if defined(__GNUC__)
+# if defined(HAVE_STDINT_H)
+# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X))
+# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X))
+# else
+# define SQLITE_INT_TO_PTR(X) ((void*)(X))
+# define SQLITE_PTR_TO_INT(X) ((int)(X))
+# endif
+#else
+# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
+# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
+#endif
+
+
+/*
+** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
+** Older versions of SQLite used an optional THREADSAFE macro.
+** We support that for legacy
+*/
+#if !defined(SQLITE_THREADSAFE)
+#if defined(THREADSAFE)
+# define SQLITE_THREADSAFE THREADSAFE
+#else
+# define SQLITE_THREADSAFE 1
+#endif
+#endif
+
+/*
+** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
+** It determines whether or not the features related to
+** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
+** be overridden at runtime using the sqlite3_config() API.
+*/
+#if !defined(SQLITE_DEFAULT_MEMSTATUS)
+# define SQLITE_DEFAULT_MEMSTATUS 1
+#endif
+
+/*
+** Exactly one of the following macros must be defined in order to
+** specify which memory allocation subsystem to use.
+**
+** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
+** SQLITE_MEMDEBUG // Debugging version of system malloc()
+** SQLITE_MEMORY_SIZE // internal allocator #1
+** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator
+** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator
+**
+** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
+** the default.
+*/
+#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
+ defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
+ defined(SQLITE_POW2_MEMORY_SIZE)>1
+# error "At most one of the following compile-time configuration options\
+ is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
+ SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
+#endif
+#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
+ defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
+ defined(SQLITE_POW2_MEMORY_SIZE)==0
+# define SQLITE_SYSTEM_MALLOC 1
+#endif
+
+/*
+** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
+** sizes of memory allocations below this value where possible.
+*/
+#if !defined(SQLITE_MALLOC_SOFT_LIMIT)
+# define SQLITE_MALLOC_SOFT_LIMIT 1024
+#endif
+
+/*
+** We need to define _XOPEN_SOURCE as follows in order to enable
+** recursive mutexes on most Unix systems. But Mac OS X is different.
+** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
+** so it is omitted there. See ticket #2673.
+**
+** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
+** implemented on some systems. So we avoid defining it at all
+** if it is already defined or if it is unneeded because we are
+** not doing a threadsafe build. Ticket #2681.
+**
+** See also ticket #2741.
+*/
+#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
+# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
+#endif
+
+/*
+** The TCL headers are only needed when compiling the TCL bindings.
+*/
+#if defined(SQLITE_TCL) || defined(TCLSH)
+# include <tcl.h>
+#endif
+
+/*
+** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
+** Setting NDEBUG makes the code smaller and run faster. So the following
+** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
+** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
+** feature.
+*/
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+
+/*
+** The testcase() macro is used to aid in coverage testing. When
+** doing coverage testing, the condition inside the argument to
+** testcase() must be evaluated both true and false in order to
+** get full branch coverage. The testcase() macro is inserted
+** to help ensure adequate test coverage in places where simple
+** condition/decision coverage is inadequate. For example, testcase()
+** can be used to make sure boundary values are tested. For
+** bitmask tests, testcase() can be used to make sure each bit
+** is significant and used at least once. On switch statements
+** where multiple cases go to the same block of code, testcase()
+** can insure that all cases are evaluated.
+**
+*/
+#ifdef SQLITE_COVERAGE_TEST
+SQLITE_PRIVATE void sqlite3Coverage(int);
+# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
+#else
+# define testcase(X)
+#endif
+
+/*
+** The TESTONLY macro is used to enclose variable declarations or
+** other bits of code that are needed to support the arguments
+** within testcase() and assert() macros.
+*/
+#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
+# define TESTONLY(X) X
+#else
+# define TESTONLY(X)
+#endif
+
+/*
+** Sometimes we need a small amount of code such as a variable initialization
+** to setup for a later assert() statement. We do not want this code to
+** appear when assert() is disabled. The following macro is therefore
+** used to contain that setup code. The "VVA" acronym stands for
+** "Verification, Validation, and Accreditation". In other words, the
+** code within VVA_ONLY() will only run during verification processes.
+*/
+#ifndef NDEBUG
+# define VVA_ONLY(X) X
+#else
+# define VVA_ONLY(X)
+#endif
+
+/*
+** The ALWAYS and NEVER macros surround boolean expressions which
+** are intended to always be true or false, respectively. Such
+** expressions could be omitted from the code completely. But they
+** are included in a few cases in order to enhance the resilience
+** of SQLite to unexpected behavior - to make the code "self-healing"
+** or "ductile" rather than being "brittle" and crashing at the first
+** hint of unplanned behavior.
+**
+** In other words, ALWAYS and NEVER are added for defensive code.
+**
+** When doing coverage testing ALWAYS and NEVER are hard-coded to
+** be true and false so that the unreachable code then specify will
+** not be counted as untested code.
+*/
+#if defined(SQLITE_COVERAGE_TEST)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+
+/*
+** The macro unlikely() is a hint that surrounds a boolean
+** expression that is usually false. Macro likely() surrounds
+** a boolean expression that is usually true. GCC is able to
+** use these hints to generate better code, sometimes.
+*/
+#if defined(__GNUC__) && 0
+# define likely(X) __builtin_expect((X),1)
+# define unlikely(X) __builtin_expect((X),0)
+#else
+# define likely(X) !!(X)
+# define unlikely(X) !!(X)
+#endif
+
+/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
/************** Begin file sqlite3.h *****************************************/
/*
** 2001 September 15
@@ -33,9 +538,25 @@
**
*************************************************************************
** This header file defines the interface that the SQLite library
-** presents to client programs.
-**
-** @(#) $Id: sqlite.h.in,v 1.201 2007/03/30 20:43:42 drh Exp $
+** presents to client programs. If a C-function, structure, datatype,
+** or constant definition does not appear in this file, then it is
+** not a published API of SQLite, is subject to change without
+** notice, and should not be referenced by programs that use SQLite.
+**
+** Some of the definitions that are in this file are marked as
+** "experimental". Experimental interfaces are normally new
+** features recently added to SQLite. We do not anticipate changes
+** to experimental interfaces but reserve the right to make minor changes
+** if experience from use "in the wild" suggest such changes are prudent.
+**
+** The official C-language API documentation for SQLite is derived
+** from comments in this file. This file is the authoritative source
+** on how SQLite interfaces are suppose to operate.
+**
+** The name of this file under configuration management is "sqlite.h.in".
+** The makefile makes some minor changes to this file (such as inserting
+** the version number) and changes its name to "sqlite3.h" as
+** part of the build process.
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
@@ -48,58 +569,183 @@
extern "C" {
#endif
+
/*
-** The version of the SQLite library.
+** Add the ability to override 'extern'
*/
-#ifdef SQLITE_VERSION
-# undef SQLITE_VERSION
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
#endif
-#define SQLITE_VERSION "3.3.16"
+
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+
/*
-** The format of the version string is "X.Y.Z<trailing string>", where
-** X is the major version number, Y is the minor version number and Z
-** is the release number. The trailing string is often "alpha" or "beta".
-** For example "3.1.1beta".
+** These no-op macros are used in front of interfaces to mark those
+** interfaces as either deprecated or experimental. New applications
+** should not use deprecated interfaces - they are support for backwards
+** compatibility only. Application writers should be aware that
+** experimental interfaces are subject to change in point releases.
**
-** The SQLITE_VERSION_NUMBER is an integer with the value
-** (X*100000 + Y*1000 + Z). For example, for version "3.1.1beta",
-** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using
-** version 3.1.1 or greater at compile time, programs may use the test
-** (SQLITE_VERSION_NUMBER>=3001001).
+** These macros used to resolve to various kinds of compiler magic that
+** would generate warning messages when they were used. But that
+** compiler magic ended up generating such a flurry of bug reports
+** that we have taken it all out and gone back to using simple
+** noop macros.
*/
+#define SQLITE_DEPRECATED
+#define SQLITE_EXPERIMENTAL
+
+/*
+** Ensure these symbols were not defined by some previous header file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
#ifdef SQLITE_VERSION_NUMBER
# undef SQLITE_VERSION_NUMBER
#endif
-#define SQLITE_VERSION_NUMBER 3003016
/*
-** The version string is also compiled into the library so that a program
-** can check to make sure that the lib*.a file and the *.h file are from
-** the same version. The sqlite3_libversion() function returns a pointer
-** to the sqlite3_version variable - useful in DLLs which cannot access
-** global variables.
+** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
+**
+** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
+** the sqlite3.h file specify the version of SQLite with which
+** that header file is associated.
+**
+** The "version" of SQLite is a string of the form "W.X.Y" or "W.X.Y.Z".
+** The W value is major version number and is always 3 in SQLite3.
+** The W value only changes when backwards compatibility is
+** broken and we intend to never break backwards compatibility.
+** The X value is the minor version number and only changes when
+** there are major feature enhancements that are forwards compatible
+** but not backwards compatible.
+** The Y value is the release number and is incremented with
+** each release but resets back to 0 whenever X is incremented.
+** The Z value only appears on branch releases.
+**
+** The SQLITE_VERSION_NUMBER is an integer that is computed as
+** follows:
+**
+** <blockquote><pre>
+** SQLITE_VERSION_NUMBER = W*1000000 + X*1000 + Y
+** </pre></blockquote>
+**
+** Since version 3.6.18, SQLite source code has been stored in the
+** <a href="http://www.fossil-scm.org/">fossil configuration management
+** system</a>. The SQLITE_SOURCE_ID
+** macro is a string which identifies a particular check-in of SQLite
+** within its configuration management system. The string contains the
+** date and time of the check-in (UTC) and an SHA1 hash of the entire
+** source tree.
+**
+** See also: [sqlite3_libversion()],
+** [sqlite3_libversion_number()], [sqlite3_sourceid()],
+** [sqlite_version()] and [sqlite_source_id()].
+**
+** Requirements: [H10011] [H10014]
*/
-extern const char sqlite3_version[];
-const char *sqlite3_libversion(void);
+#define SQLITE_VERSION "3.6.18"
+#define SQLITE_VERSION_NUMBER 3006018
+#define SQLITE_SOURCE_ID "2009-09-11 14:05:07 b084828a771ec40be85f07c590ca99de4f6c24ee"
/*
-** Return the value of the SQLITE_VERSION_NUMBER macro when the
-** library was compiled.
+** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
+** KEYWORDS: sqlite3_version
+**
+** These interfaces provide the same information as the [SQLITE_VERSION],
+** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] #defines in the header,
+** but are associated with the library instead of the header file. Cautious
+** programmers might include assert() statements in their application to
+** verify that values returned by these interfaces match the macros in
+** the header, and thus insure that the application is
+** compiled with matching library and header files.
+**
+** <blockquote><pre>
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
+** assert( strcmp(sqlite3_libversion,SQLITE_VERSION)==0 );
+** </pre></blockquote>
+**
+** The sqlite3_libversion() function returns the same information as is
+** in the sqlite3_version[] string constant. The function is provided
+** for use in DLLs since DLL users usually do not have direct access to string
+** constants within the DLL. Similarly, the sqlite3_sourceid() function
+** returns the same information as is in the [SQLITE_SOURCE_ID] #define of
+** the header file.
+**
+** See also: [sqlite_version()] and [sqlite_source_id()].
+**
+** Requirements: [H10021] [H10022] [H10023]
*/
-int sqlite3_libversion_number(void);
+SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
+SQLITE_API const char *sqlite3_libversion(void);
+SQLITE_API const char *sqlite3_sourceid(void);
+SQLITE_API int sqlite3_libversion_number(void);
/*
-** Each open sqlite database is represented by an instance of the
-** following opaque structure.
+** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>
+**
+** SQLite can be compiled with or without mutexes. When
+** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
+** are enabled and SQLite is threadsafe. When the
+** [SQLITE_THREADSAFE] macro is 0,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite concurrently from more than one thread.
+**
+** Enabling mutexes incurs a measurable performance penalty.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by an application to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_MUTEX]. The return value of this function shows
+** only the default compile-time setting, not any run-time changes
+** to that setting.
+**
+** See the [threading mode] documentation for additional information.
+**
+** Requirements: [H10101] [H10102]
*/
-typedef struct sqlite3 sqlite3;
+SQLITE_API int sqlite3_threadsafe(void);
+/*
+** CAPI3REF: Database Connection Handle {H12000} <S40200>
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** is its destructor. There are many other interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
+*/
+typedef struct sqlite3 sqlite3;
/*
-** Some compilers do not support the "long long" datatype. So we have
-** to do a typedef that for 64-bit integers that depends on what compiler
-** is being used.
+** CAPI3REF: 64-Bit Integer Types {H10200} <S10110>
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
+**
+** Requirements: [H10201] [H10202]
*/
#ifdef SQLITE_INT64_TYPE
typedef SQLITE_INT64_TYPE sqlite_int64;
@@ -111,88 +757,124 @@ typedef struct sqlite3 sqlite3;
typedef long long int sqlite_int64;
typedef unsigned long long int sqlite_uint64;
#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
/*
** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point
+** substitute integer for floating-point.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
-# define double sqlite_int64
+# define double sqlite3_int64
#endif
/*
-** A function to close the database.
+** CAPI3REF: Closing A Database Connection {H12010} <S30100><S40200>
+**
+** This routine is the destructor for the [sqlite3] object.
+**
+** Applications should [sqlite3_finalize | finalize] all [prepared statements]
+** and [sqlite3_blob_close | close] all [BLOB handles] associated with
+** the [sqlite3] object prior to attempting to close the object.
+** The [sqlite3_next_stmt()] interface can be used to locate all
+** [prepared statements] associated with a [database connection] if desired.
+** Typical code might look like this:
+**
+** <blockquote><pre>
+** sqlite3_stmt *pStmt;
+** while( (pStmt = sqlite3_next_stmt(db, 0))!=0 ){
+** &nbsp; sqlite3_finalize(pStmt);
+** }
+** </pre></blockquote>
**
-** Call this function with a pointer to a structure that was previously
-** returned from sqlite3_open() and the corresponding database will by closed.
+** If [sqlite3_close()] is invoked while a transaction is open,
+** the transaction is automatically rolled back.
**
-** All SQL statements prepared using sqlite3_prepare() or
-** sqlite3_prepare16() must be deallocated using sqlite3_finalize() before
-** this routine is called. Otherwise, SQLITE_BUSY is returned and the
-** database connection remains open.
+** The C parameter to [sqlite3_close(C)] must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
+**
+** Requirements:
+** [H12011] [H12012] [H12013] [H12014] [H12015] [H12019]
*/
-int sqlite3_close(sqlite3 *);
+SQLITE_API int sqlite3_close(sqlite3 *);
/*
** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);
/*
-** A function to executes one or more statements of SQL.
-**
-** If one or more of the SQL statements are queries, then
-** the callback function specified by the 3rd parameter is
-** invoked once for each row of the query result. This callback
-** should normally return 0. If the callback returns a non-zero
-** value then the query is aborted, all subsequent SQL statements
-** are skipped and the sqlite3_exec() function returns the SQLITE_ABORT.
-**
-** The 1st parameter is an arbitrary pointer that is passed
-** to the callback function as its first parameter.
-**
-** The 2nd parameter to the callback function is the number of
-** columns in the query result. The 3rd parameter to the callback
-** is an array of strings holding the values for each column.
-** The 4th parameter to the callback is an array of strings holding
-** the names of each column.
-**
-** The callback function may be NULL, even for queries. A NULL
-** callback is not an error. It just means that no callback
-** will be invoked.
-**
-** If an error occurs while parsing or evaluating the SQL (but
-** not while executing the callback) then an appropriate error
-** message is written into memory obtained from malloc() and
-** *errmsg is made to point to that message. The calling function
-** is responsible for freeing the memory that holds the error
-** message. Use sqlite3_free() for this. If errmsg==NULL,
-** then no error message is ever written.
-**
-** The return value is is SQLITE_OK if there are no errors and
-** some other return code if there is an error. The particular
-** return value depends on the type of error.
-**
-** If the query could not be executed because a database file is
-** locked or busy, then this function returns SQLITE_BUSY. (This
-** behavior can be modified somewhat using the sqlite3_busy_handler()
-** and sqlite3_busy_timeout() functions below.)
-*/
-int sqlite3_exec(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be executed */
- sqlite3_callback, /* Callback function */
- void *, /* 1st argument to callback function */
- char **errmsg /* Error msg written here */
+** CAPI3REF: One-Step Query Execution Interface {H12100} <S10000>
+**
+** The sqlite3_exec() interface is a convenient way of running one or more
+** SQL statements without having to write a lot of C code. The UTF-8 encoded
+** SQL statements are passed in as the second parameter to sqlite3_exec().
+** The statements are evaluated one by one until either an error or
+** an interrupt is encountered, or until they are all done. The 3rd parameter
+** is an optional callback that is invoked once for each row of any query
+** results produced by the SQL statements. The 5th parameter tells where
+** to write any error messages.
+**
+** The error message passed back through the 5th parameter is held
+** in memory obtained from [sqlite3_malloc()]. To avoid a memory leak,
+** the calling application should call [sqlite3_free()] on any error
+** message returned through the 5th parameter when it has finished using
+** the error message.
+**
+** If the SQL statement in the 2nd parameter is NULL or an empty string
+** or a string containing only whitespace and comments, then no SQL
+** statements are evaluated and the database is not changed.
+**
+** The sqlite3_exec() interface is implemented in terms of
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
+** The sqlite3_exec() routine does nothing to the database that cannot be done
+** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
+**
+** The first parameter to [sqlite3_exec()] must be an valid and open
+** [database connection].
+**
+** The database connection must not be closed while
+** [sqlite3_exec()] is running.
+**
+** The calling function should use [sqlite3_free()] to free
+** the memory that *errmsg is left pointing at once the error
+** message is no longer needed.
+**
+** The SQL statement text in the 2nd parameter to [sqlite3_exec()]
+** must remain unchanged while [sqlite3_exec()] is running.
+**
+** Requirements:
+** [H12101] [H12102] [H12104] [H12105] [H12107] [H12110] [H12113] [H12116]
+** [H12119] [H12122] [H12125] [H12131] [H12134] [H12137] [H12138]
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
);
/*
-** Return values for sqlite3_exec() and sqlite3_step()
+** CAPI3REF: Result Codes {H10210} <S10700>
+** KEYWORDS: SQLITE_OK {error code} {error codes}
+** KEYWORDS: {result code} {result codes}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicates success or failure.
+**
+** New error codes may be added in future versions of SQLite.
+**
+** See also: [SQLITE_IOERR_READ | extended result codes]
*/
#define SQLITE_OK 0 /* Successful result */
/* beginning-of-error-codes */
#define SQLITE_ERROR 1 /* SQL error or missing database */
-#define SQLITE_INTERNAL 2 /* NOT USED. Internal logic error in SQLite */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
#define SQLITE_PERM 3 /* Access permission denied */
#define SQLITE_ABORT 4 /* Callback routine requested an abort */
#define SQLITE_BUSY 5 /* The database file is locked */
@@ -208,8 +890,8 @@ int sqlite3_exec(
#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
#define SQLITE_EMPTY 16 /* Database is empty */
#define SQLITE_SCHEMA 17 /* The database schema changed */
-#define SQLITE_TOOBIG 18 /* NOT USED. Too much data for one row */
-#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
#define SQLITE_MISMATCH 20 /* Data type mismatch */
#define SQLITE_MISUSE 21 /* Library used incorrectly */
#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
@@ -222,147 +904,1126 @@ int sqlite3_exec(
/* end-of-error-codes */
/*
-** Using the sqlite3_extended_result_codes() API, you can cause
-** SQLite to return result codes with additional information in
-** their upper bits. The lower 8 bits will be the same as the
-** primary result codes above. But the upper bits might contain
-** more specific error information.
-**
-** To extract the primary result code from an extended result code,
-** simply mask off the lower 8 bits.
+** CAPI3REF: Extended Result Codes {H10220} <S10700>
+** KEYWORDS: {extended error code} {extended error codes}
+** KEYWORDS: {extended result code} {extended result codes}
**
-** primary = extended & 0xff;
+** In its default configuration, SQLite API routines return one of 26 integer
+** [SQLITE_OK | result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 and later) include
+** support for additional result codes that provide more detailed information
+** about errors. The extended result codes are enabled or disabled
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API.
**
-** New result error codes may be added from time to time. Software
-** that uses the extended result codes should plan accordingly and be
-** sure to always handle new unknown codes gracefully.
+** Some of the available extended result codes are listed here.
+** One may expect the number of extended result codes will be expand
+** over time. Software that uses extended result codes should expect
+** to see new result codes in future releases of SQLite.
**
** The SQLITE_OK result code will never be extended. It will always
** be exactly zero.
-**
-** The extended result codes always have the primary result code
-** as a prefix. Primary result codes only contain a single "_"
-** character. Extended result codes contain two or more "_" characters.
*/
-#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
-#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
-#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
-#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
-#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
-#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
-#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
-#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
-#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
-#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
+#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
+#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
+#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
+#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8) )
+
+/*
+** CAPI3REF: Flags For File Open Operations {H10230} <H11120> <H12700>
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the xOpen method of the
+** [sqlite3_vfs] object.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
+#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
+#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
+#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
+
+/*
+** CAPI3REF: Device Characteristics {H10240} <H11120>
+**
+** The xDeviceCapabilities method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of the these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+
+/*
+** CAPI3REF: File Locking Levels {H10250} <H11120> <H11310>
+**
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object.
+*/
+#define SQLITE_LOCK_NONE 0
+#define SQLITE_LOCK_SHARED 1
+#define SQLITE_LOCK_RESERVED 2
+#define SQLITE_LOCK_PENDING 3
+#define SQLITE_LOCK_EXCLUSIVE 4
+
+/*
+** CAPI3REF: Synchronization Type Flags {H10260} <H11120>
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. If the lower four bits of the flag
+** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
+** If the lower four bits equal SQLITE_SYNC_FULL, that means
+** to use Mac OS X style fullsync instead of fsync().
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+/*
+** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
+**
+** An [sqlite3_file] object represents an open file in the
+** [sqlite3_vfs | OS interface layer]. Individual OS interface
+** implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
/*
-** Enable or disable the extended result codes.
-*/
-int sqlite3_extended_result_codes(sqlite3*, int onoff);
+** CAPI3REF: OS Interface File Virtual Methods Object {H11120} <S20110>
+**
+** Every file opened by the [sqlite3_vfs] xOpen method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
+**
+** If the xOpen method sets the sqlite3_file.pMethods element
+** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
+** may be invoked even if the xOpen reported that it failed. The
+** only way to prevent a call to xClose following a failed xOpen
+** is for the xOpen to set the sqlite3_file.pMethods element to NULL.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+** <ul>
+** <li> [SQLITE_LOCK_NONE],
+** <li> [SQLITE_LOCK_SHARED],
+** <li> [SQLITE_LOCK_RESERVED],
+** <li> [SQLITE_LOCK_PENDING], or
+** <li> [SQLITE_LOCK_EXCLUSIVE].
+** </ul>
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false otherwise.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves all opcodes less than 100 for its own use.
+** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+** <ul>
+** <li> [SQLITE_IOCAP_ATOMIC]
+** <li> [SQLITE_IOCAP_ATOMIC512]
+** <li> [SQLITE_IOCAP_ATOMIC1K]
+** <li> [SQLITE_IOCAP_ATOMIC2K]
+** <li> [SQLITE_IOCAP_ATOMIC4K]
+** <li> [SQLITE_IOCAP_ATOMIC8K]
+** <li> [SQLITE_IOCAP_ATOMIC16K]
+** <li> [SQLITE_IOCAP_ATOMIC32K]
+** <li> [SQLITE_IOCAP_ATOMIC64K]
+** <li> [SQLITE_IOCAP_SAFE_APPEND]
+** <li> [SQLITE_IOCAP_SEQUENTIAL]
+** </ul>
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+**
+** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
+** in the unread portions of the buffer with zeros. A VFS that
+** fails to zero-fill short reads might seem to work. However,
+** failure to zero-fill short reads will eventually lead to
+** database corruption.
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes {H11310} <S30800>
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
+** interface.
+**
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to. This capability
+** is used during testing and only needs to be supported when SQLITE_TEST
+** is defined.
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+#define SQLITE_GET_LOCKPROXYFILE 2
+#define SQLITE_SET_LOCKPROXYFILE 3
+#define SQLITE_LAST_ERRNO 4
+
+/*
+** CAPI3REF: Mutex Handle {H17110} <S20130>
+**
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
+**
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: OS Interface Object {H11140} <S20100>
+**
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system".
+**
+** The value of the iVersion field is initially 1 but may be larger in
+** future versions of SQLite. Additional fields may be appended to this
+** object when the iVersion value is increased. Note that the structure
+** of the sqlite3_vfs object changes in the transaction between
+** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not
+** modified.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** SQLite will guarantee that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname(). SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. Because of the previous sentence,
+** the [sqlite3_file] can safely store a pointer to the
+** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter is xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
+**
+** The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+** <ul>
+** <li> [SQLITE_OPEN_MAIN_DB]
+** <li> [SQLITE_OPEN_MAIN_JOURNAL]
+** <li> [SQLITE_OPEN_TEMP_DB]
+** <li> [SQLITE_OPEN_TEMP_JOURNAL]
+** <li> [SQLITE_OPEN_TRANSIENT_DB]
+** <li> [SQLITE_OPEN_SUBJOURNAL]
+** <li> [SQLITE_OPEN_MASTER_JOURNAL]
+** </ul>
+**
+** The file I/O implementation can use the object type flags to
+** change the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
+** <ul>
+** <li> [SQLITE_OPEN_DELETEONCLOSE]
+** <li> [SQLITE_OPEN_EXCLUSIVE]
+** </ul>
+**
+** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases, journals and for subjournals.
+**
+** The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** with the [SQLITE_OPEN_CREATE] flag, which are both directly
+** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
+** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
+** SQLITE_OPEN_CREATE, is used to indicate that file should always
+** be created, and that it is an error if it already exists.
+** It is <i>not</i> used to indicate the file should be opened
+** for exclusive access.
+**
+** At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. The xOpen method does not have to
+** allocate the structure; it should just fill it in. Note that
+** the xOpen method must set the sqlite3_file.pMethods to either
+** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
+** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
+** element will be valid after xOpen returns regardless of the success
+** or failure of the xOpen call.
+**
+** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. The file can be a
+** directory.
+**
+** SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. The exact size of the output buffer
+** is also passed as a parameter to both methods. If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), and xCurrentTime() interfaces
+** are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. The xCurrentTime()
+** method returns a Julian Day Number for the current date and time.
+**
+*/
+typedef struct sqlite3_vfs sqlite3_vfs;
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
+ /* New fields may be appended in figure versions. The iVersion
+ ** value will increment whenever this happens. */
+};
/*
-** Each entry in an SQLite table has a unique integer key. (The key is
-** the value of the INTEGER PRIMARY KEY column if there is such a column,
-** otherwise the key is generated automatically. The unique key is always
-** available as the ROWID, OID, or _ROWID_ column.) The following routine
-** returns the integer key of the most recent insert in the database.
+** CAPI3REF: Flags for the xAccess VFS method {H11190} <H11140>
+**
+** These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. {END} They determine
+** what kind of permissions the xAccess method is looking for.
+** With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the file is both readable and writable.
+** With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1
+#define SQLITE_ACCESS_READ 2
+
+/*
+** CAPI3REF: Initialize The SQLite Library {H10130} <S20000><S30100>
+**
+** The sqlite3_initialize() routine initializes the
+** SQLite library. The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.
+**
+** A call to sqlite3_shutdown() is an "effective" call if it is the first
+** call to sqlite3_shutdown() since the last sqlite3_initialize(). Only
+** an effective call to sqlite3_shutdown() does any deinitialization.
+** All other calls to sqlite3_shutdown() are harmless no-ops.
+**
+** Among other things, sqlite3_initialize() shall invoke
+** sqlite3_os_init(). Similarly, sqlite3_shutdown()
+** shall invoke sqlite3_os_end().
+**
+** The sqlite3_initialize() routine returns [SQLITE_OK] on success.
+** If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than [SQLITE_OK].
+**
+** The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
+** When [custom builds | built for other platforms]
+** (using the [SQLITE_OS_OTHER=1] compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return [SQLITE_OK] on success and some other [error code] upon
+** failure.
+*/
+SQLITE_API int sqlite3_initialize(void);
+SQLITE_API int sqlite3_shutdown(void);
+SQLITE_API int sqlite3_os_init(void);
+SQLITE_API int sqlite3_os_end(void);
+
+/*
+** CAPI3REF: Configuring The SQLite Library {H14100} <S20000><S30200>
+** EXPERIMENTAL
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** The sqlite3_config() interface is not threadsafe. The application
+** must insure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running. Furthermore, sqlite3_config()
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** Note, however, that sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** The first argument to sqlite3_config() is an integer
+** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option]
+** in the first argument.
+**
+** When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
+** If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+**
+** Requirements:
+** [H14103] [H14106] [H14120] [H14123] [H14126] [H14129] [H14132] [H14135]
+** [H14138] [H14141] [H14144] [H14147] [H14150] [H14153] [H14156] [H14159]
+** [H14162] [H14165] [H14168]
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections {H14200} <S20000>
+** EXPERIMENTAL
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument). The
+** sqlite3_db_config() interface can only be used immediately after
+** the database connection is created using [sqlite3_open()],
+** [sqlite3_open16()], or [sqlite3_open_v2()].
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** configuration verb - an integer code that indicates what
+** aspect of the [database connection] is being configured.
+** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE].
+** New verbs are likely to be added in future releases of SQLite.
+** Additional arguments depend on the verb.
+**
+** Requirements:
+** [H14203] [H14206] [H14209] [H14212] [H14215]
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines {H10155} <S20120>
+** EXPERIMENTAL
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
+** By creating an instance of this object
+** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
+** during configuration, an application can specify an alternative
+** memory allocation subsystem for SQLite to use for all of its
+** dynamic memory needs.
+**
+** Note that SQLite comes with several [built-in memory allocators]
+** that are perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc and xFree methods must work like the
+** malloc() and free() functions from the standard C library.
+** The xRealloc method must work like realloc() from the standard C library
+** with the exception that if the second argument to xRealloc is zero,
+** xRealloc must be a no-op - it must not perform any allocation or
+** deallocation. SQLite guaranteeds that the second argument to
+** xRealloc is always a value returned by a prior call to xRoundup.
+** And so in cases where xRoundup always returns a positive number,
+** xRealloc can perform exactly as the standard library realloc() and
+** still be in compliance with this specification.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+** Every memory allocation request coming in through [sqlite3_malloc()]
+** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
+** that causes the corresponding memory allocation to fail.
+**
+** The xInit method initializes the memory allocator. (For example,
+** it might allocate any require mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+**
+** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. For all other methods, SQLite
+** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
+** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
+** it is by default) and so the methods are automatically serialized.
+** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
+** methods must be threadsafe or else make their own arrangements for
+** serialization.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options {H10160} <S20000>
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
+** <dd>There are no arguments to this option. This option disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread.</dd>
+**
+** <dt>SQLITE_CONFIG_MULTITHREAD</dt>
+** <dd>There are no arguments to this option. This option disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment as long as no two threads attempt to use the same
+** [database connection] at the same time. See the [threading mode]
+** documentation for additional information.</dd>
+**
+** <dt>SQLITE_CONFIG_SERIALIZED</dt>
+** <dd>There are no arguments to this option. This option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+** See the [threading mode] documentation for additional information.</dd>
+**
+** <dt>SQLITE_CONFIG_MALLOC</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.</dd>
+**
+** <dt>SQLITE_CONFIG_GETMALLOC</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example.</dd>
+**
+** <dt>SQLITE_CONFIG_MEMSTATUS</dt>
+** <dd>This option takes single argument of type int, interpreted as a
+** boolean, which enables or disables the collection of memory allocation
+** statistics. When disabled, the following SQLite interfaces become
+** non-operational:
+** <ul>
+** <li> [sqlite3_memory_used()]
+** <li> [sqlite3_memory_highwater()]
+** <li> [sqlite3_soft_heap_limit()]
+** <li> [sqlite3_status()]
+** </ul>
+** </dd>
+**
+** <dt>SQLITE_CONFIG_SCRATCH</dt>
+** <dd>This option specifies a static memory buffer that SQLite can use for
+** scratch memory. There are three arguments: A pointer an 8-byte
+** aligned memory buffer from which the scrach allocations will be
+** drawn, the size of each scratch allocation (sz),
+** and the maximum number of scratch allocations (N). The sz
+** argument must be a multiple of 16. The sz parameter should be a few bytes
+** larger than the actual scratch space required due to internal overhead.
+** The first argument should pointer to an 8-byte aligned buffer
+** of at least sz*N bytes of memory.
+** SQLite will use no more than one scratch buffer at once per thread, so
+** N should be set to the expected maximum number of threads. The sz
+** parameter should be 6 times the size of the largest database page size.
+** Scratch buffers are used as part of the btree balance operation. If
+** The btree balancer needs additional memory beyond what is provided by
+** scratch buffers or if no scratch buffer space is specified, then SQLite
+** goes to [sqlite3_malloc()] to obtain the memory it needs.</dd>
+**
+** <dt>SQLITE_CONFIG_PAGECACHE</dt>
+** <dd>This option specifies a static memory buffer that SQLite can use for
+** the database page cache with the default page cache implemenation.
+** This configuration should not be used if an application-define page
+** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option.
+** There are three arguments to this option: A pointer to 8-byte aligned
+** memory, the size of each page buffer (sz), and the number of pages (N).
+** The sz argument should be the size of the largest database page
+** (a power of two between 512 and 32768) plus a little extra for each
+** page header. The page header size is 20 to 40 bytes depending on
+** the host architecture. It is harmless, apart from the wasted memory,
+** to make sz a little too large. The first
+** argument should point to an allocation of at least sz*N bytes of memory.
+** SQLite will use the memory provided by the first argument to satisfy its
+** memory needs for the first N pages that it adds to cache. If additional
+** page cache memory is needed beyond what is provided by this option, then
+** SQLite goes to [sqlite3_malloc()] for the additional storage space.
+** The implementation might use one or more of the N buffers to hold
+** memory accounting information. The pointer in the first argument must
+** be aligned to an 8-byte boundary or subsequent behavior of SQLite
+** will be undefined.</dd>
+**
+** <dt>SQLITE_CONFIG_HEAP</dt>
+** <dd>This option specifies a static memory buffer that SQLite will use
+** for all of its dynamic memory allocation needs beyond those provided
+** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
+** There are three arguments: An 8-byte aligned pointer to the memory,
+** the number of bytes in the memory buffer, and the minimum allocation size.
+** If the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. If the
+** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
+** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.
+** The first pointer (the memory pointer) must be aligned to an 8-byte
+** boundary or subsequent behavior of SQLite will be undefined.</dd>
+**
+** <dt>SQLITE_CONFIG_MUTEX</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The argument specifies
+** alternative low-level mutex routines to be used in place
+** the mutex routines built into SQLite.</dd>
+**
+** <dt>SQLITE_CONFIG_GETMUTEX</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example.</dd>
+**
+** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
+** <dd>This option takes two arguments that determine the default
+** memory allocation lookaside optimization. The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection. This option sets the
+** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
+** verb to [sqlite3_db_config()] can be used to change the lookaside
+** configuration on individual connections.</dd>
+**
+** <dt>SQLITE_CONFIG_PCACHE</dt>
+** <dd>This option takes a single argument which is a pointer to
+** an [sqlite3_pcache_methods] object. This object specifies the interface
+** to a custom page cache implementation. SQLite makes a copy of the
+** object and uses it for page cache memory allocations.</dd>
+**
+** <dt>SQLITE_CONFIG_GETPCACHE</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** [sqlite3_pcache_methods] object. SQLite copies of the current
+** page cache implementation into that object.</dd>
+**
+** </dl>
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+#define SQLITE_CONFIG_PCACHE 14 /* sqlite3_pcache_methods* */
+#define SQLITE_CONFIG_GETPCACHE 15 /* sqlite3_pcache_methods* */
+
+/*
+** CAPI3REF: Configuration Options {H10170} <S20000>
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
+** <dd>This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to an memory buffer to use for lookaside memory.
+** The first argument may be NULL in which case SQLite will allocate the
+** lookaside buffer itself using [sqlite3_malloc()]. The second argument is the
+** size of each lookaside buffer slot and the third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments. The buffer
+** must be aligned to an 8-byte boundary. If the second argument is not
+** a multiple of 8, it is internally rounded down to the next smaller
+** multiple of 8. See also: [SQLITE_CONFIG_LOOKASIDE]</dd>
+**
+** </dl>
+*/
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes {H12200} <S10700>
+**
+** The sqlite3_extended_result_codes() routine enables or disables the
+** [extended result codes] feature of SQLite. The extended result
+** codes are disabled by default for historical compatibility considerations.
+**
+** Requirements:
+** [H12201] [H12202]
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
+
+/*
+** CAPI3REF: Last Insert Rowid {H12220} <S10700>
+**
+** Each entry in an SQLite table has a unique 64-bit signed
+** integer key called the [ROWID | "rowid"]. The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. If
+** the table has a column of type [INTEGER PRIMARY KEY] then that column
+** is another alias for the rowid.
+**
+** This routine returns the [rowid] of the most recent
+** successful [INSERT] into the database from the [database connection]
+** in the first argument. If no successful [INSERT]s
+** have ever occurred on that database connection, zero is returned.
+**
+** If an [INSERT] occurs within a trigger, then the [rowid] of the inserted
+** row is returned by this routine as long as the trigger is running.
+** But once the trigger terminates, the value returned by this routine
+** reverts to the last value inserted before the trigger fired.
+**
+** An [INSERT] that fails due to a constraint violation is not a
+** successful [INSERT] and does not change the value returned by this
+** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.
+**
+** For the purposes of this routine, an [INSERT] is considered to
+** be successful even if it is subsequently rolled back.
+**
+** Requirements:
+** [H12221] [H12223]
+**
+** If a separate thread performs a new [INSERT] on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert [rowid],
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert [rowid].
*/
-sqlite_int64 sqlite3_last_insert_rowid(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
/*
+** CAPI3REF: Count The Number Of Rows Modified {H12240} <S10600>
+**
** This function returns the number of database rows that were changed
-** (or inserted or deleted) by the most recent SQL statement. Only
-** changes that are directly specified by the INSERT, UPDATE, or
-** DELETE statement are counted. Auxiliary changes caused by
-** triggers are not counted. Within the body of a trigger, however,
-** the sqlite3_changes() API can be called to find the number of
+** or inserted or deleted by the most recently completed SQL statement
+** on the [database connection] specified by the first parameter.
+** Only changes that are directly specified by the [INSERT], [UPDATE],
+** or [DELETE] statement are counted. Auxiliary changes caused by
+** triggers are not counted. Use the [sqlite3_total_changes()] function
+** to find the total number of changes including changes caused by triggers.
+**
+** Changes to a view that are simulated by an [INSTEAD OF trigger]
+** are not counted. Only real table changes are counted.
+**
+** A "row change" is a change to a single row of a single table
+** caused by an INSERT, DELETE, or UPDATE statement. Rows that
+** are changed as side effects of [REPLACE] constraint resolution,
+** rollback, ABORT processing, [DROP TABLE], or by any other
+** mechanisms do not count as direct row changes.
+**
+** A "trigger context" is a scope of execution that begins and
+** ends with the script of a [CREATE TRIGGER | trigger].
+** Most SQL statements are
+** evaluated outside of any trigger. This is the "top level"
+** trigger context. If a trigger fires from the top level, a
+** new trigger context is entered for the duration of that one
+** trigger. Subtriggers create subcontexts for their duration.
+**
+** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
+** not create a new trigger context.
+**
+** This function returns the number of direct row changes in the
+** most recent INSERT, UPDATE, or DELETE statement within the same
+** trigger context.
+**
+** Thus, when called from the top level, this function returns the
+** number of changes in the most recent INSERT, UPDATE, or DELETE
+** that also occurred at the top level. Within the body of a trigger,
+** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
-** statement within the body of the trigger.
-**
-** All changes are counted, even if they were later undone by a
-** ROLLBACK or ABORT. Except, changes associated with creating and
-** dropping tables are not counted.
-**
-** If a callback invokes sqlite3_exec() or sqlite3_step() recursively,
-** then the changes in the inner, recursive call are counted together
-** with the changes in the outer call.
-**
-** SQLite implements the command "DELETE FROM table" without a WHERE clause
-** by dropping and recreating the table. (This is much faster than going
-** through and deleting individual elements form the table.) Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-*/
-int sqlite3_changes(sqlite3*);
-
-/*
-** This function returns the number of database rows that have been
-** modified by INSERT, UPDATE or DELETE statements since the database handle
-** was opened. This includes UPDATE, INSERT and DELETE statements executed
-** as part of trigger programs. All changes are counted as soon as the
-** statement that makes them is completed (when the statement handle is
-** passed to sqlite3_reset() or sqlite_finalise()).
-**
-** SQLite implements the command "DELETE FROM table" without a WHERE clause
-** by dropping and recreating the table. (This is much faster than going
-** through and deleting individual elements form the table.) Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-*/
-int sqlite3_total_changes(sqlite3*);
-
-/* This function causes any pending database operation to abort and
-** return at its earliest opportunity. This routine is typically
+** statement within the body of the same trigger.
+** However, the number returned does not include changes
+** caused by subtriggers since those have their own context.
+**
+** See also the [sqlite3_total_changes()] interface and the
+** [count_changes pragma].
+**
+** Requirements:
+** [H12241] [H12243]
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and not meaningful.
+*/
+SQLITE_API int sqlite3_changes(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified {H12260} <S10600>
+**
+** This function returns the number of row changes caused by [INSERT],
+** [UPDATE] or [DELETE] statements since the [database connection] was opened.
+** The count includes all changes from all
+** [CREATE TRIGGER | trigger] contexts. However,
+** the count does not include changes used to implement [REPLACE] constraints,
+** do rollbacks or ABORT processing, or [DROP TABLE] processing. The
+** count does not include rows of views that fire an [INSTEAD OF trigger],
+** though if the INSTEAD OF trigger makes changes of its own, those changes
+** are counted.
+** The changes are counted as soon as the statement that makes them is
+** completed (when the statement handle is passed to [sqlite3_reset()] or
+** [sqlite3_finalize()]).
+**
+** See also the [sqlite3_changes()] interface and the
+** [count_changes pragma].
+**
+** Requirements:
+** [H12261] [H12263]
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query {H12270} <S30500>
+**
+** This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"
** or Ctrl-C where the user wants a long query operation to halt
** immediately.
**
-** It is safe to call this routine from a different thread that the
-** thread that is currently running the database operation.
+** It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a [database connection] that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
+** The sqlite3_interrupt(D) call is in effect until all currently running
+** SQL statements on [database connection] D complete. Any new SQL statements
+** that are started after the sqlite3_interrupt() call and before the
+** running statements reaches zero are interrupted as if they had been
+** running prior to the sqlite3_interrupt() call. New SQL statements
+** that are started after the running statement count reaches zero are
+** not effected by the sqlite3_interrupt().
+** A call to sqlite3_interrupt(D) that occurs when there are no running
+** SQL statements is a no-op and has no effect on SQL statements
+** that are started after the sqlite3_interrupt() call returns.
+**
+** Requirements:
+** [H12271] [H12272]
+**
+** If the database connection closes while [sqlite3_interrupt()]
+** is running then bad things will likely happen.
*/
-void sqlite3_interrupt(sqlite3*);
+SQLITE_API void sqlite3_interrupt(sqlite3*);
-
-/* These functions return true if the given input string comprises
-** one or more complete SQL statements. For the sqlite3_complete() call,
-** the parameter must be a nul-terminated UTF-8 string. For
-** sqlite3_complete16(), a nul-terminated machine byte order UTF-16 string
-** is required.
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} <S70200>
+**
+** These routines are useful during command-line input to determine if the
+** currently entered text seems to form a complete SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. These routines return 1 if the input string
+** appears to be a complete SQL statement. A statement is judged to be
+** complete if it ends with a semicolon token and is not a prefix of a
+** well-formed CREATE TRIGGER statement. Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator. Whitespace
+** and comments that follow the final semicolon are ignored.
+**
+** These routines return 0 if the statement is incomplete. If a
+** memory allocation fails, then SQLITE_NOMEM is returned.
+**
+** These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
+**
+** If SQLite has not been initialized using [sqlite3_initialize()] prior
+** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
+** automatically by sqlite3_complete16(). If that initialization fails,
+** then the return value from sqlite3_complete16() will be non-zero
+** regardless of whether or not the input SQL is complete.
+**
+** Requirements: [H10511] [H10512]
**
-** This routine is useful for command-line input to see of the user has
-** entered a complete statement of SQL or if the current statement needs
-** to be continued on the next line. The algorithm is simple. If the
-** last token other than spaces and comments is a semicolon, then return
-** true. Actually, the algorithm is a little more complicated than that
-** in order to deal with triggers, but the basic idea is the same: the
-** statement is not complete unless it ends in a semicolon.
+** The input to [sqlite3_complete()] must be a zero-terminated
+** UTF-8 string.
+**
+** The input to [sqlite3_complete16()] must be a zero-terminated
+** UTF-16 string in native byte order.
*/
-int sqlite3_complete(const char *sql);
-int sqlite3_complete16(const void *sql);
+SQLITE_API int sqlite3_complete(const char *sql);
+SQLITE_API int sqlite3_complete16(const void *sql);
/*
-** This routine identifies a callback function that is invoked
-** whenever an attempt is made to open a database table that is
-** currently locked by another process or thread. If the busy callback
-** is NULL, then sqlite3_exec() returns SQLITE_BUSY immediately if
-** it finds a locked table. If the busy callback is not NULL, then
-** sqlite3_exec() invokes the callback with two arguments. The
-** first argument to the handler is a copy of the void* pointer which
-** is the third argument to this routine. The second argument to
-** the handler is the number of times that the busy handler has
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {H12310} <S40400>
+**
+** This routine sets a callback function that might be invoked whenever
+** an attempt is made to open a database table that another thread
+** or process has locked.
+**
+** If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
+** is returned immediately upon encountering the lock. If the busy callback
+** is not NULL, then the callback will be invoked with two arguments.
+**
+** The first argument to the handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). The second argument to
+** the handler callback is the number of times that the busy handler has
** been invoked for this locking event. If the
-** busy callback returns 0, then sqlite3_exec() immediately returns
-** SQLITE_BUSY. If the callback returns non-zero, then sqlite3_exec()
-** tries to open the table again and the cycle repeats.
-**
-** The presence of a busy handler does not guarantee that
-** it will be invoked when there is lock contention.
-** If SQLite determines that invoking the busy handler could result in
-** a deadlock, it will return SQLITE_BUSY instead.
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
+** If the callback returns non-zero, then another attempt
+** is made to open the database for reading and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
@@ -370,174 +2031,493 @@ int sqlite3_complete16(const void *sql);
** because it is blocked by the second and the second process cannot
** proceed because it is blocked by the first. If both processes
** invoke the busy handlers, neither will make any progress. Therefore,
-** SQLite returns SQLITE_BUSY for the first process, hoping that this
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
** will induce the first process to release its read lock and allow
** the second process to proceed.
**
** The default busy callback is NULL.
**
-** Sqlite is re-entrant, so the busy handler may start a new query.
-** (It is not clear why anyone would every want to do this, but it
-** is allowed, in theory.) But the busy handler may not close the
-** database. Closing the database from a busy handler will delete
-** data structures out from under the executing query and will
-** probably result in a coredump.
+** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
+** when SQLite is in the middle of a large transaction where all the
+** changes will not fit into the in-memory cache. SQLite will
+** already hold a RESERVED lock on the database file, but it needs
+** to promote this lock to EXCLUSIVE so that it can spill cache
+** pages into the database file without harm to concurrent
+** readers. If it is unable to promote the lock, then the in-memory
+** cache will be left in an inconsistent state and so the error
+** code is promoted from the relatively benign [SQLITE_BUSY] to
+** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
+** forces an automatic rollback of the changes. See the
+** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
+** CorruptionFollowingBusyError</a> wiki page for a discussion of why
+** this is important.
+**
+** There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler. Note that calling [sqlite3_busy_timeout()]
+** will also set or clear the busy handler.
+**
+** The busy callback should not take any actions which modify the
+** database connection that invoked the busy handler. Any such actions
+** result in undefined behavior.
+**
+** Requirements:
+** [H12311] [H12312] [H12314] [H12316] [H12318]
+**
+** A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
*/
-int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
+SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
/*
-** This routine sets a busy handler that sleeps for a while when a
-** table is locked. The handler will sleep multiple times until
-** at least "ms" milleseconds of sleeping have been done. After
-** "ms" milleseconds of sleeping, the handler returns 0 which
-** causes sqlite3_exec() to return SQLITE_BUSY.
+** CAPI3REF: Set A Busy Timeout {H12340} <S40410>
+**
+** This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. {H12343} After "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
**
** Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
+**
+** There can only be a single busy handler for a particular
+** [database connection] any any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.
+**
+** Requirements:
+** [H12341] [H12343] [H12344]
*/
-int sqlite3_busy_timeout(sqlite3*, int ms);
+SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
/*
-** This next routine is really just a wrapper around sqlite3_exec().
-** Instead of invoking a user-supplied callback for each row of the
-** result, this routine remembers each row of the result in memory
-** obtained from malloc(), then returns all of the result after the
-** query has finished.
+** CAPI3REF: Convenience Routines For Running Queries {H12370} <S10000>
+**
+** Definition: A <b>result table</b> is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
+**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
**
-** As an example, suppose the query result where this table:
+** A result table might consist of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
**
+** As an example of the result table format, suppose a query result
+** is as follows:
+**
+** <blockquote><pre>
** Name | Age
** -----------------------
** Alice | 43
** Bob | 28
** Cindy | 21
-**
-** If the 3rd argument were &azResult then after the function returns
-** azResult will contain the following data:
-**
-** azResult[0] = "Name";
-** azResult[1] = "Age";
-** azResult[2] = "Alice";
-** azResult[3] = "43";
-** azResult[4] = "Bob";
-** azResult[5] = "28";
-** azResult[6] = "Cindy";
-** azResult[7] = "21";
-**
-** Notice that there is an extra row of data containing the column
-** headers. But the *nrow return value is still 3. *ncolumn is
-** set to 2. In general, the number of values inserted into azResult
-** will be ((*nrow) + 1)*(*ncolumn).
-**
-** After the calling function has finished using the result, it should
-** pass the result data pointer to sqlite3_free_table() in order to
-** release the memory that was malloc-ed. Because of the way the
-** malloc() happens, the calling function must not try to call
-** free() directly. Only sqlite3_free_table() is able to release
-** the memory properly and safely.
-**
-** The return value of this routine is the same as from sqlite3_exec().
-*/
-int sqlite3_get_table(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be executed */
- char ***resultp, /* Result written to a char *[] that this points to */
- int *nrow, /* Number of result rows written here */
- int *ncolumn, /* Number of result columns written here */
- char **errmsg /* Error msg written here */
+** </pre></blockquote>
+**
+** There are two column (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array names azResult. Then azResult holds this content:
+**
+** <blockquote><pre>
+** azResult&#91;0] = "Name";
+** azResult&#91;1] = "Age";
+** azResult&#91;2] = "Alice";
+** azResult&#91;3] = "43";
+** azResult&#91;4] = "Bob";
+** azResult&#91;5] = "28";
+** azResult&#91;6] = "Cindy";
+** azResult&#91;7] = "21";
+** </pre></blockquote>
+**
+** The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter. It returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the calling function has finished using the result, it should
+** pass the pointer to the result table to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or [sqlite3_errmsg()].
+**
+** Requirements:
+** [H12371] [H12373] [H12374] [H12376] [H12379] [H12382]
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
);
-
-/*
-** Call this routine to free the memory that sqlite3_get_table() allocated.
-*/
-void sqlite3_free_table(char **result);
-
-/*
-** The following routines are variants of the "sprintf()" from the
-** standard C library. The resulting string is written into memory
-** obtained from malloc() so that there is never a possiblity of buffer
-** overflow. These routines also implement some additional formatting
+SQLITE_API void sqlite3_free_table(char **result);
+
+/*
+** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
+**
+** These routines are work-alikes of the "printf()" family of functions
+** from the standard C library.
+**
+** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. Both routines return a
+** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** In sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf(). This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer. We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
+** All of the usual printf() formatting options apply. In addition, there
+** is are "%q", "%Q", and "%z" options.
**
-** The strings returned by these routines should be freed by calling
-** sqlite3_free().
-**
-** All of the usual printf formatting options apply. In addition, there
-** is a "%q" option. %q works like %s in that it substitutes a null-terminated
+** The %q option works like %s in that it substitutes a null-terminated
** string from the argument list. But %q also doubles every '\'' character.
** %q is designed for use inside a string literal. By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**
-** For example, so some string variable contains text as follows:
+** For example, assume the string variable zText contains text as follows:
**
-** char *zText = "It's a happy day!";
+** <blockquote><pre>
+** char *zText = "It's a happy day!";
+** </pre></blockquote>
**
-** We can use this text in an SQL statement as follows:
+** One can use this text in an SQL statement as follows:
**
-** char *z = sqlite3_mprintf("INSERT INTO TABLES('%q')", zText);
-** sqlite3_exec(db, z, callback1, 0, 0);
-** sqlite3_free(z);
+** <blockquote><pre>
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+** </pre></blockquote>
**
** Because the %q format string is used, the '\'' character in zText
** is escaped and the SQL generated is as follows:
**
-** INSERT INTO table1 VALUES('It''s a happy day!')
+** <blockquote><pre>
+** INSERT INTO table1 VALUES('It''s a happy day!')
+** </pre></blockquote>
**
** This is correct. Had we used %s instead of %q, the generated SQL
** would have looked like this:
**
-** INSERT INTO table1 VALUES('It's a happy day!');
-**
-** This second example is an SQL syntax error. As a general rule you
-** should always use %q instead of %s when inserting text into a string
-** literal.
-*/
-char *sqlite3_mprintf(const char*,...);
-char *sqlite3_vmprintf(const char*, va_list);
-char *sqlite3_snprintf(int,char*,const char*, ...);
-
-/*
-** SQLite uses its own memory allocator. On many installations, this
-** memory allocator is identical to the standard malloc()/realloc()/free()
-** and can be used interchangable. On others, the implementations are
-** different. For maximum portability, it is best not to mix calls
-** to the standard malloc/realloc/free with the sqlite versions.
-*/
-void *sqlite3_malloc(int);
-void *sqlite3_realloc(void*, int);
-void sqlite3_free(void*);
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
-/*
-** This routine registers a callback with the SQLite library. The
-** callback is invoked (at compile-time, not at run-time) for each
-** attempt to access a column of a table in the database. The callback
-** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire
-** SQL statement should be aborted with an error and SQLITE_IGNORE
-** if the column should be treated as a NULL value.
-*/
-int sqlite3_set_authorizer(
+** <blockquote><pre>
+** INSERT INTO table1 VALUES('It's a happy day!');
+** </pre></blockquote>
+**
+** This second example is an SQL syntax error. As a general rule you should
+** always use %q instead of %s when inserting text into a string literal.
+**
+** The %Q option works like %q except it also adds single quotes around
+** the outside of the total string. Additionally, if the parameter in the
+** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
+** single quotes) in place of the %Q option. So, for example, one could say:
+**
+** <blockquote><pre>
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+** </pre></blockquote>
+**
+** The code above will render a correct SQL statement in the zSQL
+** variable even if the zText variable is a NULL pointer.
+**
+** The "%z" formatting option works exactly like "%s" with the
+** addition that after the string has been read and copied into
+** the result, [sqlite3_free()] is called on the input string. {END}
+**
+** Requirements:
+** [H17403] [H17406] [H17407]
+*/
+SQLITE_API char *sqlite3_mprintf(const char*,...);
+SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
+
+/*
+** CAPI3REF: Memory Allocation Subsystem {H17300} <S20000>
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific VFS implementation. The
+** Windows VFS uses native malloc() and free() for some operations.
+**
+** The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_realloc().
+**
+** The sqlite3_realloc() interface attempts to resize a
+** prior memory allocation to be at least N bytes, where N is the
+** second parameter. The memory allocation to be resized is the first
+** parameter. If the first parameter to sqlite3_realloc()
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
+** If the second parameter to sqlite3_realloc() is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
+** sqlite3_realloc() returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if sufficient memory is unavailable.
+** If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc() and the prior allocation is freed.
+** If sqlite3_realloc() returns NULL, then the prior allocation
+** is not freed.
+**
+** The memory returned by sqlite3_malloc() and sqlite3_realloc()
+** is always aligned to at least an 8 byte boundary. {END}
+**
+** The default implementation of the memory allocation subsystem uses
+** the malloc(), realloc() and free() provided by the standard C library.
+** {H17382} However, if SQLite is compiled with the
+** SQLITE_MEMORY_SIZE=<i>NNN</i> C preprocessor macro (where <i>NNN</i>
+** is an integer), then SQLite create a static array of at least
+** <i>NNN</i> bytes in size and uses that array for all of its dynamic
+** memory allocation needs. {END} Additional memory allocator options
+** may be added in future releases.
+**
+** In SQLite version 3.5.0 and 3.5.1, it was possible to define
+** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
+** implementation of these routines to be omitted. That capability
+** is no longer provided. Only built-in memory allocators can be used.
+**
+** The Windows OS interface layer calls
+** the system malloc() and free() directly when converting
+** filenames between the UTF-8 encoding used by SQLite
+** and whatever filename encoding is used by the particular Windows
+** installation. Memory allocation errors are detected, but
+** they are reported back as [SQLITE_CANTOPEN] or
+** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
+**
+** Requirements:
+** [H17303] [H17304] [H17305] [H17306] [H17310] [H17312] [H17315] [H17318]
+** [H17321] [H17322] [H17323]
+**
+** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
+**
+** The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
+*/
+SQLITE_API void *sqlite3_malloc(int);
+SQLITE_API void *sqlite3_realloc(void*, int);
+SQLITE_API void sqlite3_free(void*);
+
+/*
+** CAPI3REF: Memory Allocator Statistics {H17370} <S30210>
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** routines, which form the built-in memory allocation subsystem.
+**
+** Requirements:
+** [H17371] [H17373] [H17374] [H17375]
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator {H17390} <S20000>
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random [ROWID | ROWIDs] when inserting new records into a table that
+** already uses the largest possible [ROWID]. The PRNG is also used for
+** the build-in random() and randomblob() SQL functions. This interface allows
+** applications to access the same PRNG for other purposes.
+**
+** A call to this routine stores N bytes of randomness into buffer P.
+**
+** The first time this routine is invoked (either internally or by
+** the application) the PRNG is seeded using randomness obtained
+** from the xRandomness method of the default [sqlite3_vfs] object.
+** On all subsequent invocations, the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+**
+** Requirements:
+** [H17392]
+*/
+SQLITE_API void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks {H12500} <S70100>
+**
+** This routine registers a authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied.
+**
+** The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. The third through sixth parameters
+** to the callback are zero-terminated strings that contain additional
+** details about the action to be authorized.
+**
+** If the action code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+** If the action code is [SQLITE_DELETE] and the callback returns
+** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
+** [truncate optimization] is disabled and all rows are deleted individually.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call. Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** The authorizer callback must not do anything that will modify
+** the database connection that invoked the authorizer callback.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** When [sqlite3_prepare_v2()] is used to prepare a statement, the
+** statement might be re-prepared during [sqlite3_step()] due to a
+** schema change. Hence, the application should ensure that the
+** correct authorizer callback remains in place during the [sqlite3_step()].
+**
+** Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()], unless
+** as stated in the previous paragraph, sqlite3_step() invokes
+** sqlite3_prepare_v2() to reprepare a statement after a schema change.
+**
+** Requirements:
+** [H12501] [H12502] [H12503] [H12504] [H12505] [H12506] [H12507] [H12510]
+** [H12511] [H12512] [H12520] [H12521] [H12522]
+*/
+SQLITE_API int sqlite3_set_authorizer(
sqlite3*,
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
void *pUserData
);
-#endif
/*
-** The second parameter to the access authorization function above will
-** be one of the values below. These values signify what kind of operation
-** is to be authorized. The 3rd and 4th parameters to the authorization
-** function will be parameters or NULL depending on which of the following
-** codes is used as the second parameter. The 5th parameter is the name
-** of the database ("main", "temp", etc.) if applicable. The 6th parameter
+** CAPI3REF: Authorizer Return Codes {H12590} <H12500>
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes {H12550} <H12500>
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorize certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable. The 6th parameter to the authorizer callback
** is the name of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
-** input SQL code.
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
**
-** Arg-3 Arg-4
+** Requirements:
+** [H12551] [H12552] [H12553] [H12554]
*/
-#define SQLITE_COPY 0 /* Table Name File Name */
+/******************************************* 3rd ************ 4th ***********/
#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
@@ -559,7 +2539,7 @@ int sqlite3_set_authorizer(
#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
#define SQLITE_READ 20 /* Table Name Column Name */
#define SQLITE_SELECT 21 /* NULL NULL */
-#define SQLITE_TRANSACTION 22 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* Operation NULL */
#define SQLITE_UPDATE 23 /* Table Name Column Name */
#define SQLITE_ATTACH 24 /* Filename NULL */
#define SQLITE_DETACH 25 /* Database Name NULL */
@@ -568,418 +2548,916 @@ int sqlite3_set_authorizer(
#define SQLITE_ANALYZE 28 /* Table Name NULL */
#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
-#define SQLITE_FUNCTION 31 /* Function Name NULL */
-
-/*
-** The return value of the authorization function should be one of the
-** following constants:
-*/
-/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */
-#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
-#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
-
-/*
-** Register a function for tracing SQL command evaluation. The function
-** registered by sqlite3_trace() is invoked at the first sqlite3_step()
-** for the evaluation of an SQL statement. The function registered by
-** sqlite3_profile() runs at the end of each SQL statement and includes
-** information on how long that statement ran.
-**
-** The sqlite3_profile() API is currently considered experimental and
-** is subject to change.
-*/
-void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
-void *sqlite3_profile(sqlite3*,
- void(*xProfile)(void*,const char*,sqlite_uint64), void*);
+#define SQLITE_FUNCTION 31 /* NULL Function Name */
+#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
+#define SQLITE_COPY 0 /* No longer used */
/*
-** This routine configures a callback function - the progress callback - that
-** is invoked periodically during long running calls to sqlite3_exec(),
-** sqlite3_step() and sqlite3_get_table(). An example use for this API is to
-** keep a GUI updated during a large query.
+** CAPI3REF: Tracing And Profiling Functions {H12280} <S60400>
+** EXPERIMENTAL
**
-** The progress callback is invoked once for every N virtual machine opcodes,
-** where N is the second argument to this function. The progress callback
-** itself is identified by the third argument to this function. The fourth
-** argument to this function is a void pointer passed to the progress callback
-** function each time it is invoked.
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
**
-** If a call to sqlite3_exec(), sqlite3_step() or sqlite3_get_table() results
-** in less than N opcodes being executed, then the progress callback is not
-** invoked.
-**
-** To remove the progress callback altogether, pass NULL as the third
-** argument to this function.
+** The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** The callback returns a UTF-8 rendering of the SQL statement text
+** as the statement first begins executing. Additional callbacks occur
+** as each triggered subprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.
**
-** If the progress callback returns a result other than 0, then the current
-** query is immediately terminated and any database changes rolled back. If the
-** query was part of a larger transaction, then the transaction is not rolled
-** back and remains active. The sqlite3_exec() call returns SQLITE_ABORT.
+** The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run.
**
-******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
+** Requirements:
+** [H12281] [H12282] [H12283] [H12284] [H12285] [H12287] [H12288] [H12289]
+** [H12290]
*/
-void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
+SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
+SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
/*
-** Register a callback function to be invoked whenever a new transaction
-** is committed. The pArg argument is passed through to the callback.
-** callback. If the callback function returns non-zero, then the commit
-** is converted into a rollback.
+** CAPI3REF: Query Progress Callbacks {H12910} <S60400>
**
-** If another function was previously registered, its pArg value is returned.
-** Otherwise NULL is returned.
+** This routine configures a callback function - the
+** progress callback - that is invoked periodically during long
+** running calls to [sqlite3_exec()], [sqlite3_step()] and
+** [sqlite3_get_table()]. An example use for this
+** interface is to keep a GUI updated during a large query.
**
-** Registering a NULL function disables the callback.
+** If the progress callback returns non-zero, the operation is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI progress dialog box.
+**
+** The progress handler must not do anything that will modify
+** the database connection that invoked the progress handler.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** Requirements:
+** [H12911] [H12912] [H12913] [H12914] [H12915] [H12916] [H12917] [H12918]
**
-******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
*/
-void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
/*
-** Open the sqlite database file "filename". The "filename" is UTF-8
-** encoded for sqlite3_open() and UTF-16 encoded in the native byte order
-** for sqlite3_open16(). An sqlite3* handle is returned in *ppDb, even
-** if an error occurs. If the database is opened (or created) successfully,
-** then SQLITE_OK is returned. Otherwise an error code is returned. The
-** sqlite3_errmsg() or sqlite3_errmsg16() routines can be used to obtain
-** an English language description of the error.
+** CAPI3REF: Opening A New Database Connection {H12700} <S40200>
**
-** If the database file does not exist, then a new database is created.
-** The encoding for the database is UTF-8 if sqlite3_open() is called and
-** UTF-16 if sqlite3_open16 is used.
+** These routines open an SQLite database file whose name is given by the
+** filename argument. The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object. If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned. The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** an English language description of the error.
**
-** Whether or not an error occurs when it is opened, resources associated
-** with the sqlite3* handle should be released by passing it to
-** sqlite3_close() when it is no longer required.
-*/
-int sqlite3_open(
+** The default encoding for the database will be UTF-8 if
+** sqlite3_open() or sqlite3_open_v2() is called and
+** UTF-16 in the native byte order if sqlite3_open16() is used.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
+**
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. The flags parameter can take one of
+** the following three values, optionally combined with the
+** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
+** and/or [SQLITE_OPEN_PRIVATECACHE] flags:
+**
+** <dl>
+** <dt>[SQLITE_OPEN_READONLY]</dt>
+** <dd>The database is opened in read-only mode. If the database does not
+** already exist, an error is returned.</dd>
+**
+** <dt>[SQLITE_OPEN_READWRITE]</dt>
+** <dd>The database is opened for reading and writing if possible, or reading
+** only if the file is write protected by the operating system. In either
+** case the database must already exist, otherwise an error is returned.</dd>
+**
+** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
+** <dd>The database is opened for reading and writing, and is creates it if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().</dd>
+** </dl>
+**
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** combinations shown above or one of the combinations shown above combined
+** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
+** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
+** then the behavior is undefined.
+**
+** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
+** opens in the multi-thread [threading mode] as long as the single-thread
+** mode has not been set at compile-time or start-time. If the
+** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
+** in the serialized [threading mode] unless single-thread was
+** previously selected at compile-time or start-time.
+** The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
+** eligible to use [shared cache mode], regardless of whether or not shared
+** cache is enabled using [sqlite3_enable_shared_cache()]. The
+** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
+** participate in [shared cache mode] even if it is enabled.
+**
+** If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** If the filename is an empty string, then a private, temporary
+** on-disk database will be created. This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
+**
+** <b>Note to Windows users:</b> The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** sqlite3_open() or sqlite3_open_v2().
+**
+** Requirements:
+** [H12701] [H12702] [H12703] [H12704] [H12706] [H12707] [H12709] [H12711]
+** [H12712] [H12713] [H12714] [H12717] [H12719] [H12721] [H12723]
+*/
+SQLITE_API int sqlite3_open(
const char *filename, /* Database filename (UTF-8) */
sqlite3 **ppDb /* OUT: SQLite db handle */
);
-int sqlite3_open16(
+SQLITE_API int sqlite3_open16(
const void *filename, /* Database filename (UTF-16) */
sqlite3 **ppDb /* OUT: SQLite db handle */
);
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
/*
-** Return the error code for the most recent sqlite3_* API call associated
-** with sqlite3 handle 'db'. SQLITE_OK is returned if the most recent
-** API call was successful.
-**
-** Calls to many sqlite3_* functions set the error code and string returned
-** by sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16()
-** (overwriting the previous values). Note that calls to sqlite3_errcode(),
-** sqlite3_errmsg() and sqlite3_errmsg16() themselves do not affect the
-** results of future invocations.
-**
-** Assuming no other intervening sqlite3_* API calls are made, the error
-** code returned by this function is associated with the same error as
-** the strings returned by sqlite3_errmsg() and sqlite3_errmsg16().
+** CAPI3REF: Error Codes And Messages {H12800} <S60200>
+**
+** The sqlite3_errcode() interface returns the numeric [result code] or
+** [extended result code] for the most recent failed sqlite3_* API call
+** associated with a [database connection]. If a prior API call failed
+** but the most recent API call succeeded, the return value from
+** sqlite3_errcode() is undefined. The sqlite3_extended_errcode()
+** interface is the same except that it always returns the
+** [extended result code] even when extended result codes are
+** disabled.
+**
+** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
+** Memory to hold the error message string is managed internally.
+** The application does not need to worry about freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.
+**
+** When the serialized [threading mode] is in use, it might be the
+** case that a second error occurs on a separate thread in between
+** the time of the first error and the call to these interfaces.
+** When that happens, the second error will be reported since these
+** interfaces always report the most recent result. To avoid
+** this, each thread can obtain exclusive use of the [database connection] D
+** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
+** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
+** all calls to the interfaces listed here are completed.
+**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+**
+** Requirements:
+** [H12801] [H12802] [H12803] [H12807] [H12808] [H12809]
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db);
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
+SQLITE_API const char *sqlite3_errmsg(sqlite3*);
+SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
+
+/*
+** CAPI3REF: SQL Statement Object {H13000} <H13010>
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represents a single SQL statement.
+** This object is variously known as a "prepared statement" or a
+** "compiled SQL statement" or simply as a "statement".
+**
+** The life of a statement object goes something like this:
+**
+** <ol>
+** <li> Create the object using [sqlite3_prepare_v2()] or a related
+** function.
+** <li> Bind values to [host parameters] using the sqlite3_bind_*()
+** interfaces.
+** <li> Run the SQL by calling [sqlite3_step()] one or more times.
+** <li> Reset the statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+** <li> Destroy the object using [sqlite3_finalize()].
+** </ol>
+**
+** Refer to documentation on individual methods above for additional
+** information.
*/
-int sqlite3_errcode(sqlite3 *db);
+typedef struct sqlite3_stmt sqlite3_stmt;
/*
-** Return a pointer to a UTF-8 encoded string describing in english the
-** error condition for the most recent sqlite3_* API call. The returned
-** string is always terminated by an 0x00 byte.
+** CAPI3REF: Run-time Limits {H12760} <S20600>
+**
+** This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct. The function returns the old limit.
**
-** The string "not an error" is returned when the most recent API call was
-** successful.
-*/
-const char *sqlite3_errmsg(sqlite3*);
-
-/*
-** Return a pointer to a UTF-16 native byte order encoded string describing
-** in english the error condition for the most recent sqlite3_* API call.
-** The returned string is always terminated by a pair of 0x00 bytes.
+** If the new limit is a negative number, the limit is unchanged.
+** For the limit category of SQLITE_LIMIT_XYZ there is a
+** [limits | hard upper bound]
+** set by a compile-time C preprocessor macro named
+** [limits | SQLITE_MAX_XYZ].
+** (The "_LIMIT_" in the name is changed to "_MAX_".)
+** Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper limit.
**
-** The string "not an error" is returned when the most recent API call was
-** successful.
+** Run time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** web browser that has its own databases for storing history and
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** New run-time limit categories may be added in future releases.
+**
+** Requirements:
+** [H12762] [H12766] [H12769]
*/
-const void *sqlite3_errmsg16(sqlite3*);
+SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
/*
-** An instance of the following opaque structure is used to represent
-** a compiled SQL statment.
+** CAPI3REF: Run-Time Limit Categories {H12790} <H12760>
+** KEYWORDS: {limit category} {limit categories}
+**
+** These constants define various performance limits
+** that can be lowered at run-time using [sqlite3_limit()].
+** The synopsis of the meanings of the various limits is shown below.
+** Additional information is available at [limits | Limits in SQLite].
+**
+** <dl>
+** <dt>SQLITE_LIMIT_LENGTH</dt>
+** <dd>The maximum size of any string or BLOB or table row.<dd>
+**
+** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
+** <dd>The maximum length of an SQL statement.</dd>
+**
+** <dt>SQLITE_LIMIT_COLUMN</dt>
+** <dd>The maximum number of columns in a table definition or in the
+** result set of a [SELECT] or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.</dd>
+**
+** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
+** <dd>The maximum depth of the parse tree on any expression.</dd>
+**
+** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
+** <dd>The maximum number of terms in a compound SELECT statement.</dd>
+**
+** <dt>SQLITE_LIMIT_VDBE_OP</dt>
+** <dd>The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement.</dd>
+**
+** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
+** <dd>The maximum number of arguments on a function.</dd>
+**
+** <dt>SQLITE_LIMIT_ATTACHED</dt>
+** <dd>The maximum number of [ATTACH | attached databases].</dd>
+**
+** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
+** <dd>The maximum length of the pattern argument to the [LIKE] or
+** [GLOB] operators.</dd>
+**
+** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
+** <dd>The maximum number of variables in an SQL statement that can
+** be bound.</dd>
+**
+** <dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
+** <dd>The maximum depth of recursion for triggers.</dd>
+** </dl>
*/
-typedef struct sqlite3_stmt sqlite3_stmt;
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+#define SQLITE_LIMIT_TRIGGER_DEPTH 10
-/*
+/*
+** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
+** KEYWORDS: {SQL statement compiler}
+**
** To execute an SQL query, it must first be compiled into a byte-code
-** program using one of the following routines. The only difference between
-** them is that the second argument, specifying the SQL statement to
-** compile, is assumed to be encoded in UTF-8 for the sqlite3_prepare()
-** function and UTF-16 for sqlite3_prepare16().
-**
-** The first parameter "db" is an SQLite database handle. The second
-** parameter "zSql" is the statement to be compiled, encoded as either
-** UTF-8 or UTF-16 (see above). If the next parameter, "nBytes", is less
-** than zero, then zSql is read up to the first nul terminator. If
-** "nBytes" is not less than zero, then it is the length of the string zSql
-** in bytes (not characters).
-**
-** *pzTail is made to point to the first byte past the end of the first
-** SQL statement in zSql. This routine only compiles the first statement
-** in zSql, so *pzTail is left pointing to what remains uncompiled.
-**
-** *ppStmt is left pointing to a compiled SQL statement that can be
-** executed using sqlite3_step(). Or if there is an error, *ppStmt may be
-** set to NULL. If the input text contained no SQL (if the input is and
-** empty string or a comment) then *ppStmt is set to NULL.
-**
-** On success, SQLITE_OK is returned. Otherwise an error code is returned.
-*/
-int sqlite3_prepare(
+** program using one of these routines.
+**
+** The first argument, "db", is a [database connection] obtained from a
+** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
+** [sqlite3_open16()]. The database connection must not have been closed.
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
+** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
+** use UTF-16.
+**
+** If the nByte argument is less than zero, then zSql is read up to the
+** first zero terminator. If nByte is non-negative, then it is the maximum
+** number of bytes read from zSql. When nByte is non-negative, the
+** zSql string ends at either the first '\000' or '\u0000' character or
+** the nByte-th byte, whichever comes first. If the caller knows
+** that the supplied string is nul-terminated, then there is a small
+** performance advantage to be gained by passing an nByte parameter that
+** is equal to the number of bytes in the input string <i>including</i>
+** the nul-terminator bytes.
+**
+** If pzTail is not NULL then *pzTail is made to point to the first byte
+** past the end of the first SQL statement in zSql. These routines only
+** compile the first statement in zSql, so *pzTail is left pointing to
+** what remains uncompiled.
+**
+** *ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. If there is an error, *ppStmt is set
+** to NULL. If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
+** ppStmt may not be NULL.
+**
+** On success, [SQLITE_OK] is returned, otherwise an [error code] is returned.
+**
+** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
+** recommended for all new programs. The two older interfaces are retained
+** for backwards compatibility, but their use is discouraged.
+** In the "v2" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
+** behave a differently in two ways:
+**
+** <ol>
+** <li>
+** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. If the schema has changed in
+** a way that makes the statement no longer valid, [sqlite3_step()] will still
+** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is
+** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the
+** error go away. Note: use [sqlite3_errmsg()] to find the text
+** of the parsing error that results in an [SQLITE_SCHEMA] return.
+** </li>
+**
+** <li>
+** When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and you would have to make a second call to [sqlite3_reset()] in order
+** to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
+** </li>
+** </ol>
+**
+** Requirements:
+** [H13011] [H13012] [H13013] [H13014] [H13015] [H13016] [H13019] [H13021]
+**
+*/
+SQLITE_API int sqlite3_prepare(
sqlite3 *db, /* Database handle */
const char *zSql, /* SQL statement, UTF-8 encoded */
- int nBytes, /* Length of zSql in bytes. */
+ int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
const char **pzTail /* OUT: Pointer to unused portion of zSql */
);
-int sqlite3_prepare16(
+SQLITE_API int sqlite3_prepare_v2(
sqlite3 *db, /* Database handle */
- const void *zSql, /* SQL statement, UTF-16 encoded */
- int nBytes, /* Length of zSql in bytes. */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const void **pzTail /* OUT: Pointer to unused portion of zSql */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
);
-
-/*
-** Newer versions of the prepare API work just like the legacy versions
-** but with one exception: The a copy of the SQL text is saved in the
-** sqlite3_stmt structure that is returned. If this copy exists, it
-** modifieds the behavior of sqlite3_step() slightly. First, sqlite3_step()
-** will no longer return an SQLITE_SCHEMA error but will instead automatically
-** rerun the compiler to rebuild the prepared statement. Secondly,
-** sqlite3_step() now turns a full result code - the result code that
-** use used to have to call sqlite3_reset() to get.
-*/
-int sqlite3_prepare_v2(
+SQLITE_API int sqlite3_prepare16(
sqlite3 *db, /* Database handle */
- const char *zSql, /* SQL statement, UTF-8 encoded */
- int nBytes, /* Length of zSql in bytes. */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const char **pzTail /* OUT: Pointer to unused portion of zSql */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
);
-int sqlite3_prepare16_v2(
+SQLITE_API int sqlite3_prepare16_v2(
sqlite3 *db, /* Database handle */
const void *zSql, /* SQL statement, UTF-16 encoded */
- int nBytes, /* Length of zSql in bytes. */
+ int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
const void **pzTail /* OUT: Pointer to unused portion of zSql */
);
/*
-** Pointers to the following two opaque structures are used to communicate
-** with the implementations of user-defined functions.
+** CAPI3REF: Retrieving Statement SQL {H13100} <H13000>
+**
+** This interface can be used to retrieve a saved copy of the original
+** SQL text used to create a [prepared statement] if that statement was
+** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
+**
+** Requirements:
+** [H13101] [H13102] [H13103]
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object {H15000} <S20200>
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. A internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between between protected and unprotected
+** sqlite3_value objects even when not strictly required.
+**
+** The sqlite3_value objects that are passed as parameters into the
+** implementation of [application-defined SQL functions] are protected.
+** The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used with
+** [sqlite3_result_value()] and [sqlite3_bind_value()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
*/
-typedef struct sqlite3_context sqlite3_context;
typedef struct Mem sqlite3_value;
/*
-** In the SQL strings input to sqlite3_prepare() and sqlite3_prepare16(),
-** one or more literals can be replace by parameters "?" or "?NNN" or
-** ":AAA" or "@AAA" or "$VVV" where NNN is a integer, AAA is an identifer,
-** and VVV is a variable name according to the syntax rules of the
-** TCL programming language. The value of these parameters (also called
-** "host parameter names") can be set using the routines listed below.
+** CAPI3REF: SQL Function Context Object {H16001} <S20200>
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
-** In every case, the first argument is a pointer to the sqlite3_stmt
-** structure returned from sqlite3_prepare(). The second argument is the
-** index of the host parameter name. The first host parameter as an index
-** of 1. For named host parameters (":AAA" or "$VVV") you can use
-** sqlite3_bind_parameter_index() to get the correct index value given
-** the parameter name. If the same named parameter occurs more than
-** once, it is assigned the same index each time.
+** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a [parameter] that matches one of following
+** templates:
+**
+** <ul>
+** <li> ?
+** <li> ?NNN
+** <li> :VVV
+** <li> @VVV
+** <li> $VVV
+** </ul>
+**
+** In the templates above, NNN represents an integer literal,
+** and VVV represents an alphanumeric identifer. The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** The second argument is the index of the SQL parameter to be set.
+** The leftmost SQL parameter has an index of 1. When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_index()] API if desired. The index
+** for "?NNN" parameters is the value of NNN.
+** The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
+**
+** The third argument is the value to bind to the parameter.
+**
+** In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of <u>bytes</u> in the value, not the number of characters.
+** If the fourth parameter is negative, the length of the string is
+** the number of bytes up to the first zero terminator.
**
** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
-** text after SQLite has finished with it. If the fifth argument is the
-** special value SQLITE_STATIC, then the library assumes that the information
-** is in static, unmanaged space and does not need to be freed. If the
-** fifth argument has the value SQLITE_TRANSIENT, then SQLite makes its
-** own private copy of the data before the sqlite3_bind_* routine returns.
+** string after SQLite has finished with it. If the fifth argument is
+** the special value [SQLITE_STATIC], then SQLite assumes that the
+** information is in static, unmanaged space and does not need to be freed.
+** If the fifth argument has the value [SQLITE_TRANSIENT], then
+** SQLite makes its own private copy of the data immediately, before
+** the sqlite3_bind_*() routine returns.
+**
+** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeroes. A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** A negative value for the zeroblob results in a zero-length BLOB.
+**
+** The sqlite3_bind_*() routines must be called after
+** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
+** before [sqlite3_step()].
+** Bindings are not cleared by the [sqlite3_reset()] routine.
+** Unbound parameters are interpreted as NULL.
+**
+** These routines return [SQLITE_OK] on success or an error code if
+** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
+** index is out of range. [SQLITE_NOMEM] is returned if malloc() fails.
+** [SQLITE_MISUSE] might be returned if these routines are called on a
+** virtual machine that is the wrong state or which has already been finalized.
+** Detection of misuse is unreliable. Applications should not depend
+** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a
+** a logic error in the application. Future versions of SQLite might
+** panic rather than return SQLITE_MISUSE.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
+**
+** Requirements:
+** [H13506] [H13509] [H13512] [H13515] [H13518] [H13521] [H13524] [H13527]
+** [H13530] [H13533] [H13536] [H13539] [H13542] [H13545] [H13548] [H13551]
**
-** The sqlite3_bind_* routine must be called before sqlite3_step() and after
-** an sqlite3_prepare() or sqlite3_reset(). Bindings persist across
-** multiple calls to sqlite3_reset() and sqlite3_step(). Unbound parameters
-** are interpreted as NULL.
*/
-int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
-int sqlite3_bind_double(sqlite3_stmt*, int, double);
-int sqlite3_bind_int(sqlite3_stmt*, int, int);
-int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite_int64);
-int sqlite3_bind_null(sqlite3_stmt*, int);
-int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
-int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
-int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
+SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
/*
-** Return the number of host parameters in a compiled SQL statement. This
-** routine was added to support DBD::SQLite.
+** CAPI3REF: Number Of SQL Parameters {H13600} <S70300>
+**
+** This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** placeholders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN are used,
+** there may be gaps in the list.
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+**
+** Requirements:
+** [H13601]
*/
-int sqlite3_bind_parameter_count(sqlite3_stmt*);
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
/*
-** Return the name of the i-th name parameter. Ordinary parameters "?" are
-** nameless and a NULL is returned. For parameters of the form :AAA or
-** $VVV the complete text of the parameter name is returned, including
-** the initial ":" or "$". NULL is returned if the index is out of range.
+** CAPI3REF: Name Of A Host Parameter {H13620} <S70300>
+**
+** This routine returns a pointer to the name of the n-th
+** [SQL parameter] in a [prepared statement].
+** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.
+** Parameters of the form "?" without a following integer have no name
+** and are also referred to as "anonymous parameters".
+**
+** The first host parameter has an index of 1, not 0.
+**
+** If the value n is out of range or if the n-th parameter is
+** nameless, then NULL is returned. The returned string is
+** always in UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()] or
+** [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+**
+** Requirements:
+** [H13621]
*/
-const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
/*
-** Return the index of a parameter with the given name. The name
-** must match exactly. If no parameter with the given name is found,
-** return 0.
+** CAPI3REF: Index Of A Parameter With A Given Name {H13640} <S70300>
+**
+** Return the index of an SQL parameter given its name. The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero
+** is returned if no matching parameter is found. The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+**
+** Requirements:
+** [H13641]
*/
-int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
/*
-** Set all the parameters in the compiled SQL statement to NULL.
+** CAPI3REF: Reset All Bindings On A Prepared Statement {H13660} <S70300>
+**
+** Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** Use this routine to reset all host parameters to NULL.
+**
+** Requirements:
+** [H13661]
*/
-int sqlite3_clear_bindings(sqlite3_stmt*);
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
/*
-** Return the number of columns in the result set returned by the compiled
-** SQL statement. This routine returns 0 if pStmt is an SQL statement
-** that does not return data (for example an UPDATE).
+** CAPI3REF: Number Of Columns In A Result Set {H13710} <S10700>
+**
+** Return the number of columns in the result set returned by the
+** [prepared statement]. This routine returns 0 if pStmt is an SQL
+** statement that does not return data (for example an [UPDATE]).
+**
+** Requirements:
+** [H13711]
*/
-int sqlite3_column_count(sqlite3_stmt *pStmt);
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
/*
-** The first parameter is a compiled SQL statement. This function returns
-** the column heading for the Nth column of that statement, where N is the
-** second function parameter. The string returned is UTF-8 for
-** sqlite3_column_name() and UTF-16 for sqlite3_column_name16().
+** CAPI3REF: Column Names In A Result Set {H13720} <S10700>
+**
+** These routines return the name assigned to a particular column
+** in the result set of a [SELECT] statement. The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF-16 string. The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. The second parameter is the
+** column number. The leftmost column is number 0.
+**
+** The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
+**
+** If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+**
+** Requirements:
+** [H13721] [H13723] [H13724] [H13725] [H13726] [H13727]
*/
-const char *sqlite3_column_name(sqlite3_stmt*,int);
-const void *sqlite3_column_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
/*
-** The first argument to the following calls is a compiled SQL statement.
-** These functions return information about the Nth column returned by
+** CAPI3REF: Source Of Data In A Query Result {H13740} <S10700>
+**
+** These routines provide a means to determine what column of what
+** table in which database a result of a [SELECT] statement comes from.
+** The name of the database or table or column can be returned as
+** either a UTF-8 or UTF-16 string. The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the same information is requested
+** again in a different encoding.
+**
+** The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** The first argument to the following calls is a [prepared statement].
+** These functions return information about the Nth column returned by
** the statement, where N is the second function argument.
**
-** If the Nth column returned by the statement is not a column value,
-** then all of the functions return NULL. Otherwise, the return the
-** name of the attached database, table and column that the expression
-** extracts a value from.
+** If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. These routine might also return NULL if a memory allocation error
+** occurs. Otherwise, they return the name of the attached database, table
+** and column that query result column was extracted from.
**
-** As with all other SQLite APIs, those postfixed with "16" return UTF-16
-** encoded strings, the other functions return UTF-8. The memory containing
-** the returned strings is valid until the statement handle is finalized().
+** As with all other SQLite APIs, those postfixed with "16" return
+** UTF-16 encoded strings, the other functions return UTF-8. {END}
**
-** These APIs are only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+** These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
+**
+** {A13751}
+** If two or more threads call one or more of these routines against the same
+** prepared statement and column at the same time then the results are
+** undefined.
+**
+** Requirements:
+** [H13741] [H13742] [H13743] [H13744] [H13745] [H13746] [H13748]
+**
+** If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
+** at the same time then the results are undefined.
*/
-const char *sqlite3_column_database_name(sqlite3_stmt*,int);
-const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
-const char *sqlite3_column_table_name(sqlite3_stmt*,int);
-const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
-const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
-const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
/*
-** The first parameter is a compiled SQL statement. If this statement
-** is a SELECT statement, the Nth column of the returned result set
-** of the SELECT is a table column then the declared type of the table
-** column is returned. If the Nth column of the result set is not at table
-** column, then a NULL pointer is returned. The returned string is always
-** UTF-8 encoded. For example, in the database schema:
+** CAPI3REF: Declared Datatype Of A Query Result {H13760} <S10700>
+**
+** The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned. If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** The returned string is always UTF-8 encoded. {END}
+**
+** For example, given the database schema:
**
** CREATE TABLE t1(c1 VARIANT);
**
-** And the following statement compiled:
+** and the following statement to be compiled:
**
** SELECT c1 + 1, c1 FROM t1;
**
-** Then this routine would return the string "VARIANT" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).
+**
+** SQLite uses dynamic run-time typing. So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+**
+** Requirements:
+** [H13761] [H13762] [H13763]
*/
-const char *sqlite3_column_decltype(sqlite3_stmt *, int i);
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
/*
-** The first parameter is a compiled SQL statement. If this statement
-** is a SELECT statement, the Nth column of the returned result set
-** of the SELECT is a table column then the declared type of the table
-** column is returned. If the Nth column of the result set is not at table
-** column, then a NULL pointer is returned. The returned string is always
-** UTF-16 encoded. For example, in the database schema:
-**
-** CREATE TABLE t1(c1 INTEGER);
-**
-** And the following statement compiled:
+** CAPI3REF: Evaluate An SQL Statement {H13200} <S10000>
**
-** SELECT c1 + 1, c1 FROM t1;
+** After a [prepared statement] has been prepared using either
+** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
**
-** Then this routine would return the string "INTEGER" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
-*/
-const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
-
-/*
-** After an SQL query has been compiled with a call to either
-** sqlite3_prepare() or sqlite3_prepare16(), then this function must be
-** called one or more times to execute the statement.
+** The details of the behavior of the sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "v2" interface
+** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
+** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "v2" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
**
-** The return value will be either SQLITE_BUSY, SQLITE_DONE,
-** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
+** In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
**
-** SQLITE_BUSY means that the database engine attempted to open
-** a locked database and there is no busy callback registered.
-** Call sqlite3_step() again to retry the open.
+** [SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. If the statement is a [COMMIT]
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a [COMMIT] and occurs within a
+** explicit transaction then you should rollback the transaction before
+** continuing.
**
-** SQLITE_DONE means that the statement has finished executing
+** [SQLITE_DONE] means that the statement has finished executing
** successfully. sqlite3_step() should not be called again on this virtual
-** machine.
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
**
-** If the SQL statement being executed returns any data, then
-** SQLITE_ROW is returned each time a new row of data is ready
-** for processing by the caller. The values may be accessed using
-** the sqlite3_column_*() functions described below. sqlite3_step()
-** is called again to retrieve the next row of data.
-**
-** SQLITE_ERROR means that a run-time error (such as a constraint
+** If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
+**
+** [SQLITE_ERROR] means that a run-time error (such as a constraint
** violation) has occurred. sqlite3_step() should not be called again on
-** the VM. More information may be found by calling sqlite3_errmsg().
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** With the legacy interface, a more specific error code (for example,
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
**
-** SQLITE_MISUSE means that the this routine was called inappropriately.
-** Perhaps it was called on a virtual machine that had already been
-** finalized or on one that had previously returned SQLITE_ERROR or
-** SQLITE_DONE. Or it could be the case the the same database connection
-** is being used simulataneously by two or more threads.
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "v2" interface is recommended.
+**
+** Requirements:
+** [H13202] [H15304] [H15306] [H15308] [H15310]
*/
-int sqlite3_step(sqlite3_stmt*);
+SQLITE_API int sqlite3_step(sqlite3_stmt*);
/*
-** Return the number of values in the current row of the result set.
+** CAPI3REF: Number of columns in a result set {H13770} <S10700>
+**
+** Returns the number of values in the current row of the result set.
**
-** After a call to sqlite3_step() that returns SQLITE_ROW, this routine
-** will return the same value as the sqlite3_column_count() function.
-** After sqlite3_step() has returned an SQLITE_DONE, SQLITE_BUSY or
-** error code, or before sqlite3_step() has been called on a
-** compiled SQL statement, this routine returns zero.
+** Requirements:
+** [H13771] [H13772]
*/
-int sqlite3_data_count(sqlite3_stmt *pStmt);
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
/*
-** Values are stored in the database in one of the following fundamental
-** types.
+** CAPI3REF: Fundamental Datatypes {H10265} <S10110><S10120>
+** KEYWORDS: SQLITE_TEXT
+**
+** {H10266} Every value in SQLite has one of five fundamental datatypes:
+**
+** <ul>
+** <li> 64-bit signed integer
+** <li> 64-bit IEEE floating point number
+** <li> string
+** <li> BLOB
+** <li> NULL
+** </ul> {END}
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
+** SQLITE_TEXT.
*/
#define SQLITE_INTEGER 1
#define SQLITE_FLOAT 2
-/* #define SQLITE_TEXT 3 // See below */
#define SQLITE_BLOB 4
#define SQLITE_NULL 5
-
-/*
-** SQLite version 2 defines SQLITE_TEXT differently. To allow both
-** version 2 and version 3 to be included, undefine them both if a
-** conflict is seen. Define SQLITE3_TEXT to be the version 3 value.
-*/
#ifdef SQLITE_TEXT
# undef SQLITE_TEXT
#else
@@ -988,236 +3466,533 @@ int sqlite3_data_count(sqlite3_stmt *pStmt);
#define SQLITE3_TEXT 3
/*
-** The next group of routines returns information about the information
-** in a single column of the current result row of a query. In every
-** case the first parameter is a pointer to the SQL statement that is being
-** executed (the sqlite_stmt* that was returned from sqlite3_prepare()) and
-** the second argument is the index of the column for which information
-** should be returned. iCol is zero-indexed. The left-most column as an
-** index of 0.
-**
-** If the SQL statement is not currently point to a valid row, or if the
-** the colulmn index is out of range, the result is undefined.
+** CAPI3REF: Result Values From A Query {H13800} <S10700>
+** KEYWORDS: {column access functions}
+**
+** These routines form the "result set query" interface.
+**
+** These routines return information about a single column of the current
+** result row of a query. In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. The leftmost column of the result set has the index 0.
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** The sqlite3_column_type() routine returns the
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
+** returned by sqlite3_column_type() is only meaningful if no type
+** conversions have occurred as described below. After a type conversion,
+** the value returned by sqlite3_column_type() is undefined. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** The value returned does not include the zero terminator at the end
+** of the string. For clarity: the value returned is the number of
+** bytes in the string, not the number of characters.
+**
+** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero terminated. The return
+** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
+** pointer, possibly even a NULL pointer.
+**
+** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
+** but leaves the result in UTF-16 in native byte order instead of UTF-8.
+** The zero terminator is not included in this count.
+**
+** The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
+** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], then the behavior is undefined.
**
** These routines attempt to convert the value where appropriate. For
** example, if the internal representation is FLOAT and a text result
-** is requested, sprintf() is used internally to do the conversion
-** automatically. The following table details the conversions that
-** are applied:
-**
-** Internal Type Requested Type Conversion
-** ------------- -------------- --------------------------
-** NULL INTEGER Result is 0
-** NULL FLOAT Result is 0.0
-** NULL TEXT Result is an empty string
-** NULL BLOB Result is a zero-length BLOB
-** INTEGER FLOAT Convert from integer to float
-** INTEGER TEXT ASCII rendering of the integer
-** INTEGER BLOB Same as for INTEGER->TEXT
-** FLOAT INTEGER Convert from float to integer
-** FLOAT TEXT ASCII rendering of the float
-** FLOAT BLOB Same as FLOAT->TEXT
-** TEXT INTEGER Use atoi()
-** TEXT FLOAT Use atof()
-** TEXT BLOB No change
-** BLOB INTEGER Convert to TEXT then use atoi()
-** BLOB FLOAT Convert to TEXT then use atof()
-** BLOB TEXT Add a \000 terminator if needed
-**
-** The following access routines are provided:
-**
-** _type() Return the datatype of the result. This is one of
-** SQLITE_INTEGER, SQLITE_FLOAT, SQLITE_TEXT, SQLITE_BLOB,
-** or SQLITE_NULL.
-** _blob() Return the value of a BLOB.
-** _bytes() Return the number of bytes in a BLOB value or the number
-** of bytes in a TEXT value represented as UTF-8. The \000
-** terminator is included in the byte count for TEXT values.
-** _bytes16() Return the number of bytes in a BLOB value or the number
-** of bytes in a TEXT value represented as UTF-16. The \u0000
-** terminator is included in the byte count for TEXT values.
-** _double() Return a FLOAT value.
-** _int() Return an INTEGER value in the host computer's native
-** integer representation. This might be either a 32- or 64-bit
-** integer depending on the host.
-** _int64() Return an INTEGER value as a 64-bit signed integer.
-** _text() Return the value as UTF-8 text.
-** _text16() Return the value as UTF-16 text.
-*/
-const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
-int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
-int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
-double sqlite3_column_double(sqlite3_stmt*, int iCol);
-int sqlite3_column_int(sqlite3_stmt*, int iCol);
-sqlite_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
-const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
-const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
-int sqlite3_column_type(sqlite3_stmt*, int iCol);
-int sqlite3_column_numeric_type(sqlite3_stmt*, int iCol);
-sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
-
-/*
-** The sqlite3_finalize() function is called to delete a compiled
-** SQL statement obtained by a previous call to sqlite3_prepare()
-** or sqlite3_prepare16(). If the statement was executed successfully, or
-** not executed at all, then SQLITE_OK is returned. If execution of the
-** statement failed then an error code is returned.
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. The following table details the conversions
+** that are applied:
+**
+** <blockquote>
+** <table border="1">
+** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
+**
+** <tr><td> NULL <td> INTEGER <td> Result is 0
+** <tr><td> NULL <td> FLOAT <td> Result is 0.0
+** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
+** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
+** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
+** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
+** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
+** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
+** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
+** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
+** <tr><td> TEXT <td> INTEGER <td> Use atoi()
+** <tr><td> TEXT <td> FLOAT <td> Use atof()
+** <tr><td> TEXT <td> BLOB <td> No change
+** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
+** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
+** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
+** </table>
+** </blockquote>
+**
+** The table above makes reference to standard C library functions atoi()
+** and atof(). SQLite does not really use these functions. It has its
+** own equivalent internal routines. The atoi() and atof() names are
+** used in the table for brevity and because they are familiar to most
+** C programmers.
+**
+** Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+** <ul>
+** <li> The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</li>
+** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</li>
+** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</li>
+** </ul>
+**
+** Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer points to will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
+**
+** The safest and easiest to remember policy is to invoke these routines
+** in one of the following ways:
+**
+** <ul>
+** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
+** </ul>
+**
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
+**
+** The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. The memory space used to hold strings
+** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned
+** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** If a memory allocation error occurs during the evaluation of any
+** of these routines, a default value is returned. The default value
+** is either the integer 0, the floating point number 0.0, or a NULL
+** pointer. Subsequent calls to [sqlite3_errcode()] will return
+** [SQLITE_NOMEM].
+**
+** Requirements:
+** [H13803] [H13806] [H13809] [H13812] [H13815] [H13818] [H13821] [H13824]
+** [H13827] [H13830]
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
+
+/*
+** CAPI3REF: Destroy A Prepared Statement Object {H13300} <S70300><S30100>
+**
+** The sqlite3_finalize() function is called to delete a [prepared statement].
+** If the statement was executed successfully or not executed at all, then
+** SQLITE_OK is returned. If execution of the statement failed then an
+** [error code] or [extended error code] is returned.
**
** This routine can be called at any point during the execution of the
-** virtual machine. If the virtual machine has not completed execution
-** when this routine is called, that is like encountering an error or
-** an interrupt. (See sqlite3_interrupt().) Incomplete updates may be
-** rolled back and transactions cancelled, depending on the circumstances,
-** and the result code returned will be SQLITE_ABORT.
-*/
-int sqlite3_finalize(sqlite3_stmt *pStmt);
-
-/*
-** The sqlite3_reset() function is called to reset a compiled SQL
-** statement obtained by a previous call to sqlite3_prepare() or
-** sqlite3_prepare16() back to it's initial state, ready to be re-executed.
-** Any SQL statement variables that had values bound to them using
-** the sqlite3_bind_*() API retain their values.
+** [prepared statement]. If the virtual machine has not
+** completed execution when this routine is called, that is like
+** encountering an error or an [sqlite3_interrupt | interrupt].
+** Incomplete updates may be rolled back and transactions canceled,
+** depending on the circumstances, and the
+** [error code] returned will be [SQLITE_ABORT].
+**
+** Requirements:
+** [H11302] [H11304]
*/
-int sqlite3_reset(sqlite3_stmt *pStmt);
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
/*
-** The following two functions are used to add user functions or aggregates
-** implemented in C to the SQL langauge interpreted by SQLite. The
-** difference only between the two is that the second parameter, the
-** name of the (scalar) function or aggregate, is encoded in UTF-8 for
-** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
+** CAPI3REF: Reset A Prepared Statement Object {H13330} <S70300>
**
-** The first argument is the database handle that the new function or
-** aggregate is to be added to. If a single program uses more than one
-** database handle internally, then user functions or aggregates must
-** be added individually to each database handle with which they will be
-** used.
-**
-** The third parameter is the number of arguments that the function or
-** aggregate takes. If this parameter is negative, then the function or
-** aggregate may take any number of arguments.
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
+** Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** {H11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
+**
+** {H11334} If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
+** or if [sqlite3_step(S)] has never before been called on S,
+** then [sqlite3_reset(S)] returns [SQLITE_OK].
+**
+** {H11336} If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
+**
+** {H11338} The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions {H16100} <S20200>
+** KEYWORDS: {function creation routines}
+** KEYWORDS: {application-defined SQL function}
+** KEYWORDS: {application-defined SQL functions}
+**
+** These two functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only difference between the
+** two is that the second parameter, the name of the (scalar) function or
+** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
+** for sqlite3_create_function16().
+**
+** The first parameter is the [database connection] to which the SQL
+** function is to be added. If a single program uses more than one database
+** connection internally, then SQL functions must be added individually to
+** each database connection.
+**
+** The second parameter is the name of the SQL function to be created or
+** redefined. The length of the name is limited to 255 bytes, exclusive of
+** the zero-terminator. Note that the name length limit is in bytes, not
+** characters. Any attempt to create a function with a longer name
+** will result in [SQLITE_ERROR] being returned.
+**
+** The third parameter (nArg)
+** is the number of arguments that the SQL function or
+** aggregate takes. If this parameter is -1, then the SQL function or
+** aggregate may take any number of arguments between 0 and the limit
+** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
+** parameter is less than -1 or greater than 127 then the behavior is
+** undefined.
**
-** The fourth parameter is one of SQLITE_UTF* values defined below,
-** indicating the encoding that the function is most likely to handle
-** values in. This does not change the behaviour of the programming
-** interface. However, if two versions of the same function are registered
-** with different encoding values, SQLite invokes the version likely to
-** minimize conversions between text encodings.
+** The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. Any SQL function implementation should be able to work
+** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
+** more efficient with one encoding than another. An application may
+** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
+** times with the same function but with different values of eTextRep.
+** When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+** If there is only a single implementation which does not care what text
+** encoding is used, then the fourth argument should be [SQLITE_ANY].
+**
+** The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].
**
** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
-** pointers to user implemented C functions that implement the user
-** function or aggregate. A scalar function requires an implementation of
-** the xFunc callback only, NULL pointers should be passed as the xStep
-** and xFinal parameters. An aggregate function requires an implementation
-** of xStep and xFinal, but NULL should be passed for xFunc. To delete an
-** existing user function or aggregate, pass NULL for all three function
-** callback. Specifying an inconstent set of callback values, such as an
-** xFunc and an xFinal, or an xStep but no xFinal, SQLITE_ERROR is
-** returned.
-*/
-int sqlite3_create_function(
- sqlite3 *,
+** pointers to C-language functions that implement the SQL function or
+** aggregate. A scalar SQL function requires an implementation of the xFunc
+** callback only, NULL pointers should be passed as the xStep and xFinal
+** parameters. An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL should be passed for xFunc. To delete an existing
+** SQL function or aggregate, pass NULL for all three function callbacks.
+**
+** It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing preferred text encodings. SQLite will use
+** the implementation that most closely matches the way in which the
+** SQL function is used. A function implementation with a non-negative
+** nArg parameter is a better match than a function implementation with
+** a negative nArg. A function where the preferred text encoding
+** matches the database encoding is a better
+** match than a function where the encoding is different.
+** A function where the encoding difference is between UTF16le and UTF16be
+** is a closer match than a function where the encoding difference is
+** between UTF8 and UTF16.
+**
+** Built-in functions may be overloaded by new application-defined functions.
+** The first application-defined function with a given name overrides all
+** built-in functions in the same [database connection] with the same name.
+** Subsequent application-defined functions of the same name only override
+** prior application-defined functions that are an exact match for the
+** number of parameters and preferred encoding.
+**
+** An application-defined function is permitted to call other
+** SQLite interfaces. However, such calls must not
+** close the database connection nor finalize or reset the prepared
+** statement in which the function is running.
+**
+** Requirements:
+** [H16103] [H16106] [H16109] [H16112] [H16118] [H16121] [H16127]
+** [H16130] [H16133] [H16136] [H16139] [H16142]
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
const char *zFunctionName,
int nArg,
int eTextRep,
- void*,
+ void *pApp,
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
);
-int sqlite3_create_function16(
- sqlite3*,
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
const void *zFunctionName,
int nArg,
int eTextRep,
- void*,
+ void *pApp,
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
);
/*
-** This function is deprecated. Do not use it. It continues to exist
-** so as not to break legacy code. But new code should avoid using it.
+** CAPI3REF: Text Encodings {H10267} <S50200> <H16100>
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
*/
-int sqlite3_aggregate_count(sqlite3_context*);
+#define SQLITE_UTF8 1
+#define SQLITE_UTF16LE 2
+#define SQLITE_UTF16BE 3
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* sqlite3_create_function only */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
/*
-** The next group of routines returns information about parameters to
-** a user-defined function. Function implementations use these routines
-** to access their parameters. These routines are the same as the
-** sqlite3_column_* routines except that these routines take a single
-** sqlite3_value* pointer instead of an sqlite3_stmt* and an integer
-** column number.
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
+**
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
+** the use of these functions. To help encourage people to avoid
+** using these functions, we are not going to tell you what they do.
*/
-const void *sqlite3_value_blob(sqlite3_value*);
-int sqlite3_value_bytes(sqlite3_value*);
-int sqlite3_value_bytes16(sqlite3_value*);
-double sqlite3_value_double(sqlite3_value*);
-int sqlite3_value_int(sqlite3_value*);
-sqlite_int64 sqlite3_value_int64(sqlite3_value*);
-const unsigned char *sqlite3_value_text(sqlite3_value*);
-const void *sqlite3_value_text16(sqlite3_value*);
-const void *sqlite3_value_text16le(sqlite3_value*);
-const void *sqlite3_value_text16be(sqlite3_value*);
-int sqlite3_value_type(sqlite3_value*);
-int sqlite3_value_numeric_type(sqlite3_value*);
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
+SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
+#endif
/*
-** Aggregate functions use the following routine to allocate
-** a structure for storing their state. The first time this routine
-** is called for a particular aggregate, a new structure of size nBytes
-** is allocated, zeroed, and returned. On subsequent calls (for the
-** same aggregate instance) the same buffer is returned. The implementation
-** of the aggregate can use the returned buffer to accumulate data.
+** CAPI3REF: Obtaining SQL Function Parameter Values {H15100} <S20200>
+**
+** The C-language implementation of SQL functions and aggregates uses
+** this set of interface routines to access the parameter values on
+** the function or aggregate.
+**
+** The xFunc (for scalar functions) or xStep (for aggregates) parameters
+** to [sqlite3_create_function()] and [sqlite3_create_function16()]
+** define callbacks that implement the SQL functions and aggregates.
+** The 4th parameter to these callbacks is an array of pointers to
+** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
+** each parameter to the SQL function. These routines are used to
+** extract values from the [sqlite3_value] objects.
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** object results in undefined behavior.
+**
+** These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
+**
+** The sqlite3_value_text16() interface extracts a UTF-16 string
+** in the native byte-order of the host machine. The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF-16 strings as big-endian and little-endian respectively.
**
-** The buffer allocated is freed automatically by SQLite.
+** The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.
+**
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+**
+** Requirements:
+** [H15103] [H15106] [H15109] [H15112] [H15115] [H15118] [H15121] [H15124]
+** [H15127] [H15130] [H15133] [H15136]
*/
-void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
+SQLITE_API double sqlite3_value_double(sqlite3_value*);
+SQLITE_API int sqlite3_value_int(sqlite3_value*);
+SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
+SQLITE_API int sqlite3_value_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
/*
-** The pUserData parameter to the sqlite3_create_function()
-** routine used to register user functions is available to
-** the implementation of the function using this call.
+** CAPI3REF: Obtain Aggregate Function Context {H16210} <S20200>
+**
+** The implementation of aggregate SQL functions use this routine to allocate
+** a structure for storing their state.
+**
+** The first time the sqlite3_aggregate_context() routine is called for a
+** particular aggregate, SQLite allocates nBytes of memory, zeroes out that
+** memory, and returns a pointer to it. On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function index,
+** the same buffer is returned. The implementation of the aggregate can use
+** the returned buffer to accumulate data.
+**
+** SQLite automatically frees the allocated buffer when the aggregate
+** query concludes.
+**
+** The first parameter should be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the callback routine that implements the aggregate function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
+**
+** Requirements:
+** [H16211] [H16213] [H16215] [H16217]
*/
-void *sqlite3_user_data(sqlite3_context*);
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
/*
-** The following two functions may be used by scalar user functions to
-** associate meta-data with argument values. If the same value is passed to
-** multiple invocations of the user-function during query execution, under
-** some circumstances the associated meta-data may be preserved. This may
+** CAPI3REF: User Data For Functions {H16240} <S20200>
+**
+** The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function. {END}
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+**
+** Requirements:
+** [H16243]
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions {H16250} <S60600><S20200>
+**
+** The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** Requirements:
+** [H16253]
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
+
+/*
+** CAPI3REF: Function Auxiliary Data {H16270} <S20200>
+**
+** The following two functions may be used by scalar SQL functions to
+** associate metadata with argument values. If the same value is passed to
+** multiple invocations of the same SQL function during query execution, under
+** some circumstances the associated metadata may be preserved. This may
** be used, for example, to add a regular-expression matching scalar
** function. The compiled version of the regular expression is stored as
-** meta-data associated with the SQL value passed as the regular expression
-** pattern.
-**
-** Calling sqlite3_get_auxdata() returns a pointer to the meta data
-** associated with the Nth argument value to the current user function
-** call, where N is the second parameter. If no meta-data has been set for
-** that value, then a NULL pointer is returned.
-**
-** The sqlite3_set_auxdata() is used to associate meta data with a user
-** function argument. The third parameter is a pointer to the meta data
-** to be associated with the Nth user function argument value. The fourth
-** parameter specifies a 'delete function' that will be called on the meta
-** data pointer to release it when it is no longer required. If the delete
-** function pointer is NULL, it is not invoked.
-**
-** In practice, meta-data is preserved between function calls for
+** metadata associated with the SQL value passed as the regular expression
+** pattern. The compiled regular expression can be reused on multiple
+** invocations of the same function so that the original pattern string
+** does not need to be recompiled on each invocation.
+**
+** The sqlite3_get_auxdata() interface returns a pointer to the metadata
+** associated by the sqlite3_set_auxdata() function with the Nth argument
+** value to the application-defined function. If no metadata has been ever
+** been set for the Nth argument of the function, or if the corresponding
+** function parameter has changed since the meta-data was set,
+** then sqlite3_get_auxdata() returns a NULL pointer.
+**
+** The sqlite3_set_auxdata() interface saves the metadata
+** pointed to by its 3rd parameter as the metadata for the N-th
+** argument of the application-defined function. Subsequent
+** calls to sqlite3_get_auxdata() might return this data, if it has
+** not been destroyed.
+** If it is not NULL, SQLite will invoke the destructor
+** function given by the 4th parameter to sqlite3_set_auxdata() on
+** the metadata when the corresponding function parameter changes
+** or when the SQL statement completes, whichever comes first.
+**
+** SQLite is free to call the destructor and drop metadata on any
+** parameter of any function at any time. The only guarantee is that
+** the destructor will be called before the metadata is dropped.
+**
+** In practice, metadata is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and SQL variables.
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+**
+** Requirements:
+** [H16272] [H16274] [H16276] [H16277] [H16278] [H16279]
*/
-void *sqlite3_get_auxdata(sqlite3_context*, int);
-void sqlite3_set_auxdata(sqlite3_context*, int, void*, void (*)(void*));
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
+SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
/*
-** These are special value for the destructor that is passed in as the
-** final argument to routines like sqlite3_result_blob(). If the destructor
+** CAPI3REF: Constants Defining Special Destructor Behavior {H10280} <S30100>
+**
+** These are special values for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. If the destructor
** argument is SQLITE_STATIC, it means that the content pointer is constant
-** and will never change. It does not need to be destroyed. The
+** and will never change. It does not need to be destroyed. The
** SQLITE_TRANSIENT value means that the content will likely change in
** the near future and that SQLite should make its own private copy of
** the content before returning.
@@ -1230,106 +4005,240 @@ typedef void (*sqlite3_destructor_type)(void*);
#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
/*
-** User-defined functions invoke the following routines in order to
-** set their return value.
-*/
-void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
-void sqlite3_result_double(sqlite3_context*, double);
-void sqlite3_result_error(sqlite3_context*, const char*, int);
-void sqlite3_result_error16(sqlite3_context*, const void*, int);
-void sqlite3_result_int(sqlite3_context*, int);
-void sqlite3_result_int64(sqlite3_context*, sqlite_int64);
-void sqlite3_result_null(sqlite3_context*);
-void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
-void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
-void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
-void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
-void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
-
-/*
-** These are the allowed values for the eTextRep argument to
-** sqlite3_create_collation and sqlite3_create_function.
-*/
-#define SQLITE_UTF8 1
-#define SQLITE_UTF16LE 2
-#define SQLITE_UTF16BE 3
-#define SQLITE_UTF16 4 /* Use native byte order */
-#define SQLITE_ANY 5 /* sqlite3_create_function only */
-#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
-
-/*
-** These two functions are used to add new collation sequences to the
-** sqlite3 handle specified as the first argument.
+** CAPI3REF: Setting The Result Of An SQL Function {H16400} <S20200>
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
+**
+** The sqlite3_result_blob() interface sets the result from
+** an application-defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+**
+** The sqlite3_result_zeroblob() interfaces set the result of
+** the application-defined function to be a BLOB containing all zero
+** bytes and N bytes in size, where N is the value of the 2nd parameter.
+**
+** The sqlite3_result_double() interface sets the result from
+** an application-defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. SQLite interprets the error
+** message string from sqlite3_result_error() as UTF-8. SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 in native
+** byte order. If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. By default,
+** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** The sqlite3_result_toobig() interface causes SQLite to throw an error
+** indicating that a string or BLOB is to long to represent.
+**
+** The sqlite3_result_nomem() interface causes SQLite to throw an error
+** indicating that a memory allocation failed.
+**
+** The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** If the 3rd parameter to the sqlite3_result_text* interfaces
+** is negative, then SQLite takes result text from the 2nd parameter
+** through the first zero character.
+** If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or BLOB result when it has
+** finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces or to
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the content of the parameter nor call a destructor on the content
+** when it has finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained from
+** from [sqlite3_malloc()] before it returns.
+**
+** The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that the [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
+** the [sqlite3_context] pointer, the results are undefined.
+**
+** Requirements:
+** [H16403] [H16406] [H16409] [H16412] [H16415] [H16418] [H16421] [H16424]
+** [H16427] [H16430] [H16433] [H16436] [H16439] [H16442] [H16445] [H16448]
+** [H16451] [H16454] [H16457] [H16460] [H16463]
+*/
+SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
+SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
+SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+SQLITE_API void sqlite3_result_null(sqlite3_context*);
+SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
+
+/*
+** CAPI3REF: Define New Collating Sequences {H16600} <S20300>
+**
+** These functions are used to add new collation sequences to the
+** [database connection] specified as the first argument.
**
** The name of the new collation sequence is specified as a UTF-8 string
-** for sqlite3_create_collation() and a UTF-16 string for
-** sqlite3_create_collation16(). In both cases the name is passed as the
-** second function argument.
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string for sqlite3_create_collation16(). In all cases
+** the name is passed as the second function argument.
**
-** The third argument must be one of the constants SQLITE_UTF8,
-** SQLITE_UTF16LE or SQLITE_UTF16BE, indicating that the user-supplied
+** The third argument may be one of the constants [SQLITE_UTF8],
+** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian or UTF-16 big-endian respectively.
+** UTF-16 little-endian, or UTF-16 big-endian, respectively. The
+** third argument might also be [SQLITE_UTF16] to indicate that the routine
+** expects pointers to be UTF-16 strings in the native byte order, or the
+** argument can be [SQLITE_UTF16_ALIGNED] if the
+** the routine expects pointers to 16-bit word aligned strings
+** of UTF-16 in the native byte order.
**
** A pointer to the user supplied routine must be passed as the fifth
-** argument. If it is NULL, this is the same as deleting the collation
-** sequence (so that SQLite cannot call it anymore). Each time the user
-** supplied function is invoked, it is passed a copy of the void* passed as
-** the fourth argument to sqlite3_create_collation() or
-** sqlite3_create_collation16() as its first parameter.
-**
-** The remaining arguments to the user-supplied routine are two strings,
-** each represented by a [length, data] pair and encoded in the encoding
+** argument. If it is NULL, this is the same as deleting the collation
+** sequence (so that SQLite cannot call it anymore).
+** Each time the application supplied function is invoked, it is passed
+** as its first parameter a copy of the void* passed as the fourth argument
+** to sqlite3_create_collation() or sqlite3_create_collation16().
+**
+** The remaining arguments to the application-supplied routine are two strings,
+** each represented by a (length, data) pair and encoded in the encoding
** that was passed as the third argument when the collation sequence was
-** registered. The user routine should return negative, zero or positive if
-** the first string is less than, equal to, or greater than the second
-** string. i.e. (STRING1 - STRING2).
-*/
-int sqlite3_create_collation(
+** registered. {END} The application defined collation routine should
+** return negative, zero or positive if the first string is less than,
+** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
+**
+** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** except that it takes an extra argument which is a destructor for
+** the collation. The destructor is called when the collation is
+** destroyed and is passed a copy of the fourth parameter void* pointer
+** of the sqlite3_create_collation_v2().
+** Collations are destroyed when they are overridden by later calls to the
+** collation creation functions or when the [database connection] is closed
+** using [sqlite3_close()].
+**
+** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
+**
+** Requirements:
+** [H16603] [H16604] [H16606] [H16609] [H16612] [H16615] [H16618] [H16621]
+** [H16624] [H16627] [H16630]
+*/
+SQLITE_API int sqlite3_create_collation(
sqlite3*,
const char *zName,
int eTextRep,
void*,
int(*xCompare)(void*,int,const void*,int,const void*)
);
-int sqlite3_create_collation16(
+SQLITE_API int sqlite3_create_collation_v2(
sqlite3*,
const char *zName,
int eTextRep,
void*,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3*,
+ const void *zName,
+ int eTextRep,
+ void*,
int(*xCompare)(void*,int,const void*,int,const void*)
);
/*
+** CAPI3REF: Collation Needed Callbacks {H16700} <S20300>
+**
** To avoid having to register all collation sequences before a database
** can be used, a single callback function may be registered with the
-** database handle to be called whenever an undefined collation sequence is
-** required.
+** [database connection] to be called whenever an undefined collation
+** sequence is required.
**
** If the function is registered using the sqlite3_collation_needed() API,
** then it is passed the names of undefined collation sequences as strings
-** encoded in UTF-8. If sqlite3_collation_needed16() is used, the names
-** are passed as UTF-16 in machine native byte order. A call to either
-** function replaces any existing callback.
+** encoded in UTF-8. {H16703} If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** A call to either function replaces any existing callback.
**
-** When the user-function is invoked, the first argument passed is a copy
+** When the callback is invoked, the first argument passed is a copy
** of the second argument to sqlite3_collation_needed() or
-** sqlite3_collation_needed16(). The second argument is the database
-** handle. The third argument is one of SQLITE_UTF8, SQLITE_UTF16BE or
-** SQLITE_UTF16LE, indicating the most desirable form of the collation
-** sequence function required. The fourth parameter is the name of the
+** sqlite3_collation_needed16(). The second argument is the database
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
** required collation sequence.
**
-** The collation sequence is returned to SQLite by a collation-needed
-** callback using the sqlite3_create_collation() or
-** sqlite3_create_collation16() APIs, described above.
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+**
+** Requirements:
+** [H16702] [H16704] [H16706]
*/
-int sqlite3_collation_needed(
+SQLITE_API int sqlite3_collation_needed(
sqlite3*,
void*,
void(*)(void*,sqlite3*,int eTextRep,const char*)
);
-int sqlite3_collation_needed16(
+SQLITE_API int sqlite3_collation_needed16(
sqlite3*,
void*,
void(*)(void*,sqlite3*,int eTextRep,const void*)
@@ -1342,7 +4251,7 @@ int sqlite3_collation_needed16(
** The code to implement this API is not available in the public release
** of SQLite.
*/
-int sqlite3_key(
+SQLITE_API int sqlite3_key(
sqlite3 *db, /* Database to be rekeyed */
const void *pKey, int nKey /* The key */
);
@@ -1355,241 +4264,366 @@ int sqlite3_key(
** The code to implement this API is not available in the public release
** of SQLite.
*/
-int sqlite3_rekey(
+SQLITE_API int sqlite3_rekey(
sqlite3 *db, /* Database to be rekeyed */
const void *pKey, int nKey /* The new key */
);
/*
-** Sleep for a little while. The second parameter is the number of
-** miliseconds to sleep for.
+** CAPI3REF: Suspend Execution For A Short Time {H10530} <S40410>
+**
+** The sqlite3_sleep() function causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
**
-** If the operating system does not support sleep requests with
-** milisecond time resolution, then the time will be rounded up to
-** the nearest second. The number of miliseconds of sleep actually
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
** requested from the operating system is returned.
-*/
-int sqlite3_sleep(int);
-
-/*
-** Return TRUE (non-zero) if the statement supplied as an argument needs
-** to be recompiled. A statement needs to be recompiled whenever the
-** execution environment changes in a way that would alter the program
-** that sqlite3_prepare() generates. For example, if new functions or
-** collating sequences are registered or if an authorizer function is
-** added or changed.
**
+** SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object.
+**
+** Requirements: [H10533] [H10536]
*/
-int sqlite3_expired(sqlite3_stmt*);
-
-/*
-** Move all bindings from the first prepared statement over to the second.
-** This routine is useful, for example, if the first prepared statement
-** fails with an SQLITE_SCHEMA error. The same SQL can be prepared into
-** the second prepared statement then all of the bindings transfered over
-** to the second statement before the first statement is finalized.
-*/
-int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API int sqlite3_sleep(int);
/*
-** If the following global variable is made to point to a
-** string which is the name of a directory, then all temporary files
+** CAPI3REF: Name Of The Folder Holding Temporary Files {H10310} <S20000>
+**
+** If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite will be placed in that directory. If this variable
-** is NULL pointer, then SQLite does a search for an appropriate temporary
-** file directory.
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
**
-** Once sqlite3_open() has been called, changing this variable will invalidate
-** the current temporary database, if any.
+** The [temp_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. Furthermore,
+** the [temp_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [temp_store_directory pragma] should be avoided.
*/
-extern char *sqlite3_temp_directory;
+SQLITE_API char *sqlite3_temp_directory;
/*
-** This function is called to recover from a malloc() failure that occured
-** within the SQLite library. Normally, after a single malloc() fails the
-** library refuses to function (all major calls return SQLITE_NOMEM).
-** This function restores the library state so that it can be used again.
+** CAPI3REF: Test For Auto-Commit Mode {H12930} <S60200>
+** KEYWORDS: {autocommit mode}
**
-** All existing statements (sqlite3_stmt pointers) must be finalized or
-** reset before this call is made. Otherwise, SQLITE_BUSY is returned.
-** If any in-memory databases are in use, either as a main or TEMP
-** database, SQLITE_ERROR is returned. In either of these cases, the
-** library is not reset and remains unusable.
+** The sqlite3_get_autocommit() interface returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. Autocommit mode is on by default.
+** Autocommit mode is disabled by a [BEGIN] statement.
+** Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
**
-** This function is *not* threadsafe. Calling this from within a threaded
-** application when threads other than the caller have used SQLite is
-** dangerous and will almost certainly result in malfunctions.
+** If certain kinds of errors occur on a statement within a multi-statement
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out whether SQLite automatically rolled back the transaction after
+** an error is to use this function.
**
-** This functionality can be omitted from a build by defining the
-** SQLITE_OMIT_GLOBALRECOVER at compile time.
+** If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+**
+** Requirements: [H12931] [H12932] [H12933] [H12934]
*/
-int sqlite3_global_recover(void);
+SQLITE_API int sqlite3_get_autocommit(sqlite3*);
/*
-** Test to see whether or not the database connection is in autocommit
-** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
-** by default. Autocommit is disabled by a BEGIN statement and reenabled
-** by the next COMMIT or ROLLBACK.
+** CAPI3REF: Find The Database Handle Of A Prepared Statement {H13120} <S60600>
+**
+** The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. The [database connection]
+** returned by sqlite3_db_handle is the same [database connection] that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
+**
+** Requirements: [H13123]
*/
-int sqlite3_get_autocommit(sqlite3*);
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
/*
-** Return the sqlite3* database handle to which the prepared statement given
-** in the argument belongs. This is the same database handle that was
-** the first argument to the sqlite3_prepare() that was used to create
-** the statement in the first place.
+** CAPI3REF: Find the next prepared statement {H13140} <S60600>
+**
+** This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
+**
+** The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
+**
+** Requirements: [H13143] [H13146] [H13149] [H13152]
*/
-sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
/*
-** Register a callback function with the database connection identified by the
-** first argument to be invoked whenever a row is updated, inserted or deleted.
-** Any callback set by a previous call to this function for the same
-** database connection is overridden.
+** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} <S60400>
+**
+** The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is [COMMIT | committed].
+** Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
+** Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** The pArg argument is passed through to the callback.
+** If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
+**
+** If another function was previously registered, its
+** pArg value is returned. Otherwise NULL is returned.
+**
+** The callback implementation must not do anything that will modify
+** the database connection that invoked the callback. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the commit
+** or rollback hook in the first place.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** Registering a NULL function disables the callback.
+**
+** When the commit hook callback routine returns zero, the [COMMIT]
+** operation is allowed to continue normally. If the commit hook
+** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
+** The rollback hook is invoked on a rollback that results from a commit
+** hook returning non-zero, just as it would be with any other rollback.
**
-** The second argument is a pointer to the function to invoke when a
-** row is updated, inserted or deleted. The first argument to the callback is
-** a copy of the third argument to sqlite3_update_hook. The second callback
-** argument is one of SQLITE_INSERT, SQLITE_DELETE or SQLITE_UPDATE, depending
-** on the operation that caused the callback to be invoked. The third and
-** fourth arguments to the callback contain pointers to the database and
-** table name containing the affected row. The final callback parameter is
-** the rowid of the row. In the case of an update, this is the rowid after
-** the update takes place.
+** For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+** The rollback callback is not invoked if a transaction is
+** rolled back because a commit callback returned non-zero.
+** <todo> Check on this </todo>
+**
+** See also the [sqlite3_update_hook()] interface.
+**
+** Requirements:
+** [H12951] [H12952] [H12953] [H12954] [H12955]
+** [H12961] [H12962] [H12963] [H12964]
+*/
+SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
+
+/*
+** CAPI3REF: Data Change Notification Callbacks {H12970} <S60400>
+**
+** The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted.
+** Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted.
+** The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** The final callback parameter is the [rowid] of the row.
+** In the case of an update, this is the [rowid] after the update takes place.
**
** The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).
**
-** If another function was previously registered, its pArg value is returned.
-** Otherwise NULL is returned.
+** In the current implementation, the update hook
+** is not invoked when duplication rows are deleted because of an
+** [ON CONFLICT | ON CONFLICT REPLACE] clause. Nor is the update hook
+** invoked when rows are deleted using the [truncate optimization].
+** The exceptions defined in this paragraph might change in a future
+** release of SQLite.
+**
+** The update hook implementation must not do anything that will modify
+** the database connection that invoked the update hook. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the update hook.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** If another function was previously registered, its pArg value
+** is returned. Otherwise NULL is returned.
+**
+** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
+** interfaces.
+**
+** Requirements:
+** [H12971] [H12973] [H12975] [H12977] [H12979] [H12981] [H12983] [H12986]
*/
-void *sqlite3_update_hook(
+SQLITE_API void *sqlite3_update_hook(
sqlite3*,
- void(*)(void *,int ,char const *,char const *,sqlite_int64),
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
void*
);
/*
-** Register a callback to be invoked whenever a transaction is rolled
-** back.
+** CAPI3REF: Enable Or Disable Shared Pager Cache {H10330} <S30900>
+** KEYWORDS: {shared cache}
**
-** The new callback function overrides any existing rollback-hook
-** callback. If there was an existing callback, then it's pArg value
-** (the third argument to sqlite3_rollback_hook() when it was registered)
-** is returned. Otherwise, NULL is returned.
+** This routine enables or disables the sharing of the database cache
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.
**
-** For the purposes of this API, a transaction is said to have been
-** rolled back if an explicit "ROLLBACK" statement is executed, or
-** an error or constraint causes an implicit rollback to occur. The
-** callback is not invoked if a transaction is automatically rolled
-** back because the database connection is closed.
-*/
-void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
-
-/*
-** This function is only available if the library is compiled without
-** the SQLITE_OMIT_SHARED_CACHE macro defined. It is used to enable or
-** disable (if the argument is true or false, respectively) the
-** "shared pager" feature.
-*/
-int sqlite3_enable_shared_cache(int);
-
-/*
-** Attempt to free N bytes of heap memory by deallocating non-essential
-** memory allocations held by the database library (example: memory
-** used to cache database pages to improve performance).
+** Cache sharing is enabled and disabled for an entire process.
+** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
+**
+** The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue use the sharing mode
+** that was in effect at the time they were opened.
+**
+** Virtual tables cannot be used with a shared cache. When shared
+** cache is enabled, the [sqlite3_create_module()] API used to register
+** virtual tables will always return an error.
**
-** This function is not a part of standard builds. It is only created
-** if SQLite is compiled with the SQLITE_ENABLE_MEMORY_MANAGEMENT macro.
+** This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.
+**
+** Shared cache is disabled by default. But this might change in
+** future releases of SQLite. Applications that care about shared
+** cache setting should set it explicitly.
+**
+** See Also: [SQLite Shared-Cache Mode]
+**
+** Requirements: [H10331] [H10336] [H10337] [H10339]
*/
-int sqlite3_release_memory(int);
+SQLITE_API int sqlite3_enable_shared_cache(int);
/*
-** Place a "soft" limit on the amount of heap memory that may be allocated by
-** SQLite within the current thread. If an internal allocation is requested
-** that would exceed the specified limit, sqlite3_release_memory() is invoked
-** one or more times to free up some space before the allocation is made.
+** CAPI3REF: Attempt To Free Heap Memory {H17340} <S30220>
**
-** The limit is called "soft", because if sqlite3_release_memory() cannot free
-** sufficient memory to prevent the limit from being exceeded, the memory is
-** allocated anyway and the current operation proceeds.
+** The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. {END} Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
**
-** This function is only available if the library was compiled with the
-** SQLITE_ENABLE_MEMORY_MANAGEMENT option set.
-** memory-management has been enabled.
+** Requirements: [H17341] [H17342]
*/
-void sqlite3_soft_heap_limit(int);
+SQLITE_API int sqlite3_release_memory(int);
/*
-** This routine makes sure that all thread-local storage has been
-** deallocated for the current thread.
+** CAPI3REF: Impose A Limit On Heap Size {H17350} <S30220>
+**
+** The sqlite3_soft_heap_limit() interface places a "soft" limit
+** on the amount of heap memory that may be allocated by SQLite.
+** If an internal allocation is requested that would exceed the
+** soft heap limit, [sqlite3_release_memory()] is invoked one or
+** more times to free up some space before the allocation is performed.
+**
+** The limit is called "soft", because if [sqlite3_release_memory()]
+** cannot free sufficient memory to prevent the limit from being exceeded,
+** the memory is allocated anyway and the current operation proceeds.
+**
+** A negative or zero value for N means that there is no soft heap limit and
+** [sqlite3_release_memory()] will only be called when memory is exhausted.
+** The default value for the soft heap limit is zero.
+**
+** SQLite makes a best effort to honor the soft heap limit.
+** But if the soft heap limit cannot be honored, execution will
+** continue without error or notification. This is why the limit is
+** called a "soft" limit. It is advisory only.
**
-** This routine is not technically necessary. All thread-local storage
-** will be automatically deallocated once memory-management and
-** shared-cache are disabled and the soft heap limit has been set
-** to zero. This routine is provided as a convenience for users who
-** want to make absolutely sure they have not forgotten something
-** prior to killing off a thread.
+** Prior to SQLite version 3.5.0, this routine only constrained the memory
+** allocated by a single thread - the same thread in which this routine
+** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
+** applied to all threads. The value specified for the soft heap limit
+** is an upper bound on the total memory allocation for all threads. In
+** version 3.5.0 there is no mechanism for limiting the heap usage for
+** individual threads.
+**
+** Requirements:
+** [H16351] [H16352] [H16353] [H16354] [H16355] [H16358]
*/
-void sqlite3_thread_cleanup(void);
+SQLITE_API void sqlite3_soft_heap_limit(int);
/*
-** Return meta information about a specific column of a specific database
-** table accessible using the connection handle passed as the first function
-** argument.
+** CAPI3REF: Extract Metadata About A Column Of A Table {H12850} <S60300>
**
-** The column is identified by the second, third and fourth parameters to
+** This routine returns metadata about a specific column of a specific
+** database table accessible using the [database connection] handle
+** passed as the first function argument.
+**
+** The column is identified by the second, third and fourth parameters to
** this function. The second parameter is either the name of the database
** (i.e. "main", "temp" or an attached database) containing the specified
** table or NULL. If it is NULL, then all attached databases are searched
-** for the table using the same algorithm as the database engine uses to
+** for the table using the same algorithm used by the database engine to
** resolve unqualified table references.
**
-** The third and fourth parameters to this function are the table and column
-** name of the desired column, respectively. Neither of these parameters
+** The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively. Neither of these parameters
** may be NULL.
**
-** Meta information is returned by writing to the memory locations passed as
-** the 5th and subsequent parameters to this function. Any of these
-** arguments may be NULL, in which case the corresponding element of meta
-** information is ommitted.
-**
-** Parameter Output Type Description
-** -----------------------------------
+** Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
**
-** 5th const char* Data type
-** 6th const char* Name of the default collation sequence
-** 7th int True if the column has a NOT NULL constraint
-** 8th int True if the column is part of the PRIMARY KEY
-** 9th int True if the column is AUTOINCREMENT
+** <blockquote>
+** <table border="1">
+** <tr><th> Parameter <th> Output<br>Type <th> Description
**
+** <tr><td> 5th <td> const char* <td> Data type
+** <tr><td> 6th <td> const char* <td> Name of default collation sequence
+** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
+** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
+** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
+** </table>
+** </blockquote>
**
-** The memory pointed to by the character pointers returned for the
-** declaration type and collation sequence is valid only until the next
-** call to any sqlite API function.
+** The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid only until the next
+** call to any SQLite API function.
**
-** If the specified table is actually a view, then an error is returned.
+** If the specified table is actually a view, an [error code] is returned.
**
-** If the specified column is "rowid", "oid" or "_rowid_" and an
-** INTEGER PRIMARY KEY column has been explicitly declared, then the output
+** If the specified column is "rowid", "oid" or "_rowid_" and an
+** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. If there is no
-** explicitly declared IPK column, then the output parameters are set as
-** follows:
+** explicitly declared [INTEGER PRIMARY KEY] column, then the output
+** parameters are set as follows:
**
+** <pre>
** data type: "INTEGER"
** collation sequence: "BINARY"
** not null: 0
** primary key: 1
** auto increment: 0
+** </pre>
**
** This function may load one or more schemas from database files. If an
** error occurs during this process, or if the requested table or column
-** cannot be found, an SQLITE error code is returned and an error message
-** left in the database handle (to be retrieved using sqlite3_errmsg()).
+** cannot be found, an [error code] is returned and an error message left
+** in the [database connection] (to be retrieved using sqlite3_errmsg()).
**
** This API is only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
*/
-int sqlite3_table_column_metadata(
+SQLITE_API int sqlite3_table_column_metadata(
sqlite3 *db, /* Connection handle */
const char *zDbName, /* Database name or NULL */
const char *zTableName, /* Table name */
@@ -1598,28 +4632,36 @@ int sqlite3_table_column_metadata(
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if colums is auto-increment */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
);
/*
-****** EXPERIMENTAL - subject to change without notice **************
+** CAPI3REF: Load An Extension {H12600} <S20500>
**
-** Attempt to load an SQLite extension library contained in the file
-** zFile. The entry point is zProc. zProc may be 0 in which case the
-** name of the entry point defaults to "sqlite3_extension_init".
+** This interface loads an SQLite extension library from the named file.
**
-** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
+** {H12601} The sqlite3_load_extension() interface attempts to load an
+** SQLite extension library contained in the file zFile.
**
-** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
-** error message text. The calling function should free this memory
-** by calling sqlite3_free().
+** {H12602} The entry point is zProc.
**
-** Extension loading must be enabled using sqlite3_enable_load_extension()
-** prior to calling this API or an error will be returned.
+** {H12603} zProc may be 0, in which case the name of the entry point
+** defaults to "sqlite3_extension_init".
**
-****** EXPERIMENTAL - subject to change without notice **************
+** {H12604} The sqlite3_load_extension() interface shall return
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+**
+** {H12605} If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. {END} The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** {H12606} Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] prior to calling this API,
+** otherwise an error will be returned.
*/
-int sqlite3_load_extension(
+SQLITE_API int sqlite3_load_extension(
sqlite3 *db, /* Load the extension into this database connection */
const char *zFile, /* Name of the shared library containing extension */
const char *zProc, /* Entry point. Derived from zFile if 0 */
@@ -1627,52 +4669,63 @@ int sqlite3_load_extension(
);
/*
+** CAPI3REF: Enable Or Disable Extension Loading {H12620} <S20500>
+**
** So as not to open security holes in older applications that are
-** unprepared to deal with extension load, and as a means of disabling
-** extension loading while executing user-entered SQL, the following
-** API is provided to turn the extension loading mechanism on and
-** off. It is off by default. See ticket #1863.
+** unprepared to deal with extension loading, and as a means of disabling
+** extension loading while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
**
-** Call this routine with onoff==1 to turn extension loading on
-** and call it with onoff==0 to turn it back off again.
+** Extension loading is off by default. See ticket #1863.
+**
+** {H12621} Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
+**
+** {H12622} Extension loading is off by default.
*/
-int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
/*
-****** EXPERIMENTAL - subject to change without notice **************
-**
-** Register an extension entry point that is automatically invoked
-** whenever a new database connection is opened.
+** CAPI3REF: Automatically Load An Extensions {H12640} <S20500>
**
** This API can be invoked at program startup in order to register
** one or more statically linked extensions that will be available
-** to all new database connections.
+** to all new [database connections]. {END}
**
-** Duplicate extensions are detected so calling this routine multiple
-** times with the same extension is harmless.
+** This routine stores a pointer to the extension in an array that is
+** obtained from [sqlite3_malloc()]. If you run a memory leak checker
+** on your program and it reports a leak because of this array, invoke
+** [sqlite3_reset_auto_extension()] prior to shutdown to free the memory.
**
-** This routine stores a pointer to the extension in an array
-** that is obtained from malloc(). If you run a memory leak
-** checker on your program and it reports a leak because of this
-** array, then invoke sqlite3_automatic_extension_reset() prior
-** to shutdown to free the memory.
+** {H12641} This function registers an extension entry point that is
+** automatically invoked whenever a new [database connection]
+** is opened using [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()].
**
-** Automatic extensions apply across all threads.
+** {H12642} Duplicate extensions are detected so calling this routine
+** multiple times with the same extension is harmless.
+**
+** {H12643} This routine stores a pointer to the extension in an array
+** that is obtained from [sqlite3_malloc()].
+**
+** {H12644} Automatic extensions apply across all threads.
*/
-int sqlite3_auto_extension(void *xEntryPoint);
-
+SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));
/*
-****** EXPERIMENTAL - subject to change without notice **************
+** CAPI3REF: Reset Automatic Extension Loading {H12660} <S20500>
+**
+** This function disables all previously registered automatic
+** extensions. {END} It undoes the effect of all prior
+** [sqlite3_auto_extension()] calls.
**
-** Disable all previously registered automatic extensions. This
-** routine undoes the effect of all prior sqlite3_automatic_extension()
-** calls.
+** {H12661} This function disables all previously registered
+** automatic extensions.
**
-** This call disabled automatic extensions in all threads.
+** {H12662} This function disables automatic extensions in all threads.
*/
-void sqlite3_reset_auto_extension(void);
-
+SQLITE_API void sqlite3_reset_auto_extension(void);
/*
****** EXPERIMENTAL - subject to change without notice **************
@@ -1681,7 +4734,7 @@ void sqlite3_reset_auto_extension(void);
** to be experimental. The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
-** When the virtual-table mechanism stablizes, we will declare the
+** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
*/
@@ -1694,9 +4747,21 @@ typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
typedef struct sqlite3_module sqlite3_module;
/*
-** A module is a class of virtual tables. Each module is defined
-** by an instance of the following structure. This structure consists
-** mostly of methods for the module.
+** CAPI3REF: Virtual Table Object {H18000} <S20400>
+** KEYWORDS: sqlite3_module {virtual table module}
+** EXPERIMENTAL
+**
+** This structure, sometimes called a a "virtual table module",
+** defines the implementation of a [virtual tables].
+** This structure consists mostly of methods for the module.
+**
+** A virtual table module is created by filling in a persistent
+** instance of this structure and passing a pointer to that instance
+** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
+** The registration remains valid until it is replaced by a different
+** module or until the [database connection] closes. The content
+** of this structure must not change while it is registered with
+** any database connection.
*/
struct sqlite3_module {
int iVersion;
@@ -1716,8 +4781,8 @@ struct sqlite3_module {
int (*xNext)(sqlite3_vtab_cursor*);
int (*xEof)(sqlite3_vtab_cursor*);
int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
- int (*xRowid)(sqlite3_vtab_cursor*, sqlite_int64 *pRowid);
- int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite_int64 *);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
int (*xBegin)(sqlite3_vtab *pVTab);
int (*xSync)(sqlite3_vtab *pVTab);
int (*xCommit)(sqlite3_vtab *pVTab);
@@ -1725,28 +4790,32 @@ struct sqlite3_module {
int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
void **ppArg);
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
};
/*
+** CAPI3REF: Virtual Table Indexing Information {H18100} <S20400>
+** KEYWORDS: sqlite3_index_info
+** EXPERIMENTAL
+**
** The sqlite3_index_info structure and its substructures is used to
-** pass information into and receive the reply from the xBestIndex
-** method of an sqlite3_module. The fields under **Inputs** are the
+** pass information into and receive the reply from the [xBestIndex]
+** method of a [virtual table module]. The fields under **Inputs** are the
** inputs to xBestIndex and are read-only. xBestIndex inserts its
** results into the **Outputs** fields.
**
-** The aConstraint[] array records WHERE clause constraints of the
-** form:
+** The aConstraint[] array records WHERE clause constraints of the form:
**
-** column OP expr
+** <pre>column OP expr</pre>
**
-** Where OP is =, <, <=, >, or >=. The particular operator is stored
-** in aConstraint[].op. The index of the column is stored in
+** where OP is =, &lt;, &lt;=, &gt;, or &gt;=. The particular operator is
+** stored in aConstraint[].op. The index of the column is stored in
** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.
**
** The optimizer automatically inverts terms of the form "expr OP column"
-** and makes other simplificatinos to the WHERE clause in an attempt to
+** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** The aConstraint[] array only reports WHERE clause terms in the correct
** form that refer to the particular virtual table being queried.
@@ -1754,17 +4823,19 @@ struct sqlite3_module {
** Information about the ORDER BY clause is stored in aOrderBy[].
** Each term of aOrderBy records a column of the ORDER BY clause.
**
-** The xBestIndex method must fill aConstraintUsage[] with information
+** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter. If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.
**
-** The idxNum and idxPtr values are recorded and passed into xFilter.
-** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
+** The idxNum and idxPtr values are recorded and passed into the
+** [xFilter] method.
+** [sqlite3_free()] is used to free idxPtr if and only iff
+** needToFreeIdxPtr is true.
**
-** The orderByConsumed means that output from xFilter will occur in
+** The orderByConsumed means that output from [xFilter]/[xNext] will occur in
** the correct order to satisfy the ORDER BY clause so that no separate
** sorting step is required.
**
@@ -1775,24 +4846,23 @@ struct sqlite3_module {
*/
struct sqlite3_index_info {
/* Inputs */
- const int nConstraint; /* Number of entries in aConstraint */
- const struct sqlite3_index_constraint {
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
int iColumn; /* Column on left-hand side of constraint */
unsigned char op; /* Constraint operator */
unsigned char usable; /* True if this constraint is usable */
int iTermOffset; /* Used internally - xBestIndex should ignore */
- } *const aConstraint; /* Table of WHERE clause constraints */
- const int nOrderBy; /* Number of terms in the ORDER BY clause */
- const struct sqlite3_index_orderby {
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
int iColumn; /* Column number */
unsigned char desc; /* True for DESC. False for ASC. */
- } *const aOrderBy; /* The ORDER BY clause */
-
+ } *aOrderBy; /* The ORDER BY clause */
/* Outputs */
struct sqlite3_index_constraint_usage {
int argvIndex; /* if >0, constraint is part of argv to xFilter */
unsigned char omit; /* Do not code a test for this constraint */
- } *const aConstraintUsage;
+ } *aConstraintUsage;
int idxNum; /* Number used to identify the index */
char *idxStr; /* String, possibly obtained from sqlite3_malloc */
int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
@@ -1807,46 +4877,89 @@ struct sqlite3_index_info {
#define SQLITE_INDEX_CONSTRAINT_MATCH 64
/*
-** This routine is used to register a new module name with an SQLite
-** connection. Module names must be registered before creating new
-** virtual tables on the module, or before using preexisting virtual
-** tables of the module.
+** CAPI3REF: Register A Virtual Table Implementation {H18200} <S20400>
+** EXPERIMENTAL
+**
+** This routine is used to register a new [virtual table module] name.
+** Module names must be registered before
+** creating a new [virtual table] using the module, or before using a
+** preexisting [virtual table] for the module.
+**
+** The module name is registered on the [database connection] specified
+** by the first parameter. The name of the module is given by the
+** second parameter. The third parameter is a pointer to
+** the implementation of the [virtual table module]. The fourth
+** parameter is an arbitrary client data pointer that is passed through
+** into the [xCreate] and [xConnect] methods of the virtual table module
+** when a new virtual table is be being created or reinitialized.
+**
+** This interface has exactly the same effect as calling
+** [sqlite3_create_module_v2()] with a NULL client data destructor.
*/
-int sqlite3_create_module(
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module(
sqlite3 *db, /* SQLite connection to register module with */
const char *zName, /* Name of the module */
- const sqlite3_module *, /* Methods for the module */
- void * /* Client data for xCreate/xConnect */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData /* Client data for xCreate/xConnect */
);
/*
-** Every module implementation uses a subclass of the following structure
-** to describe a particular instance of the module. Each subclass will
-** be taylored to the specific needs of the module implementation. The
-** purpose of this superclass is to define certain fields that are common
-** to all module implementations.
+** CAPI3REF: Register A Virtual Table Implementation {H18210} <S20400>
+** EXPERIMENTAL
+**
+** This routine is identical to the [sqlite3_create_module()] method,
+** except that it has an extra parameter to specify
+** a destructor function for the client data pointer. SQLite will
+** invoke the destructor function (if it is not NULL) when SQLite
+** no longer needs the pClientData pointer.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object {H18010} <S20400>
+** KEYWORDS: sqlite3_vtab
+** EXPERIMENTAL
+**
+** Every [virtual table module] implementation uses a subclass
+** of the following structure to describe a particular instance
+** of the [virtual table]. Each subclass will
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
**
** Virtual tables methods can set an error message by assigning a
-** string obtained from sqlite3_mprintf() to zErrMsg. The method should
-** take care that any prior string is freed by a call to sqlite3_free()
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg. After the error message
** is delivered up to the client application, the string will be automatically
-** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
-** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
-** since virtual tables are commonly implemented in loadable extensions which
-** do not have access to sqlite3MPrintf() or sqlite3Free().
+** freed by sqlite3_free() and the zErrMsg field will be zeroed.
*/
struct sqlite3_vtab {
const sqlite3_module *pModule; /* The module for this virtual table */
- int nRef; /* Used internally */
+ int nRef; /* NO LONGER USED */
char *zErrMsg; /* Error message from sqlite3_mprintf() */
/* Virtual table implementations will typically add additional fields */
};
-/* Every module implementation uses a subclass of the following structure
-** to describe cursors that point into the virtual table and are used
+/*
+** CAPI3REF: Virtual Table Cursor Object {H18020} <S20400>
+** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
+** EXPERIMENTAL
+**
+** Every [virtual table module] implementation uses a subclass of the
+** following structure to describe cursors that point into the
+** [virtual table] and are used
** to loop through the virtual table. Cursors are created using the
-** xOpen method of the module. Each module implementation will define
+** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
+** by the [sqlite3_module.xClose | xClose] method. Cussors are used
+** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
+** of the module. Each module implementation will define
** the content of a cursor structure to suit its own needs.
**
** This superclass exists in order to define fields of the cursor that
@@ -1858,15 +4971,23 @@ struct sqlite3_vtab_cursor {
};
/*
-** The xCreate and xConnect methods of a module use the following API
+** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} <S20400>
+** EXPERIMENTAL
+**
+** The [xCreate] and [xConnect] methods of a
+** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
-int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
/*
+** CAPI3REF: Overload A Function For A Virtual Table {H18300} <S20400>
+** EXPERIMENTAL
+**
** Virtual tables can provide alternative implementations of functions
-** using the xFindFunction method. But global versions of those functions
+** using the [xFindFunction] method of the [virtual table module].
+** But global versions of those functions
** must exist in order to be overloaded.
**
** This API makes sure a global version of a function with a particular
@@ -1874,13 +4995,10 @@ int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
** before this API is called, a new function is created. The implementation
** of the new function always causes an exception to be thrown. So
** the new function is not good for anything by itself. Its only
-** purpose is to be a place-holder function that can be overloaded
-** by virtual tables.
-**
-** This API should be considered part of the virtual table interface,
-** which is experimental and subject to change.
+** purpose is to be a placeholder function that can be overloaded
+** by a [virtual table].
*/
-int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
/*
** The interface to the virtual-table mechanism defined above (back up
@@ -1888,134 +5006,1288 @@ int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
** to be experimental. The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
-** When the virtual-table mechanism stablizes, we will declare the
+** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
**
****** EXPERIMENTAL - subject to change without notice **************
*/
/*
-** Undo the hack that converts floating point types to integer for
-** builds on processors without floating point support.
+** CAPI3REF: A Handle To An Open BLOB {H17800} <S30230>
+** KEYWORDS: {BLOB handle} {BLOB handles}
+**
+** An instance of this object represents an open BLOB on which
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
+** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the BLOB.
+** The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# undef double
-#endif
+typedef struct sqlite3_blob sqlite3_blob;
-#if 0
-} /* End of the 'extern "C"' block */
-#endif
-#endif
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O {H17810} <S30230>
+**
+** This interfaces opens a [BLOB handle | handle] to the BLOB located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same BLOB that would be selected by:
+**
+** <pre>
+** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
+** </pre> {END}
+**
+** If the flags parameter is non-zero, then the BLOB is opened for read
+** and write access. If it is zero, the BLOB is opened for read access.
+**
+** Note that the database name is not the filename that contains
+** the database but rather the symbolic name of the database that
+** is assigned when the database is connected using [ATTACH].
+** For the main database file, the database name is "main".
+** For TEMP tables, the database name is "temp".
+**
+** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
+** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
+** to be a null pointer.
+** This function sets the [database connection] error code and message
+** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
+** functions. Note that the *ppBlob variable is always initialized in a
+** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
+** regardless of the success or failure of this routine.
+**
+** If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.
+** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
+** Changes written into a BLOB prior to the BLOB expiring are not
+** rollback by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.
+**
+** Use the [sqlite3_blob_bytes()] interface to determine the size of
+** the opened blob. The size of a blob may not be changed by this
+** interface. Use the [UPDATE] SQL command to change the size of a
+** blob.
+**
+** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
+** and the built-in [zeroblob] SQL function can be used, if desired,
+** to create an empty, zero-filled blob in which to read or write using
+** this interface.
+**
+** To avoid a resource leak, every open [BLOB handle] should eventually
+** be released by a call to [sqlite3_blob_close()].
+**
+** Requirements:
+** [H17813] [H17814] [H17816] [H17819] [H17821] [H17824]
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
-/************** End of sqlite3.h *********************************************/
-/************** Begin file date.c ********************************************/
/*
-** 2003 October 31
+** CAPI3REF: Close A BLOB Handle {H17830} <S30230>
**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
+** Closes an open [BLOB handle].
**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
+** Closing a BLOB shall cause the current transaction to commit
+** if there are no other BLOBs, no pending prepared statements, and the
+** database connection is in [autocommit mode].
+** If any writes were made to the BLOB, they might be held in cache
+** until the close operation if they will fit.
**
-*************************************************************************
-** This file contains the C functions that implement date and time
-** functions for SQLite.
+** Closing the BLOB often forces the changes
+** out to disk and so if any I/O errors occur, they will likely occur
+** at the time when the BLOB is closed. Any errors that occur during
+** closing are reported as a non-zero return value.
**
-** There is only one exported symbol in this file - the function
-** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
-** All other code has file scope.
+** The BLOB is closed unconditionally. Even if this routine returns
+** an error code, the BLOB is still closed.
**
-** $Id: date.c,v 1.62 2007/04/06 02:32:34 drh Exp $
+** Calling this routine with a null pointer (which as would be returned
+** by failed call to [sqlite3_blob_open()]) is a harmless no-op.
**
-** NOTES:
+** Requirements:
+** [H17833] [H17836] [H17839]
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB {H17840} <S30230>
**
-** SQLite processes all times and dates as Julian Day numbers. The
-** dates and times are stored as the number of days since noon
-** in Greenwich on November 24, 4714 B.C. according to the Gregorian
-** calendar system.
+** Returns the size in bytes of the BLOB accessible via the
+** successfully opened [BLOB handle] in its only argument. The
+** incremental blob I/O routines can only read or overwriting existing
+** blob content; they cannot change the size of a blob.
**
-** 1970-01-01 00:00:00 is JD 2440587.5
-** 2000-01-01 00:00:00 is JD 2451544.5
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
**
-** This implemention requires years to be expressed as a 4-digit number
-** which means that only dates between 0000-01-01 and 9999-12-31 can
-** be represented, even though julian day numbers allow a much wider
-** range of dates.
+** Requirements:
+** [H17843]
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally {H17850} <S30230>
**
-** The Gregorian calendar system is used for all dates and times,
-** even those that predate the Gregorian calendar. Historians usually
-** use the Julian calendar for dates prior to 1582-10-15 and for some
-** dates afterwards, depending on locale. Beware of this difference.
+** This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.
**
-** The conversion algorithms are implemented based on descriptions
-** in the following text:
+** If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+** The size of the blob (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
**
-** Jean Meeus
-** Astronomical Algorithms, 2nd Edition, 1998
-** ISBM 0-943396-61-1
-** Willmann-Bell, Inc
-** Richmond, Virginia (USA)
+** An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
+**
+** On success, SQLITE_OK is returned.
+** Otherwise, an [error code] or an [extended error code] is returned.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_write()].
+**
+** Requirements:
+** [H17853] [H17856] [H17859] [H17862] [H17863] [H17865] [H17868]
*/
-/************** Include sqliteInt.h in the middle of date.c ******************/
-/************** Begin file sqliteInt.h ***************************************/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
/*
-** 2001 September 15
+** CAPI3REF: Write Data Into A BLOB Incrementally {H17870} <S30230>
**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
+** This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.
**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
+** If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
**
-*************************************************************************
-** Internal interface definitions for SQLite.
+** This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. If N is
+** less than zero [SQLITE_ERROR] is returned and no data is written.
+** The size of the BLOB (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
**
-** @(#) $Id: sqliteInt.h,v 1.552 2007/04/16 15:06:25 danielk1977 Exp $
+** On success, SQLITE_OK is returned.
+** Otherwise, an [error code] or an [extended error code] is returned.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_read()].
+**
+** Requirements:
+** [H17873] [H17874] [H17875] [H17876] [H17877] [H17879] [H17882] [H17885]
+** [H17888]
*/
-#ifndef _SQLITEINT_H_
-#define _SQLITEINT_H_
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
-#if defined(SQLITE_TCL) || defined(TCLSH)
-# include <tcl.h>
-#endif
+/*
+** CAPI3REF: Virtual File System Objects {H11200} <S20100>
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** Names are case sensitive.
+** Names are zero-terminated UTF-8 strings.
+** If there is no match, a NULL pointer is returned.
+** If zVfsName is NULL then the default VFS is returned.
+**
+** New VFSes are registered with sqlite3_vfs_register().
+** Each new VFS becomes the default VFS if the makeDflt flag is set.
+** The same VFS can be registered multiple times without injury.
+** To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.
+**
+** Requirements:
+** [H11203] [H11206] [H11209] [H11212] [H11215] [H11218]
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
/*
-** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
-** Setting NDEBUG makes the code smaller and run faster. So the following
-** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
-** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
-** feature.
+** CAPI3REF: Mutexes {H17000} <S20000>
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. The following
+** implementations are available in the SQLite core:
+**
+** <ul>
+** <li> SQLITE_MUTEX_OS2
+** <li> SQLITE_MUTEX_PTHREAD
+** <li> SQLITE_MUTEX_W32
+** <li> SQLITE_MUTEX_NOOP
+** </ul>
+**
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. The SQLITE_MUTEX_OS2,
+** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
+** are appropriate for use on OS/2, Unix, and Windows.
+**
+** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().
+**
+** {H17011} The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. {H17012} If it returns NULL
+** that means that a mutex could not be allocated. {H17013} SQLite
+** will unwind its stack and return an error. {H17014} The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MASTER
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_MEM2
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_LRU2
+** </ul>
+**
+** {H17015} The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. {H17016} But SQLite will only request a recursive mutex in
+** cases where it really needs one. {END} If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. {END} Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. {H17034} But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+**
+** {H17019} The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. {H17020} SQLite is careful to deallocate every
+** dynamic mutex that it allocates. {A17021} The dynamic mutexes must not be in
+** use when they are deallocated. {A17022} Attempting to deallocate a static
+** mutex results in undefined behavior. {H17023} SQLite never deallocates
+** a static mutex. {END}
+**
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. {H17024} If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. {H17025} The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. {H17026} Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** {H17027} In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. {A17028} If the same thread tries to enter any other
+** kind of mutex more than once, the behavior is undefined.
+** {H17029} SQLite will never exhibit
+** such behavior in its own use of mutexes.
+**
+** Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. {H17030} The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable behavior.
+**
+** {H17031} The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. {A17032} The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated. {H17033} SQLite will
+** never do either. {END}
+**
+** If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
+** sqlite3_mutex_leave() is a NULL pointer, then all three routines
+** behave as no-ops.
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Methods Object {H17120} <S20130>
+** EXPERIMENTAL
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the user has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the user
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** {H17001} The xMutexInit routine shall be called by SQLite once for each
+** effective call to [sqlite3_initialize()].
+**
+** The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. {H17003} The xMutexEnd()
+** interface shall be invoked once for each call to [sqlite3_shutdown()].
+**
+** The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+** <ul>
+** <li> [sqlite3_mutex_alloc()] </li>
+** <li> [sqlite3_mutex_free()] </li>
+** <li> [sqlite3_mutex_enter()] </li>
+** <li> [sqlite3_mutex_try()] </li>
+** <li> [sqlite3_mutex_leave()] </li>
+** <li> [sqlite3_mutex_held()] </li>
+** <li> [sqlite3_mutex_notheld()] </li>
+** </ul>
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case, the results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+**
+** The xMutexInit() method must be threadsafe. It must be harmless to
+** invoke xMutexInit() mutiple times within the same process and without
+** intervening calls to xMutexEnd(). Second and subsequent calls to
+** xMutexInit() must be no-ops.
+**
+** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
+** and its associates). Similarly, xMutexAlloc() must not use SQLite memory
+** allocation for a static mutex. However xMutexAlloc() may use SQLite
+** memory allocation for a fast or recursive mutex.
+**
+** SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
+** called, but only if the prior call to xMutexInit returned SQLITE_OK.
+** If xMutexInit fails in any way, it is expected to clean up after itself
+** prior to returning.
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines {H17080} <S20130> <S30800>
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. {H17081} The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. {H17082} The core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. {A17087} External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** {H17083} These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
+**
+** {X17084} The implementation is not required to provided versions of these
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
+**
+** {H17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. {END} This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But the
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. {H17086} The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
*/
-#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
-# define NDEBUG 1
-#endif
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
/*
-** These #defines should enable >2GB file support on Posix if the
-** underlying operating system supports it. If the OS lacks
-** large file support, or if the OS is windows, these should be no-ops.
+** CAPI3REF: Mutex Types {H17001} <H17000>
**
-** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
-** on the compiler command line. This is necessary if you are compiling
-** on a recent machine (ex: RedHat 7.2) but you want your code to work
-** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
-** without this option, LFS is enable. But LFS does not exist in the kernel
-** in RedHat 6.0, so the code won't work. Hence, for maximum binary
-** portability you should omit LFS.
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
**
-** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
*/
-#ifndef SQLITE_DISABLE_LFS
-# define _LARGE_FILE 1
-# ifndef _FILE_OFFSET_BITS
-# define _FILE_OFFSET_BITS 64
-# endif
-# define _LARGEFILE_SOURCE 1
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MASTER 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
+
+/*
+** CAPI3REF: Retrieve the mutex for a database connection {H17002} <H17000>
+**
+** This interface returns a pointer the [sqlite3_mutex] object that
+** serializes access to the [database connection] given in the argument
+** when the [threading mode] is Serialized.
+** If the [threading mode] is Single-thread or Multi-thread then this
+** routine returns a NULL pointer.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files {H11300} <S30800>
+**
+** {H11301} The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. {H11302} The
+** name of the database is the name assigned to the database by the
+** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
+** database. {H11303} To control the main database file, use the name "main"
+** or a NULL pointer. {H11304} The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. {H11305} The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** {H11306} If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. {H11307} This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. {A11308} The underlying xFileControl method might
+** also return SQLITE_ERROR. {A11309} There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method. {END}
+**
+** See also: [SQLITE_FCNTL_LOCKSTATE]
+*/
+SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface {H11400} <S30800>
+**
+** The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. The first parameter is an operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes {H11410} <H11400>
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meanings are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+#define SQLITE_TESTCTRL_PENDING_BYTE 11
+#define SQLITE_TESTCTRL_ASSERT 12
+#define SQLITE_TESTCTRL_ALWAYS 13
+#define SQLITE_TESTCTRL_RESERVE 14
+
+/*
+** CAPI3REF: SQLite Runtime Status {H17200} <S60200>
+** EXPERIMENTAL
+**
+** This interface is used to retrieve runtime status information
+** about the preformance of SQLite, and optionally to reset various
+** highwater marks. The first argument is an integer code for
+** the specific parameter to measure. Recognized integer codes
+** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].
+** The current value of the parameter is returned into *pCurrent.
+** The highest recorded value is returned in *pHighwater. If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.
+** Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.
+**
+** This routine returns SQLITE_OK on success and a non-zero
+** [error code] on failure.
+**
+** This routine is threadsafe but is not atomic. This routine can be
+** called while other threads are running the same or different SQLite
+** interfaces. However the values returned in *pCurrent and
+** *pHighwater reflect the status of SQLite at different points in time
+** and it is possible that another thread might change the parameter
+** in between the times when *pCurrent and *pHighwater are written.
+**
+** See also: [sqlite3_db_status()]
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+
+
+/*
+** CAPI3REF: Status Parameters {H17250} <H17200>
+** EXPERIMENTAL
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+** <dl>
+** <dt>SQLITE_STATUS_MEMORY_USED</dt>
+** <dd>This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Scratch memory
+** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>
+**
+** <dt>SQLITE_STATUS_MALLOC_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_USED</dt>
+** <dd>This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of page cache
+** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_USED</dt>
+** <dd>This parameter returns the number of allocations used out of the
+** [scratch memory allocator] configured using
+** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not
+** in bytes. Since a single thread may only have one scratch allocation
+** outstanding at time, this parameter also reports the number of threads
+** using scratch memory at the same time.</dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of scratch memory
+** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The values
+** returned include overflows because the requested allocation was too
+** larger (that is, because the requested allocation was larger than the
+** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
+** slots were available.
+** </dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [scratch memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_PARSER_STACK</dt>
+** <dd>This parameter records the deepest parser stack. It is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>
+** </dl>
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8
+
+/*
+** CAPI3REF: Database Connection Status {H17500} <S60200>
+** EXPERIMENTAL
+**
+** This interface is used to retrieve runtime status information
+** about a single [database connection]. The first argument is the
+** database connection object to be interrogated. The second argument
+** is the parameter to interrogate. Currently, the only allowed value
+** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED].
+** Additional options will likely appear in future releases of SQLite.
+**
+** The current value of the requested parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for database connections {H17520} <H17500>
+** EXPERIMENTAL
+**
+** These constants are the available integer "verbs" that can be passed as
+** the second argument to the [sqlite3_db_status()] interface.
+**
+** New verbs may be added in future releases of SQLite. Existing verbs
+** might be discontinued. Applications should check the return code from
+** [sqlite3_db_status()] to make sure that the call worked.
+** The [sqlite3_db_status()] interface will return a non-zero error code
+** if a discontinued or unsupported verb is invoked.
+**
+** <dl>
+** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
+** <dd>This parameter returns the number of lookaside memory slots currently
+** checked out.</dd>
+** </dl>
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
+
+
+/*
+** CAPI3REF: Prepared Statement Status {H17550} <S60200>
+** EXPERIMENTAL
+**
+** Each prepared statement maintains various
+** [SQLITE_STMTSTATUS_SORT | counters] that measure the number
+** of times it has performed specific operations. These counters can
+** be used to monitor the performance characteristics of the prepared
+** statements. For example, if the number of table steps greatly exceeds
+** the number of table searches or result rows, that would tend to indicate
+** that the prepared statement is using a full table scan rather than
+** an index.
+**
+** This interface is used to retrieve and reset counter values from
+** a [prepared statement]. The first argument is the prepared statement
+** object to be interrogated. The second argument
+** is an integer code for a specific [SQLITE_STMTSTATUS_SORT | counter]
+** to be interrogated.
+** The current value of the requested counter is returned.
+** If the resetFlg is true, then the counter is reset to zero after this
+** interface call returns.
+**
+** See also: [sqlite3_status()] and [sqlite3_db_status()].
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for prepared statements {H17570} <H17550>
+** EXPERIMENTAL
+**
+** These preprocessor macros define integer codes that name counter
+** values associated with the [sqlite3_stmt_status()] interface.
+** The meanings of the various counters are as follows:
+**
+** <dl>
+** <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
+** <dd>This is the number of times that SQLite has stepped forward in
+** a table as part of a full table scan. Large numbers for this counter
+** may indicate opportunities for performance improvement through
+** careful use of indices.</dd>
+**
+** <dt>SQLITE_STMTSTATUS_SORT</dt>
+** <dd>This is the number of sort operations that have occurred.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance through careful use of indices.</dd>
+**
+** </dl>
+*/
+#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
+#define SQLITE_STMTSTATUS_SORT 2
+
+/*
+** CAPI3REF: Custom Page Cache Object
+** EXPERIMENTAL
+**
+** The sqlite3_pcache type is opaque. It is implemented by
+** the pluggable module. The SQLite core has no knowledge of
+** its size or internal structure and never deals with the
+** sqlite3_pcache object except by holding and passing pointers
+** to the object.
+**
+** See [sqlite3_pcache_methods] for additional information.
+*/
+typedef struct sqlite3_pcache sqlite3_pcache;
+
+/*
+** CAPI3REF: Application Defined Page Cache.
+** KEYWORDS: {page cache}
+** EXPERIMENTAL
+**
+** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
+** register an alternative page cache implementation by passing in an
+** instance of the sqlite3_pcache_methods structure. The majority of the
+** heap memory used by SQLite is used by the page cache to cache data read
+** from, or ready to be written to, the database file. By implementing a
+** custom page cache using this API, an application can control more
+** precisely the amount of memory consumed by SQLite, the way in which
+** that memory is allocated and released, and the policies used to
+** determine exactly which parts of a database file are cached and for
+** how long.
+**
+** The contents of the sqlite3_pcache_methods structure are copied to an
+** internal buffer by SQLite within the call to [sqlite3_config]. Hence
+** the application may discard the parameter after the call to
+** [sqlite3_config()] returns.
+**
+** The xInit() method is called once for each call to [sqlite3_initialize()]
+** (usually only once during the lifetime of the process). It is passed
+** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set
+** up global structures and mutexes required by the custom page cache
+** implementation.
+**
+** The xShutdown() method is called from within [sqlite3_shutdown()],
+** if the application invokes this API. It can be used to clean up
+** any outstanding resources before process shutdown, if required.
+**
+** SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. All other methods must be threadsafe
+** in multithreaded applications.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+**
+** The xCreate() method is used to construct a new cache instance. SQLite
+** will typically create one cache instance for each open database file,
+** though this is not guaranteed. The
+** first parameter, szPage, is the size in bytes of the pages that must
+** be allocated by the cache. szPage will not be a power of two. szPage
+** will the page size of the database file that is to be cached plus an
+** increment (here called "R") of about 100 or 200. SQLite will use the
+** extra R bytes on each page to store metadata about the underlying
+** database page on disk. The value of R depends
+** on the SQLite version, the target platform, and how SQLite was compiled.
+** R is constant for a particular build of SQLite. The second argument to
+** xCreate(), bPurgeable, is true if the cache being created will
+** be used to cache database pages of a file stored on disk, or
+** false if it is used for an in-memory database. The cache implementation
+** does not have to do anything special based with the value of bPurgeable;
+** it is purely advisory. On a cache where bPurgeable is false, SQLite will
+** never invoke xUnpin() except to deliberately delete a page.
+** In other words, a cache created with bPurgeable set to false will
+** never contain any unpinned pages.
+**
+** The xCachesize() method may be called at any time by SQLite to set the
+** suggested maximum cache-size (number of pages stored by) the cache
+** instance passed as the first argument. This is the value configured using
+** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter,
+** the implementation is not required to do anything with this
+** value; it is advisory only.
+**
+** The xPagecount() method should return the number of pages currently
+** stored in the cache.
+**
+** The xFetch() method is used to fetch a page and return a pointer to it.
+** A 'page', in this context, is a buffer of szPage bytes aligned at an
+** 8-byte boundary. The page to be fetched is determined by the key. The
+** mimimum key value is 1. After it has been retrieved using xFetch, the page
+** is considered to be "pinned".
+**
+** If the requested page is already in the page cache, then the page cache
+** implementation must return a pointer to the page buffer with its content
+** intact. If the requested page is not already in the cache, then the
+** behavior of the cache implementation is determined by the value of the
+** createFlag parameter passed to xFetch, according to the following table:
+**
+** <table border=1 width=85% align=center>
+** <tr><th> createFlag <th> Behaviour when page is not already in cache
+** <tr><td> 0 <td> Do not allocate a new page. Return NULL.
+** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
+** Otherwise return NULL.
+** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
+** NULL if allocating a new page is effectively impossible.
+** </table>
+**
+** SQLite will normally invoke xFetch() with a createFlag of 0 or 1. If
+** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
+** attempt to unpin one or more cache pages by spilling the content of
+** pinned pages to disk and synching the operating system disk cache. After
+** attempting to unpin pages, the xFetch() method will be invoked again with
+** a createFlag of 2.
+**
+** xUnpin() is called by SQLite with a pointer to a currently pinned page
+** as its second argument. If the third parameter, discard, is non-zero,
+** then the page should be evicted from the cache. In this case SQLite
+** assumes that the next time the page is retrieved from the cache using
+** the xFetch() method, it will be zeroed. If the discard parameter is
+** zero, then the page is considered to be unpinned. The cache implementation
+** may choose to evict unpinned pages at any time.
+**
+** The cache is not required to perform any reference counting. A single
+** call to xUnpin() unpins the page regardless of the number of prior calls
+** to xFetch().
+**
+** The xRekey() method is used to change the key value associated with the
+** page passed as the second argument from oldKey to newKey. If the cache
+** previously contains an entry associated with newKey, it should be
+** discarded. Any prior cache entry associated with newKey is guaranteed not
+** to be pinned.
+**
+** When SQLite calls the xTruncate() method, the cache must discard all
+** existing cache entries with page numbers (keys) greater than or equal
+** to the value of the iLimit parameter passed to xTruncate(). If any
+** of these pages are pinned, they are implicitly unpinned, meaning that
+** they can be safely discarded.
+**
+** The xDestroy() method is used to delete a cache allocated by xCreate().
+** All resources associated with the specified cache should be freed. After
+** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
+** handle invalid, and will not use it with any other sqlite3_pcache_methods
+** functions.
+*/
+typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
+struct sqlite3_pcache_methods {
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, void*, int discard);
+ void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+};
+
+/*
+** CAPI3REF: Online Backup Object
+** EXPERIMENTAL
+**
+** The sqlite3_backup object records state information about an ongoing
+** online backup operation. The sqlite3_backup object is created by
+** a call to [sqlite3_backup_init()] and is destroyed by a call to
+** [sqlite3_backup_finish()].
+**
+** See Also: [Using the SQLite Online Backup API]
+*/
+typedef struct sqlite3_backup sqlite3_backup;
+
+/*
+** CAPI3REF: Online Backup API.
+** EXPERIMENTAL
+**
+** This API is used to overwrite the contents of one database with that
+** of another. It is useful either for creating backups of databases or
+** for copying in-memory databases to or from persistent files.
+**
+** See Also: [Using the SQLite Online Backup API]
+**
+** Exclusive access is required to the destination database for the
+** duration of the operation. However the source database is only
+** read-locked while it is actually being read, it is not locked
+** continuously for the entire operation. Thus, the backup may be
+** performed on a live database without preventing other users from
+** writing to the database for an extended period of time.
+**
+** To perform a backup operation:
+** <ol>
+** <li><b>sqlite3_backup_init()</b> is called once to initialize the
+** backup,
+** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
+** the data between the two databases, and finally
+** <li><b>sqlite3_backup_finish()</b> is called to release all resources
+** associated with the backup operation.
+** </ol>
+** There should be exactly one call to sqlite3_backup_finish() for each
+** successful call to sqlite3_backup_init().
+**
+** <b>sqlite3_backup_init()</b>
+**
+** The first two arguments passed to [sqlite3_backup_init()] are the database
+** handle associated with the destination database and the database name
+** used to attach the destination database to the handle. The database name
+** is "main" for the main database, "temp" for the temporary database, or
+** the name specified as part of the [ATTACH] statement if the destination is
+** an attached database. The third and fourth arguments passed to
+** sqlite3_backup_init() identify the [database connection]
+** and database name used
+** to access the source database. The values passed for the source and
+** destination [database connection] parameters must not be the same.
+**
+** If an error occurs within sqlite3_backup_init(), then NULL is returned
+** and an error code and error message written into the [database connection]
+** passed as the first argument. They may be retrieved using the
+** [sqlite3_errcode()], [sqlite3_errmsg()], and [sqlite3_errmsg16()] functions.
+** Otherwise, if successful, a pointer to an [sqlite3_backup] object is
+** returned. This pointer may be used with the sqlite3_backup_step() and
+** sqlite3_backup_finish() functions to perform the specified backup
+** operation.
+**
+** <b>sqlite3_backup_step()</b>
+**
+** Function [sqlite3_backup_step()] is used to copy up to nPage pages between
+** the source and destination databases, where nPage is the value of the
+** second parameter passed to sqlite3_backup_step(). If nPage is a negative
+** value, all remaining source pages are copied. If the required pages are
+** succesfully copied, but there are still more pages to copy before the
+** backup is complete, it returns [SQLITE_OK]. If no error occured and there
+** are no more pages to copy, then [SQLITE_DONE] is returned. If an error
+** occurs, then an SQLite error code is returned. As well as [SQLITE_OK] and
+** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
+** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
+**
+** As well as the case where the destination database file was opened for
+** read-only access, sqlite3_backup_step() may return [SQLITE_READONLY] if
+** the destination is an in-memory database with a different page size
+** from the source database.
+**
+** If sqlite3_backup_step() cannot obtain a required file-system lock, then
+** the [sqlite3_busy_handler | busy-handler function]
+** is invoked (if one is specified). If the
+** busy-handler returns non-zero before the lock is available, then
+** [SQLITE_BUSY] is returned to the caller. In this case the call to
+** sqlite3_backup_step() can be retried later. If the source
+** [database connection]
+** is being used to write to the source database when sqlite3_backup_step()
+** is called, then [SQLITE_LOCKED] is returned immediately. Again, in this
+** case the call to sqlite3_backup_step() can be retried later on. If
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
+** [SQLITE_READONLY] is returned, then
+** there is no point in retrying the call to sqlite3_backup_step(). These
+** errors are considered fatal. At this point the application must accept
+** that the backup operation has failed and pass the backup operation handle
+** to the sqlite3_backup_finish() to release associated resources.
+**
+** Following the first call to sqlite3_backup_step(), an exclusive lock is
+** obtained on the destination file. It is not released until either
+** sqlite3_backup_finish() is called or the backup operation is complete
+** and sqlite3_backup_step() returns [SQLITE_DONE]. Additionally, each time
+** a call to sqlite3_backup_step() is made a [shared lock] is obtained on
+** the source database file. This lock is released before the
+** sqlite3_backup_step() call returns. Because the source database is not
+** locked between calls to sqlite3_backup_step(), it may be modified mid-way
+** through the backup procedure. If the source database is modified by an
+** external process or via a database connection other than the one being
+** used by the backup operation, then the backup will be transparently
+** restarted by the next call to sqlite3_backup_step(). If the source
+** database is modified by the using the same database connection as is used
+** by the backup operation, then the backup database is transparently
+** updated at the same time.
+**
+** <b>sqlite3_backup_finish()</b>
+**
+** Once sqlite3_backup_step() has returned [SQLITE_DONE], or when the
+** application wishes to abandon the backup operation, the [sqlite3_backup]
+** object should be passed to sqlite3_backup_finish(). This releases all
+** resources associated with the backup operation. If sqlite3_backup_step()
+** has not yet returned [SQLITE_DONE], then any active write-transaction on the
+** destination database is rolled back. The [sqlite3_backup] object is invalid
+** and may not be used following a call to sqlite3_backup_finish().
+**
+** The value returned by sqlite3_backup_finish is [SQLITE_OK] if no error
+** occurred, regardless or whether or not sqlite3_backup_step() was called
+** a sufficient number of times to complete the backup operation. Or, if
+** an out-of-memory condition or IO error occured during a call to
+** sqlite3_backup_step() then [SQLITE_NOMEM] or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] error code
+** is returned. In this case the error code and an error message are
+** written to the destination [database connection].
+**
+** A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() is
+** not a permanent error and does not affect the return value of
+** sqlite3_backup_finish().
+**
+** <b>sqlite3_backup_remaining(), sqlite3_backup_pagecount()</b>
+**
+** Each call to sqlite3_backup_step() sets two values stored internally
+** by an [sqlite3_backup] object. The number of pages still to be backed
+** up, which may be queried by sqlite3_backup_remaining(), and the total
+** number of pages in the source database file, which may be queried by
+** sqlite3_backup_pagecount().
+**
+** The values returned by these functions are only updated by
+** sqlite3_backup_step(). If the source database is modified during a backup
+** operation, then the values are not updated to account for any extra
+** pages that need to be updated or the size of the source database file
+** changing.
+**
+** <b>Concurrent Usage of Database Handles</b>
+**
+** The source [database connection] may be used by the application for other
+** purposes while a backup operation is underway or being initialized.
+** If SQLite is compiled and configured to support threadsafe database
+** connections, then the source database connection may be used concurrently
+** from within other threads.
+**
+** However, the application must guarantee that the destination database
+** connection handle is not passed to any other API (by any thread) after
+** sqlite3_backup_init() is called and before the corresponding call to
+** sqlite3_backup_finish(). Unfortunately SQLite does not currently check
+** for this, if the application does use the destination [database connection]
+** for some other purpose during a backup operation, things may appear to
+** work correctly but in fact be subtly malfunctioning. Use of the
+** destination database connection while a backup is in progress might
+** also cause a mutex deadlock.
+**
+** Furthermore, if running in [shared cache mode], the application must
+** guarantee that the shared cache used by the destination database
+** is not accessed while the backup is running. In practice this means
+** that the application must guarantee that the file-system file being
+** backed up to is not accessed by any connection within the process,
+** not just the specific connection that was passed to sqlite3_backup_init().
+**
+** The [sqlite3_backup] object itself is partially threadsafe. Multiple
+** threads may safely make multiple concurrent calls to sqlite3_backup_step().
+** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
+** APIs are not strictly speaking threadsafe. If they are invoked at the
+** same time as another thread is invoking sqlite3_backup_step() it is
+** possible that they return invalid values.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3 *pDest, /* Destination database handle */
+ const char *zDestName, /* Destination database name */
+ sqlite3 *pSource, /* Source database handle */
+ const char *zSourceName /* Source database name */
+);
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
+
+/*
+** CAPI3REF: Unlock Notification
+** EXPERIMENTAL
+**
+** When running in shared-cache mode, a database operation may fail with
+** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
+** individual tables within the shared-cache cannot be obtained. See
+** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
+** This API may be used to register a callback that SQLite will invoke
+** when the connection currently holding the required lock relinquishes it.
+** This API is only available if the library was compiled with the
+** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
+**
+** See Also: [Using the SQLite Unlock Notification Feature].
+**
+** Shared-cache locks are released when a database connection concludes
+** its current transaction, either by committing it or rolling it back.
+**
+** When a connection (known as the blocked connection) fails to obtain a
+** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
+** identity of the database connection (the blocking connection) that
+** has locked the required resource is stored internally. After an
+** application receives an SQLITE_LOCKED error, it may call the
+** sqlite3_unlock_notify() method with the blocked connection handle as
+** the first argument to register for a callback that will be invoked
+** when the blocking connections current transaction is concluded. The
+** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
+** call that concludes the blocking connections transaction.
+**
+** If sqlite3_unlock_notify() is called in a multi-threaded application,
+** there is a chance that the blocking connection will have already
+** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
+** If this happens, then the specified callback is invoked immediately,
+** from within the call to sqlite3_unlock_notify().
+**
+** If the blocked connection is attempting to obtain a write-lock on a
+** shared-cache table, and more than one other connection currently holds
+** a read-lock on the same table, then SQLite arbitrarily selects one of
+** the other connections to use as the blocking connection.
+**
+** There may be at most one unlock-notify callback registered by a
+** blocked connection. If sqlite3_unlock_notify() is called when the
+** blocked connection already has a registered unlock-notify callback,
+** then the new callback replaces the old. If sqlite3_unlock_notify() is
+** called with a NULL pointer as its second argument, then any existing
+** unlock-notify callback is cancelled. The blocked connections
+** unlock-notify callback may also be canceled by closing the blocked
+** connection using [sqlite3_close()].
+**
+** The unlock-notify callback is not reentrant. If an application invokes
+** any sqlite3_xxx API functions from within an unlock-notify callback, a
+** crash or deadlock may be the result.
+**
+** Unless deadlock is detected (see below), sqlite3_unlock_notify() always
+** returns SQLITE_OK.
+**
+** <b>Callback Invocation Details</b>
+**
+** When an unlock-notify callback is registered, the application provides a
+** single void* pointer that is passed to the callback when it is invoked.
+** However, the signature of the callback function allows SQLite to pass
+** it an array of void* context pointers. The first argument passed to
+** an unlock-notify callback is a pointer to an array of void* pointers,
+** and the second is the number of entries in the array.
+**
+** When a blocking connections transaction is concluded, there may be
+** more than one blocked connection that has registered for an unlock-notify
+** callback. If two or more such blocked connections have specified the
+** same callback function, then instead of invoking the callback function
+** multiple times, it is invoked once with the set of void* context pointers
+** specified by the blocked connections bundled together into an array.
+** This gives the application an opportunity to prioritize any actions
+** related to the set of unblocked database connections.
+**
+** <b>Deadlock Detection</b>
+**
+** Assuming that after registering for an unlock-notify callback a
+** database waits for the callback to be issued before taking any further
+** action (a reasonable assumption), then using this API may cause the
+** application to deadlock. For example, if connection X is waiting for
+** connection Y's transaction to be concluded, and similarly connection
+** Y is waiting on connection X's transaction, then neither connection
+** will proceed and the system may remain deadlocked indefinitely.
+**
+** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
+** detection. If a given call to sqlite3_unlock_notify() would put the
+** system in a deadlocked state, then SQLITE_LOCKED is returned and no
+** unlock-notify callback is registered. The system is said to be in
+** a deadlocked state if connection A has registered for an unlock-notify
+** callback on the conclusion of connection B's transaction, and connection
+** B has itself registered for an unlock-notify callback when connection
+** A's transaction is concluded. Indirect deadlock is also detected, so
+** the system is also considered to be deadlocked if connection B has
+** registered for an unlock-notify callback on the conclusion of connection
+** C's transaction, where connection C is waiting on connection A. Any
+** number of levels of indirection are allowed.
+**
+** <b>The "DROP TABLE" Exception</b>
+**
+** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
+** always appropriate to call sqlite3_unlock_notify(). There is however,
+** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
+** SQLite checks if there are any currently executing SELECT statements
+** that belong to the same connection. If there are, SQLITE_LOCKED is
+** returned. In this case there is no "blocking connection", so invoking
+** sqlite3_unlock_notify() results in the unlock-notify callback being
+** invoked immediately. If the application then re-attempts the "DROP TABLE"
+** or "DROP INDEX" query, an infinite loop might be the result.
+**
+** One way around this problem is to check the extended error code returned
+** by an sqlite3_step() call. If there is a blocking connection, then the
+** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
+** the special "DROP TABLE/INDEX" case, the extended error code is just
+** SQLITE_LOCKED.
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *pBlocked, /* Waiting connection */
+ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
+ void *pNotifyArg /* Argument to pass to xNotify */
+);
+
+
+/*
+** CAPI3REF: String Comparison
+** EXPERIMENTAL
+**
+** The [sqlite3_strnicmp()] API allows applications and extensions to
+** compare the contents of two buffers containing UTF-8 strings in a
+** case-indendent fashion, using the same definition of case independence
+** that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
+
+/*
+** Undo the hack that converts floating point types to integer for
+** builds on processors without floating point support.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# undef double
#endif
+#if 0
+} /* End of the 'extern "C"' block */
+#endif
+#endif
+
+
+/************** End of sqlite3.h *********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include hash.h in the middle of sqliteInt.h ******************/
/************** Begin file hash.h ********************************************/
/*
@@ -2032,7 +6304,7 @@ int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
** This is the header file for the generic hash-table implemenation
** used in SQLite.
**
-** $Id: hash.h,v 1.9 2006/02/14 10:48:39 danielk1977 Exp $
+** $Id: hash.h,v 1.15 2009/05/02 13:29:38 drh Exp $
*/
#ifndef _SQLITE_HASH_H_
#define _SQLITE_HASH_H_
@@ -2045,21 +6317,30 @@ typedef struct HashElem HashElem;
** The internals of this structure are intended to be opaque -- client
** code should not attempt to access or modify the fields of this structure
** directly. Change this structure only by using the routines below.
-** However, many of the "procedures" and "functions" for modifying and
+** However, some of the "procedures" and "functions" for modifying and
** accessing this structure are really macros, so we can't really make
** this structure opaque.
+**
+** All elements of the hash table are on a single doubly-linked list.
+** Hash.first points to the head of this list.
+**
+** There are Hash.htsize buckets. Each bucket points to a spot in
+** the global doubly-linked list. The contents of the bucket are the
+** element pointed to plus the next _ht.count-1 elements in the list.
+**
+** Hash.htsize and Hash.ht may be zero. In that case lookup is done
+** by a linear search of the global list. For small tables, the
+** Hash.ht table is never allocated because if there are few elements
+** in the table, it is faster to do a linear search than to manage
+** the hash table.
*/
struct Hash {
- char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
- char copyKey; /* True if copy of key made on insert */
- int count; /* Number of entries in this table */
- HashElem *first; /* The first element of the array */
- void *(*xMalloc)(int); /* malloc() function to use */
- void (*xFree)(void *); /* free() function to use */
- int htsize; /* Number of buckets in the hash table */
- struct _ht { /* the hash table */
- int count; /* Number of entries with this hash */
- HashElem *chain; /* Pointer to first entry with this hash */
+ unsigned int htsize; /* Number of buckets in the hash table */
+ unsigned int count; /* Number of entries in this table */
+ HashElem *first; /* The first element of the array */
+ struct _ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ HashElem *chain; /* Pointer to first entry with this hash */
} *ht;
};
@@ -2070,40 +6351,18 @@ struct Hash {
** be opaque because it is used by macros.
*/
struct HashElem {
- HashElem *next, *prev; /* Next and previous elements in the table */
- void *data; /* Data associated with this element */
- void *pKey; int nKey; /* Key associated with this element */
+ HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ const char *pKey; int nKey; /* Key associated with this element */
};
/*
-** There are 4 different modes of operation for a hash table:
-**
-** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
-**
-** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
-**
-** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
-** (including the null-terminator, if any). Case
-** is ignored in comparisons.
-**
-** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
-** memcmp() is used to compare keys.
-**
-** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
-** if the copyKey parameter to HashInit is 1.
-*/
-/* #define SQLITE_HASH_INT 1 // NOT USED */
-/* #define SQLITE_HASH_POINTER 2 // NOT USED */
-#define SQLITE_HASH_STRING 3
-#define SQLITE_HASH_BINARY 4
-
-/*
** Access routines. To delete, insert a NULL pointer.
*/
-void sqlite3HashInit(Hash*, int keytype, int copyKey);
-void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
-void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
-void sqlite3HashClear(Hash*);
+SQLITE_PRIVATE void sqlite3HashInit(Hash*);
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData);
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey);
+SQLITE_PRIVATE void sqlite3HashClear(Hash*);
/*
** Macros for looping over all elements of a hash table. The idiom is
@@ -2120,13 +6379,13 @@ void sqlite3HashClear(Hash*);
#define sqliteHashFirst(H) ((H)->first)
#define sqliteHashNext(E) ((E)->next)
#define sqliteHashData(E) ((E)->data)
-#define sqliteHashKey(E) ((E)->pKey)
-#define sqliteHashKeysize(E) ((E)->nKey)
+/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */
+/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */
/*
** Number of entries in a hash table
*/
-#define sqliteHashCount(H) ((H)->count)
+/* #define sqliteHashCount(H) ((H)->count) // NOT USED */
#endif /* _SQLITE_HASH_H_ */
@@ -2146,146 +6405,148 @@ void sqlite3HashClear(Hash*);
#define TK_COMMIT 10
#define TK_END 11
#define TK_ROLLBACK 12
-#define TK_CREATE 13
-#define TK_TABLE 14
-#define TK_IF 15
-#define TK_NOT 16
-#define TK_EXISTS 17
-#define TK_TEMP 18
-#define TK_LP 19
-#define TK_RP 20
-#define TK_AS 21
-#define TK_COMMA 22
-#define TK_ID 23
-#define TK_ABORT 24
-#define TK_AFTER 25
-#define TK_ANALYZE 26
-#define TK_ASC 27
-#define TK_ATTACH 28
-#define TK_BEFORE 29
-#define TK_CASCADE 30
-#define TK_CAST 31
-#define TK_CONFLICT 32
-#define TK_DATABASE 33
-#define TK_DESC 34
-#define TK_DETACH 35
-#define TK_EACH 36
-#define TK_FAIL 37
-#define TK_FOR 38
-#define TK_IGNORE 39
-#define TK_INITIALLY 40
-#define TK_INSTEAD 41
-#define TK_LIKE_KW 42
-#define TK_MATCH 43
-#define TK_KEY 44
-#define TK_OF 45
-#define TK_OFFSET 46
-#define TK_PRAGMA 47
-#define TK_RAISE 48
-#define TK_REPLACE 49
-#define TK_RESTRICT 50
-#define TK_ROW 51
-#define TK_TRIGGER 52
-#define TK_VACUUM 53
-#define TK_VIEW 54
-#define TK_VIRTUAL 55
-#define TK_REINDEX 56
-#define TK_RENAME 57
-#define TK_CTIME_KW 58
-#define TK_ANY 59
-#define TK_OR 60
-#define TK_AND 61
-#define TK_IS 62
-#define TK_BETWEEN 63
-#define TK_IN 64
-#define TK_ISNULL 65
-#define TK_NOTNULL 66
-#define TK_NE 67
-#define TK_EQ 68
-#define TK_GT 69
-#define TK_LE 70
-#define TK_LT 71
-#define TK_GE 72
-#define TK_ESCAPE 73
-#define TK_BITAND 74
-#define TK_BITOR 75
-#define TK_LSHIFT 76
-#define TK_RSHIFT 77
-#define TK_PLUS 78
-#define TK_MINUS 79
-#define TK_STAR 80
-#define TK_SLASH 81
-#define TK_REM 82
-#define TK_CONCAT 83
-#define TK_COLLATE 84
-#define TK_UMINUS 85
-#define TK_UPLUS 86
-#define TK_BITNOT 87
-#define TK_STRING 88
-#define TK_JOIN_KW 89
-#define TK_CONSTRAINT 90
-#define TK_DEFAULT 91
-#define TK_NULL 92
-#define TK_PRIMARY 93
-#define TK_UNIQUE 94
-#define TK_CHECK 95
-#define TK_REFERENCES 96
-#define TK_AUTOINCR 97
-#define TK_ON 98
-#define TK_DELETE 99
-#define TK_UPDATE 100
-#define TK_INSERT 101
-#define TK_SET 102
-#define TK_DEFERRABLE 103
-#define TK_FOREIGN 104
-#define TK_DROP 105
-#define TK_UNION 106
-#define TK_ALL 107
-#define TK_EXCEPT 108
-#define TK_INTERSECT 109
-#define TK_SELECT 110
-#define TK_DISTINCT 111
-#define TK_DOT 112
-#define TK_FROM 113
-#define TK_JOIN 114
-#define TK_USING 115
-#define TK_ORDER 116
-#define TK_BY 117
-#define TK_GROUP 118
-#define TK_HAVING 119
-#define TK_LIMIT 120
-#define TK_WHERE 121
-#define TK_INTO 122
-#define TK_VALUES 123
-#define TK_INTEGER 124
-#define TK_FLOAT 125
-#define TK_BLOB 126
-#define TK_REGISTER 127
-#define TK_VARIABLE 128
-#define TK_CASE 129
-#define TK_WHEN 130
-#define TK_THEN 131
-#define TK_ELSE 132
-#define TK_INDEX 133
-#define TK_ALTER 134
-#define TK_TO 135
-#define TK_ADD 136
-#define TK_COLUMNKW 137
-#define TK_TO_TEXT 138
-#define TK_TO_BLOB 139
-#define TK_TO_NUMERIC 140
-#define TK_TO_INT 141
-#define TK_TO_REAL 142
-#define TK_END_OF_FILE 143
-#define TK_ILLEGAL 144
-#define TK_SPACE 145
-#define TK_UNCLOSED_STRING 146
-#define TK_COMMENT 147
-#define TK_FUNCTION 148
-#define TK_COLUMN 149
-#define TK_AGG_FUNCTION 150
-#define TK_AGG_COLUMN 151
-#define TK_CONST_FUNC 152
+#define TK_SAVEPOINT 13
+#define TK_RELEASE 14
+#define TK_TO 15
+#define TK_TABLE 16
+#define TK_CREATE 17
+#define TK_IF 18
+#define TK_NOT 19
+#define TK_EXISTS 20
+#define TK_TEMP 21
+#define TK_LP 22
+#define TK_RP 23
+#define TK_AS 24
+#define TK_COMMA 25
+#define TK_ID 26
+#define TK_INDEXED 27
+#define TK_ABORT 28
+#define TK_AFTER 29
+#define TK_ANALYZE 30
+#define TK_ASC 31
+#define TK_ATTACH 32
+#define TK_BEFORE 33
+#define TK_BY 34
+#define TK_CASCADE 35
+#define TK_CAST 36
+#define TK_COLUMNKW 37
+#define TK_CONFLICT 38
+#define TK_DATABASE 39
+#define TK_DESC 40
+#define TK_DETACH 41
+#define TK_EACH 42
+#define TK_FAIL 43
+#define TK_FOR 44
+#define TK_IGNORE 45
+#define TK_INITIALLY 46
+#define TK_INSTEAD 47
+#define TK_LIKE_KW 48
+#define TK_MATCH 49
+#define TK_KEY 50
+#define TK_OF 51
+#define TK_OFFSET 52
+#define TK_PRAGMA 53
+#define TK_RAISE 54
+#define TK_REPLACE 55
+#define TK_RESTRICT 56
+#define TK_ROW 57
+#define TK_TRIGGER 58
+#define TK_VACUUM 59
+#define TK_VIEW 60
+#define TK_VIRTUAL 61
+#define TK_REINDEX 62
+#define TK_RENAME 63
+#define TK_CTIME_KW 64
+#define TK_ANY 65
+#define TK_OR 66
+#define TK_AND 67
+#define TK_IS 68
+#define TK_BETWEEN 69
+#define TK_IN 70
+#define TK_ISNULL 71
+#define TK_NOTNULL 72
+#define TK_NE 73
+#define TK_EQ 74
+#define TK_GT 75
+#define TK_LE 76
+#define TK_LT 77
+#define TK_GE 78
+#define TK_ESCAPE 79
+#define TK_BITAND 80
+#define TK_BITOR 81
+#define TK_LSHIFT 82
+#define TK_RSHIFT 83
+#define TK_PLUS 84
+#define TK_MINUS 85
+#define TK_STAR 86
+#define TK_SLASH 87
+#define TK_REM 88
+#define TK_CONCAT 89
+#define TK_COLLATE 90
+#define TK_UMINUS 91
+#define TK_UPLUS 92
+#define TK_BITNOT 93
+#define TK_STRING 94
+#define TK_JOIN_KW 95
+#define TK_CONSTRAINT 96
+#define TK_DEFAULT 97
+#define TK_NULL 98
+#define TK_PRIMARY 99
+#define TK_UNIQUE 100
+#define TK_CHECK 101
+#define TK_REFERENCES 102
+#define TK_AUTOINCR 103
+#define TK_ON 104
+#define TK_DELETE 105
+#define TK_UPDATE 106
+#define TK_INSERT 107
+#define TK_SET 108
+#define TK_DEFERRABLE 109
+#define TK_FOREIGN 110
+#define TK_DROP 111
+#define TK_UNION 112
+#define TK_ALL 113
+#define TK_EXCEPT 114
+#define TK_INTERSECT 115
+#define TK_SELECT 116
+#define TK_DISTINCT 117
+#define TK_DOT 118
+#define TK_FROM 119
+#define TK_JOIN 120
+#define TK_USING 121
+#define TK_ORDER 122
+#define TK_GROUP 123
+#define TK_HAVING 124
+#define TK_LIMIT 125
+#define TK_WHERE 126
+#define TK_INTO 127
+#define TK_VALUES 128
+#define TK_INTEGER 129
+#define TK_FLOAT 130
+#define TK_BLOB 131
+#define TK_REGISTER 132
+#define TK_VARIABLE 133
+#define TK_CASE 134
+#define TK_WHEN 135
+#define TK_THEN 136
+#define TK_ELSE 137
+#define TK_INDEX 138
+#define TK_ALTER 139
+#define TK_ADD 140
+#define TK_TO_TEXT 141
+#define TK_TO_BLOB 142
+#define TK_TO_NUMERIC 143
+#define TK_TO_INT 144
+#define TK_TO_REAL 145
+#define TK_END_OF_FILE 146
+#define TK_ILLEGAL 147
+#define TK_SPACE 148
+#define TK_UNCLOSED_STRING 149
+#define TK_FUNCTION 150
+#define TK_COLUMN 151
+#define TK_AGG_FUNCTION 152
+#define TK_AGG_COLUMN 153
+#define TK_CONST_FUNC 154
/************** End of parse.h ***********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
@@ -2303,34 +6564,18 @@ void sqlite3HashClear(Hash*);
# define double sqlite_int64
# define LONGDOUBLE_TYPE sqlite_int64
# ifndef SQLITE_BIG_DBL
-# define SQLITE_BIG_DBL (0x7fffffffffffffff)
+# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
# endif
# define SQLITE_OMIT_DATETIME_FUNCS 1
# define SQLITE_OMIT_TRACE 1
+# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+# undef SQLITE_HAVE_ISNAN
#endif
#ifndef SQLITE_BIG_DBL
# define SQLITE_BIG_DBL (1e99)
#endif
/*
-** The maximum number of in-memory pages to use for the main database
-** table and for temporary tables. Internally, the MAX_PAGES and
-** TEMP_PAGES macros are used. To override the default values at
-** compilation time, the SQLITE_DEFAULT_CACHE_SIZE and
-** SQLITE_DEFAULT_TEMP_CACHE_SIZE macros should be set.
-*/
-#ifdef SQLITE_DEFAULT_CACHE_SIZE
-# define MAX_PAGES SQLITE_DEFAULT_CACHE_SIZE
-#else
-# define MAX_PAGES 2000
-#endif
-#ifdef SQLITE_DEFAULT_TEMP_CACHE_SIZE
-# define TEMP_PAGES SQLITE_DEFAULT_TEMP_CACHE_SIZE
-#else
-# define TEMP_PAGES 500
-#endif
-
-/*
** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
** afterward. Having this macro allows us to cause the C compiler
** to omit code used by TEMP tables without messy #ifndef statements.
@@ -2356,20 +6601,6 @@ void sqlite3HashClear(Hash*);
#define NULL_DISTINCT_FOR_UNIQUE 1
/*
-** The maximum number of attached databases. This must be at least 2
-** in order to support the main database file (0) and the file used to
-** hold temporary tables (1). And it must be less than 32 because
-** we use a bitmask of databases with a u32 in places (for example
-** the Parse.cookieMask field).
-*/
-#define MAX_ATTACHED 10
-
-/*
-** The maximum value of a ?nnn wildcard that the parser will accept.
-*/
-#define SQLITE_MAX_VARIABLE_NUMBER 999
-
-/*
** The "file format" number is an integer that is incremented whenever
** the VDBE-level file format changes. The following macros define the
** the default file format for new databases and the maximum file format
@@ -2380,12 +6611,16 @@ void sqlite3HashClear(Hash*);
# define SQLITE_DEFAULT_FILE_FORMAT 1
#endif
+#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
+#endif
+
/*
-** Provide a default value for TEMP_STORE in case it is not specified
+** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
** on the command-line
*/
-#ifndef TEMP_STORE
-# define TEMP_STORE 1
+#ifndef SQLITE_TEMP_STORE
+# define SQLITE_TEMP_STORE 1
#endif
/*
@@ -2414,19 +6649,39 @@ void sqlite3HashClear(Hash*);
** cc '-DUINTPTR_TYPE=long long int' ...
*/
#ifndef UINT32_TYPE
-# define UINT32_TYPE unsigned int
+# ifdef HAVE_UINT32_T
+# define UINT32_TYPE uint32_t
+# else
+# define UINT32_TYPE unsigned int
+# endif
#endif
#ifndef UINT16_TYPE
-# define UINT16_TYPE unsigned short int
+# ifdef HAVE_UINT16_T
+# define UINT16_TYPE uint16_t
+# else
+# define UINT16_TYPE unsigned short int
+# endif
#endif
#ifndef INT16_TYPE
-# define INT16_TYPE short int
+# ifdef HAVE_INT16_T
+# define INT16_TYPE int16_t
+# else
+# define INT16_TYPE short int
+# endif
#endif
#ifndef UINT8_TYPE
-# define UINT8_TYPE unsigned char
+# ifdef HAVE_UINT8_T
+# define UINT8_TYPE uint8_t
+# else
+# define UINT8_TYPE unsigned char
+# endif
#endif
#ifndef INT8_TYPE
-# define INT8_TYPE signed char
+# ifdef HAVE_INT8_T
+# define INT8_TYPE int8_t
+# else
+# define INT8_TYPE signed char
+# endif
#endif
#ifndef LONGDOUBLE_TYPE
# define LONGDOUBLE_TYPE long double
@@ -2437,14 +6692,27 @@ typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
typedef INT16_TYPE i16; /* 2-byte signed integer */
typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
-typedef UINT8_TYPE i8; /* 1-byte signed integer */
+typedef INT8_TYPE i8; /* 1-byte signed integer */
+
+/*
+** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
+** that can be stored in a u32 without loss of data. The value
+** is 0x00000000ffffffff. But because of quirks of some compilers, we
+** have to specify the value in the less intuitive manner shown:
+*/
+#define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
/*
** Macros to determine whether the machine is big or little endian,
** evaluated at runtime.
*/
-extern const int sqlite3one;
-#if defined(i386) || defined(__i386__) || defined(_M_IX86)
+#ifdef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const int sqlite3one = 1;
+#else
+SQLITE_PRIVATE const int sqlite3one;
+#endif
+#if defined(i386) || defined(__i386__) || defined(_M_IX86)\
+ || defined(__x86_64) || defined(__x86_64__)
# define SQLITE_BIGENDIAN 0
# define SQLITE_LITTLEENDIAN 1
# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
@@ -2455,6 +6723,31 @@ extern const int sqlite3one;
#endif
/*
+** Constants for the largest and smallest possible 64-bit signed integers.
+** These macros are designed to work correctly on both 32-bit and 64-bit
+** compilers.
+*/
+#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+/*
+** Round up a number to the next larger multiple of 8. This is used
+** to force 8-byte alignment on 64-bit architectures.
+*/
+#define ROUND8(x) (((x)+7)&~7)
+
+/*
+** Round down to the nearest multiple of 8
+*/
+#define ROUNDDOWN8(x) ((x)&~7)
+
+/*
+** Assert that the pointer X is aligned to an 8-byte boundary.
+*/
+#define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0)
+
+
+/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle.
**
@@ -2471,9 +6764,377 @@ struct BusyHandler {
};
/*
+** Name of the master database table. The master database table
+** is a special table that holds the names and attributes of all
+** user tables and indices.
+*/
+#define MASTER_NAME "sqlite_master"
+#define TEMP_MASTER_NAME "sqlite_temp_master"
+
+/*
+** The root-page of the master database table.
+*/
+#define MASTER_ROOT 1
+
+/*
+** The name of the schema table.
+*/
+#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
+
+/*
+** A convenience macro that returns the number of elements in
+** an array.
+*/
+#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
+
+/*
+** The following value as a destructor means to use sqlite3DbFree().
+** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
+*/
+#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree)
+
+/*
+** When SQLITE_OMIT_WSD is defined, it means that the target platform does
+** not support Writable Static Data (WSD) such as global and static variables.
+** All variables must either be on the stack or dynamically allocated from
+** the heap. When WSD is unsupported, the variable declarations scattered
+** throughout the SQLite code must become constants instead. The SQLITE_WSD
+** macro is used for this purpose. And instead of referencing the variable
+** directly, we use its constant as a key to lookup the run-time allocated
+** buffer that holds real variable. The constant is also the initializer
+** for the run-time allocated buffer.
+**
+** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
+** macros become no-ops and have zero performance impact.
+*/
+#ifdef SQLITE_OMIT_WSD
+ #define SQLITE_WSD const
+ #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
+ #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
+SQLITE_API int sqlite3_wsd_init(int N, int J);
+SQLITE_API void *sqlite3_wsd_find(void *K, int L);
+#else
+ #define SQLITE_WSD
+ #define GLOBAL(t,v) v
+ #define sqlite3GlobalConfig sqlite3Config
+#endif
+
+/*
+** The following macros are used to suppress compiler warnings and to
+** make it clear to human readers when a function parameter is deliberately
+** left unused within the body of a function. This usually happens when
+** a function is called via a function pointer. For example the
+** implementation of an SQL aggregate step callback may not use the
+** parameter indicating the number of arguments passed to the aggregate,
+** if it knows that this is enforced elsewhere.
+**
+** When a function parameter is not used at all within the body of a function,
+** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
+** However, these macros may also be used to suppress warnings related to
+** parameters that may or may not be used depending on compilation options.
+** For example those parameters only used in assert() statements. In these
+** cases the parameters are named as per the usual conventions.
+*/
+#define UNUSED_PARAMETER(x) (void)(x)
+#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
+
+/*
+** Forward references to structures
+*/
+typedef struct AggInfo AggInfo;
+typedef struct AuthContext AuthContext;
+typedef struct AutoincInfo AutoincInfo;
+typedef struct Bitvec Bitvec;
+typedef struct RowSet RowSet;
+typedef struct CollSeq CollSeq;
+typedef struct Column Column;
+typedef struct Db Db;
+typedef struct Schema Schema;
+typedef struct Expr Expr;
+typedef struct ExprList ExprList;
+typedef struct ExprSpan ExprSpan;
+typedef struct FKey FKey;
+typedef struct FuncDef FuncDef;
+typedef struct FuncDefHash FuncDefHash;
+typedef struct IdList IdList;
+typedef struct Index Index;
+typedef struct IndexSample IndexSample;
+typedef struct KeyClass KeyClass;
+typedef struct KeyInfo KeyInfo;
+typedef struct Lookaside Lookaside;
+typedef struct LookasideSlot LookasideSlot;
+typedef struct Module Module;
+typedef struct NameContext NameContext;
+typedef struct Parse Parse;
+typedef struct Savepoint Savepoint;
+typedef struct Select Select;
+typedef struct SrcList SrcList;
+typedef struct StrAccum StrAccum;
+typedef struct Table Table;
+typedef struct TableLock TableLock;
+typedef struct Token Token;
+typedef struct TriggerPrg TriggerPrg;
+typedef struct TriggerStep TriggerStep;
+typedef struct Trigger Trigger;
+typedef struct UnpackedRecord UnpackedRecord;
+typedef struct VTable VTable;
+typedef struct Walker Walker;
+typedef struct WherePlan WherePlan;
+typedef struct WhereInfo WhereInfo;
+typedef struct WhereLevel WhereLevel;
+
+/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and
-** "BusyHandler typedefs.
+** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
+** pointer types (i.e. FuncDef) defined above.
*/
+/************** Include btree.h in the middle of sqliteInt.h *****************/
+/************** Begin file btree.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite B-Tree file
+** subsystem. See comments in the source code for a detailed description
+** of what each interface routine does.
+**
+** @(#) $Id: btree.h,v 1.120 2009/07/22 00:35:24 drh Exp $
+*/
+#ifndef _BTREE_H_
+#define _BTREE_H_
+
+/* TODO: This definition is just included so other modules compile. It
+** needs to be revisited.
+*/
+#define SQLITE_N_BTREE_META 10
+
+/*
+** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
+** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
+*/
+#ifndef SQLITE_DEFAULT_AUTOVACUUM
+ #define SQLITE_DEFAULT_AUTOVACUUM 0
+#endif
+
+#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
+#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
+#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
+
+/*
+** Forward declarations of structure
+*/
+typedef struct Btree Btree;
+typedef struct BtCursor BtCursor;
+typedef struct BtShared BtShared;
+typedef struct BtreeMutexArray BtreeMutexArray;
+
+/*
+** This structure records all of the Btrees that need to hold
+** a mutex before we enter sqlite3VdbeExec(). The Btrees are
+** are placed in aBtree[] in order of aBtree[]->pBt. That way,
+** we can always lock and unlock them all quickly.
+*/
+struct BtreeMutexArray {
+ int nMutex;
+ Btree *aBtree[SQLITE_MAX_ATTACHED+1];
+};
+
+
+SQLITE_PRIVATE int sqlite3BtreeOpen(
+ const char *zFilename, /* Name of database file to open */
+ sqlite3 *db, /* Associated database connection */
+ Btree **ppBtree, /* Return open Btree* here */
+ int flags, /* Flags */
+ int vfsFlags /* Flags passed through to VFS open */
+);
+
+/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
+** following values.
+**
+** NOTE: These values must match the corresponding PAGER_ values in
+** pager.h.
+*/
+#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
+#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
+#define BTREE_MEMORY 4 /* In-memory DB. No argument */
+#define BTREE_READONLY 8 /* Open the database in read-only mode */
+#define BTREE_READWRITE 16 /* Open for both reading and writing */
+#define BTREE_CREATE 32 /* Create the database if it does not exist */
+
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
+SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags);
+SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*);
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree);
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
+SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int);
+
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
+
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
+
+/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
+** of the following flags:
+*/
+#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
+#define BTREE_ZERODATA 2 /* Table has keys only - no data */
+#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
+
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*);
+SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int);
+
+SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
+
+/*
+** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta
+** should be one of the following values. The integer values are assigned
+** to constants so that the offset of the corresponding field in an
+** SQLite database header may be found using the following formula:
+**
+** offset = 36 + (idx * 4)
+**
+** For example, the free-page-count field is located at byte offset 36 of
+** the database file header. The incr-vacuum-flag field is located at
+** byte offset 64 (== 36+4*7).
+*/
+#define BTREE_FREE_PAGE_COUNT 0
+#define BTREE_SCHEMA_VERSION 1
+#define BTREE_FILE_FORMAT 2
+#define BTREE_DEFAULT_CACHE_SIZE 3
+#define BTREE_LARGEST_ROOT_PAGE 4
+#define BTREE_TEXT_ENCODING 5
+#define BTREE_USER_VERSION 6
+#define BTREE_INCR_VACUUM 7
+
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree*, /* BTree containing table to open */
+ int iTable, /* Index of root page */
+ int wrFlag, /* 1 for writing. 0 for read-only */
+ struct KeyInfo*, /* First argument to compare function */
+ BtCursor *pCursor /* Space to write cursor structure */
+);
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
+
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
+ BtCursor*,
+ UnpackedRecord *pUnKey,
+ i64 intKey,
+ int bias,
+ int *pRes
+);
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*);
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
+ const void *pData, int nData,
+ int nZero, int bias, int seekResult);
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
+SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
+SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
+SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
+SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64);
+SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*);
+
+SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
+SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
+
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
+SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
+
+#ifndef NDEBUG
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
+#endif
+
+#ifndef SQLITE_OMIT_BTREECOUNT
+SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *);
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
+SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
+#endif
+
+/*
+** If we are not using shared cache, then there is no need to
+** use mutexes to access the BtShared structures. So make the
+** Enter and Leave procedures no-ops.
+*/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
+#else
+# define sqlite3BtreeEnter(X)
+# define sqlite3BtreeEnterAll(X)
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
+#ifndef NDEBUG
+ /* These routines are used inside assert() statements only. */
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
+#endif
+#else
+
+# define sqlite3BtreeLeave(X)
+# define sqlite3BtreeEnterCursor(X)
+# define sqlite3BtreeLeaveCursor(X)
+# define sqlite3BtreeLeaveAll(X)
+# define sqlite3BtreeMutexArrayEnter(X)
+# define sqlite3BtreeMutexArrayLeave(X)
+# define sqlite3BtreeMutexArrayInsert(X,Y)
+
+# define sqlite3BtreeHoldsMutex(X) 1
+# define sqlite3BtreeHoldsAllMutexes(X) 1
+#endif
+
+
+#endif /* _BTREE_H_ */
+
+/************** End of btree.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include vdbe.h in the middle of sqliteInt.h ******************/
/************** Begin file vdbe.h ********************************************/
/*
@@ -2493,7 +7154,7 @@ struct BusyHandler {
** or VDBE. The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
-** $Id: vdbe.h,v 1.108 2007/01/09 14:01:14 drh Exp $
+** $Id: vdbe.h,v 1.142 2009/07/24 17:58:53 danielk1977 Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
@@ -2506,23 +7167,64 @@ struct BusyHandler {
typedef struct Vdbe Vdbe;
/*
+** The names of the following types declared in vdbeInt.h are required
+** for the VdbeOp definition.
+*/
+typedef struct VdbeFunc VdbeFunc;
+typedef struct Mem Mem;
+typedef struct SubProgram SubProgram;
+
+/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands. The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {
u8 opcode; /* What operation to perform */
+ signed char p4type; /* One of the P4_xxx constants for p4 */
+ u8 opflags; /* Not currently used */
+ u8 p5; /* Fifth parameter is an unsigned character */
int p1; /* First operand */
int p2; /* Second parameter (often the jump destination) */
- char *p3; /* Third parameter */
- int p3type; /* One of the P3_xxx constants defined below */
+ int p3; /* The third parameter */
+ union { /* fourth parameter */
+ int i; /* Integer value if p4type==P4_INT32 */
+ void *p; /* Generic pointer */
+ char *z; /* Pointer to data for string (char array) types */
+ i64 *pI64; /* Used when p4type is P4_INT64 */
+ double *pReal; /* Used when p4type is P4_REAL */
+ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
+ VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
+ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
+ Mem *pMem; /* Used when p4type is P4_MEM */
+ VTable *pVtab; /* Used when p4type is P4_VTAB */
+ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
+ int *ai; /* Used when p4type is P4_INTARRAY */
+ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */
+ } p4;
+#ifdef SQLITE_DEBUG
+ char *zComment; /* Comment to improve readability */
+#endif
#ifdef VDBE_PROFILE
- int cnt; /* Number of times this instruction was executed */
- long long cycles; /* Total time spend executing this instruction */
+ int cnt; /* Number of times this instruction was executed */
+ u64 cycles; /* Total time spent executing this instruction */
#endif
};
typedef struct VdbeOp VdbeOp;
+
+/*
+** A sub-routine used to implement a trigger program.
+*/
+struct SubProgram {
+ VdbeOp *aOp; /* Array of opcodes for sub-program */
+ int nOp; /* Elements in aOp[] */
+ int nMem; /* Number of memory cells required */
+ int nCsr; /* Number of cursors required */
+ int nRef; /* Number of pointers to this structure */
+ void *token; /* id that may be used to recursive triggers */
+};
+
/*
** A smaller version of VdbeOp used for the VdbeAddOpList() function because
** it takes up less space.
@@ -2530,34 +7232,40 @@ typedef struct VdbeOp VdbeOp;
struct VdbeOpList {
u8 opcode; /* What operation to perform */
signed char p1; /* First operand */
- short int p2; /* Second parameter (often the jump destination) */
- char *p3; /* Third parameter */
+ signed char p2; /* Second parameter (often the jump destination) */
+ signed char p3; /* Third parameter */
};
typedef struct VdbeOpList VdbeOpList;
/*
-** Allowed values of VdbeOp.p3type
-*/
-#define P3_NOTUSED 0 /* The P3 parameter is not used */
-#define P3_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
-#define P3_STATIC (-2) /* Pointer to a static string */
-#define P3_COLLSEQ (-4) /* P3 is a pointer to a CollSeq structure */
-#define P3_FUNCDEF (-5) /* P3 is a pointer to a FuncDef structure */
-#define P3_KEYINFO (-6) /* P3 is a pointer to a KeyInfo structure */
-#define P3_VDBEFUNC (-7) /* P3 is a pointer to a VdbeFunc structure */
-#define P3_MEM (-8) /* P3 is a pointer to a Mem* structure */
-#define P3_TRANSIENT (-9) /* P3 is a pointer to a transient string */
-#define P3_VTAB (-10) /* P3 is a pointer to an sqlite3_vtab structure */
-#define P3_MPRINTF (-11) /* P3 is a string obtained from sqlite3_mprintf() */
-
-/* When adding a P3 argument using P3_KEYINFO, a copy of the KeyInfo structure
+** Allowed values of VdbeOp.p4type
+*/
+#define P4_NOTUSED 0 /* The P4 parameter is not used */
+#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
+#define P4_STATIC (-2) /* Pointer to a static string */
+#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
+#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
+#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
+#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
+#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
+#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
+#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
+#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
+#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
+#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
+#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
+#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
+#define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */
+
+/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made. That copy is freed when the Vdbe is finalized. But if the
-** argument is P3_KEYINFO_HANDOFF, the passed in pointer is used. It still
+** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc(). But no copy is made and the calling
** function should *not* try to free the KeyInfo.
*/
-#define P3_KEYINFO_HANDOFF (-9)
+#define P4_KEYINFO_HANDOFF (-16)
+#define P4_KEYINFO_STATIC (-17)
/*
** The Vdbe.aColName array contains 5n Mem structures, where n is the
@@ -2568,7 +7276,15 @@ typedef struct VdbeOpList VdbeOpList;
#define COLNAME_DATABASE 2
#define COLNAME_TABLE 3
#define COLNAME_COLUMN 4
-#define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
+#else
+# ifdef SQLITE_OMIT_DECLTYPE
+# define COLNAME_N 1 /* Store only the name */
+# else
+# define COLNAME_N 2 /* Store the name and decltype */
+# endif
+#endif
/*
** The following macro converts a relative address in the p2 field
@@ -2586,164 +7302,185 @@ typedef struct VdbeOpList VdbeOpList;
/************** Begin file opcodes.h *****************************************/
/* Automatically generated. Do not edit */
/* See the mkopcodeh.awk script for details */
-#define OP_MemLoad 1
-#define OP_VNext 2
-#define OP_HexBlob 126 /* same as TK_BLOB */
+#define OP_VNext 1
+#define OP_Affinity 2
#define OP_Column 3
#define OP_SetCookie 4
-#define OP_IfMemPos 5
-#define OP_Real 125 /* same as TK_FLOAT */
+#define OP_Seek 5
+#define OP_Real 130 /* same as TK_FLOAT */
#define OP_Sequence 6
-#define OP_MoveGt 7
-#define OP_Ge 72 /* same as TK_GE */
+#define OP_Savepoint 7
+#define OP_Ge 78 /* same as TK_GE */
#define OP_RowKey 8
-#define OP_Eq 68 /* same as TK_EQ */
-#define OP_OpenWrite 9
-#define OP_NotNull 66 /* same as TK_NOTNULL */
-#define OP_If 10
-#define OP_ToInt 141 /* same as TK_TO_INT */
-#define OP_String8 88 /* same as TK_STRING */
-#define OP_Pop 11
-#define OP_VRowid 12
-#define OP_CollSeq 13
-#define OP_OpenRead 14
-#define OP_Expire 15
-#define OP_AutoCommit 17
-#define OP_Gt 69 /* same as TK_GT */
-#define OP_IntegrityCk 18
-#define OP_Sort 19
-#define OP_Function 20
-#define OP_And 61 /* same as TK_AND */
-#define OP_Subtract 79 /* same as TK_MINUS */
-#define OP_Noop 21
-#define OP_Return 22
-#define OP_Remainder 82 /* same as TK_REM */
-#define OP_NewRowid 23
-#define OP_Multiply 80 /* same as TK_STAR */
-#define OP_IfMemNeg 24
-#define OP_Variable 25
-#define OP_String 26
-#define OP_RealAffinity 27
-#define OP_ParseSchema 28
-#define OP_VOpen 29
-#define OP_Close 30
-#define OP_CreateIndex 31
-#define OP_IsUnique 32
-#define OP_NotFound 33
-#define OP_Int64 34
-#define OP_MustBeInt 35
-#define OP_Halt 36
-#define OP_Rowid 37
-#define OP_IdxLT 38
-#define OP_AddImm 39
-#define OP_Statement 40
-#define OP_RowData 41
-#define OP_MemMax 42
-#define OP_Push 43
-#define OP_Or 60 /* same as TK_OR */
-#define OP_NotExists 44
-#define OP_MemIncr 45
-#define OP_Gosub 46
-#define OP_Divide 81 /* same as TK_SLASH */
-#define OP_Integer 47
-#define OP_ToNumeric 140 /* same as TK_TO_NUMERIC*/
-#define OP_MemInt 48
+#define OP_SCopy 9
+#define OP_Eq 74 /* same as TK_EQ */
+#define OP_OpenWrite 10
+#define OP_NotNull 72 /* same as TK_NOTNULL */
+#define OP_If 11
+#define OP_ToInt 144 /* same as TK_TO_INT */
+#define OP_String8 94 /* same as TK_STRING */
+#define OP_CollSeq 12
+#define OP_OpenRead 13
+#define OP_Expire 14
+#define OP_AutoCommit 15
+#define OP_Gt 75 /* same as TK_GT */
+#define OP_Pagecount 16
+#define OP_IntegrityCk 17
+#define OP_Sort 18
+#define OP_Copy 20
+#define OP_Trace 21
+#define OP_Function 22
+#define OP_IfNeg 23
+#define OP_And 67 /* same as TK_AND */
+#define OP_Subtract 85 /* same as TK_MINUS */
+#define OP_Noop 24
+#define OP_Program 25
+#define OP_Return 26
+#define OP_Remainder 88 /* same as TK_REM */
+#define OP_NewRowid 27
+#define OP_Multiply 86 /* same as TK_STAR */
+#define OP_Variable 28
+#define OP_String 29
+#define OP_RealAffinity 30
+#define OP_VRename 31
+#define OP_ParseSchema 32
+#define OP_VOpen 33
+#define OP_Close 34
+#define OP_CreateIndex 35
+#define OP_IsUnique 36
+#define OP_NotFound 37
+#define OP_Int64 38
+#define OP_MustBeInt 39
+#define OP_Halt 40
+#define OP_Rowid 41
+#define OP_IdxLT 42
+#define OP_AddImm 43
+#define OP_RowData 44
+#define OP_MemMax 45
+#define OP_Or 66 /* same as TK_OR */
+#define OP_NotExists 46
+#define OP_Gosub 47
+#define OP_Divide 87 /* same as TK_SLASH */
+#define OP_Integer 48
+#define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/
#define OP_Prev 49
-#define OP_Concat 83 /* same as TK_CONCAT */
-#define OP_BitAnd 74 /* same as TK_BITAND */
-#define OP_VColumn 50
-#define OP_CreateTable 51
-#define OP_Last 52
-#define OP_IsNull 65 /* same as TK_ISNULL */
-#define OP_IdxRowid 53
-#define OP_MakeIdxRec 54
-#define OP_ShiftRight 77 /* same as TK_RSHIFT */
-#define OP_ResetCount 55
-#define OP_FifoWrite 56
-#define OP_Callback 57
-#define OP_ContextPush 58
-#define OP_DropTrigger 59
-#define OP_DropIndex 62
+#define OP_RowSetRead 50
+#define OP_Concat 89 /* same as TK_CONCAT */
+#define OP_RowSetAdd 51
+#define OP_BitAnd 80 /* same as TK_BITAND */
+#define OP_VColumn 52
+#define OP_CreateTable 53
+#define OP_Last 54
+#define OP_SeekLe 55
+#define OP_IsNull 71 /* same as TK_ISNULL */
+#define OP_IncrVacuum 56
+#define OP_IdxRowid 57
+#define OP_ShiftRight 83 /* same as TK_RSHIFT */
+#define OP_ResetCount 58
+#define OP_Yield 59
+#define OP_DropTrigger 60
+#define OP_DropIndex 61
+#define OP_Param 62
#define OP_IdxGE 63
#define OP_IdxDelete 64
-#define OP_Vacuum 73
-#define OP_MoveLe 84
-#define OP_IfNot 86
-#define OP_DropTable 89
-#define OP_MakeRecord 90
-#define OP_ToBlob 139 /* same as TK_TO_BLOB */
+#define OP_Vacuum 65
+#define OP_IfNot 68
+#define OP_DropTable 69
+#define OP_SeekLt 70
+#define OP_MakeRecord 79
+#define OP_ToBlob 142 /* same as TK_TO_BLOB */
+#define OP_ResultRow 90
#define OP_Delete 91
#define OP_AggFinal 92
-#define OP_ShiftLeft 76 /* same as TK_LSHIFT */
-#define OP_Dup 93
-#define OP_Goto 94
-#define OP_TableLock 95
-#define OP_FifoRead 96
-#define OP_Clear 97
-#define OP_IdxGT 98
-#define OP_MoveLt 99
-#define OP_Le 70 /* same as TK_LE */
-#define OP_VerifyCookie 100
-#define OP_AggStep 101
-#define OP_Pull 102
-#define OP_ToText 138 /* same as TK_TO_TEXT */
-#define OP_Not 16 /* same as TK_NOT */
-#define OP_ToReal 142 /* same as TK_TO_REAL */
-#define OP_SetNumColumns 103
-#define OP_AbsValue 104
-#define OP_Transaction 105
-#define OP_VFilter 106
-#define OP_Negative 85 /* same as TK_UMINUS */
-#define OP_Ne 67 /* same as TK_NE */
-#define OP_VDestroy 107
-#define OP_ContextPop 108
-#define OP_BitOr 75 /* same as TK_BITOR */
-#define OP_Next 109
-#define OP_IdxInsert 110
-#define OP_Distinct 111
-#define OP_Lt 71 /* same as TK_LT */
-#define OP_Insert 112
-#define OP_Destroy 113
-#define OP_ReadCookie 114
-#define OP_ForceInt 115
-#define OP_LoadAnalysis 116
-#define OP_Explain 117
-#define OP_IfMemZero 118
-#define OP_OpenPseudo 119
-#define OP_OpenEphemeral 120
-#define OP_Null 121
-#define OP_Blob 122
-#define OP_Add 78 /* same as TK_PLUS */
-#define OP_MemStore 123
-#define OP_Rewind 124
-#define OP_MoveGe 127
-#define OP_VBegin 128
-#define OP_VUpdate 129
-#define OP_BitNot 87 /* same as TK_BITNOT */
-#define OP_VCreate 130
-#define OP_MemMove 131
-#define OP_MemNull 132
-#define OP_Found 133
-#define OP_NullRow 134
+#define OP_Compare 95
+#define OP_ShiftLeft 82 /* same as TK_LSHIFT */
+#define OP_Goto 96
+#define OP_TableLock 97
+#define OP_Clear 98
+#define OP_Le 76 /* same as TK_LE */
+#define OP_VerifyCookie 99
+#define OP_AggStep 100
+#define OP_ToText 141 /* same as TK_TO_TEXT */
+#define OP_Not 19 /* same as TK_NOT */
+#define OP_ToReal 145 /* same as TK_TO_REAL */
+#define OP_Transaction 101
+#define OP_VFilter 102
+#define OP_Ne 73 /* same as TK_NE */
+#define OP_VDestroy 103
+#define OP_BitOr 81 /* same as TK_BITOR */
+#define OP_Next 104
+#define OP_Count 105
+#define OP_IdxInsert 106
+#define OP_Lt 77 /* same as TK_LT */
+#define OP_SeekGe 107
+#define OP_Insert 108
+#define OP_Destroy 109
+#define OP_ReadCookie 110
+#define OP_RowSetTest 111
+#define OP_LoadAnalysis 112
+#define OP_Explain 113
+#define OP_HaltIfNull 114
+#define OP_OpenPseudo 115
+#define OP_OpenEphemeral 116
+#define OP_Null 117
+#define OP_Move 118
+#define OP_Blob 119
+#define OP_Add 84 /* same as TK_PLUS */
+#define OP_Rewind 120
+#define OP_SeekGt 121
+#define OP_VBegin 122
+#define OP_VUpdate 123
+#define OP_IfZero 124
+#define OP_BitNot 93 /* same as TK_BITNOT */
+#define OP_VCreate 125
+#define OP_Found 126
+#define OP_IfPos 127
+#define OP_NullRow 128
+#define OP_Jump 129
+#define OP_Permutation 131
/* The following opcode values are never used */
+#define OP_NotUsed_132 132
+#define OP_NotUsed_133 133
+#define OP_NotUsed_134 134
#define OP_NotUsed_135 135
#define OP_NotUsed_136 136
#define OP_NotUsed_137 137
-
-/* Opcodes that are guaranteed to never push a value onto the stack
-** contain a 1 their corresponding position of the following mask
-** set. See the opcodeNoPush() function in vdbeaux.c */
-#define NOPUSH_MASK_0 0xeeb4
-#define NOPUSH_MASK_1 0x796b
-#define NOPUSH_MASK_2 0x7ddb
-#define NOPUSH_MASK_3 0xff92
-#define NOPUSH_MASK_4 0xffff
-#define NOPUSH_MASK_5 0xdaf7
-#define NOPUSH_MASK_6 0xfefe
-#define NOPUSH_MASK_7 0x99d9
-#define NOPUSH_MASK_8 0x7c67
-#define NOPUSH_MASK_9 0x0000
+#define OP_NotUsed_138 138
+#define OP_NotUsed_139 139
+#define OP_NotUsed_140 140
+
+
+/* Properties such as "out2" or "jump" that are specified in
+** comments following the "case" for each opcode in the vdbe.c
+** are encoded into bitvectors as follows:
+*/
+#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
+#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
+#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
+#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
+#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
+#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */
+#define OPFLG_INITIALIZER {\
+/* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x08, 0x02, 0x00,\
+/* 8 */ 0x00, 0x04, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,\
+/* 16 */ 0x02, 0x00, 0x01, 0x04, 0x04, 0x00, 0x00, 0x05,\
+/* 24 */ 0x00, 0x01, 0x04, 0x02, 0x00, 0x02, 0x04, 0x00,\
+/* 32 */ 0x00, 0x00, 0x00, 0x02, 0x11, 0x11, 0x02, 0x05,\
+/* 40 */ 0x00, 0x02, 0x11, 0x04, 0x00, 0x08, 0x11, 0x01,\
+/* 48 */ 0x02, 0x01, 0x21, 0x08, 0x00, 0x02, 0x01, 0x11,\
+/* 56 */ 0x01, 0x02, 0x00, 0x04, 0x00, 0x00, 0x02, 0x11,\
+/* 64 */ 0x00, 0x00, 0x2c, 0x2c, 0x05, 0x00, 0x11, 0x05,\
+/* 72 */ 0x05, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00,\
+/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
+/* 88 */ 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04, 0x02, 0x00,\
+/* 96 */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,\
+/* 104 */ 0x01, 0x02, 0x08, 0x11, 0x00, 0x02, 0x02, 0x15,\
+/* 112 */ 0x00, 0x00, 0x10, 0x00, 0x00, 0x02, 0x00, 0x02,\
+/* 120 */ 0x01, 0x11, 0x00, 0x00, 0x05, 0x00, 0x11, 0x05,\
+/* 128 */ 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\
+/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04,\
+/* 144 */ 0x04, 0x04,}
/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/
@@ -2752,48 +7489,67 @@ typedef struct VdbeOpList VdbeOpList;
** Prototypes for the VDBE interface. See comments on the implementation
** for a description of what each of these routines does.
*/
-Vdbe *sqlite3VdbeCreate(sqlite3*);
-void sqlite3VdbeCreateCallback(Vdbe*, int*);
-int sqlite3VdbeAddOp(Vdbe*,int,int,int);
-int sqlite3VdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
-int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
-void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
-void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
-void sqlite3VdbeJumpHere(Vdbe*, int addr);
-void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
-void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
-VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
-int sqlite3VdbeMakeLabel(Vdbe*);
-void sqlite3VdbeDelete(Vdbe*);
-void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
-int sqlite3VdbeFinalize(Vdbe*);
-void sqlite3VdbeResolveLabel(Vdbe*, int);
-int sqlite3VdbeCurrentAddr(Vdbe*);
-void sqlite3VdbeTrace(Vdbe*,FILE*);
-void sqlite3VdbeResetStepResult(Vdbe*);
-int sqlite3VdbeReset(Vdbe*);
-int sqliteVdbeSetVariables(Vdbe*,int,const char**);
-void sqlite3VdbeSetNumCols(Vdbe*,int);
-int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int);
-void sqlite3VdbeCountChanges(Vdbe*);
-sqlite3 *sqlite3VdbeDb(Vdbe*);
-void sqlite3VdbeSetSql(Vdbe*, const char *z, int n);
-const char *sqlite3VdbeGetSql(Vdbe*);
-void sqlite3VdbeSwap(Vdbe*,Vdbe*);
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*);
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
+SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int);
+SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
+SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *, SubProgram *, int);
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int);
+#endif
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int);
+SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
+
#ifndef NDEBUG
- void sqlite3VdbeComment(Vdbe*, const char*, ...);
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
# define VdbeComment(X) sqlite3VdbeComment X
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
+# define VdbeNoopComment(X) sqlite3VdbeNoopComment X
#else
# define VdbeComment(X)
+# define VdbeNoopComment(X)
#endif
#endif
/************** End of vdbe.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
-/************** Include btree.h in the middle of sqliteInt.h *****************/
-/************** Begin file btree.h *******************************************/
+/************** Include pager.h in the middle of sqliteInt.h *****************/
+/************** Begin file pager.h *******************************************/
/*
** 2001 September 15
**
@@ -2805,152 +7561,169 @@ void sqlite3VdbeSwap(Vdbe*,Vdbe*);
** May you share freely, never taking more than you give.
**
*************************************************************************
-** This header file defines the interface that the sqlite B-Tree file
-** subsystem. See comments in the source code for a detailed description
-** of what each interface routine does.
+** This header file defines the interface that the sqlite page cache
+** subsystem. The page cache subsystem reads and writes a file a page
+** at a time and provides a journal for rollback.
**
-** @(#) $Id: btree.h,v 1.74 2007/03/30 14:06:34 drh Exp $
+** @(#) $Id: pager.h,v 1.104 2009/07/24 19:01:19 drh Exp $
*/
-#ifndef _BTREE_H_
-#define _BTREE_H_
-/* TODO: This definition is just included so other modules compile. It
-** needs to be revisited.
-*/
-#define SQLITE_N_BTREE_META 10
+#ifndef _PAGER_H_
+#define _PAGER_H_
/*
-** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
-** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
+** Default maximum size for persistent journal files. A negative
+** value means no limit. This value may be overridden using the
+** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit".
*/
-#ifndef SQLITE_DEFAULT_AUTOVACUUM
- #define SQLITE_DEFAULT_AUTOVACUUM 0
+#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
+ #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
#endif
/*
-** Forward declarations of structure
+** The type used to represent a page number. The first page in a file
+** is called page 1. 0 is used to represent "not a page".
*/
-typedef struct Btree Btree;
-typedef struct BtCursor BtCursor;
-typedef struct BtShared BtShared;
+typedef u32 Pgno;
+/*
+** Each open file is managed by a separate instance of the "Pager" structure.
+*/
+typedef struct Pager Pager;
-int sqlite3BtreeOpen(
- const char *zFilename, /* Name of database file to open */
- sqlite3 *db, /* Associated database connection */
- Btree **, /* Return open Btree* here */
- int flags /* Flags */
-);
+/*
+** Handle type for pages.
+*/
+typedef struct PgHdr DbPage;
-/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
-** following values.
-**
-** NOTE: These values must match the corresponding PAGER_ values in
-** pager.h.
+/*
+** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
+** reserved for working around a windows/posix incompatibility). It is
+** used in the journal to signify that the remainder of the journal file
+** is devoted to storing a master journal name - there are no more pages to
+** roll back. See comments for function writeMasterJournal() in pager.c
+** for details.
*/
-#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
-#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
-#define BTREE_MEMORY 4 /* In-memory DB. No argument */
+#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1))
-int sqlite3BtreeClose(Btree*);
-int sqlite3BtreeSetBusyHandler(Btree*,BusyHandler*);
-int sqlite3BtreeSetCacheSize(Btree*,int);
-int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
-int sqlite3BtreeSyncDisabled(Btree*);
-int sqlite3BtreeSetPageSize(Btree*,int,int);
-int sqlite3BtreeGetPageSize(Btree*);
-int sqlite3BtreeGetReserve(Btree*);
-int sqlite3BtreeSetAutoVacuum(Btree *, int);
-int sqlite3BtreeGetAutoVacuum(Btree *);
-int sqlite3BtreeBeginTrans(Btree*,int);
-int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
-int sqlite3BtreeCommitPhaseTwo(Btree*);
-int sqlite3BtreeCommit(Btree*);
-int sqlite3BtreeRollback(Btree*);
-int sqlite3BtreeBeginStmt(Btree*);
-int sqlite3BtreeCommitStmt(Btree*);
-int sqlite3BtreeRollbackStmt(Btree*);
-int sqlite3BtreeCreateTable(Btree*, int*, int flags);
-int sqlite3BtreeIsInTrans(Btree*);
-int sqlite3BtreeIsInStmt(Btree*);
-int sqlite3BtreeIsInReadTrans(Btree*);
-void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
-int sqlite3BtreeSchemaLocked(Btree *);
-int sqlite3BtreeLockTable(Btree *, int, u8);
-
-const char *sqlite3BtreeGetFilename(Btree *);
-const char *sqlite3BtreeGetDirname(Btree *);
-const char *sqlite3BtreeGetJournalname(Btree *);
-int sqlite3BtreeCopyFile(Btree *, Btree *);
+/*
+** Allowed values for the flags parameter to sqlite3PagerOpen().
+**
+** NOTE: These values must match the corresponding BTREE_ values in btree.h.
+*/
+#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
+#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
-/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
-** of the following flags:
+/*
+** Valid values for the second argument to sqlite3PagerLockingMode().
*/
-#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
-#define BTREE_ZERODATA 2 /* Table has keys only - no data */
-#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
+#define PAGER_LOCKINGMODE_QUERY -1
+#define PAGER_LOCKINGMODE_NORMAL 0
+#define PAGER_LOCKINGMODE_EXCLUSIVE 1
-int sqlite3BtreeDropTable(Btree*, int, int*);
-int sqlite3BtreeClearTable(Btree*, int);
-int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
-int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
+/*
+** Valid values for the second argument to sqlite3PagerJournalMode().
+*/
+#define PAGER_JOURNALMODE_QUERY -1
+#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
+#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
+#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
+#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */
+#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */
-int sqlite3BtreeCursor(
- Btree*, /* BTree containing table to open */
- int iTable, /* Index of root page */
- int wrFlag, /* 1 for writing. 0 for read-only */
- int(*)(void*,int,const void*,int,const void*), /* Key comparison function */
- void*, /* First argument to compare function */
- BtCursor **ppCursor /* Returned cursor */
-);
+/*
+** The remainder of this file contains the declarations of the functions
+** that make up the Pager sub-system API. See source code comments for
+** a detailed description of each routine.
+*/
-void sqlite3BtreeSetCompare(
- BtCursor *,
- int(*)(void*,int,const void*,int,const void*),
- void*
+/* Open and close a Pager connection. */
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs*,
+ Pager **ppPager,
+ const char*,
+ int,
+ int,
+ int,
+ void(*)(DbPage*)
);
-
-int sqlite3BtreeCloseCursor(BtCursor*);
-int sqlite3BtreeMoveto(BtCursor*,const void *pKey,i64 nKey,int bias,int *pRes);
-int sqlite3BtreeDelete(BtCursor*);
-int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
- const void *pData, int nData, int bias);
-int sqlite3BtreeFirst(BtCursor*, int *pRes);
-int sqlite3BtreeLast(BtCursor*, int *pRes);
-int sqlite3BtreeNext(BtCursor*, int *pRes);
-int sqlite3BtreeEof(BtCursor*);
-int sqlite3BtreeFlags(BtCursor*);
-int sqlite3BtreePrevious(BtCursor*, int *pRes);
-int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
-int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
-const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
-const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
-int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
-int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
-
-char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
-struct Pager *sqlite3BtreePager(Btree*);
-
-
-#ifdef SQLITE_TEST
-int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
-void sqlite3BtreeCursorList(Btree*);
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
+
+/* Functions used to configure a Pager object. */
+SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*, int);
+SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
+SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int);
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
+SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int);
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*);
+
+/* Functions used to obtain and release page references. */
+SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
+#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*);
+
+/* Operations on page references. */
+SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*);
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
+
+/* Functions used to manage pager transactions and savepoints. */
+SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*, int*);
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int);
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n);
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint);
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager);
+
+/* Functions used to query pager state and configuration. */
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*);
+SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
+SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
+
+/* Functions used to truncate the database file. */
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno);
+
+/* Functions to support testing and debugging. */
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*);
#endif
-
-#ifdef SQLITE_DEBUG
-int sqlite3BtreePageDump(Btree*, int, int recursive);
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
+SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
+ void disable_simulated_io_errors(void);
+ void enable_simulated_io_errors(void);
#else
-#define sqlite3BtreePageDump(X,Y,Z) SQLITE_OK
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
#endif
-#endif /* _BTREE_H_ */
+#endif /* _PAGER_H_ */
-/************** End of btree.h ***********************************************/
+/************** End of pager.h ***********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
-/************** Include pager.h in the middle of sqliteInt.h *****************/
-/************** Begin file pager.h *******************************************/
+/************** Include pcache.h in the middle of sqliteInt.h ****************/
+/************** Begin file pcache.h ******************************************/
/*
-** 2001 September 15
+** 2008 August 05
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
@@ -2961,260 +7734,512 @@ int sqlite3BtreePageDump(Btree*, int, int recursive);
**
*************************************************************************
** This header file defines the interface that the sqlite page cache
-** subsystem. The page cache subsystem reads and writes a file a page
-** at a time and provides a journal for rollback.
+** subsystem.
**
-** @(#) $Id: pager.h,v 1.58 2007/04/13 02:14:30 drh Exp $
+** @(#) $Id: pcache.h,v 1.20 2009/07/25 11:46:49 danielk1977 Exp $
*/
-#ifndef _PAGER_H_
-#define _PAGER_H_
+#ifndef _PCACHE_H_
+
+typedef struct PgHdr PgHdr;
+typedef struct PCache PCache;
/*
-** The default size of a database page.
+** Every page in the cache is controlled by an instance of the following
+** structure.
*/
-#ifndef SQLITE_DEFAULT_PAGE_SIZE
-# define SQLITE_DEFAULT_PAGE_SIZE 1024
+struct PgHdr {
+ void *pData; /* Content of this page */
+ void *pExtra; /* Extra content */
+ PgHdr *pDirty; /* Transient list of dirty pages */
+ Pgno pgno; /* Page number for this page */
+ Pager *pPager; /* The pager this page is part of */
+#ifdef SQLITE_CHECK_PAGES
+ u32 pageHash; /* Hash of page content */
#endif
+ u16 flags; /* PGHDR flags defined below */
-/* Maximum page size. The upper bound on this value is 32768. This a limit
-** imposed by necessity of storing the value in a 2-byte unsigned integer
-** and the fact that the page size must be a power of 2.
-**
-** This value is used to initialize certain arrays on the stack at
-** various places in the code. On embedded machines where stack space
-** is limited and the flexibility of having large pages is not needed,
-** it makes good sense to reduce the maximum page size to something more
-** reasonable, like 1024.
-*/
-#ifndef SQLITE_MAX_PAGE_SIZE
-# define SQLITE_MAX_PAGE_SIZE 32768
-#endif
+ /**********************************************************************
+ ** Elements above are public. All that follows is private to pcache.c
+ ** and should not be accessed by other modules.
+ */
+ i16 nRef; /* Number of users of this page */
+ PCache *pCache; /* Cache that owns this page */
-/*
-** Maximum number of pages in one database.
-*/
-#define SQLITE_MAX_PAGE 1073741823
+ PgHdr *pDirtyNext; /* Next element in list of dirty pages */
+ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */
+};
-/*
-** The type used to represent a page number. The first page in a file
-** is called page 1. 0 is used to represent "not a page".
-*/
-typedef unsigned int Pgno;
+/* Bit values for PgHdr.flags */
+#define PGHDR_DIRTY 0x002 /* Page has changed */
+#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before
+ ** writing this page to the database */
+#define PGHDR_NEED_READ 0x008 /* Content is unread */
+#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */
+#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */
+
+/* Initialize and shutdown the page cache subsystem */
+SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
+SQLITE_PRIVATE void sqlite3PcacheShutdown(void);
+
+/* Page cache buffer management:
+** These routines implement SQLITE_CONFIG_PAGECACHE.
+*/
+SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n);
+
+/* Create a new pager cache.
+** Under memory stress, invoke xStress to try to make pages clean.
+** Only clean and unpinned pages can be reclaimed.
+*/
+SQLITE_PRIVATE void sqlite3PcacheOpen(
+ int szPage, /* Size of every page */
+ int szExtra, /* Extra space associated with each page */
+ int bPurgeable, /* True if pages are on backing store */
+ int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
+ void *pStress, /* Argument to xStress */
+ PCache *pToInit /* Preallocated space for the PCache */
+);
-/*
-** Each open file is managed by a separate instance of the "Pager" structure.
-*/
-typedef struct Pager Pager;
+/* Modify the page-size after the cache has been created. */
+SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *, int);
-/*
-** Handle type for pages.
+/* Return the size in bytes of a PCache object. Used to preallocate
+** storage space.
*/
-typedef struct PgHdr DbPage;
+SQLITE_PRIVATE int sqlite3PcacheSize(void);
-/*
-** Allowed values for the flags parameter to sqlite3PagerOpen().
-**
-** NOTE: This values must match the corresponding BTREE_ values in btree.h.
+/* One release per successful fetch. Page is pinned until released.
+** Reference counted.
*/
-#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
-#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
+SQLITE_PRIVATE int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**);
+SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*);
-/*
-** Valid values for the second argument to sqlite3PagerLockingMode().
-*/
-#define PAGER_LOCKINGMODE_QUERY -1
-#define PAGER_LOCKINGMODE_NORMAL 0
-#define PAGER_LOCKINGMODE_EXCLUSIVE 1
+SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */
+SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */
+SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */
+SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */
-/*
-** See source code comments for a detailed description of the following
-** routines:
-*/
-int sqlite3PagerOpen(Pager **ppPager, const char *zFilename,
- int nExtra, int flags);
-void sqlite3PagerSetBusyhandler(Pager*, BusyHandler *pBusyHandler);
-void sqlite3PagerSetDestructor(Pager*, void(*)(DbPage*,int));
-void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*,int));
-int sqlite3PagerSetPagesize(Pager*, int);
-int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
-void sqlite3PagerSetCachesize(Pager*, int);
-int sqlite3PagerClose(Pager *pPager);
-int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
-#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
-DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
-int sqlite3PagerRef(DbPage*);
-int sqlite3PagerUnref(DbPage*);
-Pgno sqlite3PagerPagenumber(DbPage*);
-int sqlite3PagerWrite(DbPage*);
-int sqlite3PagerIswriteable(DbPage*);
-int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void*);
-int sqlite3PagerPagecount(Pager*);
-int sqlite3PagerTruncate(Pager*,Pgno);
-int sqlite3PagerBegin(DbPage*, int exFlag);
-int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, Pgno);
-int sqlite3PagerCommitPhaseTwo(Pager*);
-int sqlite3PagerRollback(Pager*);
-int sqlite3PagerIsreadonly(Pager*);
-int sqlite3PagerStmtBegin(Pager*);
-int sqlite3PagerStmtCommit(Pager*);
-int sqlite3PagerStmtRollback(Pager*);
-void sqlite3PagerDontRollback(DbPage*);
-void sqlite3PagerDontWrite(DbPage*);
-int sqlite3PagerRefcount(Pager*);
-int *sqlite3PagerStats(Pager*);
-void sqlite3PagerSetSafetyLevel(Pager*,int,int);
-const char *sqlite3PagerFilename(Pager*);
-const char *sqlite3PagerDirname(Pager*);
-const char *sqlite3PagerJournalname(Pager*);
-int sqlite3PagerNosync(Pager*);
-int sqlite3PagerRename(Pager*, const char *zNewName);
-void sqlite3PagerSetCodec(Pager*,void*(*)(void*,void*,Pgno,int),void*);
-int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
-int sqlite3PagerReset(Pager*);
-int sqlite3PagerReleaseMemory(int);
-
-void *sqlite3PagerGetData(DbPage *);
-void *sqlite3PagerGetExtra(DbPage *);
-int sqlite3PagerLockingMode(Pager *, int);
+/* Change a page number. Used by incr-vacuum. */
+SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno);
-#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
-int sqlite3PagerLockstate(Pager*);
+/* Remove all pages with pgno>x. Reset the cache if x==0 */
+SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x);
+
+/* Get a list of all dirty pages in the cache, sorted by page number */
+SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*);
+
+/* Reset and close the cache object */
+SQLITE_PRIVATE void sqlite3PcacheClose(PCache*);
+
+/* Clear flags from pages of the page cache */
+SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *);
+
+/* Discard the contents of the cache */
+SQLITE_PRIVATE void sqlite3PcacheClear(PCache*);
+
+/* Return the total number of outstanding page references */
+SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*);
+
+/* Increment the reference count of an existing page */
+SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*);
+
+SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*);
+
+/* Return the total number of pages stored in the cache */
+SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*);
+
+#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
+/* Iterate through all dirty pages currently stored in the cache. This
+** interface is only available if SQLITE_CHECK_PAGES is defined when the
+** library is built.
+*/
+SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
#endif
+/* Set and get the suggested cache-size for the specified pager-cache.
+**
+** If no global maximum is configured, then the system attempts to limit
+** the total number of pages cached by purgeable pager-caches to the sum
+** of the suggested cache-sizes.
+*/
+SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int);
#ifdef SQLITE_TEST
-void sqlite3PagerRefdump(Pager*);
-int pager3_refinfo_enable;
+SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *);
+#endif
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/* Try to return memory used by the pcache module to the main memory heap */
+SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int);
#endif
#ifdef SQLITE_TEST
-void disable_simulated_io_errors(void);
-void enable_simulated_io_errors(void);
-#else
-# define disable_simulated_io_errors()
-# define enable_simulated_io_errors()
+SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*);
#endif
-#endif /* _PAGER_H_ */
+SQLITE_PRIVATE void sqlite3PCacheSetDefault(void);
-/************** End of pager.h ***********************************************/
+#endif /* _PCACHE_H_ */
+
+/************** End of pcache.h **********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
-#ifdef SQLITE_MEMDEBUG
+/************** Include os.h in the middle of sqliteInt.h ********************/
+/************** Begin file os.h **********************************************/
/*
-** The following global variables are used for testing and debugging
-** only. They only work if SQLITE_MEMDEBUG is defined.
-*/
-extern int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */
-extern int sqlite3_nFree; /* Number of sqliteFree() calls */
-extern int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */
-extern int sqlite3_iMallocReset; /* Set iMallocFail to this when it reaches 0 */
-
-extern void *sqlite3_pFirst; /* Pointer to linked list of allocations */
-extern int sqlite3_nMaxAlloc; /* High water mark of ThreadData.nAlloc */
-extern int sqlite3_mallocDisallowed; /* assert() in sqlite3Malloc() if set */
-extern int sqlite3_isFail; /* True if all malloc calls should fail */
-extern const char *sqlite3_zFile; /* Filename to associate debug info with */
-extern int sqlite3_iLine; /* Line number for debug info */
-
-#define ENTER_MALLOC (sqlite3_zFile = __FILE__, sqlite3_iLine = __LINE__)
-#define sqliteMalloc(x) (ENTER_MALLOC, sqlite3Malloc(x,1))
-#define sqliteMallocRaw(x) (ENTER_MALLOC, sqlite3MallocRaw(x,1))
-#define sqliteRealloc(x,y) (ENTER_MALLOC, sqlite3Realloc(x,y))
-#define sqliteStrDup(x) (ENTER_MALLOC, sqlite3StrDup(x))
-#define sqliteStrNDup(x,y) (ENTER_MALLOC, sqlite3StrNDup(x,y))
-#define sqliteReallocOrFree(x,y) (ENTER_MALLOC, sqlite3ReallocOrFree(x,y))
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file (together with is companion C source-code file
+** "os.c") attempt to abstract the underlying operating system so that
+** the SQLite library will work on both POSIX and windows systems.
+**
+** This header file is #include-ed by sqliteInt.h and thus ends up
+** being included by every source file.
+**
+** $Id: os.h,v 1.108 2009/02/05 16:31:46 drh Exp $
+*/
+#ifndef _SQLITE_OS_H_
+#define _SQLITE_OS_H_
+/*
+** Figure out if we are dealing with Unix, Windows, or some other
+** operating system. After the following block of preprocess macros,
+** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER
+** will defined to either 1 or 0. One of the four will be 1. The other
+** three will be 0.
+*/
+#if defined(SQLITE_OS_OTHER)
+# if SQLITE_OS_OTHER==1
+# undef SQLITE_OS_UNIX
+# define SQLITE_OS_UNIX 0
+# undef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+# undef SQLITE_OS_OS2
+# define SQLITE_OS_OS2 0
+# else
+# undef SQLITE_OS_OTHER
+# endif
+#endif
+#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
+# define SQLITE_OS_OTHER 0
+# ifndef SQLITE_OS_WIN
+# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
+# define SQLITE_OS_WIN 1
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 0
+# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
+# define SQLITE_OS_WIN 0
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 1
+# else
+# define SQLITE_OS_WIN 0
+# define SQLITE_OS_UNIX 1
+# define SQLITE_OS_OS2 0
+# endif
+# else
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 0
+# endif
#else
-
-#define ENTER_MALLOC 0
-#define sqliteMalloc(x) sqlite3Malloc(x,1)
-#define sqliteMallocRaw(x) sqlite3MallocRaw(x,1)
-#define sqliteRealloc(x,y) sqlite3Realloc(x,y)
-#define sqliteStrDup(x) sqlite3StrDup(x)
-#define sqliteStrNDup(x,y) sqlite3StrNDup(x,y)
-#define sqliteReallocOrFree(x,y) sqlite3ReallocOrFree(x,y)
-
+# ifndef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+# endif
#endif
-#define sqliteFree(x) sqlite3FreeX(x)
-#define sqliteAllocSize(x) sqlite3AllocSize(x)
+/*
+** Determine if we are dealing with WindowsCE - which has a much
+** reduced API.
+*/
+#if defined(_WIN32_WCE)
+# define SQLITE_OS_WINCE 1
+#else
+# define SQLITE_OS_WINCE 0
+#endif
/*
-** An instance of this structure might be allocated to store information
-** specific to a single thread.
+** Define the maximum size of a temporary filename
*/
-struct ThreadData {
- int dummy; /* So that this structure is never empty */
+#if SQLITE_OS_WIN
+# include <windows.h>
+# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
+#elif SQLITE_OS_OS2
+# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
+# include <os2safe.h> /* has to be included before os2.h for linking to work */
+# endif
+# define INCL_DOSDATETIME
+# define INCL_DOSFILEMGR
+# define INCL_DOSERRORS
+# define INCL_DOSMISC
+# define INCL_DOSPROCESS
+# define INCL_DOSMODULEMGR
+# define INCL_DOSSEMAPHORES
+# include <os2.h>
+# include <uconv.h>
+# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
+#else
+# define SQLITE_TEMPNAME_SIZE 200
+#endif
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- int nSoftHeapLimit; /* Suggested max mem allocation. No limit if <0 */
- int nAlloc; /* Number of bytes currently allocated */
- Pager *pPager; /* Linked list of all pagers in this thread */
+/* If the SET_FULLSYNC macro is not defined above, then make it
+** a no-op
+*/
+#ifndef SET_FULLSYNC
+# define SET_FULLSYNC(x,y)
#endif
-#ifndef SQLITE_OMIT_SHARED_CACHE
- u8 useSharedData; /* True if shared pagers and schemas are enabled */
- BtShared *pBtree; /* Linked list of all currently open BTrees */
+/*
+** The default size of a disk sector
+*/
+#ifndef SQLITE_DEFAULT_SECTOR_SIZE
+# define SQLITE_DEFAULT_SECTOR_SIZE 512
#endif
-};
/*
-** Name of the master database table. The master database table
-** is a special table that holds the names and attributes of all
-** user tables and indices.
+** Temporary files are named starting with this prefix followed by 16 random
+** alphanumeric characters, and no file extension. They are stored in the
+** OS's standard temporary file directory, and are deleted prior to exit.
+** If sqlite is being embedded in another program, you may wish to change the
+** prefix to reflect your program's name, so that if your program exits
+** prematurely, old temporary files can be easily identified. This can be done
+** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
+**
+** 2006-10-31: The default prefix used to be "sqlite_". But then
+** Mcafee started using SQLite in their anti-virus product and it
+** started putting files with the "sqlite" name in the c:/temp folder.
+** This annoyed many windows users. Those users would then do a
+** Google search for "sqlite", find the telephone numbers of the
+** developers and call to wake them up at night and complain.
+** For this reason, the default name prefix is changed to be "sqlite"
+** spelled backwards. So the temp files are still identified, but
+** anybody smart enough to figure out the code is also likely smart
+** enough to know that calling the developer will not help get rid
+** of the file.
*/
-#define MASTER_NAME "sqlite_master"
-#define TEMP_MASTER_NAME "sqlite_temp_master"
+#ifndef SQLITE_TEMP_FILE_PREFIX
+# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
+#endif
/*
-** The root-page of the master database table.
+** The following values may be passed as the second argument to
+** sqlite3OsLock(). The various locks exhibit the following semantics:
+**
+** SHARED: Any number of processes may hold a SHARED lock simultaneously.
+** RESERVED: A single process may hold a RESERVED lock on a file at
+** any time. Other processes may hold and obtain new SHARED locks.
+** PENDING: A single process may hold a PENDING lock on a file at
+** any one time. Existing SHARED locks may persist, but no new
+** SHARED locks may be obtained by other processes.
+** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
+**
+** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
+** process that requests an EXCLUSIVE lock may actually obtain a PENDING
+** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
+** sqlite3OsLock().
*/
-#define MASTER_ROOT 1
+#define NO_LOCK 0
+#define SHARED_LOCK 1
+#define RESERVED_LOCK 2
+#define PENDING_LOCK 3
+#define EXCLUSIVE_LOCK 4
/*
-** The name of the schema table.
+** File Locking Notes: (Mostly about windows but also some info for Unix)
+**
+** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
+** those functions are not available. So we use only LockFile() and
+** UnlockFile().
+**
+** LockFile() prevents not just writing but also reading by other processes.
+** A SHARED_LOCK is obtained by locking a single randomly-chosen
+** byte out of a specific range of bytes. The lock byte is obtained at
+** random so two separate readers can probably access the file at the
+** same time, unless they are unlucky and choose the same lock byte.
+** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
+** There can only be one writer. A RESERVED_LOCK is obtained by locking
+** a single byte of the file that is designated as the reserved lock byte.
+** A PENDING_LOCK is obtained by locking a designated byte different from
+** the RESERVED_LOCK byte.
+**
+** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
+** which means we can use reader/writer locks. When reader/writer locks
+** are used, the lock is placed on the same range of bytes that is used
+** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
+** will support two or more Win95 readers or two or more WinNT readers.
+** But a single Win95 reader will lock out all WinNT readers and a single
+** WinNT reader will lock out all other Win95 readers.
+**
+** The following #defines specify the range of bytes used for locking.
+** SHARED_SIZE is the number of bytes available in the pool from which
+** a random byte is selected for a shared lock. The pool of bytes for
+** shared locks begins at SHARED_FIRST.
+**
+** The same locking strategy and
+** byte ranges are used for Unix. This leaves open the possiblity of having
+** clients on win95, winNT, and unix all talking to the same shared file
+** and all locking correctly. To do so would require that samba (or whatever
+** tool is being used for file sharing) implements locks correctly between
+** windows and unix. I'm guessing that isn't likely to happen, but by
+** using the same locking range we are at least open to the possibility.
+**
+** Locking in windows is manditory. For this reason, we cannot store
+** actual data in the bytes used for locking. The pager never allocates
+** the pages involved in locking therefore. SHARED_SIZE is selected so
+** that all locks will fit on a single page even at the minimum page size.
+** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
+** is set high so that we don't have to allocate an unused page except
+** for very large databases. But one should test the page skipping logic
+** by setting PENDING_BYTE low and running the entire regression suite.
+**
+** Changing the value of PENDING_BYTE results in a subtly incompatible
+** file format. Depending on how it is changed, you might not notice
+** the incompatibility right away, even running a full regression test.
+** The default location of PENDING_BYTE is the first byte past the
+** 1GB boundary.
+**
*/
-#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
+#define PENDING_BYTE sqlite3PendingByte
+#define RESERVED_BYTE (PENDING_BYTE+1)
+#define SHARED_FIRST (PENDING_BYTE+2)
+#define SHARED_SIZE 510
/*
-** A convenience macro that returns the number of elements in
-** an array.
+** Wrapper around OS specific sqlite3_os_init() function.
*/
-#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
+SQLITE_PRIVATE int sqlite3OsInit(void);
/*
-** Forward references to structures
+** Functions for accessing sqlite3_file methods
+*/
+SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
+SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
+SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
+SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
+SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
+SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut);
+SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
+#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0
+SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
+SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
+
+/*
+** Functions for accessing sqlite3_vfs methods
+*/
+SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
+SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
+SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut);
+SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
+SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void);
+SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
+SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*);
+
+/*
+** Convenience functions for opening and closing files using
+** sqlite3_malloc() to obtain space for the file-handle structure.
+*/
+SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
+SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
+
+#endif /* _SQLITE_OS_H_ */
+
+/************** End of os.h **************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include mutex.h in the middle of sqliteInt.h *****************/
+/************** Begin file mutex.h *******************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the common header for all mutex implementations.
+** The sqliteInt.h header #includes this file so that it is available
+** to all source files. We break it out in an effort to keep the code
+** better organized.
+**
+** NOTE: source files should *not* #include this header file directly.
+** Source files should #include the sqliteInt.h file and let that file
+** include this one indirectly.
+**
+** $Id: mutex.h,v 1.9 2008/10/07 15:25:48 drh Exp $
*/
-typedef struct AggInfo AggInfo;
-typedef struct AuthContext AuthContext;
-typedef struct CollSeq CollSeq;
-typedef struct Column Column;
-typedef struct Db Db;
-typedef struct Schema Schema;
-typedef struct Expr Expr;
-typedef struct ExprList ExprList;
-typedef struct FKey FKey;
-typedef struct FuncDef FuncDef;
-typedef struct IdList IdList;
-typedef struct Index Index;
-typedef struct KeyClass KeyClass;
-typedef struct KeyInfo KeyInfo;
-typedef struct Module Module;
-typedef struct NameContext NameContext;
-typedef struct Parse Parse;
-typedef struct Select Select;
-typedef struct SrcList SrcList;
-typedef struct ThreadData ThreadData;
-typedef struct Table Table;
-typedef struct TableLock TableLock;
-typedef struct Token Token;
-typedef struct TriggerStack TriggerStack;
-typedef struct TriggerStep TriggerStep;
-typedef struct Trigger Trigger;
-typedef struct WhereInfo WhereInfo;
-typedef struct WhereLevel WhereLevel;
+
+
+/*
+** Figure out what version of the code to use. The choices are
+**
+** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The
+** mutexes implemention cannot be overridden
+** at start-time.
+**
+** SQLITE_MUTEX_NOOP For single-threaded applications. No
+** mutual exclusion is provided. But this
+** implementation can be overridden at
+** start-time.
+**
+** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
+**
+** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
+**
+** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2.
+*/
+#if !SQLITE_THREADSAFE
+# define SQLITE_MUTEX_OMIT
+#endif
+#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
+# if SQLITE_OS_UNIX
+# define SQLITE_MUTEX_PTHREADS
+# elif SQLITE_OS_WIN
+# define SQLITE_MUTEX_W32
+# elif SQLITE_OS_OS2
+# define SQLITE_MUTEX_OS2
+# else
+# define SQLITE_MUTEX_NOOP
+# endif
+#endif
+
+#ifdef SQLITE_MUTEX_OMIT
+/*
+** If this is a no-op implementation, implement everything as macros.
+*/
+#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
+#define sqlite3_mutex_free(X)
+#define sqlite3_mutex_enter(X)
+#define sqlite3_mutex_try(X) SQLITE_OK
+#define sqlite3_mutex_leave(X)
+#define sqlite3_mutex_held(X) 1
+#define sqlite3_mutex_notheld(X) 1
+#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8)
+#define sqlite3MutexInit() SQLITE_OK
+#define sqlite3MutexEnd()
+#endif /* defined(SQLITE_OMIT_MUTEX) */
+
+/************** End of mutex.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
/*
** Each database file to be accessed by the system is an instance
@@ -3227,9 +8252,7 @@ struct Db {
char *zName; /* Name of this database */
Btree *pBt; /* The B*Tree structure for this database file */
u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
- u8 safety_level; /* How aggressive at synching data to disk */
- void *pAux; /* Auxiliary data. Usually NULL */
- void (*xFreeAux)(void*); /* Routine to free pAux */
+ u8 safety_level; /* How aggressive at syncing data to disk */
Schema *pSchema; /* Pointer to database schema (possibly shared) */
};
@@ -3249,7 +8272,6 @@ struct Schema {
Hash tblHash; /* All tables indexed by name */
Hash idxHash; /* All (named) indices indexed by name */
Hash trigHash; /* All triggers indexed by name */
- Hash aFKey; /* Foreign keys indexed by to-table */
Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
u8 file_format; /* Schema format version for this file */
u8 enc; /* Text encoding used by this database */
@@ -3283,6 +8305,55 @@ struct Schema {
#define DB_UnresetViews 0x0002 /* Some views have defined column names */
#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
+/*
+** The number of different kinds of things that can be limited
+** using the sqlite3_limit() interface.
+*/
+#define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
+
+/*
+** Lookaside malloc is a set of fixed-size buffers that can be used
+** to satisfy small transient memory allocation requests for objects
+** associated with a particular database connection. The use of
+** lookaside malloc provides a significant performance enhancement
+** (approx 10%) by avoiding numerous malloc/free requests while parsing
+** SQL statements.
+**
+** The Lookaside structure holds configuration information about the
+** lookaside malloc subsystem. Each available memory allocation in
+** the lookaside subsystem is stored on a linked list of LookasideSlot
+** objects.
+**
+** Lookaside allocations are only allowed for objects that are associated
+** with a particular database connection. Hence, schema information cannot
+** be stored in lookaside because in shared cache mode the schema information
+** is shared by multiple database connections. Therefore, while parsing
+** schema information, the Lookaside.bEnabled flag is cleared so that
+** lookaside allocations are not used to construct the schema objects.
+*/
+struct Lookaside {
+ u16 sz; /* Size of each buffer in bytes */
+ u8 bEnabled; /* False to disable new lookaside allocations */
+ u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
+ int nOut; /* Number of buffers currently checked out */
+ int mxOut; /* Highwater mark for nOut */
+ LookasideSlot *pFree; /* List of available buffers */
+ void *pStart; /* First byte of available memory space */
+ void *pEnd; /* First byte past end of available space */
+};
+struct LookasideSlot {
+ LookasideSlot *pNext; /* Next buffer in the list of free buffers */
+};
+
+/*
+** A hash table for function definitions.
+**
+** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
+** Collisions are on the FuncDef.pHash chain.
+*/
+struct FuncDefHash {
+ FuncDef *a[23]; /* Hash table for functions */
+};
/*
** Each database is an instance of the following structure.
@@ -3311,29 +8382,39 @@ struct Schema {
** consistently.
*/
struct sqlite3 {
+ sqlite3_vfs *pVfs; /* OS Interface */
int nDb; /* Number of backends currently in use */
Db *aDb; /* All backends */
- int flags; /* Miscellanous flags. See below */
+ int flags; /* Miscellaneous flags. See below */
+ int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
int errCode; /* Most recent error code (SQLITE_*) */
int errMask; /* & result codes with this before returning */
u8 autoCommit; /* The auto-commit flag. */
u8 temp_store; /* 1: file 2: memory 0: default */
+ u8 mallocFailed; /* True if we have seen a malloc failure */
+ u8 dfltLockMode; /* Default locking-mode for attached dbs */
+ u8 dfltJournalMode; /* Default journal mode for attached dbs */
+ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
+ int nextPagesize; /* Pagesize after VACUUM if >0 */
int nTable; /* Number of tables in the database */
CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
i64 lastRowid; /* ROWID of most recent insert (see above) */
- i64 priorNewRowid; /* Last randomly generated ROWID */
- int magic; /* Magic number for detect library misuse */
+ u32 magic; /* Magic number for detect library misuse */
int nChange; /* Value returned by sqlite3_changes() */
int nTotalChange; /* Value returned by sqlite3_total_changes() */
+ sqlite3_mutex *mutex; /* Connection mutex */
+ int aLimit[SQLITE_N_LIMIT]; /* Limits */
struct sqlite3InitInfo { /* Information used during initialization */
int iDb; /* When back is being initialized */
int newTnum; /* Rootpage of table being initialized */
u8 busy; /* TRUE if currently initializing */
+ u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */
} init;
int nExtension; /* Number of loaded extensions */
- void **aExtension; /* Array of shared libraray handles */
+ void **aExtension; /* Array of shared library handles */
struct Vdbe *pVdbe; /* List of active virtual machines */
- int activeVdbeCnt; /* Number of vdbes currently executing */
+ int activeVdbeCnt; /* Number of VDBEs currently executing */
+ int writeVdbeCnt; /* Number of active VDBEs that are writing */
void (*xTrace)(void*,const char*); /* Trace function */
void *pTraceArg; /* Argument to the trace function */
void (*xProfile)(void*,const char*,u64); /* Profiling function */
@@ -3351,9 +8432,10 @@ struct sqlite3 {
char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
union {
- int isInterrupted; /* True if sqlite3_interrupt has been called */
+ volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
double notUsed1; /* Spacer */
} u1;
+ Lookaside lookaside; /* Lookaside malloc configuration */
#ifndef SQLITE_OMIT_AUTHORIZATION
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
/* Access authorization function */
@@ -3367,18 +8449,37 @@ struct sqlite3 {
#ifndef SQLITE_OMIT_VIRTUALTABLE
Hash aModule; /* populated by sqlite3_create_module() */
Table *pVTab; /* vtab with active Connect/Create method */
- sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */
+ VTable **aVTrans; /* Virtual tables with open transactions */
int nVTrans; /* Allocated size of aVTrans */
+ VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */
#endif
- Hash aFunc; /* All functions that can be in SQL exprs */
+ FuncDefHash aFunc; /* Hash table of connection functions */
Hash aCollSeq; /* All collating sequences */
BusyHandler busyHandler; /* Busy callback */
int busyTimeout; /* Busy handler timeout, in msec */
Db aDbStatic[2]; /* Static space for the 2 default backends */
-#ifdef SQLITE_SSE
- sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */
+ Savepoint *pSavepoint; /* List of active savepoints */
+ int nSavepoint; /* Number of non-transaction savepoints */
+ int nStatement; /* Number of nested statement-transactions */
+ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
+
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+ /* The following variables are all protected by the STATIC_MASTER
+ ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
+ **
+ ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
+ ** unlock so that it can proceed.
+ **
+ ** When X.pBlockingConnection==Y, that means that something that X tried
+ ** tried to do recently failed with an SQLITE_LOCKED error due to locks
+ ** held by Y.
+ */
+ sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
+ sqlite3 *pUnlockConnection; /* Connection to watch for unlock */
+ void *pUnlockArg; /* Argument to xUnlockNotify */
+ void (*xUnlockNotify)(void **, int); /* Unlock notify callback */
+ sqlite3 *pNextBlocked; /* Next in list of all blocked connections */
#endif
- u8 dfltLockMode; /* Default locking-mode for attached dbs */
};
/*
@@ -3415,6 +8516,8 @@ struct sqlite3 {
#define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */
#define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */
+#define SQLITE_ReverseOrder 0x00100000 /* Reverse unordered SELECTs */
+#define SQLITE_RecTriggers 0x00200000 /* Enable recursive triggers */
/*
** Possible values for the sqlite.magic field.
@@ -3423,6 +8526,7 @@ struct sqlite3 {
*/
#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
+#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
@@ -3435,17 +8539,84 @@ struct sqlite3 {
struct FuncDef {
i16 nArg; /* Number of arguments. -1 means unlimited */
u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
- u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */
u8 flags; /* Some combination of SQLITE_FUNC_* */
void *pUserData; /* User data parameter */
FuncDef *pNext; /* Next function with same name */
void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
- void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */
- char zName[1]; /* SQL name of the function. MUST BE LAST */
+ void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */
+ char *zName; /* SQL name of the function. */
+ FuncDef *pHash; /* Next with a different name but the same hash */
};
/*
+** Possible values for FuncDef.flags
+*/
+#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
+#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
+#define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */
+#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
+#define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */
+#define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */
+
+/*
+** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
+** used to create the initializers for the FuncDef structures.
+**
+** FUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Used to create a scalar function definition of a function zName
+** implemented by C function xFunc that accepts nArg arguments. The
+** value passed as iArg is cast to a (void*) and made available
+** as the user-data (sqlite3_user_data()) for the function. If
+** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
+**
+** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
+** Used to create an aggregate function definition implemented by
+** the C functions xStep and xFinal. The first four parameters
+** are interpreted in the same way as the first 4 parameters to
+** FUNCTION().
+**
+** LIKEFUNC(zName, nArg, pArg, flags)
+** Used to create a scalar function definition of a function zName
+** that accepts nArg arguments and is implemented by a call to C
+** function likeFunc. Argument pArg is cast to a (void *) and made
+** available as the function user-data (sqlite3_user_data()). The
+** FuncDef.flags variable is set to the value passed as the flags
+** parameter.
+*/
+#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0}
+#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
+ {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
+ pArg, 0, xFunc, 0, 0, #zName, 0}
+#define LIKEFUNC(zName, nArg, arg, flags) \
+ {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0}
+#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
+ {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
+ SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0}
+
+/*
+** All current savepoints are stored in a linked list starting at
+** sqlite3.pSavepoint. The first element in the list is the most recently
+** opened savepoint. Savepoints are added to the list by the vdbe
+** OP_Savepoint instruction.
+*/
+struct Savepoint {
+ char *zName; /* Savepoint name (nul-terminated) */
+ Savepoint *pNext; /* Parent savepoint (if any) */
+};
+
+/*
+** The following are used as the second parameter to sqlite3Savepoint(),
+** and as the P1 argument to the OP_Savepoint instruction.
+*/
+#define SAVEPOINT_BEGIN 0
+#define SAVEPOINT_RELEASE 1
+#define SAVEPOINT_ROLLBACK 2
+
+
+/*
** Each SQLite module (virtual table definition) is defined by an
** instance of the following structure, stored in the sqlite3.aModule
** hash table.
@@ -3454,27 +8625,25 @@ struct Module {
const sqlite3_module *pModule; /* Callback pointers */
const char *zName; /* Name passed to create_module() */
void *pAux; /* pAux passed to create_module() */
+ void (*xDestroy)(void *); /* Module destructor function */
};
/*
-** Possible values for FuncDef.flags
-*/
-#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
-#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
-#define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */
-
-/*
** information about each column of an SQL table is held in an instance
** of this structure.
*/
struct Column {
char *zName; /* Name of this column */
Expr *pDflt; /* Default value of this column */
+ char *zDflt; /* Original text of the default value */
char *zType; /* Data type for this column */
char *zColl; /* Collating sequence. If NULL, use the default */
u8 notNull; /* True if there is a NOT NULL constraint */
u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
char affinity; /* One of the SQLITE_AFF_... values */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ u8 isHidden; /* True if this column is 'hidden' */
+#endif
};
/*
@@ -3482,7 +8651,7 @@ struct Column {
** structure. Conceptually, a collating sequence consists of a name and
** a comparison routine that defines the order of that sequence.
**
-** There may two seperate implementations of the collation function, one
+** There may two separate implementations of the collation function, one
** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
** native byte order. When a collation sequence is invoked, SQLite selects
@@ -3499,15 +8668,16 @@ struct Column {
** collating sequence may not be read or written.
*/
struct CollSeq {
- char *zName; /* Name of the collating sequence, UTF-8 encoded */
- u8 enc; /* Text encoding handled by xCmp() */
- u8 type; /* One of the SQLITE_COLL_... values below */
- void *pUser; /* First argument to xCmp() */
+ char *zName; /* Name of the collating sequence, UTF-8 encoded */
+ u8 enc; /* Text encoding handled by xCmp() */
+ u8 type; /* One of the SQLITE_COLL_... values below */
+ void *pUser; /* First argument to xCmp() */
int (*xCmp)(void*,int, const void*, int, const void*);
+ void (*xDel)(void*); /* Destructor for pUser */
};
/*
-** Allowed values of CollSeq flags:
+** Allowed values of CollSeq.type:
*/
#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
@@ -3525,11 +8695,11 @@ struct CollSeq {
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
-** the speed a little by number the values consecutively.
+** the speed a little by numbering the values consecutively.
**
** But rather than start with 0 or 1, we begin with 'a'. That way,
** when multiple affinity types are concatenated into a string and
-** used as the P3 operand, they will be more readable.
+** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
@@ -3543,6 +8713,69 @@ struct CollSeq {
#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
/*
+** The SQLITE_AFF_MASK values masks off the significant bits of an
+** affinity value.
+*/
+#define SQLITE_AFF_MASK 0x67
+
+/*
+** Additional bit values that can be ORed with an affinity without
+** changing the affinity.
+*/
+#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
+#define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */
+
+/*
+** An object of this type is created for each virtual table present in
+** the database schema.
+**
+** If the database schema is shared, then there is one instance of this
+** structure for each database connection (sqlite3*) that uses the shared
+** schema. This is because each database connection requires its own unique
+** instance of the sqlite3_vtab* handle used to access the virtual table
+** implementation. sqlite3_vtab* handles can not be shared between
+** database connections, even when the rest of the in-memory database
+** schema is shared, as the implementation often stores the database
+** connection handle passed to it via the xConnect() or xCreate() method
+** during initialization internally. This database connection handle may
+** then used by the virtual table implementation to access real tables
+** within the database. So that they appear as part of the callers
+** transaction, these accesses need to be made via the same database
+** connection as that used to execute SQL operations on the virtual table.
+**
+** All VTable objects that correspond to a single table in a shared
+** database schema are initially stored in a linked-list pointed to by
+** the Table.pVTable member variable of the corresponding Table object.
+** When an sqlite3_prepare() operation is required to access the virtual
+** table, it searches the list for the VTable that corresponds to the
+** database connection doing the preparing so as to use the correct
+** sqlite3_vtab* handle in the compiled query.
+**
+** When an in-memory Table object is deleted (for example when the
+** schema is being reloaded for some reason), the VTable objects are not
+** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
+** immediately. Instead, they are moved from the Table.pVTable list to
+** another linked list headed by the sqlite3.pDisconnect member of the
+** corresponding sqlite3 structure. They are then deleted/xDisconnected
+** next time a statement is prepared using said sqlite3*. This is done
+** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
+** Refer to comments above function sqlite3VtabUnlockList() for an
+** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
+** list without holding the corresponding sqlite3.mutex mutex.
+**
+** The memory for objects of this type is always allocated by
+** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
+** the first argument.
+*/
+struct VTable {
+ sqlite3 *db; /* Database connection associated with this table */
+ Module *pMod; /* Pointer to module implementation */
+ sqlite3_vtab *pVtab; /* Pointer to vtab instance */
+ int nRef; /* Number of pointers to this structure */
+ VTable *pNext; /* Next in linked list (see above) */
+};
+
+/*
** Each SQL table is represented in memory by an instance of the
** following structure.
**
@@ -3558,14 +8791,14 @@ struct CollSeq {
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
-** is generated for each row of the table. Table.hasPrimKey is true if
+** is generated for each row of the table. TF_HasPrimaryKey is set if
** the table has any PRIMARY KEY, INTEGER or otherwise.
**
** Table.tnum is the page number for the root BTree page of the table in the
** database file. If Table.iDb is the index of the database table backend
** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
-** holds temporary tables and indices. If Table.isEphem
-** is true, then the table is stored in a file that is automatically deleted
+** holds temporary tables and indices. If TF_Ephemeral is set
+** then the table is stored in a file that is automatically deleted
** when the VDBE cursor to the table is closed. In this case Table.tnum
** refers VDBE cursor number that holds the table open, not to the root
** page number. Transient tables are used to hold the results of a
@@ -3573,48 +8806,58 @@ struct CollSeq {
** of a SELECT statement.
*/
struct Table {
- char *zName; /* Name of the table */
- int nCol; /* Number of columns in this table */
- Column *aCol; /* Information about each column */
- int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
- Index *pIndex; /* List of SQL indexes on this table. */
- int tnum; /* Root BTree node for this table (see note above) */
- Select *pSelect; /* NULL for tables. Points to definition if a view. */
- int nRef; /* Number of pointers to this Table */
- Trigger *pTrigger; /* List of SQL triggers on this table */
- FKey *pFKey; /* Linked list of all foreign keys in this table */
- char *zColAff; /* String defining the affinity of each column */
+ sqlite3 *dbMem; /* DB connection used for lookaside allocations. */
+ char *zName; /* Name of the table or view */
+ int iPKey; /* If not negative, use aCol[iPKey] as the primary key */
+ int nCol; /* Number of columns in this table */
+ Column *aCol; /* Information about each column */
+ Index *pIndex; /* List of SQL indexes on this table. */
+ int tnum; /* Root BTree node for this table (see note above) */
+ Select *pSelect; /* NULL for tables. Points to definition if a view. */
+ u16 nRef; /* Number of pointers to this Table */
+ u8 tabFlags; /* Mask of TF_* values */
+ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
+ FKey *pFKey; /* Linked list of all foreign keys in this table */
+ char *zColAff; /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
- Expr *pCheck; /* The AND of all CHECK constraints */
+ Expr *pCheck; /* The AND of all CHECK constraints */
#endif
#ifndef SQLITE_OMIT_ALTERTABLE
- int addColOffset; /* Offset in CREATE TABLE statement to add a new column */
+ int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */
#endif
- u8 readOnly; /* True if this table should not be written by the user */
- u8 isEphem; /* True if created using OP_OpenEphermeral */
- u8 hasPrimKey; /* True if there exists a primary key */
- u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
- u8 autoInc; /* True if the integer primary key is autoincrement */
#ifndef SQLITE_OMIT_VIRTUALTABLE
- u8 isVirtual; /* True if this is a virtual table */
- u8 isCommit; /* True once the CREATE TABLE has been committed */
- Module *pMod; /* Pointer to the implementation of the module */
- sqlite3_vtab *pVtab; /* Pointer to the module instance */
- int nModuleArg; /* Number of arguments to the module */
- char **azModuleArg; /* Text of all module args. [0] is module name */
-#endif
- Schema *pSchema;
+ VTable *pVTable; /* List of VTable objects. */
+ int nModuleArg; /* Number of arguments to the module */
+ char **azModuleArg; /* Text of all module args. [0] is module name */
+#endif
+ Trigger *pTrigger; /* List of triggers stored in pSchema */
+ Schema *pSchema; /* Schema that contains this table */
+ Table *pNextZombie; /* Next on the Parse.pZombieTab list */
};
/*
+** Allowed values for Tabe.tabFlags.
+*/
+#define TF_Readonly 0x01 /* Read-only system table */
+#define TF_Ephemeral 0x02 /* An ephemeral table */
+#define TF_HasPrimaryKey 0x04 /* Table has a primary key */
+#define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */
+#define TF_Virtual 0x10 /* Is a virtual table */
+#define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */
+
+
+
+/*
** Test to see whether or not a table is a virtual table. This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
-# define IsVirtual(X) ((X)->isVirtual)
+# define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0)
+# define IsHiddenColumn(X) ((X)->isHidden)
#else
-# define IsVirtual(X) 0
+# define IsVirtual(X) 0
+# define IsHiddenColumn(X) 0
#endif
/*
@@ -3634,32 +8877,25 @@ struct Table {
**
** Each REFERENCES clause generates an instance of the following structure
** which is attached to the from-table. The to-table need not exist when
-** the from-table is created. The existance of the to-table is not checked
-** until an attempt is made to insert data into the from-table.
-**
-** The sqlite.aFKey hash table stores pointers to this structure
-** given the name of a to-table. For each to-table, all foreign keys
-** associated with that table are on a linked list using the FKey.pNextTo
-** field.
+** the from-table is created. The existence of the to-table is not checked.
*/
struct FKey {
- Table *pFrom; /* The table that constains the REFERENCES clause */
+ Table *pFrom; /* The table that contains the REFERENCES clause */
FKey *pNextFrom; /* Next foreign key in pFrom */
char *zTo; /* Name of table that the key points to */
- FKey *pNextTo; /* Next foreign key that points to zTo */
int nCol; /* Number of columns in this key */
- struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
- int iFrom; /* Index of column in pFrom */
- char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
- } *aCol; /* One entry for each of nCol column s */
u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
u8 insertConf; /* How to resolve conflicts that occur on INSERT */
+ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
+ int iFrom; /* Index of column in pFrom */
+ char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
+ } aCol[1]; /* One entry for each of nCol column s */
};
/*
-** SQLite supports many different ways to resolve a contraint
+** SQLite supports many different ways to resolve a constraint
** error. ROLLBACK processing means that a constraint violation
** causes the operation in process to fail and for the current transaction
** to be rolled back. ABORT processing means the operation in process
@@ -3702,20 +8938,48 @@ struct FKey {
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the
** comparison of the two index keys.
-**
-** If the KeyInfo.incrKey value is true and the comparison would
-** otherwise be equal, then return a result as if the second key
-** were larger.
*/
struct KeyInfo {
+ sqlite3 *db; /* The database connection */
u8 enc; /* Text encoding - one of the TEXT_Utf* values */
- u8 incrKey; /* Increase 2nd key by epsilon before comparison */
- int nField; /* Number of entries in aColl[] */
+ u16 nField; /* Number of entries in aColl[] */
u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */
CollSeq *aColl[1]; /* Collating sequence for each term of the key */
};
/*
+** An instance of the following structure holds information about a
+** single index record that has already been parsed out into individual
+** values.
+**
+** A record is an object that contains one or more fields of data.
+** Records are used to store the content of a table row and to store
+** the key of an index. A blob encoding of a record is created by
+** the OP_MakeRecord opcode of the VDBE and is disassembled by the
+** OP_Column opcode.
+**
+** This structure holds a record that has already been disassembled
+** into its constituent fields.
+*/
+struct UnpackedRecord {
+ KeyInfo *pKeyInfo; /* Collation and sort-order information */
+ u16 nField; /* Number of entries in apMem[] */
+ u16 flags; /* Boolean settings. UNPACKED_... below */
+ i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */
+ Mem *aMem; /* Values */
+};
+
+/*
+** Allowed values of UnpackedRecord.flags
+*/
+#define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */
+#define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */
+#define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */
+#define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */
+#define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */
+#define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */
+
+/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
@@ -3755,6 +9019,20 @@ struct Index {
Schema *pSchema; /* Schema containing this index */
u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
char **azColl; /* Array of collation sequence names for index */
+ IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */
+};
+
+/*
+** Each sample stored in the sqlite_stat2 table is represented in memory
+** using a structure of this type.
+*/
+struct IndexSample {
+ union {
+ char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
+ double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
+ } u;
+ u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
+ u8 nByte; /* Size in byte of text or blob. */
};
/*
@@ -3762,13 +9040,12 @@ struct Index {
** this structure. Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
-** may contain random values. Do not make any assuptions about Token.dyn
+** may contain random values. Do not make any assumptions about Token.dyn
** and Token.n when Token.z==0.
*/
struct Token {
- const unsigned char *z; /* Text of the token. Not NULL-terminated! */
- unsigned dyn : 1; /* True for malloced memory, false for static */
- unsigned n : 31; /* Number of characters in this token */
+ const char *z; /* Text of the token. Not NULL-terminated! */
+ unsigned int n; /* Number of characters in this token */
};
/*
@@ -3809,7 +9086,7 @@ struct AggInfo {
Expr *pExpr; /* Expression encoding the function */
FuncDef *pFunc; /* The aggregate function implementation */
int iMem; /* Memory location that acts as accumulator */
- int iDistinct; /* Ephermeral table used to enforce DISTINCT */
+ int iDistinct; /* Ephemeral table used to enforce DISTINCT */
} *aFunc;
int nFunc; /* Number of entries in aFunc[] */
int nFuncAlloc; /* Number of slots allocated for aFunc[] */
@@ -3819,19 +9096,27 @@ struct AggInfo {
** Each node of an expression in the parse tree is an instance
** of this structure.
**
-** Expr.op is the opcode. The integer parser token codes are reused
-** as opcodes here. For example, the parser defines TK_GE to be an integer
-** code representing the ">=" operator. This same integer code is reused
+** Expr.op is the opcode. The integer parser token codes are reused
+** as opcodes here. For example, the parser defines TK_GE to be an integer
+** code representing the ">=" operator. This same integer code is reused
** to represent the greater-than-or-equal-to operator in the expression
** tree.
**
-** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
-** of argument if the expression is a function.
+** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
+** or TK_STRING), then Expr.token contains the text of the SQL literal. If
+** the expression is a variable (TK_VARIABLE), then Expr.token contains the
+** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
+** then Expr.token contains the name of the function.
+**
+** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
+** binary operator. Either or both may be NULL.
**
-** Expr.token is the operator token for this node. For some expressions
-** that have subexpressions, Expr.token can be the complete text that gave
-** rise to the Expr. In the latter case, the token is marked as being
-** a compound token.
+** Expr.x.pList is a list of arguments if the expression is an SQL function,
+** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
+** Expr.x.pSelect is used if the expression is a sub-select or an expression of
+** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
+** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
+** valid.
**
** An expression of the form ID or ID.ID refers to a column in a table.
** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
@@ -3841,10 +9126,9 @@ struct AggInfo {
** value is also stored in the Expr.iAgg column in the aggregate so that
** it can be accessed after all aggregates are computed.
**
-** If the expression is a function, the Expr.iTable is an integer code
-** representing which function. If the expression is an unbound variable
-** marker (a question mark character '?' in the original SQL) then the
-** Expr.iTable holds the index number for that variable.
+** If the expression is an unbound variable marker (a question mark
+** character '?' in the original SQL) then the Expr.iTable holds the index
+** number for that variable.
**
** If the expression is a subquery then Expr.iColumn holds an integer
** register number containing the result of the subquery. If the
@@ -3852,48 +9136,105 @@ struct AggInfo {
** gives a different answer at different times during statement processing
** then iTable is the address of a subroutine that computes the subquery.
**
-** The Expr.pSelect field points to a SELECT statement. The SELECT might
-** be the right operand of an IN operator. Or, if a scalar SELECT appears
-** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
-** operand.
-**
** If the Expr is of type OP_Column, and the table it is selecting from
** is a disk table or the "old.*" pseudo-table, then pTab points to the
** corresponding table definition.
+**
+** ALLOCATION NOTES:
+**
+** Expr objects can use a lot of memory space in database schema. To
+** help reduce memory requirements, sometimes an Expr object will be
+** truncated. And to reduce the number of memory allocations, sometimes
+** two or more Expr objects will be stored in a single memory allocation,
+** together with Expr.zToken strings.
+**
+** If the EP_Reduced and EP_TokenOnly flags are set when
+** an Expr object is truncated. When EP_Reduced is set, then all
+** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
+** are contained within the same memory allocation. Note, however, that
+** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
+** allocated, regardless of whether or not EP_Reduced is set.
*/
struct Expr {
u8 op; /* Operation performed by this node */
char affinity; /* The affinity of the column or 0 if not a column */
- u16 flags; /* Various flags. See below */
+ u16 flags; /* Various flags. EP_* See below */
+ union {
+ char *zToken; /* Token value. Zero terminated and dequoted */
+ int iValue; /* Integer value if EP_IntValue */
+ } u;
+
+ /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
+ ** space is allocated for the fields below this point. An attempt to
+ ** access them will result in a segfault or malfunction.
+ *********************************************************************/
+
+ Expr *pLeft; /* Left subnode */
+ Expr *pRight; /* Right subnode */
+ union {
+ ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */
+ Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */
+ } x;
CollSeq *pColl; /* The collation type of the column or 0 */
- Expr *pLeft, *pRight; /* Left and right subnodes */
- ExprList *pList; /* A list of expressions used as function arguments
- ** or in "<expr> IN (<expr-list)" */
- Token token; /* An operand token */
- Token span; /* Complete text of the expression */
- int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
- ** iColumn-th field of the iTable-th table. */
+
+ /* If the EP_Reduced flag is set in the Expr.flags mask, then no
+ ** space is allocated for the fields below this point. An attempt to
+ ** access them will result in a segfault or malfunction.
+ *********************************************************************/
+
+ int iTable; /* TK_COLUMN: cursor number of table holding column
+ ** TK_REGISTER: register number
+ ** TK_TRIGGER: 1 -> new, 0 -> old */
+ i16 iColumn; /* TK_COLUMN: column index. -1 for rowid */
+ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
+ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */
+ u8 flags2; /* Second set of flags. EP2_... */
+ u8 op2; /* If a TK_REGISTER, the original value of Expr.op */
AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
- int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
- int iRightJoinTable; /* If EP_FromJoin, the right table of the join */
- Select *pSelect; /* When the expression is a sub-select. Also the
- ** right side of "<expr> IN (<select>)" */
- Table *pTab; /* Table for OP_Column expressions. */
- Schema *pSchema;
+ Table *pTab; /* Table for TK_COLUMN expressions. */
+#if SQLITE_MAX_EXPR_DEPTH>0
+ int nHeight; /* Height of the tree headed by this node */
+#endif
};
/*
** The following are the meanings of bits in the Expr.flags field.
*/
-#define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */
-#define EP_Agg 0x02 /* Contains one or more aggregate functions */
-#define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */
-#define EP_Error 0x08 /* Expression contains one or more errors */
-#define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */
-#define EP_VarSelect 0x20 /* pSelect is correlated, not constant */
-#define EP_Dequoted 0x40 /* True if the string has been dequoted */
-#define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */
-#define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */
+#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
+#define EP_Agg 0x0002 /* Contains one or more aggregate functions */
+#define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
+#define EP_Error 0x0008 /* Expression contains one or more errors */
+#define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
+#define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
+#define EP_DblQuoted 0x0040 /* token.z was originally in "..." */
+#define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
+#define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
+#define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */
+#define EP_FixedDest 0x0400 /* Result needed in a specific register */
+#define EP_IntValue 0x0800 /* Integer value contained in u.iValue */
+#define EP_xIsSelect 0x1000 /* x.pSelect is valid (otherwise x.pList is) */
+
+#define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */
+#define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
+#define EP_Static 0x8000 /* Held in memory not obtained from malloc() */
+
+/*
+** The following are the meanings of bits in the Expr.flags2 field.
+*/
+#define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */
+#define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */
+
+/*
+** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
+** flag on an expression structure. This flag is used for VV&A only. The
+** routine is implemented as a macro that only works when in debugging mode,
+** so as not to burden production code.
+*/
+#ifdef SQLITE_DEBUG
+# define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible
+#else
+# define ExprSetIrreducible(X)
+#endif
/*
** These macros can be used to test, set, or clear bits in the
@@ -3905,6 +9246,21 @@ struct Expr {
#define ExprClearProperty(E,P) (E)->flags&=~(P)
/*
+** Macros to determine the number of bytes required by a normal Expr
+** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
+** and an Expr struct with the EP_TokenOnly flag set.
+*/
+#define EXPR_FULLSIZE sizeof(Expr) /* Full size */
+#define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */
+#define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */
+
+/*
+** Flags passed to the sqlite3ExprDup() function. See the header comment
+** above sqlite3ExprDup() for details.
+*/
+#define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */
+
+/*
** A list of expressions. Each expression may optionally have a
** name. An expr/name combination can be used in several ways, such
** as the list of "expr AS ID" fields following a "SELECT" or in the
@@ -3919,13 +9275,26 @@ struct ExprList {
struct ExprList_item {
Expr *pExpr; /* The list of expressions */
char *zName; /* Token associated with this expression */
+ char *zSpan; /* Original text of the expression */
u8 sortOrder; /* 1 for DESC or 0 for ASC */
- u8 isAgg; /* True if this is an aggregate like count(*) */
u8 done; /* A flag to indicate when processing is finished */
+ u16 iCol; /* For ORDER BY, column number in result set */
+ u16 iAlias; /* Index into Parse.aAlias[] for zName */
} *a; /* One entry for each expression */
};
/*
+** An instance of this structure is used by the parser to record both
+** the parse tree for an expression and the span of input text for an
+** expression.
+*/
+struct ExprSpan {
+ Expr *pExpr; /* The expression parse tree */
+ const char *zStart; /* First character of input text */
+ const char *zEnd; /* One character past the end of input text */
+};
+
+/*
** An instance of this structure can hold a simple list of identifiers,
** such as the list "a,b,c" in the following statements:
**
@@ -3959,6 +9328,11 @@ struct IdList {
typedef u64 Bitmask;
/*
+** The number of bits in a Bitmask. "BMS" means "BitMask Size".
+*/
+#define BMS ((int)(sizeof(Bitmask)*8))
+
+/*
** The following structure describes the FROM clause of a SELECT statement.
** Each table or subquery in the FROM clause is a separate element of
** the SrcList.a[] array.
@@ -3985,10 +9359,13 @@ struct SrcList {
Select *pSelect; /* A SELECT statement used in place of a table name */
u8 isPopulated; /* Temporary table associated with SELECT is populated */
u8 jointype; /* Type of join between this able and the previous */
+ u8 notIndexed; /* True if there is a NOT INDEXED clause */
int iCursor; /* The VDBE cursor number used to access this table */
Expr *pOn; /* The ON clause of a join */
IdList *pUsing; /* The USING clause of a join */
- Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */
+ Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */
+ char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */
+ Index *pIndex; /* Index structure corresponding to zIndex, if any */
} a[1]; /* One entry for each identifier on the list */
};
@@ -4003,54 +9380,89 @@ struct SrcList {
#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
#define JT_ERROR 0x0040 /* unknown or unsupported join type */
+
+/*
+** A WherePlan object holds information that describes a lookup
+** strategy.
+**
+** This object is intended to be opaque outside of the where.c module.
+** It is included here only so that that compiler will know how big it
+** is. None of the fields in this object should be used outside of
+** the where.c module.
+**
+** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
+** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx
+** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the
+** case that more than one of these conditions is true.
+*/
+struct WherePlan {
+ u32 wsFlags; /* WHERE_* flags that describe the strategy */
+ u32 nEq; /* Number of == constraints */
+ union {
+ Index *pIdx; /* Index when WHERE_INDEXED is true */
+ struct WhereTerm *pTerm; /* WHERE clause term for OR-search */
+ sqlite3_index_info *pVtabIdx; /* Virtual table index to use */
+ } u;
+};
+
/*
** For each nested loop in a WHERE clause implementation, the WhereInfo
** structure contains a single instance of this structure. This structure
** is intended to be private the the where.c module and should not be
** access or modified by other modules.
**
-** The pIdxInfo and pBestIdx fields are used to help pick the best
-** index on a virtual table. The pIdxInfo pointer contains indexing
+** The pIdxInfo field is used to help pick the best index on a
+** virtual table. The pIdxInfo pointer contains indexing
** information for the i-th table in the FROM clause before reordering.
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
-** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
-** FROM clause ordering. This is a little confusing so I will repeat
-** it in different words. WhereInfo.a[i].pIdxInfo is index information
-** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the
-** index information for the i-th loop of the join. pBestInfo is always
-** either NULL or a copy of some pIdxInfo. So for cleanup it is
-** sufficient to free all of the pIdxInfo pointers.
-**
+** All other information in the i-th WhereLevel object for the i-th table
+** after FROM clause ordering.
*/
struct WhereLevel {
- int iFrom; /* Which entry in the FROM clause */
- int flags; /* Flags associated with this level */
- int iMem; /* First memory cell used by this level */
+ WherePlan plan; /* query plan for this element of the FROM clause */
int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
- Index *pIdx; /* Index used. NULL if no index */
int iTabCur; /* The VDBE cursor used to access the table */
- int iIdxCur; /* The VDBE cursor used to acesss pIdx */
- int brk; /* Jump here to break out of the loop */
- int nxt; /* Jump here to start the next IN combination */
- int cont; /* Jump here to continue with the next loop cycle */
- int top; /* First instruction of interior of the loop */
- int op, p1, p2; /* Opcode used to terminate the loop */
- int nEq; /* Number of == or IN constraints on this loop */
- int nIn; /* Number of IN operators constraining this loop */
- struct InLoop {
- int iCur; /* The VDBE cursor used by this IN operator */
- int topAddr; /* Top of the IN loop */
- } *aInLoop; /* Information about each nested IN operator */
- sqlite3_index_info *pBestIdx; /* Index information for this level */
+ int iIdxCur; /* The VDBE cursor used to access pIdx */
+ int addrBrk; /* Jump here to break out of the loop */
+ int addrNxt; /* Jump here to start the next IN combination */
+ int addrCont; /* Jump here to continue with the next loop cycle */
+ int addrFirst; /* First instruction of interior of the loop */
+ u8 iFrom; /* Which entry in the FROM clause */
+ u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */
+ int p1, p2; /* Operands of the opcode used to ends the loop */
+ union { /* Information that depends on plan.wsFlags */
+ struct {
+ int nIn; /* Number of entries in aInLoop[] */
+ struct InLoop {
+ int iCur; /* The VDBE cursor used by this IN operator */
+ int addrInTop; /* Top of the IN loop */
+ } *aInLoop; /* Information about each nested IN operator */
+ } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */
+ } u;
/* The following field is really not part of the current level. But
- ** we need a place to cache index information for each table in the
- ** FROM clause and the WhereLevel structure is a convenient place.
+ ** we need a place to cache virtual table index information for each
+ ** virtual table in the FROM clause and the WhereLevel structure is
+ ** a convenient place since there is one WhereLevel for each FROM clause
+ ** element.
*/
sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
};
/*
+** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
+** and the WhereInfo.wctrlFlags member.
+*/
+#define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */
+#define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */
+#define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */
+#define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */
+#define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */
+#define WHERE_OMIT_OPEN 0x0010 /* Table cursor are already open */
+#define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */
+#define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */
+
+/*
** The WHERE clause processing routine has two halves. The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop. An instance of
@@ -4058,14 +9470,16 @@ struct WhereLevel {
** into the second half to give some continuity.
*/
struct WhereInfo {
- Parse *pParse;
- SrcList *pTabList; /* List of tables in the join */
- int iTop; /* The very beginning of the WHERE loop */
- int iContinue; /* Jump here to continue with next record */
- int iBreak; /* Jump here to break out of the loop */
- int nLevel; /* Number of nested loop */
- sqlite3_index_info **apInfo; /* Array of pointers to index info structures */
- WhereLevel a[1]; /* Information about each nest loop in the WHERE */
+ Parse *pParse; /* Parsing and code generating context */
+ u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */
+ u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
+ SrcList *pTabList; /* List of tables in the join */
+ int iTop; /* The very beginning of the WHERE loop */
+ int iContinue; /* Jump here to continue with next record */
+ int iBreak; /* Jump here to break out of the loop */
+ int nLevel; /* Number of nested loop */
+ struct WhereClause *pWC; /* Decomposition of the WHERE clause */
+ WhereLevel a[1]; /* Information about each nest loop in WHERE */
};
/*
@@ -4115,7 +9529,7 @@ struct NameContext {
**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
-** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor
+** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.
@@ -4126,18 +9540,15 @@ struct NameContext {
struct Select {
ExprList *pEList; /* The fields of the result */
u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
- u8 isDistinct; /* True if the DISTINCT keyword is present */
- u8 isResolved; /* True once sqlite3SelectResolve() has run. */
- u8 isAgg; /* True if this is an aggregate query */
- u8 usesEphm; /* True if uses an OpenEphemeral opcode */
- u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */
char affinity; /* MakeRecord with this affinity for SRT_Set */
+ u16 selFlags; /* Various SF_* values */
SrcList *pSrc; /* The FROM clause */
Expr *pWhere; /* The WHERE clause */
ExprList *pGroupBy; /* The GROUP BY clause */
Expr *pHaving; /* The HAVING clause */
ExprList *pOrderBy; /* The ORDER BY clause */
Select *pPrior; /* Prior select in a compound select statement */
+ Select *pNext; /* Next select to the left in a compound */
Select *pRightmost; /* Right-most select in a compound select statement */
Expr *pLimit; /* LIMIT expression. NULL means not used. */
Expr *pOffset; /* OFFSET expression. NULL means not used. */
@@ -4146,22 +9557,96 @@ struct Select {
};
/*
-** The results of a select can be distributed in several ways.
+** Allowed values for Select.selFlags. The "SF" prefix stands for
+** "Select Flag".
+*/
+#define SF_Distinct 0x0001 /* Output should be DISTINCT */
+#define SF_Resolved 0x0002 /* Identifiers have been resolved */
+#define SF_Aggregate 0x0004 /* Contains aggregate functions */
+#define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */
+#define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */
+#define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */
+
+
+/*
+** The results of a select can be distributed in several ways. The
+** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union 1 /* Store result as keys in an index */
#define SRT_Except 2 /* Remove result from a UNION index */
-#define SRT_Discard 3 /* Do not save the results anywhere */
+#define SRT_Exists 3 /* Store 1 if the result is not empty */
+#define SRT_Discard 4 /* Do not save the results anywhere */
/* The ORDER BY clause is ignored for all of the above */
-#define IgnorableOrderby(X) (X<=SRT_Discard)
+#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
+
+#define SRT_Output 5 /* Output each row of result */
+#define SRT_Mem 6 /* Store result in a memory cell */
+#define SRT_Set 7 /* Store results as keys in an index */
+#define SRT_Table 8 /* Store result as data with an automatic rowid */
+#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
+#define SRT_Coroutine 10 /* Generate a single row of result */
+
+/*
+** A structure used to customize the behavior of sqlite3Select(). See
+** comments above sqlite3Select() for details.
+*/
+typedef struct SelectDest SelectDest;
+struct SelectDest {
+ u8 eDest; /* How to dispose of the results */
+ u8 affinity; /* Affinity used when eDest==SRT_Set */
+ int iParm; /* A parameter used by the eDest disposal method */
+ int iMem; /* Base register where results are written */
+ int nMem; /* Number of registers allocated */
+};
-#define SRT_Callback 4 /* Invoke a callback with each row of result */
-#define SRT_Mem 5 /* Store result in a memory cell */
-#define SRT_Set 6 /* Store non-null results as keys in an index */
-#define SRT_Table 7 /* Store result as data with an automatic rowid */
-#define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */
-#define SRT_Subroutine 9 /* Call a subroutine to handle results */
-#define SRT_Exists 10 /* Store 1 if the result is not empty */
+/*
+** During code generation of statements that do inserts into AUTOINCREMENT
+** tables, the following information is attached to the Table.u.autoInc.p
+** pointer of each autoincrement table to record some side information that
+** the code generator needs. We have to keep per-table autoincrement
+** information in case inserts are down within triggers. Triggers do not
+** normally coordinate their activities, but we do need to coordinate the
+** loading and saving of autoincrement information.
+*/
+struct AutoincInfo {
+ AutoincInfo *pNext; /* Next info block in a list of them all */
+ Table *pTab; /* Table this info block refers to */
+ int iDb; /* Index in sqlite3.aDb[] of database holding pTab */
+ int regCtr; /* Memory register holding the rowid counter */
+};
+
+/*
+** Size of the column cache
+*/
+#ifndef SQLITE_N_COLCACHE
+# define SQLITE_N_COLCACHE 10
+#endif
+
+/*
+** At least one instance of the following structure is created for each
+** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
+** statement. All such objects are stored in the linked list headed at
+** Parse.pTriggerPrg and deleted once statement compilation has been
+** completed.
+**
+** A Vdbe sub-program that implements the body and WHEN clause of trigger
+** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
+** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
+** The Parse.pTriggerPrg list never contains two entries with the same
+** values for both pTrigger and orconf.
+**
+** The TriggerPrg.oldmask variable is set to a mask of old.* columns
+** accessed (or set to 0 for triggers fired as a result of INSERT
+** statements).
+*/
+struct TriggerPrg {
+ Trigger *pTrigger; /* Trigger this program was coded from */
+ int orconf; /* Default ON CONFLICT policy */
+ SubProgram *pProgram; /* Program implementing pTrigger/orconf */
+ u32 oldmask; /* Mask of old.* columns accessed */
+ TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */
+};
/*
** An SQL parser context. A copy of this structure is passed through
@@ -4188,20 +9673,51 @@ struct Parse {
u8 nameClash; /* A permanent table name clashes with temp table name */
u8 checkSchema; /* Causes schema cookie check after an error */
u8 nested; /* Number of nested calls to the parser/code generator */
- u8 parseError; /* True if a parsing error has been seen */
+ u8 parseError; /* True after a parsing error. Ticket #1794 */
+ u8 nTempReg; /* Number of temporary registers in aTempReg[] */
+ u8 nTempInUse; /* Number of aTempReg[] currently checked out */
+ int aTempReg[8]; /* Holding area for temporary registers */
+ int nRangeReg; /* Size of the temporary register block */
+ int iRangeReg; /* First register in temporary register block */
int nErr; /* Number of errors seen */
int nTab; /* Number of previously allocated VDBE cursors */
int nMem; /* Number of memory cells used so far */
int nSet; /* Number of sets used so far */
- int ckOffset; /* Stack offset to data used by CHECK constraints */
+ int ckBase; /* Base register of data during check constraints */
+ int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
+ int iCacheCnt; /* Counter used to generate aColCache[].lru values */
+ u8 nColCache; /* Number of entries in the column cache */
+ u8 iColCache; /* Next entry of the cache to replace */
+ struct yColCache {
+ int iTable; /* Table cursor number */
+ int iColumn; /* Table column number */
+ u8 affChange; /* True if this register has had an affinity change */
+ u8 tempReg; /* iReg is a temp register that needs to be freed */
+ int iLevel; /* Nesting level */
+ int iReg; /* Reg with value of this column. 0 means none. */
+ int lru; /* Least recently used entry has the smallest value */
+ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */
u32 writeMask; /* Start a write transaction on these databases */
u32 cookieMask; /* Bitmask of schema verified databases */
+ u8 isMultiWrite; /* True if statement may affect/insert multiple rows */
+ u8 mayAbort; /* True if statement may throw an ABORT exception */
int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
- int cookieValue[MAX_ATTACHED+2]; /* Values of cookies to verify */
+ int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
#ifndef SQLITE_OMIT_SHARED_CACHE
int nTableLock; /* Number of locks in aTableLock */
TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
+ int regRowid; /* Register holding rowid of CREATE TABLE entry */
+ int regRoot; /* Register holding root page number for new objects */
+ AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
+ int nMaxArg; /* Max args passed to user function by sub-program */
+
+ /* Information used while coding trigger programs. */
+ Parse *pToplevel; /* Parse structure for main program (or NULL) */
+ Table *pTriggerTab; /* Table triggers are being coded for */
+ u32 oldmask; /* Mask of old.* columns referenced */
+ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
+ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
/* Above is constant between recursions. Below is reset before and after
** each recursion */
@@ -4210,21 +9726,25 @@ struct Parse {
int nVarExpr; /* Number of used slots in apVarExpr[] */
int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
+ int nAlias; /* Number of aliased result set columns */
+ int nAliasAlloc; /* Number of allocated slots for aAlias[] */
+ int *aAlias; /* Register used to hold aliased result */
u8 explain; /* True if the EXPLAIN flag is found on the query */
- Token sErrToken; /* The token at which the error occurred */
Token sNameToken; /* Token with unqualified schema object name */
Token sLastToken; /* The last token parsed */
- const char *zSql; /* All SQL text */
const char *zTail; /* All SQL text past the last semicolon parsed */
Table *pNewTable; /* A table being constructed by CREATE TABLE */
Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
- TriggerStack *trigStack; /* Trigger actions being coded */
const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
#ifndef SQLITE_OMIT_VIRTUALTABLE
Token sArg; /* Complete text of a module argument */
u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
- Table *pVirtualLock; /* Require virtual table lock on this table */
+ int nVtabLock; /* Number of virtual tables to lock */
+ Table **apVtabLock; /* Pointer to virtual tables needing locking */
#endif
+ int nHeight; /* Expression tree height of current sub-select */
+ Table *pZombieTab; /* List of Table objects to delete after code gen */
+ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
};
#ifdef SQLITE_OMIT_VIRTUALTABLE
@@ -4243,12 +9763,14 @@ struct AuthContext {
};
/*
-** Bitfield flags for P2 value in OP_Insert and OP_Delete
+** Bitfield flags for P5 value in OP_Insert and OP_Delete
*/
-#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
-#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
-#define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */
-#define OPFLAG_APPEND 8 /* This is likely to be an append */
+#define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */
+#define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */
+#define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */
+#define OPFLAG_APPEND 0x08 /* This is likely to be an append */
+#define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */
+#define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */
/*
* Each trigger present in the database schema is stored as an instance of
@@ -4266,14 +9788,13 @@ struct AuthContext {
* containing the SQL statements specified as the trigger program.
*/
struct Trigger {
- char *name; /* The name of the trigger */
+ char *zName; /* The name of the trigger */
char *table; /* The table or view to which the trigger applies */
u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
- Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
+ Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */
IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
the <column-list> is stored here */
- Token nameToken; /* Token containing zName. Use during parsing only */
Schema *pSchema; /* Schema containing the trigger */
Schema *pTabSchema; /* Schema containing the table */
TriggerStep *step_list; /* Link list of trigger program steps */
@@ -4307,7 +9828,7 @@ struct Trigger {
* orconf -> stores the ON CONFLICT algorithm
* pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
* this stores a pointer to the SELECT statement. Otherwise NULL.
- * target -> A token holding the name of the table to insert into.
+ * target -> A token holding the quoted name of the table to insert into.
* pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
* this stores values to be inserted. Otherwise NULL.
* pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
@@ -4315,12 +9836,12 @@ struct Trigger {
* inserted into.
*
* (op == TK_DELETE)
- * target -> A token holding the name of the table to delete from.
+ * target -> A token holding the quoted name of the table to delete from.
* pWhere -> The WHERE clause of the DELETE statement if one is specified.
* Otherwise NULL.
*
* (op == TK_UPDATE)
- * target -> A token holding the name of the table to update rows of.
+ * target -> A token holding the quoted name of the table to update rows of.
* pWhere -> The WHERE clause of the UPDATE statement if one is specified.
* Otherwise NULL.
* pExprList -> A list of the columns to update and the expressions to update
@@ -4329,59 +9850,19 @@ struct Trigger {
*
*/
struct TriggerStep {
- int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
- int orconf; /* OE_Rollback etc. */
+ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
+ u8 orconf; /* OE_Rollback etc. */
Trigger *pTrig; /* The trigger that this step is a part of */
-
- Select *pSelect; /* Valid for SELECT and sometimes
- INSERT steps (when pExprList == 0) */
- Token target; /* Valid for DELETE, UPDATE, INSERT steps */
- Expr *pWhere; /* Valid for DELETE, UPDATE steps */
- ExprList *pExprList; /* Valid for UPDATE statements and sometimes
- INSERT steps (when pSelect == 0) */
- IdList *pIdList; /* Valid for INSERT statements only */
+ Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
+ Token target; /* Target table for DELETE, UPDATE, INSERT */
+ Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */
+ ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */
+ IdList *pIdList; /* Column names for INSERT */
TriggerStep *pNext; /* Next in the link-list */
TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
};
/*
- * An instance of struct TriggerStack stores information required during code
- * generation of a single trigger program. While the trigger program is being
- * coded, its associated TriggerStack instance is pointed to by the
- * "pTriggerStack" member of the Parse structure.
- *
- * The pTab member points to the table that triggers are being coded on. The
- * newIdx member contains the index of the vdbe cursor that points at the temp
- * table that stores the new.* references. If new.* references are not valid
- * for the trigger being coded (for example an ON DELETE trigger), then newIdx
- * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
- *
- * The ON CONFLICT policy to be used for the trigger program steps is stored
- * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
- * specified for individual triggers steps is used.
- *
- * struct TriggerStack has a "pNext" member, to allow linked lists to be
- * constructed. When coding nested triggers (triggers fired by other triggers)
- * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
- * pointer. Once the nested trigger has been coded, the pNext value is restored
- * to the pTriggerStack member of the Parse stucture and coding of the parent
- * trigger continues.
- *
- * Before a nested trigger is coded, the linked list pointed to by the
- * pTriggerStack is scanned to ensure that the trigger is not about to be coded
- * recursively. If this condition is detected, the nested trigger is not coded.
- */
-struct TriggerStack {
- Table *pTab; /* Table that triggers are currently being coded on */
- int newIdx; /* Index of vdbe cursor to "new" temp table */
- int oldIdx; /* Index of vdbe cursor to "old" temp table */
- int orconf; /* Current orconf policy */
- int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
- Trigger *pTrigger; /* The trigger currently being coded */
- TriggerStack *pNext; /* Next trigger down on the trigger stack */
-};
-
-/*
** The following structure contains information used by the sqliteFix...
** routines as they walk the parse tree to make database references
** explicit.
@@ -4395,6 +9876,22 @@ struct DbFixer {
};
/*
+** An objected used to accumulate the text of a string where we
+** do not necessarily know how big the string will be in the end.
+*/
+struct StrAccum {
+ sqlite3 *db; /* Optional database for lookaside. Can be NULL */
+ char *zBase; /* A base allocation. Not from malloc. */
+ char *zText; /* The string collected so far */
+ int nChar; /* Length of the string so far */
+ int nAlloc; /* Amount of space allocated in zText */
+ int mxAlloc; /* Maximum allowed string length */
+ u8 mallocFailed; /* Becomes true if any memory allocation fails */
+ u8 useMalloc; /* True if zText is enlargeable using realloc */
+ u8 tooBig; /* Becomes true if string size exceeds limits */
+};
+
+/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
@@ -4406,11 +9903,79 @@ typedef struct {
} InitData;
/*
- * This global flag is set for performance testing of triggers. When it is set
- * SQLite will perform the overhead of building new and old trigger references
- * even when no triggers exist
- */
-extern int sqlite3_always_code_trigger_setup;
+** Structure containing global configuration data for the SQLite library.
+**
+** This structure also contains some state information.
+*/
+struct Sqlite3Config {
+ int bMemstat; /* True to enable memory status */
+ int bCoreMutex; /* True to enable core mutexing */
+ int bFullMutex; /* True to enable full mutexing */
+ int mxStrlen; /* Maximum string length */
+ int szLookaside; /* Default lookaside buffer size */
+ int nLookaside; /* Default lookaside buffer count */
+ sqlite3_mem_methods m; /* Low-level memory allocation interface */
+ sqlite3_mutex_methods mutex; /* Low-level mutex interface */
+ sqlite3_pcache_methods pcache; /* Low-level page-cache interface */
+ void *pHeap; /* Heap storage space */
+ int nHeap; /* Size of pHeap[] */
+ int mnReq, mxReq; /* Min and max heap requests sizes */
+ void *pScratch; /* Scratch memory */
+ int szScratch; /* Size of each scratch buffer */
+ int nScratch; /* Number of scratch buffers */
+ void *pPage; /* Page cache memory */
+ int szPage; /* Size of each page in pPage[] */
+ int nPage; /* Number of pages in pPage[] */
+ int mxParserStack; /* maximum depth of the parser stack */
+ int sharedCacheEnabled; /* true if shared-cache mode enabled */
+ /* The above might be initialized to non-zero. The following need to always
+ ** initially be zero, however. */
+ int isInit; /* True after initialization has finished */
+ int inProgress; /* True while initialization in progress */
+ int isMutexInit; /* True after mutexes are initialized */
+ int isMallocInit; /* True after malloc is initialized */
+ int isPCacheInit; /* True after malloc is initialized */
+ sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
+ int nRefInitMutex; /* Number of users of pInitMutex */
+};
+
+/*
+** Context pointer passed down through the tree-walk.
+*/
+struct Walker {
+ int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */
+ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */
+ Parse *pParse; /* Parser context. */
+ union { /* Extra data for callback */
+ NameContext *pNC; /* Naming context */
+ int i; /* Integer value */
+ } u;
+};
+
+/* Forward declarations */
+SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
+SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
+SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*);
+
+/*
+** Return code from the parse-tree walking primitives and their
+** callbacks.
+*/
+#define WRC_Continue 0 /* Continue down into children */
+#define WRC_Prune 1 /* Omit children but continue walking siblings */
+#define WRC_Abort 2 /* Abandon the tree walk */
+
+/*
+** Assuming zIn points to the first byte of a UTF-8 character,
+** advance zIn to point to the first byte of the next UTF-8 character.
+*/
+#define SQLITE_SKIP_UTF8(zIn) { \
+ if( (*(zIn++))>=0xc0 ){ \
+ while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
+ } \
+}
/*
** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
@@ -4419,381 +9984,640 @@ extern int sqlite3_always_code_trigger_setup;
** corruption is first detected.
*/
#ifdef SQLITE_DEBUG
- extern int sqlite3Corrupt(void);
+SQLITE_PRIVATE int sqlite3Corrupt(void);
# define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
#else
# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
#endif
/*
+** The ctype.h header is needed for non-ASCII systems. It is also
+** needed by FTS3 when FTS3 is included in the amalgamation.
+*/
+#if !defined(SQLITE_ASCII) || \
+ (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
+# include <ctype.h>
+#endif
+
+/*
+** The following macros mimic the standard library functions toupper(),
+** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
+** sqlite versions only work for ASCII characters, regardless of locale.
+*/
+#ifdef SQLITE_ASCII
+# define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
+# define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
+# define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
+# define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
+# define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
+# define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
+# define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)])
+#else
+# define sqlite3Toupper(x) toupper((unsigned char)(x))
+# define sqlite3Isspace(x) isspace((unsigned char)(x))
+# define sqlite3Isalnum(x) isalnum((unsigned char)(x))
+# define sqlite3Isalpha(x) isalpha((unsigned char)(x))
+# define sqlite3Isdigit(x) isdigit((unsigned char)(x))
+# define sqlite3Isxdigit(x) isxdigit((unsigned char)(x))
+# define sqlite3Tolower(x) tolower((unsigned char)(x))
+#endif
+
+/*
** Internal function prototypes
*/
-int sqlite3StrICmp(const char *, const char *);
-int sqlite3StrNICmp(const char *, const char *, int);
-int sqlite3HashNoCase(const char *, int);
-int sqlite3IsNumber(const char*, int*, u8);
-int sqlite3Compare(const char *, const char *);
-int sqlite3SortCompare(const char *, const char *);
-void sqlite3RealToSortable(double r, char *);
-
-void *sqlite3Malloc(int,int);
-void *sqlite3MallocRaw(int,int);
-void sqlite3Free(void*);
-void *sqlite3Realloc(void*,int);
-char *sqlite3StrDup(const char*);
-char *sqlite3StrNDup(const char*, int);
-# define sqlite3CheckMemory(a,b)
-void *sqlite3ReallocOrFree(void*,int);
-void sqlite3FreeX(void*);
-void *sqlite3MallocX(int);
-int sqlite3AllocSize(void *);
-
-char *sqlite3MPrintf(const char*, ...);
-char *sqlite3VMPrintf(const char*, va_list);
-void sqlite3DebugPrintf(const char*, ...);
-void *sqlite3TextToPtr(const char*);
-void sqlite3SetString(char **, ...);
-void sqlite3ErrorMsg(Parse*, const char*, ...);
-void sqlite3ErrorClear(Parse*);
-void sqlite3Dequote(char*);
-void sqlite3DequoteExpr(Expr*);
-int sqlite3KeywordCode(const unsigned char*, int);
-int sqlite3RunParser(Parse*, const char*, char **);
-void sqlite3FinishCoding(Parse*);
-Expr *sqlite3Expr(int, Expr*, Expr*, const Token*);
-Expr *sqlite3ExprOrFree(int, Expr*, Expr*, const Token*);
-Expr *sqlite3RegisterExpr(Parse*,Token*);
-Expr *sqlite3ExprAnd(Expr*, Expr*);
-void sqlite3ExprSpan(Expr*,Token*,Token*);
-Expr *sqlite3ExprFunction(ExprList*, Token*);
-void sqlite3ExprAssignVarNumber(Parse*, Expr*);
-void sqlite3ExprDelete(Expr*);
-ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*);
-void sqlite3ExprListDelete(ExprList*);
-int sqlite3Init(sqlite3*, char**);
-int sqlite3InitCallback(void*, int, char**, char**);
-void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
-void sqlite3ResetInternalSchema(sqlite3*, int);
-void sqlite3BeginParse(Parse*,int);
-void sqlite3CommitInternalChanges(sqlite3*);
-Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
-void sqlite3OpenMasterTable(Parse *, int);
-void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
-void sqlite3AddColumn(Parse*,Token*);
-void sqlite3AddNotNull(Parse*, int);
-void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
-void sqlite3AddCheckConstraint(Parse*, Expr*);
-void sqlite3AddColumnType(Parse*,Token*);
-void sqlite3AddDefaultValue(Parse*,Expr*);
-void sqlite3AddCollateType(Parse*, const char*, int);
-void sqlite3EndTable(Parse*,Token*,Token*,Select*);
-
-void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
+SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
+SQLITE_PRIVATE int sqlite3IsNumber(const char*, int*, u8);
+SQLITE_PRIVATE int sqlite3Strlen30(const char*);
+#define sqlite3StrNICmp sqlite3_strnicmp
+
+SQLITE_PRIVATE int sqlite3MallocInit(void);
+SQLITE_PRIVATE void sqlite3MallocEnd(void);
+SQLITE_PRIVATE void *sqlite3Malloc(int);
+SQLITE_PRIVATE void *sqlite3MallocZero(int);
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, int);
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, int);
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
+SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int);
+SQLITE_PRIVATE void *sqlite3Realloc(void*, int);
+SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
+SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
+SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
+SQLITE_PRIVATE int sqlite3MallocSize(void*);
+SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*);
+SQLITE_PRIVATE void *sqlite3ScratchMalloc(int);
+SQLITE_PRIVATE void sqlite3ScratchFree(void*);
+SQLITE_PRIVATE void *sqlite3PageMalloc(int);
+SQLITE_PRIVATE void sqlite3PageFree(void*);
+SQLITE_PRIVATE void sqlite3MemSetDefault(void);
+SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
+SQLITE_PRIVATE int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64);
+
+/*
+** On systems with ample stack space and that support alloca(), make
+** use of alloca() to obtain space for large automatic objects. By default,
+** obtain space from malloc().
+**
+** The alloca() routine never returns NULL. This will cause code paths
+** that deal with sqlite3StackAlloc() failures to be unreachable.
+*/
+#ifdef SQLITE_USE_ALLOCA
+# define sqlite3StackAllocRaw(D,N) alloca(N)
+# define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N)
+# define sqlite3StackFree(D,P)
+#else
+# define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N)
+# define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N)
+# define sqlite3StackFree(D,P) sqlite3DbFree(D,P)
+#endif
+
+#ifdef SQLITE_ENABLE_MEMSYS3
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS5
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
+#endif
+
+
+#ifndef SQLITE_MUTEX_OMIT
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void);
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int);
+SQLITE_PRIVATE int sqlite3MutexInit(void);
+SQLITE_PRIVATE int sqlite3MutexEnd(void);
+#endif
+
+SQLITE_PRIVATE int sqlite3StatusValue(int);
+SQLITE_PRIVATE void sqlite3StatusAdd(int, int);
+SQLITE_PRIVATE void sqlite3StatusSet(int, int);
+
+SQLITE_PRIVATE int sqlite3IsNaN(double);
+
+SQLITE_PRIVATE void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
+SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
+SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
+SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
+#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...);
+#endif
+#if defined(SQLITE_TEST)
+SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*);
+#endif
+SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*, ...);
+SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
+SQLITE_PRIVATE void sqlite3ErrorClear(Parse*);
+SQLITE_PRIVATE int sqlite3Dequote(char*);
+SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
+SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
+SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
+SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
+SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
+SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
+SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
+SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
+SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
+SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
+SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
+SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprClear(sqlite3*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*);
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
+SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
+SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
+SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*);
+SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
+SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
+SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
+SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3*, int);
+SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
+SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
+SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*);
+SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
+SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
+SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
+SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
+SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
+SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
+SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,ExprSpan*);
+SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
+SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,Select*);
+
+SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
+SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
+SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
+SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*);
+SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
+SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*);
+SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
+
+SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
+SQLITE_PRIVATE void sqlite3RowSetClear(RowSet*);
+SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64);
+SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
+SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*);
+
+SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
- int sqlite3ViewGetColumnNames(Parse*,Table*);
+SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*);
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif
-void sqlite3DropTable(Parse*, SrcList*, int, int);
-void sqlite3DeleteTable(Table*);
-void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
-void *sqlite3ArrayAllocate(void*,int,int,int*,int*,int*);
-IdList *sqlite3IdListAppend(IdList*, Token*);
-int sqlite3IdListIndex(IdList*,const char*);
-SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*);
-SrcList *sqlite3SrcListAppendFromTerm(SrcList*, Token*, Token*, Token*,
- Select*, Expr*, IdList*);
-void sqlite3SrcListShiftJoinType(SrcList*);
-void sqlite3SrcListAssignCursors(Parse*, SrcList*);
-void sqlite3IdListDelete(IdList*);
-void sqlite3SrcListDelete(SrcList*);
-void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
+SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
+SQLITE_PRIVATE void sqlite3DeleteTable(Table*);
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse);
+SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse);
+#else
+# define sqlite3AutoincrementBegin(X)
+# define sqlite3AutoincrementEnd(X)
+#endif
+SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
+SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
+SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
+SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
+ Token*, Select*, Expr*, IdList*);
+SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
+SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
+SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*);
+SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
+SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*);
+SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*);
+SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
Token*, int, int);
-void sqlite3DropIndex(Parse*, SrcList*, int);
-void sqlite3AddKeyType(Vdbe*, ExprList*);
-void sqlite3AddIdxKeyType(Vdbe*, Index*);
-int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff);
-Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
- int,Expr*,Expr*);
-void sqlite3SelectDelete(Select*);
-void sqlite3SelectUnbind(Select*);
-Table *sqlite3SrcListLookup(Parse*, SrcList*);
-int sqlite3IsReadOnly(Parse*, Table*, int);
-void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
-void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
-void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
-WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**);
-void sqlite3WhereEnd(WhereInfo*);
-void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int);
-void sqlite3ExprCode(Parse*, Expr*);
-void sqlite3ExprCodeAndCache(Parse*, Expr*);
-int sqlite3ExprCodeExprList(Parse*, ExprList*);
-void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
-void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
-void sqlite3NextedParse(Parse*, const char*, ...);
-Table *sqlite3FindTable(sqlite3*,const char*, const char*);
-Table *sqlite3LocateTable(Parse*,const char*, const char*);
-Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
-void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
-void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
-void sqlite3Vacuum(Parse*);
-int sqlite3RunVacuum(char**, sqlite3*);
-char *sqlite3NameFromToken(Token*);
-int sqlite3ExprCheck(Parse*, Expr*, int, int*);
-int sqlite3ExprCompare(Expr*, Expr*);
-int sqliteFuncId(Token*);
-int sqlite3ExprResolveNames(NameContext *, Expr *);
-int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
-int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
-Vdbe *sqlite3GetVdbe(Parse*);
-Expr *sqlite3CreateIdExpr(const char*);
-void sqlite3Randomness(int, void*);
-void sqlite3RollbackAll(sqlite3*);
-void sqlite3CodeVerifySchema(Parse*, int);
-void sqlite3BeginTransaction(Parse*, int);
-void sqlite3CommitTransaction(Parse*);
-void sqlite3RollbackTransaction(Parse*);
-int sqlite3ExprIsConstant(Expr*);
-int sqlite3ExprIsConstantOrFunction(Expr*);
-int sqlite3ExprIsInteger(Expr*, int*);
-int sqlite3IsRowid(const char*);
-void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int);
-void sqlite3GenerateRowIndexDelete(Vdbe*, Table*, int, char*);
-void sqlite3GenerateIndexKey(Vdbe*, Index*, int);
-void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
-void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int, int);
-void sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
-void sqlite3BeginWriteOperation(Parse*, int, int);
-Expr *sqlite3ExprDup(Expr*);
-void sqlite3TokenCopy(Token*, Token*);
-ExprList *sqlite3ExprListDup(ExprList*);
-SrcList *sqlite3SrcListDup(SrcList*);
-IdList *sqlite3IdListDup(IdList*);
-Select *sqlite3SelectDup(Select*);
-FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
-void sqlite3RegisterBuiltinFunctions(sqlite3*);
-void sqlite3RegisterDateTimeFunctions(sqlite3*);
-int sqlite3SafetyOn(sqlite3*);
-int sqlite3SafetyOff(sqlite3*);
-int sqlite3SafetyCheck(sqlite3*);
-void sqlite3ChangeCookie(sqlite3*, Vdbe*, int);
+SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
+SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*);
+SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
+ Expr*,ExprList*,int,Expr*,Expr*);
+SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*);
+SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
+SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
+SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
+SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
+#endif
+SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
+SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
+SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
+SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
+SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*);
+SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*, int);
+SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int);
+SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
+SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
+SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse*,int,int);
+SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
+SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
+SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse*, Expr*);
+SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
+SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
+SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
+SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
+SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
+SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
+SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
+SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
+SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
+SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
+SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *, const char*);
+SQLITE_PRIVATE void sqlite3PrngSaveState(void);
+SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
+SQLITE_PRIVATE void sqlite3PrngResetState(void);
+SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*);
+SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
+SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
+SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
+SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
+SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
+SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
+SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
+SQLITE_PRIVATE int sqlite3IsRowid(const char*);
+SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
+SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
+SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
+SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
+ int*,int,int,int,int,int*);
+SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
+SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
+SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
+SQLITE_PRIVATE void sqlite3MayAbort(Parse *);
+SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, char*, int);
+SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
+SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
+SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
+SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
+SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
+SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
+SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
+SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
+SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3*);
+SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3*);
+#else
+# define sqlite3SafetyOn(A) 0
+# define sqlite3SafetyOff(A) 0
+#endif
+SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
+SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
+SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
+
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
+#endif
#ifndef SQLITE_OMIT_TRIGGER
- void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
+SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
Expr*,int, int);
- void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
- void sqlite3DropTrigger(Parse*, SrcList*, int);
- void sqlite3DropTriggerPtr(Parse*, Trigger*);
- int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
- int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
- int, int);
+SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
+SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int);
+SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*);
+SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
+SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *);
+SQLITE_PRIVATE void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
+ int, int, int, int);
void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
- void sqlite3DeleteTriggerStep(TriggerStep*);
- TriggerStep *sqlite3TriggerSelectStep(Select*);
- TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*,Select*,int);
- TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int);
- TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*);
- void sqlite3DeleteTrigger(Trigger*);
- void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
+ ExprList*,Select*,u8);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
+SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
+SQLITE_PRIVATE u32 sqlite3TriggerOldmask(Parse*,Trigger*,int,ExprList*,Table*,int);
+# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
#else
-# define sqlite3TriggersExist(A,B,C,D,E,F) 0
-# define sqlite3DeleteTrigger(A)
+# define sqlite3TriggersExist(B,C,D,E,F) 0
+# define sqlite3DeleteTrigger(A,B)
# define sqlite3DropTriggerPtr(A,B)
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
-# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0
+# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J)
+# define sqlite3TriggerList(X, Y) 0
+# define sqlite3ParseToplevel(p) p
+# define sqlite3TriggerOldmask(A,B,C,D,E,F) 0
#endif
-int sqlite3JoinType(Parse*, Token*, Token*, Token*);
-void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
-void sqlite3DeferForeignKey(Parse*, int);
+SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
+SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
+SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
#ifndef SQLITE_OMIT_AUTHORIZATION
- void sqlite3AuthRead(Parse*,Expr*,SrcList*);
- int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
- void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
- void sqlite3AuthContextPop(AuthContext*);
+SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
+SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
+SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
+SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*);
#else
-# define sqlite3AuthRead(a,b,c)
+# define sqlite3AuthRead(a,b,c,d)
# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
# define sqlite3AuthContextPush(a,b,c)
# define sqlite3AuthContextPop(a) ((void)(a))
#endif
-void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
-void sqlite3Detach(Parse*, Expr*);
-int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
- int omitJournal, int nCache, Btree **ppBtree);
-int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
-int sqlite3FixSrcList(DbFixer*, SrcList*);
-int sqlite3FixSelect(DbFixer*, Select*);
-int sqlite3FixExpr(DbFixer*, Expr*);
-int sqlite3FixExprList(DbFixer*, ExprList*);
-int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
-int sqlite3AtoF(const char *z, double*);
-char *sqlite3_snprintf(int,char*,const char*,...);
-int sqlite3GetInt32(const char *, int*);
-int sqlite3FitsIn64Bits(const char *);
-int sqlite3utf16ByteLen(const void *pData, int nChar);
-int sqlite3utf8CharLen(const char *pData, int nByte);
-int sqlite3ReadUtf8(const unsigned char *);
-int sqlite3PutVarint(unsigned char *, u64);
-int sqlite3GetVarint(const unsigned char *, u64 *);
-int sqlite3GetVarint32(const unsigned char *, u32 *);
-int sqlite3VarintLen(u64 v);
-void sqlite3IndexAffinityStr(Vdbe *, Index *);
-void sqlite3TableAffinityStr(Vdbe *, Table *);
-char sqlite3CompareAffinity(Expr *pExpr, char aff2);
-int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
-char sqlite3ExprAffinity(Expr *pExpr);
-int sqlite3atoi64(const char*, i64*);
-void sqlite3Error(sqlite3*, int, const char*,...);
-void *sqlite3HexToBlob(const char *z);
-int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
-const char *sqlite3ErrStr(int);
-int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold);
-int sqlite3ReadSchema(Parse *pParse);
-CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
-CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
-CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
-Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
-int sqlite3CheckCollSeq(Parse *, CollSeq *);
-int sqlite3CheckIndexCollSeq(Parse *, Index *);
-int sqlite3CheckObjectName(Parse *, const char *);
-void sqlite3VdbeSetChanges(sqlite3 *, int);
-void sqlite3utf16Substr(sqlite3_context *,int,sqlite3_value **);
-
-const void *sqlite3ValueText(sqlite3_value*, u8);
-int sqlite3ValueBytes(sqlite3_value*, u8);
-void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*));
-void sqlite3ValueFree(sqlite3_value*);
-sqlite3_value *sqlite3ValueNew(void);
-char *sqlite3utf16to8(const void*, int);
-int sqlite3ValueFromExpr(Expr *, u8, u8, sqlite3_value **);
-void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
-extern const unsigned char sqlite3UpperToLower[];
-void sqlite3RootPageMoved(Db*, int, int);
-void sqlite3Reindex(Parse*, Token*, Token*);
-void sqlite3AlterFunctions(sqlite3*);
-void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
-int sqlite3GetToken(const unsigned char *, int *);
-void sqlite3NestedParse(Parse*, const char*, ...);
-void sqlite3ExpirePreparedStatements(sqlite3*);
-void sqlite3CodeSubselect(Parse *, Expr *);
-int sqlite3SelectResolve(Parse *, Select *, NameContext *);
-void sqlite3ColumnDefault(Vdbe *, Table *, int);
-void sqlite3AlterFinishAddColumn(Parse *, Token *);
-void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
-const char *sqlite3TestErrorName(int);
-CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
-char sqlite3AffinityType(const Token*);
-void sqlite3Analyze(Parse*, Token*, Token*);
-int sqlite3InvokeBusyHandler(BusyHandler*);
-int sqlite3FindDb(sqlite3*, Token*);
-void sqlite3AnalysisLoad(sqlite3*,int iDB);
-void sqlite3DefaultRowEst(Index*);
-void sqlite3RegisterLikeFunctions(sqlite3*, int);
-int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
-ThreadData *sqlite3ThreadData(void);
-const ThreadData *sqlite3ThreadDataReadOnly(void);
-void sqlite3ReleaseThreadData(void);
-void sqlite3AttachFunctions(sqlite3 *);
-void sqlite3MinimumFileFormat(Parse*, int, int);
-void sqlite3SchemaFree(void *);
-Schema *sqlite3SchemaGet(Btree *);
-int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
-KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
-int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
+SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
+SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
+SQLITE_PRIVATE int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
+ int omitJournal, int nCache, int flags, Btree **ppBtree);
+SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
+SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
+SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
+SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
+SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*);
+SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*);
+SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
+SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *, int);
+SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
+SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
+SQLITE_PRIVATE int sqlite3Utf8Read(const u8*, const u8**);
+
+/*
+** Routines to read and write variable-length integers. These used to
+** be defined locally, but now we use the varint routines in the util.c
+** file. Code should use the MACRO forms below, as the Varint32 versions
+** are coded to assume the single byte case is already handled (which
+** the MACRO form does).
+*/
+SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64);
+SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char*, u32);
+SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *, u64 *);
+SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *, u32 *);
+SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
+
+/*
+** The header of a record consists of a sequence variable-length integers.
+** These integers are almost always small and are encoded as a single byte.
+** The following macros take advantage this fact to provide a fast encode
+** and decode of the integers in a record header. It is faster for the common
+** case where the integer is a single byte. It is a little slower when the
+** integer is two or more bytes. But overall it is faster.
+**
+** The following expressions are equivalent:
+**
+** x = sqlite3GetVarint32( A, &B );
+** x = sqlite3PutVarint32( A, B );
+**
+** x = getVarint32( A, B );
+** x = putVarint32( A, B );
+**
+*/
+#define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
+#define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
+#define getVarint sqlite3GetVarint
+#define putVarint sqlite3PutVarint
+
+
+SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
+SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
+SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
+SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
+SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
+SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*);
+SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
+SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
+SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
+SQLITE_PRIVATE const char *sqlite3ErrStr(int);
+SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
+SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
+SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
+SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
+SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
+SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
+SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
+SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
+
+SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
+SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
+SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
+ void(*)(void*));
+SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
+SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
+SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int);
+#ifdef SQLITE_ENABLE_STAT2
+SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
+#endif
+SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
+SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
+#ifndef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
+SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
+SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
+SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
+SQLITE_PRIVATE int sqlite3PendingByte;
+#endif
+SQLITE_PRIVATE void sqlite3RootPageMoved(Db*, int, int);
+SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
+SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3*);
+SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
+SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
+SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
+SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *, int, int);
+SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
+SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
+SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
+SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
+SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
+SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
+SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
+SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
+SQLITE_PRIVATE char sqlite3AffinityType(const char*);
+SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
+SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
+SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
+SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
+SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
+SQLITE_PRIVATE void sqlite3DeleteIndexSamples(Index*);
+SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
+SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
+SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
+SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
+SQLITE_PRIVATE void sqlite3SchemaFree(void *);
+SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
+SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
+SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
+SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
void (*)(sqlite3_context*,int,sqlite3_value **),
void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
-int sqlite3ApiExit(sqlite3 *db, int);
-int sqlite3MallocFailed(void);
-void sqlite3FailedMalloc(void);
-void sqlite3AbortOtherActiveVdbes(sqlite3 *, Vdbe *);
-int sqlite3OpenTempDatabase(Parse *);
+SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
+SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
+
+SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, char*, int, int);
+SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
+SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
+SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*);
+SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
+
+SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *);
+SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
+/*
+** The interface to the LEMON-generated parser
+*/
+SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t));
+SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
+SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
+#ifdef YYTRACKMAXSTACKDEPTH
+SQLITE_PRIVATE int sqlite3ParserStackPeak(void*);
+#endif
+
+SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*);
#ifndef SQLITE_OMIT_LOAD_EXTENSION
- void sqlite3CloseExtensions(sqlite3*);
- int sqlite3AutoLoadExtensions(sqlite3*);
+SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*);
#else
# define sqlite3CloseExtensions(X)
-# define sqlite3AutoLoadExtensions(X) SQLITE_OK
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
- void sqlite3TableLock(Parse *, int, int, u8, const char *);
+SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, int, u8, const char *);
#else
#define sqlite3TableLock(v,w,x,y,z)
#endif
-#ifdef SQLITE_MEMDEBUG
- void sqlite3MallocDisallow(void);
- void sqlite3MallocAllow(void);
- int sqlite3TestMallocFail(void);
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*);
+#endif
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# define sqlite3VtabClear(Y)
+# define sqlite3VtabSync(X,Y) SQLITE_OK
+# define sqlite3VtabRollback(X)
+# define sqlite3VtabCommit(X)
+# define sqlite3VtabInSync(db) 0
+# define sqlite3VtabLock(X)
+# define sqlite3VtabUnlock(X)
+# define sqlite3VtabUnlockList(X)
#else
- #define sqlite3TestMallocFail() 0
- #define sqlite3MallocDisallow()
- #define sqlite3MallocAllow()
+SQLITE_PRIVATE void sqlite3VtabClear(Table*);
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **);
+SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
+SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
+SQLITE_PRIVATE void sqlite3VtabLock(VTable *);
+SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *);
+SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3*);
+# define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
+#endif
+SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*);
+SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
+SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
+SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
+SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
+SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
+SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
+SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
+SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *);
+SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
+SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
+SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
+SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
+SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
+SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
+SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*);
+SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*);
+
+
+
+/*
+** Available fault injectors. Should be numbered beginning with 0.
+*/
+#define SQLITE_FAULTINJECTOR_MALLOC 0
+#define SQLITE_FAULTINJECTOR_COUNT 1
+
+/*
+** The interface to the code in fault.c used for identifying "benign"
+** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
+** is not defined.
+*/
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void);
+SQLITE_PRIVATE void sqlite3EndBenignMalloc(void);
+#else
+ #define sqlite3BeginBenignMalloc()
+ #define sqlite3EndBenignMalloc()
#endif
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- void *sqlite3ThreadSafeMalloc(int);
- void sqlite3ThreadSafeFree(void *);
+#define IN_INDEX_ROWID 1
+#define IN_INDEX_EPH 2
+#define IN_INDEX_INDEX 3
+SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int*);
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
+SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *);
+SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *);
#else
- #define sqlite3ThreadSafeMalloc sqlite3MallocX
- #define sqlite3ThreadSafeFree sqlite3FreeX
+ #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
#endif
-#ifdef SQLITE_OMIT_VIRTUALTABLE
-# define sqlite3VtabClear(X)
-# define sqlite3VtabSync(X,Y) (Y)
-# define sqlite3VtabRollback(X)
-# define sqlite3VtabCommit(X)
+SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *);
+SQLITE_PRIVATE int sqlite3MemJournalSize(void);
+SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *);
+
+#if SQLITE_MAX_EXPR_DEPTH>0
+SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
+SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *);
+SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int);
+#else
+ #define sqlite3ExprSetHeight(x,y)
+ #define sqlite3SelectExprHeight(x) 0
+ #define sqlite3ExprCheckHeight(x,y)
+#endif
+
+SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
+SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
+
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
+SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db);
+SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db);
#else
- void sqlite3VtabClear(Table*);
- int sqlite3VtabSync(sqlite3 *db, int rc);
- int sqlite3VtabRollback(sqlite3 *db);
- int sqlite3VtabCommit(sqlite3 *db);
-#endif
-void sqlite3VtabLock(sqlite3_vtab*);
-void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
-void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
-void sqlite3VtabFinishParse(Parse*, Token*);
-void sqlite3VtabArgInit(Parse*);
-void sqlite3VtabArgExtend(Parse*, Token*);
-int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
-int sqlite3VtabCallConnect(Parse*, Table*);
-int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
-int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
-FuncDef *sqlite3VtabOverloadFunction(FuncDef*, int nArg, Expr*);
-void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
-int sqlite3Reprepare(Vdbe*);
-
-#ifdef SQLITE_SSE
-#include "sseInt.h"
+ #define sqlite3ConnectionBlocked(x,y)
+ #define sqlite3ConnectionUnlocked(x)
+ #define sqlite3ConnectionClosed(x)
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *);
#endif
/*
** If the SQLITE_ENABLE IOTRACE exists then the global variable
-** sqlite3_io_trace is a pointer to a printf-like routine used to
+** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages.
*/
#ifdef SQLITE_ENABLE_IOTRACE
-# define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; }
- void sqlite3VdbeIOTraceSql(Vdbe*);
+# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
+SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*);
+SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...);
#else
# define IOTRACE(A)
# define sqlite3VdbeIOTraceSql(X)
#endif
-extern void (*sqlite3_io_trace)(const char*,...);
#endif
/************** End of sqliteInt.h *******************************************/
-/************** Continuing where we left off in date.c ***********************/
-/************** Include os.h in the middle of date.c *************************/
-/************** Begin file os.h **********************************************/
+/************** Begin file global.c ******************************************/
/*
-** 2001 September 16
+** 2008 June 13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
@@ -4802,559 +10626,394 @@ extern void (*sqlite3_io_trace)(const char*,...);
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
-******************************************************************************
+*************************************************************************
**
-** This header file (together with is companion C source-code file
-** "os.c") attempt to abstract the underlying operating system so that
-** the SQLite library will work on both POSIX and windows systems.
+** This file contains definitions of global variables and contants.
*/
-#ifndef _SQLITE_OS_H_
-#define _SQLITE_OS_H_
-
-/*
-** Figure out if we are dealing with Unix, Windows, or some other
-** operating system.
-*/
-#if defined(OS_OTHER)
-# if OS_OTHER==1
-# undef OS_UNIX
-# define OS_UNIX 0
-# undef OS_WIN
-# define OS_WIN 0
-# undef OS_OS2
-# define OS_OS2 0
-# else
-# undef OS_OTHER
-# endif
-#endif
-#if !defined(OS_UNIX) && !defined(OS_OTHER)
-# define OS_OTHER 0
-# ifndef OS_WIN
-# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
-# define OS_WIN 1
-# define OS_UNIX 0
-# define OS_OS2 0
-# elif defined(_EMX_) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
-# define OS_WIN 0
-# define OS_UNIX 0
-# define OS_OS2 1
-# else
-# define OS_WIN 0
-# define OS_UNIX 1
-# define OS_OS2 0
-# endif
-# else
-# define OS_UNIX 0
-# define OS_OS2 0
-# endif
-#else
-# ifndef OS_WIN
-# define OS_WIN 0
-# endif
-#endif
-/*
-** Define the maximum size of a temporary filename
+/* An array to map all upper-case characters into their corresponding
+** lower-case character.
+**
+** SQLite only considers US-ASCII (or EBCDIC) characters. We do not
+** handle case conversions for the UTF character set since the tables
+** involved are nearly as big or bigger than SQLite itself.
*/
-#if OS_WIN
-# include <windows.h>
-# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
-#elif OS_OS2
-# define INCL_DOSDATETIME
-# define INCL_DOSFILEMGR
-# define INCL_DOSERRORS
-# define INCL_DOSMISC
-# define INCL_DOSPROCESS
-# include <os2.h>
-# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
-#else
-# define SQLITE_TEMPNAME_SIZE 200
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
+#ifdef SQLITE_ASCII
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
+ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
+ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
+ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
+ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
+ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
+ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
+ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
+ 252,253,254,255
#endif
-
-/* If the SET_FULLSYNC macro is not defined above, then make it
-** a no-op
-*/
-#ifndef SET_FULLSYNC
-# define SET_FULLSYNC(x,y)
+#ifdef SQLITE_EBCDIC
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
+ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
+ 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
+ 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
+ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
+ 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
+ 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
+ 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
+ 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
+ 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
+ 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
#endif
+};
/*
-** The default size of a disk sector
+** The following 256 byte lookup table is used to support SQLites built-in
+** equivalents to the following standard library functions:
+**
+** isspace() 0x01
+** isalpha() 0x02
+** isdigit() 0x04
+** isalnum() 0x06
+** isxdigit() 0x08
+** toupper() 0x20
+**
+** Bit 0x20 is set if the mapped character requires translation to upper
+** case. i.e. if the character is a lower-case ASCII character.
+** If x is a lower-case ASCII character, then its upper-case equivalent
+** is (x - 0x20). Therefore toupper() can be implemented as:
+**
+** (x & ~(map[x]&0x20))
+**
+** Standard function tolower() is implemented using the sqlite3UpperToLower[]
+** array. tolower() is used more often than toupper() by SQLite.
+**
+** SQLite's versions are identical to the standard versions assuming a
+** locale of "C". They are implemented as macros in sqliteInt.h.
*/
-#ifndef SQLITE_DEFAULT_SECTOR_SIZE
-# define SQLITE_DEFAULT_SECTOR_SIZE 512
+#ifdef SQLITE_ASCII
+SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[256] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00..07 ........ */
+ 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, /* 08..0f ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10..17 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 18..1f ........ */
+ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 20..27 !"#$%&' */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 28..2f ()*+,-./ */
+ 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, /* 30..37 01234567 */
+ 0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 38..3f 89:;<=>? */
+
+ 0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */
+ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */
+ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */
+ 0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, /* 58..5f XYZ[\]^_ */
+ 0x00, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */
+ 0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */
+
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 80..87 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 88..8f ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 90..97 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 98..9f ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a0..a7 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a8..af ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b0..b7 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b8..bf ........ */
+
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c0..c7 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c8..cf ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* d0..d7 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* d8..df ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* e0..e7 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* e8..ef ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* f0..f7 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* f8..ff ........ */
+};
#endif
+
+
/*
-** Temporary files are named starting with this prefix followed by 16 random
-** alphanumeric characters, and no file extension. They are stored in the
-** OS's standard temporary file directory, and are deleted prior to exit.
-** If sqlite is being embedded in another program, you may wish to change the
-** prefix to reflect your program's name, so that if your program exits
-** prematurely, old temporary files can be easily identified. This can be done
-** using -DTEMP_FILE_PREFIX=myprefix_ on the compiler command line.
-**
-** 2006-10-31: The default prefix used to be "sqlite_". But then
-** Mcafee started using SQLite in their anti-virus product and it
-** started putting files with the "sqlite" name in the c:/temp folder.
-** This annoyed many windows users. Those users would then do a
-** Google search for "sqlite", find the telephone numbers of the
-** developers and call to wake them up at night and complain.
-** For this reason, the default name prefix is changed to be "sqlite"
-** spelled backwards. So the temp files are still identified, but
-** anybody smart enough to figure out the code is also likely smart
-** enough to know that calling the developer will not help get rid
-** of the file.
+** The following singleton contains the global configuration for
+** the SQLite library.
*/
-#ifndef TEMP_FILE_PREFIX
-# define TEMP_FILE_PREFIX "etilqs_"
-#endif
-
-/*
-** Define the interfaces for Unix, Windows, and OS/2.
-*/
-#if OS_UNIX
-#define sqlite3OsOpenReadWrite sqlite3UnixOpenReadWrite
-#define sqlite3OsOpenExclusive sqlite3UnixOpenExclusive
-#define sqlite3OsOpenReadOnly sqlite3UnixOpenReadOnly
-#define sqlite3OsDelete sqlite3UnixDelete
-#define sqlite3OsFileExists sqlite3UnixFileExists
-#define sqlite3OsFullPathname sqlite3UnixFullPathname
-#define sqlite3OsIsDirWritable sqlite3UnixIsDirWritable
-#define sqlite3OsSyncDirectory sqlite3UnixSyncDirectory
-#define sqlite3OsTempFileName sqlite3UnixTempFileName
-#define sqlite3OsRandomSeed sqlite3UnixRandomSeed
-#define sqlite3OsSleep sqlite3UnixSleep
-#define sqlite3OsCurrentTime sqlite3UnixCurrentTime
-#define sqlite3OsEnterMutex sqlite3UnixEnterMutex
-#define sqlite3OsLeaveMutex sqlite3UnixLeaveMutex
-#define sqlite3OsInMutex sqlite3UnixInMutex
-#define sqlite3OsThreadSpecificData sqlite3UnixThreadSpecificData
-#define sqlite3OsMalloc sqlite3GenericMalloc
-#define sqlite3OsRealloc sqlite3GenericRealloc
-#define sqlite3OsFree sqlite3GenericFree
-#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
-#define sqlite3OsDlopen sqlite3UnixDlopen
-#define sqlite3OsDlsym sqlite3UnixDlsym
-#define sqlite3OsDlclose sqlite3UnixDlclose
-#endif
-#if OS_WIN
-#define sqlite3OsOpenReadWrite sqlite3WinOpenReadWrite
-#define sqlite3OsOpenExclusive sqlite3WinOpenExclusive
-#define sqlite3OsOpenReadOnly sqlite3WinOpenReadOnly
-#define sqlite3OsDelete sqlite3WinDelete
-#define sqlite3OsFileExists sqlite3WinFileExists
-#define sqlite3OsFullPathname sqlite3WinFullPathname
-#define sqlite3OsIsDirWritable sqlite3WinIsDirWritable
-#define sqlite3OsSyncDirectory sqlite3WinSyncDirectory
-#define sqlite3OsTempFileName sqlite3WinTempFileName
-#define sqlite3OsRandomSeed sqlite3WinRandomSeed
-#define sqlite3OsSleep sqlite3WinSleep
-#define sqlite3OsCurrentTime sqlite3WinCurrentTime
-#define sqlite3OsEnterMutex sqlite3WinEnterMutex
-#define sqlite3OsLeaveMutex sqlite3WinLeaveMutex
-#define sqlite3OsInMutex sqlite3WinInMutex
-#define sqlite3OsThreadSpecificData sqlite3WinThreadSpecificData
-#define sqlite3OsMalloc sqlite3GenericMalloc
-#define sqlite3OsRealloc sqlite3GenericRealloc
-#define sqlite3OsFree sqlite3GenericFree
-#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
-#define sqlite3OsDlopen sqlite3WinDlopen
-#define sqlite3OsDlsym sqlite3WinDlsym
-#define sqlite3OsDlclose sqlite3WinDlclose
-#endif
-#if OS_OS2
-#define sqlite3OsOpenReadWrite sqlite3Os2OpenReadWrite
-#define sqlite3OsOpenExclusive sqlite3Os2OpenExclusive
-#define sqlite3OsOpenReadOnly sqlite3Os2OpenReadOnly
-#define sqlite3OsDelete sqlite3Os2Delete
-#define sqlite3OsFileExists sqlite3Os2FileExists
-#define sqlite3OsFullPathname sqlite3Os2FullPathname
-#define sqlite3OsIsDirWritable sqlite3Os2IsDirWritable
-#define sqlite3OsSyncDirectory sqlite3Os2SyncDirectory
-#define sqlite3OsTempFileName sqlite3Os2TempFileName
-#define sqlite3OsRandomSeed sqlite3Os2RandomSeed
-#define sqlite3OsSleep sqlite3Os2Sleep
-#define sqlite3OsCurrentTime sqlite3Os2CurrentTime
-#define sqlite3OsEnterMutex sqlite3Os2EnterMutex
-#define sqlite3OsLeaveMutex sqlite3Os2LeaveMutex
-#define sqlite3OsInMutex sqlite3Os2InMutex
-#define sqlite3OsThreadSpecificData sqlite3Os2ThreadSpecificData
-#define sqlite3OsMalloc sqlite3GenericMalloc
-#define sqlite3OsRealloc sqlite3GenericRealloc
-#define sqlite3OsFree sqlite3GenericFree
-#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
-#define sqlite3OsDlopen sqlite3Os2Dlopen
-#define sqlite3OsDlsym sqlite3Os2Dlsym
-#define sqlite3OsDlclose sqlite3Os2Dlclose
-#endif
-
-
-
-
-/*
-** If using an alternative OS interface, then we must have an "os_other.h"
-** header file available for that interface. Presumably the "os_other.h"
-** header file contains #defines similar to those above.
-*/
-#if OS_OTHER
-# include "os_other.h"
-#endif
-
-
-
-/*
-** Forward declarations
-*/
-typedef struct OsFile OsFile;
-typedef struct IoMethod IoMethod;
-
-/*
-** An instance of the following structure contains pointers to all
-** methods on an OsFile object.
-*/
-struct IoMethod {
- int (*xClose)(OsFile**);
- int (*xOpenDirectory)(OsFile*, const char*);
- int (*xRead)(OsFile*, void*, int amt);
- int (*xWrite)(OsFile*, const void*, int amt);
- int (*xSeek)(OsFile*, i64 offset);
- int (*xTruncate)(OsFile*, i64 size);
- int (*xSync)(OsFile*, int);
- void (*xSetFullSync)(OsFile *id, int setting);
- int (*xFileHandle)(OsFile *id);
- int (*xFileSize)(OsFile*, i64 *pSize);
- int (*xLock)(OsFile*, int);
- int (*xUnlock)(OsFile*, int);
- int (*xLockState)(OsFile *id);
- int (*xCheckReservedLock)(OsFile *id);
- int (*xSectorSize)(OsFile *id);
+SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
+ SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */
+ 1, /* bCoreMutex */
+ SQLITE_THREADSAFE==1, /* bFullMutex */
+ 0x7ffffffe, /* mxStrlen */
+ 100, /* szLookaside */
+ 500, /* nLookaside */
+ {0,0,0,0,0,0,0,0}, /* m */
+ {0,0,0,0,0,0,0,0,0}, /* mutex */
+ {0,0,0,0,0,0,0,0,0,0,0}, /* pcache */
+ (void*)0, /* pHeap */
+ 0, /* nHeap */
+ 0, 0, /* mnHeap, mxHeap */
+ (void*)0, /* pScratch */
+ 0, /* szScratch */
+ 0, /* nScratch */
+ (void*)0, /* pPage */
+ 0, /* szPage */
+ 0, /* nPage */
+ 0, /* mxParserStack */
+ 0, /* sharedCacheEnabled */
+ /* All the rest should always be initialized to zero */
+ 0, /* isInit */
+ 0, /* inProgress */
+ 0, /* isMutexInit */
+ 0, /* isMallocInit */
+ 0, /* isPCacheInit */
+ 0, /* pInitMutex */
+ 0, /* nRefInitMutex */
};
+
/*
-** The OsFile object describes an open disk file in an OS-dependent way.
-** The version of OsFile defined here is a generic version. Each OS
-** implementation defines its own subclass of this structure that contains
-** additional information needed to handle file I/O. But the pMethod
-** entry (pointing to the virtual function table) always occurs first
-** so that we can always find the appropriate methods.
+** Hash table for global functions - functions common to all
+** database connections. After initialization, this table is
+** read-only.
*/
-struct OsFile {
- IoMethod const *pMethod;
-};
+SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
/*
-** The following values may be passed as the second argument to
-** sqlite3OsLock(). The various locks exhibit the following semantics:
+** The value of the "pending" byte must be 0x40000000 (1 byte past the
+** 1-gibabyte boundary) in a compatible database. SQLite never uses
+** the database page that contains the pending byte. It never attempts
+** to read or write that page. The pending byte page is set assign
+** for use by the VFS layers as space for managing file locks.
**
-** SHARED: Any number of processes may hold a SHARED lock simultaneously.
-** RESERVED: A single process may hold a RESERVED lock on a file at
-** any time. Other processes may hold and obtain new SHARED locks.
-** PENDING: A single process may hold a PENDING lock on a file at
-** any one time. Existing SHARED locks may persist, but no new
-** SHARED locks may be obtained by other processes.
-** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
+** During testing, it is often desirable to move the pending byte to
+** a different position in the file. This allows code that has to
+** deal with the pending byte to run on files that are much smaller
+** than 1 GiB. The sqlite3_test_control() interface can be used to
+** move the pending byte.
**
-** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
-** process that requests an EXCLUSIVE lock may actually obtain a PENDING
-** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
-** sqlite3OsLock().
+** IMPORTANT: Changing the pending byte to any value other than
+** 0x40000000 results in an incompatible database file format!
+** Changing the pending byte during operating results in undefined
+** and dileterious behavior.
*/
-#define NO_LOCK 0
-#define SHARED_LOCK 1
-#define RESERVED_LOCK 2
-#define PENDING_LOCK 3
-#define EXCLUSIVE_LOCK 4
+SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000;
+/************** End of global.c **********************************************/
+/************** Begin file status.c ******************************************/
/*
-** File Locking Notes: (Mostly about windows but also some info for Unix)
-**
-** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
-** those functions are not available. So we use only LockFile() and
-** UnlockFile().
+** 2008 June 18
**
-** LockFile() prevents not just writing but also reading by other processes.
-** A SHARED_LOCK is obtained by locking a single randomly-chosen
-** byte out of a specific range of bytes. The lock byte is obtained at
-** random so two separate readers can probably access the file at the
-** same time, unless they are unlucky and choose the same lock byte.
-** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
-** There can only be one writer. A RESERVED_LOCK is obtained by locking
-** a single byte of the file that is designated as the reserved lock byte.
-** A PENDING_LOCK is obtained by locking a designated byte different from
-** the RESERVED_LOCK byte.
-**
-** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
-** which means we can use reader/writer locks. When reader/writer locks
-** are used, the lock is placed on the same range of bytes that is used
-** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
-** will support two or more Win95 readers or two or more WinNT readers.
-** But a single Win95 reader will lock out all WinNT readers and a single
-** WinNT reader will lock out all other Win95 readers.
-**
-** The following #defines specify the range of bytes used for locking.
-** SHARED_SIZE is the number of bytes available in the pool from which
-** a random byte is selected for a shared lock. The pool of bytes for
-** shared locks begins at SHARED_FIRST.
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
**
-** These #defines are available in sqlite_aux.h so that adaptors for
-** connecting SQLite to other operating systems can use the same byte
-** ranges for locking. In particular, the same locking strategy and
-** byte ranges are used for Unix. This leaves open the possiblity of having
-** clients on win95, winNT, and unix all talking to the same shared file
-** and all locking correctly. To do so would require that samba (or whatever
-** tool is being used for file sharing) implements locks correctly between
-** windows and unix. I'm guessing that isn't likely to happen, but by
-** using the same locking range we are at least open to the possibility.
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
**
-** Locking in windows is manditory. For this reason, we cannot store
-** actual data in the bytes used for locking. The pager never allocates
-** the pages involved in locking therefore. SHARED_SIZE is selected so
-** that all locks will fit on a single page even at the minimum page size.
-** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
-** is set high so that we don't have to allocate an unused page except
-** for very large databases. But one should test the page skipping logic
-** by setting PENDING_BYTE low and running the entire regression suite.
+*************************************************************************
**
-** Changing the value of PENDING_BYTE results in a subtly incompatible
-** file format. Depending on how it is changed, you might not notice
-** the incompatibility right away, even running a full regression test.
-** The default location of PENDING_BYTE is the first byte past the
-** 1GB boundary.
+** This module implements the sqlite3_status() interface and related
+** functionality.
**
+** $Id: status.c,v 1.9 2008/09/02 00:52:52 drh Exp $
*/
-#ifndef SQLITE_TEST
-#define PENDING_BYTE 0x40000000 /* First byte past the 1GB boundary */
-#else
-extern unsigned int sqlite3_pending_byte;
-#define PENDING_BYTE sqlite3_pending_byte
-#endif
-
-#define RESERVED_BYTE (PENDING_BYTE+1)
-#define SHARED_FIRST (PENDING_BYTE+2)
-#define SHARED_SIZE 510
/*
-** Prototypes for operating system interface routines.
-*/
-int sqlite3OsClose(OsFile**);
-int sqlite3OsOpenDirectory(OsFile*, const char*);
-int sqlite3OsRead(OsFile*, void*, int amt);
-int sqlite3OsWrite(OsFile*, const void*, int amt);
-int sqlite3OsSeek(OsFile*, i64 offset);
-int sqlite3OsTruncate(OsFile*, i64 size);
-int sqlite3OsSync(OsFile*, int);
-void sqlite3OsSetFullSync(OsFile *id, int setting);
-int sqlite3OsFileHandle(OsFile *id);
-int sqlite3OsFileSize(OsFile*, i64 *pSize);
-int sqlite3OsLock(OsFile*, int);
-int sqlite3OsUnlock(OsFile*, int);
-int sqlite3OsLockState(OsFile *id);
-int sqlite3OsCheckReservedLock(OsFile *id);
-int sqlite3OsOpenReadWrite(const char*, OsFile**, int*);
-int sqlite3OsOpenExclusive(const char*, OsFile**, int);
-int sqlite3OsOpenReadOnly(const char*, OsFile**);
-int sqlite3OsDelete(const char*);
-int sqlite3OsFileExists(const char*);
-char *sqlite3OsFullPathname(const char*);
-int sqlite3OsIsDirWritable(char*);
-int sqlite3OsSyncDirectory(const char*);
-int sqlite3OsSectorSize(OsFile *id);
-int sqlite3OsTempFileName(char*);
-int sqlite3OsRandomSeed(char*);
-int sqlite3OsSleep(int ms);
-int sqlite3OsCurrentTime(double*);
-void sqlite3OsEnterMutex(void);
-void sqlite3OsLeaveMutex(void);
-int sqlite3OsInMutex(int);
-ThreadData *sqlite3OsThreadSpecificData(int);
-void *sqlite3OsMalloc(int);
-void *sqlite3OsRealloc(void *, int);
-void sqlite3OsFree(void *);
-int sqlite3OsAllocationSize(void *);
-void *sqlite3OsDlopen(const char*);
-void *sqlite3OsDlsym(void*, const char*);
-int sqlite3OsDlclose(void*);
-
-/*
-** If the SQLITE_ENABLE_REDEF_IO macro is defined, then the OS-layer
-** interface routines are not called directly but are invoked using
-** pointers to functions. This allows the implementation of various
-** OS-layer interface routines to be modified at run-time. There are
-** obscure but legitimate reasons for wanting to do this. But for
-** most users, a direct call to the underlying interface is preferable
-** so the the redefinable I/O interface is turned off by default.
-*/
-#ifdef SQLITE_ENABLE_REDEF_IO
-
-/*
-** When redefinable I/O is enabled, a single global instance of the
-** following structure holds pointers to the routines that SQLite
-** uses to talk with the underlying operating system. Modify this
-** structure (before using any SQLite API!) to accomodate perculiar
-** operating system interfaces or behaviors.
-*/
-struct sqlite3OsVtbl {
- int (*xOpenReadWrite)(const char*, OsFile**, int*);
- int (*xOpenExclusive)(const char*, OsFile**, int);
- int (*xOpenReadOnly)(const char*, OsFile**);
-
- int (*xDelete)(const char*);
- int (*xFileExists)(const char*);
- char *(*xFullPathname)(const char*);
- int (*xIsDirWritable)(char*);
- int (*xSyncDirectory)(const char*);
- int (*xTempFileName)(char*);
-
- int (*xRandomSeed)(char*);
- int (*xSleep)(int ms);
- int (*xCurrentTime)(double*);
-
- void (*xEnterMutex)(void);
- void (*xLeaveMutex)(void);
- int (*xInMutex)(int);
- ThreadData *(*xThreadSpecificData)(int);
-
- void *(*xMalloc)(int);
- void *(*xRealloc)(void *, int);
- void (*xFree)(void *);
- int (*xAllocationSize)(void *);
-
- void *(*xDlopen)(const char*);
- void *(*xDlsym)(void*, const char*);
- int (*xDlclose)(void*);
-};
+** Variables in which to record status information.
+*/
+typedef struct sqlite3StatType sqlite3StatType;
+static SQLITE_WSD struct sqlite3StatType {
+ int nowValue[9]; /* Current value */
+ int mxValue[9]; /* Maximum value */
+} sqlite3Stat = { {0,}, {0,} };
-/* Macro used to comment out routines that do not exists when there is
-** no disk I/O or extension loading
+
+/* The "wsdStat" macro will resolve to the status information
+** state vector. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdStat can refer directly
+** to the "sqlite3Stat" state vector declared above.
*/
-#ifdef SQLITE_OMIT_DISKIO
-# define IF_DISKIO(X) 0
+#ifdef SQLITE_OMIT_WSD
+# define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
+# define wsdStat x[0]
#else
-# define IF_DISKIO(X) X
-#endif
-#ifdef SQLITE_OMIT_LOAD_EXTENSION
-# define IF_DLOPEN(X) 0
-#else
-# define IF_DLOPEN(X) X
+# define wsdStatInit
+# define wsdStat sqlite3Stat
#endif
+/*
+** Return the current value of a status parameter.
+*/
+SQLITE_PRIVATE int sqlite3StatusValue(int op){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ return wsdStat.nowValue[op];
+}
-#if defined(_SQLITE_OS_C_) || defined(SQLITE_AMALGAMATION)
- /*
- ** The os.c file implements the global virtual function table.
- ** We have to put this file here because the initializers
- ** (ex: sqlite3OsRandomSeed) are macros that are about to be
- ** redefined.
- */
- struct sqlite3OsVtbl sqlite3Os = {
- IF_DISKIO( sqlite3OsOpenReadWrite ),
- IF_DISKIO( sqlite3OsOpenExclusive ),
- IF_DISKIO( sqlite3OsOpenReadOnly ),
- IF_DISKIO( sqlite3OsDelete ),
- IF_DISKIO( sqlite3OsFileExists ),
- IF_DISKIO( sqlite3OsFullPathname ),
- IF_DISKIO( sqlite3OsIsDirWritable ),
- IF_DISKIO( sqlite3OsSyncDirectory ),
- IF_DISKIO( sqlite3OsTempFileName ),
- sqlite3OsRandomSeed,
- sqlite3OsSleep,
- sqlite3OsCurrentTime,
- sqlite3OsEnterMutex,
- sqlite3OsLeaveMutex,
- sqlite3OsInMutex,
- sqlite3OsThreadSpecificData,
- sqlite3OsMalloc,
- sqlite3OsRealloc,
- sqlite3OsFree,
- sqlite3OsAllocationSize,
- IF_DLOPEN( sqlite3OsDlopen ),
- IF_DLOPEN( sqlite3OsDlsym ),
- IF_DLOPEN( sqlite3OsDlclose ),
- };
-#else
- /*
- ** Files other than os.c just reference the global virtual function table.
- */
- extern struct sqlite3OsVtbl sqlite3Os;
-#endif /* _SQLITE_OS_C_ */
-
-
-/* This additional API routine is available with redefinable I/O */
-struct sqlite3OsVtbl *sqlite3_os_switch(void);
-
-
-/*
-** Redefine the OS interface to go through the virtual function table
-** rather than calling routines directly.
-*/
-#undef sqlite3OsOpenReadWrite
-#undef sqlite3OsOpenExclusive
-#undef sqlite3OsOpenReadOnly
-#undef sqlite3OsDelete
-#undef sqlite3OsFileExists
-#undef sqlite3OsFullPathname
-#undef sqlite3OsIsDirWritable
-#undef sqlite3OsSyncDirectory
-#undef sqlite3OsTempFileName
-#undef sqlite3OsRandomSeed
-#undef sqlite3OsSleep
-#undef sqlite3OsCurrentTime
-#undef sqlite3OsEnterMutex
-#undef sqlite3OsLeaveMutex
-#undef sqlite3OsInMutex
-#undef sqlite3OsThreadSpecificData
-#undef sqlite3OsMalloc
-#undef sqlite3OsRealloc
-#undef sqlite3OsFree
-#undef sqlite3OsAllocationSize
-#define sqlite3OsOpenReadWrite sqlite3Os.xOpenReadWrite
-#define sqlite3OsOpenExclusive sqlite3Os.xOpenExclusive
-#define sqlite3OsOpenReadOnly sqlite3Os.xOpenReadOnly
-#define sqlite3OsDelete sqlite3Os.xDelete
-#define sqlite3OsFileExists sqlite3Os.xFileExists
-#define sqlite3OsFullPathname sqlite3Os.xFullPathname
-#define sqlite3OsIsDirWritable sqlite3Os.xIsDirWritable
-#define sqlite3OsSyncDirectory sqlite3Os.xSyncDirectory
-#define sqlite3OsTempFileName sqlite3Os.xTempFileName
-#define sqlite3OsRandomSeed sqlite3Os.xRandomSeed
-#define sqlite3OsSleep sqlite3Os.xSleep
-#define sqlite3OsCurrentTime sqlite3Os.xCurrentTime
-#define sqlite3OsEnterMutex sqlite3Os.xEnterMutex
-#define sqlite3OsLeaveMutex sqlite3Os.xLeaveMutex
-#define sqlite3OsInMutex sqlite3Os.xInMutex
-#define sqlite3OsThreadSpecificData sqlite3Os.xThreadSpecificData
-#define sqlite3OsMalloc sqlite3Os.xMalloc
-#define sqlite3OsRealloc sqlite3Os.xRealloc
-#define sqlite3OsFree sqlite3Os.xFree
-#define sqlite3OsAllocationSize sqlite3Os.xAllocationSize
-
-#endif /* SQLITE_ENABLE_REDEF_IO */
+/*
+** Add N to the value of a status record. It is assumed that the
+** caller holds appropriate locks.
+*/
+SQLITE_PRIVATE void sqlite3StatusAdd(int op, int N){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ wsdStat.nowValue[op] += N;
+ if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+}
-#endif /* _SQLITE_OS_H_ */
+/*
+** Set the value of a status to X.
+*/
+SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ wsdStat.nowValue[op] = X;
+ if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+}
-/************** End of os.h **************************************************/
-/************** Continuing where we left off in date.c ***********************/
-#include <ctype.h>
+/*
+** Query status information.
+**
+** This implementation assumes that reading or writing an aligned
+** 32-bit integer is an atomic operation. If that assumption is not true,
+** then this routine is not threadsafe.
+*/
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
+ wsdStatInit;
+ if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
+ return SQLITE_MISUSE;
+ }
+ *pCurrent = wsdStat.nowValue[op];
+ *pHighwater = wsdStat.mxValue[op];
+ if( resetFlag ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Query status information for a single database connection
+*/
+SQLITE_API int sqlite3_db_status(
+ sqlite3 *db, /* The database connection whose status is desired */
+ int op, /* Status verb */
+ int *pCurrent, /* Write current value here */
+ int *pHighwater, /* Write high-water mark here */
+ int resetFlag /* Reset high-water mark if true */
+){
+ switch( op ){
+ case SQLITE_DBSTATUS_LOOKASIDE_USED: {
+ *pCurrent = db->lookaside.nOut;
+ *pHighwater = db->lookaside.mxOut;
+ if( resetFlag ){
+ db->lookaside.mxOut = db->lookaside.nOut;
+ }
+ break;
+ }
+ default: {
+ return SQLITE_ERROR;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/************** End of status.c **********************************************/
+/************** Begin file date.c ********************************************/
+/*
+** 2003 October 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement date and time
+** functions for SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** $Id: date.c,v 1.107 2009/05/03 20:23:53 drh Exp $
+**
+** SQLite processes all times and dates as Julian Day numbers. The
+** dates and times are stored as the number of days since noon
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
+** calendar system.
+**
+** 1970-01-01 00:00:00 is JD 2440587.5
+** 2000-01-01 00:00:00 is JD 2451544.5
+**
+** This implemention requires years to be expressed as a 4-digit number
+** which means that only dates between 0000-01-01 and 9999-12-31 can
+** be represented, even though julian day numbers allow a much wider
+** range of dates.
+**
+** The Gregorian calendar system is used for all dates and times,
+** even those that predate the Gregorian calendar. Historians usually
+** use the Julian calendar for dates prior to 1582-10-15 and for some
+** dates afterwards, depending on locale. Beware of this difference.
+**
+** The conversion algorithms are implemented based on descriptions
+** in the following text:
+**
+** Jean Meeus
+** Astronomical Algorithms, 2nd Edition, 1998
+** ISBM 0-943396-61-1
+** Willmann-Bell, Inc
+** Richmond, Virginia (USA)
+*/
#include <time.h>
#ifndef SQLITE_OMIT_DATETIME_FUNCS
/*
+** On recent Windows platforms, the localtime_s() function is available
+** as part of the "Secure CRT". It is essentially equivalent to
+** localtime_r() available under most POSIX platforms, except that the
+** order of the parameters is reversed.
+**
+** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
+**
+** If the user has not indicated to use localtime_r() or localtime_s()
+** already, check for an MSVC build environment that provides
+** localtime_s().
+*/
+#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
+ defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
+#define HAVE_LOCALTIME_S 1
+#endif
+
+/*
** A structure for holding a single date and time.
*/
typedef struct DateTime DateTime;
struct DateTime {
- double rJD; /* The julian day number */
- int Y, M, D; /* Year, month, and day */
- int h, m; /* Hour and minutes */
- int tz; /* Timezone offset in minutes */
- double s; /* Seconds */
- char validYMD; /* True if Y,M,D are valid */
- char validHMS; /* True if h,m,s are valid */
- char validJD; /* True if rJD is valid */
- char validTZ; /* True if tz is valid */
+ sqlite3_int64 iJD; /* The julian day number times 86400000 */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validYMD; /* True (1) if Y,M,D are valid */
+ char validHMS; /* True (1) if h,m,s are valid */
+ char validJD; /* True (1) if iJD is valid */
+ char validTZ; /* True (1) if tz is valid */
};
@@ -5389,7 +11048,7 @@ static int getDigits(const char *zDate, ...){
pVal = va_arg(ap, int*);
val = 0;
while( N-- ){
- if( !isdigit(*(u8*)zDate) ){
+ if( !sqlite3Isdigit(*zDate) ){
goto end_getDigits;
}
val = val*10 + *zDate - '0';
@@ -5419,23 +11078,32 @@ end_getDigits:
**
** (+/-)HH:MM
**
+** Or the "zulu" notation:
+**
+** Z
+**
** If the parse is successful, write the number of minutes
-** of change in *pnMin and return 0. If a parser error occurs,
-** return 0.
+** of change in p->tz and return 0. If a parser error occurs,
+** return non-zero.
**
** A missing specifier is not considered an error.
*/
static int parseTimezone(const char *zDate, DateTime *p){
int sgn = 0;
int nHr, nMn;
- while( isspace(*(u8*)zDate) ){ zDate++; }
+ int c;
+ while( sqlite3Isspace(*zDate) ){ zDate++; }
p->tz = 0;
- if( *zDate=='-' ){
+ c = *zDate;
+ if( c=='-' ){
sgn = -1;
- }else if( *zDate=='+' ){
+ }else if( c=='+' ){
sgn = +1;
+ }else if( c=='Z' || c=='z' ){
+ zDate++;
+ goto zulu_time;
}else{
- return *zDate!=0;
+ return c!=0;
}
zDate++;
if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
@@ -5443,7 +11111,8 @@ static int parseTimezone(const char *zDate, DateTime *p){
}
zDate += 5;
p->tz = sgn*(nMn + nHr*60);
- while( isspace(*(u8*)zDate) ){ zDate++; }
+zulu_time:
+ while( sqlite3Isspace(*zDate) ){ zDate++; }
return *zDate!=0;
}
@@ -5467,10 +11136,10 @@ static int parseHhMmSs(const char *zDate, DateTime *p){
return 1;
}
zDate += 2;
- if( *zDate=='.' && isdigit((u8)zDate[1]) ){
+ if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
double rScale = 1.0;
zDate++;
- while( isdigit(*(u8*)zDate) ){
+ while( sqlite3Isdigit(*zDate) ){
ms = ms*10.0 + *zDate - '0';
rScale *= 10.0;
zDate++;
@@ -5486,7 +11155,7 @@ static int parseHhMmSs(const char *zDate, DateTime *p){
p->m = m;
p->s = s + ms;
if( parseTimezone(zDate, p) ) return 1;
- p->validTZ = p->tz!=0;
+ p->validTZ = (p->tz!=0)?1:0;
return 0;
}
@@ -5515,14 +11184,14 @@ static void computeJD(DateTime *p){
}
A = Y/100;
B = 2 - A + (A/4);
- X1 = 365.25*(Y+4716);
- X2 = 30.6001*(M+1);
- p->rJD = X1 + X2 + D + B - 1524.5;
+ X1 = 36525*(Y+4716)/100;
+ X2 = 306001*(M+1)/10000;
+ p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
p->validJD = 1;
if( p->validHMS ){
- p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
+ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
if( p->validTZ ){
- p->rJD -= p->tz*60/86400.0;
+ p->iJD -= p->tz*60000;
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
@@ -5555,7 +11224,7 @@ static int parseYyyyMmDd(const char *zDate, DateTime *p){
return 1;
}
zDate += 10;
- while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
+ while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
if( parseHhMmSs(zDate, p)==0 ){
/* We got the time */
}else if( *zDate==0 ){
@@ -5575,6 +11244,17 @@ static int parseYyyyMmDd(const char *zDate, DateTime *p){
}
/*
+** Set the time to the current time reported by the VFS
+*/
+static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
+ double r;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3OsCurrentTime(db->pVfs, &r);
+ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
+ p->validJD = 1;
+}
+
+/*
** Attempt to parse the given string into a Julian Day Number. Return
** the number of errors.
**
@@ -5590,20 +11270,23 @@ static int parseYyyyMmDd(const char *zDate, DateTime *p){
** as there is a time string. The time string can be omitted as long
** as there is a year and date.
*/
-static int parseDateOrTime(const char *zDate, DateTime *p){
- memset(p, 0, sizeof(*p));
+static int parseDateOrTime(
+ sqlite3_context *context,
+ const char *zDate,
+ DateTime *p
+){
+ int isRealNum; /* Return from sqlite3IsNumber(). Not used */
if( parseYyyyMmDd(zDate,p)==0 ){
return 0;
}else if( parseHhMmSs(zDate, p)==0 ){
return 0;
}else if( sqlite3StrICmp(zDate,"now")==0){
- double r;
- sqlite3OsCurrentTime(&r);
- p->rJD = r;
- p->validJD = 1;
+ setDateTimeToCurrent(context, p);
return 0;
- }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
- getValue(zDate, &p->rJD);
+ }else if( sqlite3IsNumber(zDate, &isRealNum, SQLITE_UTF8) ){
+ double r;
+ getValue(zDate, &r);
+ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
p->validJD = 1;
return 0;
}
@@ -5621,14 +11304,14 @@ static void computeYMD(DateTime *p){
p->M = 1;
p->D = 1;
}else{
- Z = p->rJD + 0.5;
- A = (Z - 1867216.25)/36524.25;
+ Z = (int)((p->iJD + 43200000)/86400000);
+ A = (int)((Z - 1867216.25)/36524.25);
A = Z + 1 + A - (A/4);
B = A + 1524;
- C = (B - 122.1)/365.25;
- D = 365.25*C;
- E = (B-D)/30.6001;
- X1 = 30.6001*E;
+ C = (int)((B - 122.1)/365.25);
+ D = (36525*C)/100;
+ E = (int)((B-D)/30.6001);
+ X1 = (int)(30.6001*E);
p->D = B - D - X1;
p->M = E<14 ? E-1 : E-13;
p->Y = p->M>2 ? C - 4716 : C - 4715;
@@ -5640,13 +11323,12 @@ static void computeYMD(DateTime *p){
** Compute the Hour, Minute, and Seconds from the julian day number.
*/
static void computeHMS(DateTime *p){
- int Z, s;
+ int s;
if( p->validHMS ) return;
computeJD(p);
- Z = p->rJD + 0.5;
- s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
- p->s = 0.001*s;
- s = p->s;
+ s = (int)((p->iJD + 43200000) % 86400000);
+ p->s = s/1000.0;
+ s = (int)p->s;
p->s -= s;
p->h = s/3600;
s -= p->h*3600;
@@ -5672,11 +11354,13 @@ static void clearYMD_HMS_TZ(DateTime *p){
p->validTZ = 0;
}
+#ifndef SQLITE_OMIT_LOCALTIME
/*
-** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
+** Compute the difference (in milliseconds)
+** between localtime and UTC (a.k.a. GMT)
** for the time value p where p is in UTC.
*/
-static double localtimeOffset(DateTime *p){
+static sqlite3_int64 localtimeOffset(DateTime *p){
DateTime x, y;
time_t t;
x = *p;
@@ -5689,13 +11373,13 @@ static double localtimeOffset(DateTime *p){
x.m = 0;
x.s = 0.0;
} else {
- int s = x.s + 0.5;
+ int s = (int)(x.s + 0.5);
x.s = s;
}
x.tz = 0;
x.validJD = 0;
computeJD(&x);
- t = (x.rJD-2440587.5)*86400.0 + 0.5;
+ t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
#ifdef HAVE_LOCALTIME_R
{
struct tm sLocal;
@@ -5707,10 +11391,21 @@ static double localtimeOffset(DateTime *p){
y.m = sLocal.tm_min;
y.s = sLocal.tm_sec;
}
+#elif defined(HAVE_LOCALTIME_S)
+ {
+ struct tm sLocal;
+ localtime_s(&sLocal, &t);
+ y.Y = sLocal.tm_year + 1900;
+ y.M = sLocal.tm_mon + 1;
+ y.D = sLocal.tm_mday;
+ y.h = sLocal.tm_hour;
+ y.m = sLocal.tm_min;
+ y.s = sLocal.tm_sec;
+ }
#else
{
struct tm *pTm;
- sqlite3OsEnterMutex();
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
pTm = localtime(&t);
y.Y = pTm->tm_year + 1900;
y.M = pTm->tm_mon + 1;
@@ -5718,7 +11413,7 @@ static double localtimeOffset(DateTime *p){
y.h = pTm->tm_hour;
y.m = pTm->tm_min;
y.s = pTm->tm_sec;
- sqlite3OsLeaveMutex();
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#endif
y.validYMD = 1;
@@ -5726,8 +11421,9 @@ static double localtimeOffset(DateTime *p){
y.validJD = 0;
y.validTZ = 0;
computeJD(&y);
- return y.rJD - x.rJD;
+ return y.iJD - x.iJD;
}
+#endif /* SQLITE_OMIT_LOCALTIME */
/*
** Process a modifier to a date-time stamp. The modifiers are
@@ -5756,11 +11452,12 @@ static int parseModifier(const char *zMod, DateTime *p){
double r;
char *z, zBuf[30];
z = zBuf;
- for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
- z[n] = tolower(zMod[n]);
+ for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
+ z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
}
z[n] = 0;
switch( z[0] ){
+#ifndef SQLITE_OMIT_LOCALTIME
case 'l': {
/* localtime
**
@@ -5769,32 +11466,36 @@ static int parseModifier(const char *zMod, DateTime *p){
*/
if( strcmp(z, "localtime")==0 ){
computeJD(p);
- p->rJD += localtimeOffset(p);
+ p->iJD += localtimeOffset(p);
clearYMD_HMS_TZ(p);
rc = 0;
}
break;
}
+#endif
case 'u': {
/*
** unixepoch
**
- ** Treat the current value of p->rJD as the number of
+ ** Treat the current value of p->iJD as the number of
** seconds since 1970. Convert to a real julian day number.
*/
if( strcmp(z, "unixepoch")==0 && p->validJD ){
- p->rJD = p->rJD/86400.0 + 2440587.5;
+ p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
clearYMD_HMS_TZ(p);
rc = 0;
- }else if( strcmp(z, "utc")==0 ){
- double c1;
+ }
+#ifndef SQLITE_OMIT_LOCALTIME
+ else if( strcmp(z, "utc")==0 ){
+ sqlite3_int64 c1;
computeJD(p);
c1 = localtimeOffset(p);
- p->rJD -= c1;
+ p->iJD -= c1;
clearYMD_HMS_TZ(p);
- p->rJD += c1 - localtimeOffset(p);
+ p->iJD += c1 - localtimeOffset(p);
rc = 0;
}
+#endif
break;
}
case 'w': {
@@ -5806,16 +11507,15 @@ static int parseModifier(const char *zMod, DateTime *p){
** date is already on the appropriate weekday, this is a no-op.
*/
if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
- && (n=r)==r && n>=0 && r<7 ){
- int Z;
+ && (n=(int)r)==r && n>=0 && r<7 ){
+ sqlite3_int64 Z;
computeYMD_HMS(p);
p->validTZ = 0;
p->validJD = 0;
computeJD(p);
- Z = p->rJD + 1.5;
- Z %= 7;
+ Z = ((p->iJD + 129600000)/86400000) % 7;
if( Z>n ) Z -= 7;
- p->rJD += n - Z;
+ p->iJD += (n - Z)*86400000;
clearYMD_HMS_TZ(p);
rc = 0;
}
@@ -5861,6 +11561,7 @@ static int parseModifier(const char *zMod, DateTime *p){
case '7':
case '8':
case '9': {
+ double rRounder;
n = getValue(z, &r);
assert( n>=1 );
if( z[n]==':' ){
@@ -5871,54 +11572,59 @@ static int parseModifier(const char *zMod, DateTime *p){
*/
const char *z2 = z;
DateTime tx;
- int day;
- if( !isdigit(*(u8*)z2) ) z2++;
+ sqlite3_int64 day;
+ if( !sqlite3Isdigit(*z2) ) z2++;
memset(&tx, 0, sizeof(tx));
if( parseHhMmSs(z2, &tx) ) break;
computeJD(&tx);
- tx.rJD -= 0.5;
- day = (int)tx.rJD;
- tx.rJD -= day;
- if( z[0]=='-' ) tx.rJD = -tx.rJD;
+ tx.iJD -= 43200000;
+ day = tx.iJD/86400000;
+ tx.iJD -= day*86400000;
+ if( z[0]=='-' ) tx.iJD = -tx.iJD;
computeJD(p);
clearYMD_HMS_TZ(p);
- p->rJD += tx.rJD;
+ p->iJD += tx.iJD;
rc = 0;
break;
}
z += n;
- while( isspace(*(u8*)z) ) z++;
- n = strlen(z);
+ while( sqlite3Isspace(*z) ) z++;
+ n = sqlite3Strlen30(z);
if( n>10 || n<3 ) break;
if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
computeJD(p);
rc = 0;
+ rRounder = r<0 ? -0.5 : +0.5;
if( n==3 && strcmp(z,"day")==0 ){
- p->rJD += r;
+ p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
}else if( n==4 && strcmp(z,"hour")==0 ){
- p->rJD += r/24.0;
+ p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
}else if( n==6 && strcmp(z,"minute")==0 ){
- p->rJD += r/(24.0*60.0);
+ p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
}else if( n==6 && strcmp(z,"second")==0 ){
- p->rJD += r/(24.0*60.0*60.0);
+ p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
}else if( n==5 && strcmp(z,"month")==0 ){
int x, y;
computeYMD_HMS(p);
- p->M += r;
+ p->M += (int)r;
x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
p->Y += x;
p->M -= x*12;
p->validJD = 0;
computeJD(p);
- y = r;
+ y = (int)r;
if( y!=r ){
- p->rJD += (r - y)*30.0;
+ p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
}
}else if( n==4 && strcmp(z,"year")==0 ){
+ int y = (int)r;
computeYMD_HMS(p);
- p->Y += r;
+ p->Y += y;
p->validJD = 0;
computeJD(p);
+ if( y!=r ){
+ p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
+ }
}else{
rc = 1;
}
@@ -5937,15 +11643,36 @@ static int parseModifier(const char *zMod, DateTime *p){
** argv[1] and following are modifiers. Parse them all and write
** the resulting time into the DateTime structure p. Return 0
** on success and 1 if there are any errors.
+**
+** If there are zero parameters (if even argv[0] is undefined)
+** then assume a default value of "now" for argv[0].
*/
-static int isDate(int argc, sqlite3_value **argv, DateTime *p){
+static int isDate(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv,
+ DateTime *p
+){
int i;
- if( argc==0 ) return 1;
- if( SQLITE_NULL==sqlite3_value_type(argv[0]) ||
- parseDateOrTime((char*)sqlite3_value_text(argv[0]), p) ) return 1;
+ const unsigned char *z;
+ int eType;
+ memset(p, 0, sizeof(*p));
+ if( argc==0 ){
+ setDateTimeToCurrent(context, p);
+ }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
+ || eType==SQLITE_INTEGER ){
+ p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
+ p->validJD = 1;
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( !z || parseDateOrTime(context, (char*)z, p) ){
+ return 1;
+ }
+ }
for(i=1; i<argc; i++){
- if( SQLITE_NULL==sqlite3_value_type(argv[i]) ||
- parseModifier((char*)sqlite3_value_text(argv[i]), p) ) return 1;
+ if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
+ return 1;
+ }
}
return 0;
}
@@ -5967,9 +11694,9 @@ static void juliandayFunc(
sqlite3_value **argv
){
DateTime x;
- if( isDate(argc, argv, &x)==0 ){
+ if( isDate(context, argc, argv, &x)==0 ){
computeJD(&x);
- sqlite3_result_double(context, x.rJD);
+ sqlite3_result_double(context, x.iJD/86400000.0);
}
}
@@ -5984,11 +11711,11 @@ static void datetimeFunc(
sqlite3_value **argv
){
DateTime x;
- if( isDate(argc, argv, &x)==0 ){
+ if( isDate(context, argc, argv, &x)==0 ){
char zBuf[100];
computeYMD_HMS(&x);
- sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
- (int)(x.s));
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
+ x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
}
@@ -6004,10 +11731,10 @@ static void timeFunc(
sqlite3_value **argv
){
DateTime x;
- if( isDate(argc, argv, &x)==0 ){
+ if( isDate(context, argc, argv, &x)==0 ){
char zBuf[100];
computeHMS(&x);
- sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
}
@@ -6023,10 +11750,10 @@ static void dateFunc(
sqlite3_value **argv
){
DateTime x;
- if( isDate(argc, argv, &x)==0 ){
+ if( isDate(context, argc, argv, &x)==0 ){
char zBuf[100];
computeYMD(&x);
- sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
}
@@ -6056,11 +11783,14 @@ static void strftimeFunc(
sqlite3_value **argv
){
DateTime x;
- int n, i, j;
+ u64 n;
+ size_t i,j;
char *z;
+ sqlite3 *db;
const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
char zBuf[100];
- if( zFmt==0 || isDate(argc-1, argv+1, &x) ) return;
+ if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
+ db = sqlite3_context_db_handle(context);
for(i=0, n=1; zFmt[i]; i++, n++){
if( zFmt[i]=='%' ){
switch( zFmt[i+1] ){
@@ -6094,11 +11824,21 @@ static void strftimeFunc(
i++;
}
}
+ testcase( n==sizeof(zBuf)-1 );
+ testcase( n==sizeof(zBuf) );
+ testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
+ testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
if( n<sizeof(zBuf) ){
z = zBuf;
+ }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ return;
}else{
- z = sqliteMalloc( n );
- if( z==0 ) return;
+ z = sqlite3DbMallocRaw(db, (int)n);
+ if( z==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
}
computeJD(&x);
computeYMD_HMS(&x);
@@ -6108,15 +11848,15 @@ static void strftimeFunc(
}else{
i++;
switch( zFmt[i] ){
- case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
+ case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
case 'f': {
double s = x.s;
if( s>59.999 ) s = 59.999;
sqlite3_snprintf(7, &z[j],"%06.3f", s);
- j += strlen(&z[j]);
+ j += sqlite3Strlen30(&z[j]);
break;
}
- case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
+ case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
case 'W': /* Fall thru */
case 'j': {
int nDay; /* Number of days since 1st day of year */
@@ -6125,38 +11865,47 @@ static void strftimeFunc(
y.M = 1;
y.D = 1;
computeJD(&y);
- nDay = x.rJD - y.rJD + 0.5;
+ nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
if( zFmt[i]=='W' ){
int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
- wd = ((int)(x.rJD+0.5)) % 7;
- sprintf(&z[j],"%02d",(nDay+7-wd)/7);
+ wd = (int)(((x.iJD+43200000)/86400000)%7);
+ sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
j += 2;
}else{
- sprintf(&z[j],"%03d",nDay+1);
+ sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
j += 3;
}
break;
}
- case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
- case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
- case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
+ case 'J': {
+ sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
+ j+=sqlite3Strlen30(&z[j]);
+ break;
+ }
+ case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
+ case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
case 's': {
- sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
- j += strlen(&z[j]);
+ sqlite3_snprintf(30,&z[j],"%lld",
+ (i64)(x.iJD/1000 - 21086676*(i64)10000));
+ j += sqlite3Strlen30(&z[j]);
+ break;
+ }
+ case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
+ case 'w': {
+ z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
break;
}
- case 'S': sprintf(&z[j],"%02d",(int)x.s); j+=2; break;
- case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
- case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
- case '%': z[j++] = '%'; break;
+ case 'Y': {
+ sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
+ break;
+ }
+ default: z[j++] = '%'; break;
}
}
}
z[j] = 0;
- sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
- if( z!=zBuf ){
- sqliteFree(z);
- }
+ sqlite3_result_text(context, z, -1,
+ z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
}
/*
@@ -6166,15 +11915,11 @@ static void strftimeFunc(
*/
static void ctimeFunc(
sqlite3_context *context,
- int argc,
- sqlite3_value **argv
+ int NotUsed,
+ sqlite3_value **NotUsed2
){
- sqlite3_value *pVal = sqlite3ValueNew();
- if( pVal ){
- sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
- timeFunc(context, 1, &pVal);
- sqlite3ValueFree(pVal);
- }
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ timeFunc(context, 0, 0);
}
/*
@@ -6184,15 +11929,11 @@ static void ctimeFunc(
*/
static void cdateFunc(
sqlite3_context *context,
- int argc,
- sqlite3_value **argv
+ int NotUsed,
+ sqlite3_value **NotUsed2
){
- sqlite3_value *pVal = sqlite3ValueNew();
- if( pVal ){
- sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
- dateFunc(context, 1, &pVal);
- sqlite3ValueFree(pVal);
- }
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ dateFunc(context, 0, 0);
}
/*
@@ -6202,15 +11943,11 @@ static void cdateFunc(
*/
static void ctimestampFunc(
sqlite3_context *context,
- int argc,
- sqlite3_value **argv
+ int NotUsed,
+ sqlite3_value **NotUsed2
){
- sqlite3_value *pVal = sqlite3ValueNew();
- if( pVal ){
- sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
- datetimeFunc(context, 1, &pVal);
- sqlite3ValueFree(pVal);
- }
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ datetimeFunc(context, 0, 0);
}
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
@@ -6233,18 +11970,23 @@ static void currentTimeFunc(
){
time_t t;
char *zFormat = (char *)sqlite3_user_data(context);
+ sqlite3 *db;
+ double rT;
char zBuf[20];
- time(&t);
-#ifdef SQLITE_TEST
- {
- extern int sqlite3_current_time; /* See os_XXX.c */
- if( sqlite3_current_time ){
- t = sqlite3_current_time;
- }
- }
-#endif
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+ db = sqlite3_context_db_handle(context);
+ sqlite3OsCurrentTime(db->pVfs, &rT);
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ t = 86400.0*(rT - 2440587.5) + 0.5;
+#else
+ /* without floating point support, rT will have
+ ** already lost fractional day precision.
+ */
+ t = 86400 * (rT - 2440587) - 43200;
+#endif
#ifdef HAVE_GMTIME_R
{
struct tm sNow;
@@ -6254,10 +11996,10 @@ static void currentTimeFunc(
#else
{
struct tm *pTm;
- sqlite3OsEnterMutex();
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
pTm = gmtime(&t);
strftime(zBuf, 20, zFormat, pTm);
- sqlite3OsLeaveMutex();
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#endif
@@ -6270,44 +12012,30 @@ static void currentTimeFunc(
** functions. This should be the only routine in this file with
** external linkage.
*/
-void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
+SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void){
+ static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
#ifndef SQLITE_OMIT_DATETIME_FUNCS
- static const struct {
- char *zName;
- int nArg;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
- } aFuncs[] = {
- { "julianday", -1, juliandayFunc },
- { "date", -1, dateFunc },
- { "time", -1, timeFunc },
- { "datetime", -1, datetimeFunc },
- { "strftime", -1, strftimeFunc },
- { "current_time", 0, ctimeFunc },
- { "current_timestamp", 0, ctimestampFunc },
- { "current_date", 0, cdateFunc },
- };
- int i;
-
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
- SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
- }
+ FUNCTION(julianday, -1, 0, 0, juliandayFunc ),
+ FUNCTION(date, -1, 0, 0, dateFunc ),
+ FUNCTION(time, -1, 0, 0, timeFunc ),
+ FUNCTION(datetime, -1, 0, 0, datetimeFunc ),
+ FUNCTION(strftime, -1, 0, 0, strftimeFunc ),
+ FUNCTION(current_time, 0, 0, 0, ctimeFunc ),
+ FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
+ FUNCTION(current_date, 0, 0, 0, cdateFunc ),
#else
- static const struct {
- char *zName;
- char *zFormat;
- } aFuncs[] = {
- { "current_time", "%H:%M:%S" },
- { "current_date", "%Y-%m-%d" },
- { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
+ STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
+ STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d", 0, currentTimeFunc),
+ STR_FUNCTION(current_date, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
+#endif
};
int i;
+ FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
+ FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8,
- aFuncs[i].zFormat, currentTimeFunc, 0, 0);
+ for(i=0; i<ArraySize(aDateTimeFuncs); i++){
+ sqlite3FuncDefInsert(pHash, &aFunc[i]);
}
-#endif
}
/************** End of date.c ************************************************/
@@ -6326,89 +12054,4258 @@ void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
**
** This file contains OS interface code that is common to all
** architectures.
+**
+** $Id: os.c,v 1.127 2009/07/27 11:41:21 danielk1977 Exp $
*/
#define _SQLITE_OS_C_ 1
#undef _SQLITE_OS_C_
/*
+** The default SQLite sqlite3_vfs implementations do not allocate
+** memory (actually, os_unix.c allocates a small amount of memory
+** from within OsOpen()), but some third-party implementations may.
+** So we test the effects of a malloc() failing and the sqlite3OsXXX()
+** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
+**
+** The following functions are instrumented for malloc() failure
+** testing:
+**
+** sqlite3OsOpen()
+** sqlite3OsRead()
+** sqlite3OsWrite()
+** sqlite3OsSync()
+** sqlite3OsLock()
+**
+*/
+#if defined(SQLITE_TEST) && (SQLITE_OS_WIN==0)
+ #define DO_OS_MALLOC_TEST(x) if (!x || !sqlite3IsMemJournal(x)) { \
+ void *pTstAlloc = sqlite3Malloc(10); \
+ if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
+ sqlite3_free(pTstAlloc); \
+ }
+#else
+ #define DO_OS_MALLOC_TEST(x)
+#endif
+
+/*
** The following routines are convenience wrappers around methods
-** of the OsFile object. This is mostly just syntactic sugar. All
+** of the sqlite3_file object. This is mostly just syntactic sugar. All
** of this would be completely automatic if SQLite were coded using
** C++ instead of plain old C.
*/
-int sqlite3OsClose(OsFile **pId){
- OsFile *id;
- if( pId!=0 && (id = *pId)!=0 ){
- return id->pMethod->xClose(pId);
+SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){
+ int rc = SQLITE_OK;
+ if( pId->pMethods ){
+ rc = pId->pMethods->xClose(pId);
+ pId->pMethods = 0;
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xRead(id, pBuf, amt, offset);
+}
+SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xWrite(id, pBuf, amt, offset);
+}
+SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
+ return id->pMethods->xTruncate(id, size);
+}
+SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xSync(id, flags);
+}
+SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xFileSize(id, pSize);
+}
+SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xLock(id, lockType);
+}
+SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
+ return id->pMethods->xUnlock(id, lockType);
+}
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xCheckReservedLock(id, pResOut);
+}
+SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
+ return id->pMethods->xFileControl(id, op, pArg);
+}
+SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
+ int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
+ return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
+}
+SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
+ return id->pMethods->xDeviceCharacteristics(id);
+}
+
+/*
+** The next group of routines are convenience wrappers around the
+** VFS methods.
+*/
+SQLITE_PRIVATE int sqlite3OsOpen(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ sqlite3_file *pFile,
+ int flags,
+ int *pFlagsOut
+){
+ int rc;
+ DO_OS_MALLOC_TEST(0);
+ /* 0x7f1f is a mask of SQLITE_OPEN_ flags that are valid to be passed
+ ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example,
+ ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
+ ** reaching the VFS. */
+ rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x7f1f, pFlagsOut);
+ assert( rc==SQLITE_OK || pFile->pMethods==0 );
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ return pVfs->xDelete(pVfs, zPath, dirSync);
+}
+SQLITE_PRIVATE int sqlite3OsAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ DO_OS_MALLOC_TEST(0);
+ return pVfs->xAccess(pVfs, zPath, flags, pResOut);
+}
+SQLITE_PRIVATE int sqlite3OsFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nPathOut,
+ char *zPathOut
+){
+ return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
+}
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ return pVfs->xDlOpen(pVfs, zPath);
+}
+SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ pVfs->xDlError(pVfs, nByte, zBufOut);
+}
+SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){
+ return pVfs->xDlSym(pVfs, pHdle, zSym);
+}
+SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ pVfs->xDlClose(pVfs, pHandle);
+}
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ return pVfs->xRandomness(pVfs, nByte, zBufOut);
+}
+SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
+ return pVfs->xSleep(pVfs, nMicro);
+}
+SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
+ return pVfs->xCurrentTime(pVfs, pTimeOut);
+}
+
+SQLITE_PRIVATE int sqlite3OsOpenMalloc(
+ sqlite3_vfs *pVfs,
+ const char *zFile,
+ sqlite3_file **ppFile,
+ int flags,
+ int *pOutFlags
+){
+ int rc = SQLITE_NOMEM;
+ sqlite3_file *pFile;
+ pFile = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile);
+ if( pFile ){
+ rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pFile);
+ }else{
+ *ppFile = pFile;
+ }
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
+ int rc = SQLITE_OK;
+ assert( pFile );
+ rc = sqlite3OsClose(pFile);
+ sqlite3_free(pFile);
+ return rc;
+}
+
+/*
+** This function is a wrapper around the OS specific implementation of
+** sqlite3_os_init(). The purpose of the wrapper is to provide the
+** ability to simulate a malloc failure, so that the handling of an
+** error in sqlite3_os_init() by the upper layers can be tested.
+*/
+SQLITE_PRIVATE int sqlite3OsInit(void){
+ void *p = sqlite3_malloc(10);
+ if( p==0 ) return SQLITE_NOMEM;
+ sqlite3_free(p);
+ return sqlite3_os_init();
+}
+
+/*
+** The list of all registered VFS implementations.
+*/
+static sqlite3_vfs * SQLITE_WSD vfsList = 0;
+#define vfsList GLOBAL(sqlite3_vfs *, vfsList)
+
+/*
+** Locate a VFS by name. If no name is given, simply return the
+** first VFS on the list.
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
+ sqlite3_vfs *pVfs = 0;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex;
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return 0;
+#endif
+#if SQLITE_THREADSAFE
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
+ if( zVfs==0 ) break;
+ if( strcmp(zVfs, pVfs->zName)==0 ) break;
+ }
+ sqlite3_mutex_leave(mutex);
+ return pVfs;
+}
+
+/*
+** Unlink a VFS from the linked list
+*/
+static void vfsUnlink(sqlite3_vfs *pVfs){
+ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) );
+ if( pVfs==0 ){
+ /* No-op */
+ }else if( vfsList==pVfs ){
+ vfsList = pVfs->pNext;
+ }else if( vfsList ){
+ sqlite3_vfs *p = vfsList;
+ while( p->pNext && p->pNext!=pVfs ){
+ p = p->pNext;
+ }
+ if( p->pNext==pVfs ){
+ p->pNext = pVfs->pNext;
+ }
+ }
+}
+
+/*
+** Register a VFS with the system. It is harmless to register the same
+** VFS multiple times. The new VFS becomes the default if makeDflt is
+** true.
+*/
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
+ sqlite3_mutex *mutex = 0;
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex_enter(mutex);
+ vfsUnlink(pVfs);
+ if( makeDflt || vfsList==0 ){
+ pVfs->pNext = vfsList;
+ vfsList = pVfs;
}else{
- return SQLITE_OK;
+ pVfs->pNext = vfsList->pNext;
+ vfsList->pNext = pVfs;
+ }
+ assert(vfsList);
+ sqlite3_mutex_leave(mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Unregister a VFS so that it is no longer accessible.
+*/
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_mutex_enter(mutex);
+ vfsUnlink(pVfs);
+ sqlite3_mutex_leave(mutex);
+ return SQLITE_OK;
+}
+
+/************** End of os.c **************************************************/
+/************** Begin file fault.c *******************************************/
+/*
+** 2008 Jan 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** $Id: fault.c,v 1.11 2008/09/02 00:52:52 drh Exp $
+*/
+
+/*
+** This file contains code to support the concept of "benign"
+** malloc failures (when the xMalloc() or xRealloc() method of the
+** sqlite3_mem_methods structure fails to allocate a block of memory
+** and returns 0).
+**
+** Most malloc failures are non-benign. After they occur, SQLite
+** abandons the current operation and returns an error code (usually
+** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily
+** fatal. For example, if a malloc fails while resizing a hash table, this
+** is completely recoverable simply by not carrying out the resize. The
+** hash table will continue to function normally. So a malloc failure
+** during a hash table resize is a benign fault.
+*/
+
+
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+
+/*
+** Global variables.
+*/
+typedef struct BenignMallocHooks BenignMallocHooks;
+static SQLITE_WSD struct BenignMallocHooks {
+ void (*xBenignBegin)(void);
+ void (*xBenignEnd)(void);
+} sqlite3Hooks = { 0, 0 };
+
+/* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks
+** structure. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdHooks can refer directly
+** to the "sqlite3Hooks" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdHooksInit \
+ BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks)
+# define wsdHooks x[0]
+#else
+# define wsdHooksInit
+# define wsdHooks sqlite3Hooks
+#endif
+
+
+/*
+** Register hooks to call when sqlite3BeginBenignMalloc() and
+** sqlite3EndBenignMalloc() are called, respectively.
+*/
+SQLITE_PRIVATE void sqlite3BenignMallocHooks(
+ void (*xBenignBegin)(void),
+ void (*xBenignEnd)(void)
+){
+ wsdHooksInit;
+ wsdHooks.xBenignBegin = xBenignBegin;
+ wsdHooks.xBenignEnd = xBenignEnd;
+}
+
+/*
+** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that
+** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc()
+** indicates that subsequent malloc failures are non-benign.
+*/
+SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){
+ wsdHooksInit;
+ if( wsdHooks.xBenignBegin ){
+ wsdHooks.xBenignBegin();
}
}
-int sqlite3OsOpenDirectory(OsFile *id, const char *zName){
- return id->pMethod->xOpenDirectory(id, zName);
+SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){
+ wsdHooksInit;
+ if( wsdHooks.xBenignEnd ){
+ wsdHooks.xBenignEnd();
+ }
}
-int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
- return id->pMethod->xRead(id, pBuf, amt);
+
+#endif /* #ifndef SQLITE_OMIT_BUILTIN_TEST */
+
+/************** End of fault.c ***********************************************/
+/************** Begin file mem0.c ********************************************/
+/*
+** 2008 October 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains a no-op memory allocation drivers for use when
+** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented
+** here always fail. SQLite will not operate with these drivers. These
+** are merely placeholders. Real drivers must be substituted using
+** sqlite3_config() before SQLite will operate.
+**
+** $Id: mem0.c,v 1.1 2008/10/28 18:58:20 drh Exp $
+*/
+
+/*
+** This version of the memory allocator is the default. It is
+** used when no other memory allocator is specified using compile-time
+** macros.
+*/
+#ifdef SQLITE_ZERO_MALLOC
+
+/*
+** No-op versions of all memory allocation routines
+*/
+static void *sqlite3MemMalloc(int nByte){ return 0; }
+static void sqlite3MemFree(void *pPrior){ return; }
+static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; }
+static int sqlite3MemSize(void *pPrior){ return 0; }
+static int sqlite3MemRoundup(int n){ return n; }
+static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; }
+static void sqlite3MemShutdown(void *NotUsed){ return; }
+
+/*
+** This routine is the only routine in this file with external linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
}
-int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
- return id->pMethod->xWrite(id, pBuf, amt);
+
+#endif /* SQLITE_ZERO_MALLOC */
+
+/************** End of mem0.c ************************************************/
+/************** Begin file mem1.c ********************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains low-level memory allocation drivers for when
+** SQLite will use the standard C-library malloc/realloc/free interface
+** to obtain the memory it needs.
+**
+** This file contains implementations of the low-level memory allocation
+** routines specified in the sqlite3_mem_methods object.
+**
+** $Id: mem1.c,v 1.30 2009/03/23 04:33:33 danielk1977 Exp $
+*/
+
+/*
+** This version of the memory allocator is the default. It is
+** used when no other memory allocator is specified using compile-time
+** macros.
+*/
+#ifdef SQLITE_SYSTEM_MALLOC
+
+/*
+** Like malloc(), but remember the size of the allocation
+** so that we can find it later using sqlite3MemSize().
+**
+** For this low-level routine, we are guaranteed that nByte>0 because
+** cases of nByte<=0 will be intercepted and dealt with by higher level
+** routines.
+*/
+static void *sqlite3MemMalloc(int nByte){
+ sqlite3_int64 *p;
+ assert( nByte>0 );
+ nByte = ROUND8(nByte);
+ p = malloc( nByte+8 );
+ if( p ){
+ p[0] = nByte;
+ p++;
+ }
+ return (void *)p;
}
-int sqlite3OsSeek(OsFile *id, i64 offset){
- return id->pMethod->xSeek(id, offset);
+
+/*
+** Like free() but works for allocations obtained from sqlite3MemMalloc()
+** or sqlite3MemRealloc().
+**
+** For this low-level routine, we already know that pPrior!=0 since
+** cases where pPrior==0 will have been intecepted and dealt with
+** by higher-level routines.
+*/
+static void sqlite3MemFree(void *pPrior){
+ sqlite3_int64 *p = (sqlite3_int64*)pPrior;
+ assert( pPrior!=0 );
+ p--;
+ free(p);
+}
+
+/*
+** Like realloc(). Resize an allocation previously obtained from
+** sqlite3MemMalloc().
+**
+** For this low-level interface, we know that pPrior!=0. Cases where
+** pPrior==0 while have been intercepted by higher-level routine and
+** redirected to xMalloc. Similarly, we know that nByte>0 becauses
+** cases where nByte<=0 will have been intercepted by higher-level
+** routines and redirected to xFree.
+*/
+static void *sqlite3MemRealloc(void *pPrior, int nByte){
+ sqlite3_int64 *p = (sqlite3_int64*)pPrior;
+ assert( pPrior!=0 && nByte>0 );
+ nByte = ROUND8(nByte);
+ p = (sqlite3_int64*)pPrior;
+ p--;
+ p = realloc(p, nByte+8 );
+ if( p ){
+ p[0] = nByte;
+ p++;
+ }
+ return (void*)p;
+}
+
+/*
+** Report the allocated size of a prior return from xMalloc()
+** or xRealloc().
+*/
+static int sqlite3MemSize(void *pPrior){
+ sqlite3_int64 *p;
+ if( pPrior==0 ) return 0;
+ p = (sqlite3_int64*)pPrior;
+ p--;
+ return (int)p[0];
}
-int sqlite3OsTruncate(OsFile *id, i64 size){
- return id->pMethod->xTruncate(id, size);
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int sqlite3MemRoundup(int n){
+ return ROUND8(n);
}
-int sqlite3OsSync(OsFile *id, int fullsync){
- return id->pMethod->xSync(id, fullsync);
+
+/*
+** Initialize this module.
+*/
+static int sqlite3MemInit(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ return SQLITE_OK;
}
-void sqlite3OsSetFullSync(OsFile *id, int value){
- id->pMethod->xSetFullSync(id, value);
+
+/*
+** Deinitialize this module.
+*/
+static void sqlite3MemShutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ return;
}
-#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
-/* This method is currently only used while interactively debugging the
-** pager. More specificly, it can only be used when sqlite3DebugPrintf() is
-** included in the build. */
-int sqlite3OsFileHandle(OsFile *id){
- return id->pMethod->xFileHandle(id);
+
+/*
+** This routine is the only routine in this file with external linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
}
+
+#endif /* SQLITE_SYSTEM_MALLOC */
+
+/************** End of mem1.c ************************************************/
+/************** Begin file mem2.c ********************************************/
+/*
+** 2007 August 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains low-level memory allocation drivers for when
+** SQLite will use the standard C-library malloc/realloc/free interface
+** to obtain the memory it needs while adding lots of additional debugging
+** information to each allocation in order to help detect and fix memory
+** leaks and memory usage errors.
+**
+** This file contains implementations of the low-level memory allocation
+** routines specified in the sqlite3_mem_methods object.
+**
+** $Id: mem2.c,v 1.45 2009/03/23 04:33:33 danielk1977 Exp $
+*/
+
+/*
+** This version of the memory allocator is used only if the
+** SQLITE_MEMDEBUG macro is defined
+*/
+#ifdef SQLITE_MEMDEBUG
+
+/*
+** The backtrace functionality is only available with GLIBC
+*/
+#ifdef __GLIBC__
+ extern int backtrace(void**,int);
+ extern void backtrace_symbols_fd(void*const*,int,int);
+#else
+# define backtrace(A,B) 1
+# define backtrace_symbols_fd(A,B,C)
#endif
-int sqlite3OsFileSize(OsFile *id, i64 *pSize){
- return id->pMethod->xFileSize(id, pSize);
+
+/*
+** Each memory allocation looks like this:
+**
+** ------------------------------------------------------------------------
+** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
+** ------------------------------------------------------------------------
+**
+** The application code sees only a pointer to the allocation. We have
+** to back up from the allocation pointer to find the MemBlockHdr. The
+** MemBlockHdr tells us the size of the allocation and the number of
+** backtrace pointers. There is also a guard word at the end of the
+** MemBlockHdr.
+*/
+struct MemBlockHdr {
+ i64 iSize; /* Size of this allocation */
+ struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
+ char nBacktrace; /* Number of backtraces on this alloc */
+ char nBacktraceSlots; /* Available backtrace slots */
+ short nTitle; /* Bytes of title; includes '\0' */
+ int iForeGuard; /* Guard word for sanity */
+};
+
+/*
+** Guard words
+*/
+#define FOREGUARD 0x80F5E153
+#define REARGUARD 0xE4676B53
+
+/*
+** Number of malloc size increments to track.
+*/
+#define NCSIZE 1000
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** Head and tail of a linked list of all outstanding allocations
+ */
+ struct MemBlockHdr *pFirst;
+ struct MemBlockHdr *pLast;
+
+ /*
+ ** The number of levels of backtrace to save in new allocations.
+ */
+ int nBacktrace;
+ void (*xBacktrace)(int, int, void **);
+
+ /*
+ ** Title text to insert in front of each block
+ */
+ int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
+ char zTitle[100]; /* The title text */
+
+ /*
+ ** sqlite3MallocDisallow() increments the following counter.
+ ** sqlite3MallocAllow() decrements it.
+ */
+ int disallow; /* Do not allow memory allocation */
+
+ /*
+ ** Gather statistics on the sizes of memory allocations.
+ ** nAlloc[i] is the number of allocation attempts of i*8
+ ** bytes. i==NCSIZE is the number of allocation attempts for
+ ** sizes more than NCSIZE*8 bytes.
+ */
+ int nAlloc[NCSIZE]; /* Total number of allocations */
+ int nCurrent[NCSIZE]; /* Current number of allocations */
+ int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */
+
+} mem;
+
+
+/*
+** Adjust memory usage statistics
+*/
+static void adjustStats(int iSize, int increment){
+ int i = ROUND8(iSize)/8;
+ if( i>NCSIZE-1 ){
+ i = NCSIZE - 1;
+ }
+ if( increment>0 ){
+ mem.nAlloc[i]++;
+ mem.nCurrent[i]++;
+ if( mem.nCurrent[i]>mem.mxCurrent[i] ){
+ mem.mxCurrent[i] = mem.nCurrent[i];
+ }
+ }else{
+ mem.nCurrent[i]--;
+ assert( mem.nCurrent[i]>=0 );
+ }
+}
+
+/*
+** Given an allocation, find the MemBlockHdr for that allocation.
+**
+** This routine checks the guards at either end of the allocation and
+** if they are incorrect it asserts.
+*/
+static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
+ struct MemBlockHdr *p;
+ int *pInt;
+ u8 *pU8;
+ int nReserve;
+
+ p = (struct MemBlockHdr*)pAllocation;
+ p--;
+ assert( p->iForeGuard==(int)FOREGUARD );
+ nReserve = ROUND8(p->iSize);
+ pInt = (int*)pAllocation;
+ pU8 = (u8*)pAllocation;
+ assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD );
+ /* This checks any of the "extra" bytes allocated due
+ ** to rounding up to an 8 byte boundary to ensure
+ ** they haven't been overwritten.
+ */
+ while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 );
+ return p;
+}
+
+/*
+** Return the number of bytes currently allocated at address p.
+*/
+static int sqlite3MemSize(void *p){
+ struct MemBlockHdr *pHdr;
+ if( !p ){
+ return 0;
+ }
+ pHdr = sqlite3MemsysGetHeader(p);
+ return pHdr->iSize;
+}
+
+/*
+** Initialize the memory allocation subsystem.
+*/
+static int sqlite3MemInit(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( (sizeof(struct MemBlockHdr)&7) == 0 );
+ if( !sqlite3GlobalConfig.bMemstat ){
+ /* If memory status is enabled, then the malloc.c wrapper will already
+ ** hold the STATIC_MEM mutex when the routines here are invoked. */
+ mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+static void sqlite3MemShutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ mem.mutex = 0;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int sqlite3MemRoundup(int n){
+ return ROUND8(n);
+}
+
+/*
+** Allocate nByte bytes of memory.
+*/
+static void *sqlite3MemMalloc(int nByte){
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ char *z;
+ int *pInt;
+ void *p = 0;
+ int totalSize;
+ int nReserve;
+ sqlite3_mutex_enter(mem.mutex);
+ assert( mem.disallow==0 );
+ nReserve = ROUND8(nByte);
+ totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
+ mem.nBacktrace*sizeof(void*) + mem.nTitle;
+ p = malloc(totalSize);
+ if( p ){
+ z = p;
+ pBt = (void**)&z[mem.nTitle];
+ pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
+ pHdr->pNext = 0;
+ pHdr->pPrev = mem.pLast;
+ if( mem.pLast ){
+ mem.pLast->pNext = pHdr;
+ }else{
+ mem.pFirst = pHdr;
+ }
+ mem.pLast = pHdr;
+ pHdr->iForeGuard = FOREGUARD;
+ pHdr->nBacktraceSlots = mem.nBacktrace;
+ pHdr->nTitle = mem.nTitle;
+ if( mem.nBacktrace ){
+ void *aAddr[40];
+ pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
+ memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
+ assert(pBt[0]);
+ if( mem.xBacktrace ){
+ mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
+ }
+ }else{
+ pHdr->nBacktrace = 0;
+ }
+ if( mem.nTitle ){
+ memcpy(z, mem.zTitle, mem.nTitle);
+ }
+ pHdr->iSize = nByte;
+ adjustStats(nByte, +1);
+ pInt = (int*)&pHdr[1];
+ pInt[nReserve/sizeof(int)] = REARGUARD;
+ memset(pInt, 0x65, nReserve);
+ p = (void*)pInt;
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return p;
+}
+
+/*
+** Free memory.
+*/
+static void sqlite3MemFree(void *pPrior){
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ char *z;
+ assert( sqlite3GlobalConfig.bMemstat || mem.mutex!=0 );
+ pHdr = sqlite3MemsysGetHeader(pPrior);
+ pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ sqlite3_mutex_enter(mem.mutex);
+ if( pHdr->pPrev ){
+ assert( pHdr->pPrev->pNext==pHdr );
+ pHdr->pPrev->pNext = pHdr->pNext;
+ }else{
+ assert( mem.pFirst==pHdr );
+ mem.pFirst = pHdr->pNext;
+ }
+ if( pHdr->pNext ){
+ assert( pHdr->pNext->pPrev==pHdr );
+ pHdr->pNext->pPrev = pHdr->pPrev;
+ }else{
+ assert( mem.pLast==pHdr );
+ mem.pLast = pHdr->pPrev;
+ }
+ z = (char*)pBt;
+ z -= pHdr->nTitle;
+ adjustStats(pHdr->iSize, -1);
+ memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
+ pHdr->iSize + sizeof(int) + pHdr->nTitle);
+ free(z);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+/*
+** Change the size of an existing memory allocation.
+**
+** For this debugging implementation, we *always* make a copy of the
+** allocation into a new place in memory. In this way, if the
+** higher level code is using pointer to the old allocation, it is
+** much more likely to break and we are much more liking to find
+** the error.
+*/
+static void *sqlite3MemRealloc(void *pPrior, int nByte){
+ struct MemBlockHdr *pOldHdr;
+ void *pNew;
+ assert( mem.disallow==0 );
+ pOldHdr = sqlite3MemsysGetHeader(pPrior);
+ pNew = sqlite3MemMalloc(nByte);
+ if( pNew ){
+ memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
+ if( nByte>pOldHdr->iSize ){
+ memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
+ }
+ sqlite3MemFree(pPrior);
+ }
+ return pNew;
}
-int sqlite3OsLock(OsFile *id, int lockType){
- return id->pMethod->xLock(id, lockType);
+
+/*
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
}
-int sqlite3OsUnlock(OsFile *id, int lockType){
- return id->pMethod->xUnlock(id, lockType);
+
+/*
+** Set the number of backtrace levels kept for each allocation.
+** A value of zero turns off backtracing. The number is always rounded
+** up to a multiple of 2.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
+ if( depth<0 ){ depth = 0; }
+ if( depth>20 ){ depth = 20; }
+ depth = (depth+1)&0xfe;
+ mem.nBacktrace = depth;
}
-int sqlite3OsLockState(OsFile *id){
- return id->pMethod->xLockState(id);
+
+SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
+ mem.xBacktrace = xBacktrace;
}
-int sqlite3OsCheckReservedLock(OsFile *id){
- return id->pMethod->xCheckReservedLock(id);
+
+/*
+** Set the title string for subsequent allocations.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
+ unsigned int n = sqlite3Strlen30(zTitle) + 1;
+ sqlite3_mutex_enter(mem.mutex);
+ if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
+ memcpy(mem.zTitle, zTitle, n);
+ mem.zTitle[n] = 0;
+ mem.nTitle = ROUND8(n);
+ sqlite3_mutex_leave(mem.mutex);
}
-int sqlite3OsSectorSize(OsFile *id){
- int (*xSectorSize)(OsFile*) = id->pMethod->xSectorSize;
- return xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE;
+
+SQLITE_PRIVATE void sqlite3MemdebugSync(){
+ struct MemBlockHdr *pHdr;
+ for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
+ void **pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
+ }
}
-#ifdef SQLITE_ENABLE_REDEF_IO
/*
-** A function to return a pointer to the virtual function table.
-** This routine really does not accomplish very much since the
-** virtual function table is a global variable and anybody who
-** can call this function can just as easily access the variable
-** for themselves. Nevertheless, we include this routine for
-** backwards compatibility with an earlier redefinable I/O
-** interface design.
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
*/
-struct sqlite3OsVtbl *sqlite3_os_switch(void){
- return &sqlite3Os;
+SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
+ FILE *out;
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ int i;
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
+ char *z = (char*)pHdr;
+ z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
+ fprintf(out, "**** %lld bytes at %p from %s ****\n",
+ pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
+ if( pHdr->nBacktrace ){
+ fflush(out);
+ pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
+ fprintf(out, "\n");
+ }
+ }
+ fprintf(out, "COUNTS:\n");
+ for(i=0; i<NCSIZE-1; i++){
+ if( mem.nAlloc[i] ){
+ fprintf(out, " %5d: %10d %10d %10d\n",
+ i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]);
+ }
+ }
+ if( mem.nAlloc[NCSIZE-1] ){
+ fprintf(out, " %5d: %10d %10d %10d\n",
+ NCSIZE*8-8, mem.nAlloc[NCSIZE-1],
+ mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]);
+ }
+ fclose(out);
+}
+
+/*
+** Return the number of times sqlite3MemMalloc() has been called.
+*/
+SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
+ int i;
+ int nTotal = 0;
+ for(i=0; i<NCSIZE; i++){
+ nTotal += mem.nAlloc[i];
+ }
+ return nTotal;
}
+
+
+#endif /* SQLITE_MEMDEBUG */
+
+/************** End of mem2.c ************************************************/
+/************** Begin file mem3.c ********************************************/
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). The SQLite user supplies a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc()
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
+**
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
+**
+** $Id: mem3.c,v 1.25 2008/11/19 16:52:44 danielk1977 Exp $
+*/
+
+/*
+** This version of the memory allocator is only built into the library
+** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
+** mean that the library will use a memory-pool by default, just that
+** it is available. The mempool allocator is activated by calling
+** sqlite3_config().
+*/
+#ifdef SQLITE_ENABLE_MEMSYS3
+
+/*
+** Maximum size (in Mem3Blocks) of a "small" chunk.
+*/
+#define MX_SMALL 10
+
+
+/*
+** Number of freelist hash slots
+*/
+#define N_HASH 61
+
+/*
+** A memory allocation (also called a "chunk") consists of two or
+** more blocks where each block is 8 bytes. The first 8 bytes are
+** a header that is not returned to the user.
+**
+** A chunk is two or more blocks that is either checked out or
+** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
+** size of the allocation in blocks if the allocation is free.
+** The u.hdr.size4x&1 bit is true if the chunk is checked out and
+** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
+** is true if the previous chunk is checked out and false if the
+** previous chunk is free. The u.hdr.prevSize field is the size of
+** the previous chunk in blocks if the previous chunk is on the
+** freelist. If the previous chunk is checked out, then
+** u.hdr.prevSize can be part of the data for that chunk and should
+** not be read or written.
+**
+** We often identify a chunk by its index in mem3.aPool[]. When
+** this is done, the chunk index refers to the second block of
+** the chunk. In this way, the first chunk has an index of 1.
+** A chunk index of 0 means "no such chunk" and is the equivalent
+** of a NULL pointer.
+**
+** The second block of free chunks is of the form u.list. The
+** two fields form a double-linked list of chunks of related sizes.
+** Pointers to the head of the list are stored in mem3.aiSmall[]
+** for smaller chunks and mem3.aiHash[] for larger chunks.
+**
+** The second block of a chunk is user data if the chunk is checked
+** out. If a chunk is checked out, the user data may extend into
+** the u.hdr.prevSize value of the following chunk.
+*/
+typedef struct Mem3Block Mem3Block;
+struct Mem3Block {
+ union {
+ struct {
+ u32 prevSize; /* Size of previous chunk in Mem3Block elements */
+ u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
+ } hdr;
+ struct {
+ u32 next; /* Index in mem3.aPool[] of next free chunk */
+ u32 prev; /* Index in mem3.aPool[] of previous free chunk */
+ } list;
+ } u;
+};
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem3". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static SQLITE_WSD struct Mem3Global {
+ /*
+ ** Memory available for allocation. nPool is the size of the array
+ ** (in Mem3Blocks) pointed to by aPool less 2.
+ */
+ u32 nPool;
+ Mem3Block *aPool;
+
+ /*
+ ** True if we are evaluating an out-of-memory callback.
+ */
+ int alarmBusy;
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** The minimum amount of free space that we have seen.
+ */
+ u32 mnMaster;
+
+ /*
+ ** iMaster is the index of the master chunk. Most new allocations
+ ** occur off of this chunk. szMaster is the size (in Mem3Blocks)
+ ** of the current master. iMaster is 0 if there is not master chunk.
+ ** The master chunk is not in either the aiHash[] or aiSmall[].
+ */
+ u32 iMaster;
+ u32 szMaster;
+
+ /*
+ ** Array of lists of free blocks according to the block size
+ ** for smaller chunks, or a hash on the block size for larger
+ ** chunks.
+ */
+ u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
+ u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
+} mem3 = { 97535575 };
+
+#define mem3 GLOBAL(struct Mem3Global, mem3)
+
+/*
+** Unlink the chunk at mem3.aPool[i] from list it is currently
+** on. *pRoot is the list that i is a member of.
+*/
+static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
+ u32 next = mem3.aPool[i].u.list.next;
+ u32 prev = mem3.aPool[i].u.list.prev;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ if( prev==0 ){
+ *pRoot = next;
+ }else{
+ mem3.aPool[prev].u.list.next = next;
+ }
+ if( next ){
+ mem3.aPool[next].u.list.prev = prev;
+ }
+ mem3.aPool[i].u.list.next = 0;
+ mem3.aPool[i].u.list.prev = 0;
+}
+
+/*
+** Unlink the chunk at index i from
+** whatever list is currently a member of.
+*/
+static void memsys3Unlink(u32 i){
+ u32 size, hash;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+ assert( i>=1 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
+ assert( size>=2 );
+ if( size <= MX_SMALL ){
+ memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
+ }else{
+ hash = size % N_HASH;
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
+ }
+}
+
+/*
+** Link the chunk at mem3.aPool[i] so that is on the list rooted
+** at *pRoot.
+*/
+static void memsys3LinkIntoList(u32 i, u32 *pRoot){
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ mem3.aPool[i].u.list.next = *pRoot;
+ mem3.aPool[i].u.list.prev = 0;
+ if( *pRoot ){
+ mem3.aPool[*pRoot].u.list.prev = i;
+ }
+ *pRoot = i;
+}
+
+/*
+** Link the chunk at index i into either the appropriate
+** small chunk list, or into the large chunk hash table.
+*/
+static void memsys3Link(u32 i){
+ u32 size, hash;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( i>=1 );
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
+ assert( size>=2 );
+ if( size <= MX_SMALL ){
+ memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
+ }else{
+ hash = size % N_HASH;
+ memsys3LinkIntoList(i, &mem3.aiHash[hash]);
+ }
+}
+
+/*
+** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
+** will already be held (obtained by code in malloc.c) if
+** sqlite3GlobalConfig.bMemStat is true.
+*/
+static void memsys3Enter(void){
+ if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
+ mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ sqlite3_mutex_enter(mem3.mutex);
+}
+static void memsys3Leave(void){
+ sqlite3_mutex_leave(mem3.mutex);
+}
+
+/*
+** Called when we are unable to satisfy an allocation of nBytes.
+*/
+static void memsys3OutOfMemory(int nByte){
+ if( !mem3.alarmBusy ){
+ mem3.alarmBusy = 1;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ sqlite3_mutex_leave(mem3.mutex);
+ sqlite3_release_memory(nByte);
+ sqlite3_mutex_enter(mem3.mutex);
+ mem3.alarmBusy = 0;
+ }
+}
+
+
+/*
+** Chunk i is a free chunk that has been unlinked. Adjust its
+** size parameters for check-out and return a pointer to the
+** user portion of the chunk.
+*/
+static void *memsys3Checkout(u32 i, u32 nBlock){
+ u32 x;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( i>=1 );
+ assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
+ assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
+ x = mem3.aPool[i-1].u.hdr.size4x;
+ mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
+ mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
+ mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
+ return &mem3.aPool[i];
+}
+
+/*
+** Carve a piece off of the end of the mem3.iMaster free chunk.
+** Return a pointer to the new allocation. Or, if the master chunk
+** is not large enough, return 0.
+*/
+static void *memsys3FromMaster(u32 nBlock){
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( mem3.szMaster>=nBlock );
+ if( nBlock>=mem3.szMaster-1 ){
+ /* Use the entire master */
+ void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
+ mem3.iMaster = 0;
+ mem3.szMaster = 0;
+ mem3.mnMaster = 0;
+ return p;
+ }else{
+ /* Split the master block. Return the tail. */
+ u32 newi, x;
+ newi = mem3.iMaster + mem3.szMaster - nBlock;
+ assert( newi > mem3.iMaster+1 );
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
+ mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
+ mem3.szMaster -= nBlock;
+ mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+ if( mem3.szMaster < mem3.mnMaster ){
+ mem3.mnMaster = mem3.szMaster;
+ }
+ return (void*)&mem3.aPool[newi];
+ }
+}
+
+/*
+** *pRoot is the head of a list of free chunks of the same size
+** or same size hash. In other words, *pRoot is an entry in either
+** mem3.aiSmall[] or mem3.aiHash[].
+**
+** This routine examines all entries on the given list and tries
+** to coalesce each entries with adjacent free chunks.
+**
+** If it sees a chunk that is larger than mem3.iMaster, it replaces
+** the current mem3.iMaster with the new larger chunk. In order for
+** this mem3.iMaster replacement to work, the master chunk must be
+** linked into the hash tables. That is not the normal state of
+** affairs, of course. The calling routine must link the master
+** chunk before invoking this routine, then must unlink the (possibly
+** changed) master chunk once this routine has finished.
+*/
+static void memsys3Merge(u32 *pRoot){
+ u32 iNext, prev, size, i, x;
+
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ for(i=*pRoot; i>0; i=iNext){
+ iNext = mem3.aPool[i].u.list.next;
+ size = mem3.aPool[i-1].u.hdr.size4x;
+ assert( (size&1)==0 );
+ if( (size&2)==0 ){
+ memsys3UnlinkFromList(i, pRoot);
+ assert( i > mem3.aPool[i-1].u.hdr.prevSize );
+ prev = i - mem3.aPool[i-1].u.hdr.prevSize;
+ if( prev==iNext ){
+ iNext = mem3.aPool[prev].u.list.next;
+ }
+ memsys3Unlink(prev);
+ size = i + size/4 - prev;
+ x = mem3.aPool[prev-1].u.hdr.size4x & 2;
+ mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
+ mem3.aPool[prev+size-1].u.hdr.prevSize = size;
+ memsys3Link(prev);
+ i = prev;
+ }else{
+ size /= 4;
+ }
+ if( size>mem3.szMaster ){
+ mem3.iMaster = i;
+ mem3.szMaster = size;
+ }
+ }
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
+*/
+static void *memsys3MallocUnsafe(int nByte){
+ u32 i;
+ u32 nBlock;
+ u32 toFree;
+
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( sizeof(Mem3Block)==8 );
+ if( nByte<=12 ){
+ nBlock = 2;
+ }else{
+ nBlock = (nByte + 11)/8;
+ }
+ assert( nBlock>=2 );
+
+ /* STEP 1:
+ ** Look for an entry of the correct size in either the small
+ ** chunk table or in the large chunk hash table. This is
+ ** successful most of the time (about 9 times out of 10).
+ */
+ if( nBlock <= MX_SMALL ){
+ i = mem3.aiSmall[nBlock-2];
+ if( i>0 ){
+ memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
+ return memsys3Checkout(i, nBlock);
+ }
+ }else{
+ int hash = nBlock % N_HASH;
+ for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
+ if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
+ return memsys3Checkout(i, nBlock);
+ }
+ }
+ }
+
+ /* STEP 2:
+ ** Try to satisfy the allocation by carving a piece off of the end
+ ** of the master chunk. This step usually works if step 1 fails.
+ */
+ if( mem3.szMaster>=nBlock ){
+ return memsys3FromMaster(nBlock);
+ }
+
+
+ /* STEP 3:
+ ** Loop through the entire memory pool. Coalesce adjacent free
+ ** chunks. Recompute the master chunk as the largest free chunk.
+ ** Then try again to satisfy the allocation by carving a piece off
+ ** of the end of the master chunk. This step happens very
+ ** rarely (we hope!)
+ */
+ for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
+ memsys3OutOfMemory(toFree);
+ if( mem3.iMaster ){
+ memsys3Link(mem3.iMaster);
+ mem3.iMaster = 0;
+ mem3.szMaster = 0;
+ }
+ for(i=0; i<N_HASH; i++){
+ memsys3Merge(&mem3.aiHash[i]);
+ }
+ for(i=0; i<MX_SMALL-1; i++){
+ memsys3Merge(&mem3.aiSmall[i]);
+ }
+ if( mem3.szMaster ){
+ memsys3Unlink(mem3.iMaster);
+ if( mem3.szMaster>=nBlock ){
+ return memsys3FromMaster(nBlock);
+ }
+ }
+ }
+
+ /* If none of the above worked, then we fail. */
+ return 0;
+}
+
+/*
+** Free an outstanding memory allocation.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
+*/
+void memsys3FreeUnsafe(void *pOld){
+ Mem3Block *p = (Mem3Block*)pOld;
+ int i;
+ u32 size, x;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
+ i = p - mem3.aPool;
+ assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( i+size<=mem3.nPool+1 );
+ mem3.aPool[i-1].u.hdr.size4x &= ~1;
+ mem3.aPool[i+size-1].u.hdr.prevSize = size;
+ mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
+ memsys3Link(i);
+
+ /* Try to expand the master using the newly freed chunk */
+ if( mem3.iMaster ){
+ while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
+ size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
+ mem3.iMaster -= size;
+ mem3.szMaster += size;
+ memsys3Unlink(mem3.iMaster);
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
+ }
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+ while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
+ memsys3Unlink(mem3.iMaster+mem3.szMaster);
+ mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
+ }
+ }
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes. The
+** size returned omits the 8-byte header overhead. This only
+** works for chunks that are currently checked out.
+*/
+static int memsys3Size(void *p){
+ Mem3Block *pBlock;
+ if( p==0 ) return 0;
+ pBlock = (Mem3Block*)p;
+ assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
+ return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int memsys3Roundup(int n){
+ if( n<=12 ){
+ return 12;
+ }else{
+ return ((n+11)&~7) - 4;
+ }
+}
+
+/*
+** Allocate nBytes of memory.
+*/
+static void *memsys3Malloc(int nBytes){
+ sqlite3_int64 *p;
+ assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
+ memsys3Enter();
+ p = memsys3MallocUnsafe(nBytes);
+ memsys3Leave();
+ return (void*)p;
+}
+
+/*
+** Free memory.
+*/
+void memsys3Free(void *pPrior){
+ assert( pPrior );
+ memsys3Enter();
+ memsys3FreeUnsafe(pPrior);
+ memsys3Leave();
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+void *memsys3Realloc(void *pPrior, int nBytes){
+ int nOld;
+ void *p;
+ if( pPrior==0 ){
+ return sqlite3_malloc(nBytes);
+ }
+ if( nBytes<=0 ){
+ sqlite3_free(pPrior);
+ return 0;
+ }
+ nOld = memsys3Size(pPrior);
+ if( nBytes<=nOld && nBytes>=nOld-128 ){
+ return pPrior;
+ }
+ memsys3Enter();
+ p = memsys3MallocUnsafe(nBytes);
+ if( p ){
+ if( nOld<nBytes ){
+ memcpy(p, pPrior, nOld);
+ }else{
+ memcpy(p, pPrior, nBytes);
+ }
+ memsys3FreeUnsafe(pPrior);
+ }
+ memsys3Leave();
+ return p;
+}
+
+/*
+** Initialize this module.
+*/
+static int memsys3Init(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ if( !sqlite3GlobalConfig.pHeap ){
+ return SQLITE_ERROR;
+ }
+
+ /* Store a pointer to the memory block in global structure mem3. */
+ assert( sizeof(Mem3Block)==8 );
+ mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
+ mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
+
+ /* Initialize the master block. */
+ mem3.szMaster = mem3.nPool;
+ mem3.mnMaster = mem3.szMaster;
+ mem3.iMaster = 1;
+ mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
+ mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
+ mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
+
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys3Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ return;
+}
+
+
+
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3Memsys3Dump(const char *zFilename){
+#ifdef SQLITE_DEBUG
+ FILE *out;
+ u32 i, j;
+ u32 size;
+ if( zFilename==0 || zFilename[0]==0 ){
+ out = stdout;
+ }else{
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ }
+ memsys3Enter();
+ fprintf(out, "CHUNKS:\n");
+ for(i=1; i<=mem3.nPool; i+=size/4){
+ size = mem3.aPool[i-1].u.hdr.size4x;
+ if( size/4<=1 ){
+ fprintf(out, "%p size error\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
+ fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
+ fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( size&1 ){
+ fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
+ }else{
+ fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
+ i==mem3.iMaster ? " **master**" : "");
+ }
+ }
+ for(i=0; i<MX_SMALL-1; i++){
+ if( mem3.aiSmall[i]==0 ) continue;
+ fprintf(out, "small(%2d):", i);
+ for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem3.aPool[j],
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
+ }
+ fprintf(out, "\n");
+ }
+ for(i=0; i<N_HASH; i++){
+ if( mem3.aiHash[i]==0 ) continue;
+ fprintf(out, "hash(%2d):", i);
+ for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem3.aPool[j],
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
+ }
+ fprintf(out, "\n");
+ }
+ fprintf(out, "master=%d\n", mem3.iMaster);
+ fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
+ fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
+ sqlite3_mutex_leave(mem3.mutex);
+ if( out==stdout ){
+ fflush(stdout);
+ }else{
+ fclose(out);
+ }
+#else
+ UNUSED_PARAMETER(zFilename);
#endif
+}
-/************** End of os.c **************************************************/
+/*
+** This routine is the only routine in this file with external
+** linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file. The
+** arguments specify the block of memory to manage.
+**
+** This routine is only called by sqlite3_config(), and therefore
+** is not required to be threadsafe (it is not).
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
+ static const sqlite3_mem_methods mempoolMethods = {
+ memsys3Malloc,
+ memsys3Free,
+ memsys3Realloc,
+ memsys3Size,
+ memsys3Roundup,
+ memsys3Init,
+ memsys3Shutdown,
+ 0
+ };
+ return &mempoolMethods;
+}
+
+#endif /* SQLITE_ENABLE_MEMSYS3 */
+
+/************** End of mem3.c ************************************************/
+/************** Begin file mem5.c ********************************************/
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). The application gives SQLite a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc()
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
+**
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
+**
+** This memory allocator uses the following algorithm:
+**
+** 1. All memory allocations sizes are rounded up to a power of 2.
+**
+** 2. If two adjacent free blocks are the halves of a larger block,
+** then the two blocks are coalesed into the single larger block.
+**
+** 3. New memory is allocated from the first available free block.
+**
+** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
+** Concerning Dynamic Storage Allocation". Journal of the Association for
+** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
+**
+** Let n be the size of the largest allocation divided by the minimum
+** allocation size (after rounding all sizes up to a power of 2.) Let M
+** be the maximum amount of memory ever outstanding at one time. Let
+** N be the total amount of memory available for allocation. Robson
+** proved that this memory allocator will never breakdown due to
+** fragmentation as long as the following constraint holds:
+**
+** N >= M*(1 + log2(n)/2) - n + 1
+**
+** The sqlite3_status() logic tracks the maximum values of n and M so
+** that an application can, at any time, verify this constraint.
+*/
+
+/*
+** This version of the memory allocator is used only when
+** SQLITE_ENABLE_MEMSYS5 is defined.
+*/
+#ifdef SQLITE_ENABLE_MEMSYS5
+
+/*
+** A minimum allocation is an instance of the following structure.
+** Larger allocations are an array of these structures where the
+** size of the array is a power of 2.
+**
+** The size of this object must be a power of two. That fact is
+** verified in memsys5Init().
+*/
+typedef struct Mem5Link Mem5Link;
+struct Mem5Link {
+ int next; /* Index of next free chunk */
+ int prev; /* Index of previous free chunk */
+};
+
+/*
+** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
+** mem5.szAtom is always at least 8 and 32-bit integers are used,
+** it is not actually possible to reach this limit.
+*/
+#define LOGMAX 30
+
+/*
+** Masks used for mem5.aCtrl[] elements.
+*/
+#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
+#define CTRL_FREE 0x20 /* True if not checked out */
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem5". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static SQLITE_WSD struct Mem5Global {
+ /*
+ ** Memory available for allocation
+ */
+ int szAtom; /* Smallest possible allocation in bytes */
+ int nBlock; /* Number of szAtom sized blocks in zPool */
+ u8 *zPool; /* Memory available to be allocated */
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** Performance statistics
+ */
+ u64 nAlloc; /* Total number of calls to malloc */
+ u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
+ u64 totalExcess; /* Total internal fragmentation */
+ u32 currentOut; /* Current checkout, including internal fragmentation */
+ u32 currentCount; /* Current number of distinct checkouts */
+ u32 maxOut; /* Maximum instantaneous currentOut */
+ u32 maxCount; /* Maximum instantaneous currentCount */
+ u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
+
+ /*
+ ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
+ ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
+ ** and so forth.
+ */
+ int aiFreelist[LOGMAX+1];
+
+ /*
+ ** Space for tracking which blocks are checked out and the size
+ ** of each block. One byte per block.
+ */
+ u8 *aCtrl;
+
+} mem5 = { 0 };
+
+/*
+** Access the static variable through a macro for SQLITE_OMIT_WSD
+*/
+#define mem5 GLOBAL(struct Mem5Global, mem5)
+
+/*
+** Assuming mem5.zPool is divided up into an array of Mem5Link
+** structures, return a pointer to the idx-th such lik.
+*/
+#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
+
+/*
+** Unlink the chunk at mem5.aPool[i] from list it is currently
+** on. It should be found on mem5.aiFreelist[iLogsize].
+*/
+static void memsys5Unlink(int i, int iLogsize){
+ int next, prev;
+ assert( i>=0 && i<mem5.nBlock );
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ next = MEM5LINK(i)->next;
+ prev = MEM5LINK(i)->prev;
+ if( prev<0 ){
+ mem5.aiFreelist[iLogsize] = next;
+ }else{
+ MEM5LINK(prev)->next = next;
+ }
+ if( next>=0 ){
+ MEM5LINK(next)->prev = prev;
+ }
+}
+
+/*
+** Link the chunk at mem5.aPool[i] so that is on the iLogsize
+** free list.
+*/
+static void memsys5Link(int i, int iLogsize){
+ int x;
+ assert( sqlite3_mutex_held(mem5.mutex) );
+ assert( i>=0 && i<mem5.nBlock );
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
+ MEM5LINK(i)->prev = -1;
+ if( x>=0 ){
+ assert( x<mem5.nBlock );
+ MEM5LINK(x)->prev = i;
+ }
+ mem5.aiFreelist[iLogsize] = i;
+}
+
+/*
+** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
+** will already be held (obtained by code in malloc.c) if
+** sqlite3GlobalConfig.bMemStat is true.
+*/
+static void memsys5Enter(void){
+ sqlite3_mutex_enter(mem5.mutex);
+}
+static void memsys5Leave(void){
+ sqlite3_mutex_leave(mem5.mutex);
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes. The
+** size returned omits the 8-byte header overhead. This only
+** works for chunks that are currently checked out.
+*/
+static int memsys5Size(void *p){
+ int iSize = 0;
+ if( p ){
+ int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
+ assert( i>=0 && i<mem5.nBlock );
+ iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
+ }
+ return iSize;
+}
+
+/*
+** Find the first entry on the freelist iLogsize. Unlink that
+** entry and return its index.
+*/
+static int memsys5UnlinkFirst(int iLogsize){
+ int i;
+ int iFirst;
+
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ i = iFirst = mem5.aiFreelist[iLogsize];
+ assert( iFirst>=0 );
+ while( i>0 ){
+ if( i<iFirst ) iFirst = i;
+ i = MEM5LINK(i)->next;
+ }
+ memsys5Unlink(iFirst, iLogsize);
+ return iFirst;
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable. Return NULL if nBytes==0.
+**
+** The caller guarantees that nByte positive.
+**
+** The caller has obtained a mutex prior to invoking this
+** routine so there is never any chance that two or more
+** threads can be in this routine at the same time.
+*/
+static void *memsys5MallocUnsafe(int nByte){
+ int i; /* Index of a mem5.aPool[] slot */
+ int iBin; /* Index into mem5.aiFreelist[] */
+ int iFullSz; /* Size of allocation rounded up to power of 2 */
+ int iLogsize; /* Log2 of iFullSz/POW2_MIN */
+
+ /* nByte must be a positive */
+ assert( nByte>0 );
+
+ /* Keep track of the maximum allocation request. Even unfulfilled
+ ** requests are counted */
+ if( (u32)nByte>mem5.maxRequest ){
+ mem5.maxRequest = nByte;
+ }
+
+ /* Abort if the requested allocation size is larger than the largest
+ ** power of two that we can represent using 32-bit signed integers.
+ */
+ if( nByte > 0x40000000 ){
+ return 0;
+ }
+
+ /* Round nByte up to the next valid power of two */
+ for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
+
+ /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
+ ** block. If not, then split a block of the next larger power of
+ ** two in order to create a new free block of size iLogsize.
+ */
+ for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
+ if( iBin>LOGMAX ) return 0;
+ i = memsys5UnlinkFirst(iBin);
+ while( iBin>iLogsize ){
+ int newSize;
+
+ iBin--;
+ newSize = 1 << iBin;
+ mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
+ memsys5Link(i+newSize, iBin);
+ }
+ mem5.aCtrl[i] = iLogsize;
+
+ /* Update allocator performance statistics. */
+ mem5.nAlloc++;
+ mem5.totalAlloc += iFullSz;
+ mem5.totalExcess += iFullSz - nByte;
+ mem5.currentCount++;
+ mem5.currentOut += iFullSz;
+ if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
+ if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
+
+ /* Return a pointer to the allocated memory. */
+ return (void*)&mem5.zPool[i*mem5.szAtom];
+}
+
+/*
+** Free an outstanding memory allocation.
+*/
+static void memsys5FreeUnsafe(void *pOld){
+ u32 size, iLogsize;
+ int iBlock;
+
+ /* Set iBlock to the index of the block pointed to by pOld in
+ ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
+ */
+ iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
+
+ /* Check that the pointer pOld points to a valid, non-free block. */
+ assert( iBlock>=0 && iBlock<mem5.nBlock );
+ assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
+ assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
+
+ iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
+ size = 1<<iLogsize;
+ assert( iBlock+size-1<(u32)mem5.nBlock );
+
+ mem5.aCtrl[iBlock] |= CTRL_FREE;
+ mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
+ assert( mem5.currentCount>0 );
+ assert( mem5.currentOut>=(size*mem5.szAtom) );
+ mem5.currentCount--;
+ mem5.currentOut -= size*mem5.szAtom;
+ assert( mem5.currentOut>0 || mem5.currentCount==0 );
+ assert( mem5.currentCount>0 || mem5.currentOut==0 );
+
+ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ while( ALWAYS(iLogsize<LOGMAX) ){
+ int iBuddy;
+ if( (iBlock>>iLogsize) & 1 ){
+ iBuddy = iBlock - size;
+ }else{
+ iBuddy = iBlock + size;
+ }
+ assert( iBuddy>=0 );
+ if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
+ if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
+ memsys5Unlink(iBuddy, iLogsize);
+ iLogsize++;
+ if( iBuddy<iBlock ){
+ mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
+ mem5.aCtrl[iBlock] = 0;
+ iBlock = iBuddy;
+ }else{
+ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ mem5.aCtrl[iBuddy] = 0;
+ }
+ size *= 2;
+ }
+ memsys5Link(iBlock, iLogsize);
+}
+
+/*
+** Allocate nBytes of memory
+*/
+static void *memsys5Malloc(int nBytes){
+ sqlite3_int64 *p = 0;
+ if( nBytes>0 ){
+ memsys5Enter();
+ p = memsys5MallocUnsafe(nBytes);
+ memsys5Leave();
+ }
+ return (void*)p;
+}
+
+/*
+** Free memory.
+**
+** The outer layer memory allocator prevents this routine from
+** being called with pPrior==0.
+*/
+static void memsys5Free(void *pPrior){
+ assert( pPrior!=0 );
+ memsys5Enter();
+ memsys5FreeUnsafe(pPrior);
+ memsys5Leave();
+}
+
+/*
+** Change the size of an existing memory allocation.
+**
+** The outer layer memory allocator prevents this routine from
+** being called with pPrior==0.
+**
+** nBytes is always a value obtained from a prior call to
+** memsys5Round(). Hence nBytes is always a non-negative power
+** of two. If nBytes==0 that means that an oversize allocation
+** (an allocation larger than 0x40000000) was requested and this
+** routine should return 0 without freeing pPrior.
+*/
+static void *memsys5Realloc(void *pPrior, int nBytes){
+ int nOld;
+ void *p;
+ assert( pPrior!=0 );
+ assert( (nBytes&(nBytes-1))==0 );
+ assert( nBytes>=0 );
+ if( nBytes==0 ){
+ return 0;
+ }
+ nOld = memsys5Size(pPrior);
+ if( nBytes<=nOld ){
+ return pPrior;
+ }
+ memsys5Enter();
+ p = memsys5MallocUnsafe(nBytes);
+ if( p ){
+ memcpy(p, pPrior, nOld);
+ memsys5FreeUnsafe(pPrior);
+ }
+ memsys5Leave();
+ return p;
+}
+
+/*
+** Round up a request size to the next valid allocation size. If
+** the allocation is too large to be handled by this allocation system,
+** return 0.
+**
+** All allocations must be a power of two and must be expressed by a
+** 32-bit signed integer. Hence the largest allocation is 0x40000000
+** or 1073741824 bytes.
+*/
+static int memsys5Roundup(int n){
+ int iFullSz;
+ if( n > 0x40000000 ) return 0;
+ for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
+ return iFullSz;
+}
+
+/*
+** Return the ceiling of the logarithm base 2 of iValue.
+**
+** Examples: memsys5Log(1) -> 0
+** memsys5Log(2) -> 1
+** memsys5Log(4) -> 2
+** memsys5Log(5) -> 3
+** memsys5Log(8) -> 3
+** memsys5Log(9) -> 4
+*/
+static int memsys5Log(int iValue){
+ int iLog;
+ for(iLog=0; (1<<iLog)<iValue; iLog++);
+ return iLog;
+}
+
+/*
+** Initialize the memory allocator.
+**
+** This routine is not threadsafe. The caller must be holding a mutex
+** to prevent multiple threads from entering at the same time.
+*/
+static int memsys5Init(void *NotUsed){
+ int ii; /* Loop counter */
+ int nByte; /* Number of bytes of memory available to this allocator */
+ u8 *zByte; /* Memory usable by this allocator */
+ int nMinLog; /* Log base 2 of minimum allocation size in bytes */
+ int iOffset; /* An offset into mem5.aCtrl[] */
+
+ UNUSED_PARAMETER(NotUsed);
+
+ /* For the purposes of this routine, disable the mutex */
+ mem5.mutex = 0;
+
+ /* The size of a Mem5Link object must be a power of two. Verify that
+ ** this is case.
+ */
+ assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
+
+ nByte = sqlite3GlobalConfig.nHeap;
+ zByte = (u8*)sqlite3GlobalConfig.pHeap;
+ assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
+
+ nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
+ mem5.szAtom = (1<<nMinLog);
+ while( (int)sizeof(Mem5Link)>mem5.szAtom ){
+ mem5.szAtom = mem5.szAtom << 1;
+ }
+
+ mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
+ mem5.zPool = zByte;
+ mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
+
+ for(ii=0; ii<=LOGMAX; ii++){
+ mem5.aiFreelist[ii] = -1;
+ }
+
+ iOffset = 0;
+ for(ii=LOGMAX; ii>=0; ii--){
+ int nAlloc = (1<<ii);
+ if( (iOffset+nAlloc)<=mem5.nBlock ){
+ mem5.aCtrl[iOffset] = ii | CTRL_FREE;
+ memsys5Link(iOffset, ii);
+ iOffset += nAlloc;
+ }
+ assert((iOffset+nAlloc)>mem5.nBlock);
+ }
+
+ /* If a mutex is required for normal operation, allocate one */
+ if( sqlite3GlobalConfig.bMemstat==0 ){
+ mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys5Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ mem5.mutex = 0;
+ return;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){
+ FILE *out;
+ int i, j, n;
+ int nMinLog;
+
+ if( zFilename==0 || zFilename[0]==0 ){
+ out = stdout;
+ }else{
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ }
+ memsys5Enter();
+ nMinLog = memsys5Log(mem5.szAtom);
+ for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
+ for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
+ fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
+ }
+ fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
+ fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
+ fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
+ fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
+ fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
+ fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
+ fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
+ fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
+ memsys5Leave();
+ if( out==stdout ){
+ fflush(stdout);
+ }else{
+ fclose(out);
+ }
+}
+#endif
+
+/*
+** This routine is the only routine in this file with external
+** linkage. It returns a pointer to a static sqlite3_mem_methods
+** struct populated with the memsys5 methods.
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
+ static const sqlite3_mem_methods memsys5Methods = {
+ memsys5Malloc,
+ memsys5Free,
+ memsys5Realloc,
+ memsys5Size,
+ memsys5Roundup,
+ memsys5Init,
+ memsys5Shutdown,
+ 0
+ };
+ return &memsys5Methods;
+}
+
+#endif /* SQLITE_ENABLE_MEMSYS5 */
+
+/************** End of mem5.c ************************************************/
+/************** Begin file mutex.c *******************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes.
+**
+** This file contains code that is common across all mutex implementations.
+
+**
+** $Id: mutex.c,v 1.31 2009/07/16 18:21:18 drh Exp $
+*/
+
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT)
+/*
+** For debugging purposes, record when the mutex subsystem is initialized
+** and uninitialized so that we can assert() if there is an attempt to
+** allocate a mutex while the system is uninitialized.
+*/
+static SQLITE_WSD int mutexIsInit = 0;
+#endif /* SQLITE_DEBUG */
+
+
+#ifndef SQLITE_MUTEX_OMIT
+/*
+** Initialize the mutex system.
+*/
+SQLITE_PRIVATE int sqlite3MutexInit(void){
+ int rc = SQLITE_OK;
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
+ /* If the xMutexAlloc method has not been set, then the user did not
+ ** install a mutex implementation via sqlite3_config() prior to
+ ** sqlite3_initialize() being called. This block copies pointers to
+ ** the default implementation into the sqlite3GlobalConfig structure.
+ */
+ sqlite3_mutex_methods *pFrom = sqlite3DefaultMutex();
+ sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex;
+
+ memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc));
+ memcpy(&pTo->xMutexFree, &pFrom->xMutexFree,
+ sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree));
+ pTo->xMutexAlloc = pFrom->xMutexAlloc;
+ }
+ rc = sqlite3GlobalConfig.mutex.xMutexInit();
+ }
+
+#ifdef SQLITE_DEBUG
+ GLOBAL(int, mutexIsInit) = 1;
+#endif
+
+ return rc;
+}
+
+/*
+** Shutdown the mutex system. This call frees resources allocated by
+** sqlite3MutexInit().
+*/
+SQLITE_PRIVATE int sqlite3MutexEnd(void){
+ int rc = SQLITE_OK;
+ if( sqlite3GlobalConfig.mutex.xMutexEnd ){
+ rc = sqlite3GlobalConfig.mutex.xMutexEnd();
+ }
+
+#ifdef SQLITE_DEBUG
+ GLOBAL(int, mutexIsInit) = 0;
+#endif
+
+ return rc;
+}
+
+/*
+** Retrieve a pointer to a static mutex or allocate a new dynamic one.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
+}
+
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
+ if( !sqlite3GlobalConfig.bCoreMutex ){
+ return 0;
+ }
+ assert( GLOBAL(int, mutexIsInit) );
+ return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
+}
+
+/*
+** Free a dynamic mutex.
+*/
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+ if( p ){
+ sqlite3GlobalConfig.mutex.xMutexFree(p);
+ }
+}
+
+/*
+** Obtain the mutex p. If some other thread already has the mutex, block
+** until it can be obtained.
+*/
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+ if( p ){
+ sqlite3GlobalConfig.mutex.xMutexEnter(p);
+ }
+}
+
+/*
+** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
+** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
+*/
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ return sqlite3GlobalConfig.mutex.xMutexTry(p);
+ }
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was previously
+** entered by the same thread. The behavior is undefined if the mutex
+** is not currently entered. If a NULL pointer is passed as an argument
+** this function is a no-op.
+*/
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+ if( p ){
+ sqlite3GlobalConfig.mutex.xMutexLeave(p);
+ }
+}
+
+#ifndef NDEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+ return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
+}
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+ return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
+}
+#endif
+
+#endif /* SQLITE_OMIT_MUTEX */
+
+/************** End of mutex.c ***********************************************/
+/************** Begin file mutex_noop.c **************************************/
+/*
+** 2008 October 07
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes.
+**
+** This implementation in this file does not provide any mutual
+** exclusion and is thus suitable for use only in applications
+** that use SQLite in a single thread. The routines defined
+** here are place-holders. Applications can substitute working
+** mutex routines at start-time using the
+**
+** sqlite3_config(SQLITE_CONFIG_MUTEX,...)
+**
+** interface.
+**
+** If compiled with SQLITE_DEBUG, then additional logic is inserted
+** that does error checking on mutexes to make sure they are being
+** called correctly.
+**
+** $Id: mutex_noop.c,v 1.3 2008/12/05 17:17:08 drh Exp $
+*/
+
+
+#if defined(SQLITE_MUTEX_NOOP) && !defined(SQLITE_DEBUG)
+/*
+** Stub routines for all mutex methods.
+**
+** This routines provide no mutual exclusion or error checking.
+*/
+static int noopMutexHeld(sqlite3_mutex *p){ return 1; }
+static int noopMutexNotheld(sqlite3_mutex *p){ return 1; }
+static int noopMutexInit(void){ return SQLITE_OK; }
+static int noopMutexEnd(void){ return SQLITE_OK; }
+static sqlite3_mutex *noopMutexAlloc(int id){ return (sqlite3_mutex*)8; }
+static void noopMutexFree(sqlite3_mutex *p){ return; }
+static void noopMutexEnter(sqlite3_mutex *p){ return; }
+static int noopMutexTry(sqlite3_mutex *p){ return SQLITE_OK; }
+static void noopMutexLeave(sqlite3_mutex *p){ return; }
+
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ noopMutexInit,
+ noopMutexEnd,
+ noopMutexAlloc,
+ noopMutexFree,
+ noopMutexEnter,
+ noopMutexTry,
+ noopMutexLeave,
+
+ noopMutexHeld,
+ noopMutexNotheld
+ };
+
+ return &sMutex;
+}
+#endif /* defined(SQLITE_MUTEX_NOOP) && !defined(SQLITE_DEBUG) */
+
+#if defined(SQLITE_MUTEX_NOOP) && defined(SQLITE_DEBUG)
+/*
+** In this implementation, error checking is provided for testing
+** and debugging purposes. The mutexes still do not provide any
+** mutual exclusion.
+*/
+
+/*
+** The mutex object
+*/
+struct sqlite3_mutex {
+ int id; /* The mutex type */
+ int cnt; /* Number of entries without a matching leave */
+};
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+static int debugMutexHeld(sqlite3_mutex *p){
+ return p==0 || p->cnt>0;
+}
+static int debugMutexNotheld(sqlite3_mutex *p){
+ return p==0 || p->cnt==0;
+}
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int debugMutexInit(void){ return SQLITE_OK; }
+static int debugMutexEnd(void){ return SQLITE_OK; }
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated.
+*/
+static sqlite3_mutex *debugMutexAlloc(int id){
+ static sqlite3_mutex aStatic[6];
+ sqlite3_mutex *pNew = 0;
+ switch( id ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ pNew = sqlite3Malloc(sizeof(*pNew));
+ if( pNew ){
+ pNew->id = id;
+ pNew->cnt = 0;
+ }
+ break;
+ }
+ default: {
+ assert( id-2 >= 0 );
+ assert( id-2 < (int)(sizeof(aStatic)/sizeof(aStatic[0])) );
+ pNew = &aStatic[id-2];
+ pNew->id = id;
+ break;
+ }
+ }
+ return pNew;
+}
+
+/*
+** This routine deallocates a previously allocated mutex.
+*/
+static void debugMutexFree(sqlite3_mutex *p){
+ assert( p->cnt==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ sqlite3_free(p);
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void debugMutexEnter(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
+ p->cnt++;
+}
+static int debugMutexTry(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
+ p->cnt++;
+ return SQLITE_OK;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void debugMutexLeave(sqlite3_mutex *p){
+ assert( debugMutexHeld(p) );
+ p->cnt--;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(p) );
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ debugMutexInit,
+ debugMutexEnd,
+ debugMutexAlloc,
+ debugMutexFree,
+ debugMutexEnter,
+ debugMutexTry,
+ debugMutexLeave,
+
+ debugMutexHeld,
+ debugMutexNotheld
+ };
+
+ return &sMutex;
+}
+#endif /* defined(SQLITE_MUTEX_NOOP) && defined(SQLITE_DEBUG) */
+
+/************** End of mutex_noop.c ******************************************/
+/************** Begin file mutex_os2.c ***************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for OS/2
+**
+** $Id: mutex_os2.c,v 1.11 2008/11/22 19:50:54 pweilbacher Exp $
+*/
+
+/*
+** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
+** See the mutex.h file for details.
+*/
+#ifdef SQLITE_MUTEX_OS2
+
+/********************** OS/2 Mutex Implementation **********************
+**
+** This implementation of mutexes is built using the OS/2 API.
+*/
+
+/*
+** The mutex object
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ HMTX mutex; /* Mutex controlling the lock */
+ int id; /* Mutex type */
+ int nRef; /* Number of references */
+ TID owner; /* Thread holding this mutex */
+};
+
+#define OS2_MUTEX_INITIALIZER 0,0,0,0
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int os2MutexInit(void){ return SQLITE_OK; }
+static int os2MutexEnd(void){ return SQLITE_OK; }
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated.
+** SQLite will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST 0
+** <li> SQLITE_MUTEX_RECURSIVE 1
+** <li> SQLITE_MUTEX_STATIC_MASTER 2
+** <li> SQLITE_MUTEX_STATIC_MEM 3
+** <li> SQLITE_MUTEX_STATIC_PRNG 4
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Three static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+static sqlite3_mutex *os2MutexAlloc(int iType){
+ sqlite3_mutex *p = NULL;
+ switch( iType ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->id = iType;
+ if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
+ sqlite3_free( p );
+ p = NULL;
+ }
+ }
+ break;
+ }
+ default: {
+ static volatile int isInit = 0;
+ static sqlite3_mutex staticMutexes[] = {
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ };
+ if ( !isInit ){
+ APIRET rc;
+ PTIB ptib;
+ PPIB ppib;
+ HMTX mutex;
+ char name[32];
+ DosGetInfoBlocks( &ptib, &ppib );
+ sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
+ ppib->pib_ulpid );
+ while( !isInit ){
+ mutex = 0;
+ rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
+ if( rc == NO_ERROR ){
+ unsigned int i;
+ if( !isInit ){
+ for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
+ DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
+ }
+ isInit = 1;
+ }
+ DosCloseMutexSem( mutex );
+ }else if( rc == ERROR_DUPLICATE_NAME ){
+ DosSleep( 1 );
+ }else{
+ return p;
+ }
+ }
+ }
+ assert( iType-2 >= 0 );
+ assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
+ p = &staticMutexes[iType-2];
+ p->id = iType;
+ break;
+ }
+ }
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously allocated mutex.
+** SQLite is careful to deallocate every mutex that it allocates.
+*/
+static void os2MutexFree(sqlite3_mutex *p){
+ if( p==0 ) return;
+ assert( p->nRef==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ DosCloseMutexSem( p->mutex );
+ sqlite3_free( p );
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void os2MutexEnter(sqlite3_mutex *p){
+ TID tid;
+ PID holder1;
+ ULONG holder2;
+ if( p==0 ) return;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
+ DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
+ DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
+ p->owner = tid;
+ p->nRef++;
+}
+static int os2MutexTry(sqlite3_mutex *p){
+ int rc;
+ TID tid;
+ PID holder1;
+ ULONG holder2;
+ if( p==0 ) return SQLITE_OK;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
+ if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) {
+ DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
+ p->owner = tid;
+ p->nRef++;
+ rc = SQLITE_OK;
+ } else {
+ rc = SQLITE_BUSY;
+ }
+
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void os2MutexLeave(sqlite3_mutex *p){
+ TID tid;
+ PID holder1;
+ ULONG holder2;
+ if( p==0 ) return;
+ assert( p->nRef>0 );
+ DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
+ assert( p->owner==tid );
+ p->nRef--;
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+ DosReleaseMutexSem(p->mutex);
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+static int os2MutexHeld(sqlite3_mutex *p){
+ TID tid;
+ PID pid;
+ ULONG ulCount;
+ PTIB ptib;
+ if( p!=0 ) {
+ DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
+ } else {
+ DosGetInfoBlocks(&ptib, NULL);
+ tid = ptib->tib_ptib2->tib2_ultid;
+ }
+ return p==0 || (p->nRef!=0 && p->owner==tid);
+}
+static int os2MutexNotheld(sqlite3_mutex *p){
+ TID tid;
+ PID pid;
+ ULONG ulCount;
+ PTIB ptib;
+ if( p!= 0 ) {
+ DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
+ } else {
+ DosGetInfoBlocks(&ptib, NULL);
+ tid = ptib->tib_ptib2->tib2_ultid;
+ }
+ return p==0 || p->nRef==0 || p->owner!=tid;
+}
+#endif
+
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ os2MutexInit,
+ os2MutexEnd,
+ os2MutexAlloc,
+ os2MutexFree,
+ os2MutexEnter,
+ os2MutexTry,
+ os2MutexLeave,
+#ifdef SQLITE_DEBUG
+ os2MutexHeld,
+ os2MutexNotheld
+#endif
+ };
+
+ return &sMutex;
+}
+#endif /* SQLITE_MUTEX_OS2 */
+
+/************** End of mutex_os2.c *******************************************/
+/************** Begin file mutex_unix.c **************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for pthreads
+**
+** $Id: mutex_unix.c,v 1.16 2008/12/08 18:19:18 drh Exp $
+*/
+
+/*
+** The code in this file is only used if we are compiling threadsafe
+** under unix with pthreads.
+**
+** Note that this implementation requires a version of pthreads that
+** supports recursive mutexes.
+*/
+#ifdef SQLITE_MUTEX_PTHREADS
+
+#include <pthread.h>
+
+
+/*
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ pthread_mutex_t mutex; /* Mutex controlling the lock */
+ int id; /* Mutex type */
+ int nRef; /* Number of entrances */
+ pthread_t owner; /* Thread that is within this mutex */
+#ifdef SQLITE_DEBUG
+ int trace; /* True to trace changes */
+#endif
+};
+#ifdef SQLITE_DEBUG
+#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
+#else
+#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
+#endif
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements. On some platforms,
+** there might be race conditions that can cause these routines to
+** deliver incorrect results. In particular, if pthread_equal() is
+** not an atomic operation, then these routines might delivery
+** incorrect results. On most platforms, pthread_equal() is a
+** comparison of two integers and is therefore atomic. But we are
+** told that HPUX is not such a platform. If so, then these routines
+** will not always work correctly on HPUX.
+**
+** On those platforms where pthread_equal() is not atomic, SQLite
+** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
+** make sure no assert() statements are evaluated and hence these
+** routines are never called.
+*/
+#if !defined(NDEBUG) || defined(SQLITE_DEBUG)
+static int pthreadMutexHeld(sqlite3_mutex *p){
+ return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
+}
+static int pthreadMutexNotheld(sqlite3_mutex *p){
+ return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
+}
+#endif
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int pthreadMutexInit(void){ return SQLITE_OK; }
+static int pthreadMutexEnd(void){ return SQLITE_OK; }
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated. SQLite
+** will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MASTER
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_MEM2
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_LRU2
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+static sqlite3_mutex *pthreadMutexAlloc(int iType){
+ static sqlite3_mutex staticMutexes[] = {
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER
+ };
+ sqlite3_mutex *p;
+ switch( iType ){
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, we will have to
+ ** build our own. See below. */
+ pthread_mutex_init(&p->mutex, 0);
+#else
+ /* Use a recursive mutex if it is available */
+ pthread_mutexattr_t recursiveAttr;
+ pthread_mutexattr_init(&recursiveAttr);
+ pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
+ pthread_mutex_init(&p->mutex, &recursiveAttr);
+ pthread_mutexattr_destroy(&recursiveAttr);
+#endif
+ p->id = iType;
+ }
+ break;
+ }
+ case SQLITE_MUTEX_FAST: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->id = iType;
+ pthread_mutex_init(&p->mutex, 0);
+ }
+ break;
+ }
+ default: {
+ assert( iType-2 >= 0 );
+ assert( iType-2 < ArraySize(staticMutexes) );
+ p = &staticMutexes[iType-2];
+ p->id = iType;
+ break;
+ }
+ }
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously
+** allocated mutex. SQLite is careful to deallocate every
+** mutex that it allocates.
+*/
+static void pthreadMutexFree(sqlite3_mutex *p){
+ assert( p->nRef==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ pthread_mutex_destroy(&p->mutex);
+ sqlite3_free(p);
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void pthreadMutexEnter(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, then we have to grow
+ ** our own. This implementation assumes that pthread_equal()
+ ** is atomic - that it cannot be deceived into thinking self
+ ** and p->owner are equal if p->owner changes between two values
+ ** that are not equal to self while the comparison is taking place.
+ ** This implementation also assumes a coherent cache - that
+ ** separate processes cannot read different values from the same
+ ** address at the same time. If either of these two conditions
+ ** are not met, then the mutexes will fail and problems will result.
+ */
+ {
+ pthread_t self = pthread_self();
+ if( p->nRef>0 && pthread_equal(p->owner, self) ){
+ p->nRef++;
+ }else{
+ pthread_mutex_lock(&p->mutex);
+ assert( p->nRef==0 );
+ p->owner = self;
+ p->nRef = 1;
+ }
+ }
+#else
+ /* Use the built-in recursive mutexes if they are available.
+ */
+ pthread_mutex_lock(&p->mutex);
+ p->owner = pthread_self();
+ p->nRef++;
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+}
+static int pthreadMutexTry(sqlite3_mutex *p){
+ int rc;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, then we have to grow
+ ** our own. This implementation assumes that pthread_equal()
+ ** is atomic - that it cannot be deceived into thinking self
+ ** and p->owner are equal if p->owner changes between two values
+ ** that are not equal to self while the comparison is taking place.
+ ** This implementation also assumes a coherent cache - that
+ ** separate processes cannot read different values from the same
+ ** address at the same time. If either of these two conditions
+ ** are not met, then the mutexes will fail and problems will result.
+ */
+ {
+ pthread_t self = pthread_self();
+ if( p->nRef>0 && pthread_equal(p->owner, self) ){
+ p->nRef++;
+ rc = SQLITE_OK;
+ }else if( pthread_mutex_trylock(&p->mutex)==0 ){
+ assert( p->nRef==0 );
+ p->owner = self;
+ p->nRef = 1;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+#else
+ /* Use the built-in recursive mutexes if they are available.
+ */
+ if( pthread_mutex_trylock(&p->mutex)==0 ){
+ p->owner = pthread_self();
+ p->nRef++;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( rc==SQLITE_OK && p->trace ){
+ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void pthreadMutexLeave(sqlite3_mutex *p){
+ assert( pthreadMutexHeld(p) );
+ p->nRef--;
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ if( p->nRef==0 ){
+ pthread_mutex_unlock(&p->mutex);
+ }
+#else
+ pthread_mutex_unlock(&p->mutex);
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ pthreadMutexInit,
+ pthreadMutexEnd,
+ pthreadMutexAlloc,
+ pthreadMutexFree,
+ pthreadMutexEnter,
+ pthreadMutexTry,
+ pthreadMutexLeave,
+#ifdef SQLITE_DEBUG
+ pthreadMutexHeld,
+ pthreadMutexNotheld
+#else
+ 0,
+ 0
+#endif
+ };
+
+ return &sMutex;
+}
+
+#endif /* SQLITE_MUTEX_PTHREAD */
+
+/************** End of mutex_unix.c ******************************************/
+/************** Begin file mutex_w32.c ***************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for win32
+**
+** $Id: mutex_w32.c,v 1.18 2009/08/10 03:23:21 shane Exp $
+*/
+
+/*
+** The code in this file is only used if we are compiling multithreaded
+** on a win32 system.
+*/
+#ifdef SQLITE_MUTEX_W32
+
+/*
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ CRITICAL_SECTION mutex; /* Mutex controlling the lock */
+ int id; /* Mutex type */
+ int nRef; /* Number of enterances */
+ DWORD owner; /* Thread holding this mutex */
+};
+
+/*
+** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
+** or WinCE. Return false (zero) for Win95, Win98, or WinME.
+**
+** Here is an interesting observation: Win95, Win98, and WinME lack
+** the LockFileEx() API. But we can still statically link against that
+** API as long as we don't call it win running Win95/98/ME. A call to
+** this routine is used to determine if the host is Win95/98/ME or
+** WinNT/2K/XP so that we will know whether or not we can safely call
+** the LockFileEx() API.
+**
+** mutexIsNT() is only used for the TryEnterCriticalSection() API call,
+** which is only available if your application was compiled with
+** _WIN32_WINNT defined to a value >= 0x0400. Currently, the only
+** call to TryEnterCriticalSection() is #ifdef'ed out, so #ifdef
+** this out as well.
+*/
+#if 0
+#if SQLITE_OS_WINCE
+# define mutexIsNT() (1)
+#else
+ static int mutexIsNT(void){
+ static int osType = 0;
+ if( osType==0 ){
+ OSVERSIONINFO sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ GetVersionEx(&sInfo);
+ osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
+ }
+ return osType==2;
+ }
+#endif /* SQLITE_OS_WINCE */
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements.
+*/
+static int winMutexHeld(sqlite3_mutex *p){
+ return p->nRef!=0 && p->owner==GetCurrentThreadId();
+}
+static int winMutexNotheld(sqlite3_mutex *p){
+ return p->nRef==0 || p->owner!=GetCurrentThreadId();
+}
+#endif
+
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static sqlite3_mutex winMutex_staticMutexes[6];
+static int winMutex_isInit = 0;
+/* As winMutexInit() and winMutexEnd() are called as part
+** of the sqlite3_initialize and sqlite3_shutdown()
+** processing, the "interlocked" magic is probably not
+** strictly necessary.
+*/
+static long winMutex_lock = 0;
+
+static int winMutexInit(void){
+ /* The first to increment to 1 does actual initialization */
+ if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
+ int i;
+ for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
+ InitializeCriticalSection(&winMutex_staticMutexes[i].mutex);
+ }
+ winMutex_isInit = 1;
+ }else{
+ /* Someone else is in the process of initing the static mutexes */
+ while( !winMutex_isInit ){
+ Sleep(1);
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int winMutexEnd(void){
+ /* The first to decrement to 0 does actual shutdown
+ ** (which should be the last to shutdown.) */
+ if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){
+ if( winMutex_isInit==1 ){
+ int i;
+ for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
+ DeleteCriticalSection(&winMutex_staticMutexes[i].mutex);
+ }
+ winMutex_isInit = 0;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated. SQLite
+** will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MASTER
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_MEM2
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_LRU2
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+static sqlite3_mutex *winMutexAlloc(int iType){
+ sqlite3_mutex *p;
+
+ switch( iType ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->id = iType;
+ InitializeCriticalSection(&p->mutex);
+ }
+ break;
+ }
+ default: {
+ assert( winMutex_isInit==1 );
+ assert( iType-2 >= 0 );
+ assert( iType-2 < ArraySize(winMutex_staticMutexes) );
+ p = &winMutex_staticMutexes[iType-2];
+ p->id = iType;
+ break;
+ }
+ }
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously
+** allocated mutex. SQLite is careful to deallocate every
+** mutex that it allocates.
+*/
+static void winMutexFree(sqlite3_mutex *p){
+ assert( p );
+ assert( p->nRef==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ DeleteCriticalSection(&p->mutex);
+ sqlite3_free(p);
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void winMutexEnter(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld(p) );
+ EnterCriticalSection(&p->mutex);
+ p->owner = GetCurrentThreadId();
+ p->nRef++;
+}
+static int winMutexTry(sqlite3_mutex *p){
+ int rc = SQLITE_BUSY;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld(p) );
+ /*
+ ** The sqlite3_mutex_try() routine is very rarely used, and when it
+ ** is used it is merely an optimization. So it is OK for it to always
+ ** fail.
+ **
+ ** The TryEnterCriticalSection() interface is only available on WinNT.
+ ** And some windows compilers complain if you try to use it without
+ ** first doing some #defines that prevent SQLite from building on Win98.
+ ** For that reason, we will omit this optimization for now. See
+ ** ticket #2685.
+ */
+#if 0
+ if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
+ p->owner = GetCurrentThreadId();
+ p->nRef++;
+ rc = SQLITE_OK;
+ }
+#else
+ UNUSED_PARAMETER(p);
+#endif
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void winMutexLeave(sqlite3_mutex *p){
+ assert( p->nRef>0 );
+ assert( p->owner==GetCurrentThreadId() );
+ p->nRef--;
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+ LeaveCriticalSection(&p->mutex);
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods *sqlite3DefaultMutex(void){
+ static sqlite3_mutex_methods sMutex = {
+ winMutexInit,
+ winMutexEnd,
+ winMutexAlloc,
+ winMutexFree,
+ winMutexEnter,
+ winMutexTry,
+ winMutexLeave,
+#ifdef SQLITE_DEBUG
+ winMutexHeld,
+ winMutexNotheld
+#else
+ 0,
+ 0
+#endif
+ };
+
+ return &sMutex;
+}
+#endif /* SQLITE_MUTEX_W32 */
+
+/************** End of mutex_w32.c *******************************************/
+/************** Begin file malloc.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Memory allocation functions used throughout sqlite.
+**
+** $Id: malloc.c,v 1.66 2009/07/17 11:44:07 drh Exp $
+*/
+
+/*
+** This routine runs when the memory allocator sees that the
+** total memory allocation is about to exceed the soft heap
+** limit.
+*/
+static void softHeapLimitEnforcer(
+ void *NotUsed,
+ sqlite3_int64 NotUsed2,
+ int allocSize
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_release_memory(allocSize);
+}
+
+/*
+** Set the soft heap-size limit for the library. Passing a zero or
+** negative value indicates no limit.
+*/
+SQLITE_API void sqlite3_soft_heap_limit(int n){
+ sqlite3_uint64 iLimit;
+ int overage;
+ if( n<0 ){
+ iLimit = 0;
+ }else{
+ iLimit = n;
+ }
+#ifndef SQLITE_OMIT_AUTOINIT
+ sqlite3_initialize();
+#endif
+ if( iLimit>0 ){
+ sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
+ }else{
+ sqlite3MemoryAlarm(0, 0, 0);
+ }
+ overage = (int)(sqlite3_memory_used() - (i64)n);
+ if( overage>0 ){
+ sqlite3_release_memory(overage);
+ }
+}
+
+/*
+** Attempt to release up to n bytes of non-essential memory currently
+** held by SQLite. An example of non-essential memory is memory used to
+** cache database pages that are not currently in use.
+*/
+SQLITE_API int sqlite3_release_memory(int n){
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ int nRet = 0;
+#if 0
+ nRet += sqlite3VdbeReleaseMemory(n);
+#endif
+ nRet += sqlite3PcacheReleaseMemory(n-nRet);
+ return nRet;
+#else
+ UNUSED_PARAMETER(n);
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** State information local to the memory allocation subsystem.
+*/
+static SQLITE_WSD struct Mem0Global {
+ /* Number of free pages for scratch and page-cache memory */
+ u32 nScratchFree;
+ u32 nPageFree;
+
+ sqlite3_mutex *mutex; /* Mutex to serialize access */
+
+ /*
+ ** The alarm callback and its arguments. The mem0.mutex lock will
+ ** be held while the callback is running. Recursive calls into
+ ** the memory subsystem are allowed, but no new callbacks will be
+ ** issued.
+ */
+ sqlite3_int64 alarmThreshold;
+ void (*alarmCallback)(void*, sqlite3_int64,int);
+ void *alarmArg;
+
+ /*
+ ** Pointers to the end of sqlite3GlobalConfig.pScratch and
+ ** sqlite3GlobalConfig.pPage to a block of memory that records
+ ** which pages are available.
+ */
+ u32 *aScratchFree;
+ u32 *aPageFree;
+} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
+
+#define mem0 GLOBAL(struct Mem0Global, mem0)
+
+/*
+** Initialize the memory allocation subsystem.
+*/
+SQLITE_PRIVATE int sqlite3MallocInit(void){
+ if( sqlite3GlobalConfig.m.xMalloc==0 ){
+ sqlite3MemSetDefault();
+ }
+ memset(&mem0, 0, sizeof(mem0));
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
+ && sqlite3GlobalConfig.nScratch>=0 ){
+ int i;
+ sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4);
+ mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch)
+ [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch];
+ for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; }
+ mem0.nScratchFree = sqlite3GlobalConfig.nScratch;
+ }else{
+ sqlite3GlobalConfig.pScratch = 0;
+ sqlite3GlobalConfig.szScratch = 0;
+ }
+ if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512
+ && sqlite3GlobalConfig.nPage>=1 ){
+ int i;
+ int overhead;
+ int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage);
+ int n = sqlite3GlobalConfig.nPage;
+ overhead = (4*n + sz - 1)/sz;
+ sqlite3GlobalConfig.nPage -= overhead;
+ mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage)
+ [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage];
+ for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; }
+ mem0.nPageFree = sqlite3GlobalConfig.nPage;
+ }else{
+ sqlite3GlobalConfig.pPage = 0;
+ sqlite3GlobalConfig.szPage = 0;
+ }
+ return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+SQLITE_PRIVATE void sqlite3MallocEnd(void){
+ if( sqlite3GlobalConfig.m.xShutdown ){
+ sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
+ }
+ memset(&mem0, 0, sizeof(mem0));
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
+ int n, mx;
+ sqlite3_int64 res;
+ sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
+ res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
+ return res;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ int n, mx;
+ sqlite3_int64 res;
+ sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
+ res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
+ return res;
+}
+
+/*
+** Change the alarm callback
+*/
+SQLITE_PRIVATE int sqlite3MemoryAlarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ sqlite3_mutex_enter(mem0.mutex);
+ mem0.alarmCallback = xCallback;
+ mem0.alarmArg = pArg;
+ mem0.alarmThreshold = iThreshold;
+ sqlite3_mutex_leave(mem0.mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Deprecated external interface. Internal/core SQLite code
+** should call sqlite3MemoryAlarm.
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
+}
+#endif
+
+/*
+** Trigger the alarm
+*/
+static void sqlite3MallocAlarm(int nByte){
+ void (*xCallback)(void*,sqlite3_int64,int);
+ sqlite3_int64 nowUsed;
+ void *pArg;
+ if( mem0.alarmCallback==0 ) return;
+ xCallback = mem0.alarmCallback;
+ nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ pArg = mem0.alarmArg;
+ mem0.alarmCallback = 0;
+ sqlite3_mutex_leave(mem0.mutex);
+ xCallback(pArg, nowUsed, nByte);
+ sqlite3_mutex_enter(mem0.mutex);
+ mem0.alarmCallback = xCallback;
+ mem0.alarmArg = pArg;
+}
+
+/*
+** Do a memory allocation with statistics and alarms. Assume the
+** lock is already held.
+*/
+static int mallocWithAlarm(int n, void **pp){
+ int nFull;
+ void *p;
+ assert( sqlite3_mutex_held(mem0.mutex) );
+ nFull = sqlite3GlobalConfig.m.xRoundup(n);
+ sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
+ if( mem0.alarmCallback!=0 ){
+ int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ if( nUsed+nFull >= mem0.alarmThreshold ){
+ sqlite3MallocAlarm(nFull);
+ }
+ }
+ p = sqlite3GlobalConfig.m.xMalloc(nFull);
+ if( p==0 && mem0.alarmCallback ){
+ sqlite3MallocAlarm(nFull);
+ p = sqlite3GlobalConfig.m.xMalloc(nFull);
+ }
+ if( p ){
+ nFull = sqlite3MallocSize(p);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
+ }
+ *pp = p;
+ return nFull;
+}
+
+/*
+** Allocate memory. This routine is like sqlite3_malloc() except that it
+** assumes the memory subsystem has already been initialized.
+*/
+SQLITE_PRIVATE void *sqlite3Malloc(int n){
+ void *p;
+ if( n<=0 || n>=0x7fffff00 ){
+ /* A memory allocation of a number of bytes which is near the maximum
+ ** signed integer value might cause an integer overflow inside of the
+ ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
+ ** 255 bytes of overhead. SQLite itself will never use anything near
+ ** this amount. The only way to reach the limit is with sqlite3_malloc() */
+ p = 0;
+ }else if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ mallocWithAlarm(n, &p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ p = sqlite3GlobalConfig.m.xMalloc(n);
+ }
+ return p;
+}
+
+/*
+** This version of the memory allocation is for use by the application.
+** First make sure the memory subsystem is initialized, then do the
+** allocation.
+*/
+SQLITE_API void *sqlite3_malloc(int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Malloc(n);
+}
+
+/*
+** Each thread may only have a single outstanding allocation from
+** xScratchMalloc(). We verify this constraint in the single-threaded
+** case by setting scratchAllocOut to 1 when an allocation
+** is outstanding clearing it when the allocation is freed.
+*/
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+static int scratchAllocOut = 0;
+#endif
+
+
+/*
+** Allocate memory that is to be used and released right away.
+** This routine is similar to alloca() in that it is not intended
+** for situations where the memory might be held long-term. This
+** routine is intended to get memory to old large transient data
+** structures that would not normally fit on the stack of an
+** embedded processor.
+*/
+SQLITE_PRIVATE void *sqlite3ScratchMalloc(int n){
+ void *p;
+ assert( n>0 );
+
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ /* Verify that no more than one scratch allocation per thread
+ ** is outstanding at one time. (This is only checked in the
+ ** single-threaded case since checking in the multi-threaded case
+ ** would be much more complicated.) */
+ assert( scratchAllocOut==0 );
+#endif
+
+ if( sqlite3GlobalConfig.szScratch<n ){
+ goto scratch_overflow;
+ }else{
+ sqlite3_mutex_enter(mem0.mutex);
+ if( mem0.nScratchFree==0 ){
+ sqlite3_mutex_leave(mem0.mutex);
+ goto scratch_overflow;
+ }else{
+ int i;
+ i = mem0.aScratchFree[--mem0.nScratchFree];
+ i *= sqlite3GlobalConfig.szScratch;
+ sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
+ sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
+ sqlite3_mutex_leave(mem0.mutex);
+ p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
+ assert( (((u8*)p - (u8*)0) & 7)==0 );
+ }
+ }
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ scratchAllocOut = p!=0;
+#endif
+
+ return p;
+
+scratch_overflow:
+ if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
+ n = mallocWithAlarm(n, &p);
+ if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ p = sqlite3GlobalConfig.m.xMalloc(n);
+ }
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ scratchAllocOut = p!=0;
+#endif
+ return p;
+}
+SQLITE_PRIVATE void sqlite3ScratchFree(void *p){
+ if( p ){
+
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+ /* Verify that no more than one scratch allocation per thread
+ ** is outstanding at one time. (This is only checked in the
+ ** single-threaded case since checking in the multi-threaded case
+ ** would be much more complicated.) */
+ assert( scratchAllocOut==1 );
+ scratchAllocOut = 0;
+#endif
+
+ if( sqlite3GlobalConfig.pScratch==0
+ || p<sqlite3GlobalConfig.pScratch
+ || p>=(void*)mem0.aScratchFree ){
+ if( sqlite3GlobalConfig.bMemstat ){
+ int iSize = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
+ sqlite3GlobalConfig.m.xFree(p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ sqlite3GlobalConfig.m.xFree(p);
+ }
+ }else{
+ int i;
+ i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch);
+ i /= sqlite3GlobalConfig.szScratch;
+ assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
+ sqlite3_mutex_enter(mem0.mutex);
+ assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch );
+ mem0.aScratchFree[mem0.nScratchFree++] = i;
+ sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
+ sqlite3_mutex_leave(mem0.mutex);
+ }
+ }
+}
+
+/*
+** TRUE if p is a lookaside memory allocation from db
+*/
+#ifndef SQLITE_OMIT_LOOKASIDE
+static int isLookaside(sqlite3 *db, void *p){
+ return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
+}
+#else
+#define isLookaside(A,B) 0
+#endif
+
+/*
+** Return the size of a memory allocation previously obtained from
+** sqlite3Malloc() or sqlite3_malloc().
+*/
+SQLITE_PRIVATE int sqlite3MallocSize(void *p){
+ return sqlite3GlobalConfig.m.xSize(p);
+}
+SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){
+ assert( db==0 || sqlite3_mutex_held(db->mutex) );
+ if( isLookaside(db, p) ){
+ return db->lookaside.sz;
+ }else{
+ return sqlite3GlobalConfig.m.xSize(p);
+ }
+}
+
+/*
+** Free memory previously obtained from sqlite3Malloc().
+*/
+SQLITE_API void sqlite3_free(void *p){
+ if( p==0 ) return;
+ if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
+ sqlite3GlobalConfig.m.xFree(p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ sqlite3GlobalConfig.m.xFree(p);
+ }
+}
+
+/*
+** Free memory that might be associated with a particular database
+** connection.
+*/
+SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
+ assert( db==0 || sqlite3_mutex_held(db->mutex) );
+ if( isLookaside(db, p) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+ pBuf->pNext = db->lookaside.pFree;
+ db->lookaside.pFree = pBuf;
+ db->lookaside.nOut--;
+ }else{
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, int nBytes){
+ int nOld, nNew;
+ void *pNew;
+ if( pOld==0 ){
+ return sqlite3Malloc(nBytes);
+ }
+ if( nBytes<=0 ){
+ sqlite3_free(pOld);
+ return 0;
+ }
+ if( nBytes>=0x7fffff00 ){
+ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
+ return 0;
+ }
+ nOld = sqlite3MallocSize(pOld);
+ nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
+ if( nOld==nNew ){
+ pNew = pOld;
+ }else if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
+ if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
+ mem0.alarmThreshold ){
+ sqlite3MallocAlarm(nNew-nOld);
+ }
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+ if( pNew==0 && mem0.alarmCallback ){
+ sqlite3MallocAlarm(nBytes);
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+ }
+ if( pNew ){
+ nNew = sqlite3MallocSize(pNew);
+ sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
+ }
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+ }
+ return pNew;
+}
+
+/*
+** The public interface to sqlite3Realloc. Make sure that the memory
+** subsystem is initialized prior to invoking sqliteRealloc.
+*/
+SQLITE_API void *sqlite3_realloc(void *pOld, int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Realloc(pOld, n);
+}
+
+
+/*
+** Allocate and zero memory.
+*/
+SQLITE_PRIVATE void *sqlite3MallocZero(int n){
+ void *p = sqlite3Malloc(n);
+ if( p ){
+ memset(p, 0, n);
+ }
+ return p;
+}
+
+/*
+** Allocate and zero memory. If the allocation fails, make
+** the mallocFailed flag in the connection pointer.
+*/
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, int n){
+ void *p = sqlite3DbMallocRaw(db, n);
+ if( p ){
+ memset(p, 0, n);
+ }
+ return p;
+}
+
+/*
+** Allocate and zero memory. If the allocation fails, make
+** the mallocFailed flag in the connection pointer.
+**
+** If db!=0 and db->mallocFailed is true (indicating a prior malloc
+** failure on the same database connection) then always return 0.
+** Hence for a particular database connection, once malloc starts
+** failing, it fails consistently until mallocFailed is reset.
+** This is an important assumption. There are many places in the
+** code that do things like this:
+**
+** int *a = (int*)sqlite3DbMallocRaw(db, 100);
+** int *b = (int*)sqlite3DbMallocRaw(db, 200);
+** if( b ) a[10] = 9;
+**
+** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
+** that all prior mallocs (ex: "a") worked too.
+*/
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, int n){
+ void *p;
+ assert( db==0 || sqlite3_mutex_held(db->mutex) );
+#ifndef SQLITE_OMIT_LOOKASIDE
+ if( db ){
+ LookasideSlot *pBuf;
+ if( db->mallocFailed ){
+ return 0;
+ }
+ if( db->lookaside.bEnabled && n<=db->lookaside.sz
+ && (pBuf = db->lookaside.pFree)!=0 ){
+ db->lookaside.pFree = pBuf->pNext;
+ db->lookaside.nOut++;
+ if( db->lookaside.nOut>db->lookaside.mxOut ){
+ db->lookaside.mxOut = db->lookaside.nOut;
+ }
+ return (void*)pBuf;
+ }
+ }
+#else
+ if( db && db->mallocFailed ){
+ return 0;
+ }
+#endif
+ p = sqlite3Malloc(n);
+ if( !p && db ){
+ db->mallocFailed = 1;
+ }
+ return p;
+}
+
+/*
+** Resize the block of memory pointed to by p to n bytes. If the
+** resize fails, set the mallocFailed flag in the connection object.
+*/
+SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
+ void *pNew = 0;
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( db->mallocFailed==0 ){
+ if( p==0 ){
+ return sqlite3DbMallocRaw(db, n);
+ }
+ if( isLookaside(db, p) ){
+ if( n<=db->lookaside.sz ){
+ return p;
+ }
+ pNew = sqlite3DbMallocRaw(db, n);
+ if( pNew ){
+ memcpy(pNew, p, db->lookaside.sz);
+ sqlite3DbFree(db, p);
+ }
+ }else{
+ pNew = sqlite3_realloc(p, n);
+ if( !pNew ){
+ db->mallocFailed = 1;
+ }
+ }
+ }
+ return pNew;
+}
+
+/*
+** Attempt to reallocate p. If the reallocation fails, then free p
+** and set the mallocFailed flag in the database connection.
+*/
+SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
+ void *pNew;
+ pNew = sqlite3DbRealloc(db, p, n);
+ if( !pNew ){
+ sqlite3DbFree(db, p);
+ }
+ return pNew;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc(). These
+** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
+** is because when memory debugging is turned on, these two functions are
+** called via macros that record the current file and line number in the
+** ThreadData structure.
+*/
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
+ char *zNew;
+ size_t n;
+ if( z==0 ){
+ return 0;
+ }
+ n = sqlite3Strlen30(z) + 1;
+ assert( (n&0x7fffffff)==n );
+ zNew = sqlite3DbMallocRaw(db, (int)n);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ }
+ return zNew;
+}
+SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
+ char *zNew;
+ if( z==0 ){
+ return 0;
+ }
+ assert( (n&0x7fffffff)==n );
+ zNew = sqlite3DbMallocRaw(db, n+1);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ zNew[n] = 0;
+ }
+ return zNew;
+}
+
+/*
+** Create a string from the zFromat argument and the va_list that follows.
+** Store the string in memory obtained from sqliteMalloc() and make *pz
+** point to that string.
+*/
+SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
+ va_list ap;
+ char *z;
+
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ sqlite3DbFree(db, *pz);
+ *pz = z;
+}
+
+
+/*
+** This function must be called before exiting any API function (i.e.
+** returning control to the user) that has called sqlite3_malloc or
+** sqlite3_realloc.
+**
+** The returned value is normally a copy of the second argument to this
+** function. However, if a malloc() failure has occurred since the previous
+** invocation SQLITE_NOMEM is returned instead.
+**
+** If the first argument, db, is not NULL and a malloc() error has occurred,
+** then the connection error-code (the value returned by sqlite3_errcode())
+** is set to SQLITE_NOMEM.
+*/
+SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
+ /* If the db handle is not NULL, then we must hold the connection handle
+ ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
+ ** is unsafe, as is the call to sqlite3Error().
+ */
+ assert( !db || sqlite3_mutex_held(db->mutex) );
+ if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
+ sqlite3Error(db, SQLITE_NOMEM, 0);
+ db->mallocFailed = 0;
+ rc = SQLITE_NOMEM;
+ }
+ return rc & (db ? db->errMask : 0xff);
+}
+
+/************** End of malloc.c **********************************************/
/************** Begin file printf.c ******************************************/
/*
** The "printf" code that follows dates from the 1980's. It is in
@@ -6417,6 +16314,8 @@ struct sqlite3OsVtbl *sqlite3_os_switch(void){
** an historical reference. Most of the "enhancements" have been backed
** out so that the functionality is now the same as standard printf().
**
+** $Id: printf.c,v 1.104 2009/06/03 01:24:54 drh Exp $
+**
**************************************************************************
**
** The following modules is an enhanced replacement for the "printf" subroutines
@@ -6477,13 +16376,16 @@ struct sqlite3OsVtbl *sqlite3_os_switch(void){
#define etPERCENT 8 /* Percent symbol. %% */
#define etCHARX 9 /* Characters. %c */
/* The rest are extensions, not normally found in printf() */
-#define etCHARLIT 10 /* Literal characters. %' */
-#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
-#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
+#define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */
+#define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '',
NULL pointers replaced by SQL NULL. %Q */
-#define etTOKEN 13 /* a pointer to a Token structure */
-#define etSRCLIST 14 /* a pointer to a SrcList */
-#define etPOINTER 15 /* The %p conversion */
+#define etTOKEN 12 /* a pointer to a Token structure */
+#define etSRCLIST 13 /* a pointer to a SrcList */
+#define etPOINTER 14 /* The %p conversion */
+#define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */
+#define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
+
+#define etINVALID 0 /* Any unrecognized conversion type */
/*
@@ -6522,9 +16424,10 @@ static const et_info fmtinfo[] = {
{ 'd', 10, 1, etRADIX, 0, 0 },
{ 's', 0, 4, etSTRING, 0, 0 },
{ 'g', 0, 1, etGENERIC, 30, 0 },
- { 'z', 0, 6, etDYNSTRING, 0, 0 },
+ { 'z', 0, 4, etDYNSTRING, 0, 0 },
{ 'q', 0, 4, etSQLESCAPE, 0, 0 },
{ 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
+ { 'w', 0, 4, etSQLESCAPE3, 0, 0 },
{ 'c', 0, 0, etCHARX, 0, 0 },
{ 'o', 8, 0, etRADIX, 0, 2 },
{ 'u', 10, 0, etRADIX, 0, 0 },
@@ -6540,10 +16443,13 @@ static const et_info fmtinfo[] = {
{ 'n', 0, 0, etSIZE, 0, 0 },
{ '%', 0, 0, etPERCENT, 0, 0 },
{ 'p', 16, 0, etPOINTER, 0, 1 },
+
+/* All the rest have the FLAG_INTERN bit set and are thus for internal
+** use only */
{ 'T', 0, 2, etTOKEN, 0, 0 },
{ 'S', 0, 2, etSRCLIST, 0, 0 },
+ { 'r', 10, 3, etORDINAL, 0, 0 },
};
-#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
/*
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
@@ -6563,7 +16469,7 @@ static const et_info fmtinfo[] = {
** 16 (the number of significant digits in a 64-bit float) '0' is
** always returned.
*/
-static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
+static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
int digit;
LONGDOUBLE_TYPE d;
if( (*cnt)++ >= 16 ) return '0';
@@ -6571,17 +16477,34 @@ static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
d = digit;
digit += '0';
*val = (*val - d)*10.0;
- return digit;
+ return (char)digit;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */
/*
+** Append N space characters to the given string buffer.
+*/
+static void appendSpace(StrAccum *pAccum, int N){
+ static const char zSpaces[] = " ";
+ while( N>=(int)sizeof(zSpaces)-1 ){
+ sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
+ N -= sizeof(zSpaces)-1;
+ }
+ if( N>0 ){
+ sqlite3StrAccumAppend(pAccum, zSpaces, N);
+ }
+}
+
+/*
** On machines with a small stack size, you can redefine the
-** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for
-** smaller values some %f conversions may go into an infinite loop.
+** SQLITE_PRINT_BUF_SIZE to be less than 350.
*/
#ifndef SQLITE_PRINT_BUF_SIZE
-# define SQLITE_PRINT_BUF_SIZE 350
+# if defined(SQLITE_SMALL_STACK)
+# define SQLITE_PRINT_BUF_SIZE 50
+# else
+# define SQLITE_PRINT_BUF_SIZE 350
+# endif
#endif
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
@@ -6612,9 +16535,8 @@ static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
** seems to make a big difference in determining how fast this beast
** will run.
*/
-static int vxprintf(
- void (*func)(void*,const char*,int), /* Consumer of text */
- void *arg, /* First argument to the consumer */
+SQLITE_PRIVATE void sqlite3VXPrintf(
+ StrAccum *pAccum, /* Accumulate results here */
int useExtended, /* Allow extended %-conversions */
const char *fmt, /* Format string */
va_list ap /* arguments */
@@ -6624,7 +16546,6 @@ static int vxprintf(
int precision; /* Precision of the current field */
int length; /* Length of the field */
int idx; /* A general purpose loop counter */
- int count; /* Total number of characters output */
int width; /* Width of the current field */
etByte flag_leftjustify; /* True if "-" flag is present */
etByte flag_plussign; /* True if "+" flag is present */
@@ -6640,12 +16561,8 @@ static int vxprintf(
const et_info *infop; /* Pointer to the appropriate info structure */
char buf[etBUFSIZE]; /* Conversion buffer */
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
- etByte errorflag = 0; /* True if an error is encountered */
- etByte xtype; /* Conversion paradigm */
+ etByte xtype = 0; /* Conversion paradigm */
char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
- static const char spaces[] =
- " ";
-#define etSPACESIZE (sizeof(spaces)-1)
#ifndef SQLITE_OMIT_FLOATING_POINT
int exp, e2; /* exponent of real numbers */
double rounder; /* Used for rounding floating point values */
@@ -6655,8 +16572,7 @@ static int vxprintf(
int nsd; /* Number of significant digits returned */
#endif
- func(arg,"",0);
- count = length = 0;
+ length = 0;
bufpt = 0;
for(; (c=(*fmt))!=0; ++fmt){
if( c!='%' ){
@@ -6664,14 +16580,11 @@ static int vxprintf(
bufpt = (char *)fmt;
amt = 1;
while( (c=(*++fmt))!='%' && c!=0 ) amt++;
- (*func)(arg,bufpt,amt);
- count += amt;
+ sqlite3StrAccumAppend(pAccum, bufpt, amt);
if( c==0 ) break;
}
if( (c=(*++fmt))==0 ){
- errorflag = 1;
- (*func)(arg,"%",1);
- count++;
+ sqlite3StrAccumAppend(pAccum, "%", 1);
break;
}
/* Find out what flags are present */
@@ -6738,22 +16651,20 @@ static int vxprintf(
flag_long = flag_longlong = 0;
}
/* Fetch the info entry for the field */
- infop = 0;
- for(idx=0; idx<etNINFO; idx++){
+ infop = &fmtinfo[0];
+ xtype = etINVALID;
+ for(idx=0; idx<ArraySize(fmtinfo); idx++){
if( c==fmtinfo[idx].fmttype ){
infop = &fmtinfo[idx];
if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
xtype = infop->type;
}else{
- return -1;
+ return;
}
break;
}
}
zExtra = 0;
- if( infop==0 ){
- return -1;
- }
/* Limit the precision to prevent overflowing buf[] during conversion */
@@ -6787,12 +16698,17 @@ static int vxprintf(
flag_longlong = sizeof(char*)==sizeof(i64);
flag_long = sizeof(char*)==sizeof(long int);
/* Fall through into the next case */
+ case etORDINAL:
case etRADIX:
if( infop->flags & FLAG_SIGNED ){
i64 v;
- if( flag_longlong ) v = va_arg(ap,i64);
- else if( flag_long ) v = va_arg(ap,long int);
- else v = va_arg(ap,int);
+ if( flag_longlong ){
+ v = va_arg(ap,i64);
+ }else if( flag_long ){
+ v = va_arg(ap,long int);
+ }else{
+ v = va_arg(ap,int);
+ }
if( v<0 ){
longvalue = -v;
prefix = '-';
@@ -6803,9 +16719,13 @@ static int vxprintf(
else prefix = 0;
}
}else{
- if( flag_longlong ) longvalue = va_arg(ap,u64);
- else if( flag_long ) longvalue = va_arg(ap,unsigned long int);
- else longvalue = va_arg(ap,unsigned int);
+ if( flag_longlong ){
+ longvalue = va_arg(ap,u64);
+ }else if( flag_long ){
+ longvalue = va_arg(ap,unsigned long int);
+ }else{
+ longvalue = va_arg(ap,unsigned int);
+ }
prefix = 0;
}
if( longvalue==0 ) flag_alternateform = 0;
@@ -6813,6 +16733,16 @@ static int vxprintf(
precision = width-(prefix!=0);
}
bufpt = &buf[etBUFSIZE-1];
+ if( xtype==etORDINAL ){
+ static const char zOrd[] = "thstndrd";
+ int x = (int)(longvalue % 10);
+ if( x>=4 || (longvalue/10)%10==1 ){
+ x = 0;
+ }
+ buf[etBUFSIZE-3] = zOrd[x*2];
+ buf[etBUFSIZE-2] = zOrd[x*2+1];
+ bufpt -= 2;
+ }
{
register const char *cset; /* Use registers for speed */
register int base;
@@ -6823,7 +16753,7 @@ static int vxprintf(
longvalue = longvalue/base;
}while( longvalue>0 );
}
- length = &buf[etBUFSIZE-1]-bufpt;
+ length = (int)(&buf[etBUFSIZE-1]-bufpt);
for(idx=precision-length; idx>0; idx--){
*(--bufpt) = '0'; /* Zero pad */
}
@@ -6832,11 +16762,9 @@ static int vxprintf(
const char *pre;
char x;
pre = &aPrefix[infop->prefix];
- if( *bufpt!=pre[0] ){
- for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
- }
+ for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
}
- length = &buf[etBUFSIZE-1]-bufpt;
+ length = (int)(&buf[etBUFSIZE-1]-bufpt);
break;
case etFLOAT:
case etEXP:
@@ -6864,15 +16792,26 @@ static int vxprintf(
if( xtype==etFLOAT ) realvalue += rounder;
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
exp = 0;
+ if( sqlite3IsNaN((double)realvalue) ){
+ bufpt = "NaN";
+ length = 3;
+ break;
+ }
if( realvalue>0.0 ){
while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
- while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
- while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
- if( exp>350 || exp<-350 ){
- bufpt = "NaN";
- length = 3;
+ while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
+ while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
+ if( exp>350 ){
+ if( prefix=='-' ){
+ bufpt = "-Inf";
+ }else if( prefix=='+' ){
+ bufpt = "+Inf";
+ }else{
+ bufpt = "Inf";
+ }
+ length = sqlite3Strlen30(bufpt);
break;
}
}
@@ -6903,7 +16842,7 @@ static int vxprintf(
e2 = exp;
}
nsd = 0;
- flag_dp = (precision>0) | flag_alternateform | flag_altform2;
+ flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
/* The sign in front of the number */
if( prefix ){
*(bufpt++) = prefix;
@@ -6922,7 +16861,8 @@ static int vxprintf(
}
/* "0" digits after the decimal point but before the first
** significant digit of the number */
- for(e2++; e2<0 && precision>0; precision--, e2++){
+ for(e2++; e2<0; precision--, e2++){
+ assert( precision>0 );
*(bufpt++) = '0';
}
/* Significant digits after the decimal point */
@@ -6942,7 +16882,7 @@ static int vxprintf(
}
}
/* Add the "eNNN" suffix */
- if( flag_exp || (xtype==etEXP && exp) ){
+ if( flag_exp || xtype==etEXP ){
*(bufpt++) = aDigits[infop->charset];
if( exp<0 ){
*(bufpt++) = '-'; exp = -exp;
@@ -6950,18 +16890,18 @@ static int vxprintf(
*(bufpt++) = '+';
}
if( exp>=100 ){
- *(bufpt++) = (exp/100)+'0'; /* 100's digit */
+ *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */
exp %= 100;
}
- *(bufpt++) = exp/10+'0'; /* 10's digit */
- *(bufpt++) = exp%10+'0'; /* 1's digit */
+ *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */
+ *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */
}
*bufpt = 0;
/* The converted number is in buf[] and zero terminated. Output it.
** Note that the number is in the usual order, not reversed as with
** integer conversions. */
- length = bufpt-buf;
+ length = (int)(bufpt-buf);
bufpt = buf;
/* Special case: Add leading zeros if the flag_zeropad flag is
@@ -6979,7 +16919,7 @@ static int vxprintf(
#endif
break;
case etSIZE:
- *(va_arg(ap,int*)) = count;
+ *(va_arg(ap,int*)) = pAccum->nChar;
length = width = 0;
break;
case etPERCENT:
@@ -6987,11 +16927,11 @@ static int vxprintf(
bufpt = buf;
length = 1;
break;
- case etCHARLIT:
case etCHARX:
- c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
+ c = va_arg(ap,int);
+ buf[0] = (char)c;
if( precision>=0 ){
- for(idx=1; idx<precision; idx++) buf[idx] = c;
+ for(idx=1; idx<precision; idx++) buf[idx] = (char)c;
length = precision;
}else{
length =1;
@@ -7006,34 +16946,43 @@ static int vxprintf(
}else if( xtype==etDYNSTRING ){
zExtra = bufpt;
}
- length = strlen(bufpt);
- if( precision>=0 && precision<length ) length = precision;
+ if( precision>=0 ){
+ for(length=0; length<precision && bufpt[length]; length++){}
+ }else{
+ length = sqlite3Strlen30(bufpt);
+ }
break;
case etSQLESCAPE:
- case etSQLESCAPE2: {
- int i, j, n, ch, isnull;
+ case etSQLESCAPE2:
+ case etSQLESCAPE3: {
+ int i, j, n, isnull;
int needQuote;
+ char ch;
+ char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
char *escarg = va_arg(ap,char*);
isnull = escarg==0;
if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
for(i=n=0; (ch=escarg[i])!=0; i++){
- if( ch=='\'' ) n++;
+ if( ch==q ) n++;
}
needQuote = !isnull && xtype==etSQLESCAPE2;
n += i + 1 + needQuote*2;
if( n>etBUFSIZE ){
- bufpt = zExtra = sqliteMalloc( n );
- if( bufpt==0 ) return -1;
+ bufpt = zExtra = sqlite3Malloc( n );
+ if( bufpt==0 ){
+ pAccum->mallocFailed = 1;
+ return;
+ }
}else{
bufpt = buf;
}
j = 0;
- if( needQuote ) bufpt[j++] = '\'';
+ if( needQuote ) bufpt[j++] = q;
for(i=0; (ch=escarg[i])!=0; i++){
bufpt[j++] = ch;
- if( ch=='\'' ) bufpt[j++] = ch;
+ if( ch==q ) bufpt[j++] = ch;
}
- if( needQuote ) bufpt[j++] = '\'';
+ if( needQuote ) bufpt[j++] = q;
bufpt[j] = 0;
length = j;
/* The precision is ignored on %q and %Q */
@@ -7042,8 +16991,8 @@ static int vxprintf(
}
case etTOKEN: {
Token *pToken = va_arg(ap, Token*);
- if( pToken && pToken->z ){
- (*func)(arg, (char*)pToken->z, pToken->n);
+ if( pToken ){
+ sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
}
length = width = 0;
break;
@@ -7053,14 +17002,18 @@ static int vxprintf(
int k = va_arg(ap, int);
struct SrcList_item *pItem = &pSrc->a[k];
assert( k>=0 && k<pSrc->nSrc );
- if( pItem->zDatabase && pItem->zDatabase[0] ){
- (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase));
- (*func)(arg, ".", 1);
+ if( pItem->zDatabase ){
+ sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
+ sqlite3StrAccumAppend(pAccum, ".", 1);
}
- (*func)(arg, pItem->zName, strlen(pItem->zName));
+ sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
length = width = 0;
break;
}
+ default: {
+ assert( xtype==etINVALID );
+ return;
+ }
}/* End switch over the format type */
/*
** The text of the conversion is pointed to by "bufpt" and is
@@ -7071,167 +17024,197 @@ static int vxprintf(
register int nspace;
nspace = width-length;
if( nspace>0 ){
- count += nspace;
- while( nspace>=etSPACESIZE ){
- (*func)(arg,spaces,etSPACESIZE);
- nspace -= etSPACESIZE;
- }
- if( nspace>0 ) (*func)(arg,spaces,nspace);
+ appendSpace(pAccum, nspace);
}
}
if( length>0 ){
- (*func)(arg,bufpt,length);
- count += length;
+ sqlite3StrAccumAppend(pAccum, bufpt, length);
}
if( flag_leftjustify ){
register int nspace;
nspace = width-length;
if( nspace>0 ){
- count += nspace;
- while( nspace>=etSPACESIZE ){
- (*func)(arg,spaces,etSPACESIZE);
- nspace -= etSPACESIZE;
- }
- if( nspace>0 ) (*func)(arg,spaces,nspace);
+ appendSpace(pAccum, nspace);
}
}
if( zExtra ){
- sqliteFree(zExtra);
+ sqlite3_free(zExtra);
}
}/* End for loop over the format string */
- return errorflag ? -1 : count;
} /* End of function */
-
-/* This structure is used to store state information about the
-** write to memory that is currently in progress.
-*/
-struct sgMprintf {
- char *zBase; /* A base allocation */
- char *zText; /* The string collected so far */
- int nChar; /* Length of the string so far */
- int nTotal; /* Output size if unconstrained */
- int nAlloc; /* Amount of space allocated in zText */
- void *(*xRealloc)(void*,int); /* Function used to realloc memory */
-};
-
-/*
-** This function implements the callback from vxprintf.
-**
-** This routine add nNewChar characters of text in zNewText to
-** the sgMprintf structure pointed to by "arg".
+/*
+** Append N bytes of text from z to the StrAccum object.
*/
-static void mout(void *arg, const char *zNewText, int nNewChar){
- struct sgMprintf *pM = (struct sgMprintf*)arg;
- pM->nTotal += nNewChar;
- if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
- if( pM->xRealloc==0 ){
- nNewChar = pM->nAlloc - pM->nChar - 1;
+SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
+ assert( z!=0 || N==0 );
+ if( p->tooBig | p->mallocFailed ){
+ testcase(p->tooBig);
+ testcase(p->mallocFailed);
+ return;
+ }
+ if( N<0 ){
+ N = sqlite3Strlen30(z);
+ }
+ if( N==0 || NEVER(z==0) ){
+ return;
+ }
+ if( p->nChar+N >= p->nAlloc ){
+ char *zNew;
+ if( !p->useMalloc ){
+ p->tooBig = 1;
+ N = p->nAlloc - p->nChar - 1;
+ if( N<=0 ){
+ return;
+ }
}else{
- pM->nAlloc = pM->nChar + nNewChar*2 + 1;
- if( pM->zText==pM->zBase ){
- pM->zText = pM->xRealloc(0, pM->nAlloc);
- if( pM->zText && pM->nChar ){
- memcpy(pM->zText, pM->zBase, pM->nChar);
- }
+ i64 szNew = p->nChar;
+ szNew += N + 1;
+ if( szNew > p->mxAlloc ){
+ sqlite3StrAccumReset(p);
+ p->tooBig = 1;
+ return;
}else{
- char *zNew;
- zNew = pM->xRealloc(pM->zText, pM->nAlloc);
- if( zNew ){
- pM->zText = zNew;
- }
+ p->nAlloc = (int)szNew;
+ }
+ zNew = sqlite3DbMallocRaw(p->db, p->nAlloc );
+ if( zNew ){
+ memcpy(zNew, p->zText, p->nChar);
+ sqlite3StrAccumReset(p);
+ p->zText = zNew;
+ }else{
+ p->mallocFailed = 1;
+ sqlite3StrAccumReset(p);
+ return;
}
}
}
- if( pM->zText ){
- if( nNewChar>0 ){
- memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
- pM->nChar += nNewChar;
- }
- pM->zText[pM->nChar] = 0;
- }
+ memcpy(&p->zText[p->nChar], z, N);
+ p->nChar += N;
}
/*
-** This routine is a wrapper around xprintf() that invokes mout() as
-** the consumer.
+** Finish off a string by making sure it is zero-terminated.
+** Return a pointer to the resulting string. Return a NULL
+** pointer if any kind of error was encountered.
*/
-static char *base_vprintf(
- void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */
- int useInternal, /* Use internal %-conversions if true */
- char *zInitBuf, /* Initially write here, before mallocing */
- int nInitBuf, /* Size of zInitBuf[] */
- const char *zFormat, /* format string */
- va_list ap /* arguments */
-){
- struct sgMprintf sM;
- sM.zBase = sM.zText = zInitBuf;
- sM.nChar = sM.nTotal = 0;
- sM.nAlloc = nInitBuf;
- sM.xRealloc = xRealloc;
- vxprintf(mout, &sM, useInternal, zFormat, ap);
- if( xRealloc ){
- if( sM.zText==sM.zBase ){
- sM.zText = xRealloc(0, sM.nChar+1);
- if( sM.zText ){
- memcpy(sM.zText, sM.zBase, sM.nChar+1);
- }
- }else if( sM.nAlloc>sM.nChar+10 ){
- char *zNew = xRealloc(sM.zText, sM.nChar+1);
- if( zNew ){
- sM.zText = zNew;
+SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
+ if( p->zText ){
+ p->zText[p->nChar] = 0;
+ if( p->useMalloc && p->zText==p->zBase ){
+ p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
+ if( p->zText ){
+ memcpy(p->zText, p->zBase, p->nChar+1);
+ }else{
+ p->mallocFailed = 1;
}
}
}
- return sM.zText;
+ return p->zText;
+}
+
+/*
+** Reset an StrAccum string. Reclaim all malloced memory.
+*/
+SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
+ if( p->zText!=p->zBase ){
+ sqlite3DbFree(p->db, p->zText);
+ }
+ p->zText = 0;
}
/*
-** Realloc that is a real function, not a macro.
+** Initialize a string accumulator
*/
-static void *printf_realloc(void *old, int size){
- return sqliteRealloc(old,size);
+SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
+ p->zText = p->zBase = zBase;
+ p->db = 0;
+ p->nChar = 0;
+ p->nAlloc = n;
+ p->mxAlloc = mx;
+ p->useMalloc = 1;
+ p->tooBig = 0;
+ p->mallocFailed = 0;
}
/*
** Print into memory obtained from sqliteMalloc(). Use the internal
** %-conversion extensions.
*/
-char *sqlite3VMPrintf(const char *zFormat, va_list ap){
+SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
+ char *z;
char zBase[SQLITE_PRINT_BUF_SIZE];
- return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
+ StrAccum acc;
+ assert( db!=0 );
+ sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
+ db->aLimit[SQLITE_LIMIT_LENGTH]);
+ acc.db = db;
+ sqlite3VXPrintf(&acc, 1, zFormat, ap);
+ z = sqlite3StrAccumFinish(&acc);
+ if( acc.mallocFailed ){
+ db->mallocFailed = 1;
+ }
+ return z;
}
/*
** Print into memory obtained from sqliteMalloc(). Use the internal
** %-conversion extensions.
*/
-char *sqlite3MPrintf(const char *zFormat, ...){
+SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
va_list ap;
char *z;
- char zBase[SQLITE_PRINT_BUF_SIZE];
va_start(ap, zFormat);
- z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
+ z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
return z;
}
/*
+** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting
+** the string and before returnning. This routine is intended to be used
+** to modify an existing string. For example:
+**
+** x = sqlite3MPrintf(db, x, "prefix %s suffix", x);
+**
+*/
+SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){
+ va_list ap;
+ char *z;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ sqlite3DbFree(db, zStr);
+ return z;
+}
+
+/*
** Print into memory obtained from sqlite3_malloc(). Omit the internal
** %-conversion extensions.
*/
-char *sqlite3_vmprintf(const char *zFormat, va_list ap){
+SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
+ char *z;
char zBase[SQLITE_PRINT_BUF_SIZE];
- return base_vprintf(sqlite3_realloc, 0, zBase, sizeof(zBase), zFormat, ap);
+ StrAccum acc;
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
+ sqlite3VXPrintf(&acc, 0, zFormat, ap);
+ z = sqlite3StrAccumFinish(&acc);
+ return z;
}
/*
** Print into memory obtained from sqlite3_malloc()(). Omit the internal
** %-conversion extensions.
*/
-char *sqlite3_mprintf(const char *zFormat, ...){
+SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
va_list ap;
char *z;
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
@@ -7244,29 +17227,39 @@ char *sqlite3_mprintf(const char *zFormat, ...){
** are not able to use a "," as the decimal point in place of "." as
** specified by some locales.
*/
-char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
+SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
char *z;
va_list ap;
+ StrAccum acc;
+ if( n<=0 ){
+ return zBuf;
+ }
+ sqlite3StrAccumInit(&acc, zBuf, n, 0);
+ acc.useMalloc = 0;
va_start(ap,zFormat);
- z = base_vprintf(0, 0, zBuf, n, zFormat, ap);
+ sqlite3VXPrintf(&acc, 0, zFormat, ap);
va_end(ap);
+ z = sqlite3StrAccumFinish(&acc);
return z;
}
-#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
+#if defined(SQLITE_DEBUG)
/*
** A version of printf() that understands %lld. Used for debugging.
** The printf() built into some versions of windows does not understand %lld
** and segfaults if you give it a long long int.
*/
-void sqlite3DebugPrintf(const char *zFormat, ...){
- extern int getpid(void);
+SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
va_list ap;
+ StrAccum acc;
char zBuf[500];
- va_start(ap, zFormat);
- base_vprintf(0, 0, zBuf, sizeof(zBuf), zFormat, ap);
+ sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
+ acc.useMalloc = 0;
+ va_start(ap,zFormat);
+ sqlite3VXPrintf(&acc, 0, zFormat, ap);
va_end(ap);
+ sqlite3StrAccumFinish(&acc);
fprintf(stdout,"%s", zBuf);
fflush(stdout);
}
@@ -7291,10 +17284,19 @@ void sqlite3DebugPrintf(const char *zFormat, ...){
** Random numbers are used by some of the database backends in order
** to generate random integer keys for tables or random filenames.
**
-** $Id: random.c,v 1.16 2007/01/05 14:38:56 drh Exp $
+** $Id: random.c,v 1.29 2008/12/10 19:26:24 drh Exp $
*/
+/* All threads share a single random number generator.
+** This structure is the current state of the generator.
+*/
+static SQLITE_WSD struct sqlite3PrngType {
+ unsigned char isInit; /* True if initialized */
+ unsigned char i, j; /* State variables */
+ unsigned char s[256]; /* State variables */
+} sqlite3Prng;
+
/*
** Get a single 8-bit random value from the RC4 PRNG. The Mutex
** must be held while executing this routine.
@@ -7311,17 +17313,23 @@ void sqlite3DebugPrintf(const char *zFormat, ...){
** (Later): Actually, OP_NewRowid does not depend on a good source of
** randomness any more. But we will leave this code in all the same.
*/
-static int randomByte(void){
+static u8 randomByte(void){
unsigned char t;
- /* All threads share a single random number generator.
- ** This structure is the current state of the generator.
+
+ /* The "wsdPrng" macro will resolve to the pseudo-random number generator
+ ** state vector. If writable static data is unsupported on the target,
+ ** we have to locate the state vector at run-time. In the more common
+ ** case where writable static data is supported, wsdPrng can refer directly
+ ** to the "sqlite3Prng" state vector declared above.
*/
- static struct {
- unsigned char isInit; /* True if initialized */
- unsigned char i, j; /* State variables */
- unsigned char s[256]; /* State variables */
- } prng;
+#ifdef SQLITE_OMIT_WSD
+ struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
+# define wsdPrng p[0]
+#else
+# define wsdPrng sqlite3Prng
+#endif
+
/* Initialize the state of the random number generator once,
** the first time this routine is called. The seed value does
@@ -7332,47 +17340,80 @@ static int randomByte(void){
** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
** number generator) not as an encryption device.
*/
- if( !prng.isInit ){
+ if( !wsdPrng.isInit ){
int i;
char k[256];
- prng.j = 0;
- prng.i = 0;
- sqlite3OsRandomSeed(k);
+ wsdPrng.j = 0;
+ wsdPrng.i = 0;
+ sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
for(i=0; i<256; i++){
- prng.s[i] = i;
+ wsdPrng.s[i] = (u8)i;
}
for(i=0; i<256; i++){
- prng.j += prng.s[i] + k[i];
- t = prng.s[prng.j];
- prng.s[prng.j] = prng.s[i];
- prng.s[i] = t;
+ wsdPrng.j += wsdPrng.s[i] + k[i];
+ t = wsdPrng.s[wsdPrng.j];
+ wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
+ wsdPrng.s[i] = t;
}
- prng.isInit = 1;
+ wsdPrng.isInit = 1;
}
/* Generate and return single random byte
*/
- prng.i++;
- t = prng.s[prng.i];
- prng.j += t;
- prng.s[prng.i] = prng.s[prng.j];
- prng.s[prng.j] = t;
- t += prng.s[prng.i];
- return prng.s[t];
+ wsdPrng.i++;
+ t = wsdPrng.s[wsdPrng.i];
+ wsdPrng.j += t;
+ wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
+ wsdPrng.s[wsdPrng.j] = t;
+ t += wsdPrng.s[wsdPrng.i];
+ return wsdPrng.s[t];
}
/*
** Return N random bytes.
*/
-void sqlite3Randomness(int N, void *pBuf){
+SQLITE_API void sqlite3_randomness(int N, void *pBuf){
unsigned char *zBuf = pBuf;
- sqlite3OsEnterMutex();
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
+#endif
+ sqlite3_mutex_enter(mutex);
while( N-- ){
*(zBuf++) = randomByte();
}
- sqlite3OsLeaveMutex();
+ sqlite3_mutex_leave(mutex);
}
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+/*
+** For testing purposes, we sometimes want to preserve the state of
+** PRNG and restore the PRNG to its saved state at a later time, or
+** to reset the PRNG to its initial state. These routines accomplish
+** those tasks.
+**
+** The sqlite3_test_control() interface calls these routines to
+** control the PRNG.
+*/
+static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng;
+SQLITE_PRIVATE void sqlite3PrngSaveState(void){
+ memcpy(
+ &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
+ &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
+ sizeof(sqlite3Prng)
+ );
+}
+SQLITE_PRIVATE void sqlite3PrngRestoreState(void){
+ memcpy(
+ &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
+ &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
+ sizeof(sqlite3Prng)
+ );
+}
+SQLITE_PRIVATE void sqlite3PrngResetState(void){
+ GLOBAL(struct sqlite3PrngType, sqlite3Prng).isInit = 0;
+}
+#endif /* SQLITE_OMIT_BUILTIN_TEST */
+
/************** End of random.c **********************************************/
/************** Begin file utf.c *********************************************/
/*
@@ -7389,7 +17430,7 @@ void sqlite3Randomness(int N, void *pBuf){
** This file contains routines used to translate between UTF-8,
** UTF-16, UTF-16BE, and UTF-16LE.
**
-** $Id: utf.c,v 1.44 2007/03/31 15:28:00 drh Exp $
+** $Id: utf.c,v 1.73 2009/04/01 18:40:32 drh Exp $
**
** Notes on UTF-8:
**
@@ -7411,29 +17452,6 @@ void sqlite3Randomness(int N, void *pBuf){
** 0xff 0xfe little-endian utf-16 follows
** 0xfe 0xff big-endian utf-16 follows
**
-**
-** Handling of malformed strings:
-**
-** SQLite accepts and processes malformed strings without an error wherever
-** possible. However this is not possible when converting between UTF-8 and
-** UTF-16.
-**
-** When converting malformed UTF-8 strings to UTF-16, one instance of the
-** replacement character U+FFFD for each byte that cannot be interpeted as
-** part of a valid unicode character.
-**
-** When converting malformed UTF-16 strings to UTF-8, one instance of the
-** replacement character U+FFFD for each pair of bytes that cannot be
-** interpeted as part of a valid unicode character.
-**
-** This file contains the following public routines:
-**
-** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string.
-** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings.
-** sqlite3utf16ByteLen() - Calculate byte-length of a void* UTF16 string.
-** sqlite3utf8CharLen() - Calculate char-length of a char* UTF8 string.
-** sqlite3utf8LikeCompare() - Do a LIKE match given two UTF8 char* strings.
-**
*/
/************** Include vdbeInt.h in the middle of utf.c *********************/
/************** Begin file vdbeInt.h *****************************************/
@@ -7453,26 +17471,13 @@ void sqlite3Randomness(int N, void *pBuf){
** source code file "vdbe.c". When that file became too big (over
** 6000 lines long) it was split up into several smaller files and
** this header information was factored out.
+**
+** $Id: vdbeInt.h,v 1.174 2009/06/23 14:15:04 drh Exp $
*/
#ifndef _VDBEINT_H_
#define _VDBEINT_H_
/*
-** intToKey() and keyToInt() used to transform the rowid. But with
-** the latest versions of the design they are no-ops.
-*/
-#define keyToInt(X) (X)
-#define intToKey(X) (X)
-
-/*
-** The makefile scans the vdbe.c source file and creates the following
-** array of string constants which are the names of all VDBE opcodes. This
-** array is defined in a separate source code file named opcode.c which is
-** automatically generated by the makefile.
-*/
-extern const char *const sqlite3OpcodeNames[];
-
-/*
** SQL is translated into a sequence of instructions to be
** executed by a virtual machine. Each instruction is an instance
** of the following structure.
@@ -7494,61 +17499,88 @@ typedef unsigned char Bool;
** Every cursor that the virtual machine has open is represented by an
** instance of the following structure.
**
-** If the Cursor.isTriggerRow flag is set it means that this cursor is
+** If the VdbeCursor.isTriggerRow flag is set it means that this cursor is
** really a single row that represents the NEW or OLD pseudo-table of
-** a row trigger. The data for the row is stored in Cursor.pData and
-** the rowid is in Cursor.iKey.
+** a row trigger. The data for the row is stored in VdbeCursor.pData and
+** the rowid is in VdbeCursor.iKey.
*/
-struct Cursor {
+struct VdbeCursor {
BtCursor *pCursor; /* The cursor structure of the backend */
int iDb; /* Index of cursor database in db->aDb[] (or -1) */
i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
- i64 nextRowid; /* Next rowid returned by OP_NewRowid */
Bool zeroed; /* True if zeroed out and ready for reuse */
Bool rowidIsValid; /* True if lastRowid is valid */
Bool atFirst; /* True if pointing to first entry */
Bool useRandomRowid; /* Generate new record numbers semi-randomly */
Bool nullRow; /* True if pointing to a row with no data */
- Bool nextRowidValid; /* True if the nextRowid field is valid */
- Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
Bool isTable; /* True if a table requiring integer keys */
Bool isIndex; /* True if an index containing keys only - no data */
- u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */
i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
Btree *pBt; /* Separate file holding temporary table */
- int nData; /* Number of bytes in pData */
- char *pData; /* Data for a NEW or OLD pseudo-table */
- i64 iKey; /* Key for the NEW or OLD pseudo-table row */
- u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */
+ int pseudoTableReg; /* Register holding pseudotable content. */
KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
int nField; /* Number of fields in the header */
i64 seqCount; /* Sequence counter */
sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
+ /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or
+ ** OP_IsUnique opcode on this cursor. */
+ int seekResult;
+
/* Cached information about the header for the data record that the
- ** cursor is currently pointing to. Only valid if cacheValid is true.
+ ** cursor is currently pointing to. Only valid if cacheStatus matches
+ ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of
+ ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
+ ** the cache is out of date.
+ **
** aRow might point to (ephemeral) data for the current row, or it might
** be NULL.
*/
- int cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
+ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
int payloadSize; /* Total number of bytes in the record */
u32 *aType; /* Type values for all entries in the record */
u32 *aOffset; /* Cached offsets to the start of each columns data */
u8 *aRow; /* Data for the current row, if all on one page */
};
-typedef struct Cursor Cursor;
+typedef struct VdbeCursor VdbeCursor;
+
+/*
+** When a sub-program is executed (OP_Program), a structure of this type
+** is allocated to store the current value of the program counter, as
+** well as the current memory cell array and various other frame specific
+** values stored in the Vdbe struct. When the sub-program is finished,
+** these values are copied back to the Vdbe from the VdbeFrame structure,
+** restoring the state of the VM to as it was before the sub-program
+** began executing.
+**
+** Frames are stored in a linked list headed at Vdbe.pParent. Vdbe.pParent
+** is the parent of the current frame, or zero if the current frame
+** is the main Vdbe program.
+*/
+typedef struct VdbeFrame VdbeFrame;
+struct VdbeFrame {
+ Vdbe *v; /* VM this frame belongs to */
+ int pc; /* Program Counter */
+ Op *aOp; /* Program instructions */
+ int nOp; /* Size of aOp array */
+ Mem *aMem; /* Array of memory cells */
+ int nMem; /* Number of entries in aMem */
+ VdbeCursor **apCsr; /* Element of Vdbe cursors */
+ u16 nCursor; /* Number of entries in apCsr */
+ void *token; /* Copy of SubProgram.token */
+ int nChildMem; /* Number of memory cells for child frame */
+ int nChildCsr; /* Number of cursors for child frame */
+ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
+ int nChange; /* Statement changes (Vdbe.nChanges) */
+ VdbeFrame *pParent; /* Parent of this frame */
+};
-/*
-** Number of bytes of string storage space available to each stack
-** layer without having to malloc. NBFS is short for Number of Bytes
-** For Strings.
-*/
-#define NBFS 32
+#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])
/*
-** A value for Cursor.cacheValid that means the cache is always invalid.
+** A value for VdbeCursor.cacheValid that means the cache is always invalid.
*/
#define CACHE_STALE 0
@@ -7565,19 +17597,22 @@ typedef struct Cursor Cursor;
*/
struct Mem {
union {
- i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */
+ i64 i; /* Integer value. */
+ int nZero; /* Used when bit MEM_Zero is set in flags */
FuncDef *pDef; /* Used only when flags==MEM_Agg */
+ RowSet *pRowSet; /* Used only when flags==MEM_RowSet */
+ VdbeFrame *pFrame; /* Used when flags==MEM_Frame */
} u;
double r; /* Real value */
+ sqlite3 *db; /* The associated database connection */
char *z; /* String or BLOB value */
- int n; /* Number of characters in string value, including '\0' */
+ int n; /* Number of characters in string value, excluding '\0' */
u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
- u8 type; /* One of MEM_Null, MEM_Str, etc. */
- u8 enc; /* TEXT_Utf8, TEXT_Utf16le, or TEXT_Utf16be */
+ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
+ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
- char zShort[NBFS]; /* Space for short strings */
+ char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
};
-typedef struct Mem Mem;
/* One or more of the following flags are set to indicate the validOK
** representations of the value stored in the Mem struct.
@@ -7599,18 +17634,33 @@ typedef struct Mem Mem;
#define MEM_Int 0x0004 /* Value is an integer */
#define MEM_Real 0x0008 /* Value is a real number */
#define MEM_Blob 0x0010 /* Value is a BLOB */
+#define MEM_RowSet 0x0020 /* Value is a RowSet object */
+#define MEM_Frame 0x0040 /* Value is a VdbeFrame object */
+#define MEM_TypeMask 0x00ff /* Mask of type bits */
/* Whenever Mem contains a valid string or blob representation, one of
** the following flags must be set to determine the memory management
** policy for Mem.z. The MEM_Term flag tells us whether or not the
** string is \000 or \u0000 terminated
*/
-#define MEM_Term 0x0020 /* String rep is nul terminated */
-#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */
-#define MEM_Static 0x0080 /* Mem.z points to a static string */
-#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */
-#define MEM_Short 0x0200 /* Mem.z points to Mem.zShort */
-#define MEM_Agg 0x0400 /* Mem.z points to an agg function context */
+#define MEM_Term 0x0200 /* String rep is nul terminated */
+#define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */
+#define MEM_Static 0x0800 /* Mem.z points to a static string */
+#define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */
+#define MEM_Agg 0x2000 /* Mem.z points to an agg function context */
+#define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */
+
+#ifdef SQLITE_OMIT_INCRBLOB
+ #undef MEM_Zero
+ #define MEM_Zero 0x0000
+#endif
+
+
+/*
+** Clear any existing type flags from a Mem and replace them with f
+*/
+#define MemSetTypeFlag(p, f) \
+ ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
@@ -7630,7 +17680,6 @@ struct VdbeFunc {
void (*xDelete)(void *); /* Destructor for the aux data */
} apAux[1]; /* One slot for each function argument */
};
-typedef struct VdbeFunc VdbeFunc;
/*
** The "context" argument for a installable function. A pointer to an
@@ -7650,7 +17699,7 @@ struct sqlite3_context {
VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
Mem s; /* The return value is stored here */
Mem *pMem; /* Memory cell used to store aggregate context */
- u8 isError; /* Set to true for an error */
+ int isError; /* Error code returned by the function. */
CollSeq *pColl; /* Collating sequence */
};
@@ -7667,48 +17716,6 @@ struct Set {
};
/*
-** A FifoPage structure holds a single page of valves. Pages are arranged
-** in a list.
-*/
-typedef struct FifoPage FifoPage;
-struct FifoPage {
- int nSlot; /* Number of entries aSlot[] */
- int iWrite; /* Push the next value into this entry in aSlot[] */
- int iRead; /* Read the next value from this entry in aSlot[] */
- FifoPage *pNext; /* Next page in the fifo */
- i64 aSlot[1]; /* One or more slots for rowid values */
-};
-
-/*
-** The Fifo structure is typedef-ed in vdbeInt.h. But the implementation
-** of that structure is private to this file.
-**
-** The Fifo structure describes the entire fifo.
-*/
-typedef struct Fifo Fifo;
-struct Fifo {
- int nEntry; /* Total number of entries */
- FifoPage *pFirst; /* First page on the list */
- FifoPage *pLast; /* Last page on the list */
-};
-
-/*
-** A Context stores the last insert rowid, the last statement change count,
-** and the current statement change count (i.e. changes since last statement).
-** The current keylist is also stored in the context.
-** Elements of Context structure type make up the ContextStack, which is
-** updated by the ContextPush and ContextPop opcodes (used by triggers).
-** The context is pushed before executing a trigger a popped when the
-** trigger finishes.
-*/
-typedef struct Context Context;
-struct Context {
- i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
- int nChange; /* Statement changes (Vdbe.nChanges) */
- Fifo sFifo; /* Records that will participate in a DELETE or UPDATE */
-};
-
-/*
** An instance of the virtual machine. This structure contains the complete
** state of the virtual machine.
**
@@ -7724,60 +17731,53 @@ struct Context {
** method function.
*/
struct Vdbe {
- sqlite3 *db; /* The whole database */
- Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
- FILE *trace; /* Write an execution trace here, if not NULL */
- int nOp; /* Number of instructions in the program */
- int nOpAlloc; /* Number of slots allocated for aOp[] */
- Op *aOp; /* Space to hold the virtual machine's program */
- int nLabel; /* Number of labels used */
- int nLabelAlloc; /* Number of slots allocated in aLabel[] */
- int *aLabel; /* Space to hold the labels */
- Mem *aStack; /* The operand stack, except string values */
- Mem *pTos; /* Top entry in the operand stack */
- Mem **apArg; /* Arguments to currently executing user function */
- Mem *aColName; /* Column names to return */
- int nCursor; /* Number of slots in apCsr[] */
- Cursor **apCsr; /* One element of this array for each open cursor */
- int nVar; /* Number of entries in aVar[] */
- Mem *aVar; /* Values for the OP_Variable opcode. */
- char **azVar; /* Name of variables */
- int okVar; /* True if azVar[] has been initialized */
- int magic; /* Magic number for sanity checking */
+ sqlite3 *db; /* The database connection that owns this statement */
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Number of slots allocated for aOp[] */
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nLabel; /* Number of labels used */
+ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
+ int *aLabel; /* Space to hold the labels */
+ Mem **apArg; /* Arguments to currently executing user function */
+ Mem *aColName; /* Column names to return */
+ Mem *pResultSet; /* Pointer to an array of results */
+ u16 nResColumn; /* Number of columns in one row of the result set */
+ u16 nCursor; /* Number of slots in apCsr[] */
+ VdbeCursor **apCsr; /* One element of this array for each open cursor */
+ u8 errorAction; /* Recovery action to do in case of an error */
+ u8 okVar; /* True if azVar[] has been initialized */
+ u16 nVar; /* Number of entries in aVar[] */
+ Mem *aVar; /* Values for the OP_Variable opcode. */
+ char **azVar; /* Name of variables */
+ u32 magic; /* Magic number for sanity checking */
int nMem; /* Number of memory locations currently allocated */
Mem *aMem; /* The memory locations */
- int nCallback; /* Number of callbacks invoked so far */
- int cacheCtr; /* Cursor row cache generation counter */
- Fifo sFifo; /* A list of ROWIDs */
- int contextStackTop; /* Index of top element in the context stack */
- int contextStackDepth; /* The size of the "context" stack */
- Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
+ u32 cacheCtr; /* VdbeCursor row cache generation counter */
int pc; /* The program counter */
int rc; /* Value to return */
- unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
- int errorAction; /* Recovery action to do in case of an error */
- int inTempTrans; /* True if temp database is transactioned */
- int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
- int returnDepth; /* Next unused element in returnStack[] */
- int nResColumn; /* Number of columns in one row of the result set */
- char **azResColumn; /* Values for one row of result */
- int popStack; /* Pop the stack this much on entry to VdbeExec() */
char *zErrMsg; /* Error message written here */
- u8 resOnStack; /* True if there are result values on the stack */
u8 explain; /* True if EXPLAIN present on SQL command */
u8 changeCntOn; /* True to update the change-counter */
- u8 aborted; /* True if ROLLBACK in another VM causes an abort */
u8 expired; /* True if the VM needs to be recompiled */
u8 minWriteFileFormat; /* Minimum file format for writable database files */
u8 inVtabMethod; /* See comments above */
+ u8 usesStmtJournal; /* True if uses a statement journal */
+ u8 readOnly; /* True for read-only statements */
+ u8 isPrepareV2; /* True if prepared with prepare_v2() */
int nChange; /* Number of db changes made since last reset */
+ int btreeMask; /* Bitmask of db->aDb[] entries referenced */
i64 startTime; /* Time when query started - used for profiling */
- int nSql; /* Number of bytes in zSql */
- char *zSql; /* Text of the SQL statement that generated this */
-#ifdef SQLITE_SSE
- int fetchId; /* Statement number used by sqlite3_fetch_statement */
- int lru; /* Counter used for LRU cache replacement */
+ BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
+ int aCounter[2]; /* Counters used by sqlite3_stmt_status() */
+ char *zSql; /* Text of the SQL statement that generated this */
+ void *pFree; /* Free this when deleting the vdbe */
+ int iStatement; /* Statement number (or 0 if has not opened stmt) */
+#ifdef SQLITE_DEBUG
+ FILE *trace; /* Write an execution trace here, if not NULL */
#endif
+ VdbeFrame *pFrame; /* Parent frame */
+ int nFrame; /* Number of frames in pFrame list */
};
/*
@@ -7791,256 +17791,235 @@ struct Vdbe {
/*
** Function prototypes
*/
-void sqlite3VdbeFreeCursor(Vdbe *, Cursor*);
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);
-int sqlite3VdbeCursorMoveto(Cursor*);
+SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
-void sqlite3VdbePrintOp(FILE*, int, Op*);
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
+#endif
+SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
+
+int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
+SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
+SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
+SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int);
+SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
+SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
+SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
+SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p);
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3VdbeMutexArrayEnter(Vdbe *p);
+#else
+# define sqlite3VdbeMutexArrayEnter(p)
#endif
+
+SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
#ifdef SQLITE_DEBUG
-void sqlite3VdbePrintSql(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
#endif
-int sqlite3VdbeSerialTypeLen(u32);
-u32 sqlite3VdbeSerialType(Mem*, int);
-int sqlite3VdbeSerialPut(unsigned char*, Mem*, int);
-int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
-void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
-int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
-int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
-int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
-int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
-int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
-int sqlite3VdbeIdxRowidLen(const u8*);
-int sqlite3VdbeExec(Vdbe*);
-int sqlite3VdbeList(Vdbe*);
-int sqlite3VdbeHalt(Vdbe*);
-int sqlite3VdbeChangeEncoding(Mem *, int);
-int sqlite3VdbeMemCopy(Mem*, const Mem*);
-void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
-int sqlite3VdbeMemMove(Mem*, Mem*);
-int sqlite3VdbeMemNulTerminate(Mem*);
-int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
-void sqlite3VdbeMemSetInt64(Mem*, i64);
-void sqlite3VdbeMemSetDouble(Mem*, double);
-void sqlite3VdbeMemSetNull(Mem*);
-int sqlite3VdbeMemMakeWriteable(Mem*);
-int sqlite3VdbeMemDynamicify(Mem*);
-int sqlite3VdbeMemStringify(Mem*, int);
-i64 sqlite3VdbeIntValue(Mem*);
-int sqlite3VdbeMemIntegerify(Mem*);
-double sqlite3VdbeRealValue(Mem*);
-void sqlite3VdbeIntegerAffinity(Mem*);
-int sqlite3VdbeMemRealify(Mem*);
-int sqlite3VdbeMemNumerify(Mem*);
-int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
-void sqlite3VdbeMemRelease(Mem *p);
-int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
-#ifndef NDEBUG
-void sqlite3VdbeMemSanity(Mem*);
-int sqlite3VdbeOpcodeNoPush(u8);
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
+#else
+ #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
#endif
-int sqlite3VdbeMemTranslate(Mem*, u8);
-void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
-int sqlite3VdbeMemHandleBom(Mem *pMem);
-void sqlite3VdbeFifoInit(Fifo*);
-int sqlite3VdbeFifoPush(Fifo*, i64);
-int sqlite3VdbeFifoPop(Fifo*, i64*);
-void sqlite3VdbeFifoClear(Fifo*);
#endif /* !defined(_VDBEINT_H_) */
/************** End of vdbeInt.h *********************************************/
/************** Continuing where we left off in utf.c ************************/
+#ifndef SQLITE_AMALGAMATION
/*
** The following constant value is used by the SQLITE_BIGENDIAN and
** SQLITE_LITTLEENDIAN macros.
*/
-const int sqlite3one = 1;
-
-/*
-** This table maps from the first byte of a UTF-8 character to the number
-** of trailing bytes expected. A value '4' indicates that the table key
-** is not a legal first byte for a UTF-8 character.
-*/
-static const u8 xtra_utf8_bytes[256] = {
-/* 0xxxxxxx */
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-
-/* 10wwwwww */
-4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-
-/* 110yyyyy */
-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-
-/* 1110zzzz */
-2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-
-/* 11110yyy */
-3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
-};
-
-/*
-** This table maps from the number of trailing bytes in a UTF-8 character
-** to an integer constant that is effectively calculated for each character
-** read by a naive implementation of a UTF-8 character reader. The code
-** in the READ_UTF8 macro explains things best.
-*/
-static const int xtra_utf8_bits[] = {
- 0,
- 12416, /* (0xC0 << 6) + (0x80) */
- 925824, /* (0xE0 << 12) + (0x80 << 6) + (0x80) */
- 63447168 /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */
-};
+SQLITE_PRIVATE const int sqlite3one = 1;
+#endif /* SQLITE_AMALGAMATION */
/*
-** If a UTF-8 character contains N bytes extra bytes (N bytes follow
-** the initial byte so that the total character length is N+1) then
-** masking the character with utf8_mask[N] must produce a non-zero
-** result. Otherwise, we have an (illegal) overlong encoding.
+** This lookup table is used to help decode the first byte of
+** a multi-byte UTF8 character.
*/
-static const int utf_mask[] = {
- 0x00000000,
- 0xffffff80,
- 0xfffff800,
- 0xffff0000,
+static const unsigned char sqlite3Utf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
};
-#define READ_UTF8(zIn, c) { \
- int xtra; \
- c = *(zIn)++; \
- xtra = xtra_utf8_bytes[c]; \
- switch( xtra ){ \
- case 4: c = (int)0xFFFD; break; \
- case 3: c = (c<<6) + *(zIn)++; \
- case 2: c = (c<<6) + *(zIn)++; \
- case 1: c = (c<<6) + *(zIn)++; \
- c -= xtra_utf8_bits[xtra]; \
- if( (utf_mask[xtra]&c)==0 \
- || (c&0xFFFFF800)==0xD800 \
- || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
- } \
-}
-int sqlite3ReadUtf8(const unsigned char *z){
- int c;
- READ_UTF8(z, c);
- return c;
-}
-
-#define SKIP_UTF8(zIn) { \
- zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1); \
-}
#define WRITE_UTF8(zOut, c) { \
if( c<0x00080 ){ \
- *zOut++ = (c&0xFF); \
+ *zOut++ = (u8)(c&0xFF); \
} \
else if( c<0x00800 ){ \
- *zOut++ = 0xC0 + ((c>>6)&0x1F); \
- *zOut++ = 0x80 + (c & 0x3F); \
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
} \
else if( c<0x10000 ){ \
- *zOut++ = 0xE0 + ((c>>12)&0x0F); \
- *zOut++ = 0x80 + ((c>>6) & 0x3F); \
- *zOut++ = 0x80 + (c & 0x3F); \
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
}else{ \
- *zOut++ = 0xF0 + ((c>>18) & 0x07); \
- *zOut++ = 0x80 + ((c>>12) & 0x3F); \
- *zOut++ = 0x80 + ((c>>6) & 0x3F); \
- *zOut++ = 0x80 + (c & 0x3F); \
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
} \
}
-#define WRITE_UTF16LE(zOut, c) { \
- if( c<=0xFFFF ){ \
- *zOut++ = (c&0x00FF); \
- *zOut++ = ((c>>8)&0x00FF); \
- }else{ \
- *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
- *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
- *zOut++ = (c&0x00FF); \
- *zOut++ = (0x00DC + ((c>>8)&0x03)); \
- } \
+#define WRITE_UTF16LE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = (u8)(c&0x00FF); \
+ *zOut++ = (u8)((c>>8)&0x00FF); \
+ }else{ \
+ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (u8)(c&0x00FF); \
+ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
+ } \
}
-#define WRITE_UTF16BE(zOut, c) { \
- if( c<=0xFFFF ){ \
- *zOut++ = ((c>>8)&0x00FF); \
- *zOut++ = (c&0x00FF); \
- }else{ \
- *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
- *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
- *zOut++ = (0x00DC + ((c>>8)&0x03)); \
- *zOut++ = (c&0x00FF); \
- } \
+#define WRITE_UTF16BE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = (u8)((c>>8)&0x00FF); \
+ *zOut++ = (u8)(c&0x00FF); \
+ }else{ \
+ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
+ *zOut++ = (u8)(c&0x00FF); \
+ } \
}
#define READ_UTF16LE(zIn, c){ \
c = (*zIn++); \
c += ((*zIn++)<<8); \
- if( c>=0xD800 && c<=0xE000 ){ \
+ if( c>=0xD800 && c<0xE000 ){ \
int c2 = (*zIn++); \
c2 += ((*zIn++)<<8); \
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
- if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
} \
}
#define READ_UTF16BE(zIn, c){ \
c = ((*zIn++)<<8); \
c += (*zIn++); \
- if( c>=0xD800 && c<=0xE000 ){ \
+ if( c>=0xD800 && c<0xE000 ){ \
int c2 = ((*zIn++)<<8); \
c2 += (*zIn++); \
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
- if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
} \
}
-#define SKIP_UTF16BE(zIn){ \
- if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \
- zIn += 4; \
- }else{ \
- zIn += 2; \
- } \
-}
-#define SKIP_UTF16LE(zIn){ \
- zIn++; \
- if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \
- zIn += 3; \
- }else{ \
- zIn += 1; \
- } \
-}
+/*
+** Translate a single UTF-8 character. Return the unicode value.
+**
+** During translation, assume that the byte that zTerm points
+** is a 0x00.
+**
+** Write a pointer to the next unread byte back into *pzNext.
+**
+** Notes On Invalid UTF-8:
+**
+** * This routine never allows a 7-bit character (0x00 through 0x7f) to
+** be encoded as a multi-byte character. Any multi-byte character that
+** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
+**
+** * This routine never allows a UTF16 surrogate value to be encoded.
+** If a multi-byte character attempts to encode a value between
+** 0xd800 and 0xe000 then it is rendered as 0xfffd.
+**
+** * Bytes in the range of 0x80 through 0xbf which occur as the first
+** byte of a character are interpreted as single-byte characters
+** and rendered as themselves even though they are technically
+** invalid characters.
+**
+** * This routine accepts an infinite number of different UTF8 encodings
+** for unicode values 0x80 and greater. It do not change over-length
+** encodings to 0xfffd as some systems recommend.
+*/
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3Utf8Trans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
+SQLITE_PRIVATE int sqlite3Utf8Read(
+ const unsigned char *zIn, /* First byte of UTF-8 character */
+ const unsigned char **pzNext /* Write first byte past UTF-8 char here */
+){
+ int c;
-#define RSKIP_UTF16LE(zIn){ \
- if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \
- zIn -= 4; \
- }else{ \
- zIn -= 2; \
- } \
-}
-#define RSKIP_UTF16BE(zIn){ \
- zIn--; \
- if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \
- zIn -= 3; \
- }else{ \
- zIn -= 1; \
- } \
+ /* Same as READ_UTF8() above but without the zTerm parameter.
+ ** For this routine, we assume the UTF8 string is always zero-terminated.
+ */
+ c = *(zIn++);
+ if( c>=0xc0 ){
+ c = sqlite3Utf8Trans1[c-0xc0];
+ while( (*zIn & 0xc0)==0x80 ){
+ c = (c<<6) + (0x3f & *(zIn++));
+ }
+ if( c<0x80
+ || (c&0xFFFFF800)==0xD800
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
+ }
+ *pzNext = zIn;
+ return c;
}
+
+
+
/*
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
@@ -8053,8 +18032,7 @@ int sqlite3ReadUtf8(const unsigned char *z){
** desiredEnc. It is an error if the string is already of the desired
** encoding, or if *pMem does not contain a string value.
*/
-int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
- unsigned char zShort[NBFS]; /* Temporary short output buffer */
+SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
int len; /* Maximum length of output string in bytes */
unsigned char *zOut; /* Output buffer */
unsigned char *zIn; /* Input iterator */
@@ -8062,6 +18040,7 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
unsigned char *z; /* Output iterator */
unsigned int c;
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( pMem->flags&MEM_Str );
assert( pMem->enc!=desiredEnc );
assert( pMem->enc!=0 );
@@ -8088,7 +18067,7 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
return SQLITE_NOMEM;
}
zIn = (u8*)pMem->z;
- zTerm = &zIn[pMem->n];
+ zTerm = &zIn[pMem->n&~1];
while( zIn<zTerm ){
temp = *zIn;
*zIn = *(zIn+1);
@@ -8106,6 +18085,7 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
** A single byte is required for the output string
** nul-terminator.
*/
+ pMem->n &= ~1;
len = pMem->n * 2 + 1;
}else{
/* When converting from UTF-8 to UTF-16 the maximum growth is caused
@@ -8119,17 +18099,14 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
/* Set zIn to point at the start of the input buffer and zTerm to point 1
** byte past the end.
**
- ** Variable zOut is set to point at the output buffer. This may be space
- ** obtained from malloc(), or Mem.zShort, if it large enough and not in
- ** use, or the zShort array on the stack (see above).
+ ** Variable zOut is set to point at the output buffer, space obtained
+ ** from sqlite3_malloc().
*/
zIn = (u8*)pMem->z;
zTerm = &zIn[pMem->n];
- if( len>NBFS ){
- zOut = sqliteMallocRaw(len);
- if( !zOut ) return SQLITE_NOMEM;
- }else{
- zOut = zShort;
+ zOut = sqlite3DbMallocRaw(pMem->db, len);
+ if( !zOut ){
+ return SQLITE_NOMEM;
}
z = zOut;
@@ -8137,18 +18114,20 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
if( desiredEnc==SQLITE_UTF16LE ){
/* UTF-8 -> UTF-16 Little-endian */
while( zIn<zTerm ){
- READ_UTF8(zIn, c);
+ /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
+ READ_UTF8(zIn, zTerm, c);
WRITE_UTF16LE(z, c);
}
}else{
assert( desiredEnc==SQLITE_UTF16BE );
/* UTF-8 -> UTF-16 Big-endian */
while( zIn<zTerm ){
- READ_UTF8(zIn, c);
+ /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
+ READ_UTF8(zIn, zTerm, c);
WRITE_UTF16BE(z, c);
}
}
- pMem->n = z - zOut;
+ pMem->n = (int)(z - zOut);
*z++ = 0;
}else{
assert( desiredEnc==SQLITE_UTF8 );
@@ -8159,28 +18138,23 @@ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
WRITE_UTF8(z, c);
}
}else{
- /* UTF-16 Little-endian -> UTF-8 */
+ /* UTF-16 Big-endian -> UTF-8 */
while( zIn<zTerm ){
READ_UTF16BE(zIn, c);
WRITE_UTF8(z, c);
}
}
- pMem->n = z - zOut;
+ pMem->n = (int)(z - zOut);
}
*z = 0;
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
sqlite3VdbeMemRelease(pMem);
- pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
+ pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
pMem->enc = desiredEnc;
- if( zOut==zShort ){
- memcpy(pMem->zShort, zOut, len);
- zOut = (u8*)pMem->zShort;
- pMem->flags |= (MEM_Term|MEM_Short);
- }else{
- pMem->flags |= (MEM_Term|MEM_Dyn);
- }
+ pMem->flags |= (MEM_Term|MEM_Dyn);
pMem->z = (char*)zOut;
+ pMem->zMalloc = pMem->z;
translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
@@ -8202,11 +18176,12 @@ translate_out:
** The allocation (static, dynamic etc.) and encoding of the Mem may be
** changed by this function.
*/
-int sqlite3VdbeMemHandleBom(Mem *pMem){
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
int rc = SQLITE_OK;
u8 bom = 0;
- if( pMem->n<0 || pMem->n>1 ){
+ assert( pMem->n>=0 );
+ if( pMem->n>1 ){
u8 b1 = *(u8 *)pMem->z;
u8 b2 = *(((u8 *)pMem->z) + 1);
if( b1==0xFE && b2==0xFF ){
@@ -8218,23 +18193,14 @@ int sqlite3VdbeMemHandleBom(Mem *pMem){
}
if( bom ){
- /* This function is called as soon as a string is stored in a Mem*,
- ** from within sqlite3VdbeMemSetStr(). At that point it is not possible
- ** for the string to be stored in Mem.zShort, or for it to be stored
- ** in dynamic memory with no destructor.
- */
- assert( !(pMem->flags&MEM_Short) );
- assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
- if( pMem->flags & MEM_Dyn ){
- void (*xDel)(void*) = pMem->xDel;
- char *z = pMem->z;
- pMem->z = 0;
- pMem->xDel = 0;
- rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
- xDel(z);
- }else{
- rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
- SQLITE_TRANSIENT);
+ rc = sqlite3VdbeMemMakeWriteable(pMem);
+ if( rc==SQLITE_OK ){
+ pMem->n -= 2;
+ memmove(pMem->z, &pMem->z[2], pMem->n);
+ pMem->z[pMem->n] = '\0';
+ pMem->z[pMem->n+1] = '\0';
+ pMem->flags |= MEM_Term;
+ pMem->enc = bom;
}
}
return rc;
@@ -8248,50 +18214,109 @@ int sqlite3VdbeMemHandleBom(Mem *pMem){
** number of unicode characters in the first nByte of pZ (or up to
** the first 0x00, whichever comes first).
*/
-int sqlite3utf8CharLen(const char *z, int nByte){
+SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
int r = 0;
- const char *zTerm;
+ const u8 *z = (const u8*)zIn;
+ const u8 *zTerm;
if( nByte>=0 ){
zTerm = &z[nByte];
}else{
- zTerm = (const char *)(-1);
+ zTerm = (const u8*)(-1);
}
assert( z<=zTerm );
while( *z!=0 && z<zTerm ){
- SKIP_UTF8(z);
+ SQLITE_SKIP_UTF8(z);
r++;
}
return r;
}
+/* This test function is not currently used by the automated test-suite.
+** Hence it is only available in debug builds.
+*/
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+/*
+** Translate UTF-8 to UTF-8.
+**
+** This has the effect of making sure that the string is well-formed
+** UTF-8. Miscoded characters are removed.
+**
+** The translation is done in-place (since it is impossible for the
+** correct UTF-8 encoding to be longer than a malformed encoding).
+*/
+SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
+ unsigned char *zOut = zIn;
+ unsigned char *zStart = zIn;
+ u32 c;
+
+ while( zIn[0] ){
+ c = sqlite3Utf8Read(zIn, (const u8**)&zIn);
+ if( c!=0xfffd ){
+ WRITE_UTF8(zOut, c);
+ }
+ }
+ *zOut = 0;
+ return (int)(zOut - zStart);
+}
+#endif
+
#ifndef SQLITE_OMIT_UTF16
/*
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
-** Memory to hold the UTF-8 string is obtained from malloc and must be
-** freed by the calling function.
+** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
+** be freed by the calling function.
**
** NULL is returned if there is an allocation error.
*/
-char *sqlite3utf16to8(const void *z, int nByte){
+SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
Mem m;
memset(&m, 0, sizeof(m));
+ m.db = db;
sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
- assert( (m.flags & MEM_Term)!=0 || sqlite3MallocFailed() );
- assert( (m.flags & MEM_Str)!=0 || sqlite3MallocFailed() );
- return (m.flags & MEM_Dyn)!=0 ? m.z : sqliteStrDup(m.z);
+ if( db->mallocFailed ){
+ sqlite3VdbeMemRelease(&m);
+ m.z = 0;
+ }
+ assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
+ assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
+ return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
+}
+
+/*
+** Convert a UTF-8 string to the UTF-16 encoding specified by parameter
+** enc. A pointer to the new string is returned, and the value of *pnOut
+** is set to the length of the returned string in bytes. The call should
+** arrange to call sqlite3DbFree() on the returned pointer when it is
+** no longer required.
+**
+** If a malloc failure occurs, NULL is returned and the db.mallocFailed
+** flag set.
+*/
+#ifdef SQLITE_ENABLE_STAT2
+SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
+ Mem m;
+ memset(&m, 0, sizeof(m));
+ m.db = db;
+ sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
+ if( sqlite3VdbeMemTranslate(&m, enc) ){
+ assert( db->mallocFailed );
+ return 0;
+ }
+ assert( m.z==m.zMalloc );
+ *pnOut = m.n;
+ return m.z;
}
+#endif
/*
-** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
-** return the number of bytes up to (but not including), the first pair
-** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
-** then return the number of bytes in the first nChar unicode characters
-** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
+** pZ is a UTF-16 encoded unicode string at least nChar characters long.
+** Return the number of bytes in the first nChar unicode characters
+** in pZ. nChar must be non-negative.
*/
-int sqlite3utf16ByteLen(const void *zIn, int nChar){
- unsigned int c = 1;
- char const *z = zIn;
+SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
+ int c;
+ unsigned char const *z = zIn;
int n = 0;
if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
/* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
@@ -8303,65 +18328,17 @@ int sqlite3utf16ByteLen(const void *zIn, int nChar){
** which branch will be followed. It is therefore assumed that no runtime
** penalty is paid for this "if" statement.
*/
- while( c && ((nChar<0) || n<nChar) ){
+ while( n<nChar ){
READ_UTF16BE(z, c);
n++;
}
}else{
- while( c && ((nChar<0) || n<nChar) ){
+ while( n<nChar ){
READ_UTF16LE(z, c);
n++;
}
}
- return (z-(char const *)zIn)-((c==0)?2:0);
-}
-
-/*
-** UTF-16 implementation of the substr()
-*/
-void sqlite3utf16Substr(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int y, z;
- unsigned char const *zStr;
- unsigned char const *zStrEnd;
- unsigned char const *zStart;
- unsigned char const *zEnd;
- int i;
-
- zStr = (unsigned char const *)sqlite3_value_text16(argv[0]);
- zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])];
- y = sqlite3_value_int(argv[1]);
- z = sqlite3_value_int(argv[2]);
-
- if( y>0 ){
- y = y-1;
- zStart = zStr;
- if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
- for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart);
- }else{
- for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart);
- }
- }else{
- zStart = zStrEnd;
- if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
- for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart);
- }else{
- for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart);
- }
- for(; i<0; i++) z -= 1;
- }
-
- zEnd = zStart;
- if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
- for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd);
- }else{
- for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd);
- }
-
- sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT);
+ return (int)(z-(unsigned char const *)zIn);
}
#if defined(SQLITE_TEST)
@@ -8370,7 +18347,7 @@ void sqlite3utf16Substr(
** It checks that the primitives for serializing and deserializing
** characters in each encoding are inverses of each other.
*/
-void sqlite3utfSelfTest(){
+SQLITE_PRIVATE void sqlite3UtfSelfTest(void){
unsigned int i, t;
unsigned char zBuf[20];
unsigned char *z;
@@ -8380,9 +18357,11 @@ void sqlite3utfSelfTest(){
for(i=0; i<0x00110000; i++){
z = zBuf;
WRITE_UTF8(z, i);
- n = z-zBuf;
+ n = (int)(z-zBuf);
+ assert( n>0 && n<=4 );
+ z[0] = 0;
z = zBuf;
- READ_UTF8(z, c);
+ c = sqlite3Utf8Read(z, (const u8**)&z);
t = i;
if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
@@ -8390,20 +18369,24 @@ void sqlite3utfSelfTest(){
assert( (z-zBuf)==n );
}
for(i=0; i<0x00110000; i++){
- if( i>=0xD800 && i<=0xE000 ) continue;
+ if( i>=0xD800 && i<0xE000 ) continue;
z = zBuf;
WRITE_UTF16LE(z, i);
- n = z-zBuf;
+ n = (int)(z-zBuf);
+ assert( n>0 && n<=4 );
+ z[0] = 0;
z = zBuf;
READ_UTF16LE(z, c);
assert( c==i );
assert( (z-zBuf)==n );
}
for(i=0; i<0x00110000; i++){
- if( i>=0xD800 && i<=0xE000 ) continue;
+ if( i>=0xD800 && i<0xE000 ) continue;
z = zBuf;
WRITE_UTF16BE(z, i);
- n = z-zBuf;
+ n = (int)(z-zBuf);
+ assert( n>0 && n<=4 );
+ z[0] = 0;
z = zBuf;
READ_UTF16BE(z, c);
assert( c==i );
@@ -8431,757 +18414,79 @@ void sqlite3utfSelfTest(){
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
-** $Id: util.c,v 1.199 2007/04/06 02:32:34 drh Exp $
-*/
-
-/*
-** MALLOC WRAPPER ARCHITECTURE
-**
-** The sqlite code accesses dynamic memory allocation/deallocation by invoking
-** the following six APIs (which may be implemented as macros).
-**
-** sqlite3Malloc()
-** sqlite3MallocRaw()
-** sqlite3Realloc()
-** sqlite3ReallocOrFree()
-** sqlite3Free()
-** sqlite3AllocSize()
-**
-** The function sqlite3FreeX performs the same task as sqlite3Free and is
-** guaranteed to be a real function. The same holds for sqlite3MallocX
-**
-** The above APIs are implemented in terms of the functions provided in the
-** operating-system interface. The OS interface is never accessed directly
-** by code outside of this file.
-**
-** sqlite3OsMalloc()
-** sqlite3OsRealloc()
-** sqlite3OsFree()
-** sqlite3OsAllocationSize()
-**
-** Functions sqlite3MallocRaw() and sqlite3Realloc() may invoke
-** sqlite3_release_memory() if a call to sqlite3OsMalloc() or
-** sqlite3OsRealloc() fails (or if the soft-heap-limit for the thread is
-** exceeded). Function sqlite3Malloc() usually invokes
-** sqlite3MallocRaw().
-**
-** MALLOC TEST WRAPPER ARCHITECTURE
-**
-** The test wrapper provides extra test facilities to ensure the library
-** does not leak memory and handles the failure of the underlying OS level
-** allocation system correctly. It is only present if the library is
-** compiled with the SQLITE_MEMDEBUG macro set.
-**
-** * Guardposts to detect overwrites.
-** * Ability to cause a specific Malloc() or Realloc() to fail.
-** * Audit outstanding memory allocations (i.e check for leaks).
-*/
-
-#define MAX(x,y) ((x)>(y)?(x):(y))
-
-#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
-/*
-** Set the soft heap-size limit for the current thread. Passing a negative
-** value indicates no limit.
-*/
-void sqlite3_soft_heap_limit(int n){
- ThreadData *pTd = sqlite3ThreadData();
- if( pTd ){
- pTd->nSoftHeapLimit = n;
- }
- sqlite3ReleaseThreadData();
-}
-
-/*
-** Release memory held by SQLite instances created by the current thread.
-*/
-int sqlite3_release_memory(int n){
- return sqlite3PagerReleaseMemory(n);
-}
-#else
-/* If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, then define a version
-** of sqlite3_release_memory() to be used by other code in this file.
-** This is done for no better reason than to reduce the number of
-** pre-processor #ifndef statements.
-*/
-#define sqlite3_release_memory(x) 0 /* 0 == no memory freed */
-#endif
-
-#ifdef SQLITE_MEMDEBUG
-/*--------------------------------------------------------------------------
-** Begin code for memory allocation system test layer.
-**
-** Memory debugging is turned on by defining the SQLITE_MEMDEBUG macro.
-**
-** SQLITE_MEMDEBUG==1 -> Fence-posting only (thread safe)
-** SQLITE_MEMDEBUG==2 -> Fence-posting + linked list of allocations (not ts)
-** SQLITE_MEMDEBUG==3 -> Above + backtraces (not thread safe, req. glibc)
-*/
-
-/* Figure out whether or not to store backtrace() information for each malloc.
-** The backtrace() function is only used if SQLITE_MEMDEBUG is set to 2 or
-** greater and glibc is in use. If we don't want to use backtrace(), then just
-** define it as an empty macro and set the amount of space reserved to 0.
-*/
-#if defined(__GLIBC__) && SQLITE_MEMDEBUG>2
- extern int backtrace(void **, int);
- #define TESTALLOC_STACKSIZE 128
- #define TESTALLOC_STACKFRAMES ((TESTALLOC_STACKSIZE-8)/sizeof(void*))
-#else
- #define backtrace(x, y)
- #define TESTALLOC_STACKSIZE 0
- #define TESTALLOC_STACKFRAMES 0
-#endif
-
-/*
-** Number of 32-bit guard words. This should probably be a multiple of
-** 2 since on 64-bit machines we want the value returned by sqliteMalloc()
-** to be 8-byte aligned.
-*/
-#ifndef TESTALLOC_NGUARD
-# define TESTALLOC_NGUARD 2
-#endif
-
-/*
-** Size reserved for storing file-name along with each malloc()ed blob.
-*/
-#define TESTALLOC_FILESIZE 64
-
-/*
-** Size reserved for storing the user string. Each time a Malloc() or Realloc()
-** call succeeds, up to TESTALLOC_USERSIZE bytes of the string pointed to by
-** sqlite3_malloc_id are stored along with the other test system metadata.
-*/
-#define TESTALLOC_USERSIZE 64
-const char *sqlite3_malloc_id = 0;
-
-/*
-** Blocks used by the test layer have the following format:
-**
-** <sizeof(void *) pNext pointer>
-** <sizeof(void *) pPrev pointer>
-** <TESTALLOC_NGUARD 32-bit guard words>
-** <The application level allocation>
-** <TESTALLOC_NGUARD 32-bit guard words>
-** <32-bit line number>
-** <TESTALLOC_FILESIZE bytes containing null-terminated file name>
-** <TESTALLOC_STACKSIZE bytes of backtrace() output>
-*/
-
-#define TESTALLOC_OFFSET_GUARD1(p) (sizeof(void *) * 2)
-#define TESTALLOC_OFFSET_DATA(p) ( \
- TESTALLOC_OFFSET_GUARD1(p) + sizeof(u32) * TESTALLOC_NGUARD \
-)
-#define TESTALLOC_OFFSET_GUARD2(p) ( \
- TESTALLOC_OFFSET_DATA(p) + sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD \
-)
-#define TESTALLOC_OFFSET_LINENUMBER(p) ( \
- TESTALLOC_OFFSET_GUARD2(p) + sizeof(u32) * TESTALLOC_NGUARD \
-)
-#define TESTALLOC_OFFSET_FILENAME(p) ( \
- TESTALLOC_OFFSET_LINENUMBER(p) + sizeof(u32) \
-)
-#define TESTALLOC_OFFSET_USER(p) ( \
- TESTALLOC_OFFSET_FILENAME(p) + TESTALLOC_FILESIZE \
-)
-#define TESTALLOC_OFFSET_STACK(p) ( \
- TESTALLOC_OFFSET_USER(p) + TESTALLOC_USERSIZE + 8 - \
- (TESTALLOC_OFFSET_USER(p) % 8) \
-)
-
-#define TESTALLOC_OVERHEAD ( \
- sizeof(void *)*2 + /* pPrev and pNext pointers */ \
- TESTALLOC_NGUARD*sizeof(u32)*2 + /* Guard words */ \
- sizeof(u32) + TESTALLOC_FILESIZE + /* File and line number */ \
- TESTALLOC_USERSIZE + /* User string */ \
- TESTALLOC_STACKSIZE /* backtrace() stack */ \
-)
-
-
-/*
-** For keeping track of the number of mallocs and frees. This
-** is used to check for memory leaks. The iMallocFail and iMallocReset
-** values are used to simulate malloc() failures during testing in
-** order to verify that the library correctly handles an out-of-memory
-** condition.
-*/
-int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */
-int sqlite3_nFree; /* Number of sqliteFree() calls */
-int sqlite3_memUsed; /* TODO Total memory obtained from malloc */
-int sqlite3_memMax; /* TODO Mem usage high-water mark */
-int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */
-int sqlite3_iMallocReset = -1; /* When iMallocFail reaches 0, set to this */
-
-void *sqlite3_pFirst = 0; /* Pointer to linked list of allocations */
-int sqlite3_nMaxAlloc = 0; /* High water mark of ThreadData.nAlloc */
-int sqlite3_mallocDisallowed = 0; /* assert() in sqlite3Malloc() if set */
-int sqlite3_isFail = 0; /* True if all malloc calls should fail */
-const char *sqlite3_zFile = 0; /* Filename to associate debug info with */
-int sqlite3_iLine = 0; /* Line number for debug info */
-
-/*
-** Check for a simulated memory allocation failure. Return true if
-** the failure should be simulated. Return false to proceed as normal.
-*/
-int sqlite3TestMallocFail(){
- if( sqlite3_isFail ){
- return 1;
- }
- if( sqlite3_iMallocFail>=0 ){
- sqlite3_iMallocFail--;
- if( sqlite3_iMallocFail==0 ){
- sqlite3_iMallocFail = sqlite3_iMallocReset;
- sqlite3_isFail = 1;
- return 1;
- }
- }
- return 0;
-}
-
-/*
-** The argument is a pointer returned by sqlite3OsMalloc() or xRealloc().
-** assert() that the first and last (TESTALLOC_NGUARD*4) bytes are set to the
-** values set by the applyGuards() function.
-*/
-static void checkGuards(u32 *p)
-{
- int i;
- char *zAlloc = (char *)p;
- char *z;
-
- /* First set of guard words */
- z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)];
- for(i=0; i<TESTALLOC_NGUARD; i++){
- assert(((u32 *)z)[i]==0xdead1122);
- }
-
- /* Second set of guard words */
- z = &zAlloc[TESTALLOC_OFFSET_GUARD2(p)];
- for(i=0; i<TESTALLOC_NGUARD; i++){
- u32 guard = 0;
- memcpy(&guard, &z[i*sizeof(u32)], sizeof(u32));
- assert(guard==0xdead3344);
- }
-}
-
-/*
-** The argument is a pointer returned by sqlite3OsMalloc() or Realloc(). The
-** first and last (TESTALLOC_NGUARD*4) bytes are set to known values for use as
-** guard-posts.
-*/
-static void applyGuards(u32 *p)
-{
- int i;
- char *z;
- char *zAlloc = (char *)p;
-
- /* First set of guard words */
- z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)];
- for(i=0; i<TESTALLOC_NGUARD; i++){
- ((u32 *)z)[i] = 0xdead1122;
- }
-
- /* Second set of guard words */
- z = &zAlloc[TESTALLOC_OFFSET_GUARD2(p)];
- for(i=0; i<TESTALLOC_NGUARD; i++){
- static const int guard = 0xdead3344;
- memcpy(&z[i*sizeof(u32)], &guard, sizeof(u32));
- }
-
- /* Line number */
- z = &((char *)z)[TESTALLOC_NGUARD*sizeof(u32)]; /* Guard words */
- z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)];
- memcpy(z, &sqlite3_iLine, sizeof(u32));
-
- /* File name */
- z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)];
- strncpy(z, sqlite3_zFile, TESTALLOC_FILESIZE);
- z[TESTALLOC_FILESIZE - 1] = '\0';
-
- /* User string */
- z = &zAlloc[TESTALLOC_OFFSET_USER(p)];
- z[0] = 0;
- if( sqlite3_malloc_id ){
- strncpy(z, sqlite3_malloc_id, TESTALLOC_USERSIZE);
- z[TESTALLOC_USERSIZE-1] = 0;
- }
-
- /* backtrace() stack */
- z = &zAlloc[TESTALLOC_OFFSET_STACK(p)];
- backtrace((void **)z, TESTALLOC_STACKFRAMES);
-
- /* Sanity check to make sure checkGuards() is working */
- checkGuards(p);
-}
-
-/*
-** The argument is a malloc()ed pointer as returned by the test-wrapper.
-** Return a pointer to the Os level allocation.
-*/
-static void *getOsPointer(void *p)
-{
- char *z = (char *)p;
- return (void *)(&z[-1 * TESTALLOC_OFFSET_DATA(p)]);
-}
-
-
-#if SQLITE_MEMDEBUG>1
-/*
-** The argument points to an Os level allocation. Link it into the threads list
-** of allocations.
-*/
-static void linkAlloc(void *p){
- void **pp = (void **)p;
- pp[0] = 0;
- pp[1] = sqlite3_pFirst;
- if( sqlite3_pFirst ){
- ((void **)sqlite3_pFirst)[0] = p;
- }
- sqlite3_pFirst = p;
-}
-
-/*
-** The argument points to an Os level allocation. Unlinke it from the threads
-** list of allocations.
-*/
-static void unlinkAlloc(void *p)
-{
- void **pp = (void **)p;
- if( p==sqlite3_pFirst ){
- assert(!pp[0]);
- assert(!pp[1] || ((void **)(pp[1]))[0]==p);
- sqlite3_pFirst = pp[1];
- if( sqlite3_pFirst ){
- ((void **)sqlite3_pFirst)[0] = 0;
- }
- }else{
- void **pprev = pp[0];
- void **pnext = pp[1];
- assert(pprev);
- assert(pprev[1]==p);
- pprev[1] = (void *)pnext;
- if( pnext ){
- assert(pnext[0]==p);
- pnext[0] = (void *)pprev;
- }
- }
-}
-
-/*
-** Pointer p is a pointer to an OS level allocation that has just been
-** realloc()ed. Set the list pointers that point to this entry to it's new
-** location.
-*/
-static void relinkAlloc(void *p)
-{
- void **pp = (void **)p;
- if( pp[0] ){
- ((void **)(pp[0]))[1] = p;
- }else{
- sqlite3_pFirst = p;
- }
- if( pp[1] ){
- ((void **)(pp[1]))[0] = p;
- }
-}
-#else
-#define linkAlloc(x)
-#define relinkAlloc(x)
-#define unlinkAlloc(x)
-#endif
-
-/*
-** This function sets the result of the Tcl interpreter passed as an argument
-** to a list containing an entry for each currently outstanding call made to
-** sqliteMalloc and friends by the current thread. Each list entry is itself a
-** list, consisting of the following (in order):
-**
-** * The number of bytes allocated
-** * The __FILE__ macro at the time of the sqliteMalloc() call.
-** * The __LINE__ macro ...
-** * The value of the sqlite3_malloc_id variable ...
-** * The output of backtrace() (if available) ...
-**
-** Todo: We could have a version of this function that outputs to stdout,
-** to debug memory leaks when Tcl is not available.
*/
-#if defined(TCLSH) && defined(SQLITE_DEBUG) && SQLITE_MEMDEBUG>1
-int sqlite3OutstandingMallocs(Tcl_Interp *interp){
- void *p;
- Tcl_Obj *pRes = Tcl_NewObj();
- Tcl_IncrRefCount(pRes);
-
-
- for(p=sqlite3_pFirst; p; p=((void **)p)[1]){
- Tcl_Obj *pEntry = Tcl_NewObj();
- Tcl_Obj *pStack = Tcl_NewObj();
- char *z;
- u32 iLine;
- int nBytes = sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD;
- char *zAlloc = (char *)p;
- int i;
-
- Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(nBytes));
-
- z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)];
- Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1));
-
- z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)];
- memcpy(&iLine, z, sizeof(u32));
- Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(iLine));
-
- z = &zAlloc[TESTALLOC_OFFSET_USER(p)];
- Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1));
-
- z = &zAlloc[TESTALLOC_OFFSET_STACK(p)];
- for(i=0; i<TESTALLOC_STACKFRAMES; i++){
- char zHex[128];
- sprintf(zHex, "%p", ((void **)z)[i]);
- Tcl_ListObjAppendElement(0, pStack, Tcl_NewStringObj(zHex, -1));
- }
-
- Tcl_ListObjAppendElement(0, pEntry, pStack);
- Tcl_ListObjAppendElement(0, pRes, pEntry);
- }
-
- Tcl_ResetResult(interp);
- Tcl_SetObjResult(interp, pRes);
- Tcl_DecrRefCount(pRes);
- return TCL_OK;
-}
+#ifdef SQLITE_HAVE_ISNAN
+# include <math.h>
#endif
/*
-** This is the test layer's wrapper around sqlite3OsMalloc().
+** Routine needed to support the testcase() macro.
*/
-static void * OSMALLOC(int n){
- sqlite3OsEnterMutex();
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- sqlite3_nMaxAlloc =
- MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc);
-#endif
- assert( !sqlite3_mallocDisallowed );
- if( !sqlite3TestMallocFail() ){
- u32 *p;
- p = (u32 *)sqlite3OsMalloc(n + TESTALLOC_OVERHEAD);
- assert(p);
- sqlite3_nMalloc++;
- applyGuards(p);
- linkAlloc(p);
- sqlite3OsLeaveMutex();
- return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]);
- }
- sqlite3OsLeaveMutex();
- return 0;
-}
-
-static int OSSIZEOF(void *p){
- if( p ){
- u32 *pOs = (u32 *)getOsPointer(p);
- return sqlite3OsAllocationSize(pOs) - TESTALLOC_OVERHEAD;
- }
- return 0;
-}
-
-/*
-** This is the test layer's wrapper around sqlite3OsFree(). The argument is a
-** pointer to the space allocated for the application to use.
-*/
-static void OSFREE(void *pFree){
- u32 *p; /* Pointer to the OS-layer allocation */
- sqlite3OsEnterMutex();
- p = (u32 *)getOsPointer(pFree);
- checkGuards(p);
- unlinkAlloc(p);
- memset(pFree, 0x55, OSSIZEOF(pFree));
- sqlite3OsFree(p);
- sqlite3_nFree++;
- sqlite3OsLeaveMutex();
-}
-
-/*
-** This is the test layer's wrapper around sqlite3OsRealloc().
-*/
-static void * OSREALLOC(void *pRealloc, int n){
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- sqlite3_nMaxAlloc =
- MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc);
-#endif
- assert( !sqlite3_mallocDisallowed );
- if( !sqlite3TestMallocFail() ){
- u32 *p = (u32 *)getOsPointer(pRealloc);
- checkGuards(p);
- p = sqlite3OsRealloc(p, n + TESTALLOC_OVERHEAD);
- applyGuards(p);
- relinkAlloc(p);
- return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]);
- }
- return 0;
+#ifdef SQLITE_COVERAGE_TEST
+SQLITE_PRIVATE void sqlite3Coverage(int x){
+ static int dummy = 0;
+ dummy += x;
}
-
-static void OSMALLOC_FAILED(){
- sqlite3_isFail = 0;
-}
-
-#else
-/* Define macros to call the sqlite3OsXXX interface directly if
-** the SQLITE_MEMDEBUG macro is not defined.
-*/
-#define OSMALLOC(x) sqlite3OsMalloc(x)
-#define OSREALLOC(x,y) sqlite3OsRealloc(x,y)
-#define OSFREE(x) sqlite3OsFree(x)
-#define OSSIZEOF(x) sqlite3OsAllocationSize(x)
-#define OSMALLOC_FAILED()
-
-#endif /* SQLITE_MEMDEBUG */
-/*
-** End code for memory allocation system test layer.
-**--------------------------------------------------------------------------*/
-
-/*
-** This routine is called when we are about to allocate n additional bytes
-** of memory. If the new allocation will put is over the soft allocation
-** limit, then invoke sqlite3_release_memory() to try to release some
-** memory before continuing with the allocation.
-**
-** This routine also makes sure that the thread-specific-data (TSD) has
-** be allocated. If it has not and can not be allocated, then return
-** false. The updateMemoryUsedCount() routine below will deallocate
-** the TSD if it ought to be.
-**
-** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is
-** a no-op
-*/
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-static int enforceSoftLimit(int n){
- ThreadData *pTsd = sqlite3ThreadData();
- if( pTsd==0 ){
- return 0;
- }
- assert( pTsd->nAlloc>=0 );
- if( n>0 && pTsd->nSoftHeapLimit>0 ){
- while( pTsd->nAlloc+n>pTsd->nSoftHeapLimit && sqlite3_release_memory(n) ){}
- }
- return 1;
-}
-#else
-# define enforceSoftLimit(X) 1
-#endif
-
-/*
-** Update the count of total outstanding memory that is held in
-** thread-specific-data (TSD). If after this update the TSD is
-** no longer being used, then deallocate it.
-**
-** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is
-** a no-op
-*/
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-static void updateMemoryUsedCount(int n){
- ThreadData *pTsd = sqlite3ThreadData();
- if( pTsd ){
- pTsd->nAlloc += n;
- assert( pTsd->nAlloc>=0 );
- if( pTsd->nAlloc==0 && pTsd->nSoftHeapLimit==0 ){
- sqlite3ReleaseThreadData();
- }
- }
-}
-#else
-#define updateMemoryUsedCount(x) /* no-op */
#endif
/*
-** Allocate and return N bytes of uninitialised memory by calling
-** sqlite3OsMalloc(). If the Malloc() call fails, attempt to free memory
-** by calling sqlite3_release_memory().
-*/
-void *sqlite3MallocRaw(int n, int doMemManage){
- void *p = 0;
- if( n>0 && !sqlite3MallocFailed() && (!doMemManage || enforceSoftLimit(n)) ){
- while( (p = OSMALLOC(n))==0 && sqlite3_release_memory(n) ){}
- if( !p ){
- sqlite3FailedMalloc();
- OSMALLOC_FAILED();
- }else if( doMemManage ){
- updateMemoryUsedCount(OSSIZEOF(p));
- }
- }
- return p;
-}
-
-/*
-** Resize the allocation at p to n bytes by calling sqlite3OsRealloc(). The
-** pointer to the new allocation is returned. If the Realloc() call fails,
-** attempt to free memory by calling sqlite3_release_memory().
-*/
-void *sqlite3Realloc(void *p, int n){
- if( sqlite3MallocFailed() ){
- return 0;
- }
-
- if( !p ){
- return sqlite3Malloc(n, 1);
- }else{
- void *np = 0;
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- int origSize = OSSIZEOF(p);
-#endif
- if( enforceSoftLimit(n - origSize) ){
- while( (np = OSREALLOC(p, n))==0 && sqlite3_release_memory(n) ){}
- if( !np ){
- sqlite3FailedMalloc();
- OSMALLOC_FAILED();
- }else{
- updateMemoryUsedCount(OSSIZEOF(np) - origSize);
- }
- }
- return np;
- }
-}
-
-/*
-** Free the memory pointed to by p. p must be either a NULL pointer or a
-** value returned by a previous call to sqlite3Malloc() or sqlite3Realloc().
-*/
-void sqlite3FreeX(void *p){
- if( p ){
- updateMemoryUsedCount(0 - OSSIZEOF(p));
- OSFREE(p);
- }
-}
-
-/*
-** A version of sqliteMalloc() that is always a function, not a macro.
-** Currently, this is used only to alloc to allocate the parser engine.
-*/
-void *sqlite3MallocX(int n){
- return sqliteMalloc(n);
-}
-
-/*
-** sqlite3Malloc
-** sqlite3ReallocOrFree
-**
-** These two are implemented as wrappers around sqlite3MallocRaw(),
-** sqlite3Realloc() and sqlite3Free().
-*/
-void *sqlite3Malloc(int n, int doMemManage){
- void *p = sqlite3MallocRaw(n, doMemManage);
- if( p ){
- memset(p, 0, n);
- }
- return p;
-}
-void *sqlite3ReallocOrFree(void *p, int n){
- void *pNew;
- pNew = sqlite3Realloc(p, n);
- if( !pNew ){
- sqlite3FreeX(p);
- }
- return pNew;
-}
-
-/*
-** sqlite3ThreadSafeMalloc() and sqlite3ThreadSafeFree() are used in those
-** rare scenarios where sqlite may allocate memory in one thread and free
-** it in another. They are exactly the same as sqlite3Malloc() and
-** sqlite3Free() except that:
+** Return true if the floating point value is Not a Number (NaN).
**
-** * The allocated memory is not included in any calculations with
-** respect to the soft-heap-limit, and
-**
-** * sqlite3ThreadSafeMalloc() must be matched with ThreadSafeFree(),
-** not sqlite3Free(). Calling sqlite3Free() on memory obtained from
-** ThreadSafeMalloc() will cause an error somewhere down the line.
+** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
+** Otherwise, we have our own implementation that works on most systems.
*/
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-void *sqlite3ThreadSafeMalloc(int n){
- (void)ENTER_MALLOC;
- return sqlite3Malloc(n, 0);
-}
-void sqlite3ThreadSafeFree(void *p){
- (void)ENTER_MALLOC;
- if( p ){
- OSFREE(p);
- }
+SQLITE_PRIVATE int sqlite3IsNaN(double x){
+ int rc; /* The value return */
+#if !defined(SQLITE_HAVE_ISNAN)
+ /*
+ ** Systems that support the isnan() library function should probably
+ ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
+ ** found that many systems do not have a working isnan() function so
+ ** this implementation is provided as an alternative.
+ **
+ ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
+ ** On the other hand, the use of -ffast-math comes with the following
+ ** warning:
+ **
+ ** This option [-ffast-math] should never be turned on by any
+ ** -O option since it can result in incorrect output for programs
+ ** which depend on an exact implementation of IEEE or ISO
+ ** rules/specifications for math functions.
+ **
+ ** Under MSVC, this NaN test may fail if compiled with a floating-
+ ** point precision mode other than /fp:precise. From the MSDN
+ ** documentation:
+ **
+ ** The compiler [with /fp:precise] will properly handle comparisons
+ ** involving NaN. For example, x != x evaluates to true if x is NaN
+ ** ...
+ */
+#ifdef __FAST_MATH__
+# error SQLite will not work correctly with the -ffast-math option of GCC.
+#endif
+ volatile double y = x;
+ volatile double z = y;
+ rc = (y!=z);
+#else /* if defined(SQLITE_HAVE_ISNAN) */
+ rc = isnan(x);
+#endif /* SQLITE_HAVE_ISNAN */
+ testcase( rc );
+ return rc;
}
-#endif
-
/*
-** Return the number of bytes allocated at location p. p must be either
-** a NULL pointer (in which case 0 is returned) or a pointer returned by
-** sqlite3Malloc(), sqlite3Realloc() or sqlite3ReallocOrFree().
+** Compute a string length that is limited to what can be stored in
+** lower 30 bits of a 32-bit signed integer.
**
-** The number of bytes allocated does not include any overhead inserted by
-** any malloc() wrapper functions that may be called. So the value returned
-** is the number of bytes that were available to SQLite using pointer p,
-** regardless of how much memory was actually allocated.
+** The value returned will never be negative. Nor will it ever be greater
+** than the actual length of the string. For very long strings (greater
+** than 1GiB) the value returned might be less than the true string length.
*/
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-int sqlite3AllocSize(void *p){
- return OSSIZEOF(p);
-}
-#endif
-
-/*
-** Make a copy of a string in memory obtained from sqliteMalloc(). These
-** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
-** is because when memory debugging is turned on, these two functions are
-** called via macros that record the current file and line number in the
-** ThreadData structure.
-*/
-char *sqlite3StrDup(const char *z){
- char *zNew;
+SQLITE_PRIVATE int sqlite3Strlen30(const char *z){
+ const char *z2 = z;
if( z==0 ) return 0;
- zNew = sqlite3MallocRaw(strlen(z)+1, 1);
- if( zNew ) strcpy(zNew, z);
- return zNew;
-}
-char *sqlite3StrNDup(const char *z, int n){
- char *zNew;
- if( z==0 ) return 0;
- zNew = sqlite3MallocRaw(n+1, 1);
- if( zNew ){
- memcpy(zNew, z, n);
- zNew[n] = 0;
- }
- return zNew;
-}
-
-/*
-** Create a string from the 2nd and subsequent arguments (up to the
-** first NULL argument), store the string in memory obtained from
-** sqliteMalloc() and make the pointer indicated by the 1st argument
-** point to that string. The 1st argument must either be NULL or
-** point to memory obtained from sqliteMalloc().
-*/
-void sqlite3SetString(char **pz, ...){
- va_list ap;
- int nByte;
- const char *z;
- char *zResult;
-
- assert( pz!=0 );
- nByte = 1;
- va_start(ap, pz);
- while( (z = va_arg(ap, const char*))!=0 ){
- nByte += strlen(z);
- }
- va_end(ap);
- sqliteFree(*pz);
- *pz = zResult = sqliteMallocRaw( nByte );
- if( zResult==0 ){
- return;
- }
- *zResult = 0;
- va_start(ap, pz);
- while( (z = va_arg(ap, const char*))!=0 ){
- strcpy(zResult, z);
- zResult += strlen(zResult);
- }
- va_end(ap);
+ while( *z2 ){ z2++; }
+ return 0x3fffffff & (int)(z2 - z);
}
/*
@@ -9205,16 +18510,16 @@ void sqlite3SetString(char **pz, ...){
** should be called with err_code set to SQLITE_OK and zFormat set
** to NULL.
*/
-void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
- if( db && (db->pErr || (db->pErr = sqlite3ValueNew())!=0) ){
+SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
+ if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
db->errCode = err_code;
if( zFormat ){
char *z;
va_list ap;
va_start(ap, zFormat);
- z = sqlite3VMPrintf(zFormat, ap);
+ z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
- sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3FreeX);
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
}else{
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
}
@@ -9238,20 +18543,22 @@ void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
** Function sqlite3Error() should be used during statement execution
** (sqlite3_step() etc.).
*/
-void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
+SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
va_list ap;
+ sqlite3 *db = pParse->db;
pParse->nErr++;
- sqliteFree(pParse->zErrMsg);
+ sqlite3DbFree(db, pParse->zErrMsg);
va_start(ap, zFormat);
- pParse->zErrMsg = sqlite3VMPrintf(zFormat, ap);
+ pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
+ pParse->rc = SQLITE_ERROR;
}
/*
** Clear the error message in pParse, if any
*/
-void sqlite3ErrorClear(Parse *pParse){
- sqliteFree(pParse->zErrMsg);
+SQLITE_PRIVATE void sqlite3ErrorClear(Parse *pParse){
+ sqlite3DbFree(pParse->db, pParse->zErrMsg);
pParse->zErrMsg = 0;
pParse->nErr = 0;
}
@@ -9262,91 +18569,60 @@ void sqlite3ErrorClear(Parse *pParse){
** input does not begin with a quote character, then this routine
** is a no-op.
**
+** The input string must be zero-terminated. A new zero-terminator
+** is added to the dequoted string.
+**
+** The return value is -1 if no dequoting occurs or the length of the
+** dequoted string, exclusive of the zero terminator, if dequoting does
+** occur.
+**
** 2002-Feb-14: This routine is extended to remove MS-Access style
** brackets from around identifers. For example: "[a-b-c]" becomes
** "a-b-c".
*/
-void sqlite3Dequote(char *z){
- int quote;
+SQLITE_PRIVATE int sqlite3Dequote(char *z){
+ char quote;
int i, j;
- if( z==0 ) return;
+ if( z==0 ) return -1;
quote = z[0];
switch( quote ){
case '\'': break;
case '"': break;
case '`': break; /* For MySQL compatibility */
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
- default: return;
+ default: return -1;
}
- for(i=1, j=0; z[i]; i++){
+ for(i=1, j=0; ALWAYS(z[i]); i++){
if( z[i]==quote ){
if( z[i+1]==quote ){
z[j++] = quote;
i++;
}else{
- z[j++] = 0;
break;
}
}else{
z[j++] = z[i];
}
}
+ z[j] = 0;
+ return j;
}
-/* An array to map all upper-case characters into their corresponding
-** lower-case character.
-*/
-const unsigned char sqlite3UpperToLower[] = {
-#ifdef SQLITE_ASCII
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
- 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
- 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
- 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
- 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
- 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
- 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
- 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
- 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
- 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
- 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
- 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
- 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
- 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
- 252,253,254,255
-#endif
-#ifdef SQLITE_EBCDIC
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
- 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
- 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
- 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
- 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
- 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
- 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
- 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
- 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
- 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
- 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
- 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
- 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
- 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
-#endif
-};
+/* Convenient short-hand */
#define UpperToLower sqlite3UpperToLower
/*
** Some systems have stricmp(). Others have strcasecmp(). Because
** there is no consistency, we will define our own.
*/
-int sqlite3StrICmp(const char *zLeft, const char *zRight){
+SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
register unsigned char *a, *b;
a = (unsigned char *)zLeft;
b = (unsigned char *)zRight;
while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
return UpperToLower[*a] - UpperToLower[*b];
}
-int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
+SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
register unsigned char *a, *b;
a = (unsigned char *)zLeft;
b = (unsigned char *)zRight;
@@ -9355,41 +18631,46 @@ int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
}
/*
-** Return TRUE if z is a pure numeric string. Return FALSE if the
-** string contains any character which is not part of a number. If
-** the string is numeric and contains the '.' character, set *realnum
-** to TRUE (otherwise FALSE).
+** Return TRUE if z is a pure numeric string. Return FALSE and leave
+** *realnum unchanged if the string contains any character which is not
+** part of a number.
+**
+** If the string is pure numeric, set *realnum to TRUE if the string
+** contains the '.' character or an "E+000" style exponentiation suffix.
+** Otherwise set *realnum to FALSE. Note that just becaue *realnum is
+** false does not mean that the number can be successfully converted into
+** an integer - it might be too big.
**
** An empty string is considered non-numeric.
*/
-int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
+SQLITE_PRIVATE int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
int incr = (enc==SQLITE_UTF8?1:2);
if( enc==SQLITE_UTF16BE ) z++;
if( *z=='-' || *z=='+' ) z += incr;
- if( !isdigit(*(u8*)z) ){
+ if( !sqlite3Isdigit(*z) ){
return 0;
}
z += incr;
- if( realnum ) *realnum = 0;
- while( isdigit(*(u8*)z) ){ z += incr; }
+ *realnum = 0;
+ while( sqlite3Isdigit(*z) ){ z += incr; }
if( *z=='.' ){
z += incr;
- if( !isdigit(*(u8*)z) ) return 0;
- while( isdigit(*(u8*)z) ){ z += incr; }
- if( realnum ) *realnum = 1;
+ if( !sqlite3Isdigit(*z) ) return 0;
+ while( sqlite3Isdigit(*z) ){ z += incr; }
+ *realnum = 1;
}
if( *z=='e' || *z=='E' ){
z += incr;
if( *z=='+' || *z=='-' ) z += incr;
- if( !isdigit(*(u8*)z) ) return 0;
- while( isdigit(*(u8*)z) ){ z += incr; }
- if( realnum ) *realnum = 1;
+ if( !sqlite3Isdigit(*z) ) return 0;
+ while( sqlite3Isdigit(*z) ){ z += incr; }
+ *realnum = 1;
}
return *z==0;
}
/*
-** The string z[] is an ascii representation of a real number.
+** The string z[] is an ASCII representation of a real number.
** Convert this string to a double.
**
** This routine assumes that z[] really is a valid number. If it
@@ -9400,80 +18681,173 @@ int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
** of "." depending on how locale is set. But that would cause problems
** for SQL. So this routine always uses "." regardless of locale.
*/
-int sqlite3AtoF(const char *z, double *pResult){
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){
#ifndef SQLITE_OMIT_FLOATING_POINT
- int sign = 1;
const char *zBegin = z;
- LONGDOUBLE_TYPE v1 = 0.0;
- while( isspace(*z) ) z++;
+ /* sign * significand * (10 ^ (esign * exponent)) */
+ int sign = 1; /* sign of significand */
+ i64 s = 0; /* significand */
+ int d = 0; /* adjust exponent for shifting decimal point */
+ int esign = 1; /* sign of exponent */
+ int e = 0; /* exponent */
+ double result;
+ int nDigits = 0;
+
+ /* skip leading spaces */
+ while( sqlite3Isspace(*z) ) z++;
+ /* get sign of significand */
if( *z=='-' ){
sign = -1;
z++;
}else if( *z=='+' ){
z++;
}
- while( isdigit(*(u8*)z) ){
- v1 = v1*10.0 + (*z - '0');
- z++;
+ /* skip leading zeroes */
+ while( z[0]=='0' ) z++, nDigits++;
+
+ /* copy max significant digits to significand */
+ while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
+ s = s*10 + (*z - '0');
+ z++, nDigits++;
}
+ /* skip non-significant significand digits
+ ** (increase exponent by d to shift decimal left) */
+ while( sqlite3Isdigit(*z) ) z++, nDigits++, d++;
+
+ /* if decimal point is present */
if( *z=='.' ){
- LONGDOUBLE_TYPE divisor = 1.0;
z++;
- while( isdigit(*(u8*)z) ){
- v1 = v1*10.0 + (*z - '0');
- divisor *= 10.0;
- z++;
+ /* copy digits from after decimal to significand
+ ** (decrease exponent by d to shift decimal right) */
+ while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
+ s = s*10 + (*z - '0');
+ z++, nDigits++, d--;
}
- v1 /= divisor;
+ /* skip non-significant digits */
+ while( sqlite3Isdigit(*z) ) z++, nDigits++;
}
+
+ /* if exponent is present */
if( *z=='e' || *z=='E' ){
- int esign = 1;
- int eval = 0;
- LONGDOUBLE_TYPE scale = 1.0;
z++;
+ /* get sign of exponent */
if( *z=='-' ){
esign = -1;
z++;
}else if( *z=='+' ){
z++;
}
- while( isdigit(*(u8*)z) ){
- eval = eval*10 + *z - '0';
+ /* copy digits to exponent */
+ while( sqlite3Isdigit(*z) ){
+ e = e*10 + (*z - '0');
z++;
}
- while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
- while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
- while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
- while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
- if( esign<0 ){
- v1 /= scale;
+ }
+
+ /* adjust exponent by d, and update sign */
+ e = (e*esign) + d;
+ if( e<0 ) {
+ esign = -1;
+ e *= -1;
+ } else {
+ esign = 1;
+ }
+
+ /* if 0 significand */
+ if( !s ) {
+ /* In the IEEE 754 standard, zero is signed.
+ ** Add the sign if we've seen at least one digit */
+ result = (sign<0 && nDigits) ? -(double)0 : (double)0;
+ } else {
+ /* attempt to reduce exponent */
+ if( esign>0 ){
+ while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
}else{
- v1 *= scale;
+ while( !(s%10) && e>0 ) e--,s/=10;
+ }
+
+ /* adjust the sign of significand */
+ s = sign<0 ? -s : s;
+
+ /* if exponent, scale significand as appropriate
+ ** and store in result. */
+ if( e ){
+ double scale = 1.0;
+ /* attempt to handle extremely small/large numbers better */
+ if( e>307 && e<342 ){
+ while( e%308 ) { scale *= 1.0e+1; e -= 1; }
+ if( esign<0 ){
+ result = s / scale;
+ result /= 1.0e+308;
+ }else{
+ result = s * scale;
+ result *= 1.0e+308;
+ }
+ }else{
+ /* 1.0e+22 is the largest power of 10 than can be
+ ** represented exactly. */
+ while( e%22 ) { scale *= 1.0e+1; e -= 1; }
+ while( e>0 ) { scale *= 1.0e+22; e -= 22; }
+ if( esign<0 ){
+ result = s / scale;
+ }else{
+ result = s * scale;
+ }
+ }
+ } else {
+ result = (double)s;
}
}
- *pResult = sign<0 ? -v1 : v1;
- return z - zBegin;
+
+ /* store the result */
+ *pResult = result;
+
+ /* return number of characters used */
+ return (int)(z - zBegin);
#else
- return sqlite3atoi64(z, pResult);
+ return sqlite3Atoi64(z, pResult);
#endif /* SQLITE_OMIT_FLOATING_POINT */
}
/*
+** Compare the 19-character string zNum against the text representation
+** value 2^63: 9223372036854775808. Return negative, zero, or positive
+** if zNum is less than, equal to, or greater than the string.
+**
+** Unlike memcmp() this routine is guaranteed to return the difference
+** in the values of the last digit if the only difference is in the
+** last digit. So, for example,
+**
+** compare2pow63("9223372036854775800")
+**
+** will return -8.
+*/
+static int compare2pow63(const char *zNum){
+ int c;
+ c = memcmp(zNum,"922337203685477580",18)*10;
+ if( c==0 ){
+ c = zNum[18] - '8';
+ }
+ return c;
+}
+
+
+/*
** Return TRUE if zNum is a 64-bit signed integer and write
** the value of the integer into *pNum. If zNum is not an integer
** or is an integer that is too large to be expressed with 64 bits,
-** then return false. If n>0 and the integer is string is not
-** exactly n bytes long, return false.
+** then return false.
**
** When this routine was originally written it dealt with only
** 32-bit numbers. At that time, it was much faster than the
** atoi() library routine in RedHat 7.2.
*/
-int sqlite3atoi64(const char *zNum, i64 *pNum){
+SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum){
i64 v = 0;
int neg;
int i, c;
- while( isspace(*zNum) ) zNum++;
+ const char *zStart;
+ while( sqlite3Isspace(*zNum) ) zNum++;
if( *zNum=='-' ){
neg = 1;
zNum++;
@@ -9483,132 +18857,106 @@ int sqlite3atoi64(const char *zNum, i64 *pNum){
}else{
neg = 0;
}
+ zStart = zNum;
+ while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
v = v*10 + c - '0';
}
*pNum = neg ? -v : v;
- return c==0 && i>0 &&
- (i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0));
+ if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
+ /* zNum is empty or contains non-numeric text or is longer
+ ** than 19 digits (thus guaranting that it is too large) */
+ return 0;
+ }else if( i<19 ){
+ /* Less than 19 digits, so we know that it fits in 64 bits */
+ return 1;
+ }else{
+ /* 19-digit numbers must be no larger than 9223372036854775807 if positive
+ ** or 9223372036854775808 if negative. Note that 9223372036854665808
+ ** is 2^63. */
+ return compare2pow63(zNum)<neg;
+ }
}
/*
-** The string zNum represents an integer. There might be some other
-** information following the integer too, but that part is ignored.
-** If the integer that the prefix of zNum represents will fit in a
-** 32-bit signed integer, return TRUE. Otherwise return FALSE.
+** The string zNum represents an unsigned integer. The zNum string
+** consists of one or more digit characters and is terminated by
+** a zero character. Any stray characters in zNum result in undefined
+** behavior.
**
-** This routine returns FALSE for the string -2147483648 even that
-** that number will in fact fit in a 32-bit integer. But positive
-** 2147483648 will not fit in 32 bits. So it seems safer to return
-** false.
+** If the unsigned integer that zNum represents will fit in a
+** 64-bit signed integer, return TRUE. Otherwise return FALSE.
+**
+** If the negFlag parameter is true, that means that zNum really represents
+** a negative number. (The leading "-" is omitted from zNum.) This
+** parameter is needed to determine a boundary case. A string
+** of "9223373036854775808" returns false if negFlag is false or true
+** if negFlag is true.
+**
+** Leading zeros are ignored.
*/
-static int sqlite3FitsIn32Bits(const char *zNum){
- int i, c;
- if( *zNum=='-' || *zNum=='+' ) zNum++;
- for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
- return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0);
-}
+SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
+ int i;
+ int neg = 0;
-/*
-** If zNum represents an integer that will fit in 32-bits, then set
-** *pValue to that integer and return true. Otherwise return false.
-*/
-int sqlite3GetInt32(const char *zNum, int *pValue){
- if( sqlite3FitsIn32Bits(zNum) ){
- *pValue = atoi(zNum);
+ assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */
+
+ if( negFlag ) neg = 1-neg;
+ while( *zNum=='0' ){
+ zNum++; /* Skip leading zeros. Ticket #2454 */
+ }
+ for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); }
+ if( i<19 ){
+ /* Guaranteed to fit if less than 19 digits */
return 1;
+ }else if( i>19 ){
+ /* Guaranteed to be too big if greater than 19 digits */
+ return 0;
+ }else{
+ /* Compare against 2^63. */
+ return compare2pow63(zNum)<neg;
}
- return 0;
}
/*
-** The string zNum represents an integer. There might be some other
-** information following the integer too, but that part is ignored.
-** If the integer that the prefix of zNum represents will fit in a
-** 64-bit signed integer, return TRUE. Otherwise return FALSE.
+** If zNum represents an integer that will fit in 32-bits, then set
+** *pValue to that integer and return true. Otherwise return false.
**
-** This routine returns FALSE for the string -9223372036854775808 even that
-** that number will, in theory fit in a 64-bit integer. Positive
-** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
-** false.
+** Any non-numeric characters that following zNum are ignored.
+** This is different from sqlite3Atoi64() which requires the
+** input number to be zero-terminated.
*/
-int sqlite3FitsIn64Bits(const char *zNum){
+SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
+ sqlite_int64 v = 0;
int i, c;
- if( *zNum=='-' || *zNum=='+' ) zNum++;
- for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
- return i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0);
-}
-
+ int neg = 0;
+ if( zNum[0]=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( zNum[0]=='+' ){
+ zNum++;
+ }
+ while( zNum[0]=='0' ) zNum++;
+ for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
+ v = v*10 + c;
+ }
-/*
-** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
-** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
-** when this routine is called.
-**
-** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
-** value indicates that the database connection passed into the API is
-** open and is not being used by another thread. By changing the value
-** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
-** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
-** when the API exits.
-**
-** This routine is a attempt to detect if two threads use the
-** same sqlite* pointer at the same time. There is a race
-** condition so it is possible that the error is not detected.
-** But usually the problem will be seen. The result will be an
-** error which can be used to debug the application that is
-** using SQLite incorrectly.
-**
-** Ticket #202: If db->magic is not a valid open value, take care not
-** to modify the db structure at all. It could be that db is a stale
-** pointer. In other words, it could be that there has been a prior
-** call to sqlite3_close(db) and db has been deallocated. And we do
-** not want to write into deallocated memory.
-*/
-int sqlite3SafetyOn(sqlite3 *db){
- if( db->magic==SQLITE_MAGIC_OPEN ){
- db->magic = SQLITE_MAGIC_BUSY;
+ /* The longest decimal representation of a 32 bit integer is 10 digits:
+ **
+ ** 1234567890
+ ** 2^31 -> 2147483648
+ */
+ if( i>10 ){
return 0;
- }else if( db->magic==SQLITE_MAGIC_BUSY ){
- db->magic = SQLITE_MAGIC_ERROR;
- db->u1.isInterrupted = 1;
}
- return 1;
-}
-
-/*
-** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
-** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
-** when this routine is called.
-*/
-int sqlite3SafetyOff(sqlite3 *db){
- if( db->magic==SQLITE_MAGIC_BUSY ){
- db->magic = SQLITE_MAGIC_OPEN;
+ if( v-neg>2147483647 ){
return 0;
- }else {
- db->magic = SQLITE_MAGIC_ERROR;
- db->u1.isInterrupted = 1;
- return 1;
}
-}
-
-/*
-** Check to make sure we have a valid db pointer. This test is not
-** foolproof but it does provide some measure of protection against
-** misuse of the interface such as passing in db pointers that are
-** NULL or which have been previously closed. If this routine returns
-** TRUE it means that the db pointer is invalid and should not be
-** dereferenced for any reason. The calling function should invoke
-** SQLITE_MISUSE immediately.
-*/
-int sqlite3SafetyCheck(sqlite3 *db){
- int magic;
- if( db==0 ) return 1;
- magic = db->magic;
- if( magic!=SQLITE_MAGIC_CLOSED &&
- magic!=SQLITE_MAGIC_OPEN &&
- magic!=SQLITE_MAGIC_BUSY ) return 1;
- return 0;
+ if( neg ){
+ v = -v;
+ }
+ *pValue = (int)v;
+ return 1;
}
/*
@@ -9640,21 +18988,21 @@ int sqlite3SafetyCheck(sqlite3 *db){
** bit clear. Except, if we get to the 9th byte, it stores the full
** 8 bits and is the last byte.
*/
-int sqlite3PutVarint(unsigned char *p, u64 v){
+SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
int i, j, n;
u8 buf[10];
if( v & (((u64)0xff000000)<<32) ){
- p[8] = v;
+ p[8] = (u8)v;
v >>= 8;
for(i=7; i>=0; i--){
- p[i] = (v & 0x7f) | 0x80;
+ p[i] = (u8)((v & 0x7f) | 0x80);
v >>= 7;
}
return 9;
}
n = 0;
do{
- buf[n++] = (v & 0x7f) | 0x80;
+ buf[n++] = (u8)((v & 0x7f) | 0x80);
v >>= 7;
}while( v!=0 );
buf[0] &= 0x7f;
@@ -9666,102 +19014,363 @@ int sqlite3PutVarint(unsigned char *p, u64 v){
}
/*
+** This routine is a faster version of sqlite3PutVarint() that only
+** works for 32-bit positive integers and which is optimized for
+** the common case of small integers. A MACRO version, putVarint32,
+** is provided which inlines the single-byte case. All code should use
+** the MACRO version as this function assumes the single-byte case has
+** already been handled.
+*/
+SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char *p, u32 v){
+#ifndef putVarint32
+ if( (v & ~0x7f)==0 ){
+ p[0] = v;
+ return 1;
+ }
+#endif
+ if( (v & ~0x3fff)==0 ){
+ p[0] = (u8)((v>>7) | 0x80);
+ p[1] = (u8)(v & 0x7f);
+ return 2;
+ }
+ return sqlite3PutVarint(p, v);
+}
+
+/*
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read. The value is stored in *v.
*/
-int sqlite3GetVarint(const unsigned char *p, u64 *v){
- u32 x;
- u64 x64;
- int n;
- unsigned char c;
- if( ((c = p[0]) & 0x80)==0 ){
- *v = c;
+SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
+ u32 a,b,s;
+
+ a = *p;
+ /* a: p0 (unmasked) */
+ if (!(a&0x80))
+ {
+ *v = a;
return 1;
}
- x = c & 0x7f;
- if( ((c = p[1]) & 0x80)==0 ){
- *v = (x<<7) | c;
+
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ a &= 0x7f;
+ a = a<<7;
+ a |= b;
+ *v = a;
return 2;
}
- x = (x<<7) | (c&0x7f);
- if( ((c = p[2]) & 0x80)==0 ){
- *v = (x<<7) | c;
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= (0x7f<<14)|(0x7f);
+ b &= 0x7f;
+ b = b<<7;
+ a |= b;
+ *v = a;
return 3;
}
- x = (x<<7) | (c&0x7f);
- if( ((c = p[3]) & 0x80)==0 ){
- *v = (x<<7) | c;
+
+ /* CSE1 from below */
+ a &= (0x7f<<14)|(0x7f);
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= (0x7f<<14)|(0x7f);
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ *v = a;
return 4;
}
- x64 = (x<<7) | (c&0x7f);
- n = 4;
- do{
- c = p[n++];
- if( n==9 ){
- x64 = (x64<<8) | c;
- break;
- }
- x64 = (x64<<7) | (c&0x7f);
- }while( (c & 0x80)!=0 );
- *v = x64;
- return n;
+
+ /* a: p0<<14 | p2 (masked) */
+ /* b: p1<<14 | p3 (unmasked) */
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ b &= (0x7f<<14)|(0x7f);
+ s = a;
+ /* s: p0<<14 | p2 (masked) */
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* we can skip these cause they were (effectively) done above in calc'ing s */
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ /* b &= (0x7f<<14)|(0x7f); */
+ b = b<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 5;
+ }
+
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ s = s<<7;
+ s |= b;
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* we can skip this cause it was (effectively) done above in calc'ing s */
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ a &= (0x7f<<14)|(0x7f);
+ a = a<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 6;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
+ b &= (0x7f<<14)|(0x7f);
+ b = b<<7;
+ a |= b;
+ s = s>>11;
+ *v = ((u64)s)<<32 | a;
+ return 7;
+ }
+
+ /* CSE2 from below */
+ a &= (0x7f<<14)|(0x7f);
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
+ /* moved CSE2 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ s = s>>4;
+ *v = ((u64)s)<<32 | a;
+ return 8;
+ }
+
+ p++;
+ a = a<<15;
+ a |= *p;
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */
+
+ /* moved CSE2 up */
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
+ b &= (0x7f<<14)|(0x7f);
+ b = b<<8;
+ a |= b;
+
+ s = s<<4;
+ b = p[-4];
+ b &= 0x7f;
+ b = b>>3;
+ s |= b;
+
+ *v = ((u64)s)<<32 | a;
+
+ return 9;
}
/*
** Read a 32-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read. The value is stored in *v.
+**
+** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
+** integer, then set *v to 0xffffffff.
+**
+** A MACRO version, getVarint32, is provided which inlines the
+** single-byte case. All code should use the MACRO version as
+** this function assumes the single-byte case has already been handled.
*/
-int sqlite3GetVarint32(const unsigned char *p, u32 *v){
- u32 x;
- int n;
- unsigned char c;
- if( ((signed char*)p)[0]>=0 ){
- *v = p[0];
+SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
+ u32 a,b;
+
+ /* The 1-byte case. Overwhelmingly the most common. Handled inline
+ ** by the getVarin32() macro */
+ a = *p;
+ /* a: p0 (unmasked) */
+#ifndef getVarint32
+ if (!(a&0x80))
+ {
+ /* Values between 0 and 127 */
+ *v = a;
return 1;
}
- x = p[0] & 0x7f;
- if( ((signed char*)p)[1]>=0 ){
- *v = (x<<7) | p[1];
+#endif
+
+ /* The 2-byte case */
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* Values between 128 and 16383 */
+ a &= 0x7f;
+ a = a<<7;
+ *v = a | b;
return 2;
}
- x = (x<<7) | (p[1] & 0x7f);
- n = 2;
- do{
- x = (x<<7) | ((c = p[n++])&0x7f);
- }while( (c & 0x80)!=0 && n<9 );
- *v = x;
- return n;
+
+ /* The 3-byte case */
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 16384 and 2097151 */
+ a &= (0x7f<<14)|(0x7f);
+ b &= 0x7f;
+ b = b<<7;
+ *v = a | b;
+ return 3;
+ }
+
+ /* A 32-bit varint is used to store size information in btrees.
+ ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
+ ** A 3-byte varint is sufficient, for example, to record the size
+ ** of a 1048569-byte BLOB or string.
+ **
+ ** We only unroll the first 1-, 2-, and 3- byte cases. The very
+ ** rare larger cases can be handled by the slower 64-bit varint
+ ** routine.
+ */
+#if 1
+ {
+ u64 v64;
+ u8 n;
+
+ p -= 2;
+ n = sqlite3GetVarint(p, &v64);
+ assert( n>3 && n<=9 );
+ if( (v64 & SQLITE_MAX_U32)!=v64 ){
+ *v = 0xffffffff;
+ }else{
+ *v = (u32)v64;
+ }
+ return n;
+ }
+
+#else
+ /* For following code (kept for historical record only) shows an
+ ** unrolling for the 3- and 4-byte varint cases. This code is
+ ** slightly faster, but it is also larger and much harder to test.
+ */
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* Values between 2097152 and 268435455 */
+ b &= (0x7f<<14)|(0x7f);
+ a &= (0x7f<<14)|(0x7f);
+ a = a<<7;
+ *v = a | b;
+ return 4;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Walues between 268435456 and 34359738367 */
+ a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
+ b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
+ b = b<<7;
+ *v = a | b;
+ return 5;
+ }
+
+ /* We can only reach this point when reading a corrupt database
+ ** file. In that case we are not in any hurry. Use the (relatively
+ ** slow) general-purpose sqlite3GetVarint() routine to extract the
+ ** value. */
+ {
+ u64 v64;
+ u8 n;
+
+ p -= 4;
+ n = sqlite3GetVarint(p, &v64);
+ assert( n>5 && n<=9 );
+ *v = (u32)v64;
+ return n;
+ }
+#endif
}
/*
** Return the number of bytes that will be needed to store the given
** 64-bit integer.
*/
-int sqlite3VarintLen(u64 v){
+SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
int i = 0;
do{
i++;
v >>= 7;
- }while( v!=0 && i<9 );
+ }while( v!=0 && ALWAYS(i<9) );
return i;
}
-#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \
- || defined(SQLITE_TEST)
+
+/*
+** Read or write a four-byte big-endian integer value.
+*/
+SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
+ return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
+}
+SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
+ p[0] = (u8)(v>>24);
+ p[1] = (u8)(v>>16);
+ p[2] = (u8)(v>>8);
+ p[3] = (u8)v;
+}
+
+
+
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
/*
** Translate a single byte of Hex into an integer.
+** This routine only works if h really is a valid hexadecimal
+** character: 0..9a..fA..F
*/
-static int hexToInt(int h){
- if( h>='0' && h<='9' ){
- return h - '0';
- }else if( h>='a' && h<='f' ){
- return h - 'a' + 10;
- }else{
- assert( h>='A' && h<='F' );
- return h - 'A' + 10;
- }
+static u8 hexToInt(int h){
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
+#ifdef SQLITE_ASCII
+ h += 9*(1&(h>>6));
+#endif
+#ifdef SQLITE_EBCDIC
+ h += 9*(1&~(h>>4));
+#endif
+ return (u8)(h & 0xf);
}
-#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
/*
@@ -9770,143 +19379,117 @@ static int hexToInt(int h){
** binary value has been obtained from malloc and must be freed by
** the calling routine.
*/
-void *sqlite3HexToBlob(const char *z){
+SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
char *zBlob;
int i;
- int n = strlen(z);
- if( n%2 ) return 0;
- zBlob = (char *)sqliteMalloc(n/2);
+ zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
+ n--;
if( zBlob ){
for(i=0; i<n; i+=2){
zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
}
+ zBlob[i/2] = 0;
}
return zBlob;
}
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
-#if defined(SQLITE_TEST)
+
/*
-** Convert text generated by the "%p" conversion format back into
-** a pointer.
+** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
+** when this routine is called.
+**
+** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
+** value indicates that the database connection passed into the API is
+** open and is not being used by another thread. By changing the value
+** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
+** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
+** when the API exits.
+**
+** This routine is a attempt to detect if two threads use the
+** same sqlite* pointer at the same time. There is a race
+** condition so it is possible that the error is not detected.
+** But usually the problem will be seen. The result will be an
+** error which can be used to debug the application that is
+** using SQLite incorrectly.
+**
+** Ticket #202: If db->magic is not a valid open value, take care not
+** to modify the db structure at all. It could be that db is a stale
+** pointer. In other words, it could be that there has been a prior
+** call to sqlite3_close(db) and db has been deallocated. And we do
+** not want to write into deallocated memory.
*/
-void *sqlite3TextToPtr(const char *z){
- void *p;
- u64 v;
- u32 v2;
- if( z[0]=='0' && z[1]=='x' ){
- z += 2;
- }
- v = 0;
- while( *z ){
- v = (v<<4) + hexToInt(*z);
- z++;
- }
- if( sizeof(p)==sizeof(v) ){
- memcpy(&p, &v, sizeof(p));
- }else{
- assert( sizeof(p)==sizeof(v2) );
- v2 = (u32)v;
- memcpy(&p, &v2, sizeof(p));
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3 *db){
+ if( db->magic==SQLITE_MAGIC_OPEN ){
+ db->magic = SQLITE_MAGIC_BUSY;
+ assert( sqlite3_mutex_held(db->mutex) );
+ return 0;
+ }else if( db->magic==SQLITE_MAGIC_BUSY ){
+ db->magic = SQLITE_MAGIC_ERROR;
+ db->u1.isInterrupted = 1;
}
- return p;
+ return 1;
}
#endif
/*
-** Return a pointer to the ThreadData associated with the calling thread.
+** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
+** when this routine is called.
*/
-ThreadData *sqlite3ThreadData(){
- ThreadData *p = (ThreadData*)sqlite3OsThreadSpecificData(1);
- if( !p ){
- sqlite3FailedMalloc();
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3 *db){
+ if( db->magic==SQLITE_MAGIC_BUSY ){
+ db->magic = SQLITE_MAGIC_OPEN;
+ assert( sqlite3_mutex_held(db->mutex) );
+ return 0;
+ }else{
+ db->magic = SQLITE_MAGIC_ERROR;
+ db->u1.isInterrupted = 1;
+ return 1;
}
- return p;
-}
-
-/*
-** Return a pointer to the ThreadData associated with the calling thread.
-** If no ThreadData has been allocated to this thread yet, return a pointer
-** to a substitute ThreadData structure that is all zeros.
-*/
-const ThreadData *sqlite3ThreadDataReadOnly(){
- static const ThreadData zeroData = {0}; /* Initializer to silence warnings
- ** from broken compilers */
- const ThreadData *pTd = sqlite3OsThreadSpecificData(0);
- return pTd ? pTd : &zeroData;
-}
-
-/*
-** Check to see if the ThreadData for this thread is all zero. If it
-** is, then deallocate it.
-*/
-void sqlite3ReleaseThreadData(){
- sqlite3OsThreadSpecificData(-1);
}
+#endif
/*
-** This function must be called before exiting any API function (i.e.
-** returning control to the user) that has called sqlite3Malloc or
-** sqlite3Realloc.
-**
-** The returned value is normally a copy of the second argument to this
-** function. However, if a malloc() failure has occured since the previous
-** invocation SQLITE_NOMEM is returned instead.
+** Check to make sure we have a valid db pointer. This test is not
+** foolproof but it does provide some measure of protection against
+** misuse of the interface such as passing in db pointers that are
+** NULL or which have been previously closed. If this routine returns
+** 1 it means that the db pointer is valid and 0 if it should not be
+** dereferenced for any reason. The calling function should invoke
+** SQLITE_MISUSE immediately.
**
-** If the first argument, db, is not NULL and a malloc() error has occured,
-** then the connection error-code (the value returned by sqlite3_errcode())
-** is set to SQLITE_NOMEM.
-*/
-static int mallocHasFailed = 0;
-int sqlite3ApiExit(sqlite3* db, int rc){
- if( sqlite3MallocFailed() ){
- mallocHasFailed = 0;
- sqlite3OsLeaveMutex();
- sqlite3Error(db, SQLITE_NOMEM, 0);
- rc = SQLITE_NOMEM;
- }
- return rc & (db ? db->errMask : 0xff);
-}
-
-/*
-** Return true is a malloc has failed in this thread since the last call
-** to sqlite3ApiExit(), or false otherwise.
-*/
-int sqlite3MallocFailed(){
- return (mallocHasFailed && sqlite3OsInMutex(1));
-}
-
-/*
-** Set the "malloc has failed" condition to true for this thread.
+** sqlite3SafetyCheckOk() requires that the db pointer be valid for
+** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
+** open properly and is not fit for general use but which can be
+** used as an argument to sqlite3_errmsg() or sqlite3_close().
*/
-void sqlite3FailedMalloc(){
- if( !sqlite3MallocFailed() ){
- sqlite3OsEnterMutex();
- assert( mallocHasFailed==0 );
- mallocHasFailed = 1;
+SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
+ u32 magic;
+ if( db==0 ) return 0;
+ magic = db->magic;
+ if( magic!=SQLITE_MAGIC_OPEN
+#ifdef SQLITE_DEBUG
+ && magic!=SQLITE_MAGIC_BUSY
+#endif
+ ){
+ return 0;
+ }else{
+ return 1;
}
}
-
-#ifdef SQLITE_MEMDEBUG
-/*
-** This function sets a flag in the thread-specific-data structure that will
-** cause an assert to fail if sqliteMalloc() or sqliteRealloc() is called.
-*/
-void sqlite3MallocDisallow(){
- assert( sqlite3_mallocDisallowed>=0 );
- sqlite3_mallocDisallowed++;
-}
-
-/*
-** This function clears the flag set in the thread-specific-data structure set
-** by sqlite3MallocDisallow().
-*/
-void sqlite3MallocAllow(){
- assert( sqlite3_mallocDisallowed>0 );
- sqlite3_mallocDisallowed--;
+SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
+ u32 magic;
+ magic = db->magic;
+ if( magic!=SQLITE_MAGIC_SICK &&
+ magic!=SQLITE_MAGIC_OPEN &&
+ magic!=SQLITE_MAGIC_BUSY ) return 0;
+ return 1;
}
-#endif
/************** End of util.c ************************************************/
/************** Begin file hash.c ********************************************/
@@ -9924,181 +19507,59 @@ void sqlite3MallocAllow(){
** This is the implementation of generic hash-tables
** used in SQLite.
**
-** $Id: hash.c,v 1.19 2007/03/31 03:59:24 drh Exp $
+** $Id: hash.c,v 1.38 2009/05/09 23:29:12 drh Exp $
*/
/* Turn bulk memory into a hash table object by initializing the
** fields of the Hash structure.
**
** "pNew" is a pointer to the hash table that is to be initialized.
-** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
-** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
-** determines what kind of key the hash table will use. "copyKey" is
-** true if the hash table should make its own private copy of keys and
-** false if it should just use the supplied pointer. CopyKey only makes
-** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
-** for other key classes.
*/
-void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
+SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew){
assert( pNew!=0 );
- assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
- pNew->keyClass = keyClass;
-#if 0
- if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
-#endif
- pNew->copyKey = copyKey;
pNew->first = 0;
pNew->count = 0;
pNew->htsize = 0;
pNew->ht = 0;
- pNew->xMalloc = sqlite3MallocX;
- pNew->xFree = sqlite3FreeX;
}
/* Remove all entries from a hash table. Reclaim all memory.
** Call this routine to delete a hash table or to reset a hash table
** to the empty state.
*/
-void sqlite3HashClear(Hash *pH){
+SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
HashElem *elem; /* For looping over all elements of the table */
assert( pH!=0 );
elem = pH->first;
pH->first = 0;
- if( pH->ht ) pH->xFree(pH->ht);
+ sqlite3_free(pH->ht);
pH->ht = 0;
pH->htsize = 0;
while( elem ){
HashElem *next_elem = elem->next;
- if( pH->copyKey && elem->pKey ){
- pH->xFree(elem->pKey);
- }
- pH->xFree(elem);
+ sqlite3_free(elem);
elem = next_elem;
}
pH->count = 0;
}
-#if 0 /* NOT USED */
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_INT
-*/
-static int intHash(const void *pKey, int nKey){
- return nKey ^ (nKey<<8) ^ (nKey>>8);
-}
-static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- return n2 - n1;
-}
-#endif
-
-#if 0 /* NOT USED */
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
-*/
-static int ptrHash(const void *pKey, int nKey){
- uptr x = Addr(pKey);
- return x ^ (x<<8) ^ (x>>8);
-}
-static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( pKey1==pKey2 ) return 0;
- if( pKey1<pKey2 ) return -1;
- return 1;
-}
-#endif
-
/*
-** Hash and comparison functions when the mode is SQLITE_HASH_STRING
+** The hashing function.
*/
-static int strHash(const void *pKey, int nKey){
- const char *z = (const char *)pKey;
+static unsigned int strHash(const char *z, int nKey){
int h = 0;
- if( nKey<=0 ) nKey = strlen(z);
+ assert( nKey>=0 );
while( nKey > 0 ){
h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
nKey--;
}
- return h & 0x7fffffff;
-}
-static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
+ return h;
}
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
-*/
-static int binHash(const void *pKey, int nKey){
- int h = 0;
- const char *z = (const char *)pKey;
- while( nKey-- > 0 ){
- h = (h<<3) ^ h ^ *(z++);
- }
- return h & 0x7fffffff;
-}
-static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return memcmp(pKey1,pKey2,n1);
-}
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** The C syntax in this function definition may be unfamilar to some
-** programmers, so we provide the following additional explanation:
-**
-** The name of the function is "hashFunction". The function takes a
-** single parameter "keyClass". The return value of hashFunction()
-** is a pointer to another function. Specifically, the return value
-** of hashFunction() is a pointer to a function that takes two parameters
-** with types "const void*" and "int" and returns an "int".
-*/
-static int (*hashFunction(int keyClass))(const void*,int){
-#if 0 /* HASH_INT and HASH_POINTER are never used */
- switch( keyClass ){
- case SQLITE_HASH_INT: return &intHash;
- case SQLITE_HASH_POINTER: return &ptrHash;
- case SQLITE_HASH_STRING: return &strHash;
- case SQLITE_HASH_BINARY: return &binHash;;
- default: break;
- }
- return 0;
-#else
- if( keyClass==SQLITE_HASH_STRING ){
- return &strHash;
- }else{
- assert( keyClass==SQLITE_HASH_BINARY );
- return &binHash;
- }
-#endif
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** For help in interpreted the obscure C code in the function definition,
-** see the header comment on the previous function.
-*/
-static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
-#if 0 /* HASH_INT and HASH_POINTER are never used */
- switch( keyClass ){
- case SQLITE_HASH_INT: return &intCompare;
- case SQLITE_HASH_POINTER: return &ptrCompare;
- case SQLITE_HASH_STRING: return &strCompare;
- case SQLITE_HASH_BINARY: return &binCompare;
- default: break;
- }
- return 0;
-#else
- if( keyClass==SQLITE_HASH_STRING ){
- return &strCompare;
- }else{
- assert( keyClass==SQLITE_HASH_BINARY );
- return &binCompare;
- }
-#endif
-}
-
-/* Link an element into the hash table
+/* Link pNew element into the hash table pH. If pEntry!=0 then also
+** insert pNew into the pEntry hash bucket.
*/
static void insertElement(
Hash *pH, /* The complete hash table */
@@ -10106,7 +19567,13 @@ static void insertElement(
HashElem *pNew /* The element to be inserted */
){
HashElem *pHead; /* First element already in pEntry */
- pHead = pEntry->chain;
+ if( pEntry ){
+ pHead = pEntry->count ? pEntry->chain : 0;
+ pEntry->count++;
+ pEntry->chain = pNew;
+ }else{
+ pHead = 0;
+ }
if( pHead ){
pNew->next = pHead;
pNew->prev = pHead->prev;
@@ -10119,32 +19586,45 @@ static void insertElement(
pNew->prev = 0;
pH->first = pNew;
}
- pEntry->count++;
- pEntry->chain = pNew;
}
/* Resize the hash table so that it cantains "new_size" buckets.
-** "new_size" must be a power of 2. The hash table might fail
-** to resize if sqliteMalloc() fails.
+**
+** The hash table might fail to resize if sqlite3_malloc() fails or
+** if the new size is the same as the prior size.
+** Return TRUE if the resize occurs and false if not.
*/
-static void rehash(Hash *pH, int new_size){
+static int rehash(Hash *pH, unsigned int new_size){
struct _ht *new_ht; /* The new hash table */
HashElem *elem, *next_elem; /* For looping over existing elements */
- int (*xHash)(const void*,int); /* The hash function */
- assert( (new_size & (new_size-1))==0 );
- new_ht = (struct _ht *)pH->xMalloc( new_size*sizeof(struct _ht) );
- if( new_ht==0 ) return;
- if( pH->ht ) pH->xFree(pH->ht);
+#if SQLITE_MALLOC_SOFT_LIMIT>0
+ if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
+ new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
+ }
+ if( new_size==pH->htsize ) return 0;
+#endif
+
+ /* The inability to allocates space for a larger hash table is
+ ** a performance hit but it is not a fatal error. So mark the
+ ** allocation as a benign.
+ */
+ sqlite3BeginBenignMalloc();
+ new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) );
+ sqlite3EndBenignMalloc();
+
+ if( new_ht==0 ) return 0;
+ sqlite3_free(pH->ht);
pH->ht = new_ht;
- pH->htsize = new_size;
- xHash = hashFunction(pH->keyClass);
+ pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht);
+ memset(new_ht, 0, new_size*sizeof(struct _ht));
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
- int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
+ unsigned int h = strHash(elem->pKey, elem->nKey) % new_size;
next_elem = elem->next;
insertElement(pH, &new_ht[h], elem);
}
+ return 1;
}
/* This function (for internal use only) locates an element in an
@@ -10153,25 +19633,26 @@ static void rehash(Hash *pH, int new_size){
*/
static HashElem *findElementGivenHash(
const Hash *pH, /* The pH to be searched */
- const void *pKey, /* The key we are searching for */
- int nKey,
- int h /* The hash for this key. */
+ const char *pKey, /* The key we are searching for */
+ int nKey, /* Bytes in key (not counting zero terminator) */
+ unsigned int h /* The hash for this key. */
){
HashElem *elem; /* Used to loop thru the element list */
int count; /* Number of elements left to test */
- int (*xCompare)(const void*,int,const void*,int); /* comparison function */
if( pH->ht ){
struct _ht *pEntry = &pH->ht[h];
elem = pEntry->chain;
count = pEntry->count;
- xCompare = compareFunction(pH->keyClass);
- while( count-- && elem ){
- if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
- return elem;
- }
- elem = elem->next;
+ }else{
+ elem = pH->first;
+ count = pH->count;
+ }
+ while( count-- && ALWAYS(elem) ){
+ if( elem->nKey==nKey && sqlite3StrNICmp(elem->pKey,pKey,nKey)==0 ){
+ return elem;
}
+ elem = elem->next;
}
return 0;
}
@@ -10182,7 +19663,7 @@ static HashElem *findElementGivenHash(
static void removeElementGivenHash(
Hash *pH, /* The pH containing "elem" */
HashElem* elem, /* The element to be removed from the pH */
- int h /* Hash value for the element */
+ unsigned int h /* Hash value for the element */
){
struct _ht *pEntry;
if( elem->prev ){
@@ -10193,18 +19674,15 @@ static void removeElementGivenHash(
if( elem->next ){
elem->next->prev = elem->prev;
}
- pEntry = &pH->ht[h];
- if( pEntry->chain==elem ){
- pEntry->chain = elem->next;
- }
- pEntry->count--;
- if( pEntry->count<=0 ){
- pEntry->chain = 0;
- }
- if( pH->copyKey ){
- pH->xFree(elem->pKey);
+ if( pH->ht ){
+ pEntry = &pH->ht[h];
+ if( pEntry->chain==elem ){
+ pEntry->chain = elem->next;
+ }
+ pEntry->count--;
+ assert( pEntry->count>=0 );
}
- pH->xFree( elem );
+ sqlite3_free( elem );
pH->count--;
if( pH->count<=0 ){
assert( pH->first==0 );
@@ -10217,17 +19695,19 @@ static void removeElementGivenHash(
** that matches pKey,nKey. Return the data for this element if it is
** found, or NULL if there is no match.
*/
-void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
- int h; /* A hash on key */
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey, int nKey){
HashElem *elem; /* The element that matches key */
- int (*xHash)(const void*,int); /* The hash function */
+ unsigned int h; /* A hash on key */
- if( pH==0 || pH->ht==0 ) return 0;
- xHash = hashFunction(pH->keyClass);
- assert( xHash!=0 );
- h = (*xHash)(pKey,nKey);
- assert( (pH->htsize & (pH->htsize-1))==0 );
- elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
+ assert( pH!=0 );
+ assert( pKey!=0 );
+ assert( nKey>=0 );
+ if( pH->ht ){
+ h = strHash(pKey, nKey) % pH->htsize;
+ }else{
+ h = 0;
+ }
+ elem = findElementGivenHash(pH, pKey, nKey, h);
return elem ? elem->data : 0;
}
@@ -10235,8 +19715,7 @@ void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
** and the data is "data".
**
** If no element exists with a matching key, then a new
-** element is created. A copy of the key is made if the copyKey
-** flag is set. NULL is returned.
+** element is created and NULL is returned.
**
** If another element already exists with the same key, then the
** new data replaces the old data and the old data is returned.
@@ -10246,19 +19725,19 @@ void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
** If the "data" parameter to this function is NULL, then the
** element corresponding to "key" is removed from the hash table.
*/
-void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
- int hraw; /* Raw hash value of the key */
- int h; /* the hash of the key modulo hash table size */
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const char *pKey, int nKey, void *data){
+ unsigned int h; /* the hash of the key modulo hash table size */
HashElem *elem; /* Used to loop thru the element list */
HashElem *new_elem; /* New element added to the pH */
- int (*xHash)(const void*,int); /* The hash function */
assert( pH!=0 );
- xHash = hashFunction(pH->keyClass);
- assert( xHash!=0 );
- hraw = (*xHash)(pKey, nKey);
- assert( (pH->htsize & (pH->htsize-1))==0 );
- h = hraw & (pH->htsize-1);
+ assert( pKey!=0 );
+ assert( nKey>=0 );
+ if( pH->htsize ){
+ h = strHash(pKey, nKey) % pH->htsize;
+ }else{
+ h = 0;
+ }
elem = findElementGivenHash(pH,pKey,nKey,h);
if( elem ){
void *old_data = elem->data;
@@ -10266,43 +19745,29 @@ void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
removeElementGivenHash(pH,elem,h);
}else{
elem->data = data;
+ elem->pKey = pKey;
+ assert(nKey==elem->nKey);
}
return old_data;
}
if( data==0 ) return 0;
- new_elem = (HashElem*)pH->xMalloc( sizeof(HashElem) );
+ new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
if( new_elem==0 ) return data;
- if( pH->copyKey && pKey!=0 ){
- new_elem->pKey = pH->xMalloc( nKey );
- if( new_elem->pKey==0 ){
- pH->xFree(new_elem);
- return data;
- }
- memcpy((void*)new_elem->pKey, pKey, nKey);
- }else{
- new_elem->pKey = (void*)pKey;
- }
+ new_elem->pKey = pKey;
new_elem->nKey = nKey;
+ new_elem->data = data;
pH->count++;
- if( pH->htsize==0 ){
- rehash(pH,8);
- if( pH->htsize==0 ){
- pH->count = 0;
- if( pH->copyKey ){
- pH->xFree(new_elem->pKey);
- }
- pH->xFree(new_elem);
- return data;
+ if( pH->count>=10 && pH->count > 2*pH->htsize ){
+ if( rehash(pH, pH->count*2) ){
+ assert( pH->htsize>0 );
+ h = strHash(pKey, nKey) % pH->htsize;
}
}
- if( pH->count > pH->htsize ){
- rehash(pH,pH->htsize*2);
+ if( pH->ht ){
+ insertElement(pH, &pH->ht[h], new_elem);
+ }else{
+ insertElement(pH, 0, new_elem);
}
- assert( pH->htsize>0 );
- assert( (pH->htsize & (pH->htsize-1))==0 );
- h = hraw & (pH->htsize-1);
- insertElement(pH, &pH->ht[h], new_elem);
- new_elem->data = data;
return 0;
}
@@ -10311,150 +19776,156 @@ void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
/* Automatically generated. Do not edit */
/* See the mkopcodec.awk script for details. */
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-const char *const sqlite3OpcodeNames[] = { "?",
- /* 1 */ "MemLoad",
- /* 2 */ "VNext",
- /* 3 */ "Column",
- /* 4 */ "SetCookie",
- /* 5 */ "IfMemPos",
- /* 6 */ "Sequence",
- /* 7 */ "MoveGt",
- /* 8 */ "RowKey",
- /* 9 */ "OpenWrite",
- /* 10 */ "If",
- /* 11 */ "Pop",
- /* 12 */ "VRowid",
- /* 13 */ "CollSeq",
- /* 14 */ "OpenRead",
- /* 15 */ "Expire",
- /* 16 */ "Not",
- /* 17 */ "AutoCommit",
- /* 18 */ "IntegrityCk",
- /* 19 */ "Sort",
- /* 20 */ "Function",
- /* 21 */ "Noop",
- /* 22 */ "Return",
- /* 23 */ "NewRowid",
- /* 24 */ "IfMemNeg",
- /* 25 */ "Variable",
- /* 26 */ "String",
- /* 27 */ "RealAffinity",
- /* 28 */ "ParseSchema",
- /* 29 */ "VOpen",
- /* 30 */ "Close",
- /* 31 */ "CreateIndex",
- /* 32 */ "IsUnique",
- /* 33 */ "NotFound",
- /* 34 */ "Int64",
- /* 35 */ "MustBeInt",
- /* 36 */ "Halt",
- /* 37 */ "Rowid",
- /* 38 */ "IdxLT",
- /* 39 */ "AddImm",
- /* 40 */ "Statement",
- /* 41 */ "RowData",
- /* 42 */ "MemMax",
- /* 43 */ "Push",
- /* 44 */ "NotExists",
- /* 45 */ "MemIncr",
- /* 46 */ "Gosub",
- /* 47 */ "Integer",
- /* 48 */ "MemInt",
- /* 49 */ "Prev",
- /* 50 */ "VColumn",
- /* 51 */ "CreateTable",
- /* 52 */ "Last",
- /* 53 */ "IdxRowid",
- /* 54 */ "MakeIdxRec",
- /* 55 */ "ResetCount",
- /* 56 */ "FifoWrite",
- /* 57 */ "Callback",
- /* 58 */ "ContextPush",
- /* 59 */ "DropTrigger",
- /* 60 */ "Or",
- /* 61 */ "And",
- /* 62 */ "DropIndex",
- /* 63 */ "IdxGE",
- /* 64 */ "IdxDelete",
- /* 65 */ "IsNull",
- /* 66 */ "NotNull",
- /* 67 */ "Ne",
- /* 68 */ "Eq",
- /* 69 */ "Gt",
- /* 70 */ "Le",
- /* 71 */ "Lt",
- /* 72 */ "Ge",
- /* 73 */ "Vacuum",
- /* 74 */ "BitAnd",
- /* 75 */ "BitOr",
- /* 76 */ "ShiftLeft",
- /* 77 */ "ShiftRight",
- /* 78 */ "Add",
- /* 79 */ "Subtract",
- /* 80 */ "Multiply",
- /* 81 */ "Divide",
- /* 82 */ "Remainder",
- /* 83 */ "Concat",
- /* 84 */ "MoveLe",
- /* 85 */ "Negative",
- /* 86 */ "IfNot",
- /* 87 */ "BitNot",
- /* 88 */ "String8",
- /* 89 */ "DropTable",
- /* 90 */ "MakeRecord",
- /* 91 */ "Delete",
- /* 92 */ "AggFinal",
- /* 93 */ "Dup",
- /* 94 */ "Goto",
- /* 95 */ "TableLock",
- /* 96 */ "FifoRead",
- /* 97 */ "Clear",
- /* 98 */ "IdxGT",
- /* 99 */ "MoveLt",
- /* 100 */ "VerifyCookie",
- /* 101 */ "AggStep",
- /* 102 */ "Pull",
- /* 103 */ "SetNumColumns",
- /* 104 */ "AbsValue",
- /* 105 */ "Transaction",
- /* 106 */ "VFilter",
- /* 107 */ "VDestroy",
- /* 108 */ "ContextPop",
- /* 109 */ "Next",
- /* 110 */ "IdxInsert",
- /* 111 */ "Distinct",
- /* 112 */ "Insert",
- /* 113 */ "Destroy",
- /* 114 */ "ReadCookie",
- /* 115 */ "ForceInt",
- /* 116 */ "LoadAnalysis",
- /* 117 */ "Explain",
- /* 118 */ "IfMemZero",
- /* 119 */ "OpenPseudo",
- /* 120 */ "OpenEphemeral",
- /* 121 */ "Null",
- /* 122 */ "Blob",
- /* 123 */ "MemStore",
- /* 124 */ "Rewind",
- /* 125 */ "Real",
- /* 126 */ "HexBlob",
- /* 127 */ "MoveGe",
- /* 128 */ "VBegin",
- /* 129 */ "VUpdate",
- /* 130 */ "VCreate",
- /* 131 */ "MemMove",
- /* 132 */ "MemNull",
- /* 133 */ "Found",
- /* 134 */ "NullRow",
- /* 135 */ "NotUsed_135",
- /* 136 */ "NotUsed_136",
- /* 137 */ "NotUsed_137",
- /* 138 */ "ToText",
- /* 139 */ "ToBlob",
- /* 140 */ "ToNumeric",
- /* 141 */ "ToInt",
- /* 142 */ "ToReal",
-};
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
+ static const char *const azName[] = { "?",
+ /* 1 */ "VNext",
+ /* 2 */ "Affinity",
+ /* 3 */ "Column",
+ /* 4 */ "SetCookie",
+ /* 5 */ "Seek",
+ /* 6 */ "Sequence",
+ /* 7 */ "Savepoint",
+ /* 8 */ "RowKey",
+ /* 9 */ "SCopy",
+ /* 10 */ "OpenWrite",
+ /* 11 */ "If",
+ /* 12 */ "CollSeq",
+ /* 13 */ "OpenRead",
+ /* 14 */ "Expire",
+ /* 15 */ "AutoCommit",
+ /* 16 */ "Pagecount",
+ /* 17 */ "IntegrityCk",
+ /* 18 */ "Sort",
+ /* 19 */ "Not",
+ /* 20 */ "Copy",
+ /* 21 */ "Trace",
+ /* 22 */ "Function",
+ /* 23 */ "IfNeg",
+ /* 24 */ "Noop",
+ /* 25 */ "Program",
+ /* 26 */ "Return",
+ /* 27 */ "NewRowid",
+ /* 28 */ "Variable",
+ /* 29 */ "String",
+ /* 30 */ "RealAffinity",
+ /* 31 */ "VRename",
+ /* 32 */ "ParseSchema",
+ /* 33 */ "VOpen",
+ /* 34 */ "Close",
+ /* 35 */ "CreateIndex",
+ /* 36 */ "IsUnique",
+ /* 37 */ "NotFound",
+ /* 38 */ "Int64",
+ /* 39 */ "MustBeInt",
+ /* 40 */ "Halt",
+ /* 41 */ "Rowid",
+ /* 42 */ "IdxLT",
+ /* 43 */ "AddImm",
+ /* 44 */ "RowData",
+ /* 45 */ "MemMax",
+ /* 46 */ "NotExists",
+ /* 47 */ "Gosub",
+ /* 48 */ "Integer",
+ /* 49 */ "Prev",
+ /* 50 */ "RowSetRead",
+ /* 51 */ "RowSetAdd",
+ /* 52 */ "VColumn",
+ /* 53 */ "CreateTable",
+ /* 54 */ "Last",
+ /* 55 */ "SeekLe",
+ /* 56 */ "IncrVacuum",
+ /* 57 */ "IdxRowid",
+ /* 58 */ "ResetCount",
+ /* 59 */ "Yield",
+ /* 60 */ "DropTrigger",
+ /* 61 */ "DropIndex",
+ /* 62 */ "Param",
+ /* 63 */ "IdxGE",
+ /* 64 */ "IdxDelete",
+ /* 65 */ "Vacuum",
+ /* 66 */ "Or",
+ /* 67 */ "And",
+ /* 68 */ "IfNot",
+ /* 69 */ "DropTable",
+ /* 70 */ "SeekLt",
+ /* 71 */ "IsNull",
+ /* 72 */ "NotNull",
+ /* 73 */ "Ne",
+ /* 74 */ "Eq",
+ /* 75 */ "Gt",
+ /* 76 */ "Le",
+ /* 77 */ "Lt",
+ /* 78 */ "Ge",
+ /* 79 */ "MakeRecord",
+ /* 80 */ "BitAnd",
+ /* 81 */ "BitOr",
+ /* 82 */ "ShiftLeft",
+ /* 83 */ "ShiftRight",
+ /* 84 */ "Add",
+ /* 85 */ "Subtract",
+ /* 86 */ "Multiply",
+ /* 87 */ "Divide",
+ /* 88 */ "Remainder",
+ /* 89 */ "Concat",
+ /* 90 */ "ResultRow",
+ /* 91 */ "Delete",
+ /* 92 */ "AggFinal",
+ /* 93 */ "BitNot",
+ /* 94 */ "String8",
+ /* 95 */ "Compare",
+ /* 96 */ "Goto",
+ /* 97 */ "TableLock",
+ /* 98 */ "Clear",
+ /* 99 */ "VerifyCookie",
+ /* 100 */ "AggStep",
+ /* 101 */ "Transaction",
+ /* 102 */ "VFilter",
+ /* 103 */ "VDestroy",
+ /* 104 */ "Next",
+ /* 105 */ "Count",
+ /* 106 */ "IdxInsert",
+ /* 107 */ "SeekGe",
+ /* 108 */ "Insert",
+ /* 109 */ "Destroy",
+ /* 110 */ "ReadCookie",
+ /* 111 */ "RowSetTest",
+ /* 112 */ "LoadAnalysis",
+ /* 113 */ "Explain",
+ /* 114 */ "HaltIfNull",
+ /* 115 */ "OpenPseudo",
+ /* 116 */ "OpenEphemeral",
+ /* 117 */ "Null",
+ /* 118 */ "Move",
+ /* 119 */ "Blob",
+ /* 120 */ "Rewind",
+ /* 121 */ "SeekGt",
+ /* 122 */ "VBegin",
+ /* 123 */ "VUpdate",
+ /* 124 */ "IfZero",
+ /* 125 */ "VCreate",
+ /* 126 */ "Found",
+ /* 127 */ "IfPos",
+ /* 128 */ "NullRow",
+ /* 129 */ "Jump",
+ /* 130 */ "Real",
+ /* 131 */ "Permutation",
+ /* 132 */ "NotUsed_132",
+ /* 133 */ "NotUsed_133",
+ /* 134 */ "NotUsed_134",
+ /* 135 */ "NotUsed_135",
+ /* 136 */ "NotUsed_136",
+ /* 137 */ "NotUsed_137",
+ /* 138 */ "NotUsed_138",
+ /* 139 */ "NotUsed_139",
+ /* 140 */ "NotUsed_140",
+ /* 141 */ "ToText",
+ /* 142 */ "ToBlob",
+ /* 143 */ "ToNumeric",
+ /* 144 */ "ToInt",
+ /* 145 */ "ToReal",
+ };
+ return azName[i];
+}
#endif
/************** End of opcodes.c *********************************************/
@@ -10472,20 +19943,43 @@ const char *const sqlite3OpcodeNames[] = { "?",
******************************************************************************
**
** This file contains code that is specific to OS/2.
+**
+** $Id: os_os2.c,v 1.63 2008/12/10 19:26:24 drh Exp $
*/
-#if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
-/* os2safe.h has to be included before os2.h, needed for high mem */
-#include <os2safe.h>
-#endif
+#if SQLITE_OS_OS2
-#if OS_OS2
+/*
+** A Note About Memory Allocation:
+**
+** This driver uses malloc()/free() directly rather than going through
+** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
+** are designed for use on embedded systems where memory is scarce and
+** malloc failures happen frequently. OS/2 does not typically run on
+** embedded systems, and when it does the developers normally have bigger
+** problems to worry about than running out of memory. So there is not
+** a compelling need to use the wrappers.
+**
+** But there is a good reason to not use the wrappers. If we use the
+** wrappers then we will get simulated malloc() failures within this
+** driver. And that causes all kinds of problems for our tests. We
+** could enhance SQLite to deal with simulated malloc failures within
+** the OS driver, but the code to deal with those failure would not
+** be exercised on Linux (which does not need to malloc() in the driver)
+** and so we would have difficulty writing coverage tests for that
+** code. Better to leave the code out, we think.
+**
+** The point of this discussion is as follows: When creating a new
+** OS layer for an embedded system, if you use this file as an example,
+** avoid the use of malloc()/free(). Those routines work ok on OS/2
+** desktops but not so well in embedded systems.
+*/
/*
** Macros used to determine whether or not to use threads.
*/
-#if defined(THREADSAFE) && THREADSAFE
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE
# define SQLITE_OS2_THREADS 1
#endif
@@ -10512,7 +20006,11 @@ const char *const sqlite3OpcodeNames[] = { "?",
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
+**
+** $Id: os_common.h,v 1.38 2009/02/24 18:40:50 danielk1977 Exp $
*/
+#ifndef _OS_COMMON_H_
+#define _OS_COMMON_H_
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
@@ -10523,26 +20021,17 @@ const char *const sqlite3OpcodeNames[] = { "?",
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
#endif
-
-/*
- * When testing, this global variable stores the location of the
- * pending-byte in the database file.
- */
-#ifdef SQLITE_TEST
-unsigned int sqlite3_pending_byte = 0x40000000;
-#endif
-
-int sqlite3_os_trace = 0;
#ifdef SQLITE_DEBUG
-#define OSTRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
-#define OSTRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
-#define OSTRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
+SQLITE_PRIVATE int sqlite3OSTrace = 0;
+#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
+#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
+#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C) \
- if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D) \
- if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
#else
#define OSTRACE1(X)
#define OSTRACE2(X,Y)
@@ -10558,22 +20047,113 @@ int sqlite3_os_trace = 0;
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of os_common.h ****************/
+/************** Begin file hwtime.h ******************************************/
+/*
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 class CPUs.
+**
+** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
+*/
+#ifndef _HWTIME_H_
+#define _HWTIME_H_
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+#if (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ #error Need implementation of sqlite3Hwtime() for your platform.
+
+ /*
+ ** To compile without implementing sqlite3Hwtime() for your platform,
+ ** you can remove the above #error and use the following
+ ** stub function. You will lose timing support for many
+ ** of the debugging and testing utilities, but it should at
+ ** least compile and run.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(_HWTIME_H_) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in os_common.h ******************/
+
+static sqlite_uint64 g_start;
+static sqlite_uint64 g_elapsed;
+#define TIMER_START g_start=sqlite3Hwtime()
+#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
+#define TIMER_ELAPSED g_elapsed
#else
#define TIMER_START
#define TIMER_END
-#define TIMER_ELAPSED 0
+#define TIMER_ELAPSED ((sqlite_uint64)0)
#endif
/*
@@ -10582,19 +20162,22 @@ static unsigned int elapse;
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
-int sqlite3_io_error_hit = 0;
-int sqlite3_io_error_pending = 0;
-int sqlite3_io_error_persist = 0;
-int sqlite3_diskfull_pending = 0;
-int sqlite3_diskfull = 0;
+SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
+SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
+SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
+SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
+SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
+SQLITE_API int sqlite3_diskfull_pending = 0;
+SQLITE_API int sqlite3_diskfull = 0;
+#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE) \
- if( sqlite3_io_error_pending || sqlite3_io_error_hit ) \
- if( sqlite3_io_error_pending-- == 1 \
- || (sqlite3_io_error_persist && sqlite3_io_error_hit) ) \
- { local_ioerr(); CODE; }
+ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
+ || sqlite3_io_error_pending-- == 1 ) \
+ { local_ioerr(); CODE; }
static void local_ioerr(){
IOTRACE(("IOERR\n"));
- sqlite3_io_error_hit = 1;
+ sqlite3_io_error_hit++;
+ if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
}
#define SimulateDiskfullError(CODE) \
if( sqlite3_diskfull_pending ){ \
@@ -10608,6 +20191,7 @@ static void local_ioerr(){
} \
}
#else
+#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif
@@ -10616,323 +20200,52 @@ static void local_ioerr(){
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
-int sqlite3_open_file_count = 0;
+SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X) sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif
-/*
-** sqlite3GenericMalloc
-** sqlite3GenericRealloc
-** sqlite3GenericOsFree
-** sqlite3GenericAllocationSize
-**
-** Implementation of the os level dynamic memory allocation interface in terms
-** of the standard malloc(), realloc() and free() found in many operating
-** systems. No rocket science here.
-**
-** There are two versions of these four functions here. The version
-** implemented here is only used if memory-management or memory-debugging is
-** enabled. This version allocates an extra 8-bytes at the beginning of each
-** block and stores the size of the allocation there.
-**
-** If neither memory-management or debugging is enabled, the second
-** set of implementations is used instead.
-*/
-#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || defined (SQLITE_MEMDEBUG)
-void *sqlite3GenericMalloc(int n){
- char *p = (char *)malloc(n+8);
- assert(n>0);
- assert(sizeof(int)<=8);
- if( p ){
- *(int *)p = n;
- p += 8;
- }
- return (void *)p;
-}
-void *sqlite3GenericRealloc(void *p, int n){
- char *p2 = ((char *)p - 8);
- assert(n>0);
- p2 = (char*)realloc(p2, n+8);
- if( p2 ){
- *(int *)p2 = n;
- p2 += 8;
- }
- return (void *)p2;
-}
-void sqlite3GenericFree(void *p){
- assert(p);
- free((void *)((char *)p - 8));
-}
-int sqlite3GenericAllocationSize(void *p){
- return p ? *(int *)((char *)p - 8) : 0;
-}
-#else
-void *sqlite3GenericMalloc(int n){
- char *p = (char *)malloc(n);
- return (void *)p;
-}
-void *sqlite3GenericRealloc(void *p, int n){
- assert(n>0);
- p = realloc(p, n);
- return p;
-}
-void sqlite3GenericFree(void *p){
- assert(p);
- free(p);
-}
-/* Never actually used, but needed for the linker */
-int sqlite3GenericAllocationSize(void *p){ return 0; }
-#endif
-
-/*
-** The default size of a disk sector
-*/
-#ifndef PAGER_SECTOR_SIZE
-# define PAGER_SECTOR_SIZE 512
-#endif
+#endif /* !defined(_OS_COMMON_H_) */
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_os2.c *********************/
/*
-** The os2File structure is subclass of OsFile specific for the OS/2
+** The os2File structure is subclass of sqlite3_file specific for the OS/2
** protability layer.
*/
typedef struct os2File os2File;
struct os2File {
- IoMethod const *pMethod; /* Always the first entry */
+ const sqlite3_io_methods *pMethod; /* Always the first entry */
HFILE h; /* Handle for accessing the file */
- int delOnClose; /* True if file is to be deleted on close */
- char* pathToDel; /* Name of file to delete on close */
+ char* pathToDel; /* Name of file to delete on close, NULL if not */
unsigned char locktype; /* Type of lock currently held on this file */
};
-/*
-** Do not include any of the File I/O interface procedures if the
-** SQLITE_OMIT_DISKIO macro is defined (indicating that there database
-** will be in-memory only)
-*/
-#ifndef SQLITE_OMIT_DISKIO
-
-/*
-** Delete the named file
-*/
-int sqlite3Os2Delete( const char *zFilename ){
- APIRET rc = NO_ERROR;
-
- rc = DosDelete( (PSZ)zFilename );
- OSTRACE2( "DELETE \"%s\"\n", zFilename );
- return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
-}
+#define LOCK_TIMEOUT 10L /* the default locking timeout */
-/*
-** Return TRUE if the named file exists.
-*/
-int sqlite3Os2FileExists( const char *zFilename ){
- FILESTATUS3 fsts3ConfigInfo;
- memset(&fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo));
- return DosQueryPathInfo( (PSZ)zFilename, FIL_STANDARD,
- &fsts3ConfigInfo, sizeof(FILESTATUS3) ) == NO_ERROR;
-}
-
-/* Forward declaration */
-int allocateOs2File( os2File *pInit, OsFile **pld );
-
-/*
-** Attempt to open a file for both reading and writing. If that
-** fails, try opening it read-only. If the file does not exist,
-** try to create it.
-**
-** On success, a handle for the open file is written to *id
-** and *pReadonly is set to 0 if the file was opened for reading and
-** writing or 1 if the file was opened read-only. The function returns
-** SQLITE_OK.
-**
-** On failure, the function returns SQLITE_CANTOPEN and leaves
-** *id and *pReadonly unchanged.
-*/
-int sqlite3Os2OpenReadWrite(
- const char *zFilename,
- OsFile **pld,
- int *pReadonly
-){
- os2File f;
- HFILE hf;
- ULONG ulAction;
- APIRET rc = NO_ERROR;
-
- assert( *pld == 0 );
- rc = DosOpen( (PSZ)zFilename, &hf, &ulAction, 0L,
- FILE_ARCHIVED | FILE_NORMAL,
- OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS,
- OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM |
- OPEN_SHARE_DENYNONE | OPEN_ACCESS_READWRITE, (PEAOP2)NULL );
- if( rc != NO_ERROR ){
- rc = DosOpen( (PSZ)zFilename, &hf, &ulAction, 0L,
- FILE_ARCHIVED | FILE_NORMAL,
- OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS,
- OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM |
- OPEN_SHARE_DENYWRITE | OPEN_ACCESS_READONLY, (PEAOP2)NULL );
- if( rc != NO_ERROR ){
- return SQLITE_CANTOPEN;
- }
- *pReadonly = 1;
- }
- else{
- *pReadonly = 0;
- }
- f.h = hf;
- f.locktype = NO_LOCK;
- f.delOnClose = 0;
- f.pathToDel = NULL;
- OpenCounter(+1);
- OSTRACE3( "OPEN R/W %d \"%s\"\n", hf, zFilename );
- return allocateOs2File( &f, pld );
-}
-
-
-/*
-** Attempt to open a new file for exclusive access by this process.
-** The file will be opened for both reading and writing. To avoid
-** a potential security problem, we do not allow the file to have
-** previously existed. Nor do we allow the file to be a symbolic
-** link.
-**
-** If delFlag is true, then make arrangements to automatically delete
-** the file when it is closed.
-**
-** On success, write the file handle into *id and return SQLITE_OK.
-**
-** On failure, return SQLITE_CANTOPEN.
-*/
-int sqlite3Os2OpenExclusive( const char *zFilename, OsFile **pld, int delFlag ){
- os2File f;
- HFILE hf;
- ULONG ulAction;
- APIRET rc = NO_ERROR;
-
- assert( *pld == 0 );
- rc = DosOpen( (PSZ)zFilename, &hf, &ulAction, 0L, FILE_NORMAL,
- OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_REPLACE_IF_EXISTS,
- OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM |
- OPEN_SHARE_DENYREADWRITE | OPEN_ACCESS_READWRITE, (PEAOP2)NULL );
- if( rc != NO_ERROR ){
- return SQLITE_CANTOPEN;
- }
-
- f.h = hf;
- f.locktype = NO_LOCK;
- f.delOnClose = delFlag ? 1 : 0;
- f.pathToDel = delFlag ? sqlite3OsFullPathname( zFilename ) : NULL;
- OpenCounter( +1 );
- if( delFlag ) DosForceDelete( sqlite3OsFullPathname( zFilename ) );
- OSTRACE3( "OPEN EX %d \"%s\"\n", hf, sqlite3OsFullPathname ( zFilename ) );
- return allocateOs2File( &f, pld );
-}
-
-/*
-** Attempt to open a new file for read-only access.
-**
-** On success, write the file handle into *id and return SQLITE_OK.
-**
-** On failure, return SQLITE_CANTOPEN.
-*/
-int sqlite3Os2OpenReadOnly( const char *zFilename, OsFile **pld ){
- os2File f;
- HFILE hf;
- ULONG ulAction;
- APIRET rc = NO_ERROR;
-
- assert( *pld == 0 );
- rc = DosOpen( (PSZ)zFilename, &hf, &ulAction, 0L,
- FILE_NORMAL, OPEN_ACTION_OPEN_IF_EXISTS,
- OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM |
- OPEN_SHARE_DENYWRITE | OPEN_ACCESS_READONLY, (PEAOP2)NULL );
- if( rc != NO_ERROR ){
- return SQLITE_CANTOPEN;
- }
- f.h = hf;
- f.locktype = NO_LOCK;
- f.delOnClose = 0;
- f.pathToDel = NULL;
- OpenCounter( +1 );
- OSTRACE3( "OPEN RO %d \"%s\"\n", hf, zFilename );
- return allocateOs2File( &f, pld );
-}
-
-/*
-** Attempt to open a file descriptor for the directory that contains a
-** file. This file descriptor can be used to fsync() the directory
-** in order to make sure the creation of a new file is actually written
-** to disk.
-**
-** This routine is only meaningful for Unix. It is a no-op under
-** OS/2 since OS/2 does not support hard links.
-**
-** On success, a handle for a previously open file is at *id is
-** updated with the new directory file descriptor and SQLITE_OK is
-** returned.
-**
-** On failure, the function returns SQLITE_CANTOPEN and leaves
-** *id unchanged.
-*/
-int os2OpenDirectory(
- OsFile *id,
- const char *zDirname
-){
- return SQLITE_OK;
-}
-
-/*
-** Create a temporary file name in zBuf. zBuf must be big enough to
-** hold at least SQLITE_TEMPNAME_SIZE characters.
-*/
-int sqlite3Os2TempFileName( char *zBuf ){
- static const unsigned char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- PSZ zTempPath = 0;
- if( DosScanEnv( "TEMP", &zTempPath ) ){
- if( DosScanEnv( "TMP", &zTempPath ) ){
- if( DosScanEnv( "TMPDIR", &zTempPath ) ){
- ULONG ulDriveNum = 0, ulDriveMap = 0;
- DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
- sprintf( zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
- }
- }
- }
- for(;;){
- sprintf( zBuf, "%s\\"TEMP_FILE_PREFIX, zTempPath );
- j = strlen( zBuf );
- sqlite3Randomness( 15, &zBuf[j] );
- for( i = 0; i < 15; i++, j++ ){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- if( !sqlite3OsFileExists( zBuf ) ) break;
- }
- OSTRACE2( "TEMP FILENAME: %s\n", zBuf );
- return SQLITE_OK;
-}
+/*****************************************************************************
+** The next group of routines implement the I/O methods specified
+** by the sqlite3_io_methods object.
+******************************************************************************/
/*
** Close a file.
*/
-int os2Close( OsFile **pld ){
- os2File *pFile;
+static int os2Close( sqlite3_file *id ){
APIRET rc = NO_ERROR;
- if( pld && (pFile = (os2File*)*pld) != 0 ){
+ os2File *pFile;
+ if( id && (pFile = (os2File*)id) != 0 ){
OSTRACE2( "CLOSE %d\n", pFile->h );
rc = DosClose( pFile->h );
pFile->locktype = NO_LOCK;
- if( pFile->delOnClose != 0 ){
- rc = DosForceDelete( pFile->pathToDel );
+ if( pFile->pathToDel != NULL ){
+ rc = DosForceDelete( (PSZ)pFile->pathToDel );
+ free( pFile->pathToDel );
+ pFile->pathToDel = NULL;
}
- *pld = 0;
+ id = 0;
OpenCounter( -1 );
}
@@ -10944,17 +20257,28 @@ int os2Close( OsFile **pld ){
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
-int os2Read( OsFile *id, void *pBuf, int amt ){
+static int os2Read(
+ sqlite3_file *id, /* File to read from */
+ void *pBuf, /* Write content into this buffer */
+ int amt, /* Number of bytes to read */
+ sqlite3_int64 offset /* Begin reading at this offset */
+){
+ ULONG fileLocation = 0L;
ULONG got;
+ os2File *pFile = (os2File*)id;
assert( id!=0 );
- SimulateIOError( return SQLITE_IOERR );
- OSTRACE3( "READ %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
- DosRead( ((os2File*)id)->h, pBuf, amt, &got );
- if (got == (ULONG)amt)
- return SQLITE_OK;
- else if (got < 0)
+ SimulateIOError( return SQLITE_IOERR_READ );
+ OSTRACE3( "READ %d lock=%d\n", pFile->h, pFile->locktype );
+ if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
+ return SQLITE_IOERR;
+ }
+ if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){
return SQLITE_IOERR_READ;
+ }
+ if( got == (ULONG)amt )
+ return SQLITE_OK;
else {
+ /* Unread portions of the input buffer must be zero-filled */
memset(&((char*)pBuf)[got], 0, amt-got);
return SQLITE_IOERR_SHORT_READ;
}
@@ -10964,101 +20288,113 @@ int os2Read( OsFile *id, void *pBuf, int amt ){
** Write data from a buffer into a file. Return SQLITE_OK on success
** or some other error code on failure.
*/
-int os2Write( OsFile *id, const void *pBuf, int amt ){
+static int os2Write(
+ sqlite3_file *id, /* File to write into */
+ const void *pBuf, /* The bytes to be written */
+ int amt, /* Number of bytes to write */
+ sqlite3_int64 offset /* Offset into the file to begin writing at */
+){
+ ULONG fileLocation = 0L;
APIRET rc = NO_ERROR;
ULONG wrote;
+ os2File *pFile = (os2File*)id;
assert( id!=0 );
- SimulateIOError( return SQLITE_IOERR );
+ SimulateIOError( return SQLITE_IOERR_WRITE );
SimulateDiskfullError( return SQLITE_FULL );
- OSTRACE3( "WRITE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
+ OSTRACE3( "WRITE %d lock=%d\n", pFile->h, pFile->locktype );
+ if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
+ return SQLITE_IOERR;
+ }
+ assert( amt>0 );
while( amt > 0 &&
- (rc = DosWrite( ((os2File*)id)->h, (PVOID)pBuf, amt, &wrote )) && wrote > 0 ){
- amt -= wrote;
- pBuf = &((char*)pBuf)[wrote];
+ ( rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote ) ) == NO_ERROR &&
+ wrote > 0
+ ){
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
}
return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK;
}
/*
-** Move the read/write pointer in a file.
+** Truncate an open file to a specified size
*/
-int os2Seek( OsFile *id, i64 offset ){
+static int os2Truncate( sqlite3_file *id, i64 nByte ){
APIRET rc = NO_ERROR;
- ULONG filePointer = 0L;
- assert( id!=0 );
- rc = DosSetFilePtr( ((os2File*)id)->h, offset, FILE_BEGIN, &filePointer );
- OSTRACE3( "SEEK %d %lld\n", ((os2File*)id)->h, offset );
- return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
-}
-
-/*
-** Make sure all writes to a particular file are committed to disk.
-*/
-int os2Sync( OsFile *id, int dataOnly ){
- assert( id!=0 );
- OSTRACE3( "SYNC %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
- return DosResetBuffer( ((os2File*)id)->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+ os2File *pFile = (os2File*)id;
+ OSTRACE3( "TRUNCATE %d %lld\n", pFile->h, nByte );
+ SimulateIOError( return SQLITE_IOERR_TRUNCATE );
+ rc = DosSetFileSize( pFile->h, nByte );
+ return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR_TRUNCATE;
}
+#ifdef SQLITE_TEST
/*
-** Sync the directory zDirname. This is a no-op on operating systems other
-** than UNIX.
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occuring at the right times.
*/
-int sqlite3Os2SyncDirectory( const char *zDirname ){
- SimulateIOError( return SQLITE_IOERR );
- return SQLITE_OK;
-}
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
/*
-** Truncate an open file to a specified size
+** Make sure all writes to a particular file are committed to disk.
*/
-int os2Truncate( OsFile *id, i64 nByte ){
- APIRET rc = NO_ERROR;
- ULONG upperBits = nByte>>32;
- assert( id!=0 );
- OSTRACE3( "TRUNCATE %d %lld\n", ((os2File*)id)->h, nByte );
- SimulateIOError( return SQLITE_IOERR );
- rc = DosSetFilePtr( ((os2File*)id)->h, nByte, FILE_BEGIN, &upperBits );
- if( rc != NO_ERROR ){
- return SQLITE_IOERR;
+static int os2Sync( sqlite3_file *id, int flags ){
+ os2File *pFile = (os2File*)id;
+ OSTRACE3( "SYNC %d lock=%d\n", pFile->h, pFile->locktype );
+#ifdef SQLITE_TEST
+ if( flags & SQLITE_SYNC_FULL){
+ sqlite3_fullsync_count++;
}
- rc = DosSetFilePtr( ((os2File*)id)->h, 0L, FILE_END, &upperBits );
- return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+ sqlite3_sync_count++;
+#endif
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
+ ** no-op
+ */
+#ifdef SQLITE_NO_SYNC
+ UNUSED_PARAMETER(pFile);
+ return SQLITE_OK;
+#else
+ return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+#endif
}
/*
** Determine the current size of a file in bytes
*/
-int os2FileSize( OsFile *id, i64 *pSize ){
+static int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
APIRET rc = NO_ERROR;
FILESTATUS3 fsts3FileInfo;
memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
assert( id!=0 );
- SimulateIOError( return SQLITE_IOERR );
+ SimulateIOError( return SQLITE_IOERR_FSTAT );
rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) );
if( rc == NO_ERROR ){
*pSize = fsts3FileInfo.cbFile;
return SQLITE_OK;
- }
- else{
- return SQLITE_IOERR;
+ }else{
+ return SQLITE_IOERR_FSTAT;
}
}
/*
** Acquire a reader lock.
*/
-static int getReadLock( os2File *id ){
+static int getReadLock( os2File *pFile ){
FILELOCK LockArea,
UnlockArea;
+ APIRET res;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
LockArea.lOffset = SHARED_FIRST;
LockArea.lRange = SHARED_SIZE;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
- return DosSetFileLocks( id->h, &UnlockArea, &LockArea, 2000L, 1L );
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
+ OSTRACE3( "GETREADLOCK %d res=%d\n", pFile->h, res );
+ return res;
}
/*
@@ -11067,33 +20403,17 @@ static int getReadLock( os2File *id ){
static int unlockReadLock( os2File *id ){
FILELOCK LockArea,
UnlockArea;
+ APIRET res;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = SHARED_FIRST;
UnlockArea.lRange = SHARED_SIZE;
- return DosSetFileLocks( id->h, &UnlockArea, &LockArea, 2000L, 1L );
-}
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-/*
-** Check that a given pathname is a directory and is writable
-**
-*/
-int sqlite3Os2IsDirWritable( char *zDirname ){
- FILESTATUS3 fsts3ConfigInfo;
- APIRET rc = NO_ERROR;
- memset(&fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo));
- if( zDirname==0 ) return 0;
- if( strlen(zDirname)>CCHMAXPATH ) return 0;
- rc = DosQueryPathInfo( (PSZ)zDirname, FIL_STANDARD, &fsts3ConfigInfo, sizeof(FILESTATUS3) );
- if( rc != NO_ERROR ) return 0;
- if( (fsts3ConfigInfo.attrFile & FILE_DIRECTORY) != FILE_DIRECTORY ) return 0;
-
- return 1;
+ res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
+ OSTRACE3( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res );
+ return res;
}
-#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
/*
** Lock the file with the lock specified by parameter locktype - one
@@ -11121,10 +20441,10 @@ int sqlite3Os2IsDirWritable( char *zDirname ){
** It is not possible to lower the locking level one step at a time. You
** must go straight to locking level 0.
*/
-int os2Lock( OsFile *id, int locktype ){
- APIRET rc = SQLITE_OK; /* Return code from subroutines */
+static int os2Lock( sqlite3_file *id, int locktype ){
+ int rc = SQLITE_OK; /* Return code from subroutines */
APIRET res = NO_ERROR; /* Result of an OS/2 lock call */
- int newLocktype; /* Set id->locktype to this value before exiting */
+ int newLocktype; /* Set pFile->locktype to this value before exiting */
int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
FILELOCK LockArea,
UnlockArea;
@@ -11135,10 +20455,11 @@ int os2Lock( OsFile *id, int locktype ){
OSTRACE4( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype );
/* If there is already a lock of this type or more restrictive on the
- ** OsFile, do nothing. Don't use the end_lock: exit path, as
- ** sqlite3OsEnterMutex() hasn't been called yet.
+ ** os2File, do nothing. Don't use the end_lock: exit path, as
+ ** sqlite3_mutex_enter() hasn't been called yet.
*/
if( pFile->locktype>=locktype ){
+ OSTRACE3( "LOCK %d %d ok (already held)\n", pFile->h, locktype );
return SQLITE_OK;
}
@@ -11154,59 +20475,58 @@ int os2Lock( OsFile *id, int locktype ){
*/
newLocktype = pFile->locktype;
if( pFile->locktype==NO_LOCK
- || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
+ || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
){
- int cnt = 3;
-
LockArea.lOffset = PENDING_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
- while( cnt-->0 && (res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L) )!=NO_ERROR ){
- /* Try 3 times to get the pending lock. The pending lock might be
- ** held by another reader process who will release it momentarily.
- */
- OSTRACE2( "could not get a PENDING lock. cnt=%d\n", cnt );
- DosSleep(1);
+ /* wait longer than LOCK_TIMEOUT here not to have to try multiple times */
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 100L, 0L );
+ if( res == NO_ERROR ){
+ gotPendingLock = 1;
+ OSTRACE3( "LOCK %d pending lock boolean set. res=%d\n", pFile->h, res );
}
- gotPendingLock = res;
}
/* Acquire a shared lock
*/
- if( locktype==SHARED_LOCK && res ){
+ if( locktype==SHARED_LOCK && res == NO_ERROR ){
assert( pFile->locktype==NO_LOCK );
res = getReadLock(pFile);
if( res == NO_ERROR ){
newLocktype = SHARED_LOCK;
}
+ OSTRACE3( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res );
}
/* Acquire a RESERVED lock
*/
- if( locktype==RESERVED_LOCK && res ){
+ if( locktype==RESERVED_LOCK && res == NO_ERROR ){
assert( pFile->locktype==SHARED_LOCK );
LockArea.lOffset = RESERVED_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
if( res == NO_ERROR ){
newLocktype = RESERVED_LOCK;
}
+ OSTRACE3( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res );
}
/* Acquire a PENDING lock
*/
- if( locktype==EXCLUSIVE_LOCK && res ){
+ if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
newLocktype = PENDING_LOCK;
gotPendingLock = 0;
+ OSTRACE2( "LOCK %d acquire pending lock. pending lock boolean unset.\n", pFile->h );
}
/* Acquire an EXCLUSIVE lock
*/
- if( locktype==EXCLUSIVE_LOCK && res ){
+ if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
assert( pFile->locktype>=SHARED_LOCK );
res = unlockReadLock(pFile);
OSTRACE2( "unreadlock = %d\n", res );
@@ -11214,23 +20534,27 @@ int os2Lock( OsFile *id, int locktype ){
LockArea.lRange = SHARED_SIZE;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
if( res == NO_ERROR ){
newLocktype = EXCLUSIVE_LOCK;
}else{
- OSTRACE2( "error-code = %d\n", res );
+ OSTRACE2( "OS/2 error-code = %d\n", res );
+ getReadLock(pFile);
}
+ OSTRACE3( "LOCK %d acquire exclusive lock. res=%d\n", pFile->h, res );
}
/* If we are holding a PENDING lock that ought to be released, then
** release it now.
*/
if( gotPendingLock && locktype==SHARED_LOCK ){
+ int r;
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = PENDING_BYTE;
UnlockArea.lRange = 1L;
- DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
+ r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r );
}
/* Update the state of the lock has held in the file descriptor then
@@ -11240,10 +20564,11 @@ int os2Lock( OsFile *id, int locktype ){
rc = SQLITE_OK;
}else{
OSTRACE4( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
- locktype, newLocktype );
+ locktype, newLocktype );
rc = SQLITE_BUSY;
}
pFile->locktype = newLocktype;
+ OSTRACE3( "LOCK %d now %d\n", pFile->h, pFile->locktype );
return rc;
}
@@ -11252,33 +20577,39 @@ int os2Lock( OsFile *id, int locktype ){
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
-int os2CheckReservedLock( OsFile *id ){
- APIRET rc = NO_ERROR;
+static int os2CheckReservedLock( sqlite3_file *id, int *pOut ){
+ int r = 0;
os2File *pFile = (os2File*)id;
assert( pFile!=0 );
if( pFile->locktype>=RESERVED_LOCK ){
- rc = 1;
- OSTRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, rc );
+ r = 1;
+ OSTRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, r );
}else{
FILELOCK LockArea,
UnlockArea;
+ APIRET rc = NO_ERROR;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
LockArea.lOffset = RESERVED_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
- rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
+ rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc );
if( rc == NO_ERROR ){
+ APIRET rcu = NO_ERROR; /* return code for unlocking */
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = RESERVED_BYTE;
UnlockArea.lRange = 1L;
- rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
+ rcu = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu );
}
- OSTRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, rc );
+ r = !(rc == NO_ERROR);
+ OSTRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r );
}
- return rc;
+ *pOut = r;
+ return SQLITE_OK;
}
/*
@@ -11292,10 +20623,11 @@ int os2CheckReservedLock( OsFile *id ){
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
** might return SQLITE_IOERR;
*/
-int os2Unlock( OsFile *id, int locktype ){
+static int os2Unlock( sqlite3_file *id, int locktype ){
int type;
- APIRET rc = SQLITE_OK;
os2File *pFile = (os2File*)id;
+ APIRET rc = SQLITE_OK;
+ APIRET res = NO_ERROR;
FILELOCK LockArea,
UnlockArea;
memset(&LockArea, 0, sizeof(LockArea));
@@ -11309,11 +20641,13 @@ int os2Unlock( OsFile *id, int locktype ){
LockArea.lRange = 0L;
UnlockArea.lOffset = SHARED_FIRST;
UnlockArea.lRange = SHARED_SIZE;
- DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res );
if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
/* This should never happen. We should always be able to
** reacquire the read lock */
- rc = SQLITE_IOERR;
+ OSTRACE3( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype );
+ rc = SQLITE_IOERR_UNLOCK;
}
}
if( type>=RESERVED_LOCK ){
@@ -11321,153 +20655,448 @@ int os2Unlock( OsFile *id, int locktype ){
LockArea.lRange = 0L;
UnlockArea.lOffset = RESERVED_BYTE;
UnlockArea.lRange = 1L;
- DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "UNLOCK %d reserved res=%d\n", pFile->h, res );
}
if( locktype==NO_LOCK && type>=SHARED_LOCK ){
- unlockReadLock(pFile);
+ res = unlockReadLock(pFile);
+ OSTRACE5( "UNLOCK %d is %d want %d res=%d\n", pFile->h, type, locktype, res );
}
if( type>=PENDING_LOCK ){
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = PENDING_BYTE;
UnlockArea.lRange = 1L;
- DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "UNLOCK %d pending res=%d\n", pFile->h, res );
}
pFile->locktype = locktype;
+ OSTRACE3( "UNLOCK %d now %d\n", pFile->h, pFile->locktype );
return rc;
}
/*
-** Turn a relative pathname into a full pathname. Return a pointer
-** to the full pathname stored in space obtained from sqliteMalloc().
-** The calling function is responsible for freeing this space once it
-** is no longer needed.
+** Control and query of the open file handle.
*/
-char *sqlite3Os2FullPathname( const char *zRelative ){
- char *zFull = 0;
- if( strchr(zRelative, ':') ){
- sqlite3SetString( &zFull, zRelative, (char*)0 );
- }else{
- char zBuff[SQLITE_TEMPNAME_SIZE - 2] = {0};
- char zDrive[1] = {0};
- ULONG cbzFullLen = SQLITE_TEMPNAME_SIZE;
- ULONG ulDriveNum = 0;
- ULONG ulDriveMap = 0;
- DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
- DosQueryCurrentDir( 0L, zBuff, &cbzFullLen );
- zFull = sqliteMalloc( cbzFullLen );
- sprintf( zDrive, "%c", (char)('A' + ulDriveNum - 1) );
- sqlite3SetString( &zFull, zDrive, ":\\", zBuff, "\\", zRelative, (char*)0 );
+static int os2FileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = ((os2File*)id)->locktype;
+ OSTRACE3( "FCNTL_LOCKSTATE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
+ return SQLITE_OK;
+ }
}
- return zFull;
+ return SQLITE_ERROR;
}
/*
-** The fullSync option is meaningless on os2, or correct me if I'm wrong. This is a no-op.
-** From os_unix.c: Change the value of the fullsync flag in the given file descriptor.
-** From os_unix.c: ((unixFile*)id)->fullSync = v;
+** Return the sector size in bytes of the underlying block device for
+** the specified file. This is almost always 512 bytes, but may be
+** larger for some devices.
+**
+** SQLite code assumes this function cannot fail. It also assumes that
+** if two files are created in the same file-system directory (i.e.
+** a database and its journal file) that the sector size will be the
+** same for both.
*/
-static void os2SetFullSync( OsFile *id, int v ){
- return;
+static int os2SectorSize(sqlite3_file *id){
+ return SQLITE_DEFAULT_SECTOR_SIZE;
}
/*
-** Return the underlying file handle for an OsFile
+** Return a vector of device characteristics.
*/
-static int os2FileHandle( OsFile *id ){
- return (int)((os2File*)id)->h;
+static int os2DeviceCharacteristics(sqlite3_file *id){
+ return 0;
}
+
+/*
+** Character set conversion objects used by conversion routines.
+*/
+static UconvObject ucUtf8 = NULL; /* convert between UTF-8 and UCS-2 */
+static UconvObject uclCp = NULL; /* convert between local codepage and UCS-2 */
+
/*
-** Return an integer that indices the type of lock currently held
-** by this handle. (Used for testing and analysis only.)
+** Helper function to initialize the conversion objects from and to UTF-8.
*/
-static int os2LockState( OsFile *id ){
- return ((os2File*)id)->locktype;
+static void initUconvObjects( void ){
+ if( UniCreateUconvObject( UTF_8, &ucUtf8 ) != ULS_SUCCESS )
+ ucUtf8 = NULL;
+ if ( UniCreateUconvObject( (UniChar *)L"@path=yes", &uclCp ) != ULS_SUCCESS )
+ uclCp = NULL;
}
/*
-** Return the sector size in bytes of the underlying block device for
-** the specified file. This is almost always 512 bytes, but may be
-** larger for some devices.
+** Helper function to free the conversion objects from and to UTF-8.
+*/
+static void freeUconvObjects( void ){
+ if ( ucUtf8 )
+ UniFreeUconvObject( ucUtf8 );
+ if ( uclCp )
+ UniFreeUconvObject( uclCp );
+ ucUtf8 = NULL;
+ uclCp = NULL;
+}
+
+/*
+** Helper function to convert UTF-8 filenames to local OS/2 codepage.
+** The two-step process: first convert the incoming UTF-8 string
+** into UCS-2 and then from UCS-2 to the current codepage.
+** The returned char pointer has to be freed.
+*/
+static char *convertUtf8PathToCp( const char *in ){
+ UniChar tempPath[CCHMAXPATH];
+ char *out = (char *)calloc( CCHMAXPATH, 1 );
+
+ if( !out )
+ return NULL;
+
+ if( !ucUtf8 || !uclCp )
+ initUconvObjects();
+
+ /* determine string for the conversion of UTF-8 which is CP1208 */
+ if( UniStrToUcs( ucUtf8, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS )
+ return out; /* if conversion fails, return the empty string */
+
+ /* conversion for current codepage which can be used for paths */
+ UniStrFromUcs( uclCp, out, tempPath, CCHMAXPATH );
+
+ return out;
+}
+
+/*
+** Helper function to convert filenames from local codepage to UTF-8.
+** The two-step process: first convert the incoming codepage-specific
+** string into UCS-2 and then from UCS-2 to the codepage of UTF-8.
+** The returned char pointer has to be freed.
**
-** SQLite code assumes this function cannot fail. It also assumes that
-** if two files are created in the same file-system directory (i.e.
-** a database and it's journal file) that the sector size will be the
-** same for both.
+** This function is non-static to be able to use this in shell.c and
+** similar applications that take command line arguments.
*/
-static int os2SectorSize(OsFile *id){
- return SQLITE_DEFAULT_SECTOR_SIZE;
+char *convertCpPathToUtf8( const char *in ){
+ UniChar tempPath[CCHMAXPATH];
+ char *out = (char *)calloc( CCHMAXPATH, 1 );
+
+ if( !out )
+ return NULL;
+
+ if( !ucUtf8 || !uclCp )
+ initUconvObjects();
+
+ /* conversion for current codepage which can be used for paths */
+ if( UniStrToUcs( uclCp, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS )
+ return out; /* if conversion fails, return the empty string */
+
+ /* determine string for the conversion of UTF-8 which is CP1208 */
+ UniStrFromUcs( ucUtf8, out, tempPath, CCHMAXPATH );
+
+ return out;
}
/*
-** This vector defines all the methods that can operate on an OsFile
-** for os2.
+** This vector defines all the methods that can operate on an
+** sqlite3_file for os2.
*/
-static const IoMethod sqlite3Os2IoMethod = {
+static const sqlite3_io_methods os2IoMethod = {
+ 1, /* iVersion */
os2Close,
- os2OpenDirectory,
os2Read,
os2Write,
- os2Seek,
os2Truncate,
os2Sync,
- os2SetFullSync,
- os2FileHandle,
os2FileSize,
os2Lock,
os2Unlock,
- os2LockState,
os2CheckReservedLock,
+ os2FileControl,
os2SectorSize,
+ os2DeviceCharacteristics
};
+/***************************************************************************
+** Here ends the I/O methods that form the sqlite3_io_methods object.
+**
+** The next block of code implements the VFS methods.
+****************************************************************************/
+
/*
-** Allocate memory for an OsFile. Initialize the new OsFile
-** to the value given in pInit and return a pointer to the new
-** OsFile. If we run out of memory, close the file and return NULL.
+** Create a temporary file name in zBuf. zBuf must be big enough to
+** hold at pVfs->mxPathname characters.
*/
-int allocateOs2File( os2File *pInit, OsFile **pld ){
- os2File *pNew;
- pNew = sqliteMalloc( sizeof(*pNew) );
- if( pNew==0 ){
- DosClose( pInit->h );
- *pld = 0;
- return SQLITE_NOMEM;
+static int getTempname(int nBuf, char *zBuf ){
+ static const unsigned char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ char zTempPathBuf[3];
+ PSZ zTempPath = (PSZ)&zTempPathBuf;
+ if( sqlite3_temp_directory ){
+ zTempPath = sqlite3_temp_directory;
}else{
- *pNew = *pInit;
- pNew->pMethod = &sqlite3Os2IoMethod;
- pNew->locktype = NO_LOCK;
- *pld = (OsFile*)pNew;
- OpenCounter(+1);
- return SQLITE_OK;
+ if( DosScanEnv( (PSZ)"TEMP", &zTempPath ) ){
+ if( DosScanEnv( (PSZ)"TMP", &zTempPath ) ){
+ if( DosScanEnv( (PSZ)"TMPDIR", &zTempPath ) ){
+ ULONG ulDriveNum = 0, ulDriveMap = 0;
+ DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
+ sprintf( (char*)zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
+ }
+ }
+ }
}
+ /* Strip off a trailing slashes or backslashes, otherwise we would get *
+ * multiple (back)slashes which causes DosOpen() to fail. *
+ * Trailing spaces are not allowed, either. */
+ j = sqlite3Strlen30(zTempPath);
+ while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/'
+ || zTempPath[j-1] == ' ' ) ){
+ j--;
+ }
+ zTempPath[j] = '\0';
+ if( !sqlite3_temp_directory ){
+ char *zTempPathUTF = convertCpPathToUtf8( zTempPath );
+ sqlite3_snprintf( nBuf-30, zBuf,
+ "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPathUTF );
+ free( zTempPathUTF );
+ }else{
+ sqlite3_snprintf( nBuf-30, zBuf,
+ "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath );
+ }
+ j = sqlite3Strlen30( zBuf );
+ sqlite3_randomness( 20, &zBuf[j] );
+ for( i = 0; i < 20; i++, j++ ){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ OSTRACE2( "TEMP FILENAME: %s\n", zBuf );
+ return SQLITE_OK;
+}
+
+
+/*
+** Turn a relative pathname into a full pathname. Write the full
+** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname
+** bytes in size.
+*/
+static int os2FullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+ char *zRelativeCp = convertUtf8PathToCp( zRelative );
+ char zFullCp[CCHMAXPATH] = "\0";
+ char *zFullUTF;
+ APIRET rc = DosQueryPathInfo( zRelativeCp, FIL_QUERYFULLNAME, zFullCp,
+ CCHMAXPATH );
+ free( zRelativeCp );
+ zFullUTF = convertCpPathToUtf8( zFullCp );
+ sqlite3_snprintf( nFull, zFull, zFullUTF );
+ free( zFullUTF );
+ return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+}
+
+
+/*
+** Open a file.
+*/
+static int os2Open(
+ sqlite3_vfs *pVfs, /* Not used */
+ const char *zName, /* Name of the file */
+ sqlite3_file *id, /* Write the SQLite file handle here */
+ int flags, /* Open mode flags */
+ int *pOutFlags /* Status return flags */
+){
+ HFILE h;
+ ULONG ulFileAttribute = FILE_NORMAL;
+ ULONG ulOpenFlags = 0;
+ ULONG ulOpenMode = 0;
+ os2File *pFile = (os2File*)id;
+ APIRET rc = NO_ERROR;
+ ULONG ulAction;
+ char *zNameCp;
+ char zTmpname[CCHMAXPATH+1]; /* Buffer to hold name of temp file */
+
+ /* If the second argument to this function is NULL, generate a
+ ** temporary file name to use
+ */
+ if( !zName ){
+ int rc = getTempname(CCHMAXPATH+1, zTmpname);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zName = zTmpname;
+ }
+
+
+ memset( pFile, 0, sizeof(*pFile) );
+
+ OSTRACE2( "OPEN want %d\n", flags );
+
+ if( flags & SQLITE_OPEN_READWRITE ){
+ ulOpenMode |= OPEN_ACCESS_READWRITE;
+ OSTRACE1( "OPEN read/write\n" );
+ }else{
+ ulOpenMode |= OPEN_ACCESS_READONLY;
+ OSTRACE1( "OPEN read only\n" );
+ }
+
+ if( flags & SQLITE_OPEN_CREATE ){
+ ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW;
+ OSTRACE1( "OPEN open new/create\n" );
+ }else{
+ ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW;
+ OSTRACE1( "OPEN open existing\n" );
+ }
+
+ if( flags & SQLITE_OPEN_MAIN_DB ){
+ ulOpenMode |= OPEN_SHARE_DENYNONE;
+ OSTRACE1( "OPEN share read/write\n" );
+ }else{
+ ulOpenMode |= OPEN_SHARE_DENYWRITE;
+ OSTRACE1( "OPEN share read only\n" );
+ }
+
+ if( flags & SQLITE_OPEN_DELETEONCLOSE ){
+ char pathUtf8[CCHMAXPATH];
+#ifdef NDEBUG /* when debugging we want to make sure it is deleted */
+ ulFileAttribute = FILE_HIDDEN;
+#endif
+ os2FullPathname( pVfs, zName, CCHMAXPATH, pathUtf8 );
+ pFile->pathToDel = convertUtf8PathToCp( pathUtf8 );
+ OSTRACE1( "OPEN hidden/delete on close file attributes\n" );
+ }else{
+ pFile->pathToDel = NULL;
+ OSTRACE1( "OPEN normal file attribute\n" );
+ }
+
+ /* always open in random access mode for possibly better speed */
+ ulOpenMode |= OPEN_FLAGS_RANDOM;
+ ulOpenMode |= OPEN_FLAGS_FAIL_ON_ERROR;
+ ulOpenMode |= OPEN_FLAGS_NOINHERIT;
+
+ zNameCp = convertUtf8PathToCp( zName );
+ rc = DosOpen( (PSZ)zNameCp,
+ &h,
+ &ulAction,
+ 0L,
+ ulFileAttribute,
+ ulOpenFlags,
+ ulOpenMode,
+ (PEAOP2)NULL );
+ free( zNameCp );
+ if( rc != NO_ERROR ){
+ OSTRACE7( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulAttr=%#lx, ulFlags=%#lx, ulMode=%#lx\n",
+ rc, zName, ulAction, ulFileAttribute, ulOpenFlags, ulOpenMode );
+ if( pFile->pathToDel )
+ free( pFile->pathToDel );
+ pFile->pathToDel = NULL;
+ if( flags & SQLITE_OPEN_READWRITE ){
+ OSTRACE2( "OPEN %d Invalid handle\n", ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE) );
+ return os2Open( pVfs, zName, id,
+ ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE),
+ pOutFlags );
+ }else{
+ return SQLITE_CANTOPEN;
+ }
+ }
+
+ if( pOutFlags ){
+ *pOutFlags = flags & SQLITE_OPEN_READWRITE ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY;
+ }
+
+ pFile->pMethod = &os2IoMethod;
+ pFile->h = h;
+ OpenCounter(+1);
+ OSTRACE3( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags );
+ return SQLITE_OK;
+}
+
+/*
+** Delete the named file.
+*/
+static int os2Delete(
+ sqlite3_vfs *pVfs, /* Not used on os2 */
+ const char *zFilename, /* Name of file to delete */
+ int syncDir /* Not used on os2 */
+){
+ APIRET rc = NO_ERROR;
+ char *zFilenameCp = convertUtf8PathToCp( zFilename );
+ SimulateIOError( return SQLITE_IOERR_DELETE );
+ rc = DosDelete( (PSZ)zFilenameCp );
+ free( zFilenameCp );
+ OSTRACE2( "DELETE \"%s\"\n", zFilename );
+ return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR_DELETE;
+}
+
+/*
+** Check the existance and status of a file.
+*/
+static int os2Access(
+ sqlite3_vfs *pVfs, /* Not used on os2 */
+ const char *zFilename, /* Name of file to check */
+ int flags, /* Type of test to make on this file */
+ int *pOut /* Write results here */
+){
+ FILESTATUS3 fsts3ConfigInfo;
+ APIRET rc = NO_ERROR;
+ char *zFilenameCp = convertUtf8PathToCp( zFilename );
+
+ memset( &fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo) );
+ rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD,
+ &fsts3ConfigInfo, sizeof(FILESTATUS3) );
+ free( zFilenameCp );
+ OSTRACE4( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n",
+ fsts3ConfigInfo.attrFile, flags, rc );
+ switch( flags ){
+ case SQLITE_ACCESS_READ:
+ case SQLITE_ACCESS_EXISTS:
+ rc = (rc == NO_ERROR);
+ OSTRACE3( "ACCESS %s access of read and exists rc=%d\n", zFilename, rc );
+ break;
+ case SQLITE_ACCESS_READWRITE:
+ rc = (rc == NO_ERROR) && ( (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0 );
+ OSTRACE3( "ACCESS %s access of read/write rc=%d\n", zFilename, rc );
+ break;
+ default:
+ assert( !"Invalid flags argument" );
+ }
+ *pOut = rc;
+ return SQLITE_OK;
}
-#endif /* SQLITE_OMIT_DISKIO */
-/***************************************************************************
-** Everything above deals with file I/O. Everything that follows deals
-** with other miscellanous aspects of the operating system interface
-****************************************************************************/
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
-void *sqlite3Os2Dlopen(const char *zFilename){
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){
UCHAR loadErr[256];
HMODULE hmod;
APIRET rc;
- rc = DosLoadModule(loadErr, sizeof(loadErr), zFilename, &hmod);
- if (rc != NO_ERROR) return 0;
- return (void*)hmod;
+ char *zFilenameCp = convertUtf8PathToCp(zFilename);
+ rc = DosLoadModule((PSZ)loadErr, sizeof(loadErr), zFilenameCp, &hmod);
+ free(zFilenameCp);
+ return rc != NO_ERROR ? 0 : (void*)hmod;
}
-void *sqlite3Os2Dlsym(void *pHandle, const char *zSymbol){
+/*
+** A no-op since the error code is returned on the DosLoadModule call.
+** os2Dlopen returns zero if DosLoadModule is not successful.
+*/
+static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
+/* no-op */
+}
+static void *os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
PFN pfn;
APIRET rc;
rc = DosQueryProcAddr((HMODULE)pHandle, 0L, zSymbol, &pfn);
- if (rc != NO_ERROR) {
+ if( rc != NO_ERROR ){
/* if the symbol itself was not found, search again for the same
* symbol with an extra underscore, that might be needed depending
* on the calling convention */
@@ -11475,98 +21104,92 @@ void *sqlite3Os2Dlsym(void *pHandle, const char *zSymbol){
strncat(_zSymbol, zSymbol, 255);
rc = DosQueryProcAddr((HMODULE)pHandle, 0L, _zSymbol, &pfn);
}
- if (rc != NO_ERROR) return 0;
- return pfn;
+ return rc != NO_ERROR ? 0 : (void*)pfn;
}
-int sqlite3Os2Dlclose(void *pHandle){
- return DosFreeModule((HMODULE)pHandle);
+static void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
+ DosFreeModule((HMODULE)pHandle);
}
-#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define os2DlOpen 0
+ #define os2DlError 0
+ #define os2DlSym 0
+ #define os2DlClose 0
+#endif
/*
-** Get information to seed the random number generator. The seed
-** is written into the buffer zBuf[256]. The calling function must
-** supply a sufficiently large buffer.
+** Write up to nBuf bytes of randomness into zBuf.
*/
-int sqlite3Os2RandomSeed( char *zBuf ){
- /* We have to initialize zBuf to prevent valgrind from reporting
- ** errors. The reports issued by valgrind are incorrect - we would
- ** prefer that the randomness be increased by making use of the
- ** uninitialized space in zBuf - but valgrind errors tend to worry
- ** some users. Rather than argue, it seems easier just to initialize
- ** the whole array and silence valgrind, even if that means less randomness
- ** in the random seed.
- **
- ** When testing, initializing zBuf[] to zero is all we do. That means
- ** that we always use the same random number sequence. This makes the
- ** tests repeatable.
- */
- memset( zBuf, 0, 256 );
- DosGetDateTime( (PDATETIME)zBuf );
- return SQLITE_OK;
-}
+static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
+ int n = 0;
+#if defined(SQLITE_TEST)
+ n = nBuf;
+ memset(zBuf, 0, nBuf);
+#else
+ int sizeofULong = sizeof(ULONG);
+ if( (int)sizeof(DATETIME) <= nBuf - n ){
+ DATETIME x;
+ DosGetDateTime(&x);
+ memcpy(&zBuf[n], &x, sizeof(x));
+ n += sizeof(x);
+ }
-/*
-** Sleep for a little while. Return the amount of time slept.
-*/
-int sqlite3Os2Sleep( int ms ){
- DosSleep( ms );
- return ms;
-}
+ if( sizeofULong <= nBuf - n ){
+ PPIB ppib;
+ DosGetInfoBlocks(NULL, &ppib);
+ memcpy(&zBuf[n], &ppib->pib_ulpid, sizeofULong);
+ n += sizeofULong;
+ }
-/*
-** Static variables used for thread synchronization
-*/
-static int inMutex = 0;
-#ifdef SQLITE_OS2_THREADS
-static ULONG mutexOwner;
-#endif
+ if( sizeofULong <= nBuf - n ){
+ PTIB ptib;
+ DosGetInfoBlocks(&ptib, NULL);
+ memcpy(&zBuf[n], &ptib->tib_ptib2->tib2_ultid, sizeofULong);
+ n += sizeofULong;
+ }
-/*
-** The following pair of routines implement mutual exclusion for
-** multi-threaded processes. Only a single thread is allowed to
-** executed code that is surrounded by EnterMutex() and LeaveMutex().
-**
-** SQLite uses only a single Mutex. There is not much critical
-** code and what little there is executes quickly and without blocking.
-*/
-void sqlite3Os2EnterMutex(){
- PTIB ptib;
-#ifdef SQLITE_OS2_THREADS
- DosEnterCritSec();
- DosGetInfoBlocks( &ptib, NULL );
- mutexOwner = ptib->tib_ptib2->tib2_ultid;
-#endif
- assert( !inMutex );
- inMutex = 1;
-}
-void sqlite3Os2LeaveMutex(){
- PTIB ptib;
- assert( inMutex );
- inMutex = 0;
-#ifdef SQLITE_OS2_THREADS
- DosGetInfoBlocks( &ptib, NULL );
- assert( mutexOwner == ptib->tib_ptib2->tib2_ultid );
- DosExitCritSec();
+ /* if we still haven't filled the buffer yet the following will */
+ /* grab everything once instead of making several calls for a single item */
+ if( sizeofULong <= nBuf - n ){
+ ULONG ulSysInfo[QSV_MAX];
+ DosQuerySysInfo(1L, QSV_MAX, ulSysInfo, sizeofULong * QSV_MAX);
+
+ memcpy(&zBuf[n], &ulSysInfo[QSV_MS_COUNT - 1], sizeofULong);
+ n += sizeofULong;
+
+ if( sizeofULong <= nBuf - n ){
+ memcpy(&zBuf[n], &ulSysInfo[QSV_TIMER_INTERVAL - 1], sizeofULong);
+ n += sizeofULong;
+ }
+ if( sizeofULong <= nBuf - n ){
+ memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_LOW - 1], sizeofULong);
+ n += sizeofULong;
+ }
+ if( sizeofULong <= nBuf - n ){
+ memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_HIGH - 1], sizeofULong);
+ n += sizeofULong;
+ }
+ if( sizeofULong <= nBuf - n ){
+ memcpy(&zBuf[n], &ulSysInfo[QSV_TOTAVAILMEM - 1], sizeofULong);
+ n += sizeofULong;
+ }
+ }
#endif
+
+ return n;
}
/*
-** Return TRUE if the mutex is currently held.
-**
-** If the thisThreadOnly parameter is true, return true if and only if the
-** calling thread holds the mutex. If the parameter is false, return
-** true if any thread holds the mutex.
+** Sleep for a little while. Return the amount of time slept.
+** The argument is the number of microseconds we want to sleep.
+** The return value is the number of microseconds of sleep actually
+** requested from the underlying operating system, a number which
+** might be greater than or equal to the argument, but not less
+** than the argument.
*/
-int sqlite3Os2InMutex( int thisThreadOnly ){
-#ifdef SQLITE_OS2_THREADS
- PTIB ptib;
- DosGetInfoBlocks( &ptib, NULL );
- return inMutex>0 && (thisThreadOnly==0 || mutexOwner==ptib->tib_ptib2->tib2_ultid);
-#else
- return inMutex>0;
-#endif
+static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){
+ DosSleep( (microsec/1000) );
+ return microsec;
}
/*
@@ -11574,7 +21197,7 @@ int sqlite3Os2InMutex( int thisThreadOnly ){
** returned from sqlite3OsCurrentTime(). This is used for testing.
*/
#ifdef SQLITE_TEST
-int sqlite3_current_time = 0;
+SQLITE_API int sqlite3_current_time = 0;
#endif
/*
@@ -11582,14 +21205,15 @@ int sqlite3_current_time = 0;
** current time and date as a Julian Day number into *prNow and
** return 0. Return 1 if the time and date cannot be found.
*/
-int sqlite3Os2CurrentTime( double *prNow ){
+int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){
double now;
- USHORT second, minute, hour,
+ SHORT minute; /* needs to be able to cope with negative timezone offset */
+ USHORT second, hour,
day, month, year;
DATETIME dt;
DosGetDateTime( &dt );
second = (USHORT)dt.seconds;
- minute = (USHORT)dt.minutes + dt.timezone;
+ minute = (SHORT)dt.minutes + dt.timezone;
hour = (USHORT)dt.hours;
day = (USHORT)dt.day;
month = (USHORT)dt.month;
@@ -11616,72 +21240,45 @@ int sqlite3Os2CurrentTime( double *prNow ){
return 0;
}
-/*
-** Remember the number of thread-specific-data blocks allocated.
-** Use this to verify that we are not leaking thread-specific-data.
-** Ticket #1601
-*/
-#ifdef SQLITE_TEST
-int sqlite3_tsd_count = 0;
-# define TSD_COUNTER_INCR InterlockedIncrement( &sqlite3_tsd_count )
-# define TSD_COUNTER_DECR InterlockedDecrement( &sqlite3_tsd_count )
-#else
-# define TSD_COUNTER_INCR /* no-op */
-# define TSD_COUNTER_DECR /* no-op */
-#endif
+static int os2GetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ return 0;
+}
/*
-** If called with allocateFlag>1, then return a pointer to thread
-** specific data for the current thread. Allocate and zero the
-** thread-specific data if it does not already exist necessary.
-**
-** If called with allocateFlag==0, then check the current thread
-** specific data. Return it if it exists. If it does not exist,
-** then return NULL.
-**
-** If called with allocateFlag<0, check to see if the thread specific
-** data is allocated and is all zero. If it is then deallocate it.
-** Return a pointer to the thread specific data or NULL if it is
-** unallocated or gets deallocated.
-*/
-ThreadData *sqlite3Os2ThreadSpecificData( int allocateFlag ){
- static ThreadData **s_ppTsd = NULL;
- static const ThreadData zeroData = {0, 0, 0};
- ThreadData *pTsd;
-
- if( !s_ppTsd ){
- sqlite3OsEnterMutex();
- if( !s_ppTsd ){
- PULONG pul;
- APIRET rc = DosAllocThreadLocalMemory(1, &pul);
- if( rc != NO_ERROR ){
- sqlite3OsLeaveMutex();
- return 0;
- }
- s_ppTsd = (ThreadData **)pul;
- }
- sqlite3OsLeaveMutex();
- }
- pTsd = *s_ppTsd;
- if( allocateFlag>0 ){
- if( !pTsd ){
- pTsd = sqlite3OsMalloc( sizeof(zeroData) );
- if( pTsd ){
- *pTsd = zeroData;
- *s_ppTsd = pTsd;
- TSD_COUNTER_INCR;
- }
- }
- }else if( pTsd!=0 && allocateFlag<0
- && memcmp( pTsd, &zeroData, sizeof(ThreadData) )==0 ){
- sqlite3OsFree(pTsd);
- *s_ppTsd = NULL;
- TSD_COUNTER_DECR;
- pTsd = 0;
- }
- return pTsd;
+** Initialize and deinitialize the operating system interface.
+*/
+SQLITE_API int sqlite3_os_init(void){
+ static sqlite3_vfs os2Vfs = {
+ 1, /* iVersion */
+ sizeof(os2File), /* szOsFile */
+ CCHMAXPATH, /* mxPathname */
+ 0, /* pNext */
+ "os2", /* zName */
+ 0, /* pAppData */
+
+ os2Open, /* xOpen */
+ os2Delete, /* xDelete */
+ os2Access, /* xAccess */
+ os2FullPathname, /* xFullPathname */
+ os2DlOpen, /* xDlOpen */
+ os2DlError, /* xDlError */
+ os2DlSym, /* xDlSym */
+ os2DlClose, /* xDlClose */
+ os2Randomness, /* xRandomness */
+ os2Sleep, /* xSleep */
+ os2CurrentTime, /* xCurrentTime */
+ os2GetLastError /* xGetLastError */
+ };
+ sqlite3_vfs_register(&os2Vfs, 1);
+ initUconvObjects();
+ return SQLITE_OK;
}
-#endif /* OS_OS2 */
+SQLITE_API int sqlite3_os_end(void){
+ freeUconvObjects();
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OS_OS2 */
/************** End of os_os2.c **********************************************/
/************** Begin file os_unix.c *****************************************/
@@ -11697,11 +21294,77 @@ ThreadData *sqlite3Os2ThreadSpecificData( int allocateFlag ){
**
******************************************************************************
**
-** This file contains code that is specific to Unix systems.
-*/
-#if OS_UNIX /* This file is used on unix only */
+** This file contains the VFS implementation for unix-like operating systems
+** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
+**
+** There are actually several different VFS implementations in this file.
+** The differences are in the way that file locking is done. The default
+** implementation uses Posix Advisory Locks. Alternative implementations
+** use flock(), dot-files, various proprietary locking schemas, or simply
+** skip locking all together.
+**
+** This source file is organized into divisions where the logic for various
+** subfunctions is contained within the appropriate division. PLEASE
+** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
+** in the correct division and should be clearly labeled.
+**
+** The layout of divisions is as follows:
+**
+** * General-purpose declarations and utility functions.
+** * Unique file ID logic used by VxWorks.
+** * Various locking primitive implementations (all except proxy locking):
+** + for Posix Advisory Locks
+** + for no-op locks
+** + for dot-file locks
+** + for flock() locking
+** + for named semaphore locks (VxWorks only)
+** + for AFP filesystem locks (MacOSX only)
+** * sqlite3_file methods not associated with locking.
+** * Definitions of sqlite3_io_methods objects for all locking
+** methods plus "finder" functions for each locking method.
+** * sqlite3_vfs method implementations.
+** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
+** * Definitions of sqlite3_vfs objects for all locking methods
+** plus implementations of sqlite3_os_init() and sqlite3_os_end().
+*/
+#if SQLITE_OS_UNIX /* This file is used on unix only */
+
+/*
+** There are various methods for file locking used for concurrency
+** control:
+**
+** 1. POSIX locking (the default),
+** 2. No locking,
+** 3. Dot-file locking,
+** 4. flock() locking,
+** 5. AFP locking (OSX only),
+** 6. Named POSIX semaphores (VXWorks only),
+** 7. proxy locking. (OSX only)
+**
+** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
+** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
+** selection of the appropriate locking style based on the filesystem
+** where the database is located.
+*/
+#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
+# if defined(__APPLE__)
+# define SQLITE_ENABLE_LOCKING_STYLE 1
+# else
+# define SQLITE_ENABLE_LOCKING_STYLE 0
+# endif
+#endif
-/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
+/*
+** Define the OS_VXWORKS pre-processor macro to 1 if building on
+** vxworks, or 0 otherwise.
+*/
+#ifndef OS_VXWORKS
+# if defined(__RTP__) || defined(_WRS_KERNEL)
+# define OS_VXWORKS 1
+# else
+# define OS_VXWORKS 0
+# endif
+#endif
/*
** These #defines should enable >2GB file support on Posix if the
@@ -11715,6 +21378,11 @@ ThreadData *sqlite3Os2ThreadSpecificData( int allocateFlag ){
** without this option, LFS is enable. But LFS does not exist in the kernel
** in RedHat 6.0, so the code won't work. Hence, for maximum binary
** portability you should omit LFS.
+**
+** The previous paragraph was written in 2005. (This paragraph is written
+** on 2008-11-28.) These days, all Linux kernels support large files, so
+** you should probably leave LFS enabled. But some embedded platforms might
+** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
@@ -11733,21 +21401,24 @@ ThreadData *sqlite3Os2ThreadSpecificData( int allocateFlag ){
#include <unistd.h>
#include <sys/time.h>
#include <errno.h>
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-#include <sys/ioctl.h>
-#include <sys/param.h>
-#include <sys/mount.h>
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+# include <sys/ioctl.h>
+# if OS_VXWORKS
+# include <semaphore.h>
+# include <limits.h>
+# else
+# include <sys/file.h>
+# include <sys/param.h>
+# include <sys/mount.h>
+# endif
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** If we are to be thread-safe, include the pthreads header and define
** the SQLITE_UNIX_THREADS macro.
*/
-#ifndef THREADSAFE
-# define THREADSAFE 1
-#endif
-#if THREADSAFE
-# include <pthread.h>
+#if SQLITE_THREADSAFE
# define SQLITE_UNIX_THREADS 1
#endif
@@ -11758,47 +21429,88 @@ ThreadData *sqlite3Os2ThreadSpecificData( int allocateFlag ){
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
#endif
+/*
+ ** Default permissions when creating auto proxy dir
+ */
+#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
+# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
+#endif
+/*
+** Maximum supported path-length.
+*/
+#define MAX_PATHNAME 512
/*
-** The unixFile structure is subclass of OsFile specific for the unix
-** protability layer.
+** Only set the lastErrno if the error code is a real error and not
+** a normal expected return code of SQLITE_BUSY or SQLITE_OK
+*/
+#define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
+
+
+/*
+** Sometimes, after a file handle is closed by SQLite, the file descriptor
+** cannot be closed immediately. In these cases, instances of the following
+** structure are used to store the file descriptor while waiting for an
+** opportunity to either close or reuse it.
+*/
+typedef struct UnixUnusedFd UnixUnusedFd;
+struct UnixUnusedFd {
+ int fd; /* File descriptor to close */
+ int flags; /* Flags this file descriptor was opened with */
+ UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
+};
+
+/*
+** The unixFile structure is subclass of sqlite3_file specific to the unix
+** VFS implementations.
*/
typedef struct unixFile unixFile;
struct unixFile {
- IoMethod const *pMethod; /* Always the first entry */
- struct openCnt *pOpen; /* Info about all open fd's on this inode */
- struct lockInfo *pLock; /* Info about locks on this inode */
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
- void *lockingContext; /* Locking style specific state */
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
- int h; /* The file descriptor */
- unsigned char locktype; /* The type of lock held on this fd */
- unsigned char isOpen; /* True if needs to be closed */
- unsigned char fullSync; /* Use F_FULLSYNC if available */
- int dirfd; /* File descriptor for the directory */
- i64 offset; /* Seek offset */
-#ifdef SQLITE_UNIX_THREADS
- pthread_t tid; /* The thread that "owns" this OsFile */
+ sqlite3_io_methods const *pMethod; /* Always the first entry */
+ struct unixOpenCnt *pOpen; /* Info about all open fd's on this inode */
+ struct unixLockInfo *pLock; /* Info about locks on this inode */
+ int h; /* The file descriptor */
+ int dirfd; /* File descriptor for the directory */
+ unsigned char locktype; /* The type of lock held on this fd */
+ int lastErrno; /* The unix errno from the last I/O error */
+ void *lockingContext; /* Locking style specific state */
+ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */
+ int fileFlags; /* Miscellanous flags */
+#if SQLITE_ENABLE_LOCKING_STYLE
+ int openFlags; /* The flags specified at open() */
+#endif
+#if SQLITE_THREADSAFE && defined(__linux__)
+ pthread_t tid; /* The thread that "owns" this unixFile */
+#endif
+#if OS_VXWORKS
+ int isDelete; /* Delete on close if true */
+ struct vxworksFileId *pId; /* Unique file ID */
+#endif
+#ifndef NDEBUG
+ /* The next group of variables are used to track whether or not the
+ ** transaction counter in bytes 24-27 of database files are updated
+ ** whenever any part of the database changes. An assertion fault will
+ ** occur if a file is updated without also updating the transaction
+ ** counter. This test is made to avoid new problems similar to the
+ ** one described by ticket #3584.
+ */
+ unsigned char transCntrChng; /* True if the transaction counter changed */
+ unsigned char dbUpdate; /* True if any part of database file changed */
+ unsigned char inNormalWrite; /* True if in a normal write operation */
+#endif
+#ifdef SQLITE_TEST
+ /* In test mode, increase the size of this structure a bit so that
+ ** it is larger than the struct CrashFile defined in test6.c.
+ */
+ char aPadding[32];
#endif
};
/*
-** Provide the ability to override some OS-layer functions during
-** testing. This is used to simulate OS crashes to verify that
-** commits are atomic even in the event of an OS crash.
+** The following macros define bits in unixFile.fileFlags
*/
-#ifdef SQLITE_CRASH_TEST
- extern int sqlite3CrashTestEnable;
- extern int sqlite3CrashOpenReadWrite(const char*, OsFile**, int*);
- extern int sqlite3CrashOpenExclusive(const char*, OsFile**, int);
- extern int sqlite3CrashOpenReadOnly(const char*, OsFile**, int);
-# define CRASH_TEST_OVERRIDE(X,A,B,C) \
- if(sqlite3CrashTestEnable){ return X(A,B,C); }
-#else
-# define CRASH_TEST_OVERRIDE(X,A,B,C) /* no-op */
-#endif
-
+#define SQLITE_WHOLE_FILE_LOCKING 0x0001 /* Use whole-file locking */
/*
** Include code that is common to all os_*.c files
@@ -11823,7 +21535,11 @@ struct unixFile {
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
+**
+** $Id: os_common.h,v 1.38 2009/02/24 18:40:50 danielk1977 Exp $
*/
+#ifndef _OS_COMMON_H_
+#define _OS_COMMON_H_
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
@@ -11834,26 +21550,17 @@ struct unixFile {
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
#endif
-
-/*
- * When testing, this global variable stores the location of the
- * pending-byte in the database file.
- */
-#ifdef SQLITE_TEST
-unsigned int sqlite3_pending_byte = 0x40000000;
-#endif
-
-int sqlite3_os_trace = 0;
#ifdef SQLITE_DEBUG
-#define OSTRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
-#define OSTRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
-#define OSTRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
+SQLITE_PRIVATE int sqlite3OSTrace = 0;
+#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
+#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
+#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C) \
- if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D) \
- if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
#else
#define OSTRACE1(X)
#define OSTRACE2(X,Y)
@@ -11869,22 +21576,113 @@ int sqlite3_os_trace = 0;
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of os_common.h ****************/
+/************** Begin file hwtime.h ******************************************/
+/*
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 class CPUs.
+**
+** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
+*/
+#ifndef _HWTIME_H_
+#define _HWTIME_H_
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+#if (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ #error Need implementation of sqlite3Hwtime() for your platform.
+
+ /*
+ ** To compile without implementing sqlite3Hwtime() for your platform,
+ ** you can remove the above #error and use the following
+ ** stub function. You will lose timing support for many
+ ** of the debugging and testing utilities, but it should at
+ ** least compile and run.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(_HWTIME_H_) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in os_common.h ******************/
+
+static sqlite_uint64 g_start;
+static sqlite_uint64 g_elapsed;
+#define TIMER_START g_start=sqlite3Hwtime()
+#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
+#define TIMER_ELAPSED g_elapsed
#else
#define TIMER_START
#define TIMER_END
-#define TIMER_ELAPSED 0
+#define TIMER_ELAPSED ((sqlite_uint64)0)
#endif
/*
@@ -11893,19 +21691,22 @@ static unsigned int elapse;
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
-int sqlite3_io_error_hit = 0;
-int sqlite3_io_error_pending = 0;
-int sqlite3_io_error_persist = 0;
-int sqlite3_diskfull_pending = 0;
-int sqlite3_diskfull = 0;
+SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
+SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
+SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
+SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
+SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
+SQLITE_API int sqlite3_diskfull_pending = 0;
+SQLITE_API int sqlite3_diskfull = 0;
+#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE) \
- if( sqlite3_io_error_pending || sqlite3_io_error_hit ) \
- if( sqlite3_io_error_pending-- == 1 \
- || (sqlite3_io_error_persist && sqlite3_io_error_hit) ) \
- { local_ioerr(); CODE; }
+ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
+ || sqlite3_io_error_pending-- == 1 ) \
+ { local_ioerr(); CODE; }
static void local_ioerr(){
IOTRACE(("IOERR\n"));
- sqlite3_io_error_hit = 1;
+ sqlite3_io_error_hit++;
+ if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
}
#define SimulateDiskfullError(CODE) \
if( sqlite3_diskfull_pending ){ \
@@ -11919,6 +21720,7 @@ static void local_ioerr(){
} \
}
#else
+#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif
@@ -11927,95 +21729,18 @@ static void local_ioerr(){
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
-int sqlite3_open_file_count = 0;
+SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X) sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif
-/*
-** sqlite3GenericMalloc
-** sqlite3GenericRealloc
-** sqlite3GenericOsFree
-** sqlite3GenericAllocationSize
-**
-** Implementation of the os level dynamic memory allocation interface in terms
-** of the standard malloc(), realloc() and free() found in many operating
-** systems. No rocket science here.
-**
-** There are two versions of these four functions here. The version
-** implemented here is only used if memory-management or memory-debugging is
-** enabled. This version allocates an extra 8-bytes at the beginning of each
-** block and stores the size of the allocation there.
-**
-** If neither memory-management or debugging is enabled, the second
-** set of implementations is used instead.
-*/
-#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || defined (SQLITE_MEMDEBUG)
-void *sqlite3GenericMalloc(int n){
- char *p = (char *)malloc(n+8);
- assert(n>0);
- assert(sizeof(int)<=8);
- if( p ){
- *(int *)p = n;
- p += 8;
- }
- return (void *)p;
-}
-void *sqlite3GenericRealloc(void *p, int n){
- char *p2 = ((char *)p - 8);
- assert(n>0);
- p2 = (char*)realloc(p2, n+8);
- if( p2 ){
- *(int *)p2 = n;
- p2 += 8;
- }
- return (void *)p2;
-}
-void sqlite3GenericFree(void *p){
- assert(p);
- free((void *)((char *)p - 8));
-}
-int sqlite3GenericAllocationSize(void *p){
- return p ? *(int *)((char *)p - 8) : 0;
-}
-#else
-void *sqlite3GenericMalloc(int n){
- char *p = (char *)malloc(n);
- return (void *)p;
-}
-void *sqlite3GenericRealloc(void *p, int n){
- assert(n>0);
- p = realloc(p, n);
- return p;
-}
-void sqlite3GenericFree(void *p){
- assert(p);
- free(p);
-}
-/* Never actually used, but needed for the linker */
-int sqlite3GenericAllocationSize(void *p){ return 0; }
-#endif
-
-/*
-** The default size of a disk sector
-*/
-#ifndef PAGER_SECTOR_SIZE
-# define PAGER_SECTOR_SIZE 512
-#endif
+#endif /* !defined(_OS_COMMON_H_) */
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_unix.c ********************/
/*
-** Do not include any of the File I/O interface procedures if the
-** SQLITE_OMIT_DISKIO macro is defined (indicating that the database
-** will be in-memory only)
-*/
-#ifndef SQLITE_OMIT_DISKIO
-
-
-/*
** Define various macros that are missing from some systems.
*/
#ifndef O_LARGEFILE
@@ -12036,7 +21761,7 @@ int sqlite3GenericAllocationSize(void *p){ return 0; }
** The DJGPP compiler environment looks mostly like Unix, but it
** lacks the fcntl() system call. So redefine fcntl() to be something
** that always succeeds. This means that locking does not occur under
-** DJGPP. But it's DOS - what did you expect?
+** DJGPP. But it is DOS - what did you expect?
*/
#ifdef __DJGPP__
# define fcntl(A,B,C) 0
@@ -12046,39 +21771,328 @@ int sqlite3GenericAllocationSize(void *p){ return 0; }
** The threadid macro resolves to the thread-id or to 0. Used for
** testing and debugging only.
*/
-#ifdef SQLITE_UNIX_THREADS
+#if SQLITE_THREADSAFE
#define threadid pthread_self()
#else
#define threadid 0
#endif
+
/*
-** Set or check the OsFile.tid field. This field is set when an OsFile
-** is first opened. All subsequent uses of the OsFile verify that the
-** same thread is operating on the OsFile. Some operating systems do
-** not allow locks to be overridden by other threads and that restriction
-** means that sqlite3* database handles cannot be moved from one thread
-** to another. This logic makes sure a user does not try to do that
-** by mistake.
+** Helper functions to obtain and relinquish the global mutex. The
+** global mutex is used to protect the unixOpenCnt, unixLockInfo and
+** vxworksFileId objects used by this file, all of which may be
+** shared by multiple threads.
**
-** Version 3.3.1 (2006-01-15): OsFiles can be moved from one thread to
-** another as long as we are running on a system that supports threads
-** overriding each others locks (which now the most common behavior)
-** or if no locks are held. But the OsFile.pLock field needs to be
-** recomputed because its key includes the thread-id. See the
-** transferOwnership() function below for additional information
+** Function unixMutexHeld() is used to assert() that the global mutex
+** is held when required. This function is only used as part of assert()
+** statements. e.g.
+**
+** unixEnterMutex()
+** assert( unixMutexHeld() );
+** unixEnterLeave()
*/
-#if defined(SQLITE_UNIX_THREADS)
-# define SET_THREADID(X) (X)->tid = pthread_self()
-# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
- !pthread_equal((X)->tid, pthread_self()))
-#else
-# define SET_THREADID(X)
-# define CHECK_THREADID(X) 0
+static void unixEnterMutex(void){
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
+}
+static void unixLeaveMutex(void){
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
+}
+#ifdef SQLITE_DEBUG
+static int unixMutexHeld(void) {
+ return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
+}
+#endif
+
+
+#ifdef SQLITE_DEBUG
+/*
+** Helper function for printing out trace information from debugging
+** binaries. This returns the string represetation of the supplied
+** integer lock-type.
+*/
+static const char *locktypeName(int locktype){
+ switch( locktype ){
+ case NO_LOCK: return "NONE";
+ case SHARED_LOCK: return "SHARED";
+ case RESERVED_LOCK: return "RESERVED";
+ case PENDING_LOCK: return "PENDING";
+ case EXCLUSIVE_LOCK: return "EXCLUSIVE";
+ }
+ return "ERROR";
+}
#endif
+#ifdef SQLITE_LOCK_TRACE
+/*
+** Print out information about all locking operations.
+**
+** This routine is used for troubleshooting locks on multithreaded
+** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
+** command-line option on the compiler. This code is normally
+** turned off.
+*/
+static int lockTrace(int fd, int op, struct flock *p){
+ char *zOpName, *zType;
+ int s;
+ int savedErrno;
+ if( op==F_GETLK ){
+ zOpName = "GETLK";
+ }else if( op==F_SETLK ){
+ zOpName = "SETLK";
+ }else{
+ s = fcntl(fd, op, p);
+ sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
+ return s;
+ }
+ if( p->l_type==F_RDLCK ){
+ zType = "RDLCK";
+ }else if( p->l_type==F_WRLCK ){
+ zType = "WRLCK";
+ }else if( p->l_type==F_UNLCK ){
+ zType = "UNLCK";
+ }else{
+ assert( 0 );
+ }
+ assert( p->l_whence==SEEK_SET );
+ s = fcntl(fd, op, p);
+ savedErrno = errno;
+ sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
+ threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
+ (int)p->l_pid, s);
+ if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
+ struct flock l2;
+ l2 = *p;
+ fcntl(fd, F_GETLK, &l2);
+ if( l2.l_type==F_RDLCK ){
+ zType = "RDLCK";
+ }else if( l2.l_type==F_WRLCK ){
+ zType = "WRLCK";
+ }else if( l2.l_type==F_UNLCK ){
+ zType = "UNLCK";
+ }else{
+ assert( 0 );
+ }
+ sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
+ zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
+ }
+ errno = savedErrno;
+ return s;
+}
+#define fcntl lockTrace
+#endif /* SQLITE_LOCK_TRACE */
+
+
+
+/*
+** This routine translates a standard POSIX errno code into something
+** useful to the clients of the sqlite3 functions. Specifically, it is
+** intended to translate a variety of "try again" errors into SQLITE_BUSY
+** and a variety of "please close the file descriptor NOW" errors into
+** SQLITE_IOERR
+**
+** Errors during initialization of locks, or file system support for locks,
+** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
+*/
+static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
+ switch (posixError) {
+ case 0:
+ return SQLITE_OK;
+
+ case EAGAIN:
+ case ETIMEDOUT:
+ case EBUSY:
+ case EINTR:
+ case ENOLCK:
+ /* random NFS retry error, unless during file system support
+ * introspection, in which it actually means what it says */
+ return SQLITE_BUSY;
+
+ case EACCES:
+ /* EACCES is like EAGAIN during locking operations, but not any other time*/
+ if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
+ return SQLITE_BUSY;
+ }
+ /* else fall through */
+ case EPERM:
+ return SQLITE_PERM;
+
+ case EDEADLK:
+ return SQLITE_IOERR_BLOCKED;
+
+#if EOPNOTSUPP!=ENOTSUP
+ case EOPNOTSUPP:
+ /* something went terribly awry, unless during file system support
+ * introspection, in which it actually means what it says */
+#endif
+#ifdef ENOTSUP
+ case ENOTSUP:
+ /* invalid fd, unless during file system support introspection, in which
+ * it actually means what it says */
+#endif
+ case EIO:
+ case EBADF:
+ case EINVAL:
+ case ENOTCONN:
+ case ENODEV:
+ case ENXIO:
+ case ENOENT:
+ case ESTALE:
+ case ENOSYS:
+ /* these should force the client to close the file and reconnect */
+
+ default:
+ return sqliteIOErr;
+ }
+}
+
+
+
+/******************************************************************************
+****************** Begin Unique File ID Utility Used By VxWorks ***************
+**
+** On most versions of unix, we can get a unique ID for a file by concatenating
+** the device number and the inode number. But this does not work on VxWorks.
+** On VxWorks, a unique file id must be based on the canonical filename.
+**
+** A pointer to an instance of the following structure can be used as a
+** unique file ID in VxWorks. Each instance of this structure contains
+** a copy of the canonical filename. There is also a reference count.
+** The structure is reclaimed when the number of pointers to it drops to
+** zero.
+**
+** There are never very many files open at one time and lookups are not
+** a performance-critical path, so it is sufficient to put these
+** structures on a linked list.
+*/
+struct vxworksFileId {
+ struct vxworksFileId *pNext; /* Next in a list of them all */
+ int nRef; /* Number of references to this one */
+ int nName; /* Length of the zCanonicalName[] string */
+ char *zCanonicalName; /* Canonical filename */
+};
+
+#if OS_VXWORKS
+/*
+** All unique filenames are held on a linked list headed by this
+** variable:
+*/
+static struct vxworksFileId *vxworksFileList = 0;
+
+/*
+** Simplify a filename into its canonical form
+** by making the following changes:
+**
+** * removing any trailing and duplicate /
+** * convert /./ into just /
+** * convert /A/../ where A is any simple name into just /
+**
+** Changes are made in-place. Return the new name length.
+**
+** The original filename is in z[0..n-1]. Return the number of
+** characters in the simplified name.
+*/
+static int vxworksSimplifyName(char *z, int n){
+ int i, j;
+ while( n>1 && z[n-1]=='/' ){ n--; }
+ for(i=j=0; i<n; i++){
+ if( z[i]=='/' ){
+ if( z[i+1]=='/' ) continue;
+ if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
+ i += 1;
+ continue;
+ }
+ if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
+ while( j>0 && z[j-1]!='/' ){ j--; }
+ if( j>0 ){ j--; }
+ i += 2;
+ continue;
+ }
+ }
+ z[j++] = z[i];
+ }
+ z[j] = 0;
+ return j;
+}
+
/*
-** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
+** Find a unique file ID for the given absolute pathname. Return
+** a pointer to the vxworksFileId object. This pointer is the unique
+** file ID.
+**
+** The nRef field of the vxworksFileId object is incremented before
+** the object is returned. A new vxworksFileId object is created
+** and added to the global list if necessary.
+**
+** If a memory allocation error occurs, return NULL.
+*/
+static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
+ struct vxworksFileId *pNew; /* search key and new file ID */
+ struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
+ int n; /* Length of zAbsoluteName string */
+
+ assert( zAbsoluteName[0]=='/' );
+ n = (int)strlen(zAbsoluteName);
+ pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
+ if( pNew==0 ) return 0;
+ pNew->zCanonicalName = (char*)&pNew[1];
+ memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
+ n = vxworksSimplifyName(pNew->zCanonicalName, n);
+
+ /* Search for an existing entry that matching the canonical name.
+ ** If found, increment the reference count and return a pointer to
+ ** the existing file ID.
+ */
+ unixEnterMutex();
+ for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
+ if( pCandidate->nName==n
+ && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
+ ){
+ sqlite3_free(pNew);
+ pCandidate->nRef++;
+ unixLeaveMutex();
+ return pCandidate;
+ }
+ }
+
+ /* No match was found. We will make a new file ID */
+ pNew->nRef = 1;
+ pNew->nName = n;
+ pNew->pNext = vxworksFileList;
+ vxworksFileList = pNew;
+ unixLeaveMutex();
+ return pNew;
+}
+
+/*
+** Decrement the reference count on a vxworksFileId object. Free
+** the object when the reference count reaches zero.
+*/
+static void vxworksReleaseFileId(struct vxworksFileId *pId){
+ unixEnterMutex();
+ assert( pId->nRef>0 );
+ pId->nRef--;
+ if( pId->nRef==0 ){
+ struct vxworksFileId **pp;
+ for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
+ assert( *pp==pId );
+ *pp = pId->pNext;
+ sqlite3_free(pId);
+ }
+ unixLeaveMutex();
+}
+#endif /* OS_VXWORKS */
+/*************** End of Unique File ID Utility Used By VxWorks ****************
+******************************************************************************/
+
+
+/******************************************************************************
+*************************** Posix Advisory Locking ****************************
+**
+** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
** section 6.5.2.2 lines 483 through 490 specify that when a process
** sets or clears a lock, that operation overrides any prior locks set
** by the same process. It does not explicitly say so, but this implies
@@ -12097,9 +22111,8 @@ int sqlite3GenericAllocationSize(void *p){ return 0; }
** second overrides the first, even though they were on different
** file descriptors opened on different file names.
**
-** Bummer. If you ask me, this is broken. Badly broken. It means
-** that we cannot use POSIX locks to synchronize file access among
-** competing threads of the same process. POSIX locks will work fine
+** This means that we cannot use POSIX locks to synchronize file access
+** among competing threads of the same process. POSIX locks will work fine
** to synchronize access for threads in separate processes, but not
** threads within the same process.
**
@@ -12112,11 +22125,15 @@ int sqlite3GenericAllocationSize(void *p){ return 0; }
** locks to see if another thread has previously set a lock on that same
** inode.
**
-** The OsFile structure for POSIX is no longer just an integer file
+** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
+** For VxWorks, we have to use the alternative unique ID system based on
+** canonical filename and implemented in the previous division.)
+**
+** The sqlite3_file structure for POSIX is no longer just an integer file
** descriptor. It is now a structure that holds the integer file
** descriptor and a pointer to a structure that describes the internal
** locks on the corresponding inode. There is one locking structure
-** per inode, so if the same inode is opened twice, both OsFile structures
+** per inode, so if the same inode is opened twice, both unixFile structures
** point to the same locking structure. The locking structure keeps
** a reference count (so we will know when to delete it) and a "cnt"
** field that tells us its internal lock status. cnt==0 means the
@@ -12128,96 +22145,114 @@ int sqlite3GenericAllocationSize(void *p){ return 0; }
** POSIX lock if the internal lock structure transitions between
** a locked and an unlocked state.
**
-** 2004-Jan-11:
-** More recent discoveries about POSIX advisory locks. (The more
-** I discover, the more I realize the a POSIX advisory locks are
-** an abomination.)
+** But wait: there are yet more problems with POSIX advisory locks.
**
** If you close a file descriptor that points to a file that has locks,
** all locks on that file that are owned by the current process are
-** released. To work around this problem, each OsFile structure contains
-** a pointer to an openCnt structure. There is one openCnt structure
-** per open inode, which means that multiple OsFiles can point to a single
-** openCnt. When an attempt is made to close an OsFile, if there are
-** other OsFiles open on the same inode that are holding locks, the call
+** released. To work around this problem, each unixFile structure contains
+** a pointer to an unixOpenCnt structure. There is one unixOpenCnt structure
+** per open inode, which means that multiple unixFile can point to a single
+** unixOpenCnt. When an attempt is made to close an unixFile, if there are
+** other unixFile open on the same inode that are holding locks, the call
** to close() the file descriptor is deferred until all of the locks clear.
-** The openCnt structure keeps a list of file descriptors that need to
+** The unixOpenCnt structure keeps a list of file descriptors that need to
** be closed and that list is walked (and cleared) when the last lock
** clears.
**
-** First, under Linux threads, because each thread has a separate
-** process ID, lock operations in one thread do not override locks
-** to the same file in other threads. Linux threads behave like
-** separate processes in this respect. But, if you close a file
-** descriptor in linux threads, all locks are cleared, even locks
-** on other threads and even though the other threads have different
-** process IDs. Linux threads is inconsistent in this respect.
-** (I'm beginning to think that linux threads is an abomination too.)
-** The consequence of this all is that the hash table for the lockInfo
-** structure has to include the process id as part of its key because
-** locks in different threads are treated as distinct. But the
-** openCnt structure should not include the process id in its
-** key because close() clears lock on all threads, not just the current
-** thread. Were it not for this goofiness in linux threads, we could
-** combine the lockInfo and openCnt structures into a single structure.
-**
-** 2004-Jun-28:
-** On some versions of linux, threads can override each others locks.
-** On others not. Sometimes you can change the behavior on the same
-** system by setting the LD_ASSUME_KERNEL environment variable. The
-** POSIX standard is silent as to which behavior is correct, as far
-** as I can tell, so other versions of unix might show the same
-** inconsistency. There is no little doubt in my mind that posix
-** advisory locks and linux threads are profoundly broken.
-**
-** To work around the inconsistencies, we have to test at runtime
-** whether or not threads can override each others locks. This test
-** is run once, the first time any lock is attempted. A static
-** variable is set to record the results of this test for future
-** use.
+** Yet another problem: LinuxThreads do not play well with posix locks.
+**
+** Many older versions of linux use the LinuxThreads library which is
+** not posix compliant. Under LinuxThreads, a lock created by thread
+** A cannot be modified or overridden by a different thread B.
+** Only thread A can modify the lock. Locking behavior is correct
+** if the appliation uses the newer Native Posix Thread Library (NPTL)
+** on linux - with NPTL a lock created by thread A can override locks
+** in thread B. But there is no way to know at compile-time which
+** threading library is being used. So there is no way to know at
+** compile-time whether or not thread A can override locks on thread B.
+** We have to do a run-time check to discover the behavior of the
+** current process.
+**
+** On systems where thread A is unable to modify locks created by
+** thread B, we have to keep track of which thread created each
+** lock. Hence there is an extra field in the key to the unixLockInfo
+** structure to record this information. And on those systems it
+** is illegal to begin a transaction in one thread and finish it
+** in another. For this latter restriction, there is no work-around.
+** It is a limitation of LinuxThreads.
+*/
+
+/*
+** Set or check the unixFile.tid field. This field is set when an unixFile
+** is first opened. All subsequent uses of the unixFile verify that the
+** same thread is operating on the unixFile. Some operating systems do
+** not allow locks to be overridden by other threads and that restriction
+** means that sqlite3* database handles cannot be moved from one thread
+** to another while locks are held.
+**
+** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to
+** another as long as we are running on a system that supports threads
+** overriding each others locks (which is now the most common behavior)
+** or if no locks are held. But the unixFile.pLock field needs to be
+** recomputed because its key includes the thread-id. See the
+** transferOwnership() function below for additional information
*/
+#if SQLITE_THREADSAFE && defined(__linux__)
+# define SET_THREADID(X) (X)->tid = pthread_self()
+# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
+ !pthread_equal((X)->tid, pthread_self()))
+#else
+# define SET_THREADID(X)
+# define CHECK_THREADID(X) 0
+#endif
/*
** An instance of the following structure serves as the key used
-** to locate a particular lockInfo structure given its inode.
-**
-** If threads cannot override each others locks, then we set the
-** lockKey.tid field to the thread ID. If threads can override
-** each others locks then tid is always set to zero. tid is omitted
-** if we compile without threading support.
+** to locate a particular unixOpenCnt structure given its inode. This
+** is the same as the unixLockKey except that the thread ID is omitted.
*/
-struct lockKey {
- dev_t dev; /* Device number */
- ino_t ino; /* Inode number */
-#ifdef SQLITE_UNIX_THREADS
- pthread_t tid; /* Thread ID or zero if threads can override each other */
+struct unixFileId {
+ dev_t dev; /* Device number */
+#if OS_VXWORKS
+ struct vxworksFileId *pId; /* Unique file ID for vxworks. */
+#else
+ ino_t ino; /* Inode number */
#endif
};
/*
-** An instance of the following structure is allocated for each open
-** inode on each thread with a different process ID. (Threads have
-** different process IDs on linux, but not on most other unixes.)
+** An instance of the following structure serves as the key used
+** to locate a particular unixLockInfo structure given its inode.
**
-** A single inode can have multiple file descriptors, so each OsFile
-** structure contains a pointer to an instance of this object and this
-** object keeps a count of the number of OsFiles pointing to it.
+** If threads cannot override each others locks (LinuxThreads), then we
+** set the unixLockKey.tid field to the thread ID. If threads can override
+** each others locks (Posix and NPTL) then tid is always set to zero.
+** tid is omitted if we compile without threading support or on an OS
+** other than linux.
*/
-struct lockInfo {
- struct lockKey key; /* The lookup key */
- int cnt; /* Number of SHARED locks held */
- int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
- int nRef; /* Number of pointers to this structure */
+struct unixLockKey {
+ struct unixFileId fid; /* Unique identifier for the file */
+#if SQLITE_THREADSAFE && defined(__linux__)
+ pthread_t tid; /* Thread ID of lock owner. Zero if not using LinuxThreads */
+#endif
};
/*
-** An instance of the following structure serves as the key used
-** to locate a particular openCnt structure given its inode. This
-** is the same as the lockKey except that the thread ID is omitted.
-*/
-struct openKey {
- dev_t dev; /* Device number */
- ino_t ino; /* Inode number */
+** An instance of the following structure is allocated for each open
+** inode. Or, on LinuxThreads, there is one of these structures for
+** each inode opened by each thread.
+**
+** A single inode can have multiple file descriptors, so each unixFile
+** structure contains a pointer to an instance of this object and this
+** object keeps a count of the number of unixFile pointing to it.
+*/
+struct unixLockInfo {
+ struct unixLockKey lockKey; /* The lookup key */
+ int cnt; /* Number of SHARED locks held */
+ int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
+ int nRef; /* Number of pointers to this structure */
+ struct unixLockInfo *pNext; /* List of all unixLockInfo objects */
+ struct unixLockInfo *pPrev; /* .... doubly linked */
};
/*
@@ -12226,58 +22261,39 @@ struct openKey {
** inode. If a close is attempted against an inode that is holding
** locks, the close is deferred until all locks clear by adding the
** file descriptor to be closed to the pending list.
-*/
-struct openCnt {
- struct openKey key; /* The lookup key */
- int nRef; /* Number of pointers to this structure */
- int nLock; /* Number of outstanding locks */
- int nPending; /* Number of pending close() operations */
- int *aPending; /* Malloced space holding fd's awaiting a close() */
+**
+** TODO: Consider changing this so that there is only a single file
+** descriptor for each open file, even when it is opened multiple times.
+** The close() system call would only occur when the last database
+** using the file closes.
+*/
+struct unixOpenCnt {
+ struct unixFileId fileId; /* The lookup key */
+ int nRef; /* Number of pointers to this structure */
+ int nLock; /* Number of outstanding locks */
+ UnixUnusedFd *pUnused; /* Unused file descriptors to close */
+#if OS_VXWORKS
+ sem_t *pSem; /* Named POSIX semaphore */
+ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
+#endif
+ struct unixOpenCnt *pNext, *pPrev; /* List of all unixOpenCnt objects */
};
-/*
-** These hash tables map inodes and file descriptors (really, lockKey and
-** openKey structures) into lockInfo and openCnt structures. Access to
-** these hash tables must be protected by a mutex.
-*/
-static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0,
- sqlite3ThreadSafeMalloc, sqlite3ThreadSafeFree, 0, 0};
-static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0,
- sqlite3ThreadSafeMalloc, sqlite3ThreadSafeFree, 0, 0};
-
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-/*
-** The locking styles are associated with the different file locking
-** capabilities supported by different file systems.
-**
-** POSIX locking style fully supports shared and exclusive byte-range locks
-** ADP locking only supports exclusive byte-range locks
-** FLOCK only supports a single file-global exclusive lock
-** DOTLOCK isn't a true locking style, it refers to the use of a special
-** file named the same as the database file with a '.lock' extension, this
-** can be used on file systems that do not offer any reliable file locking
-** NO locking means that no locking will be attempted, this is only used for
-** read-only file systems currently
-** UNSUPPORTED means that no locking will be attempted, this is only used for
-** file systems that are known to be unsupported
-*/
-typedef enum {
- posixLockingStyle = 0, /* standard posix-advisory locks */
- afpLockingStyle, /* use afp locks */
- flockLockingStyle, /* use flock() */
- dotlockLockingStyle, /* use <file>.lock files */
- noLockingStyle, /* useful for read-only file system */
- unsupportedLockingStyle /* indicates unsupported file system */
-} sqlite3LockingStyle;
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** Lists of all unixLockInfo and unixOpenCnt objects. These used to be hash
+** tables. But the number of objects is rarely more than a dozen and
+** never exceeds a few thousand. And lookup is not on a critical
+** path so a simple linked list will suffice.
+*/
+static struct unixLockInfo *lockList = 0;
+static struct unixOpenCnt *openList = 0;
-#ifdef SQLITE_UNIX_THREADS
/*
-** This variable records whether or not threads can override each others
+** This variable remembers whether or not threads can override each others
** locks.
**
-** 0: No. Threads cannot override each others locks.
-** 1: Yes. Threads can override each others locks.
+** 0: No. Threads cannot override each others locks. (LinuxThreads)
+** 1: Yes. Threads can override each others locks. (Posix & NLPT)
** -1: We don't know yet.
**
** On some systems, we know at compile-time if threads can override each
@@ -12290,13 +22306,15 @@ typedef enum {
** it a global so that the test code can change its value in order to verify
** that the right stuff happens in either case.
*/
-#ifndef SQLITE_THREAD_OVERRIDE_LOCK
-# define SQLITE_THREAD_OVERRIDE_LOCK -1
-#endif
-#ifdef SQLITE_TEST
+#if SQLITE_THREADSAFE && defined(__linux__)
+# ifndef SQLITE_THREAD_OVERRIDE_LOCK
+# define SQLITE_THREAD_OVERRIDE_LOCK -1
+# endif
+# ifdef SQLITE_TEST
int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
-#else
+# else
static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
+# endif
#endif
/*
@@ -12309,78 +22327,25 @@ struct threadTestData {
int result; /* Result of the locking operation */
};
-#ifdef SQLITE_LOCK_TRACE
+#if SQLITE_THREADSAFE && defined(__linux__)
/*
-** Print out information about all locking operations.
+** This function is used as the main routine for a thread launched by
+** testThreadLockingBehavior(). It tests whether the shared-lock obtained
+** by the main thread in testThreadLockingBehavior() conflicts with a
+** hypothetical write-lock obtained by this thread on the same file.
**
-** This routine is used for troubleshooting locks on multithreaded
-** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
-** command-line option on the compiler. This code is normally
-** turned off.
-*/
-static int lockTrace(int fd, int op, struct flock *p){
- char *zOpName, *zType;
- int s;
- int savedErrno;
- if( op==F_GETLK ){
- zOpName = "GETLK";
- }else if( op==F_SETLK ){
- zOpName = "SETLK";
- }else{
- s = fcntl(fd, op, p);
- sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
- return s;
- }
- if( p->l_type==F_RDLCK ){
- zType = "RDLCK";
- }else if( p->l_type==F_WRLCK ){
- zType = "WRLCK";
- }else if( p->l_type==F_UNLCK ){
- zType = "UNLCK";
- }else{
- assert( 0 );
- }
- assert( p->l_whence==SEEK_SET );
- s = fcntl(fd, op, p);
- savedErrno = errno;
- sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
- threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
- (int)p->l_pid, s);
- if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
- struct flock l2;
- l2 = *p;
- fcntl(fd, F_GETLK, &l2);
- if( l2.l_type==F_RDLCK ){
- zType = "RDLCK";
- }else if( l2.l_type==F_WRLCK ){
- zType = "WRLCK";
- }else if( l2.l_type==F_UNLCK ){
- zType = "UNLCK";
- }else{
- assert( 0 );
- }
- sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
- zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
- }
- errno = savedErrno;
- return s;
-}
-#define fcntl lockTrace
-#endif /* SQLITE_LOCK_TRACE */
-
-/*
-** The testThreadLockingBehavior() routine launches two separate
-** threads on this routine. This routine attempts to lock a file
-** descriptor then returns. The success or failure of that attempt
-** allows the testThreadLockingBehavior() procedure to determine
-** whether or not threads can override each others locks.
+** The write-lock is not actually acquired, as this is not possible if
+** the file is open in read-only mode (see ticket #3472).
*/
static void *threadLockingTest(void *pArg){
struct threadTestData *pData = (struct threadTestData*)pArg;
- pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
+ pData->result = fcntl(pData->fd, F_GETLK, &pData->lock);
return pArg;
}
+#endif /* SQLITE_THREADSAFE && defined(__linux__) */
+
+#if SQLITE_THREADSAFE && defined(__linux__)
/*
** This procedure attempts to determine whether or not threads
** can override each others locks then sets the
@@ -12388,208 +22353,216 @@ static void *threadLockingTest(void *pArg){
*/
static void testThreadLockingBehavior(int fd_orig){
int fd;
- struct threadTestData d[2];
- pthread_t t[2];
+ int rc;
+ struct threadTestData d;
+ struct flock l;
+ pthread_t t;
fd = dup(fd_orig);
if( fd<0 ) return;
- memset(d, 0, sizeof(d));
- d[0].fd = fd;
- d[0].lock.l_type = F_RDLCK;
- d[0].lock.l_len = 1;
- d[0].lock.l_start = 0;
- d[0].lock.l_whence = SEEK_SET;
- d[1] = d[0];
- d[1].lock.l_type = F_WRLCK;
- pthread_create(&t[0], 0, threadLockingTest, &d[0]);
- pthread_create(&t[1], 0, threadLockingTest, &d[1]);
- pthread_join(t[0], 0);
- pthread_join(t[1], 0);
- close(fd);
- threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
-}
-#endif /* SQLITE_UNIX_THREADS */
-
-/*
-** Release a lockInfo structure previously allocated by findLockInfo().
-*/
-static void releaseLockInfo(struct lockInfo *pLock){
- assert( sqlite3OsInMutex(1) );
- if (pLock == NULL)
- return;
- pLock->nRef--;
- if( pLock->nRef==0 ){
- sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
- sqlite3ThreadSafeFree(pLock);
+ memset(&l, 0, sizeof(l));
+ l.l_type = F_RDLCK;
+ l.l_len = 1;
+ l.l_start = 0;
+ l.l_whence = SEEK_SET;
+ rc = fcntl(fd_orig, F_SETLK, &l);
+ if( rc!=0 ) return;
+ memset(&d, 0, sizeof(d));
+ d.fd = fd;
+ d.lock = l;
+ d.lock.l_type = F_WRLCK;
+ if( pthread_create(&t, 0, threadLockingTest, &d)==0 ){
+ pthread_join(t, 0);
}
+ close(fd);
+ if( d.result!=0 ) return;
+ threadsOverrideEachOthersLocks = (d.lock.l_type==F_UNLCK);
}
+#endif /* SQLITE_THREADSAFE && defined(__linux__) */
/*
-** Release a openCnt structure previously allocated by findLockInfo().
+** Release a unixLockInfo structure previously allocated by findLockInfo().
+**
+** The mutex entered using the unixEnterMutex() function must be held
+** when this function is called.
*/
-static void releaseOpenCnt(struct openCnt *pOpen){
- assert( sqlite3OsInMutex(1) );
- if (pOpen == NULL)
- return;
- pOpen->nRef--;
- if( pOpen->nRef==0 ){
- sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
- free(pOpen->aPending);
- sqlite3ThreadSafeFree(pOpen);
+static void releaseLockInfo(struct unixLockInfo *pLock){
+ assert( unixMutexHeld() );
+ if( pLock ){
+ pLock->nRef--;
+ if( pLock->nRef==0 ){
+ if( pLock->pPrev ){
+ assert( pLock->pPrev->pNext==pLock );
+ pLock->pPrev->pNext = pLock->pNext;
+ }else{
+ assert( lockList==pLock );
+ lockList = pLock->pNext;
+ }
+ if( pLock->pNext ){
+ assert( pLock->pNext->pPrev==pLock );
+ pLock->pNext->pPrev = pLock->pPrev;
+ }
+ sqlite3_free(pLock);
+ }
}
}
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
/*
-** Tests a byte-range locking query to see if byte range locks are
-** supported, if not we fall back to dotlockLockingStyle.
-*/
-static sqlite3LockingStyle sqlite3TestLockingStyle(const char *filePath,
- int fd) {
- /* test byte-range lock using fcntl */
- struct flock lockInfo;
-
- lockInfo.l_len = 1;
- lockInfo.l_start = 0;
- lockInfo.l_whence = SEEK_SET;
- lockInfo.l_type = F_RDLCK;
-
- if (fcntl(fd, F_GETLK, &lockInfo) != -1) {
- return posixLockingStyle;
- }
-
- /* testing for flock can give false positives. So if if the above test
- ** fails, then we fall back to using dot-lock style locking.
- */
- return dotlockLockingStyle;
-}
-
-/*
-** Examines the f_fstypename entry in the statfs structure as returned by
-** stat() for the file system hosting the database file, assigns the
-** appropriate locking style based on it's value. These values and
-** assignments are based on Darwin/OSX behavior and have not been tested on
-** other systems.
+** Release a unixOpenCnt structure previously allocated by findLockInfo().
+**
+** The mutex entered using the unixEnterMutex() function must be held
+** when this function is called.
*/
-static sqlite3LockingStyle sqlite3DetectLockingStyle(const char *filePath,
- int fd) {
-
-#ifdef SQLITE_FIXED_LOCKING_STYLE
- return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE;
-#else
- struct statfs fsInfo;
+static void releaseOpenCnt(struct unixOpenCnt *pOpen){
+ assert( unixMutexHeld() );
+ if( pOpen ){
+ pOpen->nRef--;
+ if( pOpen->nRef==0 ){
+ if( pOpen->pPrev ){
+ assert( pOpen->pPrev->pNext==pOpen );
+ pOpen->pPrev->pNext = pOpen->pNext;
+ }else{
+ assert( openList==pOpen );
+ openList = pOpen->pNext;
+ }
+ if( pOpen->pNext ){
+ assert( pOpen->pNext->pPrev==pOpen );
+ pOpen->pNext->pPrev = pOpen->pPrev;
+ }
+#if SQLITE_THREADSAFE && defined(__linux__)
+ assert( !pOpen->pUnused || threadsOverrideEachOthersLocks==0 );
+#endif
- if (statfs(filePath, &fsInfo) == -1)
- return sqlite3TestLockingStyle(filePath, fd);
-
- if (fsInfo.f_flags & MNT_RDONLY)
- return noLockingStyle;
-
- if( (!strcmp(fsInfo.f_fstypename, "hfs")) ||
- (!strcmp(fsInfo.f_fstypename, "ufs")) )
- return posixLockingStyle;
-
- if(!strcmp(fsInfo.f_fstypename, "afpfs"))
- return afpLockingStyle;
-
- if(!strcmp(fsInfo.f_fstypename, "nfs"))
- return sqlite3TestLockingStyle(filePath, fd);
-
- if(!strcmp(fsInfo.f_fstypename, "smbfs"))
- return flockLockingStyle;
-
- if(!strcmp(fsInfo.f_fstypename, "msdos"))
- return dotlockLockingStyle;
-
- if(!strcmp(fsInfo.f_fstypename, "webdav"))
- return unsupportedLockingStyle;
-
- return sqlite3TestLockingStyle(filePath, fd);
-#endif // SQLITE_FIXED_LOCKING_STYLE
+ /* If pOpen->pUnused is not null, then memory and file-descriptors
+ ** are leaked.
+ **
+ ** This will only happen if, under Linuxthreads, the user has opened
+ ** a transaction in one thread, then attempts to close the database
+ ** handle from another thread (without first unlocking the db file).
+ ** This is a misuse. */
+ sqlite3_free(pOpen);
+ }
+ }
}
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
/*
-** Given a file descriptor, locate lockInfo and openCnt structures that
+** Given a file descriptor, locate unixLockInfo and unixOpenCnt structures that
** describes that file descriptor. Create new ones if necessary. The
** return values might be uninitialized if an error occurs.
**
-** Return the number of errors.
+** The mutex entered using the unixEnterMutex() function must be held
+** when this function is called.
+**
+** Return an appropriate error code.
*/
static int findLockInfo(
- int fd, /* The file descriptor used in the key */
- struct lockInfo **ppLock, /* Return the lockInfo structure here */
- struct openCnt **ppOpen /* Return the openCnt structure here */
+ unixFile *pFile, /* Unix file with file desc used in the key */
+ struct unixLockInfo **ppLock, /* Return the unixLockInfo structure here */
+ struct unixOpenCnt **ppOpen /* Return the unixOpenCnt structure here */
){
- int rc;
- struct lockKey key1;
- struct openKey key2;
- struct stat statbuf;
- struct lockInfo *pLock;
- struct openCnt *pOpen;
+ int rc; /* System call return code */
+ int fd; /* The file descriptor for pFile */
+ struct unixLockKey lockKey; /* Lookup key for the unixLockInfo structure */
+ struct unixFileId fileId; /* Lookup key for the unixOpenCnt struct */
+ struct stat statbuf; /* Low-level file information */
+ struct unixLockInfo *pLock = 0;/* Candidate unixLockInfo object */
+ struct unixOpenCnt *pOpen; /* Candidate unixOpenCnt object */
+
+ assert( unixMutexHeld() );
+
+ /* Get low-level information about the file that we can used to
+ ** create a unique name for the file.
+ */
+ fd = pFile->h;
rc = fstat(fd, &statbuf);
- if( rc!=0 ) return 1;
+ if( rc!=0 ){
+ pFile->lastErrno = errno;
+#ifdef EOVERFLOW
+ if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
+#endif
+ return SQLITE_IOERR;
+ }
- assert( sqlite3OsInMutex(1) );
- memset(&key1, 0, sizeof(key1));
- key1.dev = statbuf.st_dev;
- key1.ino = statbuf.st_ino;
-#ifdef SQLITE_UNIX_THREADS
+#ifdef __APPLE__
+ /* On OS X on an msdos filesystem, the inode number is reported
+ ** incorrectly for zero-size files. See ticket #3260. To work
+ ** around this problem (we consider it a bug in OS X, not SQLite)
+ ** we always increase the file size to 1 by writing a single byte
+ ** prior to accessing the inode number. The one byte written is
+ ** an ASCII 'S' character which also happens to be the first byte
+ ** in the header of every SQLite database. In this way, if there
+ ** is a race condition such that another thread has already populated
+ ** the first page of the database, no damage is done.
+ */
+ if( statbuf.st_size==0 ){
+ rc = write(fd, "S", 1);
+ if( rc!=1 ){
+ return SQLITE_IOERR;
+ }
+ rc = fstat(fd, &statbuf);
+ if( rc!=0 ){
+ pFile->lastErrno = errno;
+ return SQLITE_IOERR;
+ }
+ }
+#endif
+
+ memset(&lockKey, 0, sizeof(lockKey));
+ lockKey.fid.dev = statbuf.st_dev;
+#if OS_VXWORKS
+ lockKey.fid.pId = pFile->pId;
+#else
+ lockKey.fid.ino = statbuf.st_ino;
+#endif
+#if SQLITE_THREADSAFE && defined(__linux__)
if( threadsOverrideEachOthersLocks<0 ){
testThreadLockingBehavior(fd);
}
- key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
+ lockKey.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
#endif
- memset(&key2, 0, sizeof(key2));
- key2.dev = statbuf.st_dev;
- key2.ino = statbuf.st_ino;
- pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
- if( pLock==0 ){
- struct lockInfo *pOld;
- pLock = sqlite3ThreadSafeMalloc( sizeof(*pLock) );
+ fileId = lockKey.fid;
+ if( ppLock!=0 ){
+ pLock = lockList;
+ while( pLock && memcmp(&lockKey, &pLock->lockKey, sizeof(lockKey)) ){
+ pLock = pLock->pNext;
+ }
if( pLock==0 ){
- rc = 1;
- goto exit_findlockinfo;
- }
- pLock->key = key1;
- pLock->nRef = 1;
- pLock->cnt = 0;
- pLock->locktype = 0;
- pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
- if( pOld!=0 ){
- assert( pOld==pLock );
- sqlite3ThreadSafeFree(pLock);
- rc = 1;
- goto exit_findlockinfo;
+ pLock = sqlite3_malloc( sizeof(*pLock) );
+ if( pLock==0 ){
+ rc = SQLITE_NOMEM;
+ goto exit_findlockinfo;
+ }
+ pLock->lockKey = lockKey;
+ pLock->nRef = 1;
+ pLock->cnt = 0;
+ pLock->locktype = 0;
+ pLock->pNext = lockList;
+ pLock->pPrev = 0;
+ if( lockList ) lockList->pPrev = pLock;
+ lockList = pLock;
+ }else{
+ pLock->nRef++;
}
- }else{
- pLock->nRef++;
+ *ppLock = pLock;
}
- *ppLock = pLock;
if( ppOpen!=0 ){
- pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
+ pOpen = openList;
+ while( pOpen && memcmp(&fileId, &pOpen->fileId, sizeof(fileId)) ){
+ pOpen = pOpen->pNext;
+ }
if( pOpen==0 ){
- struct openCnt *pOld;
- pOpen = sqlite3ThreadSafeMalloc( sizeof(*pOpen) );
+ pOpen = sqlite3_malloc( sizeof(*pOpen) );
if( pOpen==0 ){
releaseLockInfo(pLock);
- rc = 1;
+ rc = SQLITE_NOMEM;
goto exit_findlockinfo;
}
- pOpen->key = key2;
+ memset(pOpen, 0, sizeof(*pOpen));
+ pOpen->fileId = fileId;
pOpen->nRef = 1;
- pOpen->nLock = 0;
- pOpen->nPending = 0;
- pOpen->aPending = 0;
- pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
- if( pOld!=0 ){
- assert( pOld==pOpen );
- sqlite3ThreadSafeFree(pOpen);
- releaseLockInfo(pLock);
- rc = 1;
- goto exit_findlockinfo;
- }
+ pOpen->pNext = openList;
+ if( openList ) openList->pPrev = pOpen;
+ openList = pOpen;
}else{
pOpen->nRef++;
}
@@ -12600,38 +22573,18 @@ exit_findlockinfo:
return rc;
}
-#ifdef SQLITE_DEBUG
-/*
-** Helper function for printing out trace information from debugging
-** binaries. This returns the string represetation of the supplied
-** integer lock-type.
-*/
-static const char *locktypeName(int locktype){
- switch( locktype ){
- case NO_LOCK: return "NONE";
- case SHARED_LOCK: return "SHARED";
- case RESERVED_LOCK: return "RESERVED";
- case PENDING_LOCK: return "PENDING";
- case EXCLUSIVE_LOCK: return "EXCLUSIVE";
- }
- return "ERROR";
-}
-#endif
-
/*
** If we are currently in a different thread than the thread that the
** unixFile argument belongs to, then transfer ownership of the unixFile
** over to the current thread.
**
-** A unixFile is only owned by a thread on systems where one thread is
-** unable to override locks created by a different thread. RedHat9 is
-** an example of such a system.
+** A unixFile is only owned by a thread on systems that use LinuxThreads.
**
** Ownership transfer is only allowed if the unixFile is currently unlocked.
** If the unixFile is locked and an ownership is wrong, then return
** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
*/
-#ifdef SQLITE_UNIX_THREADS
+#if SQLITE_THREADSAFE && defined(__linux__)
static int transferOwnership(unixFile *pFile){
int rc;
pthread_t hSelf;
@@ -12654,7 +22607,7 @@ static int transferOwnership(unixFile *pFile){
pFile->tid = hSelf;
if (pFile->pLock != NULL) {
releaseLockInfo(pFile->pLock);
- rc = findLockInfo(pFile->h, &pFile->pLock, 0);
+ rc = findLockInfo(pFile, &pFile->pLock, 0);
OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
locktypeName(pFile->locktype),
locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
@@ -12663,561 +22616,113 @@ static int transferOwnership(unixFile *pFile){
return SQLITE_OK;
}
}
-#else
+#else /* if not SQLITE_THREADSAFE */
/* On single-threaded builds, ownership transfer is a no-op */
# define transferOwnership(X) SQLITE_OK
-#endif
-
-/*
-** Delete the named file
-*/
-int sqlite3UnixDelete(const char *zFilename){
- SimulateIOError(return SQLITE_IOERR_DELETE);
- unlink(zFilename);
- return SQLITE_OK;
-}
-
-/*
-** Return TRUE if the named file exists.
-*/
-int sqlite3UnixFileExists(const char *zFilename){
- return access(zFilename, 0)==0;
-}
+#endif /* SQLITE_THREADSAFE */
-/* Forward declaration */
-static int allocateUnixFile(
- int h, /* File descriptor of the open file */
- OsFile **pId, /* Write the real file descriptor here */
- const char *zFilename, /* Name of the file being opened */
- int delFlag /* If true, make sure the file deletes on close */
-);
/*
-** Attempt to open a file for both reading and writing. If that
-** fails, try opening it read-only. If the file does not exist,
-** try to create it.
-**
-** On success, a handle for the open file is written to *id
-** and *pReadonly is set to 0 if the file was opened for reading and
-** writing or 1 if the file was opened read-only. The function returns
-** SQLITE_OK.
-**
-** On failure, the function returns SQLITE_CANTOPEN and leaves
-** *id and *pReadonly unchanged.
-*/
-int sqlite3UnixOpenReadWrite(
- const char *zFilename,
- OsFile **pId,
- int *pReadonly
-){
- int h;
-
- CRASH_TEST_OVERRIDE(sqlite3CrashOpenReadWrite, zFilename, pId, pReadonly);
- assert( 0==*pId );
- h = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY,
- SQLITE_DEFAULT_FILE_PERMISSIONS);
- if( h<0 ){
-#ifdef EISDIR
- if( errno==EISDIR ){
- return SQLITE_CANTOPEN;
- }
-#endif
- h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
- if( h<0 ){
- return SQLITE_CANTOPEN;
- }
- *pReadonly = 1;
- }else{
- *pReadonly = 0;
- }
- return allocateUnixFile(h, pId, zFilename, 0);
-}
-
-
-/*
-** Attempt to open a new file for exclusive access by this process.
-** The file will be opened for both reading and writing. To avoid
-** a potential security problem, we do not allow the file to have
-** previously existed. Nor do we allow the file to be a symbolic
-** link.
-**
-** If delFlag is true, then make arrangements to automatically delete
-** the file when it is closed.
-**
-** On success, write the file handle into *id and return SQLITE_OK.
-**
-** On failure, return SQLITE_CANTOPEN.
-*/
-int sqlite3UnixOpenExclusive(const char *zFilename, OsFile **pId, int delFlag){
- int h;
-
- CRASH_TEST_OVERRIDE(sqlite3CrashOpenExclusive, zFilename, pId, delFlag);
- assert( 0==*pId );
- h = open(zFilename,
- O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY,
- delFlag ? 0600 : SQLITE_DEFAULT_FILE_PERMISSIONS);
- if( h<0 ){
- return SQLITE_CANTOPEN;
- }
- return allocateUnixFile(h, pId, zFilename, delFlag);
-}
-
-/*
-** Attempt to open a new file for read-only access.
-**
-** On success, write the file handle into *id and return SQLITE_OK.
-**
-** On failure, return SQLITE_CANTOPEN.
-*/
-int sqlite3UnixOpenReadOnly(const char *zFilename, OsFile **pId){
- int h;
-
- CRASH_TEST_OVERRIDE(sqlite3CrashOpenReadOnly, zFilename, pId, 0);
- assert( 0==*pId );
- h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
- if( h<0 ){
- return SQLITE_CANTOPEN;
- }
- return allocateUnixFile(h, pId, zFilename, 0);
-}
-
-/*
-** Attempt to open a file descriptor for the directory that contains a
-** file. This file descriptor can be used to fsync() the directory
-** in order to make sure the creation of a new file is actually written
-** to disk.
-**
-** This routine is only meaningful for Unix. It is a no-op under
-** windows since windows does not support hard links.
-**
-** If FULL_FSYNC is enabled, this function is not longer useful,
-** a FULL_FSYNC sync applies to all pending disk operations.
-**
-** On success, a handle for a previously open file at *id is
-** updated with the new directory file descriptor and SQLITE_OK is
-** returned.
-**
-** On failure, the function returns SQLITE_CANTOPEN and leaves
-** *id unchanged.
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
-static int unixOpenDirectory(
- OsFile *id,
- const char *zDirname
-){
+static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
unixFile *pFile = (unixFile*)id;
- assert( pFile!=0 );
- SET_THREADID(pFile);
- assert( pFile->dirfd<0 );
- pFile->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0);
- if( pFile->dirfd<0 ){
- return SQLITE_CANTOPEN;
- }
- OSTRACE3("OPENDIR %-3d %s\n", pFile->dirfd, zDirname);
- return SQLITE_OK;
-}
-
-/*
-** Create a temporary file name in zBuf. zBuf must be big enough to
-** hold at least SQLITE_TEMPNAME_SIZE characters.
-*/
-int sqlite3UnixTempFileName(char *zBuf){
- static const char *azDirs[] = {
- 0,
- "/var/tmp",
- "/usr/tmp",
- "/tmp",
- ".",
- };
- static const unsigned char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- struct stat buf;
- const char *zDir = ".";
- azDirs[0] = sqlite3_temp_directory;
- for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
- if( azDirs[i]==0 ) continue;
- if( stat(azDirs[i], &buf) ) continue;
- if( !S_ISDIR(buf.st_mode) ) continue;
- if( access(azDirs[i], 07) ) continue;
- zDir = azDirs[i];
- break;
- }
- do{
- sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
- j = strlen(zBuf);
- sqlite3Randomness(15, &zBuf[j]);
- for(i=0; i<15; i++, j++){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- }while( access(zBuf,0)==0 );
- return SQLITE_OK;
-}
-
-/*
-** Check that a given pathname is a directory and is writable
-**
-*/
-int sqlite3UnixIsDirWritable(char *zBuf){
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
- struct stat buf;
- if( zBuf==0 ) return 0;
- if( zBuf[0]==0 ) return 0;
- if( stat(zBuf, &buf) ) return 0;
- if( !S_ISDIR(buf.st_mode) ) return 0;
- if( access(zBuf, 07) ) return 0;
-#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
- return 1;
-}
-/*
-** Seek to the offset in id->offset then read cnt bytes into pBuf.
-** Return the number of bytes actually read. Update the offset.
-*/
-static int seekAndRead(unixFile *id, void *pBuf, int cnt){
- int got;
- i64 newOffset;
- TIMER_START;
-#if defined(USE_PREAD)
- got = pread(id->h, pBuf, cnt, id->offset);
- SimulateIOError( got = -1 );
-#elif defined(USE_PREAD64)
- got = pread64(id->h, pBuf, cnt, id->offset);
- SimulateIOError( got = -1 );
-#else
- newOffset = lseek(id->h, id->offset, SEEK_SET);
- SimulateIOError( newOffset-- );
- if( newOffset!=id->offset ){
- return -1;
- }
- got = read(id->h, pBuf, cnt);
-#endif
- TIMER_END;
- OSTRACE5("READ %-3d %5d %7lld %d\n", id->h, got, id->offset, TIMER_ELAPSED);
- if( got>0 ){
- id->offset += got;
- }
- return got;
-}
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
-/*
-** Read data from a file into a buffer. Return SQLITE_OK if all
-** bytes were read successfully and SQLITE_IOERR if anything goes
-** wrong.
-*/
-static int unixRead(OsFile *id, void *pBuf, int amt){
- int got;
- assert( id );
- got = seekAndRead((unixFile*)id, pBuf, amt);
- if( got==amt ){
- return SQLITE_OK;
- }else if( got<0 ){
- return SQLITE_IOERR_READ;
- }else{
- memset(&((char*)pBuf)[got], 0, amt-got);
- return SQLITE_IOERR_SHORT_READ;
- }
-}
+ assert( pFile );
+ unixEnterMutex(); /* Because pFile->pLock is shared across threads */
-/*
-** Seek to the offset in id->offset then read cnt bytes into pBuf.
-** Return the number of bytes actually read. Update the offset.
-*/
-static int seekAndWrite(unixFile *id, const void *pBuf, int cnt){
- int got;
- i64 newOffset;
- TIMER_START;
-#if defined(USE_PREAD)
- got = pwrite(id->h, pBuf, cnt, id->offset);
-#elif defined(USE_PREAD64)
- got = pwrite64(id->h, pBuf, cnt, id->offset);
-#else
- newOffset = lseek(id->h, id->offset, SEEK_SET);
- if( newOffset!=id->offset ){
- return -1;
- }
- got = write(id->h, pBuf, cnt);
-#endif
- TIMER_END;
- OSTRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, id->offset, TIMER_ELAPSED);
- if( got>0 ){
- id->offset += got;
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->pLock->locktype>SHARED_LOCK ){
+ reserved = 1;
}
- return got;
-}
-
-/*
-** Write data from a buffer into a file. Return SQLITE_OK on success
-** or some other error code on failure.
-*/
-static int unixWrite(OsFile *id, const void *pBuf, int amt){
- int wrote = 0;
- assert( id );
- assert( amt>0 );
- while( amt>0 && (wrote = seekAndWrite((unixFile*)id, pBuf, amt))>0 ){
- amt -= wrote;
- pBuf = &((char*)pBuf)[wrote];
- }
- SimulateIOError(( wrote=(-1), amt=1 ));
- SimulateDiskfullError(( wrote=0, amt=1 ));
- if( amt>0 ){
- if( wrote<0 ){
- return SQLITE_IOERR_WRITE;
- }else{
- return SQLITE_FULL;
+ /* Otherwise see if some other process holds it.
+ */
+#ifndef __DJGPP__
+ if( !reserved ){
+ struct flock lock;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = RESERVED_BYTE;
+ lock.l_len = 1;
+ lock.l_type = F_WRLCK;
+ if (-1 == fcntl(pFile->h, F_GETLK, &lock)) {
+ int tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
+ pFile->lastErrno = tErrno;
+ } else if( lock.l_type!=F_UNLCK ){
+ reserved = 1;
}
}
- return SQLITE_OK;
-}
-
-/*
-** Move the read/write pointer in a file.
-*/
-static int unixSeek(OsFile *id, i64 offset){
- assert( id );
-#ifdef SQLITE_TEST
- if( offset ) SimulateDiskfullError(return SQLITE_FULL);
-#endif
- ((unixFile*)id)->offset = offset;
- return SQLITE_OK;
-}
-
-#ifdef SQLITE_TEST
-/*
-** Count the number of fullsyncs and normal syncs. This is used to test
-** that syncs and fullsyncs are occuring at the right times.
-*/
-int sqlite3_sync_count = 0;
-int sqlite3_fullsync_count = 0;
-#endif
-
-/*
-** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
-** Otherwise use fsync() in its place.
-*/
-#ifndef HAVE_FDATASYNC
-# define fdatasync fsync
-#endif
-
-/*
-** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
-** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
-** only available on Mac OS X. But that could change.
-*/
-#ifdef F_FULLFSYNC
-# define HAVE_FULLFSYNC 1
-#else
-# define HAVE_FULLFSYNC 0
#endif
+ unixLeaveMutex();
+ OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
-/*
-** The fsync() system call does not work as advertised on many
-** unix systems. The following procedure is an attempt to make
-** it work better.
-**
-** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
-** for testing when we want to run through the test suite quickly.
-** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
-** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
-** or power failure will likely corrupt the database file.
-*/
-static int full_fsync(int fd, int fullSync, int dataOnly){
- int rc;
-
- /* Record the number of times that we do a normal fsync() and
- ** FULLSYNC. This is used during testing to verify that this procedure
- ** gets called with the correct arguments.
- */
-#ifdef SQLITE_TEST
- if( fullSync ) sqlite3_fullsync_count++;
- sqlite3_sync_count++;
-#endif
-
- /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
- ** no-op
- */
-#ifdef SQLITE_NO_SYNC
- rc = SQLITE_OK;
-#else
-
-#if HAVE_FULLFSYNC
- if( fullSync ){
- rc = fcntl(fd, F_FULLFSYNC, 0);
- }else{
- rc = 1;
- }
- /* If the FULLFSYNC failed, fall back to attempting an fsync().
- * It shouldn't be possible for fullfsync to fail on the local
- * file system (on OSX), so failure indicates that FULLFSYNC
- * isn't supported for this file system. So, attempt an fsync
- * and (for now) ignore the overhead of a superfluous fcntl call.
- * It'd be better to detect fullfsync support once and avoid
- * the fcntl call every time sync is called.
- */
- if( rc ) rc = fsync(fd);
-
-#else
- if( dataOnly ){
- rc = fdatasync(fd);
- }else{
- rc = fsync(fd);
- }
-#endif /* HAVE_FULLFSYNC */
-#endif /* defined(SQLITE_NO_SYNC) */
-
+ *pResOut = reserved;
return rc;
}
/*
-** Make sure all writes to a particular file are committed to disk.
+** Perform a file locking operation on a range of bytes in a file.
+** The "op" parameter should be one of F_RDLCK, F_WRLCK, or F_UNLCK.
+** Return 0 on success or -1 for failure. On failure, write the error
+** code into *pErrcode.
**
-** If dataOnly==0 then both the file itself and its metadata (file
-** size, access time, etc) are synced. If dataOnly!=0 then only the
-** file data is synced.
+** If the SQLITE_WHOLE_FILE_LOCKING bit is clear, then only lock
+** the range of bytes on the locking page between SHARED_FIRST and
+** SHARED_SIZE. If SQLITE_WHOLE_FILE_LOCKING is set, then lock all
+** bytes from 0 up to but not including PENDING_BYTE, and all bytes
+** that follow SHARED_FIRST.
**
-** Under Unix, also make sure that the directory entry for the file
-** has been created by fsync-ing the directory that contains the file.
-** If we do not do this and we encounter a power failure, the directory
-** entry for the journal might not exist after we reboot. The next
-** SQLite to access the file will not know that the journal exists (because
-** the directory entry for the journal was never created) and the transaction
-** will not roll back - possibly leading to database corruption.
-*/
-static int unixSync(OsFile *id, int dataOnly){
- int rc;
- unixFile *pFile = (unixFile*)id;
- assert( pFile );
- OSTRACE2("SYNC %-3d\n", pFile->h);
- rc = full_fsync(pFile->h, pFile->fullSync, dataOnly);
- SimulateIOError( rc=1 );
- if( rc ){
- return SQLITE_IOERR_FSYNC;
- }
- if( pFile->dirfd>=0 ){
- OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
- HAVE_FULLFSYNC, pFile->fullSync);
-#ifndef SQLITE_DISABLE_DIRSYNC
- /* The directory sync is only attempted if full_fsync is
- ** turned off or unavailable. If a full_fsync occurred above,
- ** then the directory sync is superfluous.
- */
- if( (!HAVE_FULLFSYNC || !pFile->fullSync) && full_fsync(pFile->dirfd,0,0) ){
- /*
- ** We have received multiple reports of fsync() returning
- ** errors when applied to directories on certain file systems.
- ** A failed directory sync is not a big deal. So it seems
- ** better to ignore the error. Ticket #1657
- */
- /* return SQLITE_IOERR; */
- }
-#endif
- close(pFile->dirfd); /* Only need to sync once, so close the directory */
- pFile->dirfd = -1; /* when we are done. */
- }
- return SQLITE_OK;
-}
-
-/*
-** Sync the directory zDirname. This is a no-op on operating systems other
-** than UNIX.
+** In other words, of SQLITE_WHOLE_FILE_LOCKING if false (the historical
+** default case) then only lock a small range of bytes from SHARED_FIRST
+** through SHARED_FIRST+SHARED_SIZE-1. But if SQLITE_WHOLE_FILE_LOCKING is
+** true then lock every byte in the file except for PENDING_BYTE and
+** RESERVED_BYTE.
**
-** This is used to make sure the master journal file has truely been deleted
-** before making changes to individual journals on a multi-database commit.
-** The F_FULLFSYNC option is not needed here.
+** SQLITE_WHOLE_FILE_LOCKING=true overlaps SQLITE_WHOLE_FILE_LOCKING=false
+** and so the locking schemes are compatible. One type of lock will
+** effectively exclude the other type. The reason for using the
+** SQLITE_WHOLE_FILE_LOCKING=true is that by indicating the full range
+** of bytes to be read or written, we give hints to NFS to help it
+** maintain cache coherency. On the other hand, whole file locking
+** is slower, so we don't want to use it except for NFS.
*/
-int sqlite3UnixSyncDirectory(const char *zDirname){
-#ifdef SQLITE_DISABLE_DIRSYNC
- return SQLITE_OK;
-#else
- int fd;
- int r;
- fd = open(zDirname, O_RDONLY|O_BINARY, 0);
- OSTRACE3("DIRSYNC %-3d (%s)\n", fd, zDirname);
- if( fd<0 ){
- return SQLITE_CANTOPEN;
- }
- r = fsync(fd);
- close(fd);
- SimulateIOError( r=1 );
- if( r ){
- return SQLITE_IOERR_DIR_FSYNC;
- }else{
- return SQLITE_OK;
- }
-#endif
-}
-
-/*
-** Truncate an open file to a specified size
-*/
-static int unixTruncate(OsFile *id, i64 nByte){
+static int rangeLock(unixFile *pFile, int op, int *pErrcode){
+ struct flock lock;
int rc;
- assert( id );
- rc = ftruncate(((unixFile*)id)->h, nByte);
- SimulateIOError( rc=1 );
- if( rc ){
- return SQLITE_IOERR_TRUNCATE;
+ lock.l_type = op;
+ lock.l_start = SHARED_FIRST;
+ lock.l_whence = SEEK_SET;
+ if( (pFile->fileFlags & SQLITE_WHOLE_FILE_LOCKING)==0 ){
+ lock.l_len = SHARED_SIZE;
+ rc = fcntl(pFile->h, F_SETLK, &lock);
+ *pErrcode = errno;
}else{
- return SQLITE_OK;
- }
-}
-
-/*
-** Determine the current size of a file in bytes
-*/
-static int unixFileSize(OsFile *id, i64 *pSize){
- int rc;
- struct stat buf;
- assert( id );
- rc = fstat(((unixFile*)id)->h, &buf);
- SimulateIOError( rc=1 );
- if( rc!=0 ){
- return SQLITE_IOERR_FSTAT;
- }
- *pSize = buf.st_size;
- return SQLITE_OK;
-}
-
-/*
-** This routine checks if there is a RESERVED lock held on the specified
-** file by this or any other process. If such a lock is held, return
-** non-zero. If the file is unlocked or holds only SHARED locks, then
-** return zero.
-*/
-static int unixCheckReservedLock(OsFile *id){
- int r = 0;
- unixFile *pFile = (unixFile*)id;
-
- assert( pFile );
- sqlite3OsEnterMutex(); /* Because pFile->pLock is shared across threads */
-
- /* Check if a thread in this process holds such a lock */
- if( pFile->pLock->locktype>SHARED_LOCK ){
- r = 1;
- }
-
- /* Otherwise see if some other process holds it.
- */
- if( !r ){
- struct flock lock;
- lock.l_whence = SEEK_SET;
- lock.l_start = RESERVED_BYTE;
- lock.l_len = 1;
- lock.l_type = F_WRLCK;
- fcntl(pFile->h, F_GETLK, &lock);
- if( lock.l_type!=F_UNLCK ){
- r = 1;
+ lock.l_len = 0;
+ rc = fcntl(pFile->h, F_SETLK, &lock);
+ *pErrcode = errno;
+ if( NEVER(op==F_UNLCK) || rc!=(-1) ){
+ lock.l_start = 0;
+ lock.l_len = PENDING_BYTE;
+ rc = fcntl(pFile->h, F_SETLK, &lock);
+ if( ALWAYS(op!=F_UNLCK) && rc==(-1) ){
+ *pErrcode = errno;
+ lock.l_type = F_UNLCK;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = 0;
+ fcntl(pFile->h, F_SETLK, &lock);
+ }
}
}
-
- sqlite3OsLeaveMutex();
- OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
-
- return r;
+ return rc;
}
/*
@@ -13244,7 +22749,7 @@ static int unixCheckReservedLock(OsFile *id){
** This routine will only increase a lock. Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
-static int unixLock(OsFile *id, int locktype){
+static int unixLock(sqlite3_file *id, int locktype){
/* The following describes the implementation of the various locks and
** lock transitions in terms of the POSIX advisory shared and exclusive
** lock primitives (called read-locks and write-locks below, to avoid
@@ -13285,9 +22790,10 @@ static int unixLock(OsFile *id, int locktype){
*/
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
- struct lockInfo *pLock = pFile->pLock;
+ struct unixLockInfo *pLock = pFile->pLock;
struct flock lock;
- int s;
+ int s = 0;
+ int tErrno;
assert( pFile );
OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
@@ -13295,8 +22801,8 @@ static int unixLock(OsFile *id, int locktype){
locktypeName(pLock->locktype), pLock->cnt , getpid());
/* If there is already a lock of this type or more restrictive on the
- ** OsFile, do nothing. Don't use the end_lock: exit path, as
- ** sqlite3OsEnterMutex() hasn't been called yet.
+ ** unixFile, do nothing. Don't use the end_lock: exit path, as
+ ** unixEnterMutex() hasn't been called yet.
*/
if( pFile->locktype>=locktype ){
OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
@@ -13304,7 +22810,10 @@ static int unixLock(OsFile *id, int locktype){
return SQLITE_OK;
}
- /* Make sure the locking sequence is correct
+ /* Make sure the locking sequence is correct.
+ ** (1) We never move from unlocked to anything higher than shared lock.
+ ** (2) SQLite never explicitly requests a pendig lock.
+ ** (3) A shared lock is always held when a reserve lock is requested.
*/
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
assert( locktype!=PENDING_LOCK );
@@ -13312,18 +22821,18 @@ static int unixLock(OsFile *id, int locktype){
/* This mutex is needed because pFile->pLock is shared across threads
*/
- sqlite3OsEnterMutex();
+ unixEnterMutex();
/* Make sure the current thread owns the pFile.
*/
rc = transferOwnership(pFile);
if( rc!=SQLITE_OK ){
- sqlite3OsLeaveMutex();
+ unixLeaveMutex();
return rc;
}
pLock = pFile->pLock;
- /* If some thread using this PID has a lock via a different OsFile*
+ /* If some thread using this PID has a lock via a different unixFile*
** handle that precludes the requested lock, return BUSY.
*/
if( (pFile->locktype!=pLock->locktype &&
@@ -13348,14 +22857,13 @@ static int unixLock(OsFile *id, int locktype){
goto end_lock;
}
- lock.l_len = 1L;
-
- lock.l_whence = SEEK_SET;
/* A PENDING lock is needed before acquiring a SHARED lock and before
** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
** be released.
*/
+ lock.l_len = 1L;
+ lock.l_whence = SEEK_SET;
if( locktype==SHARED_LOCK
|| (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
){
@@ -13363,7 +22871,11 @@ static int unixLock(OsFile *id, int locktype){
lock.l_start = PENDING_BYTE;
s = fcntl(pFile->h, F_SETLK, &lock);
if( s==(-1) ){
- rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
goto end_lock;
}
}
@@ -13377,20 +22889,28 @@ static int unixLock(OsFile *id, int locktype){
assert( pLock->locktype==0 );
/* Now get the read-lock */
- lock.l_start = SHARED_FIRST;
- lock.l_len = SHARED_SIZE;
- s = fcntl(pFile->h, F_SETLK, &lock);
+ s = rangeLock(pFile, F_RDLCK, &tErrno);
/* Drop the temporary PENDING lock */
lock.l_start = PENDING_BYTE;
lock.l_len = 1L;
lock.l_type = F_UNLCK;
if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- goto end_lock;
+ if( s != -1 ){
+ /* This could happen with a network mount */
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
+ goto end_lock;
+ }
}
if( s==(-1) ){
- rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
}else{
pFile->locktype = SHARED_LOCK;
pFile->pOpen->nLock++;
@@ -13410,20 +22930,41 @@ static int unixLock(OsFile *id, int locktype){
switch( locktype ){
case RESERVED_LOCK:
lock.l_start = RESERVED_BYTE;
+ s = fcntl(pFile->h, F_SETLK, &lock);
+ tErrno = errno;
break;
case EXCLUSIVE_LOCK:
- lock.l_start = SHARED_FIRST;
- lock.l_len = SHARED_SIZE;
+ s = rangeLock(pFile, F_WRLCK, &tErrno);
break;
default:
assert(0);
}
- s = fcntl(pFile->h, F_SETLK, &lock);
if( s==(-1) ){
- rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
}
}
+
+#ifndef NDEBUG
+ /* Set up the transaction-counter change checking flags when
+ ** transitioning from a SHARED to a RESERVED lock. The change
+ ** from SHARED to RESERVED marks the beginning of a normal
+ ** write operation (not a hot journal rollback).
+ */
+ if( rc==SQLITE_OK
+ && pFile->locktype<=SHARED_LOCK
+ && locktype==RESERVED_LOCK
+ ){
+ pFile->transCntrChng = 0;
+ pFile->dbUpdate = 0;
+ pFile->inNormalWrite = 1;
+ }
+#endif
+
+
if( rc==SQLITE_OK ){
pFile->locktype = locktype;
pLock->locktype = locktype;
@@ -13433,24 +22974,69 @@ static int unixLock(OsFile *id, int locktype){
}
end_lock:
- sqlite3OsLeaveMutex();
+ unixLeaveMutex();
OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
rc==SQLITE_OK ? "ok" : "failed");
return rc;
}
/*
+** Close all file descriptors accumuated in the unixOpenCnt->pUnused list.
+** If all such file descriptors are closed without error, the list is
+** cleared and SQLITE_OK returned.
+**
+** Otherwise, if an error occurs, then successfully closed file descriptor
+** entries are removed from the list, and SQLITE_IOERR_CLOSE returned.
+** not deleted and SQLITE_IOERR_CLOSE returned.
+*/
+static int closePendingFds(unixFile *pFile){
+ int rc = SQLITE_OK;
+ struct unixOpenCnt *pOpen = pFile->pOpen;
+ UnixUnusedFd *pError = 0;
+ UnixUnusedFd *p;
+ UnixUnusedFd *pNext;
+ for(p=pOpen->pUnused; p; p=pNext){
+ pNext = p->pNext;
+ if( close(p->fd) ){
+ pFile->lastErrno = errno;
+ rc = SQLITE_IOERR_CLOSE;
+ p->pNext = pError;
+ pError = p;
+ }else{
+ sqlite3_free(p);
+ }
+ }
+ pOpen->pUnused = pError;
+ return rc;
+}
+
+/*
+** Add the file descriptor used by file handle pFile to the corresponding
+** pUnused list.
+*/
+static void setPendingFd(unixFile *pFile){
+ struct unixOpenCnt *pOpen = pFile->pOpen;
+ UnixUnusedFd *p = pFile->pUnused;
+ p->pNext = pOpen->pUnused;
+ pOpen->pUnused = p;
+ pFile->h = -1;
+ pFile->pUnused = 0;
+}
+
+/*
** Lower the locking level on file descriptor pFile to locktype. locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
-static int unixUnlock(OsFile *id, int locktype){
- struct lockInfo *pLock;
- struct flock lock;
- int rc = SQLITE_OK;
- unixFile *pFile = (unixFile*)id;
+static int unixUnlock(sqlite3_file *id, int locktype){
+ unixFile *pFile = (unixFile*)id; /* The open file */
+ struct unixLockInfo *pLock; /* Structure describing current lock state */
+ struct flock lock; /* Information passed into fcntl() */
+ int rc = SQLITE_OK; /* Return code from this interface */
+ int h; /* The underlying file descriptor */
+ int tErrno; /* Error code from system call errors */
assert( pFile );
OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
@@ -13463,33 +23049,58 @@ static int unixUnlock(OsFile *id, int locktype){
if( CHECK_THREADID(pFile) ){
return SQLITE_MISUSE;
}
- sqlite3OsEnterMutex();
+ unixEnterMutex();
+ h = pFile->h;
pLock = pFile->pLock;
assert( pLock->cnt!=0 );
if( pFile->locktype>SHARED_LOCK ){
assert( pLock->locktype==pFile->locktype );
+ SimulateIOErrorBenign(1);
+ SimulateIOError( h=(-1) )
+ SimulateIOErrorBenign(0);
+
+#ifndef NDEBUG
+ /* When reducing a lock such that other processes can start
+ ** reading the database file again, make sure that the
+ ** transaction counter was updated if any part of the database
+ ** file changed. If the transaction counter is not updated,
+ ** other connections to the same file might not realize that
+ ** the file has changed and hence might not know to flush their
+ ** cache. The use of a stale cache can lead to database corruption.
+ */
+ assert( pFile->inNormalWrite==0
+ || pFile->dbUpdate==0
+ || pFile->transCntrChng==1 );
+ pFile->inNormalWrite = 0;
+#endif
+
+
if( locktype==SHARED_LOCK ){
- lock.l_type = F_RDLCK;
- lock.l_whence = SEEK_SET;
- lock.l_start = SHARED_FIRST;
- lock.l_len = SHARED_SIZE;
- if( fcntl(pFile->h, F_SETLK, &lock)==(-1) ){
- /* This should never happen */
- rc = SQLITE_IOERR_RDLOCK;
+ if( rangeLock(pFile, F_RDLCK, &tErrno)==(-1) ){
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
+ goto end_unlock;
}
}
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = PENDING_BYTE;
lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
- if( fcntl(pFile->h, F_SETLK, &lock)!=(-1) ){
+ if( fcntl(h, F_SETLK, &lock)!=(-1) ){
pLock->locktype = SHARED_LOCK;
}else{
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
+ goto end_unlock;
}
}
if( locktype==NO_LOCK ){
- struct openCnt *pOpen;
+ struct unixOpenCnt *pOpen;
/* Decrement the shared lock counter. Release the lock using an
** OS call only when all threads in this same process have released
@@ -13500,10 +23111,19 @@ static int unixUnlock(OsFile *id, int locktype){
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = lock.l_len = 0L;
- if( fcntl(pFile->h, F_SETLK, &lock)!=(-1) ){
+ SimulateIOErrorBenign(1);
+ SimulateIOError( h=(-1) )
+ SimulateIOErrorBenign(0);
+ if( fcntl(h, F_SETLK, &lock)!=(-1) ){
pLock->locktype = NO_LOCK;
}else{
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
+ pLock->locktype = NO_LOCK;
+ pFile->locktype = NO_LOCK;
}
}
@@ -13514,76 +23134,733 @@ static int unixUnlock(OsFile *id, int locktype){
pOpen = pFile->pOpen;
pOpen->nLock--;
assert( pOpen->nLock>=0 );
- if( pOpen->nLock==0 && pOpen->nPending>0 ){
- int i;
- for(i=0; i<pOpen->nPending; i++){
- close(pOpen->aPending[i]);
+ if( pOpen->nLock==0 ){
+ int rc2 = closePendingFds(pFile);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+end_unlock:
+ unixLeaveMutex();
+ if( rc==SQLITE_OK ) pFile->locktype = locktype;
+ return rc;
+}
+
+/*
+** This function performs the parts of the "close file" operation
+** common to all locking schemes. It closes the directory and file
+** handles, if they are valid, and sets all fields of the unixFile
+** structure to 0.
+**
+** It is *not* necessary to hold the mutex when this routine is called,
+** even on VxWorks. A mutex will be acquired on VxWorks by the
+** vxworksReleaseFileId() routine.
+*/
+static int closeUnixFile(sqlite3_file *id){
+ unixFile *pFile = (unixFile*)id;
+ if( pFile ){
+ if( pFile->dirfd>=0 ){
+ int err = close(pFile->dirfd);
+ if( err ){
+ pFile->lastErrno = errno;
+ return SQLITE_IOERR_DIR_CLOSE;
+ }else{
+ pFile->dirfd=-1;
+ }
+ }
+ if( pFile->h>=0 ){
+ int err = close(pFile->h);
+ if( err ){
+ pFile->lastErrno = errno;
+ return SQLITE_IOERR_CLOSE;
+ }
+ }
+#if OS_VXWORKS
+ if( pFile->pId ){
+ if( pFile->isDelete ){
+ unlink(pFile->pId->zCanonicalName);
+ }
+ vxworksReleaseFileId(pFile->pId);
+ pFile->pId = 0;
+ }
+#endif
+ OSTRACE2("CLOSE %-3d\n", pFile->h);
+ OpenCounter(-1);
+ sqlite3_free(pFile->pUnused);
+ memset(pFile, 0, sizeof(unixFile));
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Close a file.
+*/
+static int unixClose(sqlite3_file *id){
+ int rc = SQLITE_OK;
+ if( id ){
+ unixFile *pFile = (unixFile *)id;
+ unixUnlock(id, NO_LOCK);
+ unixEnterMutex();
+ if( pFile->pOpen && pFile->pOpen->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pOpen->pUnused list. It will be automatically closed
+ ** when the last lock is cleared.
+ */
+ setPendingFd(pFile);
+ }
+ releaseLockInfo(pFile->pLock);
+ releaseOpenCnt(pFile->pOpen);
+ rc = closeUnixFile(id);
+ unixLeaveMutex();
+ }
+ return rc;
+}
+
+/************** End of the posix advisory lock implementation *****************
+******************************************************************************/
+
+/******************************************************************************
+****************************** No-op Locking **********************************
+**
+** Of the various locking implementations available, this is by far the
+** simplest: locking is ignored. No attempt is made to lock the database
+** file for reading or writing.
+**
+** This locking mode is appropriate for use on read-only databases
+** (ex: databases that are burned into CD-ROM, for example.) It can
+** also be used if the application employs some external mechanism to
+** prevent simultaneous access of the same database by two or more
+** database connections. But there is a serious risk of database
+** corruption if this locking mode is used in situations where multiple
+** database connections are accessing the same database file at the same
+** time and one or more of those connections are writing.
+*/
+
+static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
+ UNUSED_PARAMETER(NotUsed);
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return SQLITE_OK;
+}
+static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return SQLITE_OK;
+}
+
+/*
+** Close the file.
+*/
+static int nolockClose(sqlite3_file *id) {
+ return closeUnixFile(id);
+}
+
+/******************* End of the no-op lock implementation *********************
+******************************************************************************/
+
+/******************************************************************************
+************************* Begin dot-file Locking ******************************
+**
+** The dotfile locking implementation uses the existance of separate lock
+** files in order to control access to the database. This works on just
+** about every filesystem imaginable. But there are serious downsides:
+**
+** (1) There is zero concurrency. A single reader blocks all other
+** connections from reading or writing the database.
+**
+** (2) An application crash or power loss can leave stale lock files
+** sitting around that need to be cleared manually.
+**
+** Nevertheless, a dotlock is an appropriate locking mode for use if no
+** other locking strategy is available.
+**
+** Dotfile locking works by creating a file in the same directory as the
+** database and with the same name but with a ".lock" extension added.
+** The existance of a lock file implies an EXCLUSIVE lock. All other lock
+** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
+*/
+
+/*
+** The file suffix added to the data base filename in order to create the
+** lock file.
+*/
+#define DOTLOCK_SUFFIX ".lock"
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+**
+** In dotfile locking, either a lock exists or it does not. So in this
+** variation of CheckReservedLock(), *pResOut is set to true if any lock
+** is held on the file and false if the file is unlocked.
+*/
+static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->locktype>SHARED_LOCK ){
+ /* Either this connection or some other connection in the same process
+ ** holds a lock on the file. No need to check further. */
+ reserved = 1;
+ }else{
+ /* The lock is held if and only if the lockfile exists */
+ const char *zLockFile = (const char*)pFile->lockingContext;
+ reserved = access(zLockFile, 0)==0;
+ }
+ OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+**
+** With dotfile locking, we really only support state (4): EXCLUSIVE.
+** But we track the other locking levels internally.
+*/
+static int dotlockLock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+ int fd;
+ char *zLockFile = (char *)pFile->lockingContext;
+ int rc = SQLITE_OK;
+
+
+ /* If we have any lock, then the lock file already exists. All we have
+ ** to do is adjust our internal record of the lock level.
+ */
+ if( pFile->locktype > NO_LOCK ){
+ pFile->locktype = locktype;
+#if !OS_VXWORKS
+ /* Always update the timestamp on the old file */
+ utimes(zLockFile, NULL);
+#endif
+ return SQLITE_OK;
+ }
+
+ /* grab an exclusive lock */
+ fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
+ if( fd<0 ){
+ /* failed to open/create the file, someone else may have stolen the lock */
+ int tErrno = errno;
+ if( EEXIST == tErrno ){
+ rc = SQLITE_BUSY;
+ } else {
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
}
- free(pOpen->aPending);
- pOpen->nPending = 0;
- pOpen->aPending = 0;
}
+ return rc;
+ }
+ if( close(fd) ){
+ pFile->lastErrno = errno;
+ rc = SQLITE_IOERR_CLOSE;
}
- sqlite3OsLeaveMutex();
+
+ /* got it, set the type and return ok */
pFile->locktype = locktype;
return rc;
}
/*
+** Lower the locking level on file descriptor pFile to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** When the locking level reaches NO_LOCK, delete the lock file.
+*/
+static int dotlockUnlock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+ char *zLockFile = (char *)pFile->lockingContext;
+
+ assert( pFile );
+ OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
+ pFile->locktype, getpid());
+ assert( locktype<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->locktype==locktype ){
+ return SQLITE_OK;
+ }
+
+ /* To downgrade to shared, simply update our internal notion of the
+ ** lock state. No need to mess with the file on disk.
+ */
+ if( locktype==SHARED_LOCK ){
+ pFile->locktype = SHARED_LOCK;
+ return SQLITE_OK;
+ }
+
+ /* To fully unlock the database, delete the lock file */
+ assert( locktype==NO_LOCK );
+ if( unlink(zLockFile) ){
+ int rc = 0;
+ int tErrno = errno;
+ if( ENOENT != tErrno ){
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ }
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
+ return rc;
+ }
+ pFile->locktype = NO_LOCK;
+ return SQLITE_OK;
+}
+
+/*
+** Close a file. Make sure the lock has been released before closing.
+*/
+static int dotlockClose(sqlite3_file *id) {
+ int rc;
+ if( id ){
+ unixFile *pFile = (unixFile*)id;
+ dotlockUnlock(id, NO_LOCK);
+ sqlite3_free(pFile->lockingContext);
+ }
+ rc = closeUnixFile(id);
+ return rc;
+}
+/****************** End of the dot-file lock implementation *******************
+******************************************************************************/
+
+/******************************************************************************
+************************** Begin flock Locking ********************************
+**
+** Use the flock() system call to do file locking.
+**
+** flock() locking is like dot-file locking in that the various
+** fine-grain locking levels supported by SQLite are collapsed into
+** a single exclusive lock. In other words, SHARED, RESERVED, and
+** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
+** still works when you do this, but concurrency is reduced since
+** only a single process can be reading the database at a time.
+**
+** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
+** compiling for VXWORKS.
+*/
+#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->locktype>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it. */
+ if( !reserved ){
+ /* attempt to get the lock */
+ int lrc = flock(pFile->h, LOCK_EX | LOCK_NB);
+ if( !lrc ){
+ /* got the lock, unlock it */
+ lrc = flock(pFile->h, LOCK_UN);
+ if ( lrc ) {
+ int tErrno = errno;
+ /* unlock failed with an error */
+ lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ if( IS_LOCK_ERROR(lrc) ){
+ pFile->lastErrno = tErrno;
+ rc = lrc;
+ }
+ }
+ } else {
+ int tErrno = errno;
+ reserved = 1;
+ /* someone else might have it reserved */
+ lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(lrc) ){
+ pFile->lastErrno = tErrno;
+ rc = lrc;
+ }
+ }
+ }
+ OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
+
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
+ rc = SQLITE_OK;
+ reserved=1;
+ }
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** flock() only really support EXCLUSIVE locks. We track intermediate
+** lock states in the sqlite3_file structure, but all locks SHARED or
+** above are really EXCLUSIVE locks and exclude all other processes from
+** access the file.
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int flockLock(sqlite3_file *id, int locktype) {
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+
+ assert( pFile );
+
+ /* if we already have a lock, it is exclusive.
+ ** Just adjust level and punt on outta here. */
+ if (pFile->locktype > NO_LOCK) {
+ pFile->locktype = locktype;
+ return SQLITE_OK;
+ }
+
+ /* grab an exclusive lock */
+
+ if (flock(pFile->h, LOCK_EX | LOCK_NB)) {
+ int tErrno = errno;
+ /* didn't get, must be busy */
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
+ } else {
+ /* got it, set the type and return ok */
+ pFile->locktype = locktype;
+ }
+ OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
+ rc==SQLITE_OK ? "ok" : "failed");
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
+ rc = SQLITE_BUSY;
+ }
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+ return rc;
+}
+
+
+/*
+** Lower the locking level on file descriptor pFile to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int flockUnlock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+
+ assert( pFile );
+ OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
+ pFile->locktype, getpid());
+ assert( locktype<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->locktype==locktype ){
+ return SQLITE_OK;
+ }
+
+ /* shared can just be set because we always have an exclusive */
+ if (locktype==SHARED_LOCK) {
+ pFile->locktype = locktype;
+ return SQLITE_OK;
+ }
+
+ /* no, really, unlock. */
+ int rc = flock(pFile->h, LOCK_UN);
+ if (rc) {
+ int r, tErrno = errno;
+ r = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ if( IS_LOCK_ERROR(r) ){
+ pFile->lastErrno = tErrno;
+ }
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ if( (r & SQLITE_IOERR) == SQLITE_IOERR ){
+ r = SQLITE_BUSY;
+ }
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+
+ return r;
+ } else {
+ pFile->locktype = NO_LOCK;
+ return SQLITE_OK;
+ }
+}
+
+/*
** Close a file.
*/
-static int unixClose(OsFile **pId){
- unixFile *id = (unixFile*)*pId;
+static int flockClose(sqlite3_file *id) {
+ if( id ){
+ flockUnlock(id, NO_LOCK);
+ }
+ return closeUnixFile(id);
+}
- if( !id ) return SQLITE_OK;
- unixUnlock(*pId, NO_LOCK);
- if( id->dirfd>=0 ) close(id->dirfd);
- id->dirfd = -1;
- sqlite3OsEnterMutex();
+#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
- if( id->pOpen->nLock ){
- /* If there are outstanding locks, do not actually close the file just
- ** yet because that would clear those locks. Instead, add the file
- ** descriptor to pOpen->aPending. It will be automatically closed when
- ** the last lock is cleared.
- */
- int *aNew;
- struct openCnt *pOpen = id->pOpen;
- aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
- if( aNew==0 ){
- /* If a malloc fails, just leak the file descriptor */
+/******************* End of the flock lock implementation *********************
+******************************************************************************/
+
+/******************************************************************************
+************************ Begin Named Semaphore Locking ************************
+**
+** Named semaphore locking is only supported on VxWorks.
+**
+** Semaphore locking is like dot-lock and flock in that it really only
+** supports EXCLUSIVE locking. Only a single process can read or write
+** the database file at a time. This reduces potential concurrency, but
+** makes the lock implementation much easier.
+*/
+#if OS_VXWORKS
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->locktype>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it. */
+ if( !reserved ){
+ sem_t *pSem = pFile->pOpen->pSem;
+ struct stat statBuf;
+
+ if( sem_trywait(pSem)==-1 ){
+ int tErrno = errno;
+ if( EAGAIN != tErrno ){
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
+ pFile->lastErrno = tErrno;
+ } else {
+ /* someone else has the lock when we are in NO_LOCK */
+ reserved = (pFile->locktype < SHARED_LOCK);
+ }
}else{
- pOpen->aPending = aNew;
- pOpen->aPending[pOpen->nPending] = id->h;
- pOpen->nPending++;
+ /* we could have it if we want it */
+ sem_post(pSem);
}
- }else{
- /* There are no outstanding locks so we can close the file immediately */
- close(id->h);
}
- releaseLockInfo(id->pLock);
- releaseOpenCnt(id->pOpen);
+ OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
- sqlite3OsLeaveMutex();
- id->isOpen = 0;
- OSTRACE2("CLOSE %-3d\n", id->h);
- OpenCounter(-1);
- sqlite3ThreadSafeFree(id);
- *pId = 0;
- return SQLITE_OK;
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
+** lock states in the sqlite3_file structure, but all locks SHARED or
+** above are really EXCLUSIVE locks and exclude all other processes from
+** access the file.
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int semLock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+ int fd;
+ sem_t *pSem = pFile->pOpen->pSem;
+ int rc = SQLITE_OK;
+
+ /* if we already have a lock, it is exclusive.
+ ** Just adjust level and punt on outta here. */
+ if (pFile->locktype > NO_LOCK) {
+ pFile->locktype = locktype;
+ rc = SQLITE_OK;
+ goto sem_end_lock;
+ }
+
+ /* lock semaphore now but bail out when already locked. */
+ if( sem_trywait(pSem)==-1 ){
+ rc = SQLITE_BUSY;
+ goto sem_end_lock;
+ }
+
+ /* got it, set the type and return ok */
+ pFile->locktype = locktype;
+
+ sem_end_lock:
+ return rc;
}
+/*
+** Lower the locking level on file descriptor pFile to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int semUnlock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+ sem_t *pSem = pFile->pOpen->pSem;
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-#pragma mark AFP Support
+ assert( pFile );
+ assert( pSem );
+ OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
+ pFile->locktype, getpid());
+ assert( locktype<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->locktype==locktype ){
+ return SQLITE_OK;
+ }
+
+ /* shared can just be set because we always have an exclusive */
+ if (locktype==SHARED_LOCK) {
+ pFile->locktype = locktype;
+ return SQLITE_OK;
+ }
+
+ /* no, really unlock. */
+ if ( sem_post(pSem)==-1 ) {
+ int rc, tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
+ return rc;
+ }
+ pFile->locktype = NO_LOCK;
+ return SQLITE_OK;
+}
/*
- ** The afpLockingContext structure contains all afp lock specific state
+ ** Close a file.
*/
+static int semClose(sqlite3_file *id) {
+ if( id ){
+ unixFile *pFile = (unixFile*)id;
+ semUnlock(id, NO_LOCK);
+ assert( pFile );
+ unixEnterMutex();
+ releaseLockInfo(pFile->pLock);
+ releaseOpenCnt(pFile->pOpen);
+ unixLeaveMutex();
+ closeUnixFile(id);
+ }
+ return SQLITE_OK;
+}
+
+#endif /* OS_VXWORKS */
+/*
+** Named semaphore locking is only available on VxWorks.
+**
+*************** End of the named semaphore lock implementation ****************
+******************************************************************************/
+
+
+/******************************************************************************
+*************************** Begin AFP Locking *********************************
+**
+** AFP is the Apple Filing Protocol. AFP is a network filesystem found
+** on Apple Macintosh computers - both OS9 and OSX.
+**
+** Third-party implementations of AFP are available. But this code here
+** only works on OSX.
+*/
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+/*
+** The afpLockingContext structure contains all afp lock specific state
+*/
typedef struct afpLockingContext afpLockingContext;
struct afpLockingContext {
- unsigned long long sharedLockByte;
- char *filePath;
+ unsigned long long sharedByte;
+ const char *dbPath; /* Name of the open file */
};
struct ByteRangeLockPB2
@@ -13596,88 +23873,136 @@ struct ByteRangeLockPB2
int fd; /* file desc to assoc this lock with */
};
-#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
+#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
-/* return 0 on success, 1 on failure. To match the behavior of the
- normal posix file locking (used in unixLock for example), we should
- provide 'richer' return codes - specifically to differentiate between
- 'file busy' and 'file system error' results */
-static int _AFPFSSetLock(const char *path, int fd, unsigned long long offset,
- unsigned long long length, int setLockFlag)
-{
- struct ByteRangeLockPB2 pb;
- int err;
+/*
+** This is a utility for setting or clearing a bit-range lock on an
+** AFP filesystem.
+**
+** Return SQLITE_OK on success, SQLITE_BUSY on failure.
+*/
+static int afpSetLock(
+ const char *path, /* Name of the file to be locked or unlocked */
+ unixFile *pFile, /* Open file descriptor on path */
+ unsigned long long offset, /* First byte to be locked */
+ unsigned long long length, /* Number of bytes to lock */
+ int setLockFlag /* True to set lock. False to clear lock */
+){
+ struct ByteRangeLockPB2 pb;
+ int err;
pb.unLockFlag = setLockFlag ? 0 : 1;
pb.startEndFlag = 0;
pb.offset = offset;
pb.length = length;
- pb.fd = fd;
- OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n",
- (setLockFlag?"ON":"OFF"), fd, offset, length);
+ pb.fd = pFile->h;
+
+ OSTRACE6("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
+ (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
+ offset, length);
err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
if ( err==-1 ) {
- OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno,
- strerror(errno));
- return 1; // error
+ int rc;
+ int tErrno = errno;
+ OSTRACE4("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
+ path, tErrno, strerror(tErrno));
+#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
+ rc = SQLITE_BUSY;
+#else
+ rc = sqliteErrorFromPosixError(tErrno,
+ setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
+#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
+ if( IS_LOCK_ERROR(rc) ){
+ pFile->lastErrno = tErrno;
+ }
+ return rc;
} else {
- return 0;
+ return SQLITE_OK;
}
}
/*
- ** This routine checks if there is a RESERVED lock held on the specified
- ** file by this or any other process. If such a lock is held, return
- ** non-zero. If the file is unlocked or holds only SHARED locks, then
- ** return zero.
- */
-static int afpUnixCheckReservedLock(OsFile *id){
- int r = 0;
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
unixFile *pFile = (unixFile*)id;
- assert( pFile );
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
/* Check if a thread in this process holds such a lock */
if( pFile->locktype>SHARED_LOCK ){
- r = 1;
+ reserved = 1;
}
/* Otherwise see if some other process holds it.
*/
- if ( !r ) {
- // lock the byte
- int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
- if (failed) {
- /* if we failed to get the lock then someone else must have it */
- r = 1;
- } else {
+ if( !reserved ){
+ /* lock the RESERVED byte */
+ int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
+ if( SQLITE_OK==lrc ){
/* if we succeeded in taking the reserved lock, unlock it to restore
** the original state */
- _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
+ lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
+ } else {
+ /* if we failed to get the lock then someone else must have it */
+ reserved = 1;
+ }
+ if( IS_LOCK_ERROR(lrc) ){
+ rc=lrc;
}
}
- OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
- return r;
+ OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
+
+ *pResOut = reserved;
+ return rc;
}
-/* AFP-style locking following the behavior of unixLock, see the unixLock
-** function comments for details of lock management. */
-static int afpUnixLock(OsFile *id, int locktype)
-{
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int afpLock(sqlite3_file *id, int locktype){
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
- int gotPendingLock = 0;
assert( pFile );
OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
- locktypeName(locktype), locktypeName(pFile->locktype), getpid());
+ locktypeName(locktype), locktypeName(pFile->locktype), getpid());
+
/* If there is already a lock of this type or more restrictive on the
- ** OsFile, do nothing. Don't use the afp_end_lock: exit path, as
- ** sqlite3OsEnterMutex() hasn't been called yet.
- */
+ ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
+ ** unixEnterMutex() hasn't been called yet.
+ */
if( pFile->locktype>=locktype ){
OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
locktypeName(locktype));
@@ -13685,62 +24010,68 @@ static int afpUnixLock(OsFile *id, int locktype)
}
/* Make sure the locking sequence is correct
- */
+ */
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
assert( locktype!=PENDING_LOCK );
assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
/* This mutex is needed because pFile->pLock is shared across threads
- */
- sqlite3OsEnterMutex();
+ */
+ unixEnterMutex();
/* Make sure the current thread owns the pFile.
- */
+ */
rc = transferOwnership(pFile);
if( rc!=SQLITE_OK ){
- sqlite3OsLeaveMutex();
+ unixLeaveMutex();
return rc;
}
/* A PENDING lock is needed before acquiring a SHARED lock and before
- ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
- ** be released.
- */
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
+ ** be released.
+ */
if( locktype==SHARED_LOCK
|| (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
- ){
- int failed = _AFPFSSetLock(context->filePath, pFile->h,
- PENDING_BYTE, 1, 1);
+ ){
+ int failed;
+ failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
if (failed) {
- rc = SQLITE_BUSY;
+ rc = failed;
goto afp_end_lock;
}
}
/* If control gets to this point, then actually go ahead and make
- ** operating system calls for the specified lock.
- */
+ ** operating system calls for the specified lock.
+ */
if( locktype==SHARED_LOCK ){
- int lk, failed;
- int tries = 0;
+ int lk, lrc1, lrc2, lrc1Errno;
- /* Now get the read-lock */
+ /* Now get the read-lock SHARED_LOCK */
/* note that the quality of the randomness doesn't matter that much */
lk = random();
- context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
- failed = _AFPFSSetLock(context->filePath, pFile->h,
- SHARED_FIRST+context->sharedLockByte, 1, 1);
-
- /* Drop the temporary PENDING lock */
- if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- goto afp_end_lock;
+ context->sharedByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
+ lrc1 = afpSetLock(context->dbPath, pFile,
+ SHARED_FIRST+context->sharedByte, 1, 1);
+ if( IS_LOCK_ERROR(lrc1) ){
+ lrc1Errno = pFile->lastErrno;
}
+ /* Drop the temporary PENDING lock */
+ lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
- if( failed ){
- rc = SQLITE_BUSY;
+ if( IS_LOCK_ERROR(lrc1) ) {
+ pFile->lastErrno = lrc1Errno;
+ rc = lrc1;
+ goto afp_end_lock;
+ } else if( IS_LOCK_ERROR(lrc2) ){
+ rc = lrc2;
+ goto afp_end_lock;
+ } else if( lrc1 != SQLITE_OK ) {
+ rc = lrc1;
} else {
pFile->locktype = SHARED_LOCK;
+ pFile->pOpen->nLock++;
}
}else{
/* The request was for a RESERVED or EXCLUSIVE lock. It is
@@ -13751,30 +24082,35 @@ static int afpUnixLock(OsFile *id, int locktype)
assert( 0!=pFile->locktype );
if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
/* Acquire a RESERVED lock */
- failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
+ failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
}
if (!failed && locktype == EXCLUSIVE_LOCK) {
/* Acquire an EXCLUSIVE lock */
/* Remove the shared lock before trying the range. we'll need to
- ** reestablish the shared lock if we can't get the afpUnixUnlock
+ ** reestablish the shared lock if we can't get the afpUnlock
*/
- if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
- context->sharedLockByte, 1, 0)) {
+ if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
+ context->sharedByte, 1, 0)) ){
+ int failed2 = SQLITE_OK;
/* now attemmpt to get the exclusive lock range */
- failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
+ failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
SHARED_SIZE, 1);
- if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
- context->sharedLockByte, 1, 1)) {
- rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
+ if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
+ SHARED_FIRST + context->sharedByte, 1, 1)) ){
+ /* Can't reestablish the shared lock. Sqlite can't deal, this is
+ ** a critical I/O error
+ */
+ rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
+ SQLITE_IOERR_LOCK;
+ goto afp_end_lock;
}
- } else {
- /* */
- rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
+ }else{
+ rc = failed;
}
}
- if( failed && rc == SQLITE_OK){
- rc = SQLITE_BUSY;
+ if( failed ){
+ rc = failed;
}
}
@@ -13785,29 +24121,28 @@ static int afpUnixLock(OsFile *id, int locktype)
}
afp_end_lock:
- sqlite3OsLeaveMutex();
+ unixLeaveMutex();
OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
rc==SQLITE_OK ? "ok" : "failed");
return rc;
}
/*
- ** Lower the locking level on file descriptor pFile to locktype. locktype
- ** must be either NO_LOCK or SHARED_LOCK.
- **
- ** If the locking level of the file descriptor is already at or below
- ** the requested locking level, this routine is a no-op.
- */
-static int afpUnixUnlock(OsFile *id, int locktype) {
- struct flock lock;
+** Lower the locking level on file descriptor pFile to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int afpUnlock(sqlite3_file *id, int locktype) {
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
- afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
+ afpLockingContext *pCtx = (afpLockingContext *) pFile->lockingContext;
assert( pFile );
OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
pFile->locktype, getpid());
-
+
assert( locktype<=SHARED_LOCK );
if( pFile->locktype<=locktype ){
return SQLITE_OK;
@@ -13815,409 +24150,544 @@ static int afpUnixUnlock(OsFile *id, int locktype) {
if( CHECK_THREADID(pFile) ){
return SQLITE_MISUSE;
}
- sqlite3OsEnterMutex();
+ unixEnterMutex();
if( pFile->locktype>SHARED_LOCK ){
- if( locktype==SHARED_LOCK ){
- int failed = 0;
-
- /* unlock the exclusive range - then re-establish the shared lock */
- if (pFile->locktype==EXCLUSIVE_LOCK) {
- failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
- SHARED_SIZE, 0);
- if (!failed) {
- /* successfully removed the exclusive lock */
- if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
- context->sharedLockByte, 1, 1)) {
- /* failed to re-establish our shared lock */
- rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
- }
- } else {
- /* This should never happen - failed to unlock the exclusive range */
- rc = SQLITE_IOERR_UNLOCK;
- }
+
+ if( pFile->locktype==EXCLUSIVE_LOCK ){
+ rc = afpSetLock(pCtx->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
+ if( rc==SQLITE_OK && locktype==SHARED_LOCK ){
+ /* only re-establish the shared lock if necessary */
+ int sharedLockByte = SHARED_FIRST+pCtx->sharedByte;
+ rc = afpSetLock(pCtx->dbPath, pFile, sharedLockByte, 1, 1);
}
}
- if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
- if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
- /* failed to release the pending lock */
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- }
- }
- if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
- if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
- /* failed to release the reserved lock */
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- }
+ if( rc==SQLITE_OK && pFile->locktype>=PENDING_LOCK ){
+ rc = afpSetLock(pCtx->dbPath, pFile, PENDING_BYTE, 1, 0);
}
+ if( rc==SQLITE_OK && pFile->locktype>=RESERVED_LOCK ){
+ rc = afpSetLock(pCtx->dbPath, pFile, RESERVED_BYTE, 1, 0);
+ }
+ }else if( locktype==NO_LOCK ){
+ /* clear the shared lock */
+ int sharedLockByte = SHARED_FIRST+pCtx->sharedByte;
+ rc = afpSetLock(pCtx->dbPath, pFile, sharedLockByte, 1, 0);
}
- if( locktype==NO_LOCK ){
- int failed = _AFPFSSetLock(context->filePath, pFile->h,
- SHARED_FIRST + context->sharedLockByte, 1, 0);
- if (failed) {
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
+
+ if( rc==SQLITE_OK ){
+ if( locktype==NO_LOCK ){
+ struct unixOpenCnt *pOpen = pFile->pOpen;
+ pOpen->nLock--;
+ assert( pOpen->nLock>=0 );
+ if( pOpen->nLock==0 ){
+ rc = closePendingFds(pFile);
+ }
}
}
- if (rc == SQLITE_OK)
+ unixLeaveMutex();
+ if( rc==SQLITE_OK ){
pFile->locktype = locktype;
- sqlite3OsLeaveMutex();
+ }
return rc;
}
/*
- ** Close a file & cleanup AFP specific locking context
- */
-static int afpUnixClose(OsFile **pId) {
- unixFile *id = (unixFile*)*pId;
-
- if( !id ) return SQLITE_OK;
- afpUnixUnlock(*pId, NO_LOCK);
- /* free the AFP locking structure */
- if (id->lockingContext != NULL) {
- if (((afpLockingContext *)id->lockingContext)->filePath != NULL)
- sqlite3ThreadSafeFree(((afpLockingContext*)id->lockingContext)->filePath);
- sqlite3ThreadSafeFree(id->lockingContext);
+** Close a file & cleanup AFP specific locking context
+*/
+static int afpClose(sqlite3_file *id) {
+ if( id ){
+ unixFile *pFile = (unixFile*)id;
+ afpUnlock(id, NO_LOCK);
+ unixEnterMutex();
+ if( pFile->pOpen && pFile->pOpen->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pOpen->aPending. It will be automatically closed when
+ ** the last lock is cleared.
+ */
+ setPendingFd(pFile);
+ }
+ releaseOpenCnt(pFile->pOpen);
+ sqlite3_free(pFile->lockingContext);
+ closeUnixFile(id);
+ unixLeaveMutex();
}
-
- if( id->dirfd>=0 ) close(id->dirfd);
- id->dirfd = -1;
- close(id->h);
- id->isOpen = 0;
- OSTRACE2("CLOSE %-3d\n", id->h);
- OpenCounter(-1);
- sqlite3ThreadSafeFree(id);
- *pId = 0;
return SQLITE_OK;
}
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** The code above is the AFP lock implementation. The code is specific
+** to MacOSX and does not work on other unix platforms. No alternative
+** is available. If you don't compile for a mac, then the "unix-afp"
+** VFS is not available.
+**
+********************* End of the AFP lock implementation **********************
+******************************************************************************/
-#pragma mark flock() style locking
-/*
- ** The flockLockingContext is not used
- */
-typedef void flockLockingContext;
+/******************************************************************************
+**************** Non-locking sqlite3_file methods *****************************
+**
+** The next division contains implementations for all methods of the
+** sqlite3_file object other than the locking methods. The locking
+** methods were defined in divisions above (one locking method per
+** division). Those methods that are common to all locking modes
+** are gather together into this division.
+*/
-static int flockUnixCheckReservedLock(OsFile *id) {
- unixFile *pFile = (unixFile*)id;
-
- if (pFile->locktype == RESERVED_LOCK) {
- return 1; // already have a reserved lock
- } else {
- // attempt to get the lock
- int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
- if (!rc) {
- // got the lock, unlock it
- flock(pFile->h, LOCK_UN);
- return 0; // no one has it reserved
+/*
+** Seek to the offset passed as the second argument, then read cnt
+** bytes into pBuf. Return the number of bytes actually read.
+**
+** NB: If you define USE_PREAD or USE_PREAD64, then it might also
+** be necessary to define _XOPEN_SOURCE to be 500. This varies from
+** one system to another. Since SQLite does not define USE_PREAD
+** any any form by default, we will not attempt to define _XOPEN_SOURCE.
+** See tickets #2741 and #2681.
+**
+** To avoid stomping the errno value on a failed read the lastErrno value
+** is set before returning.
+*/
+static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
+ int got;
+ i64 newOffset;
+ TIMER_START;
+#if defined(USE_PREAD)
+ got = pread(id->h, pBuf, cnt, offset);
+ SimulateIOError( got = -1 );
+#elif defined(USE_PREAD64)
+ got = pread64(id->h, pBuf, cnt, offset);
+ SimulateIOError( got = -1 );
+#else
+ newOffset = lseek(id->h, offset, SEEK_SET);
+ SimulateIOError( newOffset-- );
+ if( newOffset!=offset ){
+ if( newOffset == -1 ){
+ ((unixFile*)id)->lastErrno = errno;
+ }else{
+ ((unixFile*)id)->lastErrno = 0;
}
- return 1; // someone else might have it reserved
+ return -1;
}
+ got = read(id->h, pBuf, cnt);
+#endif
+ TIMER_END;
+ if( got<0 ){
+ ((unixFile*)id)->lastErrno = errno;
+ }
+ OSTRACE5("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
+ return got;
}
-static int flockUnixLock(OsFile *id, int locktype) {
- unixFile *pFile = (unixFile*)id;
-
- // if we already have a lock, it is exclusive.
- // Just adjust level and punt on outta here.
- if (pFile->locktype > NO_LOCK) {
- pFile->locktype = locktype;
- return SQLITE_OK;
- }
-
- // grab an exclusive lock
- int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
- if (rc) {
- // didn't get, must be busy
- return SQLITE_BUSY;
- } else {
- // got it, set the type and return ok
- pFile->locktype = locktype;
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+static int unixRead(
+ sqlite3_file *id,
+ void *pBuf,
+ int amt,
+ sqlite3_int64 offset
+){
+ unixFile *pFile = (unixFile *)id;
+ int got;
+ assert( id );
+
+ /* If this is a database file (not a journal, master-journal or temp
+ ** file), the bytes in the locking range should never be read or written. */
+ assert( pFile->pUnused==0
+ || offset>=PENDING_BYTE+512
+ || offset+amt<=PENDING_BYTE
+ );
+
+ got = seekAndRead(pFile, offset, pBuf, amt);
+ if( got==amt ){
return SQLITE_OK;
+ }else if( got<0 ){
+ /* lastErrno set by seekAndRead */
+ return SQLITE_IOERR_READ;
+ }else{
+ pFile->lastErrno = 0; /* not a system error */
+ /* Unread parts of the buffer must be zero-filled */
+ memset(&((char*)pBuf)[got], 0, amt-got);
+ return SQLITE_IOERR_SHORT_READ;
}
}
-static int flockUnixUnlock(OsFile *id, int locktype) {
- unixFile *pFile = (unixFile*)id;
-
- assert( locktype<=SHARED_LOCK );
-
- // no-op if possible
- if( pFile->locktype==locktype ){
- return SQLITE_OK;
- }
-
- // shared can just be set because we always have an exclusive
- if (locktype==SHARED_LOCK) {
- pFile->locktype = locktype;
- return SQLITE_OK;
+/*
+** Seek to the offset in id->offset then read cnt bytes into pBuf.
+** Return the number of bytes actually read. Update the offset.
+**
+** To avoid stomping the errno value on a failed write the lastErrno value
+** is set before returning.
+*/
+static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
+ int got;
+ i64 newOffset;
+ TIMER_START;
+#if defined(USE_PREAD)
+ got = pwrite(id->h, pBuf, cnt, offset);
+#elif defined(USE_PREAD64)
+ got = pwrite64(id->h, pBuf, cnt, offset);
+#else
+ newOffset = lseek(id->h, offset, SEEK_SET);
+ if( newOffset!=offset ){
+ if( newOffset == -1 ){
+ ((unixFile*)id)->lastErrno = errno;
+ }else{
+ ((unixFile*)id)->lastErrno = 0;
+ }
+ return -1;
}
-
- // no, really, unlock.
- int rc = flock(pFile->h, LOCK_UN);
- if (rc)
- return SQLITE_IOERR_UNLOCK;
- else {
- pFile->locktype = NO_LOCK;
- return SQLITE_OK;
+ got = write(id->h, pBuf, cnt);
+#endif
+ TIMER_END;
+ if( got<0 ){
+ ((unixFile*)id)->lastErrno = errno;
}
-}
-/*
- ** Close a file.
- */
-static int flockUnixClose(OsFile **pId) {
- unixFile *id = (unixFile*)*pId;
-
- if( !id ) return SQLITE_OK;
- flockUnixUnlock(*pId, NO_LOCK);
-
- if( id->dirfd>=0 ) close(id->dirfd);
- id->dirfd = -1;
- sqlite3OsEnterMutex();
-
- close(id->h);
- sqlite3OsLeaveMutex();
- id->isOpen = 0;
- OSTRACE2("CLOSE %-3d\n", id->h);
- OpenCounter(-1);
- sqlite3ThreadSafeFree(id);
- *pId = 0;
- return SQLITE_OK;
+ OSTRACE5("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
+ return got;
}
-#pragma mark Old-School .lock file based locking
/*
- ** The dotlockLockingContext structure contains all dotlock (.lock) lock
- ** specific state
- */
-typedef struct dotlockLockingContext dotlockLockingContext;
-struct dotlockLockingContext {
- char *lockPath;
-};
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+static int unixWrite(
+ sqlite3_file *id,
+ const void *pBuf,
+ int amt,
+ sqlite3_int64 offset
+){
+ unixFile *pFile = (unixFile*)id;
+ int wrote = 0;
+ assert( id );
+ assert( amt>0 );
+ /* If this is a database file (not a journal, master-journal or temp
+ ** file), the bytes in the locking range should never be read or written. */
+ assert( pFile->pUnused==0
+ || offset>=PENDING_BYTE+512
+ || offset+amt<=PENDING_BYTE
+ );
-static int dotlockUnixCheckReservedLock(OsFile *id) {
- unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context =
- (dotlockLockingContext *) pFile->lockingContext;
-
- if (pFile->locktype == RESERVED_LOCK) {
- return 1; // already have a reserved lock
- } else {
- struct stat statBuf;
- if (lstat(context->lockPath,&statBuf) == 0)
- // file exists, someone else has the lock
- return 1;
- else
- // file does not exist, we could have it if we want it
- return 0;
+#ifndef NDEBUG
+ /* If we are doing a normal write to a database file (as opposed to
+ ** doing a hot-journal rollback or a write to some file other than a
+ ** normal database file) then record the fact that the database
+ ** has changed. If the transaction counter is modified, record that
+ ** fact too.
+ */
+ if( pFile->inNormalWrite ){
+ pFile->dbUpdate = 1; /* The database has been modified */
+ if( offset<=24 && offset+amt>=27 ){
+ int rc;
+ char oldCntr[4];
+ SimulateIOErrorBenign(1);
+ rc = seekAndRead(pFile, 24, oldCntr, 4);
+ SimulateIOErrorBenign(0);
+ if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
+ pFile->transCntrChng = 1; /* The transaction counter has changed */
+ }
+ }
}
-}
+#endif
-static int dotlockUnixLock(OsFile *id, int locktype) {
- unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context =
- (dotlockLockingContext *) pFile->lockingContext;
-
- // if we already have a lock, it is exclusive.
- // Just adjust level and punt on outta here.
- if (pFile->locktype > NO_LOCK) {
- pFile->locktype = locktype;
-
- /* Always update the timestamp on the old file */
- utimes(context->lockPath,NULL);
- return SQLITE_OK;
- }
-
- // check to see if lock file already exists
- struct stat statBuf;
- if (lstat(context->lockPath,&statBuf) == 0){
- return SQLITE_BUSY; // it does, busy
+ while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
+ amt -= wrote;
+ offset += wrote;
+ pBuf = &((char*)pBuf)[wrote];
}
-
- // grab an exclusive lock
- int fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600);
- if (fd < 0) {
- // failed to open/create the file, someone else may have stolen the lock
- return SQLITE_BUSY;
+ SimulateIOError(( wrote=(-1), amt=1 ));
+ SimulateDiskfullError(( wrote=0, amt=1 ));
+ if( amt>0 ){
+ if( wrote<0 ){
+ /* lastErrno set by seekAndWrite */
+ return SQLITE_IOERR_WRITE;
+ }else{
+ pFile->lastErrno = 0; /* not a system error */
+ return SQLITE_FULL;
+ }
}
- close(fd);
-
- // got it, set the type and return ok
- pFile->locktype = locktype;
return SQLITE_OK;
}
-static int dotlockUnixUnlock(OsFile *id, int locktype) {
- unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context =
- (dotlockLockingContext *) pFile->lockingContext;
-
- assert( locktype<=SHARED_LOCK );
-
- // no-op if possible
- if( pFile->locktype==locktype ){
- return SQLITE_OK;
- }
-
- // shared can just be set because we always have an exclusive
- if (locktype==SHARED_LOCK) {
- pFile->locktype = locktype;
- return SQLITE_OK;
- }
-
- // no, really, unlock.
- unlink(context->lockPath);
- pFile->locktype = NO_LOCK;
- return SQLITE_OK;
-}
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occurring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
/*
- ** Close a file.
- */
-static int dotlockUnixClose(OsFile **pId) {
- unixFile *id = (unixFile*)*pId;
-
- if( !id ) return SQLITE_OK;
- dotlockUnixUnlock(*pId, NO_LOCK);
- /* free the dotlock locking structure */
- if (id->lockingContext != NULL) {
- if (((dotlockLockingContext *)id->lockingContext)->lockPath != NULL)
- sqlite3ThreadSafeFree( ( (dotlockLockingContext *)
- id->lockingContext)->lockPath);
- sqlite3ThreadSafeFree(id->lockingContext);
- }
-
- if( id->dirfd>=0 ) close(id->dirfd);
- id->dirfd = -1;
- sqlite3OsEnterMutex();
-
- close(id->h);
-
- sqlite3OsLeaveMutex();
- id->isOpen = 0;
- OSTRACE2("CLOSE %-3d\n", id->h);
- OpenCounter(-1);
- sqlite3ThreadSafeFree(id);
- *pId = 0;
- return SQLITE_OK;
-}
+** We do not trust systems to provide a working fdatasync(). Some do.
+** Others do no. To be safe, we will stick with the (slower) fsync().
+** If you know that your system does support fdatasync() correctly,
+** then simply compile with -Dfdatasync=fdatasync
+*/
+#if !defined(fdatasync) && !defined(__linux__)
+# define fdatasync fsync
+#endif
+/*
+** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
+** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
+** only available on Mac OS X. But that could change.
+*/
+#ifdef F_FULLFSYNC
+# define HAVE_FULLFSYNC 1
+#else
+# define HAVE_FULLFSYNC 0
+#endif
-#pragma mark No locking
/*
- ** The nolockLockingContext is void
- */
-typedef void nolockLockingContext;
+** The fsync() system call does not work as advertised on many
+** unix systems. The following procedure is an attempt to make
+** it work better.
+**
+** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
+** for testing when we want to run through the test suite quickly.
+** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
+** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
+** or power failure will likely corrupt the database file.
+**
+** SQLite sets the dataOnly flag if the size of the file is unchanged.
+** The idea behind dataOnly is that it should only write the file content
+** to disk, not the inode. We only set dataOnly if the file size is
+** unchanged since the file size is part of the inode. However,
+** Ted Ts'o tells us that fdatasync() will also write the inode if the
+** file size has changed. The only real difference between fdatasync()
+** and fsync(), Ted tells us, is that fdatasync() will not flush the
+** inode if the mtime or owner or other inode attributes have changed.
+** We only care about the file size, not the other file attributes, so
+** as far as SQLite is concerned, an fdatasync() is always adequate.
+** So, we always use fdatasync() if it is available, regardless of
+** the value of the dataOnly flag.
+*/
+static int full_fsync(int fd, int fullSync, int dataOnly){
+ int rc;
-static int nolockUnixCheckReservedLock(OsFile *id) {
- return 0;
-}
+ /* The following "ifdef/elif/else/" block has the same structure as
+ ** the one below. It is replicated here solely to avoid cluttering
+ ** up the real code with the UNUSED_PARAMETER() macros.
+ */
+#ifdef SQLITE_NO_SYNC
+ UNUSED_PARAMETER(fd);
+ UNUSED_PARAMETER(fullSync);
+ UNUSED_PARAMETER(dataOnly);
+#elif HAVE_FULLFSYNC
+ UNUSED_PARAMETER(dataOnly);
+#else
+ UNUSED_PARAMETER(fullSync);
+ UNUSED_PARAMETER(dataOnly);
+#endif
-static int nolockUnixLock(OsFile *id, int locktype) {
- return SQLITE_OK;
-}
+ /* Record the number of times that we do a normal fsync() and
+ ** FULLSYNC. This is used during testing to verify that this procedure
+ ** gets called with the correct arguments.
+ */
+#ifdef SQLITE_TEST
+ if( fullSync ) sqlite3_fullsync_count++;
+ sqlite3_sync_count++;
+#endif
-static int nolockUnixUnlock(OsFile *id, int locktype) {
- return SQLITE_OK;
-}
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
+ ** no-op
+ */
+#ifdef SQLITE_NO_SYNC
+ rc = SQLITE_OK;
+#elif HAVE_FULLFSYNC
+ if( fullSync ){
+ rc = fcntl(fd, F_FULLFSYNC, 0);
+ }else{
+ rc = 1;
+ }
+ /* If the FULLFSYNC failed, fall back to attempting an fsync().
+ ** It shouldn't be possible for fullfsync to fail on the local
+ ** file system (on OSX), so failure indicates that FULLFSYNC
+ ** isn't supported for this file system. So, attempt an fsync
+ ** and (for now) ignore the overhead of a superfluous fcntl call.
+ ** It'd be better to detect fullfsync support once and avoid
+ ** the fcntl call every time sync is called.
+ */
+ if( rc ) rc = fsync(fd);
-/*
- ** Close a file.
- */
-static int nolockUnixClose(OsFile **pId) {
- unixFile *id = (unixFile*)*pId;
-
- if( !id ) return SQLITE_OK;
- if( id->dirfd>=0 ) close(id->dirfd);
- id->dirfd = -1;
- sqlite3OsEnterMutex();
-
- close(id->h);
-
- sqlite3OsLeaveMutex();
- id->isOpen = 0;
- OSTRACE2("CLOSE %-3d\n", id->h);
- OpenCounter(-1);
- sqlite3ThreadSafeFree(id);
- *pId = 0;
- return SQLITE_OK;
-}
+#else
+ rc = fdatasync(fd);
+#if OS_VXWORKS
+ if( rc==-1 && errno==ENOTSUP ){
+ rc = fsync(fd);
+ }
+#endif /* OS_VXWORKS */
+#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+ if( OS_VXWORKS && rc!= -1 ){
+ rc = 0;
+ }
+ return rc;
+}
/*
-** Turn a relative pathname into a full pathname. Return a pointer
-** to the full pathname stored in space obtained from sqliteMalloc().
-** The calling function is responsible for freeing this space once it
-** is no longer needed.
+** Make sure all writes to a particular file are committed to disk.
+**
+** If dataOnly==0 then both the file itself and its metadata (file
+** size, access time, etc) are synced. If dataOnly!=0 then only the
+** file data is synced.
+**
+** Under Unix, also make sure that the directory entry for the file
+** has been created by fsync-ing the directory that contains the file.
+** If we do not do this and we encounter a power failure, the directory
+** entry for the journal might not exist after we reboot. The next
+** SQLite to access the file will not know that the journal exists (because
+** the directory entry for the journal was never created) and the transaction
+** will not roll back - possibly leading to database corruption.
*/
-char *sqlite3UnixFullPathname(const char *zRelative){
- char *zFull = 0;
- if( zRelative[0]=='/' ){
- sqlite3SetString(&zFull, zRelative, (char*)0);
- }else{
- char *zBuf = sqliteMalloc(5000);
- if( zBuf==0 ){
- return 0;
- }
- zBuf[0] = 0;
- sqlite3SetString(&zFull, getcwd(zBuf, 5000), "/", zRelative,
- (char*)0);
- sqliteFree(zBuf);
- }
+static int unixSync(sqlite3_file *id, int flags){
+ int rc;
+ unixFile *pFile = (unixFile*)id;
-#if 0
- /*
- ** Remove "/./" path elements and convert "/A/./" path elements
- ** to just "/".
+ int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
+ int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
+
+ /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
+ assert((flags&0x0F)==SQLITE_SYNC_NORMAL
+ || (flags&0x0F)==SQLITE_SYNC_FULL
+ );
+
+ /* Unix cannot, but some systems may return SQLITE_FULL from here. This
+ ** line is to test that doing so does not cause any problems.
*/
- if( zFull ){
- int i, j;
- for(i=j=0; zFull[i]; i++){
- if( zFull[i]=='/' ){
- if( zFull[i+1]=='/' ) continue;
- if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
- i += 1;
- continue;
- }
- if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
- while( j>0 && zFull[j-1]!='/' ){ j--; }
- i += 3;
- continue;
- }
- }
- zFull[j++] = zFull[i];
- }
- zFull[j] = 0;
+ SimulateDiskfullError( return SQLITE_FULL );
+
+ assert( pFile );
+ OSTRACE2("SYNC %-3d\n", pFile->h);
+ rc = full_fsync(pFile->h, isFullsync, isDataOnly);
+ SimulateIOError( rc=1 );
+ if( rc ){
+ pFile->lastErrno = errno;
+ return SQLITE_IOERR_FSYNC;
}
+ if( pFile->dirfd>=0 ){
+ int err;
+ OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
+ HAVE_FULLFSYNC, isFullsync);
+#ifndef SQLITE_DISABLE_DIRSYNC
+ /* The directory sync is only attempted if full_fsync is
+ ** turned off or unavailable. If a full_fsync occurred above,
+ ** then the directory sync is superfluous.
+ */
+ if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
+ /*
+ ** We have received multiple reports of fsync() returning
+ ** errors when applied to directories on certain file systems.
+ ** A failed directory sync is not a big deal. So it seems
+ ** better to ignore the error. Ticket #1657
+ */
+ /* pFile->lastErrno = errno; */
+ /* return SQLITE_IOERR; */
+ }
#endif
-
- return zFull;
+ err = close(pFile->dirfd); /* Only need to sync once, so close the */
+ if( err==0 ){ /* directory when we are done */
+ pFile->dirfd = -1;
+ }else{
+ pFile->lastErrno = errno;
+ rc = SQLITE_IOERR_DIR_CLOSE;
+ }
+ }
+ return rc;
}
/*
-** Change the value of the fullsync flag in the given file descriptor.
+** Truncate an open file to a specified size
*/
-static void unixSetFullSync(OsFile *id, int v){
- ((unixFile*)id)->fullSync = v;
+static int unixTruncate(sqlite3_file *id, i64 nByte){
+ int rc;
+ assert( id );
+ SimulateIOError( return SQLITE_IOERR_TRUNCATE );
+ rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
+ if( rc ){
+ ((unixFile*)id)->lastErrno = errno;
+ return SQLITE_IOERR_TRUNCATE;
+ }else{
+ return SQLITE_OK;
+ }
}
/*
-** Return the underlying file handle for an OsFile
+** Determine the current size of a file in bytes
*/
-static int unixFileHandle(OsFile *id){
- return ((unixFile*)id)->h;
+static int unixFileSize(sqlite3_file *id, i64 *pSize){
+ int rc;
+ struct stat buf;
+ assert( id );
+ rc = fstat(((unixFile*)id)->h, &buf);
+ SimulateIOError( rc=1 );
+ if( rc!=0 ){
+ ((unixFile*)id)->lastErrno = errno;
+ return SQLITE_IOERR_FSTAT;
+ }
+ *pSize = buf.st_size;
+
+ /* When opening a zero-size database, the findLockInfo() procedure
+ ** writes a single byte into that file in order to work around a bug
+ ** in the OS-X msdos filesystem. In order to avoid problems with upper
+ ** layers, we need to report this file size as zero even though it is
+ ** really 1. Ticket #3260.
+ */
+ if( *pSize==1 ) *pSize = 0;
+
+
+ return SQLITE_OK;
}
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
/*
-** Return an integer that indices the type of lock currently held
-** by this handle. (Used for testing and analysis only.)
+** Handler for proxy-locking file-control verbs. Defined below in the
+** proxying locking division.
*/
-static int unixLockState(OsFile *id){
- return ((unixFile*)id)->locktype;
+static int proxyFileControl(sqlite3_file*,int,void*);
+#endif
+
+
+/*
+** Information and control of an open file handle.
+*/
+static int unixFileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = ((unixFile*)id)->locktype;
+ return SQLITE_OK;
+ }
+ case SQLITE_LAST_ERRNO: {
+ *(int*)pArg = ((unixFile*)id)->lastErrno;
+ return SQLITE_OK;
+ }
+#ifndef NDEBUG
+ /* The pager calls this method to signal that it has done
+ ** a rollback and that the database is therefore unchanged and
+ ** it hence it is OK for the transaction change counter to be
+ ** unchanged.
+ */
+ case SQLITE_FCNTL_DB_UNCHANGED: {
+ ((unixFile*)id)->dbUpdate = 0;
+ return SQLITE_OK;
+ }
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ case SQLITE_SET_LOCKPROXYFILE:
+ case SQLITE_GET_LOCKPROXYFILE: {
+ return proxyFileControl(id,op,pArg);
+ }
+#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
+ }
+ return SQLITE_ERROR;
}
/*
@@ -14227,274 +24697,959 @@ static int unixLockState(OsFile *id){
**
** SQLite code assumes this function cannot fail. It also assumes that
** if two files are created in the same file-system directory (i.e.
-** a database and it's journal file) that the sector size will be the
+** a database and its journal file) that the sector size will be the
** same for both.
*/
-static int unixSectorSize(OsFile *id){
+static int unixSectorSize(sqlite3_file *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
return SQLITE_DEFAULT_SECTOR_SIZE;
}
/*
-** This vector defines all the methods that can operate on an OsFile
-** for unix.
-*/
-static const IoMethod sqlite3UnixIoMethod = {
- unixClose,
- unixOpenDirectory,
- unixRead,
- unixWrite,
- unixSeek,
- unixTruncate,
- unixSync,
- unixSetFullSync,
- unixFileHandle,
- unixFileSize,
- unixLock,
- unixUnlock,
- unixLockState,
- unixCheckReservedLock,
- unixSectorSize,
-};
+** Return the device characteristics for the file. This is always 0 for unix.
+*/
+static int unixDeviceCharacteristics(sqlite3_file *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ return 0;
+}
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
/*
- ** This vector defines all the methods that can operate on an OsFile
- ** for unix with AFP style file locking.
- */
-static const IoMethod sqlite3AFPLockingUnixIoMethod = {
- afpUnixClose,
- unixOpenDirectory,
- unixRead,
- unixWrite,
- unixSeek,
- unixTruncate,
- unixSync,
- unixSetFullSync,
- unixFileHandle,
- unixFileSize,
- afpUnixLock,
- afpUnixUnlock,
- unixLockState,
- afpUnixCheckReservedLock,
- unixSectorSize,
-};
+** Here ends the implementation of all sqlite3_file methods.
+**
+********************** End sqlite3_file Methods *******************************
+******************************************************************************/
/*
- ** This vector defines all the methods that can operate on an OsFile
- ** for unix with flock() style file locking.
- */
-static const IoMethod sqlite3FlockLockingUnixIoMethod = {
- flockUnixClose,
- unixOpenDirectory,
- unixRead,
- unixWrite,
- unixSeek,
- unixTruncate,
- unixSync,
- unixSetFullSync,
- unixFileHandle,
- unixFileSize,
- flockUnixLock,
- flockUnixUnlock,
- unixLockState,
- flockUnixCheckReservedLock,
- unixSectorSize,
-};
+** This division contains definitions of sqlite3_io_methods objects that
+** implement various file locking strategies. It also contains definitions
+** of "finder" functions. A finder-function is used to locate the appropriate
+** sqlite3_io_methods object for a particular database file. The pAppData
+** field of the sqlite3_vfs VFS objects are initialized to be pointers to
+** the correct finder-function for that VFS.
+**
+** Most finder functions return a pointer to a fixed sqlite3_io_methods
+** object. The only interesting finder-function is autolockIoFinder, which
+** looks at the filesystem type and tries to guess the best locking
+** strategy from that.
+**
+** For finder-funtion F, two objects are created:
+**
+** (1) The real finder-function named "FImpt()".
+**
+** (2) A constant pointer to this function named just "F".
+**
+**
+** A pointer to the F pointer is used as the pAppData value for VFS
+** objects. We have to do this instead of letting pAppData point
+** directly at the finder-function since C90 rules prevent a void*
+** from be cast into a function pointer.
+**
+**
+** Each instance of this macro generates two objects:
+**
+** * A constant sqlite3_io_methods object call METHOD that has locking
+** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
+**
+** * An I/O method finder function called FINDER that returns a pointer
+** to the METHOD object in the previous bullet.
+*/
+#define IOMETHODS(FINDER, METHOD, CLOSE, LOCK, UNLOCK, CKLOCK) \
+static const sqlite3_io_methods METHOD = { \
+ 1, /* iVersion */ \
+ CLOSE, /* xClose */ \
+ unixRead, /* xRead */ \
+ unixWrite, /* xWrite */ \
+ unixTruncate, /* xTruncate */ \
+ unixSync, /* xSync */ \
+ unixFileSize, /* xFileSize */ \
+ LOCK, /* xLock */ \
+ UNLOCK, /* xUnlock */ \
+ CKLOCK, /* xCheckReservedLock */ \
+ unixFileControl, /* xFileControl */ \
+ unixSectorSize, /* xSectorSize */ \
+ unixDeviceCharacteristics /* xDeviceCapabilities */ \
+}; \
+static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
+ UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
+ return &METHOD; \
+} \
+static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
+ = FINDER##Impl;
/*
- ** This vector defines all the methods that can operate on an OsFile
- ** for unix with dotlock style file locking.
- */
-static const IoMethod sqlite3DotlockLockingUnixIoMethod = {
- dotlockUnixClose,
- unixOpenDirectory,
- unixRead,
- unixWrite,
- unixSeek,
- unixTruncate,
- unixSync,
- unixSetFullSync,
- unixFileHandle,
- unixFileSize,
- dotlockUnixLock,
- dotlockUnixUnlock,
- unixLockState,
- dotlockUnixCheckReservedLock,
- unixSectorSize,
-};
+** Here are all of the sqlite3_io_methods objects for each of the
+** locking strategies. Functions that return pointers to these methods
+** are also created.
+*/
+IOMETHODS(
+ posixIoFinder, /* Finder function name */
+ posixIoMethods, /* sqlite3_io_methods object name */
+ unixClose, /* xClose method */
+ unixLock, /* xLock method */
+ unixUnlock, /* xUnlock method */
+ unixCheckReservedLock /* xCheckReservedLock method */
+)
+IOMETHODS(
+ nolockIoFinder, /* Finder function name */
+ nolockIoMethods, /* sqlite3_io_methods object name */
+ nolockClose, /* xClose method */
+ nolockLock, /* xLock method */
+ nolockUnlock, /* xUnlock method */
+ nolockCheckReservedLock /* xCheckReservedLock method */
+)
+IOMETHODS(
+ dotlockIoFinder, /* Finder function name */
+ dotlockIoMethods, /* sqlite3_io_methods object name */
+ dotlockClose, /* xClose method */
+ dotlockLock, /* xLock method */
+ dotlockUnlock, /* xUnlock method */
+ dotlockCheckReservedLock /* xCheckReservedLock method */
+)
+
+#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
+IOMETHODS(
+ flockIoFinder, /* Finder function name */
+ flockIoMethods, /* sqlite3_io_methods object name */
+ flockClose, /* xClose method */
+ flockLock, /* xLock method */
+ flockUnlock, /* xUnlock method */
+ flockCheckReservedLock /* xCheckReservedLock method */
+)
+#endif
+
+#if OS_VXWORKS
+IOMETHODS(
+ semIoFinder, /* Finder function name */
+ semIoMethods, /* sqlite3_io_methods object name */
+ semClose, /* xClose method */
+ semLock, /* xLock method */
+ semUnlock, /* xUnlock method */
+ semCheckReservedLock /* xCheckReservedLock method */
+)
+#endif
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+IOMETHODS(
+ afpIoFinder, /* Finder function name */
+ afpIoMethods, /* sqlite3_io_methods object name */
+ afpClose, /* xClose method */
+ afpLock, /* xLock method */
+ afpUnlock, /* xUnlock method */
+ afpCheckReservedLock /* xCheckReservedLock method */
+)
+#endif
/*
- ** This vector defines all the methods that can operate on an OsFile
- ** for unix with dotlock style file locking.
- */
-static const IoMethod sqlite3NolockLockingUnixIoMethod = {
- nolockUnixClose,
- unixOpenDirectory,
- unixRead,
- unixWrite,
- unixSeek,
- unixTruncate,
- unixSync,
- unixSetFullSync,
- unixFileHandle,
- unixFileSize,
- nolockUnixLock,
- nolockUnixUnlock,
- unixLockState,
- nolockUnixCheckReservedLock,
- unixSectorSize,
-};
+** The "Whole File Locking" finder returns the same set of methods as
+** the posix locking finder. But it also sets the SQLITE_WHOLE_FILE_LOCKING
+** flag to force the posix advisory locks to cover the whole file instead
+** of just a small span of bytes near the 1GiB boundary. Whole File Locking
+** is useful on NFS-mounted files since it helps NFS to maintain cache
+** coherency. But it is a detriment to other filesystems since it runs
+** slower.
+*/
+static const sqlite3_io_methods *posixWflIoFinderImpl(const char*z, unixFile*p){
+ UNUSED_PARAMETER(z);
+ p->fileFlags = SQLITE_WHOLE_FILE_LOCKING;
+ return &posixIoMethods;
+}
+static const sqlite3_io_methods
+ *(*const posixWflIoFinder)(const char*,unixFile *p) = posixWflIoFinderImpl;
+
+/*
+** The proxy locking method is a "super-method" in the sense that it
+** opens secondary file descriptors for the conch and lock files and
+** it uses proxy, dot-file, AFP, and flock() locking methods on those
+** secondary files. For this reason, the division that implements
+** proxy locking is located much further down in the file. But we need
+** to go ahead and define the sqlite3_io_methods and finder function
+** for proxy locking here. So we forward declare the I/O methods.
+*/
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+static int proxyClose(sqlite3_file*);
+static int proxyLock(sqlite3_file*, int);
+static int proxyUnlock(sqlite3_file*, int);
+static int proxyCheckReservedLock(sqlite3_file*, int*);
+IOMETHODS(
+ proxyIoFinder, /* Finder function name */
+ proxyIoMethods, /* sqlite3_io_methods object name */
+ proxyClose, /* xClose method */
+ proxyLock, /* xLock method */
+ proxyUnlock, /* xUnlock method */
+ proxyCheckReservedLock /* xCheckReservedLock method */
+)
+#endif
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
/*
-** Allocate memory for a new unixFile and initialize that unixFile.
-** Write a pointer to the new unixFile into *pId.
-** If we run out of memory, close the file and return an error.
+** This "finder" function attempts to determine the best locking strategy
+** for the database file "filePath". It then returns the sqlite3_io_methods
+** object that implements that strategy.
+**
+** This is for MacOSX only.
*/
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
+static const sqlite3_io_methods *autolockIoFinderImpl(
+ const char *filePath, /* name of the database file */
+ unixFile *pNew /* open file object for the database file */
+){
+ static const struct Mapping {
+ const char *zFilesystem; /* Filesystem type name */
+ const sqlite3_io_methods *pMethods; /* Appropriate locking method */
+ } aMap[] = {
+ { "hfs", &posixIoMethods },
+ { "ufs", &posixIoMethods },
+ { "afpfs", &afpIoMethods },
+#ifdef SQLITE_ENABLE_AFP_LOCKING_SMB
+ { "smbfs", &afpIoMethods },
+#else
+ { "smbfs", &flockIoMethods },
+#endif
+ { "webdav", &nolockIoMethods },
+ { 0, 0 }
+ };
+ int i;
+ struct statfs fsInfo;
+ struct flock lockInfo;
+
+ if( !filePath ){
+ /* If filePath==NULL that means we are dealing with a transient file
+ ** that does not need to be locked. */
+ return &nolockIoMethods;
+ }
+ if( statfs(filePath, &fsInfo) != -1 ){
+ if( fsInfo.f_flags & MNT_RDONLY ){
+ return &nolockIoMethods;
+ }
+ for(i=0; aMap[i].zFilesystem; i++){
+ if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
+ return aMap[i].pMethods;
+ }
+ }
+ }
+
+ /* Default case. Handles, amongst others, "nfs".
+ ** Test byte-range lock using fcntl(). If the call succeeds,
+ ** assume that the file-system supports POSIX style locks.
+ */
+ lockInfo.l_len = 1;
+ lockInfo.l_start = 0;
+ lockInfo.l_whence = SEEK_SET;
+ lockInfo.l_type = F_RDLCK;
+ if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
+ pNew->fileFlags = SQLITE_WHOLE_FILE_LOCKING;
+ return &posixIoMethods;
+ }else{
+ return &dotlockIoMethods;
+ }
+}
+static const sqlite3_io_methods
+ *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+
+#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
/*
- ** When locking extensions are enabled, the filepath and locking style
- ** are needed to determine the unixFile pMethod to use for locking operations.
- ** The locking-style specific lockingContext data structure is created
- ** and assigned here also.
- */
-static int allocateUnixFile(
+** This "finder" function attempts to determine the best locking strategy
+** for the database file "filePath". It then returns the sqlite3_io_methods
+** object that implements that strategy.
+**
+** This is for VXWorks only.
+*/
+static const sqlite3_io_methods *autolockIoFinderImpl(
+ const char *filePath, /* name of the database file */
+ unixFile *pNew /* the open file object */
+){
+ struct flock lockInfo;
+
+ if( !filePath ){
+ /* If filePath==NULL that means we are dealing with a transient file
+ ** that does not need to be locked. */
+ return &nolockIoMethods;
+ }
+
+ /* Test if fcntl() is supported and use POSIX style locks.
+ ** Otherwise fall back to the named semaphore method.
+ */
+ lockInfo.l_len = 1;
+ lockInfo.l_start = 0;
+ lockInfo.l_whence = SEEK_SET;
+ lockInfo.l_type = F_RDLCK;
+ if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
+ return &posixIoMethods;
+ }else{
+ return &semIoMethods;
+ }
+}
+static const sqlite3_io_methods
+ *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
+
+#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
+
+/*
+** An abstract type for a pointer to a IO method finder function:
+*/
+typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
+
+
+/****************************************************************************
+**************************** sqlite3_vfs methods ****************************
+**
+** This division contains the implementation of methods on the
+** sqlite3_vfs object.
+*/
+
+/*
+** Initialize the contents of the unixFile structure pointed to by pId.
+*/
+static int fillInUnixFile(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
int h, /* Open file descriptor of file being opened */
- OsFile **pId, /* Write completed initialization here */
+ int dirfd, /* Directory file descriptor */
+ sqlite3_file *pId, /* Write to the unixFile structure here */
const char *zFilename, /* Name of the file being opened */
- int delFlag /* Delete-on-or-before-close flag */
+ int noLock, /* Omit locking if true */
+ int isDelete /* Delete on close if true */
){
- sqlite3LockingStyle lockingStyle;
- unixFile *pNew;
- unixFile f;
- int rc;
+ const sqlite3_io_methods *pLockingStyle;
+ unixFile *pNew = (unixFile *)pId;
+ int rc = SQLITE_OK;
- memset(&f, 0, sizeof(f));
- lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
- if ( lockingStyle == posixLockingStyle ) {
- sqlite3OsEnterMutex();
- rc = findLockInfo(h, &f.pLock, &f.pOpen);
- sqlite3OsLeaveMutex();
- if( rc ){
+ assert( pNew->pLock==NULL );
+ assert( pNew->pOpen==NULL );
+
+ /* Parameter isDelete is only used on vxworks. Express this explicitly
+ ** here to prevent compiler warnings about unused parameters.
+ */
+ UNUSED_PARAMETER(isDelete);
+
+ OSTRACE3("OPEN %-3d %s\n", h, zFilename);
+ pNew->h = h;
+ pNew->dirfd = dirfd;
+ SET_THREADID(pNew);
+ pNew->fileFlags = 0;
+
+#if OS_VXWORKS
+ pNew->pId = vxworksFindFileId(zFilename);
+ if( pNew->pId==0 ){
+ noLock = 1;
+ rc = SQLITE_NOMEM;
+ }
+#endif
+
+ if( noLock ){
+ pLockingStyle = &nolockIoMethods;
+ }else{
+ pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
+#if SQLITE_ENABLE_LOCKING_STYLE
+ /* Cache zFilename in the locking context (AFP and dotlock override) for
+ ** proxyLock activation is possible (remote proxy is based on db name)
+ ** zFilename remains valid until file is closed, to support */
+ pNew->lockingContext = (void*)zFilename;
+#endif
+ }
+
+ if( pLockingStyle == &posixIoMethods ){
+ unixEnterMutex();
+ rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen);
+ if( rc!=SQLITE_OK ){
+ /* If an error occured in findLockInfo(), close the file descriptor
+ ** immediately, before releasing the mutex. findLockInfo() may fail
+ ** in two scenarios:
+ **
+ ** (a) A call to fstat() failed.
+ ** (b) A malloc failed.
+ **
+ ** Scenario (b) may only occur if the process is holding no other
+ ** file descriptors open on the same file. If there were other file
+ ** descriptors on this file, then no malloc would be required by
+ ** findLockInfo(). If this is the case, it is quite safe to close
+ ** handle h - as it is guaranteed that no posix locks will be released
+ ** by doing so.
+ **
+ ** If scenario (a) caused the error then things are not so safe. The
+ ** implicit assumption here is that if fstat() fails, things are in
+ ** such bad shape that dropping a lock or two doesn't matter much.
+ */
close(h);
- unlink(zFilename);
- return SQLITE_NOMEM;
+ h = -1;
}
- } else {
- // pLock and pOpen are only used for posix advisory locking
- f.pLock = NULL;
- f.pOpen = NULL;
+ unixLeaveMutex();
}
- if( delFlag ){
+
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ else if( pLockingStyle == &afpIoMethods ){
+ /* AFP locking uses the file path so it needs to be included in
+ ** the afpLockingContext.
+ */
+ afpLockingContext *pCtx;
+ pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
+ if( pCtx==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ /* NB: zFilename exists and remains valid until the file is closed
+ ** according to requirement F11141. So we do not need to make a
+ ** copy of the filename. */
+ pCtx->dbPath = zFilename;
+ srandomdev();
+ unixEnterMutex();
+ rc = findLockInfo(pNew, NULL, &pNew->pOpen);
+ unixLeaveMutex();
+ }
+ }
+#endif
+
+ else if( pLockingStyle == &dotlockIoMethods ){
+ /* Dotfile locking uses the file path so it needs to be included in
+ ** the dotlockLockingContext
+ */
+ char *zLockFile;
+ int nFilename;
+ nFilename = (int)strlen(zFilename) + 6;
+ zLockFile = (char *)sqlite3_malloc(nFilename);
+ if( zLockFile==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
+ }
+ pNew->lockingContext = zLockFile;
+ }
+
+#if OS_VXWORKS
+ else if( pLockingStyle == &semIoMethods ){
+ /* Named semaphore locking uses the file path so it needs to be
+ ** included in the semLockingContext
+ */
+ unixEnterMutex();
+ rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen);
+ if( (rc==SQLITE_OK) && (pNew->pOpen->pSem==NULL) ){
+ char *zSemName = pNew->pOpen->aSemName;
+ int n;
+ sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
+ pNew->pId->zCanonicalName);
+ for( n=1; zSemName[n]; n++ )
+ if( zSemName[n]=='/' ) zSemName[n] = '_';
+ pNew->pOpen->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
+ if( pNew->pOpen->pSem == SEM_FAILED ){
+ rc = SQLITE_NOMEM;
+ pNew->pOpen->aSemName[0] = '\0';
+ }
+ }
+ unixLeaveMutex();
+ }
+#endif
+
+ pNew->lastErrno = 0;
+#if OS_VXWORKS
+ if( rc!=SQLITE_OK ){
unlink(zFilename);
+ isDelete = 0;
}
- f.dirfd = -1;
- f.h = h;
- SET_THREADID(&f);
- pNew = sqlite3ThreadSafeMalloc( sizeof(unixFile) );
- if( pNew==0 ){
- close(h);
- sqlite3OsEnterMutex();
- releaseLockInfo(f.pLock);
- releaseOpenCnt(f.pOpen);
- sqlite3OsLeaveMutex();
- *pId = 0;
- return SQLITE_NOMEM;
+ pNew->isDelete = isDelete;
+#endif
+ if( rc!=SQLITE_OK ){
+ if( dirfd>=0 ) close(dirfd); /* silent leak if fail, already in error */
+ if( h>=0 ) close(h);
}else{
- *pNew = f;
- switch(lockingStyle) {
- case afpLockingStyle:
- /* afp locking uses the file path so it needs to be included in
- ** the afpLockingContext */
- pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
- pNew->lockingContext =
- sqlite3ThreadSafeMalloc(sizeof(afpLockingContext));
- ((afpLockingContext *)pNew->lockingContext)->filePath =
- sqlite3ThreadSafeMalloc(strlen(zFilename) + 1);
- strcpy(((afpLockingContext *)pNew->lockingContext)->filePath,
- zFilename);
- srandomdev();
- break;
- case flockLockingStyle:
- /* flock locking doesn't need additional lockingContext information */
- pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
- break;
- case dotlockLockingStyle:
- /* dotlock locking uses the file path so it needs to be included in
- ** the dotlockLockingContext */
- pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
- pNew->lockingContext = sqlite3ThreadSafeMalloc(
- sizeof(dotlockLockingContext));
- ((dotlockLockingContext *)pNew->lockingContext)->lockPath =
- sqlite3ThreadSafeMalloc(strlen(zFilename) + strlen(".lock") + 1);
- sprintf(((dotlockLockingContext *)pNew->lockingContext)->lockPath,
- "%s.lock", zFilename);
- break;
- case posixLockingStyle:
- /* posix locking doesn't need additional lockingContext information */
- pNew->pMethod = &sqlite3UnixIoMethod;
- break;
- case noLockingStyle:
- case unsupportedLockingStyle:
- default:
- pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
- }
- *pId = (OsFile*)pNew;
+ pNew->pMethod = pLockingStyle;
OpenCounter(+1);
- return SQLITE_OK;
}
+ return rc;
}
-#else /* SQLITE_ENABLE_LOCKING_STYLE */
-static int allocateUnixFile(
- int h, /* Open file descriptor on file being opened */
- OsFile **pId, /* Write the resul unixFile structure here */
- const char *zFilename, /* Name of the file being opened */
- int delFlag /* If true, delete the file on or before closing */
+
+/*
+** Open a file descriptor to the directory containing file zFilename.
+** If successful, *pFd is set to the opened file descriptor and
+** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
+** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
+** value.
+**
+** If SQLITE_OK is returned, the caller is responsible for closing
+** the file descriptor *pFd using close().
+*/
+static int openDirectory(const char *zFilename, int *pFd){
+ int ii;
+ int fd = -1;
+ char zDirname[MAX_PATHNAME+1];
+
+ sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
+ for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
+ if( ii>0 ){
+ zDirname[ii] = '\0';
+ fd = open(zDirname, O_RDONLY|O_BINARY, 0);
+ if( fd>=0 ){
+#ifdef FD_CLOEXEC
+ fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
+#endif
+ OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
+ }
+ }
+ *pFd = fd;
+ return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
+}
+
+/*
+** Create a temporary file name in zBuf. zBuf must be allocated
+** by the calling process and must be big enough to hold at least
+** pVfs->mxPathname bytes.
+*/
+static int getTempname(int nBuf, char *zBuf){
+ static const char *azDirs[] = {
+ 0,
+ 0,
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ ".",
+ };
+ static const unsigned char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ unsigned int i, j;
+ struct stat buf;
+ const char *zDir = ".";
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing.
+ */
+ SimulateIOError( return SQLITE_IOERR );
+
+ azDirs[0] = sqlite3_temp_directory;
+ if (NULL == azDirs[1]) {
+ azDirs[1] = getenv("TMPDIR");
+ }
+
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
+ if( azDirs[i]==0 ) continue;
+ if( stat(azDirs[i], &buf) ) continue;
+ if( !S_ISDIR(buf.st_mode) ) continue;
+ if( access(azDirs[i], 07) ) continue;
+ zDir = azDirs[i];
+ break;
+ }
+
+ /* Check that the output buffer is large enough for the temporary file
+ ** name. If it is not, return SQLITE_ERROR.
+ */
+ if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){
+ return SQLITE_ERROR;
+ }
+
+ do{
+ sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
+ j = (int)strlen(zBuf);
+ sqlite3_randomness(15, &zBuf[j]);
+ for(i=0; i<15; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ }while( access(zBuf,0)==0 );
+ return SQLITE_OK;
+}
+
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+/*
+** Routine to transform a unixFile into a proxy-locking unixFile.
+** Implementation in the proxy-lock division, but used by unixOpen()
+** if SQLITE_PREFER_PROXY_LOCKING is defined.
+*/
+static int proxyTransformUnixFile(unixFile*, const char*);
+#endif
+
+/*
+** Search for an unused file descriptor that was opened on the database
+** file (not a journal or master-journal file) identified by pathname
+** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
+** argument to this function.
+**
+** Such a file descriptor may exist if a database connection was closed
+** but the associated file descriptor could not be closed because some
+** other file descriptor open on the same file is holding a file-lock.
+** Refer to comments in the unixClose() function and the lengthy comment
+** describing "Posix Advisory Locking" at the start of this file for
+** further details. Also, ticket #4018.
+**
+** If a suitable file descriptor is found, then it is returned. If no
+** such file descriptor is located, -1 is returned.
+*/
+static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
+ UnixUnusedFd *pUnused = 0;
+
+ /* Do not search for an unused file descriptor on vxworks. Not because
+ ** vxworks would not benefit from the change (it might, we're not sure),
+ ** but because no way to test it is currently available. It is better
+ ** not to risk breaking vxworks support for the sake of such an obscure
+ ** feature. */
+#if !OS_VXWORKS
+ struct stat sStat; /* Results of stat() call */
+
+ /* A stat() call may fail for various reasons. If this happens, it is
+ ** almost certain that an open() call on the same path will also fail.
+ ** For this reason, if an error occurs in the stat() call here, it is
+ ** ignored and -1 is returned. The caller will try to open a new file
+ ** descriptor on the same path, fail, and return an error to SQLite.
+ **
+ ** Even if a subsequent open() call does succeed, the consequences of
+ ** not searching for a resusable file descriptor are not dire. */
+ if( 0==stat(zPath, &sStat) ){
+ struct unixOpenCnt *pO;
+ struct unixFileId id;
+ id.dev = sStat.st_dev;
+ id.ino = sStat.st_ino;
+
+ unixEnterMutex();
+ for(pO=openList; pO && memcmp(&id, &pO->fileId, sizeof(id)); pO=pO->pNext);
+ if( pO ){
+ UnixUnusedFd **pp;
+ for(pp=&pO->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
+ pUnused = *pp;
+ if( pUnused ){
+ *pp = pUnused->pNext;
+ }
+ }
+ unixLeaveMutex();
+ }
+#endif /* if !OS_VXWORKS */
+ return pUnused;
+}
+
+/*
+** Open the file zPath.
+**
+** Previously, the SQLite OS layer used three functions in place of this
+** one:
+**
+** sqlite3OsOpenReadWrite();
+** sqlite3OsOpenReadOnly();
+** sqlite3OsOpenExclusive();
+**
+** These calls correspond to the following combinations of flags:
+**
+** ReadWrite() -> (READWRITE | CREATE)
+** ReadOnly() -> (READONLY)
+** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
+**
+** The old OpenExclusive() accepted a boolean argument - "delFlag". If
+** true, the file was configured to be automatically deleted when the
+** file handle closed. To achieve the same effect using this new
+** interface, add the DELETEONCLOSE flag to those specified above for
+** OpenExclusive().
+*/
+static int unixOpen(
+ sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
+ const char *zPath, /* Pathname of file to be opened */
+ sqlite3_file *pFile, /* The file descriptor to be filled in */
+ int flags, /* Input flags to control the opening */
+ int *pOutFlags /* Output flags returned to SQLite core */
){
- unixFile *pNew;
- unixFile f;
- int rc;
+ unixFile *p = (unixFile *)pFile;
+ int fd = -1; /* File descriptor returned by open() */
+ int dirfd = -1; /* Directory file descriptor */
+ int openFlags = 0; /* Flags to pass to open() */
+ int eType = flags&0xFFFFFF00; /* Type of file to open */
+ int noLock; /* True to omit locking primitives */
+ int rc = SQLITE_OK; /* Function Return Code */
+
+ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
+ int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
+ int isCreate = (flags & SQLITE_OPEN_CREATE);
+ int isReadonly = (flags & SQLITE_OPEN_READONLY);
+ int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
+
+ /* If creating a master or main-file journal, this function will open
+ ** a file-descriptor on the directory too. The first time unixSync()
+ ** is called the directory file descriptor will be fsync()ed and close()d.
+ */
+ int isOpenDirectory = (isCreate &&
+ (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
+ );
- memset(&f, 0, sizeof(f));
- sqlite3OsEnterMutex();
- rc = findLockInfo(h, &f.pLock, &f.pOpen);
- sqlite3OsLeaveMutex();
- if( delFlag ){
- unlink(zFilename);
+ /* If argument zPath is a NULL pointer, this function is required to open
+ ** a temporary file. Use this buffer to store the file name in.
+ */
+ char zTmpname[MAX_PATHNAME+1];
+ const char *zName = zPath;
+
+ /* Check the following statements are true:
+ **
+ ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
+ ** (b) if CREATE is set, then READWRITE must also be set, and
+ ** (c) if EXCLUSIVE is set, then CREATE must also be set.
+ ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
+ */
+ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
+ assert(isCreate==0 || isReadWrite);
+ assert(isExclusive==0 || isCreate);
+ assert(isDelete==0 || isCreate);
+
+ /* The main DB, main journal, and master journal are never automatically
+ ** deleted. Nor are they ever temporary files. */
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
+
+ /* Assert that the upper layer has set one of the "file-type" flags. */
+ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
+ || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
+ || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
+ || eType==SQLITE_OPEN_TRANSIENT_DB
+ );
+
+ memset(p, 0, sizeof(unixFile));
+
+ if( eType==SQLITE_OPEN_MAIN_DB ){
+ UnixUnusedFd *pUnused;
+ pUnused = findReusableFd(zName, flags);
+ if( pUnused ){
+ fd = pUnused->fd;
+ }else{
+ pUnused = sqlite3_malloc(sizeof(*pUnused));
+ if( !pUnused ){
+ return SQLITE_NOMEM;
+ }
+ }
+ p->pUnused = pUnused;
+ }else if( !zName ){
+ /* If zName is NULL, the upper layer is requesting a temp file. */
+ assert(isDelete && !isOpenDirectory);
+ rc = getTempname(MAX_PATHNAME+1, zTmpname);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zName = zTmpname;
}
- if( rc ){
- close(h);
- return SQLITE_NOMEM;
+
+ /* Determine the value of the flags parameter passed to POSIX function
+ ** open(). These must be calculated even if open() is not called, as
+ ** they may be stored as part of the file handle and used by the
+ ** 'conch file' locking functions later on. */
+ if( isReadonly ) openFlags |= O_RDONLY;
+ if( isReadWrite ) openFlags |= O_RDWR;
+ if( isCreate ) openFlags |= O_CREAT;
+ if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
+ openFlags |= (O_LARGEFILE|O_BINARY);
+
+ if( fd<0 ){
+ mode_t openMode = (isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
+ fd = open(zName, openFlags, openMode);
+ OSTRACE4("OPENX %-3d %s 0%o\n", fd, zName, openFlags);
+ if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
+ /* Failed to open the file for read/write access. Try read-only. */
+ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
+ openFlags &= ~(O_RDWR|O_CREAT);
+ flags |= SQLITE_OPEN_READONLY;
+ openFlags |= O_RDONLY;
+ fd = open(zName, openFlags, openMode);
+ }
+ if( fd<0 ){
+ rc = SQLITE_CANTOPEN;
+ goto open_finished;
+ }
}
- OSTRACE3("OPEN %-3d %s\n", h, zFilename);
- f.dirfd = -1;
- f.h = h;
- SET_THREADID(&f);
- pNew = sqlite3ThreadSafeMalloc( sizeof(unixFile) );
- if( pNew==0 ){
- close(h);
- sqlite3OsEnterMutex();
- releaseLockInfo(f.pLock);
- releaseOpenCnt(f.pOpen);
- sqlite3OsLeaveMutex();
- *pId = 0;
- return SQLITE_NOMEM;
- }else{
- *pNew = f;
- pNew->pMethod = &sqlite3UnixIoMethod;
- *pId = (OsFile*)pNew;
- OpenCounter(+1);
- return SQLITE_OK;
+ assert( fd>=0 );
+ if( pOutFlags ){
+ *pOutFlags = flags;
+ }
+
+ if( p->pUnused ){
+ p->pUnused->fd = fd;
+ p->pUnused->flags = flags;
+ }
+
+ if( isDelete ){
+#if OS_VXWORKS
+ zPath = zName;
+#else
+ unlink(zName);
+#endif
}
+#if SQLITE_ENABLE_LOCKING_STYLE
+ else{
+ p->openFlags = openFlags;
+ }
+#endif
+
+ if( isOpenDirectory ){
+ rc = openDirectory(zPath, &dirfd);
+ if( rc!=SQLITE_OK ){
+ /* It is safe to close fd at this point, because it is guaranteed not
+ ** to be open on a database file. If it were open on a database file,
+ ** it would not be safe to close as this would release any locks held
+ ** on the file by this process. */
+ assert( eType!=SQLITE_OPEN_MAIN_DB );
+ close(fd); /* silently leak if fail, already in error */
+ goto open_finished;
+ }
+ }
+
+#ifdef FD_CLOEXEC
+ fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
+#endif
+
+ noLock = eType!=SQLITE_OPEN_MAIN_DB;
+
+#if SQLITE_PREFER_PROXY_LOCKING
+ if( zPath!=NULL && !noLock && pVfs->xOpen ){
+ char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
+ int useProxy = 0;
+
+ /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
+ ** never use proxy, NULL means use proxy for non-local files only. */
+ if( envforce!=NULL ){
+ useProxy = atoi(envforce)>0;
+ }else{
+ struct statfs fsInfo;
+ if( statfs(zPath, &fsInfo) == -1 ){
+ /* In theory, the close(fd) call is sub-optimal. If the file opened
+ ** with fd is a database file, and there are other connections open
+ ** on that file that are currently holding advisory locks on it,
+ ** then the call to close() will cancel those locks. In practice,
+ ** we're assuming that statfs() doesn't fail very often. At least
+ ** not while other file descriptors opened by the same process on
+ ** the same file are working. */
+ p->lastErrno = errno;
+ if( dirfd>=0 ){
+ close(dirfd); /* silently leak if fail, in error */
+ }
+ close(fd); /* silently leak if fail, in error */
+ rc = SQLITE_IOERR_ACCESS;
+ goto open_finished;
+ }
+ useProxy = !(fsInfo.f_flags&MNT_LOCAL);
+ }
+ if( useProxy ){
+ rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete);
+ if( rc==SQLITE_OK ){
+ rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
+ }
+ goto open_finished;
+ }
+ }
+#endif
+
+ rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete);
+open_finished:
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(p->pUnused);
+ }
+ return rc;
}
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-#endif /* SQLITE_OMIT_DISKIO */
-/***************************************************************************
-** Everything above deals with file I/O. Everything that follows deals
-** with other miscellanous aspects of the operating system interface
-****************************************************************************/
+
+/*
+** Delete the file at zPath. If the dirSync argument is true, fsync()
+** the directory after deleting the file.
+*/
+static int unixDelete(
+ sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
+ const char *zPath, /* Name of file to be deleted */
+ int dirSync /* If true, fsync() directory after deleting file */
+){
+ int rc = SQLITE_OK;
+ UNUSED_PARAMETER(NotUsed);
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ unlink(zPath);
+#ifndef SQLITE_DISABLE_DIRSYNC
+ if( dirSync ){
+ int fd;
+ rc = openDirectory(zPath, &fd);
+ if( rc==SQLITE_OK ){
+#if OS_VXWORKS
+ if( fsync(fd)==-1 )
+#else
+ if( fsync(fd) )
+#endif
+ {
+ rc = SQLITE_IOERR_DIR_FSYNC;
+ }
+ if( close(fd)&&!rc ){
+ rc = SQLITE_IOERR_DIR_CLOSE;
+ }
+ }
+ }
+#endif
+ return rc;
+}
+
+/*
+** Test the existance of or access permissions of file zPath. The
+** test performed depends on the value of flags:
+**
+** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
+** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
+** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
+**
+** Otherwise return 0.
+*/
+static int unixAccess(
+ sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
+ const char *zPath, /* Path of the file to examine */
+ int flags, /* What do we want to learn about the zPath file? */
+ int *pResOut /* Write result boolean here */
+){
+ int amode = 0;
+ UNUSED_PARAMETER(NotUsed);
+ SimulateIOError( return SQLITE_IOERR_ACCESS; );
+ switch( flags ){
+ case SQLITE_ACCESS_EXISTS:
+ amode = F_OK;
+ break;
+ case SQLITE_ACCESS_READWRITE:
+ amode = W_OK|R_OK;
+ break;
+ case SQLITE_ACCESS_READ:
+ amode = R_OK;
+ break;
+
+ default:
+ assert(!"Invalid flags argument");
+ }
+ *pResOut = (access(zPath, amode)==0);
+ return SQLITE_OK;
+}
+
+
+/*
+** Turn a relative pathname into a full pathname. The relative path
+** is stored as a nul-terminated string in the buffer pointed to by
+** zPath.
+**
+** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
+** (in this case, MAX_PATHNAME bytes). The full-path is written to
+** this buffer before returning.
+*/
+static int unixFullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zPath, /* Possibly relative input path */
+ int nOut, /* Size of output buffer in bytes */
+ char *zOut /* Output buffer */
+){
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing. This function could fail if, for example, the
+ ** current working directory has been unlinked.
+ */
+ SimulateIOError( return SQLITE_ERROR );
+
+ assert( pVfs->mxPathname==MAX_PATHNAME );
+ UNUSED_PARAMETER(pVfs);
+
+ zOut[nOut-1] = '\0';
+ if( zPath[0]=='/' ){
+ sqlite3_snprintf(nOut, zOut, "%s", zPath);
+ }else{
+ int nCwd;
+ if( getcwd(zOut, nOut-1)==0 ){
+ return SQLITE_CANTOPEN;
+ }
+ nCwd = (int)strlen(zOut);
+ sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
+ }
+ return SQLITE_OK;
+}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
@@ -14503,23 +25658,69 @@ static int allocateUnixFile(
** within the shared library, and closing the shared library.
*/
#include <dlfcn.h>
-void *sqlite3UnixDlopen(const char *zFilename){
+static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
+ UNUSED_PARAMETER(NotUsed);
return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
}
-void *sqlite3UnixDlsym(void *pHandle, const char *zSymbol){
- return dlsym(pHandle, zSymbol);
+
+/*
+** SQLite calls this function immediately after a call to unixDlSym() or
+** unixDlOpen() fails (returns a null pointer). If a more detailed error
+** message is available, it is written to zBufOut. If no error message
+** is available, zBufOut is left unmodified and SQLite uses a default
+** error message.
+*/
+static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
+ char *zErr;
+ UNUSED_PARAMETER(NotUsed);
+ unixEnterMutex();
+ zErr = dlerror();
+ if( zErr ){
+ sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
+ }
+ unixLeaveMutex();
}
-int sqlite3UnixDlclose(void *pHandle){
- return dlclose(pHandle);
+static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
+ /*
+ ** GCC with -pedantic-errors says that C90 does not allow a void* to be
+ ** cast into a pointer to a function. And yet the library dlsym() routine
+ ** returns a void* which is really a pointer to a function. So how do we
+ ** use dlsym() with -pedantic-errors?
+ **
+ ** Variable x below is defined to be a pointer to a function taking
+ ** parameters void* and const char* and returning a pointer to a function.
+ ** We initialize x by assigning it a pointer to the dlsym() function.
+ ** (That assignment requires a cast.) Then we call the function that
+ ** x points to.
+ **
+ ** This work-around is unlikely to work correctly on any system where
+ ** you really cannot cast a function pointer into void*. But then, on the
+ ** other hand, dlsym() will not work on such a system either, so we have
+ ** not really lost anything.
+ */
+ void (*(*x)(void*,const char*))(void);
+ UNUSED_PARAMETER(NotUsed);
+ x = (void(*(*)(void*,const char*))(void))dlsym;
+ return (*x)(p, zSym);
}
-#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
+ UNUSED_PARAMETER(NotUsed);
+ dlclose(pHandle);
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define unixDlOpen 0
+ #define unixDlError 0
+ #define unixDlSym 0
+ #define unixDlClose 0
+#endif
/*
-** Get information to seed the random number generator. The seed
-** is written into the buffer zBuf[256]. The calling function must
-** supply a sufficiently large buffer.
+** Write nBuf bytes of random data to the supplied buffer zBuf.
*/
-int sqlite3UnixRandomSeed(char *zBuf){
+static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
+ UNUSED_PARAMETER(NotUsed);
+ assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
+
/* We have to initialize zBuf to prevent valgrind from reporting
** errors. The reports issued by valgrind are incorrect - we would
** prefer that the randomness be increased by making use of the
@@ -14532,7 +25733,7 @@ int sqlite3UnixRandomSeed(char *zBuf){
** that we always use the same random number sequence. This makes the
** tests repeatable.
*/
- memset(zBuf, 0, 256);
+ memset(zBuf, 0, nBuf);
#if !defined(SQLITE_TEST)
{
int pid, fd;
@@ -14542,269 +25743,1154 @@ int sqlite3UnixRandomSeed(char *zBuf){
time(&t);
memcpy(zBuf, &t, sizeof(t));
pid = getpid();
- memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
+ memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
+ assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
+ nBuf = sizeof(t) + sizeof(pid);
}else{
- read(fd, zBuf, 256);
+ nBuf = read(fd, zBuf, nBuf);
close(fd);
}
}
#endif
- return SQLITE_OK;
+ return nBuf;
}
+
/*
** Sleep for a little while. Return the amount of time slept.
-** The argument is the number of milliseconds we want to sleep.
+** The argument is the number of microseconds we want to sleep.
+** The return value is the number of microseconds of sleep actually
+** requested from the underlying operating system, a number which
+** might be greater than or equal to the argument, but not less
+** than the argument.
+*/
+static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
+#if OS_VXWORKS
+ struct timespec sp;
+
+ sp.tv_sec = microseconds / 1000000;
+ sp.tv_nsec = (microseconds % 1000000) * 1000;
+ nanosleep(&sp, NULL);
+ UNUSED_PARAMETER(NotUsed);
+ return microseconds;
+#elif defined(HAVE_USLEEP) && HAVE_USLEEP
+ usleep(microseconds);
+ UNUSED_PARAMETER(NotUsed);
+ return microseconds;
+#else
+ int seconds = (microseconds+999999)/1000000;
+ sleep(seconds);
+ UNUSED_PARAMETER(NotUsed);
+ return seconds*1000000;
+#endif
+}
+
+/*
+** The following variable, if set to a non-zero value, is interpreted as
+** the number of seconds since 1970 and is used to set the result of
+** sqlite3OsCurrentTime() during testing.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
*/
-int sqlite3UnixSleep(int ms){
-#if defined(HAVE_USLEEP) && HAVE_USLEEP
- usleep(ms*1000);
- return ms;
+static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
+#if defined(SQLITE_OMIT_FLOATING_POINT)
+ time_t t;
+ time(&t);
+ *prNow = (((sqlite3_int64)t)/8640 + 24405875)/10;
+#elif defined(NO_GETTOD)
+ time_t t;
+ time(&t);
+ *prNow = t/86400.0 + 2440587.5;
+#elif OS_VXWORKS
+ struct timespec sNow;
+ clock_gettime(CLOCK_REALTIME, &sNow);
+ *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_nsec/86400000000000.0;
#else
- sleep((ms+999)/1000);
- return 1000*((ms+999)/1000);
+ struct timeval sNow;
+ gettimeofday(&sNow, 0);
+ *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
+#endif
+
+#ifdef SQLITE_TEST
+ if( sqlite3_current_time ){
+ *prNow = sqlite3_current_time/86400.0 + 2440587.5;
+ }
#endif
+ UNUSED_PARAMETER(NotUsed);
+ return 0;
}
/*
-** Static variables used for thread synchronization.
+** We added the xGetLastError() method with the intention of providing
+** better low-level error messages when operating-system problems come up
+** during SQLite operation. But so far, none of that has been implemented
+** in the core. So this routine is never called. For now, it is merely
+** a place-holder.
+*/
+static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
+ UNUSED_PARAMETER(NotUsed);
+ UNUSED_PARAMETER(NotUsed2);
+ UNUSED_PARAMETER(NotUsed3);
+ return 0;
+}
+
+/*
+************************ End of sqlite3_vfs methods ***************************
+******************************************************************************/
+
+/******************************************************************************
+************************** Begin Proxy Locking ********************************
+**
+** Proxy locking is a "uber-locking-method" in this sense: It uses the
+** other locking methods on secondary lock files. Proxy locking is a
+** meta-layer over top of the primitive locking implemented above. For
+** this reason, the division that implements of proxy locking is deferred
+** until late in the file (here) after all of the other I/O methods have
+** been defined - so that the primitive locking methods are available
+** as services to help with the implementation of proxy locking.
+**
+****
+**
+** The default locking schemes in SQLite use byte-range locks on the
+** database file to coordinate safe, concurrent access by multiple readers
+** and writers [http://sqlite.org/lockingv3.html]. The five file locking
+** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
+** as POSIX read & write locks over fixed set of locations (via fsctl),
+** on AFP and SMB only exclusive byte-range locks are available via fsctl
+** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
+** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
+** address in the shared range is taken for a SHARED lock, the entire
+** shared range is taken for an EXCLUSIVE lock):
+**
+** PENDING_BYTE 0x40000000
+** RESERVED_BYTE 0x40000001
+** SHARED_RANGE 0x40000002 -> 0x40000200
+**
+** This works well on the local file system, but shows a nearly 100x
+** slowdown in read performance on AFP because the AFP client disables
+** the read cache when byte-range locks are present. Enabling the read
+** cache exposes a cache coherency problem that is present on all OS X
+** supported network file systems. NFS and AFP both observe the
+** close-to-open semantics for ensuring cache coherency
+** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
+** address the requirements for concurrent database access by multiple
+** readers and writers
+** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
+**
+** To address the performance and cache coherency issues, proxy file locking
+** changes the way database access is controlled by limiting access to a
+** single host at a time and moving file locks off of the database file
+** and onto a proxy file on the local file system.
+**
+**
+** Using proxy locks
+** -----------------
+**
+** C APIs
+**
+** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
+** <proxy_path> | ":auto:");
+** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
+**
+**
+** SQL pragmas
+**
+** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
+** PRAGMA [database.]lock_proxy_file
+**
+** Specifying ":auto:" means that if there is a conch file with a matching
+** host ID in it, the proxy path in the conch file will be used, otherwise
+** a proxy path based on the user's temp dir
+** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
+** actual proxy file name is generated from the name and path of the
+** database file. For example:
**
-** inMutex the nesting depth of the recursive mutex. The thread
-** holding mutexMain can read this variable at any time.
-** But is must hold mutexAux to change this variable. Other
-** threads must hold mutexAux to read the variable and can
-** never write.
+** For database path "/Users/me/foo.db"
+** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
**
-** mutexOwner The thread id of the thread holding mutexMain. Same
-** access rules as for inMutex.
+** Once a lock proxy is configured for a database connection, it can not
+** be removed, however it may be switched to a different proxy path via
+** the above APIs (assuming the conch file is not being held by another
+** connection or process).
**
-** mutexOwnerValid True if the value in mutexOwner is valid. The same
-** access rules apply as for inMutex.
**
-** mutexMain The main mutex. Hold this mutex in order to get exclusive
-** access to SQLite data structures.
+** How proxy locking works
+** -----------------------
**
-** mutexAux An auxiliary mutex needed to access variables defined above.
+** Proxy file locking relies primarily on two new supporting files:
**
-** Mutexes are always acquired in this order: mutexMain mutexAux. It
-** is not necessary to acquire mutexMain in order to get mutexAux - just
-** do not attempt to acquire them in the reverse order: mutexAux mutexMain.
-** Either get the mutexes with mutexMain first or get mutexAux only.
+** * conch file to limit access to the database file to a single host
+** at a time
**
-** When running on a platform where the three variables inMutex, mutexOwner,
-** and mutexOwnerValid can be set atomically, the mutexAux is not required.
-** On many systems, all three are 32-bit integers and writing to a 32-bit
-** integer is atomic. I think. But there are no guarantees. So it seems
-** safer to protect them using mutexAux.
+** * proxy file to act as a proxy for the advisory locks normally
+** taken on the database
+**
+** The conch file - to use a proxy file, sqlite must first "hold the conch"
+** by taking an sqlite-style shared lock on the conch file, reading the
+** contents and comparing the host's unique host ID (see below) and lock
+** proxy path against the values stored in the conch. The conch file is
+** stored in the same directory as the database file and the file name
+** is patterned after the database file name as ".<databasename>-conch".
+** If the conch file does not exist, or it's contents do not match the
+** host ID and/or proxy path, then the lock is escalated to an exclusive
+** lock and the conch file contents is updated with the host ID and proxy
+** path and the lock is downgraded to a shared lock again. If the conch
+** is held by another process (with a shared lock), the exclusive lock
+** will fail and SQLITE_BUSY is returned.
+**
+** The proxy file - a single-byte file used for all advisory file locks
+** normally taken on the database file. This allows for safe sharing
+** of the database file for multiple readers and writers on the same
+** host (the conch ensures that they all use the same local lock file).
+**
+** There is a third file - the host ID file - used as a persistent record
+** of a unique identifier for the host, a 128-byte unique host id file
+** in the path defined by the HOSTIDPATH macro (default value is
+** /Library/Caches/.com.apple.sqliteConchHostId).
+**
+** Requesting the lock proxy does not immediately take the conch, it is
+** only taken when the first request to lock database file is made.
+** This matches the semantics of the traditional locking behavior, where
+** opening a connection to a database file does not take a lock on it.
+** The shared lock and an open file descriptor are maintained until
+** the connection to the database is closed.
+**
+** The proxy file and the lock file are never deleted so they only need
+** to be created the first time they are used.
+**
+** Configuration options
+** ---------------------
+**
+** SQLITE_PREFER_PROXY_LOCKING
+**
+** Database files accessed on non-local file systems are
+** automatically configured for proxy locking, lock files are
+** named automatically using the same logic as
+** PRAGMA lock_proxy_file=":auto:"
+**
+** SQLITE_PROXY_DEBUG
+**
+** Enables the logging of error messages during host id file
+** retrieval and creation
+**
+** HOSTIDPATH
+**
+** Overrides the default host ID file path location
+**
+** LOCKPROXYDIR
+**
+** Overrides the default directory used for lock proxy files that
+** are named automatically via the ":auto:" setting
+**
+** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
+**
+** Permissions to use when creating a directory for storing the
+** lock proxy files, only used when LOCKPROXYDIR is not set.
+**
+**
+** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
+** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
+** force proxy locking to be used for every database file opened, and 0
+** will force automatic proxy locking to be disabled for all database
+** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
+** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
+*/
+
+/*
+** Proxy locking is only available on MacOSX
*/
-static int inMutex = 0;
-#ifdef SQLITE_UNIX_THREADS
-static pthread_t mutexOwner; /* Thread holding mutexMain */
-static int mutexOwnerValid = 0; /* True if mutexOwner is valid */
-static pthread_mutex_t mutexMain = PTHREAD_MUTEX_INITIALIZER; /* The mutex */
-static pthread_mutex_t mutexAux = PTHREAD_MUTEX_INITIALIZER; /* Aux mutex */
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+
+#ifdef SQLITE_TEST
+/* simulate multiple hosts by creating unique hostid file paths */
+SQLITE_API int sqlite3_hostid_num = 0;
#endif
/*
-** The following pair of routine implement mutual exclusion for
-** multi-threaded processes. Only a single thread is allowed to
-** executed code that is surrounded by EnterMutex() and LeaveMutex().
-**
-** SQLite uses only a single Mutex. There is not much critical
-** code and what little there is executes quickly and without blocking.
-**
-** As of version 3.3.2, this mutex must be recursive.
+** The proxyLockingContext has the path and file structures for the remote
+** and local proxy files in it
+*/
+typedef struct proxyLockingContext proxyLockingContext;
+struct proxyLockingContext {
+ unixFile *conchFile; /* Open conch file */
+ char *conchFilePath; /* Name of the conch file */
+ unixFile *lockProxy; /* Open proxy lock file */
+ char *lockProxyPath; /* Name of the proxy lock file */
+ char *dbPath; /* Name of the open file */
+ int conchHeld; /* True if the conch is currently held */
+ void *oldLockingContext; /* Original lockingcontext to restore on close */
+ sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
+};
+
+/* HOSTIDLEN and CONCHLEN both include space for the string
+** terminating nul
*/
-void sqlite3UnixEnterMutex(){
-#ifdef SQLITE_UNIX_THREADS
- pthread_mutex_lock(&mutexAux);
- if( !mutexOwnerValid || !pthread_equal(mutexOwner, pthread_self()) ){
- pthread_mutex_unlock(&mutexAux);
- pthread_mutex_lock(&mutexMain);
- assert( inMutex==0 );
- assert( !mutexOwnerValid );
- pthread_mutex_lock(&mutexAux);
- mutexOwner = pthread_self();
- mutexOwnerValid = 1;
+#define HOSTIDLEN 128
+#define CONCHLEN (MAXPATHLEN+HOSTIDLEN+1)
+#ifndef HOSTIDPATH
+# define HOSTIDPATH "/Library/Caches/.com.apple.sqliteConchHostId"
+#endif
+
+/* basically a copy of unixRandomness with different
+** test behavior built in */
+static int proxyGenerateHostID(char *pHostID){
+ int pid, fd, len;
+ unsigned char *key = (unsigned char *)pHostID;
+
+ memset(key, 0, HOSTIDLEN);
+ len = 0;
+ fd = open("/dev/urandom", O_RDONLY);
+ if( fd>=0 ){
+ len = read(fd, key, HOSTIDLEN);
+ close(fd); /* silently leak the fd if it fails */
+ }
+ if( len < HOSTIDLEN ){
+ time_t t;
+ time(&t);
+ memcpy(key, &t, sizeof(t));
+ pid = getpid();
+ memcpy(&key[sizeof(t)], &pid, sizeof(pid));
+ }
+
+#ifdef MAKE_PRETTY_HOSTID
+ {
+ int i;
+ /* filter the bytes into printable ascii characters and NUL terminate */
+ key[(HOSTIDLEN-1)] = 0x00;
+ for( i=0; i<(HOSTIDLEN-1); i++ ){
+ unsigned char pa = key[i]&0x7F;
+ if( pa<0x20 ){
+ key[i] = (key[i]&0x80 == 0x80) ? pa+0x40 : pa+0x20;
+ }else if( pa==0x7F ){
+ key[i] = (key[i]&0x80 == 0x80) ? pa=0x20 : pa+0x7E;
+ }
+ }
}
- inMutex++;
- pthread_mutex_unlock(&mutexAux);
-#else
- inMutex++;
#endif
+ return SQLITE_OK;
}
-void sqlite3UnixLeaveMutex(){
- assert( inMutex>0 );
-#ifdef SQLITE_UNIX_THREADS
- pthread_mutex_lock(&mutexAux);
- inMutex--;
- assert( pthread_equal(mutexOwner, pthread_self()) );
- if( inMutex==0 ){
- assert( mutexOwnerValid );
- mutexOwnerValid = 0;
- pthread_mutex_unlock(&mutexMain);
+
+/* writes the host id path to path, path should be an pre-allocated buffer
+** with enough space for a path
+*/
+static void proxyGetHostIDPath(char *path, size_t len){
+ strlcpy(path, HOSTIDPATH, len);
+#ifdef SQLITE_TEST
+ if( sqlite3_hostid_num>0 ){
+ char suffix[2] = "1";
+ suffix[0] = suffix[0] + sqlite3_hostid_num;
+ strlcat(path, suffix, len);
+ }
+#endif
+ OSTRACE3("GETHOSTIDPATH %s pid=%d\n", path, getpid());
+}
+
+/* get the host ID from a sqlite hostid file stored in the
+** user-specific tmp directory, create the ID if it's not there already
+*/
+static int proxyGetHostID(char *pHostID, int *pError){
+ int fd;
+ char path[MAXPATHLEN];
+ size_t len;
+ int rc=SQLITE_OK;
+
+ proxyGetHostIDPath(path, MAXPATHLEN);
+ /* try to create the host ID file, if it already exists read the contents */
+ fd = open(path, O_CREAT|O_WRONLY|O_EXCL, 0644);
+ if( fd<0 ){
+ int err=errno;
+
+ if( err!=EEXIST ){
+#ifdef SQLITE_PROXY_DEBUG /* set the sqlite error message instead */
+ fprintf(stderr, "sqlite error creating host ID file %s: %s\n",
+ path, strerror(err));
+#endif
+ return SQLITE_PERM;
+ }
+ /* couldn't create the file, read it instead */
+ fd = open(path, O_RDONLY|O_EXCL);
+ if( fd<0 ){
+#ifdef SQLITE_PROXY_DEBUG /* set the sqlite error message instead */
+ int err = errno;
+ fprintf(stderr, "sqlite error opening host ID file %s: %s\n",
+ path, strerror(err));
+#endif
+ return SQLITE_PERM;
+ }
+ len = pread(fd, pHostID, HOSTIDLEN, 0);
+ if( len<0 ){
+ *pError = errno;
+ rc = SQLITE_IOERR_READ;
+ }else if( len<HOSTIDLEN ){
+ *pError = 0;
+ rc = SQLITE_IOERR_SHORT_READ;
+ }
+ close(fd); /* silently leak the fd if it fails */
+ OSTRACE3("GETHOSTID read %s pid=%d\n", pHostID, getpid());
+ return rc;
+ }else{
+ /* we're creating the host ID file (use a random string of bytes) */
+ proxyGenerateHostID(pHostID);
+ len = pwrite(fd, pHostID, HOSTIDLEN, 0);
+ if( len<0 ){
+ *pError = errno;
+ rc = SQLITE_IOERR_WRITE;
+ }else if( len<HOSTIDLEN ){
+ *pError = 0;
+ rc = SQLITE_IOERR_WRITE;
+ }
+ close(fd); /* silently leak the fd if it fails */
+ OSTRACE3("GETHOSTID wrote %s pid=%d\n", pHostID, getpid());
+ return rc;
}
- pthread_mutex_unlock(&mutexAux);
+}
+
+static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
+ int len;
+ int dbLen;
+ int i;
+
+#ifdef LOCKPROXYDIR
+ len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
#else
- inMutex--;
+# ifdef _CS_DARWIN_USER_TEMP_DIR
+ {
+ confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen);
+ len = strlcat(lPath, "sqliteplocks", maxLen);
+ if( mkdir(lPath, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
+ /* if mkdir fails, handle as lock file creation failure */
+# ifdef SQLITE_DEBUG
+ int err = errno;
+ if( err!=EEXIST ){
+ fprintf(stderr, "proxyGetLockPath: mkdir(%s,0%o) error %d %s\n", lPath,
+ SQLITE_DEFAULT_PROXYDIR_PERMISSIONS, err, strerror(err));
+ }
+# endif
+ }else{
+ OSTRACE3("GETLOCKPATH mkdir %s pid=%d\n", lPath, getpid());
+ }
+
+ }
+# else
+ len = strlcpy(lPath, "/tmp/", maxLen);
+# endif
#endif
+
+ if( lPath[len-1]!='/' ){
+ len = strlcat(lPath, "/", maxLen);
+ }
+
+ /* transform the db path to a unique cache name */
+ dbLen = (int)strlen(dbPath);
+ for( i=0; i<dbLen && (i+len+7)<maxLen; i++){
+ char c = dbPath[i];
+ lPath[i+len] = (c=='/')?'_':c;
+ }
+ lPath[i+len]='\0';
+ strlcat(lPath, ":auto:", maxLen);
+ return SQLITE_OK;
}
/*
-** Return TRUE if the mutex is currently held.
+** Create a new VFS file descriptor (stored in memory obtained from
+** sqlite3_malloc) and open the file named "path" in the file descriptor.
**
-** If the thisThrd parameter is true, return true only if the
-** calling thread holds the mutex. If the parameter is false, return
-** true if any thread holds the mutex.
+** The caller is responsible not only for closing the file descriptor
+** but also for freeing the memory associated with the file descriptor.
*/
-int sqlite3UnixInMutex(int thisThrd){
-#ifdef SQLITE_UNIX_THREADS
- int rc;
- pthread_mutex_lock(&mutexAux);
- rc = inMutex>0 && (thisThrd==0 || pthread_equal(mutexOwner,pthread_self()));
- pthread_mutex_unlock(&mutexAux);
+static int proxyCreateUnixFile(const char *path, unixFile **ppFile) {
+ unixFile *pNew;
+ int flags = SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE;
+ int rc = SQLITE_OK;
+ sqlite3_vfs dummyVfs;
+
+ pNew = (unixFile *)sqlite3_malloc(sizeof(unixFile));
+ if( !pNew ){
+ return SQLITE_NOMEM;
+ }
+ memset(pNew, 0, sizeof(unixFile));
+
+ /* Call unixOpen() to open the proxy file. The flags passed to unixOpen()
+ ** suggest that the file being opened is a "main database". This is
+ ** necessary as other file types do not necessarily support locking. It
+ ** is better to use unixOpen() instead of opening the file directly with
+ ** open(), as unixOpen() sets up the various mechanisms required to
+ ** make sure a call to close() does not cause the system to discard
+ ** POSIX locks prematurely.
+ **
+ ** It is important that the xOpen member of the VFS object passed to
+ ** unixOpen() is NULL. This tells unixOpen() may try to open a proxy-file
+ ** for the proxy-file (creating a potential infinite loop).
+ */
+ dummyVfs.pAppData = (void*)&autolockIoFinder;
+ dummyVfs.xOpen = 0;
+ rc = unixOpen(&dummyVfs, path, (sqlite3_file *)pNew, flags, &flags);
+ if( rc==SQLITE_OK && (flags&SQLITE_OPEN_READONLY) ){
+ pNew->pMethod->xClose((sqlite3_file *)pNew);
+ rc = SQLITE_CANTOPEN;
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pNew);
+ pNew = 0;
+ }
+
+ *ppFile = pNew;
return rc;
+}
+
+/* takes the conch by taking a shared lock and read the contents conch, if
+** lockPath is non-NULL, the host ID and lock file path must match. A NULL
+** lockPath means that the lockPath in the conch file will be used if the
+** host IDs match, or a new lock path will be generated automatically
+** and written to the conch file.
+*/
+static int proxyTakeConch(unixFile *pFile){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+
+ if( pCtx->conchHeld>0 ){
+ return SQLITE_OK;
+ }else{
+ unixFile *conchFile = pCtx->conchFile;
+ char testValue[CONCHLEN];
+ char conchValue[CONCHLEN];
+ char lockPath[MAXPATHLEN];
+ char *tLockPath = NULL;
+ int rc = SQLITE_OK;
+ int readRc = SQLITE_OK;
+ int syncPerms = 0;
+
+ OSTRACE4("TAKECONCH %d for %s pid=%d\n", conchFile->h,
+ (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid());
+
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
+ if( rc==SQLITE_OK ){
+ int pError = 0;
+ memset(testValue, 0, CONCHLEN); /* conch is fixed size */
+ rc = proxyGetHostID(testValue, &pError);
+ if( (rc&0xff)==SQLITE_IOERR ){
+ pFile->lastErrno = pError;
+ }
+ if( pCtx->lockProxyPath ){
+ strlcpy(&testValue[HOSTIDLEN], pCtx->lockProxyPath, MAXPATHLEN);
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ goto end_takeconch;
+ }
+
+ readRc = unixRead((sqlite3_file *)conchFile, conchValue, CONCHLEN, 0);
+ if( readRc!=SQLITE_IOERR_SHORT_READ ){
+ if( readRc!=SQLITE_OK ){
+ if( (rc&0xff)==SQLITE_IOERR ){
+ pFile->lastErrno = conchFile->lastErrno;
+ }
+ rc = readRc;
+ goto end_takeconch;
+ }
+ /* if the conch has data compare the contents */
+ if( !pCtx->lockProxyPath ){
+ /* for auto-named local lock file, just check the host ID and we'll
+ ** use the local lock file path that's already in there */
+ if( !memcmp(testValue, conchValue, HOSTIDLEN) ){
+ tLockPath = (char *)&conchValue[HOSTIDLEN];
+ goto end_takeconch;
+ }
+ }else{
+ /* we've got the conch if conchValue matches our path and host ID */
+ if( !memcmp(testValue, conchValue, CONCHLEN) ){
+ goto end_takeconch;
+ }
+ }
+ }else{
+ /* a short read means we're "creating" the conch (even though it could
+ ** have been user-intervention), if we acquire the exclusive lock,
+ ** we'll try to match the current on-disk permissions of the database
+ */
+ syncPerms = 1;
+ }
+
+ /* either conch was emtpy or didn't match */
+ if( !pCtx->lockProxyPath ){
+ proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
+ tLockPath = lockPath;
+ strlcpy(&testValue[HOSTIDLEN], lockPath, MAXPATHLEN);
+ }
+
+ /* update conch with host and path (this will fail if other process
+ ** has a shared lock already) */
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
+ if( rc==SQLITE_OK ){
+ rc = unixWrite((sqlite3_file *)conchFile, testValue, CONCHLEN, 0);
+ if( rc==SQLITE_OK && syncPerms ){
+ struct stat buf;
+ int err = fstat(pFile->h, &buf);
+ if( err==0 ){
+ /* try to match the database file permissions, ignore failure */
+#ifndef SQLITE_PROXY_DEBUG
+ fchmod(conchFile->h, buf.st_mode);
#else
- return inMutex>0;
+ if( fchmod(conchFile->h, buf.st_mode)!=0 ){
+ int code = errno;
+ fprintf(stderr, "fchmod %o FAILED with %d %s\n",
+ buf.st_mode, code, strerror(code));
+ } else {
+ fprintf(stderr, "fchmod %o SUCCEDED\n",buf.st_mode);
+ }
+ }else{
+ int code = errno;
+ fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
+ err, code, strerror(code));
#endif
+ }
+ }
+ }
+ conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
+
+end_takeconch:
+ OSTRACE2("TRANSPROXY: CLOSE %d\n", pFile->h);
+ if( rc==SQLITE_OK && pFile->openFlags ){
+ if( pFile->h>=0 ){
+#ifdef STRICT_CLOSE_ERROR
+ if( close(pFile->h) ){
+ pFile->lastErrno = errno;
+ return SQLITE_IOERR_CLOSE;
+ }
+#else
+ close(pFile->h); /* silently leak fd if fail */
+#endif
+ }
+ pFile->h = -1;
+ int fd = open(pCtx->dbPath, pFile->openFlags,
+ SQLITE_DEFAULT_FILE_PERMISSIONS);
+ OSTRACE2("TRANSPROXY: OPEN %d\n", fd);
+ if( fd>=0 ){
+ pFile->h = fd;
+ }else{
+ rc=SQLITE_CANTOPEN; /* SQLITE_BUSY? proxyTakeConch called
+ during locking */
+ }
+ }
+ if( rc==SQLITE_OK && !pCtx->lockProxy ){
+ char *path = tLockPath ? tLockPath : pCtx->lockProxyPath;
+ /* ACS: Need to make a copy of path sometimes */
+ rc = proxyCreateUnixFile(path, &pCtx->lockProxy);
+ }
+ if( rc==SQLITE_OK ){
+ pCtx->conchHeld = 1;
+
+ if( tLockPath ){
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, tLockPath);
+ if( pCtx->lockProxy->pMethod == &afpIoMethods ){
+ ((afpLockingContext *)pCtx->lockProxy->lockingContext)->dbPath =
+ pCtx->lockProxyPath;
+ }
+ }
+ } else {
+ conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
+ }
+ OSTRACE3("TAKECONCH %d %s\n", conchFile->h, rc==SQLITE_OK?"ok":"failed");
+ return rc;
+ }
}
/*
-** Remember the number of thread-specific-data blocks allocated.
-** Use this to verify that we are not leaking thread-specific-data.
-** Ticket #1601
+** If pFile holds a lock on a conch file, then release that lock.
*/
-#ifdef SQLITE_TEST
-int sqlite3_tsd_count = 0;
-# ifdef SQLITE_UNIX_THREADS
- static pthread_mutex_t tsd_counter_mutex = PTHREAD_MUTEX_INITIALIZER;
-# define TSD_COUNTER(N) \
- pthread_mutex_lock(&tsd_counter_mutex); \
- sqlite3_tsd_count += N; \
- pthread_mutex_unlock(&tsd_counter_mutex);
-# else
-# define TSD_COUNTER(N) sqlite3_tsd_count += N
-# endif
-#else
-# define TSD_COUNTER(N) /* no-op */
-#endif
+static int proxyReleaseConch(unixFile *pFile){
+ int rc; /* Subroutine return code */
+ proxyLockingContext *pCtx; /* The locking context for the proxy lock */
+ unixFile *conchFile; /* Name of the conch file */
+
+ pCtx = (proxyLockingContext *)pFile->lockingContext;
+ conchFile = pCtx->conchFile;
+ OSTRACE4("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
+ (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
+ getpid());
+ pCtx->conchHeld = 0;
+ rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
+ OSTRACE3("RELEASECONCH %d %s\n", conchFile->h,
+ (rc==SQLITE_OK ? "ok" : "failed"));
+ return rc;
+}
/*
-** If called with allocateFlag>0, then return a pointer to thread
-** specific data for the current thread. Allocate and zero the
-** thread-specific data if it does not already exist.
+** Given the name of a database file, compute the name of its conch file.
+** Store the conch filename in memory obtained from sqlite3_malloc().
+** Make *pConchPath point to the new name. Return SQLITE_OK on success
+** or SQLITE_NOMEM if unable to obtain memory.
**
-** If called with allocateFlag==0, then check the current thread
-** specific data. Return it if it exists. If it does not exist,
-** then return NULL.
+** The caller is responsible for ensuring that the allocated memory
+** space is eventually freed.
**
-** If called with allocateFlag<0, check to see if the thread specific
-** data is allocated and is all zero. If it is then deallocate it.
-** Return a pointer to the thread specific data or NULL if it is
-** unallocated or gets deallocated.
+** *pConchPath is set to NULL if a memory allocation error occurs.
*/
-ThreadData *sqlite3UnixThreadSpecificData(int allocateFlag){
- static const ThreadData zeroData = {0}; /* Initializer to silence warnings
- ** from broken compilers */
-#ifdef SQLITE_UNIX_THREADS
- static pthread_key_t key;
- static int keyInit = 0;
- ThreadData *pTsd;
+static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
+ int i; /* Loop counter */
+ int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
+ char *conchPath; /* buffer in which to construct conch name */
- if( !keyInit ){
- sqlite3OsEnterMutex();
- if( !keyInit ){
- int rc;
- rc = pthread_key_create(&key, 0);
- if( rc ){
- sqlite3OsLeaveMutex();
- return 0;
- }
- keyInit = 1;
+ /* Allocate space for the conch filename and initialize the name to
+ ** the name of the original database file. */
+ *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
+ if( conchPath==0 ){
+ return SQLITE_NOMEM;
+ }
+ memcpy(conchPath, dbPath, len+1);
+
+ /* now insert a "." before the last / character */
+ for( i=(len-1); i>=0; i-- ){
+ if( conchPath[i]=='/' ){
+ i++;
+ break;
}
- sqlite3OsLeaveMutex();
+ }
+ conchPath[i]='.';
+ while ( i<len ){
+ conchPath[i+1]=dbPath[i];
+ i++;
}
- pTsd = pthread_getspecific(key);
- if( allocateFlag>0 ){
- if( pTsd==0 ){
- if( !sqlite3TestMallocFail() ){
- pTsd = sqlite3OsMalloc(sizeof(zeroData));
- }
-#ifdef SQLITE_MEMDEBUG
- sqlite3_isFail = 0;
+ /* append the "-conch" suffix to the file */
+ memcpy(&conchPath[i+1], "-conch", 7);
+ assert( (int)strlen(conchPath) == len+7 );
+
+ return SQLITE_OK;
+}
+
+
+/* Takes a fully configured proxy locking-style unix file and switches
+** the local lock file path
+*/
+static int switchLockProxyPath(unixFile *pFile, const char *path) {
+ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
+ char *oldPath = pCtx->lockProxyPath;
+ int rc = SQLITE_OK;
+
+ if( pFile->locktype!=NO_LOCK ){
+ return SQLITE_BUSY;
+ }
+
+ /* nothing to do if the path is NULL, :auto: or matches the existing path */
+ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
+ (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
+ return SQLITE_OK;
+ }else{
+ unixFile *lockProxy = pCtx->lockProxy;
+ pCtx->lockProxy=NULL;
+ pCtx->conchHeld = 0;
+ if( lockProxy!=NULL ){
+ rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
+ if( rc ) return rc;
+ sqlite3_free(lockProxy);
+ }
+ sqlite3_free(oldPath);
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
+ }
+
+ return rc;
+}
+
+/*
+** pFile is a file that has been opened by a prior xOpen call. dbPath
+** is a string buffer at least MAXPATHLEN+1 characters in size.
+**
+** This routine find the filename associated with pFile and writes it
+** int dbPath.
+*/
+static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
+#if defined(__APPLE__)
+ if( pFile->pMethod == &afpIoMethods ){
+ /* afp style keeps a reference to the db path in the filePath field
+ ** of the struct */
+ assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
+ strcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath);
+ }else
#endif
- if( pTsd ){
- *pTsd = zeroData;
- pthread_setspecific(key, pTsd);
- TSD_COUNTER(+1);
- }
+ if( pFile->pMethod == &dotlockIoMethods ){
+ /* dot lock style uses the locking context to store the dot lock
+ ** file path */
+ int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
+ memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
+ }else{
+ /* all other styles use the locking context to store the db file path */
+ assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
+ strcpy(dbPath, (char *)pFile->lockingContext);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Takes an already filled in unix file and alters it so all file locking
+** will be performed on the local proxy lock file. The following fields
+** are preserved in the locking context so that they can be restored and
+** the unix structure properly cleaned up at close time:
+** ->lockingContext
+** ->pMethod
+*/
+static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
+ proxyLockingContext *pCtx;
+ char dbPath[MAXPATHLEN+1]; /* Name of the database file */
+ char *lockPath=NULL;
+ int rc = SQLITE_OK;
+
+ if( pFile->locktype!=NO_LOCK ){
+ return SQLITE_BUSY;
+ }
+ proxyGetDbPathForUnixFile(pFile, dbPath);
+ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
+ lockPath=NULL;
+ }else{
+ lockPath=(char *)path;
+ }
+
+ OSTRACE4("TRANSPROXY %d for %s pid=%d\n", pFile->h,
+ (lockPath ? lockPath : ":auto:"), getpid());
+
+ pCtx = sqlite3_malloc( sizeof(*pCtx) );
+ if( pCtx==0 ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCtx, 0, sizeof(*pCtx));
+
+ rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
+ if( rc==SQLITE_OK ){
+ rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile);
+ }
+ if( rc==SQLITE_OK && lockPath ){
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* all memory is allocated, proxys are created and assigned,
+ ** switch the locking context and pMethod then return.
+ */
+ pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
+ pCtx->oldLockingContext = pFile->lockingContext;
+ pFile->lockingContext = pCtx;
+ pCtx->pOldMethod = pFile->pMethod;
+ pFile->pMethod = &proxyIoMethods;
+ }else{
+ if( pCtx->conchFile ){
+ rc = pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
+ if( rc ) return rc;
+ sqlite3_free(pCtx->conchFile);
}
- }else if( pTsd!=0 && allocateFlag<0
- && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){
- sqlite3OsFree(pTsd);
- pthread_setspecific(key, 0);
- TSD_COUNTER(-1);
- pTsd = 0;
+ sqlite3_free(pCtx->conchFilePath);
+ sqlite3_free(pCtx);
}
- return pTsd;
-#else
- static ThreadData *pTsd = 0;
- if( allocateFlag>0 ){
- if( pTsd==0 ){
- if( !sqlite3TestMallocFail() ){
- pTsd = sqlite3OsMalloc( sizeof(zeroData) );
+ OSTRACE3("TRANSPROXY %d %s\n", pFile->h,
+ (rc==SQLITE_OK ? "ok" : "failed"));
+ return rc;
+}
+
+
+/*
+** This routine handles sqlite3_file_control() calls that are specific
+** to proxy locking.
+*/
+static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_GET_LOCKPROXYFILE: {
+ unixFile *pFile = (unixFile*)id;
+ if( pFile->pMethod == &proxyIoMethods ){
+ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
+ proxyTakeConch(pFile);
+ if( pCtx->lockProxyPath ){
+ *(const char **)pArg = pCtx->lockProxyPath;
+ }else{
+ *(const char **)pArg = ":auto: (not held)";
+ }
+ } else {
+ *(const char **)pArg = NULL;
}
-#ifdef SQLITE_MEMDEBUG
- sqlite3_isFail = 0;
-#endif
- if( pTsd ){
- *pTsd = zeroData;
- TSD_COUNTER(+1);
+ return SQLITE_OK;
+ }
+ case SQLITE_SET_LOCKPROXYFILE: {
+ unixFile *pFile = (unixFile*)id;
+ int rc = SQLITE_OK;
+ int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
+ if( pArg==NULL || (const char *)pArg==0 ){
+ if( isProxyStyle ){
+ /* turn off proxy locking - not supported */
+ rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
+ }else{
+ /* turn off proxy locking - already off - NOOP */
+ rc = SQLITE_OK;
+ }
+ }else{
+ const char *proxyPath = (const char *)pArg;
+ if( isProxyStyle ){
+ proxyLockingContext *pCtx =
+ (proxyLockingContext*)pFile->lockingContext;
+ if( !strcmp(pArg, ":auto:")
+ || (pCtx->lockProxyPath &&
+ !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
+ ){
+ rc = SQLITE_OK;
+ }else{
+ rc = switchLockProxyPath(pFile, proxyPath);
+ }
+ }else{
+ /* turn on proxy file locking */
+ rc = proxyTransformUnixFile(pFile, proxyPath);
+ }
}
+ return rc;
+ }
+ default: {
+ assert( 0 ); /* The call assures that only valid opcodes are sent */
}
- }else if( pTsd!=0 && allocateFlag<0
- && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){
- sqlite3OsFree(pTsd);
- TSD_COUNTER(-1);
- pTsd = 0;
}
- return pTsd;
-#endif
+ /*NOTREACHED*/
+ return SQLITE_ERROR;
}
/*
-** The following variable, if set to a non-zero value, becomes the result
-** returned from sqlite3OsCurrentTime(). This is used for testing.
+** Within this division (the proxying locking implementation) the procedures
+** above this point are all utilities. The lock-related methods of the
+** proxy-locking sqlite3_io_method object follow.
*/
-#ifdef SQLITE_TEST
-int sqlite3_current_time = 0;
-#endif
+
/*
-** Find the current time (in Universal Coordinated Time). Write the
-** current time and date as a Julian Day number into *prNow and
-** return 0. Return 1 if the time and date cannot be found.
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
-int sqlite3UnixCurrentTime(double *prNow){
-#ifdef NO_GETTOD
- time_t t;
- time(&t);
- *prNow = t/86400.0 + 2440587.5;
+static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *proxy = pCtx->lockProxy;
+ return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
+ }
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int proxyLock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *proxy = pCtx->lockProxy;
+ rc = proxy->pMethod->xLock((sqlite3_file*)proxy, locktype);
+ pFile->locktype = proxy->locktype;
+ }
+ return rc;
+}
+
+
+/*
+** Lower the locking level on file descriptor pFile to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int proxyUnlock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *proxy = pCtx->lockProxy;
+ rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, locktype);
+ pFile->locktype = proxy->locktype;
+ }
+ return rc;
+}
+
+/*
+** Close a file that uses proxy locks.
+*/
+static int proxyClose(sqlite3_file *id) {
+ if( id ){
+ unixFile *pFile = (unixFile*)id;
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *lockProxy = pCtx->lockProxy;
+ unixFile *conchFile = pCtx->conchFile;
+ int rc = SQLITE_OK;
+
+ if( lockProxy ){
+ rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
+ if( rc ) return rc;
+ rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
+ if( rc ) return rc;
+ sqlite3_free(lockProxy);
+ pCtx->lockProxy = 0;
+ }
+ if( conchFile ){
+ if( pCtx->conchHeld ){
+ rc = proxyReleaseConch(pFile);
+ if( rc ) return rc;
+ }
+ rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
+ if( rc ) return rc;
+ sqlite3_free(conchFile);
+ }
+ sqlite3_free(pCtx->lockProxyPath);
+ sqlite3_free(pCtx->conchFilePath);
+ sqlite3_free(pCtx->dbPath);
+ /* restore the original locking context and pMethod then close it */
+ pFile->lockingContext = pCtx->oldLockingContext;
+ pFile->pMethod = pCtx->pOldMethod;
+ sqlite3_free(pCtx);
+ return pFile->pMethod->xClose(id);
+ }
+ return SQLITE_OK;
+}
+
+
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** The proxy locking style is intended for use with AFP filesystems.
+** And since AFP is only supported on MacOSX, the proxy locking is also
+** restricted to MacOSX.
+**
+**
+******************* End of the proxy lock implementation **********************
+******************************************************************************/
+
+/*
+** Initialize the operating system interface.
+**
+** This routine registers all VFS implementations for unix-like operating
+** systems. This routine, and the sqlite3_os_end() routine that follows,
+** should be the only routines in this file that are visible from other
+** files.
+**
+** This routine is called once during SQLite initialization and by a
+** single thread. The memory allocation and mutex subsystems have not
+** necessarily been initialized when this routine is called, and so they
+** should not be used.
+*/
+SQLITE_API int sqlite3_os_init(void){
+ /*
+ ** The following macro defines an initializer for an sqlite3_vfs object.
+ ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
+ ** to the "finder" function. (pAppData is a pointer to a pointer because
+ ** silly C90 rules prohibit a void* from being cast to a function pointer
+ ** and so we have to go through the intermediate pointer to avoid problems
+ ** when compiling with -pedantic-errors on GCC.)
+ **
+ ** The FINDER parameter to this macro is the name of the pointer to the
+ ** finder-function. The finder-function returns a pointer to the
+ ** sqlite_io_methods object that implements the desired locking
+ ** behaviors. See the division above that contains the IOMETHODS
+ ** macro for addition information on finder-functions.
+ **
+ ** Most finders simply return a pointer to a fixed sqlite3_io_methods
+ ** object. But the "autolockIoFinder" available on MacOSX does a little
+ ** more than that; it looks at the filesystem type that hosts the
+ ** database file and tries to choose an locking method appropriate for
+ ** that filesystem time.
+ */
+ #define UNIXVFS(VFSNAME, FINDER) { \
+ 1, /* iVersion */ \
+ sizeof(unixFile), /* szOsFile */ \
+ MAX_PATHNAME, /* mxPathname */ \
+ 0, /* pNext */ \
+ VFSNAME, /* zName */ \
+ (void*)&FINDER, /* pAppData */ \
+ unixOpen, /* xOpen */ \
+ unixDelete, /* xDelete */ \
+ unixAccess, /* xAccess */ \
+ unixFullPathname, /* xFullPathname */ \
+ unixDlOpen, /* xDlOpen */ \
+ unixDlError, /* xDlError */ \
+ unixDlSym, /* xDlSym */ \
+ unixDlClose, /* xDlClose */ \
+ unixRandomness, /* xRandomness */ \
+ unixSleep, /* xSleep */ \
+ unixCurrentTime, /* xCurrentTime */ \
+ unixGetLastError /* xGetLastError */ \
+ }
+
+ /*
+ ** All default VFSes for unix are contained in the following array.
+ **
+ ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
+ ** by the SQLite core when the VFS is registered. So the following
+ ** array cannot be const.
+ */
+ static sqlite3_vfs aVfs[] = {
+#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
+ UNIXVFS("unix", autolockIoFinder ),
#else
- struct timeval sNow;
- gettimeofday(&sNow, 0);
- *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
+ UNIXVFS("unix", posixIoFinder ),
#endif
-#ifdef SQLITE_TEST
- if( sqlite3_current_time ){
- *prNow = sqlite3_current_time/86400.0 + 2440587.5;
- }
+ UNIXVFS("unix-none", nolockIoFinder ),
+ UNIXVFS("unix-dotfile", dotlockIoFinder ),
+ UNIXVFS("unix-wfl", posixWflIoFinder ),
+#if OS_VXWORKS
+ UNIXVFS("unix-namedsem", semIoFinder ),
#endif
- return 0;
+#if SQLITE_ENABLE_LOCKING_STYLE
+ UNIXVFS("unix-posix", posixIoFinder ),
+#if !OS_VXWORKS
+ UNIXVFS("unix-flock", flockIoFinder ),
+#endif
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ UNIXVFS("unix-afp", afpIoFinder ),
+ UNIXVFS("unix-proxy", proxyIoFinder ),
+#endif
+ };
+ unsigned int i; /* Loop counter */
+
+ /* Register all VFSes defined in the aVfs[] array */
+ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
+ sqlite3_vfs_register(&aVfs[i], i==0);
+ }
+ return SQLITE_OK;
}
-#endif /* OS_UNIX */
+/*
+** Shutdown the operating system interface.
+**
+** Some operating systems might need to do some cleanup in this routine,
+** to release dynamically allocated objects. But not on unix.
+** This routine is a no-op for unix.
+*/
+SQLITE_API int sqlite3_os_end(void){
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OS_UNIX */
/************** End of os_unix.c *********************************************/
/************** Begin file os_win.c ******************************************/
@@ -14822,7 +26908,34 @@ int sqlite3UnixCurrentTime(double *prNow){
**
** This file contains code that is specific to windows.
*/
-#if OS_WIN /* This file is used for windows only */
+#if SQLITE_OS_WIN /* This file is used for windows only */
+
+
+/*
+** A Note About Memory Allocation:
+**
+** This driver uses malloc()/free() directly rather than going through
+** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
+** are designed for use on embedded systems where memory is scarce and
+** malloc failures happen frequently. Win32 does not typically run on
+** embedded systems, and when it does the developers normally have bigger
+** problems to worry about than running out of memory. So there is not
+** a compelling need to use the wrappers.
+**
+** But there is a good reason to not use the wrappers. If we use the
+** wrappers then we will get simulated malloc() failures within this
+** driver. And that causes all kinds of problems for our tests. We
+** could enhance SQLite to deal with simulated malloc failures within
+** the OS driver, but the code to deal with those failure would not
+** be exercised on Linux (which does not need to malloc() in the driver)
+** and so we would have difficulty writing coverage tests for that
+** code. Better to leave the code out, we think.
+**
+** The point of this discussion is as follows: When creating a new
+** OS layer for an embedded system, if you use this file as an example,
+** avoid the use of malloc()/free(). Those routines work ok on windows
+** desktops but not so well in embedded systems.
+*/
#include <winbase.h>
@@ -14860,7 +26973,11 @@ int sqlite3UnixCurrentTime(double *prNow){
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
+**
+** $Id: os_common.h,v 1.38 2009/02/24 18:40:50 danielk1977 Exp $
*/
+#ifndef _OS_COMMON_H_
+#define _OS_COMMON_H_
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
@@ -14871,26 +26988,17 @@ int sqlite3UnixCurrentTime(double *prNow){
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
#endif
-
-/*
- * When testing, this global variable stores the location of the
- * pending-byte in the database file.
- */
-#ifdef SQLITE_TEST
-unsigned int sqlite3_pending_byte = 0x40000000;
-#endif
-
-int sqlite3_os_trace = 0;
#ifdef SQLITE_DEBUG
-#define OSTRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
-#define OSTRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
-#define OSTRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
+SQLITE_PRIVATE int sqlite3OSTrace = 0;
+#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
+#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
+#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C) \
- if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D) \
- if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
#else
#define OSTRACE1(X)
#define OSTRACE2(X,Y)
@@ -14906,22 +27014,113 @@ int sqlite3_os_trace = 0;
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of os_common.h ****************/
+/************** Begin file hwtime.h ******************************************/
+/*
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 class CPUs.
+**
+** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
+*/
+#ifndef _HWTIME_H_
+#define _HWTIME_H_
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+#if (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ #error Need implementation of sqlite3Hwtime() for your platform.
+
+ /*
+ ** To compile without implementing sqlite3Hwtime() for your platform,
+ ** you can remove the above #error and use the following
+ ** stub function. You will lose timing support for many
+ ** of the debugging and testing utilities, but it should at
+ ** least compile and run.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(_HWTIME_H_) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in os_common.h ******************/
+
+static sqlite_uint64 g_start;
+static sqlite_uint64 g_elapsed;
+#define TIMER_START g_start=sqlite3Hwtime()
+#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
+#define TIMER_ELAPSED g_elapsed
#else
#define TIMER_START
#define TIMER_END
-#define TIMER_ELAPSED 0
+#define TIMER_ELAPSED ((sqlite_uint64)0)
#endif
/*
@@ -14930,19 +27129,22 @@ static unsigned int elapse;
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
-int sqlite3_io_error_hit = 0;
-int sqlite3_io_error_pending = 0;
-int sqlite3_io_error_persist = 0;
-int sqlite3_diskfull_pending = 0;
-int sqlite3_diskfull = 0;
+SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
+SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
+SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
+SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
+SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
+SQLITE_API int sqlite3_diskfull_pending = 0;
+SQLITE_API int sqlite3_diskfull = 0;
+#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE) \
- if( sqlite3_io_error_pending || sqlite3_io_error_hit ) \
- if( sqlite3_io_error_pending-- == 1 \
- || (sqlite3_io_error_persist && sqlite3_io_error_hit) ) \
- { local_ioerr(); CODE; }
+ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
+ || sqlite3_io_error_pending-- == 1 ) \
+ { local_ioerr(); CODE; }
static void local_ioerr(){
IOTRACE(("IOERR\n"));
- sqlite3_io_error_hit = 1;
+ sqlite3_io_error_hit++;
+ if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
}
#define SimulateDiskfullError(CODE) \
if( sqlite3_diskfull_pending ){ \
@@ -14956,6 +27158,7 @@ static void local_ioerr(){
} \
}
#else
+#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif
@@ -14964,102 +27167,38 @@ static void local_ioerr(){
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
-int sqlite3_open_file_count = 0;
+SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X) sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif
-/*
-** sqlite3GenericMalloc
-** sqlite3GenericRealloc
-** sqlite3GenericOsFree
-** sqlite3GenericAllocationSize
-**
-** Implementation of the os level dynamic memory allocation interface in terms
-** of the standard malloc(), realloc() and free() found in many operating
-** systems. No rocket science here.
-**
-** There are two versions of these four functions here. The version
-** implemented here is only used if memory-management or memory-debugging is
-** enabled. This version allocates an extra 8-bytes at the beginning of each
-** block and stores the size of the allocation there.
-**
-** If neither memory-management or debugging is enabled, the second
-** set of implementations is used instead.
-*/
-#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || defined (SQLITE_MEMDEBUG)
-void *sqlite3GenericMalloc(int n){
- char *p = (char *)malloc(n+8);
- assert(n>0);
- assert(sizeof(int)<=8);
- if( p ){
- *(int *)p = n;
- p += 8;
- }
- return (void *)p;
-}
-void *sqlite3GenericRealloc(void *p, int n){
- char *p2 = ((char *)p - 8);
- assert(n>0);
- p2 = (char*)realloc(p2, n+8);
- if( p2 ){
- *(int *)p2 = n;
- p2 += 8;
- }
- return (void *)p2;
-}
-void sqlite3GenericFree(void *p){
- assert(p);
- free((void *)((char *)p - 8));
-}
-int sqlite3GenericAllocationSize(void *p){
- return p ? *(int *)((char *)p - 8) : 0;
-}
-#else
-void *sqlite3GenericMalloc(int n){
- char *p = (char *)malloc(n);
- return (void *)p;
-}
-void *sqlite3GenericRealloc(void *p, int n){
- assert(n>0);
- p = realloc(p, n);
- return p;
-}
-void sqlite3GenericFree(void *p){
- assert(p);
- free(p);
-}
-/* Never actually used, but needed for the linker */
-int sqlite3GenericAllocationSize(void *p){ return 0; }
-#endif
+#endif /* !defined(_OS_COMMON_H_) */
+
+/************** End of os_common.h *******************************************/
+/************** Continuing where we left off in os_win.c *********************/
/*
-** The default size of a disk sector
+** Some microsoft compilers lack this definition.
*/
-#ifndef PAGER_SECTOR_SIZE
-# define PAGER_SECTOR_SIZE 512
+#ifndef INVALID_FILE_ATTRIBUTES
+# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif
-/************** End of os_common.h *******************************************/
-/************** Continuing where we left off in os_win.c *********************/
-
/*
** Determine if we are dealing with WindowsCE - which has a much
** reduced API.
*/
-#if defined(_WIN32_WCE)
-# define OS_WINCE 1
+#if SQLITE_OS_WINCE
# define AreFileApisANSI() 1
-#else
-# define OS_WINCE 0
+# define GetDiskFreeSpaceW() 0
#endif
/*
** WinCE lacks native support for file locking so we have to fake it
** with some code of our own.
*/
-#if OS_WINCE
+#if SQLITE_OS_WINCE
typedef struct winceLock {
int nReaders; /* Number of reader locks obtained */
BOOL bPending; /* Indicates a pending lock has been obtained */
@@ -15069,16 +27208,18 @@ typedef struct winceLock {
#endif
/*
-** The winFile structure is a subclass of OsFile specific to the win32
+** The winFile structure is a subclass of sqlite3_file* specific to the win32
** portability layer.
*/
typedef struct winFile winFile;
struct winFile {
- IoMethod const *pMethod;/* Must be first */
+ const sqlite3_io_methods *pMethod;/* Must be first */
HANDLE h; /* Handle for accessing the file */
unsigned char locktype; /* Type of lock currently held on this file */
short sharedLockByte; /* Randomly chosen byte used as a shared lock */
-#if OS_WINCE
+ DWORD lastErrno; /* The Windows errno from the last I/O error */
+ DWORD sectorSize; /* Sector size of the device file is on */
+#if SQLITE_OS_WINCE
WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
HANDLE hMutex; /* Mutex used to control access to shared lock */
HANDLE hShared; /* Shared memory segment used for locking */
@@ -15087,13 +27228,13 @@ struct winFile {
#endif
};
-
/*
-** Do not include any of the File I/O interface procedures if the
-** SQLITE_OMIT_DISKIO macro is defined (indicating that there database
-** will be in-memory only)
+** Forward prototypes.
*/
-#ifndef SQLITE_OMIT_DISKIO
+static int getSectorSize(
+ sqlite3_vfs *pVfs,
+ const char *zRelative /* UTF-8 file name */
+);
/*
** The following variable is (normally) set once and never changes
@@ -15107,7 +27248,11 @@ struct winFile {
** In order to facilitate testing on a WinNT system, the test fixture
** can manually set this value to 1 to emulate Win98 behavior.
*/
-int sqlite3_os_type = 0;
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_os_type = 0;
+#else
+static int sqlite3_os_type = 0;
+#endif
/*
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
@@ -15115,12 +27260,12 @@ int sqlite3_os_type = 0;
**
** Here is an interesting observation: Win95, Win98, and WinME lack
** the LockFileEx() API. But we can still statically link against that
-** API as long as we don't call it win running Win95/98/ME. A call to
+** API as long as we don't call it when running Win95/98/ME. A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
-#if OS_WINCE
+#if SQLITE_OS_WINCE
# define isNT() (1)
#else
static int isNT(void){
@@ -15132,25 +27277,25 @@ int sqlite3_os_type = 0;
}
return sqlite3_os_type==2;
}
-#endif /* OS_WINCE */
+#endif /* SQLITE_OS_WINCE */
/*
** Convert a UTF-8 string to microsoft unicode (UTF-16?).
**
-** Space to hold the returned string is obtained from sqliteMalloc.
+** Space to hold the returned string is obtained from malloc.
*/
static WCHAR *utf8ToUnicode(const char *zFilename){
int nChar;
WCHAR *zWideFilename;
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
- zWideFilename = sqliteMalloc( nChar*sizeof(zWideFilename[0]) );
+ zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) );
if( zWideFilename==0 ){
return 0;
}
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
if( nChar==0 ){
- sqliteFree(zWideFilename);
+ free(zWideFilename);
zWideFilename = 0;
}
return zWideFilename;
@@ -15158,21 +27303,21 @@ static WCHAR *utf8ToUnicode(const char *zFilename){
/*
** Convert microsoft unicode to UTF-8. Space to hold the returned string is
-** obtained from sqliteMalloc().
+** obtained from malloc().
*/
static char *unicodeToUtf8(const WCHAR *zWideFilename){
int nByte;
char *zFilename;
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
- zFilename = sqliteMalloc( nByte );
+ zFilename = malloc( nByte );
if( zFilename==0 ){
return 0;
}
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
0, 0);
if( nByte == 0 ){
- sqliteFree(zFilename);
+ free(zFilename);
zFilename = 0;
}
return zFilename;
@@ -15183,7 +27328,7 @@ static char *unicodeToUtf8(const WCHAR *zWideFilename){
** current codepage settings for file apis.
**
** Space to hold the returned string is obtained
-** from sqliteMalloc.
+** from malloc.
*/
static WCHAR *mbcsToUnicode(const char *zFilename){
int nByte;
@@ -15191,13 +27336,13 @@ static WCHAR *mbcsToUnicode(const char *zFilename){
int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR);
- zMbcsFilename = sqliteMalloc( nByte*sizeof(zMbcsFilename[0]) );
+ zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) );
if( zMbcsFilename==0 ){
return 0;
}
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
if( nByte==0 ){
- sqliteFree(zMbcsFilename);
+ free(zMbcsFilename);
zMbcsFilename = 0;
}
return zMbcsFilename;
@@ -15208,7 +27353,7 @@ static WCHAR *mbcsToUnicode(const char *zFilename){
** user's Ansi codepage.
**
** Space to hold the returned string is obtained from
-** sqliteMalloc().
+** malloc().
*/
static char *unicodeToMbcs(const WCHAR *zWideFilename){
int nByte;
@@ -15216,14 +27361,14 @@ static char *unicodeToMbcs(const WCHAR *zWideFilename){
int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
- zFilename = sqliteMalloc( nByte );
+ zFilename = malloc( nByte );
if( zFilename==0 ){
return 0;
}
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte,
0, 0);
if( nByte == 0 ){
- sqliteFree(zFilename);
+ free(zFilename);
zFilename = 0;
}
return zFilename;
@@ -15231,9 +27376,9 @@ static char *unicodeToMbcs(const WCHAR *zWideFilename){
/*
** Convert multibyte character string to UTF-8. Space to hold the
-** returned string is obtained from sqliteMalloc().
+** returned string is obtained from malloc().
*/
-static char *mbcsToUtf8(const char *zFilename){
+SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){
char *zFilenameUtf8;
WCHAR *zTmpWide;
@@ -15242,13 +27387,13 @@ static char *mbcsToUtf8(const char *zFilename){
return 0;
}
zFilenameUtf8 = unicodeToUtf8(zTmpWide);
- sqliteFree(zTmpWide);
+ free(zTmpWide);
return zFilenameUtf8;
}
/*
** Convert UTF-8 to multibyte character string. Space to hold the
-** returned string is obtained from sqliteMalloc().
+** returned string is obtained from malloc().
*/
static char *utf8ToMbcs(const char *zFilename){
char *zFilenameMbcs;
@@ -15259,11 +27404,11 @@ static char *utf8ToMbcs(const char *zFilename){
return 0;
}
zFilenameMbcs = unicodeToMbcs(zTmpWide);
- sqliteFree(zTmpWide);
+ free(zTmpWide);
return zFilenameMbcs;
}
-#if OS_WINCE
+#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/
@@ -15276,11 +27421,11 @@ struct tm *__cdecl localtime(const time_t *t)
static struct tm y;
FILETIME uTm, lTm;
SYSTEMTIME pTm;
- i64 t64;
+ sqlite3_int64 t64;
t64 = *t;
t64 = (t64 + 11644473600)*10000000;
- uTm.dwLowDateTime = t64 & 0xFFFFFFFF;
- uTm.dwHighDateTime= t64 >> 32;
+ uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
+ uTm.dwHighDateTime= (DWORD)(t64 >> 32);
FileTimeToLocalFileTime(&uTm,&lTm);
FileTimeToSystemTime(&lTm,&pTm);
y.tm_year = pTm.wYear - 1900;
@@ -15300,7 +27445,7 @@ struct tm *__cdecl localtime(const time_t *t)
#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e)
#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f)
-#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-offsetof(winFile,h)]
+#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]
/*
** Acquire a lock on the handle h
@@ -15338,7 +27483,8 @@ static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
/* Create/open the named mutex */
pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
if (!pFile->hMutex){
- sqliteFree(zName);
+ pFile->lastErrno = GetLastError();
+ free(zName);
return FALSE;
}
@@ -15360,7 +27506,7 @@ static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
bInit = FALSE;
}
- sqliteFree(zName);
+ free(zName);
/* If we succeeded in making the shared memory handle, map it. */
if (pFile->hShared){
@@ -15368,6 +27514,7 @@ static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
/* If mapping failed, close the shared memory handle and erase it */
if (!pFile->shared){
+ pFile->lastErrno = GetLastError();
CloseHandle(pFile->hShared);
pFile->hShared = NULL;
}
@@ -15417,12 +27564,6 @@ static void winceDestroyLock(winFile *pFile){
UnmapViewOfFile(pFile->shared);
CloseHandle(pFile->hShared);
- if( pFile->zDeleteOnClose ){
- DeleteFileW(pFile->zDeleteOnClose);
- sqliteFree(pFile->zDeleteOnClose);
- pFile->zDeleteOnClose = 0;
- }
-
/* Done with the mutex */
winceMutexRelease(pFile->hMutex);
CloseHandle(pFile->hMutex);
@@ -15443,12 +27584,15 @@ static BOOL winceLockFile(
winFile *pFile = HANDLE_TO_WINFILE(phFile);
BOOL bReturn = FALSE;
+ UNUSED_PARAMETER(dwFileOffsetHigh);
+ UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
+
if (!pFile->hMutex) return TRUE;
winceMutexAcquire(pFile->hMutex);
/* Wanting an exclusive lock? */
- if (dwFileOffsetLow == SHARED_FIRST
- && nNumberOfBytesToLockLow == SHARED_SIZE){
+ if (dwFileOffsetLow == (DWORD)SHARED_FIRST
+ && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
pFile->shared->bExclusive = TRUE;
pFile->local.bExclusive = TRUE;
@@ -15457,9 +27601,8 @@ static BOOL winceLockFile(
}
/* Want a read-only lock? */
- else if ((dwFileOffsetLow >= SHARED_FIRST &&
- dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE) &&
- nNumberOfBytesToLockLow == 1){
+ else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
+ nNumberOfBytesToLockLow == 1){
if (pFile->shared->bExclusive == 0){
pFile->local.nReaders ++;
if (pFile->local.nReaders == 1){
@@ -15470,7 +27613,7 @@ static BOOL winceLockFile(
}
/* Want a pending lock? */
- else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToLockLow == 1){
+ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){
/* If no pending lock has been acquired, then acquire it */
if (pFile->shared->bPending == 0) {
pFile->shared->bPending = TRUE;
@@ -15478,8 +27621,9 @@ static BOOL winceLockFile(
bReturn = TRUE;
}
}
+
/* Want a reserved lock? */
- else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
+ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
if (pFile->shared->bReserved == 0) {
pFile->shared->bReserved = TRUE;
pFile->local.bReserved = TRUE;
@@ -15504,14 +27648,17 @@ static BOOL winceUnlockFile(
winFile *pFile = HANDLE_TO_WINFILE(phFile);
BOOL bReturn = FALSE;
+ UNUSED_PARAMETER(dwFileOffsetHigh);
+ UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);
+
if (!pFile->hMutex) return TRUE;
winceMutexAcquire(pFile->hMutex);
/* Releasing a reader lock or an exclusive lock */
- if (dwFileOffsetLow >= SHARED_FIRST &&
- dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE){
+ if (dwFileOffsetLow == (DWORD)SHARED_FIRST){
/* Did we have an exclusive lock? */
if (pFile->local.bExclusive){
+ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
pFile->local.bExclusive = FALSE;
pFile->shared->bExclusive = FALSE;
bReturn = TRUE;
@@ -15519,6 +27666,7 @@ static BOOL winceUnlockFile(
/* Did we just have a reader lock? */
else if (pFile->local.nReaders){
+ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1);
pFile->local.nReaders --;
if (pFile->local.nReaders == 0)
{
@@ -15529,7 +27677,7 @@ static BOOL winceUnlockFile(
}
/* Releasing a pending lock */
- else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
+ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
if (pFile->local.bPending){
pFile->local.bPending = FALSE;
pFile->shared->bPending = FALSE;
@@ -15537,7 +27685,7 @@ static BOOL winceUnlockFile(
}
}
/* Releasing a reserved lock */
- else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
+ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
if (pFile->local.bReserved) {
pFile->local.bReserved = FALSE;
pFile->shared->bReserved = FALSE;
@@ -15560,11 +27708,14 @@ static BOOL winceLockFileEx(
DWORD nNumberOfBytesToLockHigh,
LPOVERLAPPED lpOverlapped
){
+ UNUSED_PARAMETER(dwReserved);
+ UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
+
/* If the caller wants a shared read lock, forward this call
** to winceLockFile */
- if (lpOverlapped->Offset == SHARED_FIRST &&
+ if (lpOverlapped->Offset == (DWORD)SHARED_FIRST &&
dwFlags == 1 &&
- nNumberOfBytesToLockLow == SHARED_SIZE){
+ nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
}
return FALSE;
@@ -15572,401 +27723,12 @@ static BOOL winceLockFileEx(
/*
** End of the special code for wince
*****************************************************************************/
-#endif /* OS_WINCE */
-
-/*
-** Convert a UTF-8 filename into whatever form the underlying
-** operating system wants filenames in. Space to hold the result
-** is obtained from sqliteMalloc and must be freed by the calling
-** function.
-*/
-static void *convertUtf8Filename(const char *zFilename){
- void *zConverted = 0;
- if( isNT() ){
- zConverted = utf8ToUnicode(zFilename);
- }else{
- zConverted = utf8ToMbcs(zFilename);
- }
- /* caller will handle out of memory */
- return zConverted;
-}
-
-/*
-** Delete the named file.
-**
-** Note that windows does not allow a file to be deleted if some other
-** process has it open. Sometimes a virus scanner or indexing program
-** will open a journal file shortly after it is created in order to do
-** whatever it is it does. While this other process is holding the
-** file open, we will be unable to delete it. To work around this
-** problem, we delay 100 milliseconds and try to delete again. Up
-** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
-** up and returning an error.
-*/
-#define MX_DELETION_ATTEMPTS 3
-int sqlite3WinDelete(const char *zFilename){
- int cnt = 0;
- int rc;
- void *zConverted = convertUtf8Filename(zFilename);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
- SimulateIOError(return SQLITE_IOERR_DELETE);
- if( isNT() ){
- do{
- rc = DeleteFileW(zConverted);
- }while( rc==0 && GetFileAttributesW(zConverted)!=0xffffffff
- && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
- }else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
- do{
- rc = DeleteFileA(zConverted);
- }while( rc==0 && GetFileAttributesA(zConverted)!=0xffffffff
- && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
-#endif
- }
- sqliteFree(zConverted);
- OSTRACE2("DELETE \"%s\"\n", zFilename);
- return rc!=0 ? SQLITE_OK : SQLITE_IOERR;
-}
-
-/*
-** Return TRUE if the named file exists.
-*/
-int sqlite3WinFileExists(const char *zFilename){
- int exists = 0;
- void *zConverted = convertUtf8Filename(zFilename);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
- if( isNT() ){
- exists = GetFileAttributesW((WCHAR*)zConverted) != 0xffffffff;
- }else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
- exists = GetFileAttributesA((char*)zConverted) != 0xffffffff;
-#endif
- }
- sqliteFree(zConverted);
- return exists;
-}
-
-/* Forward declaration */
-static int allocateWinFile(winFile *pInit, OsFile **pId);
-
-/*
-** Attempt to open a file for both reading and writing. If that
-** fails, try opening it read-only. If the file does not exist,
-** try to create it.
-**
-** On success, a handle for the open file is written to *id
-** and *pReadonly is set to 0 if the file was opened for reading and
-** writing or 1 if the file was opened read-only. The function returns
-** SQLITE_OK.
-**
-** On failure, the function returns SQLITE_CANTOPEN and leaves
-** *id and *pReadonly unchanged.
-*/
-int sqlite3WinOpenReadWrite(
- const char *zFilename,
- OsFile **pId,
- int *pReadonly
-){
- winFile f;
- HANDLE h;
- void *zConverted = convertUtf8Filename(zFilename);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
- assert( *pId==0 );
-
- if( isNT() ){
- h = CreateFileW((WCHAR*)zConverted,
- GENERIC_READ | GENERIC_WRITE,
- FILE_SHARE_READ | FILE_SHARE_WRITE,
- NULL,
- OPEN_ALWAYS,
- FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
- NULL
- );
- if( h==INVALID_HANDLE_VALUE ){
- h = CreateFileW((WCHAR*)zConverted,
- GENERIC_READ,
- FILE_SHARE_READ | FILE_SHARE_WRITE,
- NULL,
- OPEN_ALWAYS,
- FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
- NULL
- );
- if( h==INVALID_HANDLE_VALUE ){
- sqliteFree(zConverted);
- return SQLITE_CANTOPEN;
- }
- *pReadonly = 1;
- }else{
- *pReadonly = 0;
- }
-#if OS_WINCE
- if (!winceCreateLock(zFilename, &f)){
- CloseHandle(h);
- sqliteFree(zConverted);
- return SQLITE_CANTOPEN;
- }
-#endif
- }else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
- h = CreateFileA((char*)zConverted,
- GENERIC_READ | GENERIC_WRITE,
- FILE_SHARE_READ | FILE_SHARE_WRITE,
- NULL,
- OPEN_ALWAYS,
- FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
- NULL
- );
- if( h==INVALID_HANDLE_VALUE ){
- h = CreateFileA((char*)zConverted,
- GENERIC_READ,
- FILE_SHARE_READ | FILE_SHARE_WRITE,
- NULL,
- OPEN_ALWAYS,
- FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
- NULL
- );
- if( h==INVALID_HANDLE_VALUE ){
- sqliteFree(zConverted);
- return SQLITE_CANTOPEN;
- }
- *pReadonly = 1;
- }else{
- *pReadonly = 0;
- }
-#endif /* OS_WINCE */
- }
-
- sqliteFree(zConverted);
-
- f.h = h;
-#if OS_WINCE
- f.zDeleteOnClose = 0;
-#endif
- OSTRACE3("OPEN R/W %d \"%s\"\n", h, zFilename);
- return allocateWinFile(&f, pId);
-}
-
-
-/*
-** Attempt to open a new file for exclusive access by this process.
-** The file will be opened for both reading and writing. To avoid
-** a potential security problem, we do not allow the file to have
-** previously existed. Nor do we allow the file to be a symbolic
-** link.
-**
-** If delFlag is true, then make arrangements to automatically delete
-** the file when it is closed.
-**
-** On success, write the file handle into *id and return SQLITE_OK.
-**
-** On failure, return SQLITE_CANTOPEN.
-**
-** Sometimes if we have just deleted a prior journal file, windows
-** will fail to open a new one because there is a "pending delete".
-** To work around this bug, we pause for 100 milliseconds and attempt
-** a second open after the first one fails. The whole operation only
-** fails if both open attempts are unsuccessful.
-*/
-int sqlite3WinOpenExclusive(const char *zFilename, OsFile **pId, int delFlag){
- winFile f;
- HANDLE h;
- DWORD fileflags;
- void *zConverted = convertUtf8Filename(zFilename);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
- assert( *pId == 0 );
- fileflags = FILE_FLAG_RANDOM_ACCESS;
-#if !OS_WINCE
- if( delFlag ){
- fileflags |= FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_DELETE_ON_CLOSE;
- }
-#endif
- if( isNT() ){
- int cnt = 0;
- do{
- h = CreateFileW((WCHAR*)zConverted,
- GENERIC_READ | GENERIC_WRITE,
- 0,
- NULL,
- CREATE_ALWAYS,
- fileflags,
- NULL
- );
- }while( h==INVALID_HANDLE_VALUE && cnt++ < 2 && (Sleep(100), 1) );
- }else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
- int cnt = 0;
- do{
- h = CreateFileA((char*)zConverted,
- GENERIC_READ | GENERIC_WRITE,
- 0,
- NULL,
- CREATE_ALWAYS,
- fileflags,
- NULL
- );
- }while( h==INVALID_HANDLE_VALUE && cnt++ < 2 && (Sleep(100), 1) );
-#endif /* OS_WINCE */
- }
-#if OS_WINCE
- if( delFlag && h!=INVALID_HANDLE_VALUE ){
- f.zDeleteOnClose = zConverted;
- zConverted = 0;
- }
- f.hMutex = NULL;
-#endif
- sqliteFree(zConverted);
- if( h==INVALID_HANDLE_VALUE ){
- return SQLITE_CANTOPEN;
- }
- f.h = h;
- OSTRACE3("OPEN EX %d \"%s\"\n", h, zFilename);
- return allocateWinFile(&f, pId);
-}
+#endif /* SQLITE_OS_WINCE */
-/*
-** Attempt to open a new file for read-only access.
-**
-** On success, write the file handle into *id and return SQLITE_OK.
-**
-** On failure, return SQLITE_CANTOPEN.
-*/
-int sqlite3WinOpenReadOnly(const char *zFilename, OsFile **pId){
- winFile f;
- HANDLE h;
- void *zConverted = convertUtf8Filename(zFilename);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
- assert( *pId==0 );
- if( isNT() ){
- h = CreateFileW((WCHAR*)zConverted,
- GENERIC_READ,
- 0,
- NULL,
- OPEN_EXISTING,
- FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
- NULL
- );
- }else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
- h = CreateFileA((char*)zConverted,
- GENERIC_READ,
- 0,
- NULL,
- OPEN_EXISTING,
- FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
- NULL
- );
-#endif
- }
- sqliteFree(zConverted);
- if( h==INVALID_HANDLE_VALUE ){
- return SQLITE_CANTOPEN;
- }
- f.h = h;
-#if OS_WINCE
- f.zDeleteOnClose = 0;
- f.hMutex = NULL;
-#endif
- OSTRACE3("OPEN RO %d \"%s\"\n", h, zFilename);
- return allocateWinFile(&f, pId);
-}
-
-/*
-** Attempt to open a file descriptor for the directory that contains a
-** file. This file descriptor can be used to fsync() the directory
-** in order to make sure the creation of a new file is actually written
-** to disk.
-**
-** This routine is only meaningful for Unix. It is a no-op under
-** windows since windows does not support hard links.
-**
-** On success, a handle for a previously open file is at *id is
-** updated with the new directory file descriptor and SQLITE_OK is
-** returned.
-**
-** On failure, the function returns SQLITE_CANTOPEN and leaves
-** *id unchanged.
-*/
-static int winOpenDirectory(
- OsFile *id,
- const char *zDirname
-){
- return SQLITE_OK;
-}
-
-/*
-** Create a temporary file name in zBuf. zBuf must be big enough to
-** hold at least SQLITE_TEMPNAME_SIZE characters.
-*/
-int sqlite3WinTempFileName(char *zBuf){
- static char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- char zTempPath[SQLITE_TEMPNAME_SIZE];
- if( sqlite3_temp_directory ){
- strncpy(zTempPath, sqlite3_temp_directory, SQLITE_TEMPNAME_SIZE-30);
- zTempPath[SQLITE_TEMPNAME_SIZE-30] = 0;
- }else if( isNT() ){
- char *zMulti;
- WCHAR zWidePath[SQLITE_TEMPNAME_SIZE];
- GetTempPathW(SQLITE_TEMPNAME_SIZE-30, zWidePath);
- zMulti = unicodeToUtf8(zWidePath);
- if( zMulti ){
- strncpy(zTempPath, zMulti, SQLITE_TEMPNAME_SIZE-30);
- zTempPath[SQLITE_TEMPNAME_SIZE-30] = 0;
- sqliteFree(zMulti);
- }else{
- return SQLITE_NOMEM;
- }
- }else{
- char *zUtf8;
- char zMbcsPath[SQLITE_TEMPNAME_SIZE];
- GetTempPathA(SQLITE_TEMPNAME_SIZE-30, zMbcsPath);
- zUtf8 = mbcsToUtf8(zMbcsPath);
- if( zUtf8 ){
- strncpy(zTempPath, zUtf8, SQLITE_TEMPNAME_SIZE-30);
- zTempPath[SQLITE_TEMPNAME_SIZE-30] = 0;
- sqliteFree(zUtf8);
- }else{
- return SQLITE_NOMEM;
- }
- }
- for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
- zTempPath[i] = 0;
- for(;;){
- sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zTempPath);
- j = strlen(zBuf);
- sqlite3Randomness(15, &zBuf[j]);
- for(i=0; i<15; i++, j++){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- if( !sqlite3OsFileExists(zBuf) ) break;
- }
- OSTRACE2("TEMP FILENAME: %s\n", zBuf);
- return SQLITE_OK;
-}
+/*****************************************************************************
+** The next group of routines implement the I/O methods specified
+** by the sqlite3_io_methods object.
+******************************************************************************/
/*
** Close a file.
@@ -15979,41 +27741,75 @@ int sqlite3WinTempFileName(char *zBuf){
** giving up and returning an error.
*/
#define MX_CLOSE_ATTEMPT 3
-static int winClose(OsFile **pId){
- winFile *pFile;
- int rc = 1;
- if( pId && (pFile = (winFile*)*pId)!=0 ){
- int rc, cnt = 0;
- OSTRACE2("CLOSE %d\n", pFile->h);
- do{
- rc = CloseHandle(pFile->h);
- }while( rc==0 && cnt++ < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
-#if OS_WINCE
- winceDestroyLock(pFile);
-#endif
- OpenCounter(-1);
- sqliteFree(pFile);
- *pId = 0;
+static int winClose(sqlite3_file *id){
+ int rc, cnt = 0;
+ winFile *pFile = (winFile*)id;
+
+ assert( id!=0 );
+ OSTRACE2("CLOSE %d\n", pFile->h);
+ do{
+ rc = CloseHandle(pFile->h);
+ }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
+#if SQLITE_OS_WINCE
+#define WINCE_DELETION_ATTEMPTS 3
+ winceDestroyLock(pFile);
+ if( pFile->zDeleteOnClose ){
+ int cnt = 0;
+ while(
+ DeleteFileW(pFile->zDeleteOnClose)==0
+ && GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
+ && cnt++ < WINCE_DELETION_ATTEMPTS
+ ){
+ Sleep(100); /* Wait a little before trying again */
+ }
+ free(pFile->zDeleteOnClose);
}
+#endif
+ OpenCounter(-1);
return rc ? SQLITE_OK : SQLITE_IOERR;
}
/*
+** Some microsoft compilers lack this definition.
+*/
+#ifndef INVALID_SET_FILE_POINTER
+# define INVALID_SET_FILE_POINTER ((DWORD)-1)
+#endif
+
+/*
** Read data from a file into a buffer. Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
-static int winRead(OsFile *id, void *pBuf, int amt){
+static int winRead(
+ sqlite3_file *id, /* File to read from */
+ void *pBuf, /* Write content into this buffer */
+ int amt, /* Number of bytes to read */
+ sqlite3_int64 offset /* Begin reading at this offset */
+){
+ LONG upperBits = (LONG)((offset>>32) & 0x7fffffff);
+ LONG lowerBits = (LONG)(offset & 0xffffffff);
+ DWORD rc;
+ winFile *pFile = (winFile*)id;
+ DWORD error;
DWORD got;
+
assert( id!=0 );
SimulateIOError(return SQLITE_IOERR_READ);
- OSTRACE3("READ %d lock=%d\n", ((winFile*)id)->h, ((winFile*)id)->locktype);
- if( !ReadFile(((winFile*)id)->h, pBuf, amt, &got, 0) ){
+ OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype);
+ rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+ if( rc==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
+ pFile->lastErrno = error;
+ return SQLITE_FULL;
+ }
+ if( !ReadFile(pFile->h, pBuf, amt, &got, 0) ){
+ pFile->lastErrno = GetLastError();
return SQLITE_IOERR_READ;
}
if( got==(DWORD)amt ){
return SQLITE_OK;
}else{
+ /* Unread parts of the buffer must be zero-filled */
memset(&((char*)pBuf)[got], 0, amt-got);
return SQLITE_IOERR_SHORT_READ;
}
@@ -16023,95 +27819,133 @@ static int winRead(OsFile *id, void *pBuf, int amt){
** Write data from a buffer into a file. Return SQLITE_OK on success
** or some other error code on failure.
*/
-static int winWrite(OsFile *id, const void *pBuf, int amt){
- int rc = 0;
- DWORD wrote;
+static int winWrite(
+ sqlite3_file *id, /* File to write into */
+ const void *pBuf, /* The bytes to be written */
+ int amt, /* Number of bytes to write */
+ sqlite3_int64 offset /* Offset into the file to begin writing at */
+){
+ LONG upperBits = (LONG)((offset>>32) & 0x7fffffff);
+ LONG lowerBits = (LONG)(offset & 0xffffffff);
+ DWORD rc;
+ winFile *pFile = (winFile*)id;
+ DWORD error;
+ DWORD wrote = 0;
+
assert( id!=0 );
- SimulateIOError(return SQLITE_IOERR_READ);
+ SimulateIOError(return SQLITE_IOERR_WRITE);
SimulateDiskfullError(return SQLITE_FULL);
- OSTRACE3("WRITE %d lock=%d\n", ((winFile*)id)->h, ((winFile*)id)->locktype);
+ OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype);
+ rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+ if( rc==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
+ pFile->lastErrno = error;
+ return SQLITE_FULL;
+ }
assert( amt>0 );
- while( amt>0 && (rc = WriteFile(((winFile*)id)->h, pBuf, amt, &wrote, 0))!=0
- && wrote>0 ){
+ while(
+ amt>0
+ && (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0))!=0
+ && wrote>0
+ ){
amt -= wrote;
pBuf = &((char*)pBuf)[wrote];
}
if( !rc || amt>(int)wrote ){
+ pFile->lastErrno = GetLastError();
return SQLITE_FULL;
}
return SQLITE_OK;
}
/*
-** Some microsoft compilers lack this definition.
-*/
-#ifndef INVALID_SET_FILE_POINTER
-# define INVALID_SET_FILE_POINTER ((DWORD)-1)
-#endif
-
-/*
-** Move the read/write pointer in a file.
+** Truncate an open file to a specified size
*/
-static int winSeek(OsFile *id, i64 offset){
- LONG upperBits = offset>>32;
- LONG lowerBits = offset & 0xffffffff;
+static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
+ LONG upperBits = (LONG)((nByte>>32) & 0x7fffffff);
+ LONG lowerBits = (LONG)(nByte & 0xffffffff);
DWORD rc;
+ winFile *pFile = (winFile*)id;
+ DWORD error;
+
assert( id!=0 );
-#ifdef SQLITE_TEST
- if( offset ) SimulateDiskfullError(return SQLITE_FULL);
-#endif
- rc = SetFilePointer(((winFile*)id)->h, lowerBits, &upperBits, FILE_BEGIN);
- OSTRACE3("SEEK %d %lld\n", ((winFile*)id)->h, offset);
- if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
- return SQLITE_FULL;
+ OSTRACE3("TRUNCATE %d %lld\n", pFile->h, nByte);
+ SimulateIOError(return SQLITE_IOERR_TRUNCATE);
+ rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+ if( rc==INVALID_SET_FILE_POINTER && (error=GetLastError())!=NO_ERROR ){
+ pFile->lastErrno = error;
+ return SQLITE_IOERR_TRUNCATE;
+ }
+ /* SetEndOfFile will fail if nByte is negative */
+ if( !SetEndOfFile(pFile->h) ){
+ pFile->lastErrno = GetLastError();
+ return SQLITE_IOERR_TRUNCATE;
}
return SQLITE_OK;
}
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occuring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
+
/*
** Make sure all writes to a particular file are committed to disk.
*/
-static int winSync(OsFile *id, int dataOnly){
+static int winSync(sqlite3_file *id, int flags){
+#ifndef SQLITE_NO_SYNC
+ winFile *pFile = (winFile*)id;
+
assert( id!=0 );
- OSTRACE3("SYNC %d lock=%d\n", ((winFile*)id)->h, ((winFile*)id)->locktype);
- if( FlushFileBuffers(((winFile*)id)->h) ){
+ OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
+#else
+ UNUSED_PARAMETER(id);
+#endif
+#ifndef SQLITE_TEST
+ UNUSED_PARAMETER(flags);
+#else
+ if( flags & SQLITE_SYNC_FULL ){
+ sqlite3_fullsync_count++;
+ }
+ sqlite3_sync_count++;
+#endif
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
+ ** no-op
+ */
+#ifdef SQLITE_NO_SYNC
+ return SQLITE_OK;
+#else
+ if( FlushFileBuffers(pFile->h) ){
return SQLITE_OK;
}else{
+ pFile->lastErrno = GetLastError();
return SQLITE_IOERR;
}
-}
-
-/*
-** Sync the directory zDirname. This is a no-op on operating systems other
-** than UNIX.
-*/
-int sqlite3WinSyncDirectory(const char *zDirname){
- SimulateIOError(return SQLITE_IOERR_READ);
- return SQLITE_OK;
-}
-
-/*
-** Truncate an open file to a specified size
-*/
-static int winTruncate(OsFile *id, i64 nByte){
- LONG upperBits = nByte>>32;
- assert( id!=0 );
- OSTRACE3("TRUNCATE %d %lld\n", ((winFile*)id)->h, nByte);
- SimulateIOError(return SQLITE_IOERR_TRUNCATE);
- SetFilePointer(((winFile*)id)->h, nByte, &upperBits, FILE_BEGIN);
- SetEndOfFile(((winFile*)id)->h);
- return SQLITE_OK;
+#endif
}
/*
** Determine the current size of a file in bytes
*/
-static int winFileSize(OsFile *id, i64 *pSize){
- DWORD upperBits, lowerBits;
+static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
+ DWORD upperBits;
+ DWORD lowerBits;
+ winFile *pFile = (winFile*)id;
+ DWORD error;
+
assert( id!=0 );
SimulateIOError(return SQLITE_IOERR_FSTAT);
- lowerBits = GetFileSize(((winFile*)id)->h, &upperBits);
- *pSize = (((i64)upperBits)<<32) + lowerBits;
+ lowerBits = GetFileSize(pFile->h, &upperBits);
+ if( (lowerBits == INVALID_FILE_SIZE)
+ && ((error = GetLastError()) != NO_ERROR) )
+ {
+ pFile->lastErrno = error;
+ return SQLITE_IOERR_FSTAT;
+ }
+ *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
return SQLITE_OK;
}
@@ -16127,19 +27961,27 @@ static int winFileSize(OsFile *id, i64 *pSize){
** Different API routines are called depending on whether or not this
** is Win95 or WinNT.
*/
-static int getReadLock(winFile *id){
+static int getReadLock(winFile *pFile){
int res;
if( isNT() ){
OVERLAPPED ovlp;
ovlp.Offset = SHARED_FIRST;
ovlp.OffsetHigh = 0;
ovlp.hEvent = 0;
- res = LockFileEx(id->h, LOCKFILE_FAIL_IMMEDIATELY, 0, SHARED_SIZE,0,&ovlp);
+ res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY,
+ 0, SHARED_SIZE, 0, &ovlp);
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
+*/
+#if SQLITE_OS_WINCE==0
}else{
int lk;
- sqlite3Randomness(sizeof(lk), &lk);
- id->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
- res = LockFile(id->h, SHARED_FIRST+id->sharedLockByte, 0, 1, 0);
+ sqlite3_randomness(sizeof(lk), &lk);
+ pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1));
+ res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
+#endif
+ }
+ if( res == 0 ){
+ pFile->lastErrno = GetLastError();
}
return res;
}
@@ -16151,44 +27993,18 @@ static int unlockReadLock(winFile *pFile){
int res;
if( isNT() ){
res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
- }else{
- res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
- }
- return res;
-}
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-/*
-** Check that a given pathname is a directory and is writable
-**
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
*/
-int sqlite3WinIsDirWritable(char *zDirname){
- int fileAttr;
- void *zConverted;
- if( zDirname==0 ) return 0;
- if( !isNT() && strlen(zDirname)>MAX_PATH ) return 0;
-
- zConverted = convertUtf8Filename(zDirname);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
- if( isNT() ){
- fileAttr = GetFileAttributesW((WCHAR*)zConverted);
+#if SQLITE_OS_WINCE==0
}else{
-#if OS_WINCE
- return 0;
-#else
- fileAttr = GetFileAttributesA((char*)zConverted);
+ res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
#endif
}
- sqliteFree(zConverted);
- if( fileAttr == 0xffffffff ) return 0;
- if( (fileAttr & FILE_ATTRIBUTE_DIRECTORY) != FILE_ATTRIBUTE_DIRECTORY ){
- return 0;
+ if( res == 0 ){
+ pFile->lastErrno = GetLastError();
}
- return 1;
+ return res;
}
-#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
/*
** Lock the file with the lock specified by parameter locktype - one
@@ -16216,14 +28032,15 @@ int sqlite3WinIsDirWritable(char *zDirname){
** It is not possible to lower the locking level one step at a time. You
** must go straight to locking level 0.
*/
-static int winLock(OsFile *id, int locktype){
+static int winLock(sqlite3_file *id, int locktype){
int rc = SQLITE_OK; /* Return code from subroutines */
int res = 1; /* Result of a windows lock call */
- int newLocktype; /* Set id->locktype to this value before exiting */
+ int newLocktype; /* Set pFile->locktype to this value before exiting */
int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
winFile *pFile = (winFile*)id;
+ DWORD error = NO_ERROR;
- assert( pFile!=0 );
+ assert( id!=0 );
OSTRACE5("LOCK %d %d was %d(%d)\n",
pFile->h, locktype, pFile->locktype, pFile->sharedLockByte);
@@ -16246,8 +28063,9 @@ static int winLock(OsFile *id, int locktype){
** the PENDING_LOCK byte is temporary.
*/
newLocktype = pFile->locktype;
- if( pFile->locktype==NO_LOCK
- || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
+ if( (pFile->locktype==NO_LOCK)
+ || ( (locktype==EXCLUSIVE_LOCK)
+ && (pFile->locktype==RESERVED_LOCK))
){
int cnt = 3;
while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){
@@ -16258,6 +28076,9 @@ static int winLock(OsFile *id, int locktype){
Sleep(1);
}
gotPendingLock = res;
+ if( !res ){
+ error = GetLastError();
+ }
}
/* Acquire a shared lock
@@ -16267,6 +28088,8 @@ static int winLock(OsFile *id, int locktype){
res = getReadLock(pFile);
if( res ){
newLocktype = SHARED_LOCK;
+ }else{
+ error = GetLastError();
}
}
@@ -16277,6 +28100,8 @@ static int winLock(OsFile *id, int locktype){
res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
if( res ){
newLocktype = RESERVED_LOCK;
+ }else{
+ error = GetLastError();
}
}
@@ -16297,7 +28122,9 @@ static int winLock(OsFile *id, int locktype){
if( res ){
newLocktype = EXCLUSIVE_LOCK;
}else{
- OSTRACE2("error-code = %d\n", GetLastError());
+ error = GetLastError();
+ OSTRACE2("error-code = %d\n", error);
+ getReadLock(pFile);
}
}
@@ -16316,9 +28143,10 @@ static int winLock(OsFile *id, int locktype){
}else{
OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
locktype, newLocktype);
+ pFile->lastErrno = error;
rc = SQLITE_BUSY;
}
- pFile->locktype = newLocktype;
+ pFile->locktype = (u8)newLocktype;
return rc;
}
@@ -16327,10 +28155,11 @@ static int winLock(OsFile *id, int locktype){
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
-static int winCheckReservedLock(OsFile *id){
+static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
int rc;
winFile *pFile = (winFile*)id;
- assert( pFile!=0 );
+
+ assert( id!=0 );
if( pFile->locktype>=RESERVED_LOCK ){
rc = 1;
OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, rc);
@@ -16342,7 +28171,8 @@ static int winCheckReservedLock(OsFile *id){
rc = !rc;
OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc);
}
- return rc;
+ *pResOut = rc;
+ return SQLITE_OK;
}
/*
@@ -16356,10 +28186,10 @@ static int winCheckReservedLock(OsFile *id){
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
** might return SQLITE_IOERR;
*/
-static int winUnlock(OsFile *id, int locktype){
+static int winUnlock(sqlite3_file *id, int locktype){
int type;
- int rc = SQLITE_OK;
winFile *pFile = (winFile*)id;
+ int rc = SQLITE_OK;
assert( pFile!=0 );
assert( locktype<=SHARED_LOCK );
OSTRACE5("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
@@ -16382,80 +28212,25 @@ static int winUnlock(OsFile *id, int locktype){
if( type>=PENDING_LOCK ){
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
}
- pFile->locktype = locktype;
+ pFile->locktype = (u8)locktype;
return rc;
}
/*
-** Turn a relative pathname into a full pathname. Return a pointer
-** to the full pathname stored in space obtained from sqliteMalloc().
-** The calling function is responsible for freeing this space once it
-** is no longer needed.
+** Control and query of the open file handle.
*/
-char *sqlite3WinFullPathname(const char *zRelative){
- char *zFull;
-#if defined(__CYGWIN__)
- int nByte;
- nByte = strlen(zRelative) + MAX_PATH + 1001;
- zFull = sqliteMalloc( nByte );
- if( zFull==0 ) return 0;
- if( cygwin_conv_to_full_win32_path(zRelative, zFull) ) return 0;
-#elif OS_WINCE
- /* WinCE has no concept of a relative pathname, or so I am told. */
- zFull = sqliteStrDup(zRelative);
-#else
- int nByte;
- void *zConverted;
- zConverted = convertUtf8Filename(zRelative);
- if( isNT() ){
- WCHAR *zTemp;
- nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
- zTemp = sqliteMalloc( nByte*sizeof(zTemp[0]) );
- if( zTemp==0 ){
- sqliteFree(zConverted);
- return 0;
+static int winFileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = ((winFile*)id)->locktype;
+ return SQLITE_OK;
}
- GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
- sqliteFree(zConverted);
- zFull = unicodeToUtf8(zTemp);
- sqliteFree(zTemp);
- }else{
- char *zTemp;
- nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
- zTemp = sqliteMalloc( nByte*sizeof(zTemp[0]) );
- if( zTemp==0 ){
- sqliteFree(zConverted);
- return 0;
+ case SQLITE_LAST_ERRNO: {
+ *(int*)pArg = (int)((winFile*)id)->lastErrno;
+ return SQLITE_OK;
}
- GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
- sqliteFree(zConverted);
- zFull = mbcsToUtf8(zTemp);
- sqliteFree(zTemp);
}
-#endif
- return zFull;
-}
-
-/*
-** The fullSync option is meaningless on windows. This is a no-op.
-*/
-static void winSetFullSync(OsFile *id, int v){
- return;
-}
-
-/*
-** Return the underlying file handle for an OsFile
-*/
-static int winFileHandle(OsFile *id){
- return (int)((winFile*)id)->h;
-}
-
-/*
-** Return an integer that indices the type of lock currently held
-** by this handle. (Used for testing and analysis only.)
-*/
-static int winLockState(OsFile *id){
- return ((winFile*)id)->locktype;
+ return SQLITE_ERROR;
}
/*
@@ -16465,206 +28240,651 @@ static int winLockState(OsFile *id){
**
** SQLite code assumes this function cannot fail. It also assumes that
** if two files are created in the same file-system directory (i.e.
-** a database and it's journal file) that the sector size will be the
+** a database and its journal file) that the sector size will be the
** same for both.
*/
-static int winSectorSize(OsFile *id){
- return SQLITE_DEFAULT_SECTOR_SIZE;
+static int winSectorSize(sqlite3_file *id){
+ assert( id!=0 );
+ return (int)(((winFile*)id)->sectorSize);
}
/*
-** This vector defines all the methods that can operate on an OsFile
-** for win32.
+** Return a vector of device characteristics.
*/
-static const IoMethod sqlite3WinIoMethod = {
+static int winDeviceCharacteristics(sqlite3_file *id){
+ UNUSED_PARAMETER(id);
+ return 0;
+}
+
+/*
+** This vector defines all the methods that can operate on an
+** sqlite3_file for win32.
+*/
+static const sqlite3_io_methods winIoMethod = {
+ 1, /* iVersion */
winClose,
- winOpenDirectory,
winRead,
winWrite,
- winSeek,
winTruncate,
winSync,
- winSetFullSync,
- winFileHandle,
winFileSize,
winLock,
winUnlock,
- winLockState,
winCheckReservedLock,
+ winFileControl,
winSectorSize,
+ winDeviceCharacteristics
};
+/***************************************************************************
+** Here ends the I/O methods that form the sqlite3_io_methods object.
+**
+** The next block of code implements the VFS methods.
+****************************************************************************/
+
/*
-** Allocate memory for an OsFile. Initialize the new OsFile
-** to the value given in pInit and return a pointer to the new
-** OsFile. If we run out of memory, close the file and return NULL.
+** Convert a UTF-8 filename into whatever form the underlying
+** operating system wants filenames in. Space to hold the result
+** is obtained from malloc and must be freed by the calling
+** function.
*/
-static int allocateWinFile(winFile *pInit, OsFile **pId){
- winFile *pNew;
- pNew = sqliteMalloc( sizeof(*pNew) );
- if( pNew==0 ){
- CloseHandle(pInit->h);
-#if OS_WINCE
- sqliteFree(pInit->zDeleteOnClose);
+static void *convertUtf8Filename(const char *zFilename){
+ void *zConverted = 0;
+ if( isNT() ){
+ zConverted = utf8ToUnicode(zFilename);
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
+*/
+#if SQLITE_OS_WINCE==0
+ }else{
+ zConverted = utf8ToMbcs(zFilename);
#endif
- *pId = 0;
- return SQLITE_NOMEM;
+ }
+ /* caller will handle out of memory */
+ return zConverted;
+}
+
+/*
+** Create a temporary file name in zBuf. zBuf must be big enough to
+** hold at pVfs->mxPathname characters.
+*/
+static int getTempname(int nBuf, char *zBuf){
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ size_t i, j;
+ char zTempPath[MAX_PATH+1];
+ if( sqlite3_temp_directory ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
+ }else if( isNT() ){
+ char *zMulti;
+ WCHAR zWidePath[MAX_PATH];
+ GetTempPathW(MAX_PATH-30, zWidePath);
+ zMulti = unicodeToUtf8(zWidePath);
+ if( zMulti ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
+ free(zMulti);
+ }else{
+ return SQLITE_NOMEM;
+ }
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
+** Since the ASCII version of these Windows API do not exist for WINCE,
+** it's important to not reference them for WINCE builds.
+*/
+#if SQLITE_OS_WINCE==0
}else{
- *pNew = *pInit;
- pNew->pMethod = &sqlite3WinIoMethod;
- pNew->locktype = NO_LOCK;
- pNew->sharedLockByte = 0;
- *pId = (OsFile*)pNew;
- OpenCounter(+1);
- return SQLITE_OK;
+ char *zUtf8;
+ char zMbcsPath[MAX_PATH];
+ GetTempPathA(MAX_PATH-30, zMbcsPath);
+ zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath);
+ if( zUtf8 ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
+ free(zUtf8);
+ }else{
+ return SQLITE_NOMEM;
+ }
+#endif
}
+ for(i=sqlite3Strlen30(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
+ zTempPath[i] = 0;
+ sqlite3_snprintf(nBuf-30, zBuf,
+ "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
+ j = sqlite3Strlen30(zBuf);
+ sqlite3_randomness(20, &zBuf[j]);
+ for(i=0; i<20; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ OSTRACE2("TEMP FILENAME: %s\n", zBuf);
+ return SQLITE_OK;
}
+/*
+** The return value of getLastErrorMsg
+** is zero if the error message fits in the buffer, or non-zero
+** otherwise (if the message was truncated).
+*/
+static int getLastErrorMsg(int nBuf, char *zBuf){
+ DWORD error = GetLastError();
+
+#if SQLITE_OS_WINCE
+ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error);
+#else
+ /* FormatMessage returns 0 on failure. Otherwise it
+ ** returns the number of TCHARs written to the output
+ ** buffer, excluding the terminating null char.
+ */
+ if (!FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM,
+ NULL,
+ error,
+ 0,
+ zBuf,
+ nBuf-1,
+ 0))
+ {
+ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error);
+ }
+#endif
-#endif /* SQLITE_OMIT_DISKIO */
-/***************************************************************************
-** Everything above deals with file I/O. Everything that follows deals
-** with other miscellanous aspects of the operating system interface
-****************************************************************************/
+ return 0;
+}
-#if !defined(SQLITE_OMIT_LOAD_EXTENSION)
/*
-** Interfaces for opening a shared library, finding entry points
-** within the shared library, and closing the shared library.
+** Open a file.
*/
-void *sqlite3WinDlopen(const char *zFilename){
+static int winOpen(
+ sqlite3_vfs *pVfs, /* Not used */
+ const char *zName, /* Name of the file (UTF-8) */
+ sqlite3_file *id, /* Write the SQLite file handle here */
+ int flags, /* Open mode flags */
+ int *pOutFlags /* Status return flags */
+){
HANDLE h;
- void *zConverted = convertUtf8Filename(zFilename);
+ DWORD dwDesiredAccess;
+ DWORD dwShareMode;
+ DWORD dwCreationDisposition;
+ DWORD dwFlagsAndAttributes = 0;
+#if SQLITE_OS_WINCE
+ int isTemp = 0;
+#endif
+ winFile *pFile = (winFile*)id;
+ void *zConverted; /* Filename in OS encoding */
+ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
+ char zTmpname[MAX_PATH+1]; /* Buffer used to create temp filename */
+
+ assert( id!=0 );
+ UNUSED_PARAMETER(pVfs);
+
+ /* If the second argument to this function is NULL, generate a
+ ** temporary file name to use
+ */
+ if( !zUtf8Name ){
+ int rc = getTempname(MAX_PATH+1, zTmpname);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zUtf8Name = zTmpname;
+ }
+
+ /* Convert the filename to the system encoding. */
+ zConverted = convertUtf8Filename(zUtf8Name);
if( zConverted==0 ){
- return 0;
+ return SQLITE_NOMEM;
}
- if( isNT() ){
- h = LoadLibraryW((WCHAR*)zConverted);
+
+ if( flags & SQLITE_OPEN_READWRITE ){
+ dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
}else{
-#if OS_WINCE
- return 0;
+ dwDesiredAccess = GENERIC_READ;
+ }
+ /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
+ ** created. SQLite doesn't use it to indicate "exclusive access"
+ ** as it is usually understood.
+ */
+ assert(!(flags & SQLITE_OPEN_EXCLUSIVE) || (flags & SQLITE_OPEN_CREATE));
+ if( flags & SQLITE_OPEN_EXCLUSIVE ){
+ /* Creates a new file, only if it does not already exist. */
+ /* If the file exists, it fails. */
+ dwCreationDisposition = CREATE_NEW;
+ }else if( flags & SQLITE_OPEN_CREATE ){
+ /* Open existing file, or create if it doesn't exist */
+ dwCreationDisposition = OPEN_ALWAYS;
+ }else{
+ /* Opens a file, only if it exists. */
+ dwCreationDisposition = OPEN_EXISTING;
+ }
+ dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
+ if( flags & SQLITE_OPEN_DELETEONCLOSE ){
+#if SQLITE_OS_WINCE
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
+ isTemp = 1;
#else
- h = LoadLibraryA((char*)zConverted);
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
+ | FILE_ATTRIBUTE_HIDDEN
+ | FILE_FLAG_DELETE_ON_CLOSE;
#endif
+ }else{
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
}
- sqliteFree(zConverted);
- return (void*)h;
-
-}
-void *sqlite3WinDlsym(void *pHandle, const char *zSymbol){
-#if OS_WINCE
- /* The GetProcAddressA() routine is only available on wince. */
- return GetProcAddressA((HANDLE)pHandle, zSymbol);
-#else
- /* All other windows platforms expect GetProcAddress() to take
- ** an Ansi string regardless of the _UNICODE setting */
- return GetProcAddress((HANDLE)pHandle, zSymbol);
+ /* Reports from the internet are that performance is always
+ ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
+#if SQLITE_OS_WINCE
+ dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
#endif
+ if( isNT() ){
+ h = CreateFileW((WCHAR*)zConverted,
+ dwDesiredAccess,
+ dwShareMode,
+ NULL,
+ dwCreationDisposition,
+ dwFlagsAndAttributes,
+ NULL
+ );
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
+** Since the ASCII version of these Windows API do not exist for WINCE,
+** it's important to not reference them for WINCE builds.
+*/
+#if SQLITE_OS_WINCE==0
+ }else{
+ h = CreateFileA((char*)zConverted,
+ dwDesiredAccess,
+ dwShareMode,
+ NULL,
+ dwCreationDisposition,
+ dwFlagsAndAttributes,
+ NULL
+ );
+#endif
+ }
+ if( h==INVALID_HANDLE_VALUE ){
+ free(zConverted);
+ if( flags & SQLITE_OPEN_READWRITE ){
+ return winOpen(pVfs, zName, id,
+ ((flags|SQLITE_OPEN_READONLY)&~SQLITE_OPEN_READWRITE), pOutFlags);
+ }else{
+ return SQLITE_CANTOPEN;
+ }
+ }
+ if( pOutFlags ){
+ if( flags & SQLITE_OPEN_READWRITE ){
+ *pOutFlags = SQLITE_OPEN_READWRITE;
+ }else{
+ *pOutFlags = SQLITE_OPEN_READONLY;
+ }
+ }
+ memset(pFile, 0, sizeof(*pFile));
+ pFile->pMethod = &winIoMethod;
+ pFile->h = h;
+ pFile->lastErrno = NO_ERROR;
+ pFile->sectorSize = getSectorSize(pVfs, zUtf8Name);
+#if SQLITE_OS_WINCE
+ if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) ==
+ (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)
+ && !winceCreateLock(zName, pFile)
+ ){
+ CloseHandle(h);
+ free(zConverted);
+ return SQLITE_CANTOPEN;
+ }
+ if( isTemp ){
+ pFile->zDeleteOnClose = zConverted;
+ }else
+#endif
+ {
+ free(zConverted);
+ }
+ OpenCounter(+1);
+ return SQLITE_OK;
}
-int sqlite3WinDlclose(void *pHandle){
- return FreeLibrary((HANDLE)pHandle);
+
+/*
+** Delete the named file.
+**
+** Note that windows does not allow a file to be deleted if some other
+** process has it open. Sometimes a virus scanner or indexing program
+** will open a journal file shortly after it is created in order to do
+** whatever it does. While this other process is holding the
+** file open, we will be unable to delete it. To work around this
+** problem, we delay 100 milliseconds and try to delete again. Up
+** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
+** up and returning an error.
+*/
+#define MX_DELETION_ATTEMPTS 5
+static int winDelete(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to delete */
+ int syncDir /* Not used on win32 */
+){
+ int cnt = 0;
+ DWORD rc;
+ DWORD error = 0;
+ void *zConverted = convertUtf8Filename(zFilename);
+ UNUSED_PARAMETER(pVfs);
+ UNUSED_PARAMETER(syncDir);
+ if( zConverted==0 ){
+ return SQLITE_NOMEM;
+ }
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ if( isNT() ){
+ do{
+ DeleteFileW(zConverted);
+ }while( ( ((rc = GetFileAttributesW(zConverted)) != INVALID_FILE_ATTRIBUTES)
+ || ((error = GetLastError()) == ERROR_ACCESS_DENIED))
+ && (++cnt < MX_DELETION_ATTEMPTS)
+ && (Sleep(100), 1) );
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
+** Since the ASCII version of these Windows API do not exist for WINCE,
+** it's important to not reference them for WINCE builds.
+*/
+#if SQLITE_OS_WINCE==0
+ }else{
+ do{
+ DeleteFileA(zConverted);
+ }while( ( ((rc = GetFileAttributesA(zConverted)) != INVALID_FILE_ATTRIBUTES)
+ || ((error = GetLastError()) == ERROR_ACCESS_DENIED))
+ && (++cnt < MX_DELETION_ATTEMPTS)
+ && (Sleep(100), 1) );
+#endif
+ }
+ free(zConverted);
+ OSTRACE2("DELETE \"%s\"\n", zFilename);
+ return ( (rc == INVALID_FILE_ATTRIBUTES)
+ && (error == ERROR_FILE_NOT_FOUND)) ? SQLITE_OK : SQLITE_IOERR_DELETE;
}
-#endif /* !SQLITE_OMIT_LOAD_EXTENSION */
/*
-** Get information to seed the random number generator. The seed
-** is written into the buffer zBuf[256]. The calling function must
-** supply a sufficiently large buffer.
+** Check the existance and status of a file.
*/
-int sqlite3WinRandomSeed(char *zBuf){
- /* We have to initialize zBuf to prevent valgrind from reporting
- ** errors. The reports issued by valgrind are incorrect - we would
- ** prefer that the randomness be increased by making use of the
- ** uninitialized space in zBuf - but valgrind errors tend to worry
- ** some users. Rather than argue, it seems easier just to initialize
- ** the whole array and silence valgrind, even if that means less randomness
- ** in the random seed.
- **
- ** When testing, initializing zBuf[] to zero is all we do. That means
- ** that we always use the same random number sequence.* This makes the
- ** tests repeatable.
- */
- memset(zBuf, 0, 256);
- GetSystemTime((LPSYSTEMTIME)zBuf);
+static int winAccess(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to check */
+ int flags, /* Type of test to make on this file */
+ int *pResOut /* OUT: Result */
+){
+ DWORD attr;
+ int rc = 0;
+ void *zConverted = convertUtf8Filename(zFilename);
+ UNUSED_PARAMETER(pVfs);
+ if( zConverted==0 ){
+ return SQLITE_NOMEM;
+ }
+ if( isNT() ){
+ attr = GetFileAttributesW((WCHAR*)zConverted);
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
+** Since the ASCII version of these Windows API do not exist for WINCE,
+** it's important to not reference them for WINCE builds.
+*/
+#if SQLITE_OS_WINCE==0
+ }else{
+ attr = GetFileAttributesA((char*)zConverted);
+#endif
+ }
+ free(zConverted);
+ switch( flags ){
+ case SQLITE_ACCESS_READ:
+ case SQLITE_ACCESS_EXISTS:
+ rc = attr!=INVALID_FILE_ATTRIBUTES;
+ break;
+ case SQLITE_ACCESS_READWRITE:
+ rc = (attr & FILE_ATTRIBUTE_READONLY)==0;
+ break;
+ default:
+ assert(!"Invalid flags argument");
+ }
+ *pResOut = rc;
return SQLITE_OK;
}
+
/*
-** Sleep for a little while. Return the amount of time slept.
+** Turn a relative pathname into a full pathname. Write the full
+** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
+** bytes in size.
*/
-int sqlite3WinSleep(int ms){
- Sleep(ms);
- return ms;
+static int winFullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+
+#if defined(__CYGWIN__)
+ UNUSED_PARAMETER(nFull);
+ cygwin_conv_to_full_win32_path(zRelative, zFull);
+ return SQLITE_OK;
+#endif
+
+#if SQLITE_OS_WINCE
+ UNUSED_PARAMETER(nFull);
+ /* WinCE has no concept of a relative pathname, or so I am told. */
+ sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
+ return SQLITE_OK;
+#endif
+
+#if !SQLITE_OS_WINCE && !defined(__CYGWIN__)
+ int nByte;
+ void *zConverted;
+ char *zOut;
+ UNUSED_PARAMETER(nFull);
+ zConverted = convertUtf8Filename(zRelative);
+ if( isNT() ){
+ WCHAR *zTemp;
+ nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
+ zTemp = malloc( nByte*sizeof(zTemp[0]) );
+ if( zTemp==0 ){
+ free(zConverted);
+ return SQLITE_NOMEM;
+ }
+ GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
+ free(zConverted);
+ zOut = unicodeToUtf8(zTemp);
+ free(zTemp);
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
+** Since the ASCII version of these Windows API do not exist for WINCE,
+** it's important to not reference them for WINCE builds.
+*/
+#if SQLITE_OS_WINCE==0
+ }else{
+ char *zTemp;
+ nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
+ zTemp = malloc( nByte*sizeof(zTemp[0]) );
+ if( zTemp==0 ){
+ free(zConverted);
+ return SQLITE_NOMEM;
+ }
+ GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
+ free(zConverted);
+ zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
+ free(zTemp);
+#endif
+ }
+ if( zOut ){
+ sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
+ free(zOut);
+ return SQLITE_OK;
+ }else{
+ return SQLITE_NOMEM;
+ }
+#endif
}
/*
-** Static variables used for thread synchronization
+** Get the sector size of the device used to store
+** file.
*/
-static int inMutex = 0;
-#ifdef SQLITE_W32_THREADS
- static DWORD mutexOwner;
- static CRITICAL_SECTION cs;
+static int getSectorSize(
+ sqlite3_vfs *pVfs,
+ const char *zRelative /* UTF-8 file name */
+){
+ DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
+ /* GetDiskFreeSpace is not supported under WINCE */
+#if SQLITE_OS_WINCE
+ UNUSED_PARAMETER(pVfs);
+ UNUSED_PARAMETER(zRelative);
+#else
+ char zFullpath[MAX_PATH+1];
+ int rc;
+ DWORD dwRet = 0;
+ DWORD dwDummy;
+
+ /*
+ ** We need to get the full path name of the file
+ ** to get the drive letter to look up the sector
+ ** size.
+ */
+ rc = winFullPathname(pVfs, zRelative, MAX_PATH, zFullpath);
+ if( rc == SQLITE_OK )
+ {
+ void *zConverted = convertUtf8Filename(zFullpath);
+ if( zConverted ){
+ if( isNT() ){
+ /* trim path to just drive reference */
+ WCHAR *p = zConverted;
+ for(;*p;p++){
+ if( *p == '\\' ){
+ *p = '\0';
+ break;
+ }
+ }
+ dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted,
+ &dwDummy,
+ &bytesPerSector,
+ &dwDummy,
+ &dwDummy);
+ }else{
+ /* trim path to just drive reference */
+ CHAR *p = (CHAR *)zConverted;
+ for(;*p;p++){
+ if( *p == '\\' ){
+ *p = '\0';
+ break;
+ }
+ }
+ dwRet = GetDiskFreeSpaceA((CHAR*)zConverted,
+ &dwDummy,
+ &bytesPerSector,
+ &dwDummy,
+ &dwDummy);
+ }
+ free(zConverted);
+ }
+ if( !dwRet ){
+ bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
+ }
+ }
#endif
+ return (int) bytesPerSector;
+}
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
-** The following pair of routines implement mutual exclusion for
-** multi-threaded processes. Only a single thread is allowed to
-** executed code that is surrounded by EnterMutex() and LeaveMutex().
-**
-** SQLite uses only a single Mutex. There is not much critical
-** code and what little there is executes quickly and without blocking.
-**
-** Version 3.3.1 and earlier used a simple mutex. Beginning with
-** version 3.3.2, a recursive mutex is required.
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
*/
-void sqlite3WinEnterMutex(){
-#ifdef SQLITE_W32_THREADS
- static int isInit = 0;
- while( !isInit ){
- static long lock = 0;
- if( InterlockedIncrement(&lock)==1 ){
- InitializeCriticalSection(&cs);
- isInit = 1;
- }else{
- Sleep(1);
- }
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
+ HANDLE h;
+ void *zConverted = convertUtf8Filename(zFilename);
+ UNUSED_PARAMETER(pVfs);
+ if( zConverted==0 ){
+ return 0;
}
- EnterCriticalSection(&cs);
- mutexOwner = GetCurrentThreadId();
+ if( isNT() ){
+ h = LoadLibraryW((WCHAR*)zConverted);
+/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
+** Since the ASCII version of these Windows API do not exist for WINCE,
+** it's important to not reference them for WINCE builds.
+*/
+#if SQLITE_OS_WINCE==0
+ }else{
+ h = LoadLibraryA((char*)zConverted);
#endif
- inMutex++;
+ }
+ free(zConverted);
+ return (void*)h;
+}
+static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
+ UNUSED_PARAMETER(pVfs);
+ getLastErrorMsg(nBuf, zBufOut);
}
-void sqlite3WinLeaveMutex(){
- assert( inMutex );
- inMutex--;
-#ifdef SQLITE_W32_THREADS
- assert( mutexOwner==GetCurrentThreadId() );
- LeaveCriticalSection(&cs);
+void (*winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){
+ UNUSED_PARAMETER(pVfs);
+#if SQLITE_OS_WINCE
+ /* The GetProcAddressA() routine is only available on wince. */
+ return (void(*)(void))GetProcAddressA((HANDLE)pHandle, zSymbol);
+#else
+ /* All other windows platforms expect GetProcAddress() to take
+ ** an Ansi string regardless of the _UNICODE setting */
+ return (void(*)(void))GetProcAddress((HANDLE)pHandle, zSymbol);
#endif
}
+void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ UNUSED_PARAMETER(pVfs);
+ FreeLibrary((HANDLE)pHandle);
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define winDlOpen 0
+ #define winDlError 0
+ #define winDlSym 0
+ #define winDlClose 0
+#endif
+
/*
-** Return TRUE if the mutex is currently held.
-**
-** If the thisThreadOnly parameter is true, return true if and only if the
-** calling thread holds the mutex. If the parameter is false, return
-** true if any thread holds the mutex.
+** Write up to nBuf bytes of randomness into zBuf.
*/
-int sqlite3WinInMutex(int thisThreadOnly){
-#ifdef SQLITE_W32_THREADS
- return inMutex>0 && (thisThreadOnly==0 || mutexOwner==GetCurrentThreadId());
+static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ int n = 0;
+ UNUSED_PARAMETER(pVfs);
+#if defined(SQLITE_TEST)
+ n = nBuf;
+ memset(zBuf, 0, nBuf);
#else
- return inMutex>0;
+ if( sizeof(SYSTEMTIME)<=nBuf-n ){
+ SYSTEMTIME x;
+ GetSystemTime(&x);
+ memcpy(&zBuf[n], &x, sizeof(x));
+ n += sizeof(x);
+ }
+ if( sizeof(DWORD)<=nBuf-n ){
+ DWORD pid = GetCurrentProcessId();
+ memcpy(&zBuf[n], &pid, sizeof(pid));
+ n += sizeof(pid);
+ }
+ if( sizeof(DWORD)<=nBuf-n ){
+ DWORD cnt = GetTickCount();
+ memcpy(&zBuf[n], &cnt, sizeof(cnt));
+ n += sizeof(cnt);
+ }
+ if( sizeof(LARGE_INTEGER)<=nBuf-n ){
+ LARGE_INTEGER i;
+ QueryPerformanceCounter(&i);
+ memcpy(&zBuf[n], &i, sizeof(i));
+ n += sizeof(i);
+ }
#endif
+ return n;
}
/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+static int winSleep(sqlite3_vfs *pVfs, int microsec){
+ Sleep((microsec+999)/1000);
+ UNUSED_PARAMETER(pVfs);
+ return ((microsec+999)/1000)*1000;
+}
+
+/*
** The following variable, if set to a non-zero value, becomes the result
** returned from sqlite3OsCurrentTime(). This is used for testing.
*/
#ifdef SQLITE_TEST
-int sqlite3_current_time = 0;
+SQLITE_API int sqlite3_current_time = 0;
#endif
/*
@@ -16672,99 +28892,2331 @@ int sqlite3_current_time = 0;
** current time and date as a Julian Day number into *prNow and
** return 0. Return 1 if the time and date cannot be found.
*/
-int sqlite3WinCurrentTime(double *prNow){
+int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
FILETIME ft;
/* FILETIME structure is a 64-bit value representing the number of
100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
*/
- double now;
-#if OS_WINCE
+ sqlite3_int64 timeW; /* Whole days */
+ sqlite3_int64 timeF; /* Fractional Days */
+
+ /* Number of 100-nanosecond intervals in a single day */
+ static const sqlite3_int64 ntuPerDay =
+ 10000000*(sqlite3_int64)86400;
+
+ /* Number of 100-nanosecond intervals in half of a day */
+ static const sqlite3_int64 ntuPerHalfDay =
+ 10000000*(sqlite3_int64)43200;
+
+ /* 2^32 - to avoid use of LL and warnings in gcc */
+ static const sqlite3_int64 max32BitValue =
+ (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + (sqlite3_int64)294967296;
+
+#if SQLITE_OS_WINCE
SYSTEMTIME time;
GetSystemTime(&time);
- SystemTimeToFileTime(&time,&ft);
+ /* if SystemTimeToFileTime() fails, it returns zero. */
+ if (!SystemTimeToFileTime(&time,&ft)){
+ return 1;
+ }
#else
GetSystemTimeAsFileTime( &ft );
#endif
- now = ((double)ft.dwHighDateTime) * 4294967296.0;
- *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
+ UNUSED_PARAMETER(pVfs);
+ timeW = (((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) + (sqlite3_int64)ft.dwLowDateTime;
+ timeF = timeW % ntuPerDay; /* fractional days (100-nanoseconds) */
+ timeW = timeW / ntuPerDay; /* whole days */
+ timeW = timeW + 2305813; /* add whole days (from 2305813.5) */
+ timeF = timeF + ntuPerHalfDay; /* add half a day (from 2305813.5) */
+ timeW = timeW + (timeF/ntuPerDay); /* add whole day if half day made one */
+ timeF = timeF % ntuPerDay; /* compute new fractional days */
+ *prNow = (double)timeW + ((double)timeF / (double)ntuPerDay);
#ifdef SQLITE_TEST
if( sqlite3_current_time ){
- *prNow = sqlite3_current_time/86400.0 + 2440587.5;
+ *prNow = ((double)sqlite3_current_time + (double)43200) / (double)86400 + (double)2440587;
}
#endif
return 0;
}
/*
-** Remember the number of thread-specific-data blocks allocated.
-** Use this to verify that we are not leaking thread-specific-data.
-** Ticket #1601
+** The idea is that this function works like a combination of
+** GetLastError() and FormatMessage() on windows (or errno and
+** strerror_r() on unix). After an error is returned by an OS
+** function, SQLite calls this function with zBuf pointing to
+** a buffer of nBuf bytes. The OS layer should populate the
+** buffer with a nul-terminated UTF-8 encoded error message
+** describing the last IO error to have occurred within the calling
+** thread.
+**
+** If the error message is too large for the supplied buffer,
+** it should be truncated. The return value of xGetLastError
+** is zero if the error message fits in the buffer, or non-zero
+** otherwise (if the message was truncated). If non-zero is returned,
+** then it is not necessary to include the nul-terminator character
+** in the output buffer.
+**
+** Not supplying an error message will have no adverse effect
+** on SQLite. It is fine to have an implementation that never
+** returns an error message:
+**
+** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+** assert(zBuf[0]=='\0');
+** return 0;
+** }
+**
+** However if an error message is supplied, it will be incorporated
+** by sqlite into the error message available to the user using
+** sqlite3_errmsg(), possibly making IO errors easier to debug.
+*/
+static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ UNUSED_PARAMETER(pVfs);
+ return getLastErrorMsg(nBuf, zBuf);
+}
+
+/*
+** Initialize and deinitialize the operating system interface.
+*/
+SQLITE_API int sqlite3_os_init(void){
+ static sqlite3_vfs winVfs = {
+ 1, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ MAX_PATH, /* mxPathname */
+ 0, /* pNext */
+ "win32", /* zName */
+ 0, /* pAppData */
+
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError /* xGetLastError */
+ };
+
+ sqlite3_vfs_register(&winVfs, 1);
+ return SQLITE_OK;
+}
+SQLITE_API int sqlite3_os_end(void){
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OS_WIN */
+
+/************** End of os_win.c **********************************************/
+/************** Begin file bitvec.c ******************************************/
+/*
+** 2008 February 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an object that represents a fixed-length
+** bitmap. Bits are numbered starting with 1.
+**
+** A bitmap is used to record which pages of a database file have been
+** journalled during a transaction, or which pages have the "dont-write"
+** property. Usually only a few pages are meet either condition.
+** So the bitmap is usually sparse and has low cardinality.
+** But sometimes (for example when during a DROP of a large table) most
+** or all of the pages in a database can get journalled. In those cases,
+** the bitmap becomes dense with high cardinality. The algorithm needs
+** to handle both cases well.
+**
+** The size of the bitmap is fixed when the object is created.
+**
+** All bits are clear when the bitmap is created. Individual bits
+** may be set or cleared one at a time.
+**
+** Test operations are about 100 times more common that set operations.
+** Clear operations are exceedingly rare. There are usually between
+** 5 and 500 set operations per Bitvec object, though the number of sets can
+** sometimes grow into tens of thousands or larger. The size of the
+** Bitvec object is the number of pages in the database file at the
+** start of a transaction, and is thus usually less than a few thousand,
+** but can be as large as 2 billion for a really big database.
+**
+** @(#) $Id: bitvec.c,v 1.17 2009/07/25 17:33:26 drh Exp $
+*/
+
+/* Size of the Bitvec structure in bytes. */
+#define BITVEC_SZ (sizeof(void*)*128) /* 512 on 32bit. 1024 on 64bit */
+
+/* Round the union size down to the nearest pointer boundary, since that's how
+** it will be aligned within the Bitvec struct. */
+#define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
+
+/* Type of the array "element" for the bitmap representation.
+** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
+** Setting this to the "natural word" size of your CPU may improve
+** performance. */
+#define BITVEC_TELEM u8
+/* Size, in bits, of the bitmap element. */
+#define BITVEC_SZELEM 8
+/* Number of elements in a bitmap array. */
+#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
+/* Number of bits in the bitmap array. */
+#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
+
+/* Number of u32 values in hash table. */
+#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
+/* Maximum number of entries in hash table before
+** sub-dividing and re-hashing. */
+#define BITVEC_MXHASH (BITVEC_NINT/2)
+/* Hashing function for the aHash representation.
+** Empirical testing showed that the *37 multiplier
+** (an arbitrary prime)in the hash function provided
+** no fewer collisions than the no-op *1. */
+#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
+
+#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
+
+
+/*
+** A bitmap is an instance of the following structure.
+**
+** This bitmap records the existance of zero or more bits
+** with values between 1 and iSize, inclusive.
+**
+** There are three possible representations of the bitmap.
+** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
+** bitmap. The least significant bit is bit 1.
+**
+** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
+** a hash table that will hold up to BITVEC_MXHASH distinct values.
+**
+** Otherwise, the value i is redirected into one of BITVEC_NPTR
+** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
+** handles up to iDivisor separate values of i. apSub[0] holds
+** values between 1 and iDivisor. apSub[1] holds values between
+** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
+** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
+** to hold deal with values between 1 and iDivisor.
+*/
+struct Bitvec {
+ u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
+ u32 nSet; /* Number of bits that are set - only valid for aHash
+ ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
+ ** this would be 125. */
+ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
+ /* Should >=0 for apSub element. */
+ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
+ /* For a BITVEC_SZ of 512, this would be 34,359,739. */
+ union {
+ BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
+ u32 aHash[BITVEC_NINT]; /* Hash table representation */
+ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
+ } u;
+};
+
+/*
+** Create a new bitmap object able to handle bits between 0 and iSize,
+** inclusive. Return a pointer to the new object. Return NULL if
+** malloc fails.
+*/
+SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){
+ Bitvec *p;
+ assert( sizeof(*p)==BITVEC_SZ );
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->iSize = iSize;
+ }
+ return p;
+}
+
+/*
+** Check to see if the i-th bit is set. Return true or false.
+** If p is NULL (if the bitmap has not been created) or if
+** i is out of range, then return false.
*/
-#ifdef SQLITE_TEST
-int sqlite3_tsd_count = 0;
-# define TSD_COUNTER_INCR InterlockedIncrement(&sqlite3_tsd_count)
-# define TSD_COUNTER_DECR InterlockedDecrement(&sqlite3_tsd_count)
+SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
+ if( p==0 ) return 0;
+ if( i>p->iSize || i==0 ) return 0;
+ i--;
+ while( p->iDivisor ){
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ p = p->u.apSub[bin];
+ if (!p) {
+ return 0;
+ }
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
+ } else{
+ u32 h = BITVEC_HASH(i++);
+ while( p->u.aHash[h] ){
+ if( p->u.aHash[h]==i ) return 1;
+ h = (h+1) % BITVEC_NINT;
+ }
+ return 0;
+ }
+}
+
+/*
+** Set the i-th bit. Return 0 on success and an error code if
+** anything goes wrong.
+**
+** This routine might cause sub-bitmaps to be allocated. Failing
+** to get the memory needed to hold the sub-bitmap is the only
+** that can go wrong with an insert, assuming p and i are valid.
+**
+** The calling function must ensure that p is a valid Bitvec object
+** and that the value for "i" is within range of the Bitvec object.
+** Otherwise the behavior is undefined.
+*/
+SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){
+ u32 h;
+ if( p==0 ) return SQLITE_OK;
+ assert( i>0 );
+ assert( i<=p->iSize );
+ i--;
+ while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ if( p->u.apSub[bin]==0 ){
+ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
+ if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
+ }
+ p = p->u.apSub[bin];
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
+ return SQLITE_OK;
+ }
+ h = BITVEC_HASH(i++);
+ /* if there wasn't a hash collision, and this doesn't */
+ /* completely fill the hash, then just add it without */
+ /* worring about sub-dividing and re-hashing. */
+ if( !p->u.aHash[h] ){
+ if (p->nSet<(BITVEC_NINT-1)) {
+ goto bitvec_set_end;
+ } else {
+ goto bitvec_set_rehash;
+ }
+ }
+ /* there was a collision, check to see if it's already */
+ /* in hash, if not, try to find a spot for it */
+ do {
+ if( p->u.aHash[h]==i ) return SQLITE_OK;
+ h++;
+ if( h>=BITVEC_NINT ) h = 0;
+ } while( p->u.aHash[h] );
+ /* we didn't find it in the hash. h points to the first */
+ /* available free spot. check to see if this is going to */
+ /* make our hash too "full". */
+bitvec_set_rehash:
+ if( p->nSet>=BITVEC_MXHASH ){
+ unsigned int j;
+ int rc;
+ u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
+ if( aiValues==0 ){
+ return SQLITE_NOMEM;
+ }else{
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
+ memset(p->u.apSub, 0, sizeof(p->u.apSub));
+ p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
+ rc = sqlite3BitvecSet(p, i);
+ for(j=0; j<BITVEC_NINT; j++){
+ if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
+ }
+ sqlite3StackFree(0, aiValues);
+ return rc;
+ }
+ }
+bitvec_set_end:
+ p->nSet++;
+ p->u.aHash[h] = i;
+ return SQLITE_OK;
+}
+
+/*
+** Clear the i-th bit.
+**
+** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
+** that BitvecClear can use to rebuilt its hash table.
+*/
+SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
+ if( p==0 ) return;
+ assert( i>0 );
+ i--;
+ while( p->iDivisor ){
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ p = p->u.apSub[bin];
+ if (!p) {
+ return;
+ }
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
+ }else{
+ unsigned int j;
+ u32 *aiValues = pBuf;
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
+ memset(p->u.aHash, 0, sizeof(p->u.aHash));
+ p->nSet = 0;
+ for(j=0; j<BITVEC_NINT; j++){
+ if( aiValues[j] && aiValues[j]!=(i+1) ){
+ u32 h = BITVEC_HASH(aiValues[j]-1);
+ p->nSet++;
+ while( p->u.aHash[h] ){
+ h++;
+ if( h>=BITVEC_NINT ) h = 0;
+ }
+ p->u.aHash[h] = aiValues[j];
+ }
+ }
+ }
+}
+
+/*
+** Destroy a bitmap object. Reclaim all memory used.
+*/
+SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){
+ if( p==0 ) return;
+ if( p->iDivisor ){
+ unsigned int i;
+ for(i=0; i<BITVEC_NPTR; i++){
+ sqlite3BitvecDestroy(p->u.apSub[i]);
+ }
+ }
+ sqlite3_free(p);
+}
+
+/*
+** Return the value of the iSize parameter specified when Bitvec *p
+** was created.
+*/
+SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){
+ return p->iSize;
+}
+
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+/*
+** Let V[] be an array of unsigned characters sufficient to hold
+** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
+** Then the following macros can be used to set, clear, or test
+** individual bits within V.
+*/
+#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
+#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
+#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
+
+/*
+** This routine runs an extensive test of the Bitvec code.
+**
+** The input is an array of integers that acts as a program
+** to test the Bitvec. The integers are opcodes followed
+** by 0, 1, or 3 operands, depending on the opcode. Another
+** opcode follows immediately after the last operand.
+**
+** There are 6 opcodes numbered from 0 through 5. 0 is the
+** "halt" opcode and causes the test to end.
+**
+** 0 Halt and return the number of errors
+** 1 N S X Set N bits beginning with S and incrementing by X
+** 2 N S X Clear N bits beginning with S and incrementing by X
+** 3 N Set N randomly chosen bits
+** 4 N Clear N randomly chosen bits
+** 5 N S X Set N bits from S increment X in array only, not in bitvec
+**
+** The opcodes 1 through 4 perform set and clear operations are performed
+** on both a Bitvec object and on a linear array of bits obtained from malloc.
+** Opcode 5 works on the linear array only, not on the Bitvec.
+** Opcode 5 is used to deliberately induce a fault in order to
+** confirm that error detection works.
+**
+** At the conclusion of the test the linear array is compared
+** against the Bitvec object. If there are any differences,
+** an error is returned. If they are the same, zero is returned.
+**
+** If a memory allocation error occurs, return -1.
+*/
+SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){
+ Bitvec *pBitvec = 0;
+ unsigned char *pV = 0;
+ int rc = -1;
+ int i, nx, pc, op;
+ void *pTmpSpace;
+
+ /* Allocate the Bitvec to be tested and a linear array of
+ ** bits to act as the reference */
+ pBitvec = sqlite3BitvecCreate( sz );
+ pV = sqlite3_malloc( (sz+7)/8 + 1 );
+ pTmpSpace = sqlite3_malloc(BITVEC_SZ);
+ if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end;
+ memset(pV, 0, (sz+7)/8 + 1);
+
+ /* NULL pBitvec tests */
+ sqlite3BitvecSet(0, 1);
+ sqlite3BitvecClear(0, 1, pTmpSpace);
+
+ /* Run the program */
+ pc = 0;
+ while( (op = aOp[pc])!=0 ){
+ switch( op ){
+ case 1:
+ case 2:
+ case 5: {
+ nx = 4;
+ i = aOp[pc+2] - 1;
+ aOp[pc+2] += aOp[pc+3];
+ break;
+ }
+ case 3:
+ case 4:
+ default: {
+ nx = 2;
+ sqlite3_randomness(sizeof(i), &i);
+ break;
+ }
+ }
+ if( (--aOp[pc+1]) > 0 ) nx = 0;
+ pc += nx;
+ i = (i & 0x7fffffff)%sz;
+ if( (op & 1)!=0 ){
+ SETBIT(pV, (i+1));
+ if( op!=5 ){
+ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
+ }
+ }else{
+ CLEARBIT(pV, (i+1));
+ sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
+ }
+ }
+
+ /* Test to make sure the linear array exactly matches the
+ ** Bitvec object. Start with the assumption that they do
+ ** match (rc==0). Change rc to non-zero if a discrepancy
+ ** is found.
+ */
+ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
+ + sqlite3BitvecTest(pBitvec, 0)
+ + (sqlite3BitvecSize(pBitvec) - sz);
+ for(i=1; i<=sz; i++){
+ if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
+ rc = i;
+ break;
+ }
+ }
+
+ /* Free allocated structure */
+bitvec_end:
+ sqlite3_free(pTmpSpace);
+ sqlite3_free(pV);
+ sqlite3BitvecDestroy(pBitvec);
+ return rc;
+}
+#endif /* SQLITE_OMIT_BUILTIN_TEST */
+
+/************** End of bitvec.c **********************************************/
+/************** Begin file pcache.c ******************************************/
+/*
+** 2008 August 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements that page cache.
+**
+** @(#) $Id: pcache.c,v 1.47 2009/07/25 11:46:49 danielk1977 Exp $
+*/
+
+/*
+** A complete page cache is an instance of this structure.
+*/
+struct PCache {
+ PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
+ PgHdr *pSynced; /* Last synced page in dirty page list */
+ int nRef; /* Number of referenced pages */
+ int nMax; /* Configured cache size */
+ int szPage; /* Size of every page in this cache */
+ int szExtra; /* Size of extra space for each page */
+ int bPurgeable; /* True if pages are on backing store */
+ int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
+ void *pStress; /* Argument to xStress */
+ sqlite3_pcache *pCache; /* Pluggable cache module */
+ PgHdr *pPage1; /* Reference to page 1 */
+};
+
+/*
+** Some of the assert() macros in this code are too expensive to run
+** even during normal debugging. Use them only rarely on long-running
+** tests. Enable the expensive asserts using the
+** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
+*/
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+# define expensive_assert(X) assert(X)
#else
-# define TSD_COUNTER_INCR /* no-op */
-# define TSD_COUNTER_DECR /* no-op */
+# define expensive_assert(X)
#endif
+/********************************** Linked List Management ********************/
+
+#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
+/*
+** Check that the pCache->pSynced variable is set correctly. If it
+** is not, either fail an assert or return zero. Otherwise, return
+** non-zero. This is only used in debugging builds, as follows:
+**
+** expensive_assert( pcacheCheckSynced(pCache) );
+*/
+static int pcacheCheckSynced(PCache *pCache){
+ PgHdr *p;
+ for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
+ assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
+ }
+ return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
+}
+#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
+
+/*
+** Remove page pPage from the list of dirty pages.
+*/
+static void pcacheRemoveFromDirtyList(PgHdr *pPage){
+ PCache *p = pPage->pCache;
+
+ assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
+ assert( pPage->pDirtyPrev || pPage==p->pDirty );
+
+ /* Update the PCache1.pSynced variable if necessary. */
+ if( p->pSynced==pPage ){
+ PgHdr *pSynced = pPage->pDirtyPrev;
+ while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
+ pSynced = pSynced->pDirtyPrev;
+ }
+ p->pSynced = pSynced;
+ }
+
+ if( pPage->pDirtyNext ){
+ pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
+ }else{
+ assert( pPage==p->pDirtyTail );
+ p->pDirtyTail = pPage->pDirtyPrev;
+ }
+ if( pPage->pDirtyPrev ){
+ pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
+ }else{
+ assert( pPage==p->pDirty );
+ p->pDirty = pPage->pDirtyNext;
+ }
+ pPage->pDirtyNext = 0;
+ pPage->pDirtyPrev = 0;
+
+ expensive_assert( pcacheCheckSynced(p) );
+}
+
+/*
+** Add page pPage to the head of the dirty list (PCache1.pDirty is set to
+** pPage).
+*/
+static void pcacheAddToDirtyList(PgHdr *pPage){
+ PCache *p = pPage->pCache;
+
+ assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
+ pPage->pDirtyNext = p->pDirty;
+ if( pPage->pDirtyNext ){
+ assert( pPage->pDirtyNext->pDirtyPrev==0 );
+ pPage->pDirtyNext->pDirtyPrev = pPage;
+ }
+ p->pDirty = pPage;
+ if( !p->pDirtyTail ){
+ p->pDirtyTail = pPage;
+ }
+ if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
+ p->pSynced = pPage;
+ }
+ expensive_assert( pcacheCheckSynced(p) );
+}
/*
-** If called with allocateFlag>1, then return a pointer to thread
-** specific data for the current thread. Allocate and zero the
-** thread-specific data if it does not already exist necessary.
+** Wrapper around the pluggable caches xUnpin method. If the cache is
+** being used for an in-memory database, this function is a no-op.
+*/
+static void pcacheUnpin(PgHdr *p){
+ PCache *pCache = p->pCache;
+ if( pCache->bPurgeable ){
+ if( p->pgno==1 ){
+ pCache->pPage1 = 0;
+ }
+ sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 0);
+ }
+}
+
+/*************************************************** General Interfaces ******
**
-** If called with allocateFlag==0, then check the current thread
-** specific data. Return it if it exists. If it does not exist,
-** then return NULL.
+** Initialize and shutdown the page cache subsystem. Neither of these
+** functions are threadsafe.
+*/
+SQLITE_PRIVATE int sqlite3PcacheInitialize(void){
+ if( sqlite3GlobalConfig.pcache.xInit==0 ){
+ sqlite3PCacheSetDefault();
+ }
+ return sqlite3GlobalConfig.pcache.xInit(sqlite3GlobalConfig.pcache.pArg);
+}
+SQLITE_PRIVATE void sqlite3PcacheShutdown(void){
+ if( sqlite3GlobalConfig.pcache.xShutdown ){
+ sqlite3GlobalConfig.pcache.xShutdown(sqlite3GlobalConfig.pcache.pArg);
+ }
+}
+
+/*
+** Return the size in bytes of a PCache object.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSize(void){ return sizeof(PCache); }
+
+/*
+** Create a new PCache object. Storage space to hold the object
+** has already been allocated and is passed in as the p pointer.
+** The caller discovers how much space needs to be allocated by
+** calling sqlite3PcacheSize().
+*/
+SQLITE_PRIVATE void sqlite3PcacheOpen(
+ int szPage, /* Size of every page */
+ int szExtra, /* Extra space associated with each page */
+ int bPurgeable, /* True if pages are on backing store */
+ int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
+ void *pStress, /* Argument to xStress */
+ PCache *p /* Preallocated space for the PCache */
+){
+ memset(p, 0, sizeof(PCache));
+ p->szPage = szPage;
+ p->szExtra = szExtra;
+ p->bPurgeable = bPurgeable;
+ p->xStress = xStress;
+ p->pStress = pStress;
+ p->nMax = 100;
+}
+
+/*
+** Change the page size for PCache object. The caller must ensure that there
+** are no outstanding page references when this function is called.
+*/
+SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
+ assert( pCache->nRef==0 && pCache->pDirty==0 );
+ if( pCache->pCache ){
+ sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
+ pCache->pCache = 0;
+ }
+ pCache->szPage = szPage;
+}
+
+/*
+** Try to obtain a page from the cache.
+*/
+SQLITE_PRIVATE int sqlite3PcacheFetch(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number to obtain */
+ int createFlag, /* If true, create page if it does not exist already */
+ PgHdr **ppPage /* Write the page here */
+){
+ PgHdr *pPage = 0;
+ int eCreate;
+
+ assert( pCache!=0 );
+ assert( createFlag==1 || createFlag==0 );
+ assert( pgno>0 );
+
+ /* If the pluggable cache (sqlite3_pcache*) has not been allocated,
+ ** allocate it now.
+ */
+ if( !pCache->pCache && createFlag ){
+ sqlite3_pcache *p;
+ int nByte;
+ nByte = pCache->szPage + pCache->szExtra + sizeof(PgHdr);
+ p = sqlite3GlobalConfig.pcache.xCreate(nByte, pCache->bPurgeable);
+ if( !p ){
+ return SQLITE_NOMEM;
+ }
+ sqlite3GlobalConfig.pcache.xCachesize(p, pCache->nMax);
+ pCache->pCache = p;
+ }
+
+ eCreate = createFlag * (1 + (!pCache->bPurgeable || !pCache->pDirty));
+ if( pCache->pCache ){
+ pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, eCreate);
+ }
+
+ if( !pPage && eCreate==1 ){
+ PgHdr *pPg;
+
+ /* Find a dirty page to write-out and recycle. First try to find a
+ ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
+ ** cleared), but if that is not possible settle for any other
+ ** unreferenced dirty page.
+ */
+ expensive_assert( pcacheCheckSynced(pCache) );
+ for(pPg=pCache->pSynced;
+ pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
+ pPg=pPg->pDirtyPrev
+ );
+ if( !pPg ){
+ for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
+ }
+ if( pPg ){
+ int rc;
+ rc = pCache->xStress(pCache->pStress, pPg);
+ if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+
+ pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, 2);
+ }
+
+ if( pPage ){
+ if( !pPage->pData ){
+ memset(pPage, 0, sizeof(PgHdr) + pCache->szExtra);
+ pPage->pExtra = (void*)&pPage[1];
+ pPage->pData = (void *)&((char *)pPage)[sizeof(PgHdr) + pCache->szExtra];
+ pPage->pCache = pCache;
+ pPage->pgno = pgno;
+ }
+ assert( pPage->pCache==pCache );
+ assert( pPage->pgno==pgno );
+ assert( pPage->pExtra==(void *)&pPage[1] );
+
+ if( 0==pPage->nRef ){
+ pCache->nRef++;
+ }
+ pPage->nRef++;
+ if( pgno==1 ){
+ pCache->pPage1 = pPage;
+ }
+ }
+ *ppPage = pPage;
+ return (pPage==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK;
+}
+
+/*
+** Decrement the reference count on a page. If the page is clean and the
+** reference count drops to 0, then it is made elible for recycling.
+*/
+SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr *p){
+ assert( p->nRef>0 );
+ p->nRef--;
+ if( p->nRef==0 ){
+ PCache *pCache = p->pCache;
+ pCache->nRef--;
+ if( (p->flags&PGHDR_DIRTY)==0 ){
+ pcacheUnpin(p);
+ }else{
+ /* Move the page to the head of the dirty list. */
+ pcacheRemoveFromDirtyList(p);
+ pcacheAddToDirtyList(p);
+ }
+ }
+}
+
+/*
+** Increase the reference count of a supplied page by 1.
+*/
+SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr *p){
+ assert(p->nRef>0);
+ p->nRef++;
+}
+
+/*
+** Drop a page from the cache. There must be exactly one reference to the
+** page. This function deletes that reference, so after it returns the
+** page pointed to by p is invalid.
+*/
+SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){
+ PCache *pCache;
+ assert( p->nRef==1 );
+ if( p->flags&PGHDR_DIRTY ){
+ pcacheRemoveFromDirtyList(p);
+ }
+ pCache = p->pCache;
+ pCache->nRef--;
+ if( p->pgno==1 ){
+ pCache->pPage1 = 0;
+ }
+ sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 1);
+}
+
+/*
+** Make sure the page is marked as dirty. If it isn't dirty already,
+** make it so.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){
+ p->flags &= ~PGHDR_DONT_WRITE;
+ assert( p->nRef>0 );
+ if( 0==(p->flags & PGHDR_DIRTY) ){
+ p->flags |= PGHDR_DIRTY;
+ pcacheAddToDirtyList( p);
+ }
+}
+
+/*
+** Make sure the page is marked as clean. If it isn't clean already,
+** make it so.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){
+ if( (p->flags & PGHDR_DIRTY) ){
+ pcacheRemoveFromDirtyList(p);
+ p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
+ if( p->nRef==0 ){
+ pcacheUnpin(p);
+ }
+ }
+}
+
+/*
+** Make every page in the cache clean.
+*/
+SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache *pCache){
+ PgHdr *p;
+ while( (p = pCache->pDirty)!=0 ){
+ sqlite3PcacheMakeClean(p);
+ }
+}
+
+/*
+** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *pCache){
+ PgHdr *p;
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ p->flags &= ~PGHDR_NEED_SYNC;
+ }
+ pCache->pSynced = pCache->pDirtyTail;
+}
+
+/*
+** Change the page number of page p to newPgno.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
+ PCache *pCache = p->pCache;
+ assert( p->nRef>0 );
+ assert( newPgno>0 );
+ sqlite3GlobalConfig.pcache.xRekey(pCache->pCache, p, p->pgno, newPgno);
+ p->pgno = newPgno;
+ if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
+ pcacheRemoveFromDirtyList(p);
+ pcacheAddToDirtyList(p);
+ }
+}
+
+/*
+** Drop every cache entry whose page number is greater than "pgno". The
+** caller must ensure that there are no outstanding references to any pages
+** other than page 1 with a page number greater than pgno.
**
-** If called with allocateFlag<0, check to see if the thread specific
-** data is allocated and is all zero. If it is then deallocate it.
-** Return a pointer to the thread specific data or NULL if it is
-** unallocated or gets deallocated.
+** If there is a reference to page 1 and the pgno parameter passed to this
+** function is 0, then the data area associated with page 1 is zeroed, but
+** the page object is not dropped.
+*/
+SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
+ if( pCache->pCache ){
+ PgHdr *p;
+ PgHdr *pNext;
+ for(p=pCache->pDirty; p; p=pNext){
+ pNext = p->pDirtyNext;
+ if( p->pgno>pgno ){
+ assert( p->flags&PGHDR_DIRTY );
+ sqlite3PcacheMakeClean(p);
+ }
+ }
+ if( pgno==0 && pCache->pPage1 ){
+ memset(pCache->pPage1->pData, 0, pCache->szPage);
+ pgno = 1;
+ }
+ sqlite3GlobalConfig.pcache.xTruncate(pCache->pCache, pgno+1);
+ }
+}
+
+/*
+** Close a cache.
*/
-ThreadData *sqlite3WinThreadSpecificData(int allocateFlag){
- static int key;
- static int keyInit = 0;
- static const ThreadData zeroData = {0};
- ThreadData *pTsd;
+SQLITE_PRIVATE void sqlite3PcacheClose(PCache *pCache){
+ if( pCache->pCache ){
+ sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
+ }
+}
- if( !keyInit ){
- sqlite3OsEnterMutex();
- if( !keyInit ){
- key = TlsAlloc();
- if( key==0xffffffff ){
- sqlite3OsLeaveMutex();
- return 0;
+/*
+** Discard the contents of the cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClear(PCache *pCache){
+ sqlite3PcacheTruncate(pCache, 0);
+}
+
+/*
+** Merge two lists of pages connected by pDirty and in pgno order.
+** Do not both fixing the pDirtyPrev pointers.
+*/
+static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
+ PgHdr result, *pTail;
+ pTail = &result;
+ while( pA && pB ){
+ if( pA->pgno<pB->pgno ){
+ pTail->pDirty = pA;
+ pTail = pA;
+ pA = pA->pDirty;
+ }else{
+ pTail->pDirty = pB;
+ pTail = pB;
+ pB = pB->pDirty;
+ }
+ }
+ if( pA ){
+ pTail->pDirty = pA;
+ }else if( pB ){
+ pTail->pDirty = pB;
+ }else{
+ pTail->pDirty = 0;
+ }
+ return result.pDirty;
+}
+
+/*
+** Sort the list of pages in accending order by pgno. Pages are
+** connected by pDirty pointers. The pDirtyPrev pointers are
+** corrupted by this sort.
+**
+** Since there cannot be more than 2^31 distinct pages in a database,
+** there cannot be more than 31 buckets required by the merge sorter.
+** One extra bucket is added to catch overflow in case something
+** ever changes to make the previous sentence incorrect.
+*/
+#define N_SORT_BUCKET 32
+static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
+ PgHdr *a[N_SORT_BUCKET], *p;
+ int i;
+ memset(a, 0, sizeof(a));
+ while( pIn ){
+ p = pIn;
+ pIn = p->pDirty;
+ p->pDirty = 0;
+ for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
+ if( a[i]==0 ){
+ a[i] = p;
+ break;
+ }else{
+ p = pcacheMergeDirtyList(a[i], p);
+ a[i] = 0;
+ }
+ }
+ if( NEVER(i==N_SORT_BUCKET-1) ){
+ /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
+ ** the input list. But that is impossible.
+ */
+ a[i] = pcacheMergeDirtyList(a[i], p);
+ }
+ }
+ p = a[0];
+ for(i=1; i<N_SORT_BUCKET; i++){
+ p = pcacheMergeDirtyList(p, a[i]);
+ }
+ return p;
+}
+
+/*
+** Return a list of all dirty pages in the cache, sorted by page number.
+*/
+SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
+ PgHdr *p;
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ p->pDirty = p->pDirtyNext;
+ }
+ return pcacheSortDirtyList(pCache->pDirty);
+}
+
+/*
+** Return the total number of referenced pages held by the cache.
+*/
+SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache *pCache){
+ return pCache->nRef;
+}
+
+/*
+** Return the number of references to the page supplied as an argument.
+*/
+SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr *p){
+ return p->nRef;
+}
+
+/*
+** Return the total number of pages in the cache.
+*/
+SQLITE_PRIVATE int sqlite3PcachePagecount(PCache *pCache){
+ int nPage = 0;
+ if( pCache->pCache ){
+ nPage = sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache);
+ }
+ return nPage;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Get the suggested cache-size value.
+*/
+SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *pCache){
+ return pCache->nMax;
+}
+#endif
+
+/*
+** Set the suggested cache-size value.
+*/
+SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
+ pCache->nMax = mxPage;
+ if( pCache->pCache ){
+ sqlite3GlobalConfig.pcache.xCachesize(pCache->pCache, mxPage);
+ }
+}
+
+#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
+/*
+** For all dirty pages currently in the cache, invoke the specified
+** callback. This is only used if the SQLITE_CHECK_PAGES macro is
+** defined.
+*/
+SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
+ PgHdr *pDirty;
+ for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
+ xIter(pDirty);
+ }
+}
+#endif
+
+/************** End of pcache.c **********************************************/
+/************** Begin file pcache1.c *****************************************/
+/*
+** 2008 November 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements the default page cache implementation (the
+** sqlite3_pcache interface). It also contains part of the implementation
+** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
+** If the default page cache implementation is overriden, then neither of
+** these two features are available.
+**
+** @(#) $Id: pcache1.c,v 1.19 2009/07/17 11:44:07 drh Exp $
+*/
+
+
+typedef struct PCache1 PCache1;
+typedef struct PgHdr1 PgHdr1;
+typedef struct PgFreeslot PgFreeslot;
+
+/* Pointers to structures of this type are cast and returned as
+** opaque sqlite3_pcache* handles
+*/
+struct PCache1 {
+ /* Cache configuration parameters. Page size (szPage) and the purgeable
+ ** flag (bPurgeable) are set when the cache is created. nMax may be
+ ** modified at any time by a call to the pcache1CacheSize() method.
+ ** The global mutex must be held when accessing nMax.
+ */
+ int szPage; /* Size of allocated pages in bytes */
+ int bPurgeable; /* True if cache is purgeable */
+ unsigned int nMin; /* Minimum number of pages reserved */
+ unsigned int nMax; /* Configured "cache_size" value */
+
+ /* Hash table of all pages. The following variables may only be accessed
+ ** when the accessor is holding the global mutex (see pcache1EnterMutex()
+ ** and pcache1LeaveMutex()).
+ */
+ unsigned int nRecyclable; /* Number of pages in the LRU list */
+ unsigned int nPage; /* Total number of pages in apHash */
+ unsigned int nHash; /* Number of slots in apHash[] */
+ PgHdr1 **apHash; /* Hash table for fast lookup by key */
+
+ unsigned int iMaxKey; /* Largest key seen since xTruncate() */
+};
+
+/*
+** Each cache entry is represented by an instance of the following
+** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
+** directly before this structure in memory (see the PGHDR1_TO_PAGE()
+** macro below).
+*/
+struct PgHdr1 {
+ unsigned int iKey; /* Key value (page number) */
+ PgHdr1 *pNext; /* Next in hash table chain */
+ PCache1 *pCache; /* Cache that currently owns this page */
+ PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
+ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
+};
+
+/*
+** Free slots in the allocator used to divide up the buffer provided using
+** the SQLITE_CONFIG_PAGECACHE mechanism.
+*/
+struct PgFreeslot {
+ PgFreeslot *pNext; /* Next free slot */
+};
+
+/*
+** Global data used by this cache.
+*/
+static SQLITE_WSD struct PCacheGlobal {
+ sqlite3_mutex *mutex; /* static mutex MUTEX_STATIC_LRU */
+
+ int nMaxPage; /* Sum of nMaxPage for purgeable caches */
+ int nMinPage; /* Sum of nMinPage for purgeable caches */
+ int nCurrentPage; /* Number of purgeable pages allocated */
+ PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
+
+ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. */
+ int szSlot; /* Size of each free slot */
+ void *pStart, *pEnd; /* Bounds of pagecache malloc range */
+ PgFreeslot *pFree; /* Free page blocks */
+ int isInit; /* True if initialized */
+} pcache1_g;
+
+/*
+** All code in this file should access the global structure above via the
+** alias "pcache1". This ensures that the WSD emulation is used when
+** compiling for systems that do not support real WSD.
+*/
+#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
+
+/*
+** When a PgHdr1 structure is allocated, the associated PCache1.szPage
+** bytes of data are located directly before it in memory (i.e. the total
+** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The
+** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as
+** an argument and returns a pointer to the associated block of szPage
+** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is
+** a pointer to a block of szPage bytes of data and the return value is
+** a pointer to the associated PgHdr1 structure.
+**
+** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X );
+*/
+#define PGHDR1_TO_PAGE(p) (void*)(((char*)p) - p->pCache->szPage)
+#define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage)
+
+/*
+** Macros to enter and leave the global LRU mutex.
+*/
+#define pcache1EnterMutex() sqlite3_mutex_enter(pcache1.mutex)
+#define pcache1LeaveMutex() sqlite3_mutex_leave(pcache1.mutex)
+
+/******************************************************************************/
+/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
+
+/*
+** This function is called during initialization if a static buffer is
+** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
+** verb to sqlite3_config(). Parameter pBuf points to an allocation large
+** enough to contain 'n' buffers of 'sz' bytes each.
+*/
+SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
+ if( pcache1.isInit ){
+ PgFreeslot *p;
+ sz = ROUNDDOWN8(sz);
+ pcache1.szSlot = sz;
+ pcache1.pStart = pBuf;
+ pcache1.pFree = 0;
+ while( n-- ){
+ p = (PgFreeslot*)pBuf;
+ p->pNext = pcache1.pFree;
+ pcache1.pFree = p;
+ pBuf = (void*)&((char*)pBuf)[sz];
+ }
+ pcache1.pEnd = pBuf;
+ }
+}
+
+/*
+** Malloc function used within this file to allocate space from the buffer
+** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
+** such buffer exists or there is no space left in it, this function falls
+** back to sqlite3Malloc().
+*/
+static void *pcache1Alloc(int nByte){
+ void *p;
+ assert( sqlite3_mutex_held(pcache1.mutex) );
+ if( nByte<=pcache1.szSlot && pcache1.pFree ){
+ assert( pcache1.isInit );
+ p = (PgHdr1 *)pcache1.pFree;
+ pcache1.pFree = pcache1.pFree->pNext;
+ sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
+ }else{
+
+ /* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the
+ ** global pcache mutex and unlock the pager-cache object pCache. This is
+ ** so that if the attempt to allocate a new buffer causes the the
+ ** configured soft-heap-limit to be breached, it will be possible to
+ ** reclaim memory from this pager-cache.
+ */
+ pcache1LeaveMutex();
+ p = sqlite3Malloc(nByte);
+ pcache1EnterMutex();
+ if( p ){
+ int sz = sqlite3MallocSize(p);
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
+ }
+ }
+ return p;
+}
+
+/*
+** Free an allocated buffer obtained from pcache1Alloc().
+*/
+static void pcache1Free(void *p){
+ assert( sqlite3_mutex_held(pcache1.mutex) );
+ if( p==0 ) return;
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){
+ PgFreeslot *pSlot;
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
+ pSlot = (PgFreeslot*)p;
+ pSlot->pNext = pcache1.pFree;
+ pcache1.pFree = pSlot;
+ }else{
+ int iSize = sqlite3MallocSize(p);
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Allocate a new page object initially associated with cache pCache.
+*/
+static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
+ int nByte = sizeof(PgHdr1) + pCache->szPage;
+ void *pPg = pcache1Alloc(nByte);
+ PgHdr1 *p;
+ if( pPg ){
+ p = PAGE_TO_PGHDR1(pCache, pPg);
+ if( pCache->bPurgeable ){
+ pcache1.nCurrentPage++;
+ }
+ }else{
+ p = 0;
+ }
+ return p;
+}
+
+/*
+** Free a page object allocated by pcache1AllocPage().
+**
+** The pointer is allowed to be NULL, which is prudent. But it turns out
+** that the current implementation happens to never call this routine
+** with a NULL pointer, so we mark the NULL test with ALWAYS().
+*/
+static void pcache1FreePage(PgHdr1 *p){
+ if( ALWAYS(p) ){
+ if( p->pCache->bPurgeable ){
+ pcache1.nCurrentPage--;
+ }
+ pcache1Free(PGHDR1_TO_PAGE(p));
+ }
+}
+
+/*
+** Malloc function used by SQLite to obtain space from the buffer configured
+** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
+** exists, this function falls back to sqlite3Malloc().
+*/
+SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){
+ void *p;
+ pcache1EnterMutex();
+ p = pcache1Alloc(sz);
+ pcache1LeaveMutex();
+ return p;
+}
+
+/*
+** Free an allocated buffer obtained from sqlite3PageMalloc().
+*/
+SQLITE_PRIVATE void sqlite3PageFree(void *p){
+ pcache1EnterMutex();
+ pcache1Free(p);
+ pcache1LeaveMutex();
+}
+
+/******************************************************************************/
+/******** General Implementation Functions ************************************/
+
+/*
+** This function is used to resize the hash table used by the cache passed
+** as the first argument.
+**
+** The global mutex must be held when this function is called.
+*/
+static int pcache1ResizeHash(PCache1 *p){
+ PgHdr1 **apNew;
+ unsigned int nNew;
+ unsigned int i;
+
+ assert( sqlite3_mutex_held(pcache1.mutex) );
+
+ nNew = p->nHash*2;
+ if( nNew<256 ){
+ nNew = 256;
+ }
+
+ pcache1LeaveMutex();
+ if( p->nHash ){ sqlite3BeginBenignMalloc(); }
+ apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
+ if( p->nHash ){ sqlite3EndBenignMalloc(); }
+ pcache1EnterMutex();
+ if( apNew ){
+ memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
+ for(i=0; i<p->nHash; i++){
+ PgHdr1 *pPage;
+ PgHdr1 *pNext = p->apHash[i];
+ while( (pPage = pNext)!=0 ){
+ unsigned int h = pPage->iKey % nNew;
+ pNext = pPage->pNext;
+ pPage->pNext = apNew[h];
+ apNew[h] = pPage;
}
- keyInit = 1;
}
- sqlite3OsLeaveMutex();
+ sqlite3_free(p->apHash);
+ p->apHash = apNew;
+ p->nHash = nNew;
}
- pTsd = TlsGetValue(key);
- if( allocateFlag>0 ){
- if( !pTsd ){
- pTsd = sqlite3OsMalloc( sizeof(zeroData) );
- if( pTsd ){
- *pTsd = zeroData;
- TlsSetValue(key, pTsd);
- TSD_COUNTER_INCR;
+
+ return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
+}
+
+/*
+** This function is used internally to remove the page pPage from the
+** global LRU list, if is part of it. If pPage is not part of the global
+** LRU list, then this function is a no-op.
+**
+** The global mutex must be held when this function is called.
+*/
+static void pcache1PinPage(PgHdr1 *pPage){
+ assert( sqlite3_mutex_held(pcache1.mutex) );
+ if( pPage && (pPage->pLruNext || pPage==pcache1.pLruTail) ){
+ if( pPage->pLruPrev ){
+ pPage->pLruPrev->pLruNext = pPage->pLruNext;
+ }
+ if( pPage->pLruNext ){
+ pPage->pLruNext->pLruPrev = pPage->pLruPrev;
+ }
+ if( pcache1.pLruHead==pPage ){
+ pcache1.pLruHead = pPage->pLruNext;
+ }
+ if( pcache1.pLruTail==pPage ){
+ pcache1.pLruTail = pPage->pLruPrev;
+ }
+ pPage->pLruNext = 0;
+ pPage->pLruPrev = 0;
+ pPage->pCache->nRecyclable--;
+ }
+}
+
+
+/*
+** Remove the page supplied as an argument from the hash table
+** (PCache1.apHash structure) that it is currently stored in.
+**
+** The global mutex must be held when this function is called.
+*/
+static void pcache1RemoveFromHash(PgHdr1 *pPage){
+ unsigned int h;
+ PCache1 *pCache = pPage->pCache;
+ PgHdr1 **pp;
+
+ h = pPage->iKey % pCache->nHash;
+ for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
+ *pp = (*pp)->pNext;
+
+ pCache->nPage--;
+}
+
+/*
+** If there are currently more than pcache.nMaxPage pages allocated, try
+** to recycle pages to reduce the number allocated to pcache.nMaxPage.
+*/
+static void pcache1EnforceMaxPage(void){
+ assert( sqlite3_mutex_held(pcache1.mutex) );
+ while( pcache1.nCurrentPage>pcache1.nMaxPage && pcache1.pLruTail ){
+ PgHdr1 *p = pcache1.pLruTail;
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p);
+ pcache1FreePage(p);
+ }
+}
+
+/*
+** Discard all pages from cache pCache with a page number (key value)
+** greater than or equal to iLimit. Any pinned pages that meet this
+** criteria are unpinned before they are discarded.
+**
+** The global mutex must be held when this function is called.
+*/
+static void pcache1TruncateUnsafe(
+ PCache1 *pCache,
+ unsigned int iLimit
+){
+ TESTONLY( unsigned int nPage = 0; ) /* Used to assert pCache->nPage is correct */
+ unsigned int h;
+ assert( sqlite3_mutex_held(pcache1.mutex) );
+ for(h=0; h<pCache->nHash; h++){
+ PgHdr1 **pp = &pCache->apHash[h];
+ PgHdr1 *pPage;
+ while( (pPage = *pp)!=0 ){
+ if( pPage->iKey>=iLimit ){
+ pCache->nPage--;
+ *pp = pPage->pNext;
+ pcache1PinPage(pPage);
+ pcache1FreePage(pPage);
+ }else{
+ pp = &pPage->pNext;
+ TESTONLY( nPage++; )
}
}
- }else if( pTsd!=0 && allocateFlag<0
- && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){
- sqlite3OsFree(pTsd);
- TlsSetValue(key, 0);
- TSD_COUNTER_DECR;
- pTsd = 0;
}
- return pTsd;
+ assert( pCache->nPage==nPage );
}
-#endif /* OS_WIN */
-/************** End of os_win.c **********************************************/
+/******************************************************************************/
+/******** sqlite3_pcache Methods **********************************************/
+
+/*
+** Implementation of the sqlite3_pcache.xInit method.
+*/
+static int pcache1Init(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit==0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
+ }
+ pcache1.isInit = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShutdown method.
+** Note that the static mutex allocated in xInit does
+** not need to be freed.
+*/
+static void pcache1Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit!=0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+}
+
+/*
+** Implementation of the sqlite3_pcache.xCreate method.
+**
+** Allocate a new cache.
+*/
+static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
+ PCache1 *pCache;
+
+ pCache = (PCache1 *)sqlite3_malloc(sizeof(PCache1));
+ if( pCache ){
+ memset(pCache, 0, sizeof(PCache1));
+ pCache->szPage = szPage;
+ pCache->bPurgeable = (bPurgeable ? 1 : 0);
+ if( bPurgeable ){
+ pCache->nMin = 10;
+ pcache1EnterMutex();
+ pcache1.nMinPage += pCache->nMin;
+ pcache1LeaveMutex();
+ }
+ }
+ return (sqlite3_pcache *)pCache;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xCachesize method.
+**
+** Configure the cache_size limit for a cache.
+*/
+static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
+ PCache1 *pCache = (PCache1 *)p;
+ if( pCache->bPurgeable ){
+ pcache1EnterMutex();
+ pcache1.nMaxPage += (nMax - pCache->nMax);
+ pCache->nMax = nMax;
+ pcache1EnforceMaxPage();
+ pcache1LeaveMutex();
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xPagecount method.
+*/
+static int pcache1Pagecount(sqlite3_pcache *p){
+ int n;
+ pcache1EnterMutex();
+ n = ((PCache1 *)p)->nPage;
+ pcache1LeaveMutex();
+ return n;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xFetch method.
+**
+** Fetch a page by key value.
+**
+** Whether or not a new page may be allocated by this function depends on
+** the value of the createFlag argument. 0 means do not allocate a new
+** page. 1 means allocate a new page if space is easily available. 2
+** means to try really hard to allocate a new page.
+**
+** For a non-purgeable cache (a cache used as the storage for an in-memory
+** database) there is really no difference between createFlag 1 and 2. So
+** the calling function (pcache.c) will never have a createFlag of 1 on
+** a non-purgable cache.
+**
+** There are three different approaches to obtaining space for a page,
+** depending on the value of parameter createFlag (which may be 0, 1 or 2).
+**
+** 1. Regardless of the value of createFlag, the cache is searched for a
+** copy of the requested page. If one is found, it is returned.
+**
+** 2. If createFlag==0 and the page is not already in the cache, NULL is
+** returned.
+**
+** 3. If createFlag is 1, and the page is not already in the cache,
+** and if either of the following are true, return NULL:
+**
+** (a) the number of pages pinned by the cache is greater than
+** PCache1.nMax, or
+** (b) the number of pages pinned by the cache is greater than
+** the sum of nMax for all purgeable caches, less the sum of
+** nMin for all other purgeable caches.
+**
+** 4. If none of the first three conditions apply and the cache is marked
+** as purgeable, and if one of the following is true:
+**
+** (a) The number of pages allocated for the cache is already
+** PCache1.nMax, or
+**
+** (b) The number of pages allocated for all purgeable caches is
+** already equal to or greater than the sum of nMax for all
+** purgeable caches,
+**
+** then attempt to recycle a page from the LRU list. If it is the right
+** size, return the recycled buffer. Otherwise, free the buffer and
+** proceed to step 5.
+**
+** 5. Otherwise, allocate and return a new page buffer.
+*/
+static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
+ unsigned int nPinned;
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = 0;
+
+ assert( pCache->bPurgeable || createFlag!=1 );
+ pcache1EnterMutex();
+ if( createFlag==1 ) sqlite3BeginBenignMalloc();
+
+ /* Search the hash table for an existing entry. */
+ if( pCache->nHash>0 ){
+ unsigned int h = iKey % pCache->nHash;
+ for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
+ }
+
+ if( pPage || createFlag==0 ){
+ pcache1PinPage(pPage);
+ goto fetch_out;
+ }
+
+ /* Step 3 of header comment. */
+ nPinned = pCache->nPage - pCache->nRecyclable;
+ if( createFlag==1 && (
+ nPinned>=(pcache1.nMaxPage+pCache->nMin-pcache1.nMinPage)
+ || nPinned>=(pCache->nMax * 9 / 10)
+ )){
+ goto fetch_out;
+ }
+
+ if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
+ goto fetch_out;
+ }
+
+ /* Step 4. Try to recycle a page buffer if appropriate. */
+ if( pCache->bPurgeable && pcache1.pLruTail && (
+ (pCache->nPage+1>=pCache->nMax) || pcache1.nCurrentPage>=pcache1.nMaxPage
+ )){
+ pPage = pcache1.pLruTail;
+ pcache1RemoveFromHash(pPage);
+ pcache1PinPage(pPage);
+ if( pPage->pCache->szPage!=pCache->szPage ){
+ pcache1FreePage(pPage);
+ pPage = 0;
+ }else{
+ pcache1.nCurrentPage -= (pPage->pCache->bPurgeable - pCache->bPurgeable);
+ }
+ }
+
+ /* Step 5. If a usable page buffer has still not been found,
+ ** attempt to allocate a new one.
+ */
+ if( !pPage ){
+ pPage = pcache1AllocPage(pCache);
+ }
+
+ if( pPage ){
+ unsigned int h = iKey % pCache->nHash;
+ pCache->nPage++;
+ pPage->iKey = iKey;
+ pPage->pNext = pCache->apHash[h];
+ pPage->pCache = pCache;
+ pPage->pLruPrev = 0;
+ pPage->pLruNext = 0;
+ *(void **)(PGHDR1_TO_PAGE(pPage)) = 0;
+ pCache->apHash[h] = pPage;
+ }
+
+fetch_out:
+ if( pPage && iKey>pCache->iMaxKey ){
+ pCache->iMaxKey = iKey;
+ }
+ if( createFlag==1 ) sqlite3EndBenignMalloc();
+ pcache1LeaveMutex();
+ return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
+}
+
+
+/*
+** Implementation of the sqlite3_pcache.xUnpin method.
+**
+** Mark a page as unpinned (eligible for asynchronous recycling).
+*/
+static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
+
+ assert( pPage->pCache==pCache );
+ pcache1EnterMutex();
+
+ /* It is an error to call this function if the page is already
+ ** part of the global LRU list.
+ */
+ assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
+ assert( pcache1.pLruHead!=pPage && pcache1.pLruTail!=pPage );
+
+ if( reuseUnlikely || pcache1.nCurrentPage>pcache1.nMaxPage ){
+ pcache1RemoveFromHash(pPage);
+ pcache1FreePage(pPage);
+ }else{
+ /* Add the page to the global LRU list. Normally, the page is added to
+ ** the head of the list (last page to be recycled). However, if the
+ ** reuseUnlikely flag passed to this function is true, the page is added
+ ** to the tail of the list (first page to be recycled).
+ */
+ if( pcache1.pLruHead ){
+ pcache1.pLruHead->pLruPrev = pPage;
+ pPage->pLruNext = pcache1.pLruHead;
+ pcache1.pLruHead = pPage;
+ }else{
+ pcache1.pLruTail = pPage;
+ pcache1.pLruHead = pPage;
+ }
+ pCache->nRecyclable++;
+ }
+
+ pcache1LeaveMutex();
+}
+
+/*
+** Implementation of the sqlite3_pcache.xRekey method.
+*/
+static void pcache1Rekey(
+ sqlite3_pcache *p,
+ void *pPg,
+ unsigned int iOld,
+ unsigned int iNew
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
+ PgHdr1 **pp;
+ unsigned int h;
+ assert( pPage->iKey==iOld );
+ assert( pPage->pCache==pCache );
+
+ pcache1EnterMutex();
+
+ h = iOld%pCache->nHash;
+ pp = &pCache->apHash[h];
+ while( (*pp)!=pPage ){
+ pp = &(*pp)->pNext;
+ }
+ *pp = pPage->pNext;
+
+ h = iNew%pCache->nHash;
+ pPage->iKey = iNew;
+ pPage->pNext = pCache->apHash[h];
+ pCache->apHash[h] = pPage;
+
+ /* The xRekey() interface is only used to move pages earlier in the
+ ** database file (in order to move all free pages to the end of the
+ ** file where they can be truncated off.) Hence, it is not possible
+ ** for the new page number to be greater than the largest previously
+ ** fetched page. But we retain the following test in case xRekey()
+ ** begins to be used in different ways in the future.
+ */
+ if( NEVER(iNew>pCache->iMaxKey) ){
+ pCache->iMaxKey = iNew;
+ }
+
+ pcache1LeaveMutex();
+}
+
+/*
+** Implementation of the sqlite3_pcache.xTruncate method.
+**
+** Discard all unpinned pages in the cache with a page number equal to
+** or greater than parameter iLimit. Any pinned pages with a page number
+** equal to or greater than iLimit are implicitly unpinned.
+*/
+static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
+ PCache1 *pCache = (PCache1 *)p;
+ pcache1EnterMutex();
+ if( iLimit<=pCache->iMaxKey ){
+ pcache1TruncateUnsafe(pCache, iLimit);
+ pCache->iMaxKey = iLimit-1;
+ }
+ pcache1LeaveMutex();
+}
+
+/*
+** Implementation of the sqlite3_pcache.xDestroy method.
+**
+** Destroy a cache allocated using pcache1Create().
+*/
+static void pcache1Destroy(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1 *)p;
+ pcache1EnterMutex();
+ pcache1TruncateUnsafe(pCache, 0);
+ pcache1.nMaxPage -= pCache->nMax;
+ pcache1.nMinPage -= pCache->nMin;
+ pcache1EnforceMaxPage();
+ pcache1LeaveMutex();
+ sqlite3_free(pCache->apHash);
+ sqlite3_free(pCache);
+}
+
+/*
+** This function is called during initialization (sqlite3_initialize()) to
+** install the default pluggable cache module, assuming the user has not
+** already provided an alternative.
+*/
+SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){
+ static sqlite3_pcache_methods defaultMethods = {
+ 0, /* pArg */
+ pcache1Init, /* xInit */
+ pcache1Shutdown, /* xShutdown */
+ pcache1Create, /* xCreate */
+ pcache1Cachesize, /* xCachesize */
+ pcache1Pagecount, /* xPagecount */
+ pcache1Fetch, /* xFetch */
+ pcache1Unpin, /* xUnpin */
+ pcache1Rekey, /* xRekey */
+ pcache1Truncate, /* xTruncate */
+ pcache1Destroy /* xDestroy */
+ };
+ sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods);
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** This function is called to free superfluous dynamically allocated memory
+** held by the pager system. Memory in use by any SQLite pager allocated
+** by the current thread may be sqlite3_free()ed.
+**
+** nReq is the number of bytes of memory required. Once this much has
+** been released, the function returns. The return value is the total number
+** of bytes of memory released.
+*/
+SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){
+ int nFree = 0;
+ if( pcache1.pStart==0 ){
+ PgHdr1 *p;
+ pcache1EnterMutex();
+ while( (nReq<0 || nFree<nReq) && (p=pcache1.pLruTail) ){
+ nFree += sqlite3MallocSize(PGHDR1_TO_PAGE(p));
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p);
+ pcache1FreePage(p);
+ }
+ pcache1LeaveMutex();
+ }
+ return nFree;
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+#ifdef SQLITE_TEST
+/*
+** This function is used by test procedures to inspect the internal state
+** of the global cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheStats(
+ int *pnCurrent, /* OUT: Total number of pages cached */
+ int *pnMax, /* OUT: Global maximum cache size */
+ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
+ int *pnRecyclable /* OUT: Total number of pages available for recycling */
+){
+ PgHdr1 *p;
+ int nRecyclable = 0;
+ for(p=pcache1.pLruHead; p; p=p->pLruNext){
+ nRecyclable++;
+ }
+ *pnCurrent = pcache1.nCurrentPage;
+ *pnMax = pcache1.nMaxPage;
+ *pnMin = pcache1.nMinPage;
+ *pnRecyclable = nRecyclable;
+}
+#endif
+
+/************** End of pcache1.c *********************************************/
+/************** Begin file rowset.c ******************************************/
+/*
+** 2008 December 3
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This module implements an object we call a "RowSet".
+**
+** The RowSet object is a collection of rowids. Rowids
+** are inserted into the RowSet in an arbitrary order. Inserts
+** can be intermixed with tests to see if a given rowid has been
+** previously inserted into the RowSet.
+**
+** After all inserts are finished, it is possible to extract the
+** elements of the RowSet in sorted order. Once this extraction
+** process has started, no new elements may be inserted.
+**
+** Hence, the primitive operations for a RowSet are:
+**
+** CREATE
+** INSERT
+** TEST
+** SMALLEST
+** DESTROY
+**
+** The CREATE and DESTROY primitives are the constructor and destructor,
+** obviously. The INSERT primitive adds a new element to the RowSet.
+** TEST checks to see if an element is already in the RowSet. SMALLEST
+** extracts the least value from the RowSet.
+**
+** The INSERT primitive might allocate additional memory. Memory is
+** allocated in chunks so most INSERTs do no allocation. There is an
+** upper bound on the size of allocated memory. No memory is freed
+** until DESTROY.
+**
+** The TEST primitive includes a "batch" number. The TEST primitive
+** will only see elements that were inserted before the last change
+** in the batch number. In other words, if an INSERT occurs between
+** two TESTs where the TESTs have the same batch nubmer, then the
+** value added by the INSERT will not be visible to the second TEST.
+** The initial batch number is zero, so if the very first TEST contains
+** a non-zero batch number, it will see all prior INSERTs.
+**
+** No INSERTs may occurs after a SMALLEST. An assertion will fail if
+** that is attempted.
+**
+** The cost of an INSERT is roughly constant. (Sometime new memory
+** has to be allocated on an INSERT.) The cost of a TEST with a new
+** batch number is O(NlogN) where N is the number of elements in the RowSet.
+** The cost of a TEST using the same batch number is O(logN). The cost
+** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
+** primitives are constant time. The cost of DESTROY is O(N).
+**
+** There is an added cost of O(N) when switching between TEST and
+** SMALLEST primitives.
+**
+** $Id: rowset.c,v 1.7 2009/05/22 01:00:13 drh Exp $
+*/
+
+
+/*
+** Target size for allocation chunks.
+*/
+#define ROWSET_ALLOCATION_SIZE 1024
+
+/*
+** The number of rowset entries per allocation chunk.
+*/
+#define ROWSET_ENTRY_PER_CHUNK \
+ ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
+
+/*
+** Each entry in a RowSet is an instance of the following object.
+*/
+struct RowSetEntry {
+ i64 v; /* ROWID value for this entry */
+ struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
+ struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
+};
+
+/*
+** RowSetEntry objects are allocated in large chunks (instances of the
+** following structure) to reduce memory allocation overhead. The
+** chunks are kept on a linked list so that they can be deallocated
+** when the RowSet is destroyed.
+*/
+struct RowSetChunk {
+ struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
+ struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
+};
+
+/*
+** A RowSet in an instance of the following structure.
+**
+** A typedef of this structure if found in sqliteInt.h.
+*/
+struct RowSet {
+ struct RowSetChunk *pChunk; /* List of all chunk allocations */
+ sqlite3 *db; /* The database connection */
+ struct RowSetEntry *pEntry; /* List of entries using pRight */
+ struct RowSetEntry *pLast; /* Last entry on the pEntry list */
+ struct RowSetEntry *pFresh; /* Source of new entry objects */
+ struct RowSetEntry *pTree; /* Binary tree of entries */
+ u16 nFresh; /* Number of objects on pFresh */
+ u8 isSorted; /* True if pEntry is sorted */
+ u8 iBatch; /* Current insert batch */
+};
+
+/*
+** Turn bulk memory into a RowSet object. N bytes of memory
+** are available at pSpace. The db pointer is used as a memory context
+** for any subsequent allocations that need to occur.
+** Return a pointer to the new RowSet object.
+**
+** It must be the case that N is sufficient to make a Rowset. If not
+** an assertion fault occurs.
+**
+** If N is larger than the minimum, use the surplus as an initial
+** allocation of entries available to be filled.
+*/
+SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
+ RowSet *p;
+ assert( N >= ROUND8(sizeof(*p)) );
+ p = pSpace;
+ p->pChunk = 0;
+ p->db = db;
+ p->pEntry = 0;
+ p->pLast = 0;
+ p->pTree = 0;
+ p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
+ p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
+ p->isSorted = 1;
+ p->iBatch = 0;
+ return p;
+}
+
+/*
+** Deallocate all chunks from a RowSet. This frees all memory that
+** the RowSet has allocated over its lifetime. This routine is
+** the destructor for the RowSet.
+*/
+SQLITE_PRIVATE void sqlite3RowSetClear(RowSet *p){
+ struct RowSetChunk *pChunk, *pNextChunk;
+ for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
+ pNextChunk = pChunk->pNextChunk;
+ sqlite3DbFree(p->db, pChunk);
+ }
+ p->pChunk = 0;
+ p->nFresh = 0;
+ p->pEntry = 0;
+ p->pLast = 0;
+ p->pTree = 0;
+ p->isSorted = 1;
+}
+
+/*
+** Insert a new value into a RowSet.
+**
+** The mallocFailed flag of the database connection is set if a
+** memory allocation fails.
+*/
+SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){
+ struct RowSetEntry *pEntry; /* The new entry */
+ struct RowSetEntry *pLast; /* The last prior entry */
+ assert( p!=0 );
+ if( p->nFresh==0 ){
+ struct RowSetChunk *pNew;
+ pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
+ if( pNew==0 ){
+ return;
+ }
+ pNew->pNextChunk = p->pChunk;
+ p->pChunk = pNew;
+ p->pFresh = pNew->aEntry;
+ p->nFresh = ROWSET_ENTRY_PER_CHUNK;
+ }
+ pEntry = p->pFresh++;
+ p->nFresh--;
+ pEntry->v = rowid;
+ pEntry->pRight = 0;
+ pLast = p->pLast;
+ if( pLast ){
+ if( p->isSorted && rowid<=pLast->v ){
+ p->isSorted = 0;
+ }
+ pLast->pRight = pEntry;
+ }else{
+ assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
+ p->pEntry = pEntry;
+ }
+ p->pLast = pEntry;
+}
+
+/*
+** Merge two lists of RowSetEntry objects. Remove duplicates.
+**
+** The input lists are connected via pRight pointers and are
+** assumed to each already be in sorted order.
+*/
+static struct RowSetEntry *rowSetMerge(
+ struct RowSetEntry *pA, /* First sorted list to be merged */
+ struct RowSetEntry *pB /* Second sorted list to be merged */
+){
+ struct RowSetEntry head;
+ struct RowSetEntry *pTail;
+
+ pTail = &head;
+ while( pA && pB ){
+ assert( pA->pRight==0 || pA->v<=pA->pRight->v );
+ assert( pB->pRight==0 || pB->v<=pB->pRight->v );
+ if( pA->v<pB->v ){
+ pTail->pRight = pA;
+ pA = pA->pRight;
+ pTail = pTail->pRight;
+ }else if( pB->v<pA->v ){
+ pTail->pRight = pB;
+ pB = pB->pRight;
+ pTail = pTail->pRight;
+ }else{
+ pA = pA->pRight;
+ }
+ }
+ if( pA ){
+ assert( pA->pRight==0 || pA->v<=pA->pRight->v );
+ pTail->pRight = pA;
+ }else{
+ assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
+ pTail->pRight = pB;
+ }
+ return head.pRight;
+}
+
+/*
+** Sort all elements on the pEntry list of the RowSet into ascending order.
+*/
+static void rowSetSort(RowSet *p){
+ unsigned int i;
+ struct RowSetEntry *pEntry;
+ struct RowSetEntry *aBucket[40];
+
+ assert( p->isSorted==0 );
+ memset(aBucket, 0, sizeof(aBucket));
+ while( p->pEntry ){
+ pEntry = p->pEntry;
+ p->pEntry = pEntry->pRight;
+ pEntry->pRight = 0;
+ for(i=0; aBucket[i]; i++){
+ pEntry = rowSetMerge(aBucket[i], pEntry);
+ aBucket[i] = 0;
+ }
+ aBucket[i] = pEntry;
+ }
+ pEntry = 0;
+ for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
+ pEntry = rowSetMerge(pEntry, aBucket[i]);
+ }
+ p->pEntry = pEntry;
+ p->pLast = 0;
+ p->isSorted = 1;
+}
+
+
+/*
+** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
+** Convert this tree into a linked list connected by the pRight pointers
+** and return pointers to the first and last elements of the new list.
+*/
+static void rowSetTreeToList(
+ struct RowSetEntry *pIn, /* Root of the input tree */
+ struct RowSetEntry **ppFirst, /* Write head of the output list here */
+ struct RowSetEntry **ppLast /* Write tail of the output list here */
+){
+ assert( pIn!=0 );
+ if( pIn->pLeft ){
+ struct RowSetEntry *p;
+ rowSetTreeToList(pIn->pLeft, ppFirst, &p);
+ p->pRight = pIn;
+ }else{
+ *ppFirst = pIn;
+ }
+ if( pIn->pRight ){
+ rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
+ }else{
+ *ppLast = pIn;
+ }
+ assert( (*ppLast)->pRight==0 );
+}
+
+
+/*
+** Convert a sorted list of elements (connected by pRight) into a binary
+** tree with depth of iDepth. A depth of 1 means the tree contains a single
+** node taken from the head of *ppList. A depth of 2 means a tree with
+** three nodes. And so forth.
+**
+** Use as many entries from the input list as required and update the
+** *ppList to point to the unused elements of the list. If the input
+** list contains too few elements, then construct an incomplete tree
+** and leave *ppList set to NULL.
+**
+** Return a pointer to the root of the constructed binary tree.
+*/
+static struct RowSetEntry *rowSetNDeepTree(
+ struct RowSetEntry **ppList,
+ int iDepth
+){
+ struct RowSetEntry *p; /* Root of the new tree */
+ struct RowSetEntry *pLeft; /* Left subtree */
+ if( *ppList==0 ){
+ return 0;
+ }
+ if( iDepth==1 ){
+ p = *ppList;
+ *ppList = p->pRight;
+ p->pLeft = p->pRight = 0;
+ return p;
+ }
+ pLeft = rowSetNDeepTree(ppList, iDepth-1);
+ p = *ppList;
+ if( p==0 ){
+ return pLeft;
+ }
+ p->pLeft = pLeft;
+ *ppList = p->pRight;
+ p->pRight = rowSetNDeepTree(ppList, iDepth-1);
+ return p;
+}
+
+/*
+** Convert a sorted list of elements into a binary tree. Make the tree
+** as deep as it needs to be in order to contain the entire list.
+*/
+static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
+ int iDepth; /* Depth of the tree so far */
+ struct RowSetEntry *p; /* Current tree root */
+ struct RowSetEntry *pLeft; /* Left subtree */
+
+ assert( pList!=0 );
+ p = pList;
+ pList = p->pRight;
+ p->pLeft = p->pRight = 0;
+ for(iDepth=1; pList; iDepth++){
+ pLeft = p;
+ p = pList;
+ pList = p->pRight;
+ p->pLeft = pLeft;
+ p->pRight = rowSetNDeepTree(&pList, iDepth);
+ }
+ return p;
+}
+
+/*
+** Convert the list in p->pEntry into a sorted list if it is not
+** sorted already. If there is a binary tree on p->pTree, then
+** convert it into a list too and merge it into the p->pEntry list.
+*/
+static void rowSetToList(RowSet *p){
+ if( !p->isSorted ){
+ rowSetSort(p);
+ }
+ if( p->pTree ){
+ struct RowSetEntry *pHead, *pTail;
+ rowSetTreeToList(p->pTree, &pHead, &pTail);
+ p->pTree = 0;
+ p->pEntry = rowSetMerge(p->pEntry, pHead);
+ }
+}
+
+/*
+** Extract the smallest element from the RowSet.
+** Write the element into *pRowid. Return 1 on success. Return
+** 0 if the RowSet is already empty.
+**
+** After this routine has been called, the sqlite3RowSetInsert()
+** routine may not be called again.
+*/
+SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
+ rowSetToList(p);
+ if( p->pEntry ){
+ *pRowid = p->pEntry->v;
+ p->pEntry = p->pEntry->pRight;
+ if( p->pEntry==0 ){
+ sqlite3RowSetClear(p);
+ }
+ return 1;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Check to see if element iRowid was inserted into the the rowset as
+** part of any insert batch prior to iBatch. Return 1 or 0.
+*/
+SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
+ struct RowSetEntry *p;
+ if( iBatch!=pRowSet->iBatch ){
+ if( pRowSet->pEntry ){
+ rowSetToList(pRowSet);
+ pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
+ pRowSet->pEntry = 0;
+ pRowSet->pLast = 0;
+ }
+ pRowSet->iBatch = iBatch;
+ }
+ p = pRowSet->pTree;
+ while( p ){
+ if( p->v<iRowid ){
+ p = p->pRight;
+ }else if( p->v>iRowid ){
+ p = p->pLeft;
+ }else{
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/************** End of rowset.c **********************************************/
/************** Begin file pager.c *******************************************/
/*
** 2001 September 15
@@ -16786,7 +31238,7 @@ ThreadData *sqlite3WinThreadSpecificData(int allocateFlag){
** file simultaneously, or one process from reading the database while
** another is writing.
**
-** @(#) $Id: pager.c,v 1.329 2007/04/16 15:02:19 drh Exp $
+** @(#) $Id: pager.c,v 1.629 2009/08/10 17:48:57 drh Exp $
*/
#ifndef SQLITE_OMIT_DISKIO
@@ -16794,27 +31246,20 @@ ThreadData *sqlite3WinThreadSpecificData(int allocateFlag){
** Macros for troubleshooting. Normally turned off
*/
#if 0
+int sqlite3PagerTrace=1; /* True to enable tracing */
#define sqlite3DebugPrintf printf
-#define PAGERTRACE1(X) sqlite3DebugPrintf(X)
-#define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y)
-#define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
-#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
-#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
+#define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; }
#else
-#define PAGERTRACE1(X)
-#define PAGERTRACE2(X,Y)
-#define PAGERTRACE3(X,Y,Z)
-#define PAGERTRACE4(X,Y,Z,W)
-#define PAGERTRACE5(X,Y,Z,W,V)
+#define PAGERTRACE(X)
#endif
/*
-** The following two macros are used within the PAGERTRACEX() macros above
+** The following two macros are used within the PAGERTRACE() macros above
** to print out file-descriptors.
**
-** PAGERID() takes a pointer to a Pager struct as it's argument. The
-** associated file-descriptor is returned. FILEHANDLEID() takes an OsFile
-** struct as it's argument.
+** PAGERID() takes a pointer to a Pager struct as its argument. The
+** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
+** struct as its argument.
*/
#define PAGERID(p) ((int)(p->fd))
#define FILEHANDLEID(fd) ((int)fd)
@@ -16874,190 +31319,220 @@ ThreadData *sqlite3WinThreadSpecificData(int allocateFlag){
#define PAGER_SYNCED 5
/*
-** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
-** then failed attempts to get a reserved lock will invoke the busy callback.
-** This is off by default. To see why, consider the following scenario:
-**
-** Suppose thread A already has a shared lock and wants a reserved lock.
-** Thread B already has a reserved lock and wants an exclusive lock. If
-** both threads are using their busy callbacks, it might be a long time
-** be for one of the threads give up and allows the other to proceed.
-** But if the thread trying to get the reserved lock gives up quickly
-** (if it never invokes its busy callback) then the contention will be
-** resolved quickly.
+** A macro used for invoking the codec if there is one
*/
-#ifndef SQLITE_BUSY_RESERVED_LOCK
-# define SQLITE_BUSY_RESERVED_LOCK 0
+#ifdef SQLITE_HAS_CODEC
+# define CODEC1(P,D,N,X,E) \
+ if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; }
+# define CODEC2(P,D,N,X,E,O) \
+ if( P->xCodec==0 ){ O=(char*)D; }else \
+ if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
+#else
+# define CODEC1(P,D,N,X,E) /* NO-OP */
+# define CODEC2(P,D,N,X,E,O) O=(char*)D
#endif
/*
-** This macro rounds values up so that if the value is an address it
-** is guaranteed to be an address that is aligned to an 8-byte boundary.
+** The maximum allowed sector size. 64KiB. If the xSectorsize() method
+** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
+** This could conceivably cause corruption following a power failure on
+** such a system. This is currently an undocumented limit.
*/
-#define FORCE_ALIGNMENT(X) (((X)+7)&~7)
+#define MAX_SECTOR_SIZE 0x10000
/*
-** Each in-memory image of a page begins with the following header.
-** This header is only visible to this pager module. The client
-** code that calls pager sees only the data that follows the header.
-**
-** Client code should call sqlite3PagerWrite() on a page prior to making
-** any modifications to that page. The first time sqlite3PagerWrite()
-** is called, the original page contents are written into the rollback
-** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
-** the journal page has made it onto the disk surface, PgHdr.needSync
-** is cleared. The modified page cannot be written back into the original
-** database file until the journal pages has been synced to disk and the
-** PgHdr.needSync has been cleared.
+** An instance of the following structure is allocated for each active
+** savepoint and statement transaction in the system. All such structures
+** are stored in the Pager.aSavepoint[] array, which is allocated and
+** resized using sqlite3Realloc().
**
-** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
-** is cleared again when the page content is written back to the original
-** database file.
+** When a savepoint is created, the PagerSavepoint.iHdrOffset field is
+** set to 0. If a journal-header is written into the main journal while
+** the savepoint is active, then iHdrOffset is set to the byte offset
+** immediately following the last journal record written into the main
+** journal before the journal-header. This is required during savepoint
+** rollback (see pagerPlaybackSavepoint()).
*/
-typedef struct PgHdr PgHdr;
-struct PgHdr {
- Pager *pPager; /* The pager to which this page belongs */
- Pgno pgno; /* The page number for this page */
- PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
- PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */
- PgHdr *pNextAll; /* A list of all pages */
- u8 inJournal; /* TRUE if has been written to journal */
- u8 dirty; /* TRUE if we need to write back changes */
- u8 needSync; /* Sync journal before writing this page */
- u8 alwaysRollback; /* Disable DontRollback() for this page */
- u8 needRead; /* Read content if PagerWrite() is called */
- short int nRef; /* Number of users of this page */
- PgHdr *pDirty, *pPrevDirty; /* Dirty pages */
- u32 notUsed; /* Buffer space */
-#ifdef SQLITE_CHECK_PAGES
- u32 pageHash;
-#endif
- /* pPager->pageSize bytes of page data follow this header */
- /* Pager.nExtra bytes of local data follow the page data */
+typedef struct PagerSavepoint PagerSavepoint;
+struct PagerSavepoint {
+ i64 iOffset; /* Starting offset in main journal */
+ i64 iHdrOffset; /* See above */
+ Bitvec *pInSavepoint; /* Set of pages in this savepoint */
+ Pgno nOrig; /* Original number of pages in file */
+ Pgno iSubRec; /* Index of first record in sub-journal */
};
/*
-** For an in-memory only database, some extra information is recorded about
-** each page so that changes can be rolled back. (Journal files are not
-** used for in-memory databases.) The following information is added to
-** the end of every EXTRA block for in-memory databases.
-**
-** This information could have been added directly to the PgHdr structure.
-** But then it would take up an extra 8 bytes of storage on every PgHdr
-** even for disk-based databases. Splitting it out saves 8 bytes. This
-** is only a savings of 0.8% but those percentages add up.
-*/
-typedef struct PgHistory PgHistory;
-struct PgHistory {
- u8 *pOrig; /* Original page text. Restore to this on a full rollback */
- u8 *pStmt; /* Text as it was at the beginning of the current statement */
- PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */
- u8 inStmt; /* TRUE if in the statement subjournal */
-};
-
-/*
-** A macro used for invoking the codec if there is one
-*/
-#ifdef SQLITE_HAS_CODEC
-# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
-# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
-#else
-# define CODEC1(P,D,N,X) /* NO-OP */
-# define CODEC2(P,D,N,X) ((char*)D)
-#endif
-
-/*
-** Convert a pointer to a PgHdr into a pointer to its data
-** and back again.
-*/
-#define PGHDR_TO_DATA(P) ((void*)(&(P)[1]))
-#define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1])
-#define PGHDR_TO_EXTRA(G,P) ((void*)&((char*)(&(G)[1]))[(P)->pageSize])
-#define PGHDR_TO_HIST(P,PGR) \
- ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->pageSize+(PGR)->nExtra])
-
-/*
** A open page cache is an instance of the following structure.
**
-** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
-** or SQLITE_FULL. Once one of the first three errors occurs, it persists
-** and is returned as the result of every major pager API call. The
-** SQLITE_FULL return code is slightly different. It persists only until the
-** next successful rollback is performed on the pager cache. Also,
-** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
-** APIs, they may still be used successfully.
+** errCode
+**
+** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
+** or SQLITE_FULL. Once one of the first three errors occurs, it persists
+** and is returned as the result of every major pager API call. The
+** SQLITE_FULL return code is slightly different. It persists only until the
+** next successful rollback is performed on the pager cache. Also,
+** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
+** APIs, they may still be used successfully.
+**
+** dbSizeValid, dbSize, dbOrigSize, dbFileSize
+**
+** Managing the size of the database file in pages is a little complicated.
+** The variable Pager.dbSize contains the number of pages that the database
+** image currently contains. As the database image grows or shrinks this
+** variable is updated. The variable Pager.dbFileSize contains the number
+** of pages in the database file. This may be different from Pager.dbSize
+** if some pages have been appended to the database image but not yet written
+** out from the cache to the actual file on disk. Or if the image has been
+** truncated by an incremental-vacuum operation. The Pager.dbOrigSize variable
+** contains the number of pages in the database image when the current
+** transaction was opened. The contents of all three of these variables is
+** only guaranteed to be correct if the boolean Pager.dbSizeValid is true.
+**
+** TODO: Under what conditions is dbSizeValid set? Cleared?
+**
+** changeCountDone
+**
+** This boolean variable is used to make sure that the change-counter
+** (the 4-byte header field at byte offset 24 of the database file) is
+** not updated more often than necessary.
+**
+** It is set to true when the change-counter field is updated, which
+** can only happen if an exclusive lock is held on the database file.
+** It is cleared (set to false) whenever an exclusive lock is
+** relinquished on the database file. Each time a transaction is committed,
+** The changeCountDone flag is inspected. If it is true, the work of
+** updating the change-counter is omitted for the current transaction.
+**
+** This mechanism means that when running in exclusive mode, a connection
+** need only update the change-counter once, for the first transaction
+** committed.
+**
+** dbModified
+**
+** The dbModified flag is set whenever a database page is dirtied.
+** It is cleared at the end of each transaction.
+**
+** It is used when committing or otherwise ending a transaction. If
+** the dbModified flag is clear then less work has to be done.
+**
+** journalStarted
+**
+** This flag is set whenever the the main journal is synced.
+**
+** The point of this flag is that it must be set after the
+** first journal header in a journal file has been synced to disk.
+** After this has happened, new pages appended to the database
+** do not need the PGHDR_NEED_SYNC flag set, as they do not need
+** to wait for a journal sync before they can be written out to
+** the database file (see function pager_write()).
+**
+** setMaster
+**
+** This variable is used to ensure that the master journal file name
+** (if any) is only written into the journal file once.
+**
+** When committing a transaction, the master journal file name (if any)
+** may be written into the journal file while the pager is still in
+** PAGER_RESERVED state (see CommitPhaseOne() for the action). It
+** then attempts to upgrade to an exclusive lock. If this attempt
+** fails, then SQLITE_BUSY may be returned to the user and the user
+** may attempt to commit the transaction again later (calling
+** CommitPhaseOne() again). This flag is used to ensure that the
+** master journal name is only written to the journal file the first
+** time CommitPhaseOne() is called.
+**
+** doNotSync
+**
+** This variable is set and cleared by sqlite3PagerWrite().
+**
+** needSync
+**
+** TODO: It might be easier to set this variable in writeJournalHdr()
+** and writeMasterJournal() only. Change its meaning to "unsynced data
+** has been written to the journal".
+**
+** subjInMemory
+**
+** This is a boolean variable. If true, then any required sub-journal
+** is opened as an in-memory journal file. If false, then in-memory
+** sub-journals are only used for in-memory pager files.
*/
struct Pager {
- u8 journalOpen; /* True if journal file descriptors is valid */
- u8 journalStarted; /* True if header of journal is synced */
+ sqlite3_vfs *pVfs; /* OS functions to use for IO */
+ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
+ u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */
u8 useJournal; /* Use a rollback journal on this file */
u8 noReadlock; /* Do not bother to obtain readlocks */
- u8 stmtOpen; /* True if the statement subjournal is open */
- u8 stmtInUse; /* True we are in a statement subtransaction */
- u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/
u8 noSync; /* Do not sync the journal if true */
u8 fullSync; /* Do extra syncs of the journal for robustness */
- u8 full_fsync; /* Use F_FULLFSYNC when available */
- u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
+ u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */
u8 tempFile; /* zFilename is a temporary file */
u8 readOnly; /* True for a read-only database */
- u8 needSync; /* True if an fsync() is needed on the journal */
- u8 dirtyCache; /* True if cached pages have changed */
- u8 alwaysRollback; /* Disable DontRollback() for all pages */
u8 memDb; /* True to inhibit all file I/O */
+
+ /* The following block contains those class members that are dynamically
+ ** modified during normal operations. The other variables in this structure
+ ** are either constant throughout the lifetime of the pager, or else
+ ** used to store configuration parameters that affect the way the pager
+ ** operates.
+ **
+ ** The 'state' variable is described in more detail along with the
+ ** descriptions of the values it may take - PAGER_UNLOCK etc. Many of the
+ ** other variables in this block are described in the comment directly
+ ** above this class definition.
+ */
+ u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
+ u8 dbModified; /* True if there are any changes to the Db */
+ u8 needSync; /* True if an fsync() is needed on the journal */
+ u8 journalStarted; /* True if header of journal is synced */
+ u8 changeCountDone; /* Set after incrementing the change-counter */
u8 setMaster; /* True if a m-j name has been written to jrnl */
u8 doNotSync; /* Boolean. While true, do not spill the cache */
- u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
- u8 changeCountDone; /* Set after incrementing the change-counter */
+ u8 dbSizeValid; /* Set when dbSize is correct */
+ u8 subjInMemory; /* True to use in-memory sub-journals */
+ Pgno dbSize; /* Number of pages in the database */
+ Pgno dbOrigSize; /* dbSize before the current transaction */
+ Pgno dbFileSize; /* Number of pages in the database file */
int errCode; /* One of several kinds of errors */
- int dbSize; /* Number of pages in the file */
- int origDbSize; /* dbSize before the current change */
- int stmtSize; /* Size of database (in pages) at stmt_begin() */
- int nRec; /* Number of pages written to the journal */
+ int nRec; /* Pages journalled since last j-header written */
u32 cksumInit; /* Quasi-random value added to every checksum */
- int stmtNRec; /* Number of records in stmt subjournal */
- int nExtra; /* Add this many bytes to each in-memory page */
+ u32 nSubRec; /* Number of records written to sub-journal */
+ Bitvec *pInJournal; /* One bit for each page in the database file */
+ sqlite3_file *fd; /* File descriptor for database */
+ sqlite3_file *jfd; /* File descriptor for main journal */
+ sqlite3_file *sjfd; /* File descriptor for sub-journal */
+ i64 journalOff; /* Current write offset in the journal file */
+ i64 journalHdr; /* Byte offset to previous journal header */
+ PagerSavepoint *aSavepoint; /* Array of active savepoints */
+ int nSavepoint; /* Number of elements in aSavepoint[] */
+ char dbFileVers[16]; /* Changes whenever database file changes */
+ u32 sectorSize; /* Assumed sector size during rollback */
+
+ u16 nExtra; /* Add this many bytes to each in-memory page */
+ i16 nReserve; /* Number of unused bytes at end of each page */
+ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
int pageSize; /* Number of bytes in a page */
- int nPage; /* Total number of in-memory pages */
- int nMaxPage; /* High water mark of nPage */
- int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
- int mxPage; /* Maximum number of pages to hold in cache */
- u8 *aInJournal; /* One bit for each page in the database file */
- u8 *aInStmt; /* One bit for each page in the database */
+ Pgno mxPgno; /* Maximum allowed size of the database */
char *zFilename; /* Name of the database file */
char *zJournal; /* Name of the journal file */
- char *zDirectory; /* Directory hold database and journal files */
- OsFile *fd, *jfd; /* File descriptors for database and journal */
- OsFile *stfd; /* File descriptor for the statement subjournal*/
- BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
- PgHdr *pFirst, *pLast; /* List of free pages */
- PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */
- PgHdr *pAll; /* List of all pages */
- PgHdr *pStmt; /* List of pages in the statement subjournal */
- PgHdr *pDirty; /* List of all dirty pages */
- i64 journalOff; /* Current byte offset in the journal file */
- i64 journalHdr; /* Byte offset to previous journal header */
- i64 stmtHdrOff; /* First journal header written this statement */
- i64 stmtCksum; /* cksumInit when statement was started */
- i64 stmtJSize; /* Size of journal at stmt_begin() */
- int sectorSize; /* Assumed sector size during rollback */
+ int (*xBusyHandler)(void*); /* Function to call when busy */
+ void *pBusyHandlerArg; /* Context argument for xBusyHandler */
#ifdef SQLITE_TEST
int nHit, nMiss; /* Cache hits and missing */
int nRead, nWrite; /* Database pages read/written */
#endif
- void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
- void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */
+ void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
#ifdef SQLITE_HAS_CODEC
void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
- void *pCodecArg; /* First argument to xCodec() */
-#endif
- int nHash; /* Size of the pager hash table */
- PgHdr **aHash; /* Hash table to map page number to PgHdr */
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- Pager *pNext; /* Linked list of pagers in this thread */
+ void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */
+ void (*xCodecFree)(void*); /* Destructor for the codec */
+ void *pCodec; /* First argument to xCodec... methods */
#endif
char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
- char dbFileVers[16]; /* Changes whenever database file changes */
+ i64 journalSizeLimit; /* Size limit for persistent journal files */
+ PCache *pPCache; /* Pointer to page cache object */
+ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */
};
/*
@@ -17066,10 +31541,9 @@ struct Pager {
** a non-testing build. These variables are not thread-safe.
*/
#ifdef SQLITE_TEST
-int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
-int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
-int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
-int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */
+SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
+SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
+SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
# define PAGER_INCR(v) v++
#else
# define PAGER_INCR(v)
@@ -17082,7 +31556,7 @@ int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */
** was obtained from /dev/random. It is used only as a sanity check.
**
** Since version 2.8.0, the journal format contains additional sanity
-** checking information. If the power fails while the journal is begin
+** checking information. If the power fails while the journal is being
** written, semi-random garbage data might appear in the journal
** file after power is restored. If an attempt is then made
** to roll the journal back, the database could be corrupted. The additional
@@ -17105,15 +31579,14 @@ static const unsigned char aJournalMagic[] = {
};
/*
-** The size of the header and of each page in the journal is determined
-** by the following macros.
+** The size of the of each page record in the journal is given by
+** the following macro.
*/
#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
/*
-** The journal header size for this pager. In the future, this could be
-** set to some value read from the disk controller. The important
-** characteristic is that it is the same size as a disk sector.
+** The journal header size for this pager. This is usually the same
+** size as a single disk sector. See also setSectorSize().
*/
#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
@@ -17130,84 +31603,55 @@ static const unsigned char aJournalMagic[] = {
#endif
/*
-** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
-** reserved for working around a windows/posix incompatibility). It is
-** used in the journal to signify that the remainder of the journal file
-** is devoted to storing a master journal name - there are no more pages to
-** roll back. See comments for function writeMasterJournal() for details.
-*/
-/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
-#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
-
-/*
** The maximum legal page number is (2^31 - 1).
*/
#define PAGER_MAX_PGNO 2147483647
+#ifndef NDEBUG
/*
-** Enable reference count tracking (for debugging) here:
+** Usage:
+**
+** assert( assert_pager_state(pPager) );
*/
-#ifdef SQLITE_DEBUG
- int pager3_refinfo_enable = 0;
- static void pager_refinfo(PgHdr *p){
- static int cnt = 0;
- if( !pager3_refinfo_enable ) return;
- sqlite3DebugPrintf(
- "REFCNT: %4d addr=%p nRef=%-3d total=%d\n",
- p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef
- );
- cnt++; /* Something to set a breakpoint on */
- }
-# define REFINFO(X) pager_refinfo(X)
-#else
-# define REFINFO(X)
+static int assert_pager_state(Pager *pPager){
+
+ /* A temp-file is always in PAGER_EXCLUSIVE or PAGER_SYNCED state. */
+ assert( pPager->tempFile==0 || pPager->state>=PAGER_EXCLUSIVE );
+
+ /* The changeCountDone flag is always set for temp-files */
+ assert( pPager->tempFile==0 || pPager->changeCountDone );
+
+ return 1;
+}
#endif
/*
-** Return true if page *pPg has already been written to the statement
-** journal (or statement snapshot has been created, if *pPg is part
-** of an in-memory database).
+** Return true if it is necessary to write page *pPg into the sub-journal.
+** A page needs to be written into the sub-journal if there exists one
+** or more open savepoints for which:
+**
+** * The page-number is less than or equal to PagerSavepoint.nOrig, and
+** * The bit corresponding to the page-number is not set in
+** PagerSavepoint.pInSavepoint.
*/
-static int pageInStatement(PgHdr *pPg){
+static int subjRequiresPage(PgHdr *pPg){
+ Pgno pgno = pPg->pgno;
Pager *pPager = pPg->pPager;
- if( MEMDB ){
- return PGHDR_TO_HIST(pPg, pPager)->inStmt;
- }else{
- Pgno pgno = pPg->pgno;
- u8 *a = pPager->aInStmt;
- return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7))));
+ int i;
+ for(i=0; i<pPager->nSavepoint; i++){
+ PagerSavepoint *p = &pPager->aSavepoint[i];
+ if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){
+ return 1;
+ }
}
+ return 0;
}
/*
-** Change the size of the pager hash table to N. N must be a power
-** of two.
+** Return true if the page is already in the journal file.
*/
-static void pager_resize_hash_table(Pager *pPager, int N){
- PgHdr **aHash, *pPg;
- assert( N>0 && (N&(N-1))==0 );
- aHash = sqliteMalloc( sizeof(aHash[0])*N );
- if( aHash==0 ){
- /* Failure to rehash is not an error. It is only a performance hit. */
- return;
- }
- sqliteFree(pPager->aHash);
- pPager->nHash = N;
- pPager->aHash = aHash;
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- int h;
- if( pPg->pgno==0 ){
- assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
- continue;
- }
- h = pPg->pgno & (N-1);
- pPg->pNextHash = aHash[h];
- if( aHash[h] ){
- aHash[h]->pPrevHash = pPg;
- }
- aHash[h] = pPg;
- pPg->pPrevHash = 0;
- }
+static int pageInJournal(PgHdr *pPg){
+ return sqlite3BitvecTest(pPg->pPager->pInJournal, pPg->pgno);
}
/*
@@ -17217,11 +31661,11 @@ static void pager_resize_hash_table(Pager *pPager, int N){
**
** All values are stored on disk as big-endian.
*/
-static int read32bits(OsFile *fd, u32 *pRes){
+static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
unsigned char ac[4];
- int rc = sqlite3OsRead(fd, ac, sizeof(ac));
+ int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
if( rc==SQLITE_OK ){
- *pRes = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
+ *pRes = sqlite3Get4byte(ac);
}
return rc;
}
@@ -17229,70 +31673,106 @@ static int read32bits(OsFile *fd, u32 *pRes){
/*
** Write a 32-bit integer into a string buffer in big-endian byte order.
*/
-static void put32bits(char *ac, u32 val){
- ac[0] = (val>>24) & 0xff;
- ac[1] = (val>>16) & 0xff;
- ac[2] = (val>>8) & 0xff;
- ac[3] = val & 0xff;
-}
+#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
/*
** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
** on success or an error code is something goes wrong.
*/
-static int write32bits(OsFile *fd, u32 val){
+static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
char ac[4];
put32bits(ac, val);
- return sqlite3OsWrite(fd, ac, 4);
+ return sqlite3OsWrite(fd, ac, 4, offset);
}
/*
-** Read a 32-bit integer at offset 'offset' from the page identified by
-** page header 'p'.
+** The argument to this macro is a file descriptor (type sqlite3_file*).
+** Return 0 if it is not open, or non-zero (but not 1) if it is.
+**
+** This is so that expressions can be written as:
+**
+** if( isOpen(pPager->jfd) ){ ...
+**
+** instead of
+**
+** if( pPager->jfd->pMethods ){ ...
*/
-static u32 retrieve32bits(PgHdr *p, int offset){
- unsigned char *ac;
- ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
- return (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
-}
+#define isOpen(pFd) ((pFd)->pMethods)
+/*
+** If file pFd is open, call sqlite3OsUnlock() on it.
+*/
+static int osUnlock(sqlite3_file *pFd, int eLock){
+ if( !isOpen(pFd) ){
+ return SQLITE_OK;
+ }
+ return sqlite3OsUnlock(pFd, eLock);
+}
/*
-** This function should be called when an error occurs within the pager
-** code. The first argument is a pointer to the pager structure, the
-** second the error-code about to be returned by a pager API function.
-** The value returned is a copy of the second argument to this function.
+** This function determines whether or not the atomic-write optimization
+** can be used with this pager. The optimization can be used if:
**
-** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
-** the error becomes persistent. All subsequent API calls on this Pager
-** will immediately return the same error code.
+** (a) the value returned by OsDeviceCharacteristics() indicates that
+** a database page may be written atomically, and
+** (b) the value returned by OsSectorSize() is less than or equal
+** to the page size.
+**
+** The optimization is also always enabled for temporary files. It is
+** an error to call this function if pPager is opened on an in-memory
+** database.
+**
+** If the optimization cannot be used, 0 is returned. If it can be used,
+** then the value returned is the size of the journal file when it
+** contains rollback data for exactly one page.
*/
-static int pager_error(Pager *pPager, int rc){
- int rc2 = rc & 0xff;
- assert( pPager->errCode==SQLITE_FULL || pPager->errCode==SQLITE_OK );
- if(
- rc2==SQLITE_FULL ||
- rc2==SQLITE_IOERR ||
- rc2==SQLITE_CORRUPT
- ){
- pPager->errCode = rc;
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+static int jrnlBufferSize(Pager *pPager){
+ assert( !MEMDB );
+ if( !pPager->tempFile ){
+ int dc; /* Device characteristics */
+ int nSector; /* Sector size */
+ int szPage; /* Page size */
+
+ assert( isOpen(pPager->fd) );
+ dc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ nSector = pPager->sectorSize;
+ szPage = pPager->pageSize;
+
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){
+ return 0;
+ }
}
- return rc;
+
+ return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
}
+#endif
+/*
+** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
+** on the cache using a hash function. This is used for testing
+** and debugging only.
+*/
#ifdef SQLITE_CHECK_PAGES
/*
** Return a 32-bit hash of the page data for pPage.
*/
-static u32 pager_pagehash(PgHdr *pPage){
+static u32 pager_datahash(int nByte, unsigned char *pData){
u32 hash = 0;
int i;
- unsigned char *pData = (unsigned char *)PGHDR_TO_DATA(pPage);
- for(i=0; i<pPage->pPager->pageSize; i++){
- hash = (hash+i)^pData[i];
+ for(i=0; i<nByte; i++){
+ hash = (hash*1039) + pData[i];
}
return hash;
}
+static u32 pager_pagehash(PgHdr *pPage){
+ return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
+}
+static void pager_set_pagehash(PgHdr *pPage){
+ pPage->pageHash = pager_pagehash(pPage);
+}
/*
** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
@@ -17302,66 +31782,65 @@ static u32 pager_pagehash(PgHdr *pPage){
#define CHECK_PAGE(x) checkPage(x)
static void checkPage(PgHdr *pPg){
Pager *pPager = pPg->pPager;
- assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty ||
- pPg->pageHash==pager_pagehash(pPg) );
+ assert( !pPg->pageHash || pPager->errCode
+ || (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
}
#else
+#define pager_datahash(X,Y) 0
+#define pager_pagehash(X) 0
#define CHECK_PAGE(x)
-#endif
+#endif /* SQLITE_CHECK_PAGES */
/*
** When this is called the journal file for pager pPager must be open.
-** The master journal file name is read from the end of the file and
-** written into memory obtained from sqliteMalloc(). *pzMaster is
-** set to point at the memory and SQLITE_OK returned. The caller must
-** sqliteFree() *pzMaster.
-**
-** If no master journal file name is present *pzMaster is set to 0 and
-** SQLITE_OK returned.
-*/
-static int readMasterJournal(OsFile *pJrnl, char **pzMaster){
- int rc;
- u32 len;
- i64 szJ;
- u32 cksum;
- int i;
- unsigned char aMagic[8]; /* A buffer to hold the magic header */
-
- *pzMaster = 0;
-
- rc = sqlite3OsFileSize(pJrnl, &szJ);
- if( rc!=SQLITE_OK || szJ<16 ) return rc;
-
- rc = sqlite3OsSeek(pJrnl, szJ-16);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = read32bits(pJrnl, &len);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = read32bits(pJrnl, &cksum);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3OsRead(pJrnl, aMagic, 8);
- if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
-
- rc = sqlite3OsSeek(pJrnl, szJ-16-len);
- if( rc!=SQLITE_OK ) return rc;
-
- *pzMaster = (char *)sqliteMalloc(len+1);
- if( !*pzMaster ){
- return SQLITE_NOMEM;
- }
- rc = sqlite3OsRead(pJrnl, *pzMaster, len);
- if( rc!=SQLITE_OK ){
- sqliteFree(*pzMaster);
- *pzMaster = 0;
+** This function attempts to read a master journal file name from the
+** end of the file and, if successful, copies it into memory supplied
+** by the caller. See comments above writeMasterJournal() for the format
+** used to store a master journal file name at the end of a journal file.
+**
+** zMaster must point to a buffer of at least nMaster bytes allocated by
+** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
+** enough space to write the master journal name). If the master journal
+** name in the journal is longer than nMaster bytes (including a
+** nul-terminator), then this is handled as if no master journal name
+** were present in the journal.
+**
+** If a master journal file name is present at the end of the journal
+** file, then it is copied into the buffer pointed to by zMaster. A
+** nul-terminator byte is appended to the buffer following the master
+** journal file name.
+**
+** If it is determined that no master journal file name is present
+** zMaster[0] is set to 0 and SQLITE_OK returned.
+**
+** If an error occurs while reading from the journal file, an SQLite
+** error code is returned.
+*/
+static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){
+ int rc; /* Return code */
+ u32 len; /* Length in bytes of master journal name */
+ i64 szJ; /* Total size in bytes of journal file pJrnl */
+ u32 cksum; /* MJ checksum value read from journal */
+ u32 u; /* Unsigned loop counter */
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ zMaster[0] = '\0';
+
+ if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ))
+ || szJ<16
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len))
+ || len>=nMaster
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum))
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8))
+ || memcmp(aMagic, aJournalMagic, 8)
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len))
+ ){
return rc;
}
/* See if the checksum matches the master journal name */
- for(i=0; i<len; i++){
- cksum -= (*pzMaster)[i];
+ for(u=0; u<len; u++){
+ cksum -= zMaster[u];
}
if( cksum ){
/* If the checksum doesn't add up, then one or more of the disk sectors
@@ -17369,31 +31848,29 @@ static int readMasterJournal(OsFile *pJrnl, char **pzMaster){
** definitely roll back, so just return SQLITE_OK and report a (nul)
** master-journal filename.
*/
- sqliteFree(*pzMaster);
- *pzMaster = 0;
- }else{
- (*pzMaster)[len] = '\0';
+ len = 0;
}
+ zMaster[len] = '\0';
return SQLITE_OK;
}
/*
-** Seek the journal file descriptor to the next sector boundary where a
-** journal header may be read or written. Pager.journalOff is updated with
-** the new seek offset.
+** Return the offset of the sector boundary at or immediately
+** following the value in pPager->journalOff, assuming a sector
+** size of pPager->sectorSize bytes.
**
** i.e for a sector size of 512:
**
-** Input Offset Output Offset
-** ---------------------------------------
-** 0 0
-** 512 512
-** 100 512
-** 2000 2048
+** Pager.journalOff Return value
+** ---------------------------------------
+** 0 0
+** 512 512
+** 100 512
+** 2000 2048
**
*/
-static int seekJournalHdr(Pager *pPager){
+static i64 journalHdrOffset(Pager *pPager){
i64 offset = 0;
i64 c = pPager->journalOff;
if( c ){
@@ -17402,8 +31879,62 @@ static int seekJournalHdr(Pager *pPager){
assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
assert( offset>=c );
assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
- pPager->journalOff = offset;
- return sqlite3OsSeek(pPager->jfd, pPager->journalOff);
+ return offset;
+}
+
+/*
+** The journal file must be open when this function is called.
+**
+** This function is a no-op if the journal file has not been written to
+** within the current transaction (i.e. if Pager.journalOff==0).
+**
+** If doTruncate is non-zero or the Pager.journalSizeLimit variable is
+** set to 0, then truncate the journal file to zero bytes in size. Otherwise,
+** zero the 28-byte header at the start of the journal file. In either case,
+** if the pager is not in no-sync mode, sync the journal file immediately
+** after writing or truncating it.
+**
+** If Pager.journalSizeLimit is set to a positive, non-zero value, and
+** following the truncation or zeroing described above the size of the
+** journal file in bytes is larger than this value, then truncate the
+** journal file to Pager.journalSizeLimit bytes. The journal file does
+** not need to be synced following this operation.
+**
+** If an IO error occurs, abandon processing and return the IO error code.
+** Otherwise, return SQLITE_OK.
+*/
+static int zeroJournalHdr(Pager *pPager, int doTruncate){
+ int rc = SQLITE_OK; /* Return code */
+ assert( isOpen(pPager->jfd) );
+ if( pPager->journalOff ){
+ const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */
+
+ IOTRACE(("JZEROHDR %p\n", pPager))
+ if( doTruncate || iLimit==0 ){
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ }else{
+ static const char zeroHdr[28] = {0};
+ rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
+ }
+ if( rc==SQLITE_OK && !pPager->noSync ){
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags);
+ }
+
+ /* At this point the transaction is committed but the write lock
+ ** is still held on the file. If there is a size limit configured for
+ ** the persistent journal and the journal file currently consumes more
+ ** space than that limit allows for, truncate it now. There is no need
+ ** to sync the file following this operation.
+ */
+ if( rc==SQLITE_OK && iLimit>0 ){
+ i64 sz;
+ rc = sqlite3OsFileSize(pPager->jfd, &sz);
+ if( rc==SQLITE_OK && sz>iLimit ){
+ rc = sqlite3OsTruncate(pPager->jfd, iLimit);
+ }
+ }
+ }
+ return rc;
}
/*
@@ -17417,116 +31948,224 @@ static int seekJournalHdr(Pager *pPager){
** - 4 bytes: Random number used for page hash.
** - 4 bytes: Initial database page count.
** - 4 bytes: Sector size used by the process that wrote this journal.
+** - 4 bytes: Database page size.
**
-** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space.
+** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
*/
static int writeJournalHdr(Pager *pPager){
- char zHeader[sizeof(aJournalMagic)+16];
- int rc;
+ int rc = SQLITE_OK; /* Return code */
+ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */
+ u32 nHeader = pPager->pageSize; /* Size of buffer pointed to by zHeader */
+ u32 nWrite; /* Bytes of header sector written */
+ int ii; /* Loop counter */
- if( pPager->stmtHdrOff==0 ){
- pPager->stmtHdrOff = pPager->journalOff;
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
+
+ if( nHeader>JOURNAL_HDR_SZ(pPager) ){
+ nHeader = JOURNAL_HDR_SZ(pPager);
}
- rc = seekJournalHdr(pPager);
- if( rc ) return rc;
+ /* If there are active savepoints and any of them were created
+ ** since the most recent journal header was written, update the
+ ** PagerSavepoint.iHdrOffset fields now.
+ */
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ if( pPager->aSavepoint[ii].iHdrOffset==0 ){
+ pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff;
+ }
+ }
- pPager->journalHdr = pPager->journalOff;
- pPager->journalOff += JOURNAL_HDR_SZ(pPager);
+ pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager);
- /* FIX ME:
+ /*
+ ** Write the nRec Field - the number of page records that follow this
+ ** journal header. Normally, zero is written to this value at this time.
+ ** After the records are added to the journal (and the journal synced,
+ ** if in full-sync mode), the zero is overwritten with the true number
+ ** of records (see syncJournal()).
+ **
+ ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
+ ** reading the journal this value tells SQLite to assume that the
+ ** rest of the journal file contains valid page records. This assumption
+ ** is dangerous, as if a failure occurred whilst writing to the journal
+ ** file it may contain some garbage data. There are two scenarios
+ ** where this risk can be ignored:
**
- ** Possibly for a pager not in no-sync mode, the journal magic should not
- ** be written until nRec is filled in as part of next syncJournal().
+ ** * When the pager is in no-sync mode. Corruption can follow a
+ ** power failure in this case anyway.
**
- ** Actually maybe the whole journal header should be delayed until that
- ** point. Think about this.
+ ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
+ ** that garbage data is never appended to the journal file.
*/
- memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
- /* The nRec Field. 0xFFFFFFFF for no-sync journals. */
- put32bits(&zHeader[sizeof(aJournalMagic)], pPager->noSync ? 0xffffffff : 0);
+ assert( isOpen(pPager->fd) || pPager->noSync );
+ if( (pPager->noSync) || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
+ || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
+ ){
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+ put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
+ }else{
+ memset(zHeader, 0, sizeof(aJournalMagic)+4);
+ }
+
/* The random check-hash initialiser */
- sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
+ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
/* The initial database size */
- put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
+ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);
/* The assumed sector size for this process */
put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
- IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader)))
- rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader));
- /* The journal header has been written successfully. Seek the journal
- ** file descriptor to the end of the journal header sector.
+ /* The page size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
+
+ /* Initializing the tail of the buffer is not necessary. Everything
+ ** works find if the following memset() is omitted. But initializing
+ ** the memory prevents valgrind from complaining, so we are willing to
+ ** take the performance hit.
*/
- if( rc==SQLITE_OK ){
- IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1))
- rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff-1);
- if( rc==SQLITE_OK ){
- rc = sqlite3OsWrite(pPager->jfd, "\000", 1);
- }
+ memset(&zHeader[sizeof(aJournalMagic)+20], 0,
+ nHeader-(sizeof(aJournalMagic)+20));
+
+ /* In theory, it is only necessary to write the 28 bytes that the
+ ** journal header consumes to the journal file here. Then increment the
+ ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next
+ ** record is written to the following sector (leaving a gap in the file
+ ** that will be implicitly filled in by the OS).
+ **
+ ** However it has been discovered that on some systems this pattern can
+ ** be significantly slower than contiguously writing data to the file,
+ ** even if that means explicitly writing data to the block of
+ ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what
+ ** is done.
+ **
+ ** The loop is required here in case the sector-size is larger than the
+ ** database page size. Since the zHeader buffer is only Pager.pageSize
+ ** bytes in size, more than one call to sqlite3OsWrite() may be required
+ ** to populate the entire journal header sector.
+ */
+ for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
+ IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
+ rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
+ pPager->journalOff += nHeader;
}
+
return rc;
}
/*
** The journal file must be open when this is called. A journal header file
** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
-** file. See comments above function writeJournalHdr() for a description of
-** the journal header format.
+** file. The current location in the journal file is given by
+** pPager->journalOff. See comments above function writeJournalHdr() for
+** a description of the journal header format.
**
-** If the header is read successfully, *nRec is set to the number of
-** page records following this header and *dbSize is set to the size of the
+** If the header is read successfully, *pNRec is set to the number of
+** page records following this header and *pDbSize is set to the size of the
** database before the transaction began, in pages. Also, pPager->cksumInit
** is set to the value read from the journal header. SQLITE_OK is returned
** in this case.
**
** If the journal header file appears to be corrupted, SQLITE_DONE is
-** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
+** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes
** cannot be read from the journal file an error code is returned.
*/
static int readJournalHdr(
- Pager *pPager,
- i64 journalSize,
- u32 *pNRec,
- u32 *pDbSize
+ Pager *pPager, /* Pager object */
+ int isHot,
+ i64 journalSize, /* Size of the open journal file in bytes */
+ u32 *pNRec, /* OUT: Value read from the nRec field */
+ u32 *pDbSize /* OUT: Value of original database size field */
){
- int rc;
- unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ int rc; /* Return code */
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ i64 iHdrOff; /* Offset of journal header being read */
- rc = seekJournalHdr(pPager);
- if( rc ) return rc;
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
+ /* Advance Pager.journalOff to the start of the next sector. If the
+ ** journal file is too small for there to be a header stored at this
+ ** point, return SQLITE_DONE.
+ */
+ pPager->journalOff = journalHdrOffset(pPager);
if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
return SQLITE_DONE;
}
+ iHdrOff = pPager->journalOff;
- rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic));
- if( rc ) return rc;
+ /* Read in the first 8 bytes of the journal header. If they do not match
+ ** the magic string found at the start of each journal header, return
+ ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise,
+ ** proceed.
+ */
+ if( isHot || iHdrOff!=pPager->journalHdr ){
+ rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff);
+ if( rc ){
+ return rc;
+ }
+ if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
+ return SQLITE_DONE;
+ }
+ }
- if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
- return SQLITE_DONE;
+ /* Read the first three 32-bit fields of the journal header: The nRec
+ ** field, the checksum-initializer and the database size at the start
+ ** of the transaction. Return an error code if anything goes wrong.
+ */
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize))
+ ){
+ return rc;
}
- rc = read32bits(pPager->jfd, pNRec);
- if( rc ) return rc;
+ if( pPager->journalOff==0 ){
+ u32 iPageSize; /* Page-size field of journal header */
+ u32 iSectorSize; /* Sector-size field of journal header */
+ u16 iPageSize16; /* Copy of iPageSize in 16-bit variable */
- rc = read32bits(pPager->jfd, &pPager->cksumInit);
- if( rc ) return rc;
+ /* Read the page-size and sector-size journal header fields. */
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize))
+ ){
+ return rc;
+ }
- rc = read32bits(pPager->jfd, pDbSize);
- if( rc ) return rc;
+ /* Check that the values read from the page-size and sector-size fields
+ ** are within range. To be 'in range', both values need to be a power
+ ** of two greater than or equal to 512, and not greater than their
+ ** respective compile time maximum limits.
+ */
+ if( iPageSize<512 || iSectorSize<512
+ || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE
+ || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0
+ ){
+ /* If the either the page-size or sector-size in the journal-header is
+ ** invalid, then the process that wrote the journal-header must have
+ ** crashed before the header was synced. In this case stop reading
+ ** the journal file here.
+ */
+ return SQLITE_DONE;
+ }
- /* Update the assumed sector-size to match the value used by
- ** the process that created this journal. If this journal was
- ** created by a process other than this one, then this routine
- ** is being called from within pager_playback(). The local value
- ** of Pager.sectorSize is restored at the end of that routine.
- */
- rc = read32bits(pPager->jfd, (u32 *)&pPager->sectorSize);
- if( rc ) return rc;
+ /* Update the page-size to match the value read from the journal.
+ ** Use a testcase() macro to make sure that malloc failure within
+ ** PagerSetPagesize() is tested.
+ */
+ iPageSize16 = (u16)iPageSize;
+ rc = sqlite3PagerSetPagesize(pPager, &iPageSize16, -1);
+ testcase( rc!=SQLITE_OK );
+ assert( rc!=SQLITE_OK || iPageSize16==(u16)iPageSize );
+
+ /* Update the assumed sector-size to match the value used by
+ ** the process that created this journal. If this journal was
+ ** created by a process other than this one, then this routine
+ ** is being called from within pager_playback(). The local value
+ ** of Pager.sectorSize is restored at the end of that routine.
+ */
+ pPager->sectorSize = iSectorSize;
+ }
pPager->journalOff += JOURNAL_HDR_SZ(pPager);
- rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff);
return rc;
}
@@ -17538,31 +32177,37 @@ static int readJournalHdr(
** journal file descriptor is advanced to the next sector boundary before
** anything is written. The format is:
**
-** + 4 bytes: PAGER_MJ_PGNO.
-** + N bytes: length of master journal name.
-** + 4 bytes: N
-** + 4 bytes: Master journal name checksum.
-** + 8 bytes: aJournalMagic[].
+** + 4 bytes: PAGER_MJ_PGNO.
+** + N bytes: Master journal filename in utf-8.
+** + 4 bytes: N (length of master journal name in bytes, no nul-terminator).
+** + 4 bytes: Master journal name checksum.
+** + 8 bytes: aJournalMagic[].
**
** The master journal page checksum is the sum of the bytes in the master
-** journal name.
+** journal name, where each byte is interpreted as a signed 8-bit integer.
**
** If zMaster is a NULL pointer (occurs for a single database transaction),
** this call is a no-op.
*/
static int writeMasterJournal(Pager *pPager, const char *zMaster){
- int rc;
- int len;
- int i;
- u32 cksum = 0;
- char zBuf[sizeof(aJournalMagic)+2*4];
-
- if( !zMaster || pPager->setMaster) return SQLITE_OK;
+ int rc; /* Return code */
+ int nMaster; /* Length of string zMaster */
+ i64 iHdrOff; /* Offset of header in journal file */
+ i64 jrnlSize; /* Size of journal file on disk */
+ u32 cksum = 0; /* Checksum of string zMaster */
+
+ if( !zMaster || pPager->setMaster
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ || pPager->journalMode==PAGER_JOURNALMODE_OFF
+ ){
+ return SQLITE_OK;
+ }
pPager->setMaster = 1;
+ assert( isOpen(pPager->jfd) );
- len = strlen(zMaster);
- for(i=0; i<len; i++){
- cksum += zMaster[i];
+ /* Calculate the length in bytes and the checksum of zMaster */
+ for(nMaster=0; zMaster[nMaster]; nMaster++){
+ cksum += zMaster[nMaster];
}
/* If in full-sync mode, advance to the next disk sector before writing
@@ -17570,222 +32215,376 @@ static int writeMasterJournal(Pager *pPager, const char *zMaster){
** the journal has already been synced.
*/
if( pPager->fullSync ){
- rc = seekJournalHdr(pPager);
- if( rc!=SQLITE_OK ) return rc;
+ pPager->journalOff = journalHdrOffset(pPager);
}
- pPager->journalOff += (len+20);
+ iHdrOff = pPager->journalOff;
- rc = write32bits(pPager->jfd, PAGER_MJ_PGNO(pPager));
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3OsWrite(pPager->jfd, zMaster, len);
- if( rc!=SQLITE_OK ) return rc;
-
- put32bits(zBuf, len);
- put32bits(&zBuf[4], cksum);
- memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
- rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic));
+ /* Write the master journal data to the end of the journal file. If
+ ** an error occurs, return the error code to the caller.
+ */
+ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager))))
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4)))
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster)))
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum)))
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8)))
+ ){
+ return rc;
+ }
+ pPager->journalOff += (nMaster+20);
pPager->needSync = !pPager->noSync;
+
+ /* If the pager is in peristent-journal mode, then the physical
+ ** journal-file may extend past the end of the master-journal name
+ ** and 8 bytes of magic data just written to the file. This is
+ ** dangerous because the code to rollback a hot-journal file
+ ** will not be able to find the master-journal name to determine
+ ** whether or not the journal is hot.
+ **
+ ** Easiest thing to do in this scenario is to truncate the journal
+ ** file to the required size.
+ */
+ if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))
+ && jrnlSize>pPager->journalOff
+ ){
+ rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff);
+ }
return rc;
}
/*
-** Add or remove a page from the list of all pages that are in the
-** statement journal.
+** Find a page in the hash table given its page number. Return
+** a pointer to the page or NULL if the requested page is not
+** already in memory.
+*/
+static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
+ PgHdr *p; /* Return value */
+
+ /* It is not possible for a call to PcacheFetch() with createFlag==0 to
+ ** fail, since no attempt to allocate dynamic memory will be made.
+ */
+ (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p);
+ return p;
+}
+
+/*
+** Unless the pager is in error-state, discard all in-memory pages. If
+** the pager is in error-state, then this call is a no-op.
**
-** The Pager keeps a separate list of pages that are currently in
-** the statement journal. This helps the sqlite3PagerStmtCommit()
-** routine run MUCH faster for the common case where there are many
-** pages in memory but only a few are in the statement journal.
+** TODO: Why can we not reset the pager while in error state?
*/
-static void page_add_to_stmt_list(PgHdr *pPg){
- Pager *pPager = pPg->pPager;
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- assert( MEMDB );
- if( !pHist->inStmt ){
- assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
- if( pPager->pStmt ){
- PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
- }
- pHist->pNextStmt = pPager->pStmt;
- pPager->pStmt = pPg;
- pHist->inStmt = 1;
+static void pager_reset(Pager *pPager){
+ if( SQLITE_OK==pPager->errCode ){
+ sqlite3BackupRestart(pPager->pBackup);
+ sqlite3PcacheClear(pPager->pPCache);
+ pPager->dbSizeValid = 0;
}
}
/*
-** Find a page in the hash table given its page number. Return
-** a pointer to the page or NULL if not found.
+** Free all structures in the Pager.aSavepoint[] array and set both
+** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
+** if it is open and the pager is not in exclusive mode.
*/
-static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
- PgHdr *p;
- if( pPager->aHash==0 ) return 0;
- p = pPager->aHash[pgno & (pPager->nHash-1)];
- while( p && p->pgno!=pgno ){
- p = p->pNextHash;
+static void releaseAllSavepoints(Pager *pPager){
+ int ii; /* Iterator for looping through Pager.aSavepoint */
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
}
- return p;
+ if( !pPager->exclusiveMode || sqlite3IsMemJournal(pPager->sjfd) ){
+ sqlite3OsClose(pPager->sjfd);
+ }
+ sqlite3_free(pPager->aSavepoint);
+ pPager->aSavepoint = 0;
+ pPager->nSavepoint = 0;
+ pPager->nSubRec = 0;
+}
+
+/*
+** Set the bit number pgno in the PagerSavepoint.pInSavepoint
+** bitvecs of all open savepoints. Return SQLITE_OK if successful
+** or SQLITE_NOMEM if a malloc failure occurs.
+*/
+static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){
+ int ii; /* Loop counter */
+ int rc = SQLITE_OK; /* Result code */
+
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ PagerSavepoint *p = &pPager->aSavepoint[ii];
+ if( pgno<=p->nOrig ){
+ rc |= sqlite3BitvecSet(p->pInSavepoint, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ }
+ }
+ return rc;
}
/*
-** Unlock the database file.
+** Unlock the database file. This function is a no-op if the pager
+** is in exclusive mode.
+**
+** If the pager is currently in error state, discard the contents of
+** the cache and reset the Pager structure internal state. If there is
+** an open journal-file, then the next time a shared-lock is obtained
+** on the pager file (by this or any other process), it will be
+** treated as a hot-journal and rolled back.
*/
static void pager_unlock(Pager *pPager){
if( !pPager->exclusiveMode ){
- if( !MEMDB ){
- sqlite3OsUnlock(pPager->fd, NO_LOCK);
- pPager->dbSize = -1;
- IOTRACE(("UNLOCK %p\n", pPager))
+ int rc; /* Return code */
+
+ /* Always close the journal file when dropping the database lock.
+ ** Otherwise, another connection with journal_mode=delete might
+ ** delete the file out from under us.
+ */
+ sqlite3OsClose(pPager->jfd);
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ releaseAllSavepoints(pPager);
+
+ /* If the file is unlocked, somebody else might change it. The
+ ** values stored in Pager.dbSize etc. might become invalid if
+ ** this happens. TODO: Really, this doesn't need to be cleared
+ ** until the change-counter check fails in PagerSharedLock().
+ */
+ pPager->dbSizeValid = 0;
+
+ rc = osUnlock(pPager->fd, NO_LOCK);
+ if( rc ){
+ pPager->errCode = rc;
}
- pPager->state = PAGER_UNLOCK;
+ IOTRACE(("UNLOCK %p\n", pPager))
+
+ /* If Pager.errCode is set, the contents of the pager cache cannot be
+ ** trusted. Now that the pager file is unlocked, the contents of the
+ ** cache can be discarded and the error code safely cleared.
+ */
+ if( pPager->errCode ){
+ if( rc==SQLITE_OK ){
+ pPager->errCode = SQLITE_OK;
+ }
+ pager_reset(pPager);
+ }
+
pPager->changeCountDone = 0;
+ pPager->state = PAGER_UNLOCK;
}
}
/*
-** Execute a rollback if a transaction is active and unlock the
-** database file. This is a no-op if the pager has already entered
-** the error-state.
+** This function should be called when an IOERR, CORRUPT or FULL error
+** may have occurred. The first argument is a pointer to the pager
+** structure, the second the error-code about to be returned by a pager
+** API function. The value returned is a copy of the second argument
+** to this function.
+**
+** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
+** the error becomes persistent. Until the persisten error is cleared,
+** subsequent API calls on this Pager will immediately return the same
+** error code.
+**
+** A persistent error indicates that the contents of the pager-cache
+** cannot be trusted. This state can be cleared by completely discarding
+** the contents of the pager-cache. If a transaction was active when
+** the persistent error occurred, then the rollback journal may need
+** to be replayed to restore the contents of the database file (as if
+** it were a hot-journal).
*/
-static void pagerUnlockAndRollback(Pager *p){
- if( p->errCode ) return;
- assert( p->state>=PAGER_RESERVED || p->journalOpen==0 );
- if( p->state>=PAGER_RESERVED ){
- sqlite3PagerRollback(p);
+static int pager_error(Pager *pPager, int rc){
+ int rc2 = rc & 0xff;
+ assert( rc==SQLITE_OK || !MEMDB );
+ assert(
+ pPager->errCode==SQLITE_FULL ||
+ pPager->errCode==SQLITE_OK ||
+ (pPager->errCode & 0xff)==SQLITE_IOERR
+ );
+ if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
+ pPager->errCode = rc;
}
- pager_unlock(p);
- assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
- assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
+ return rc;
}
+/*
+** Execute a rollback if a transaction is active and unlock the
+** database file.
+**
+** If the pager has already entered the error state, do not attempt
+** the rollback at this time. Instead, pager_unlock() is called. The
+** call to pager_unlock() will discard all in-memory pages, unlock
+** the database file and clear the error state. If this means that
+** there is a hot-journal left in the file-system, the next connection
+** to obtain a shared lock on the pager (which may be this one) will
+** roll it back.
+**
+** If the pager has not already entered the error state, but an IO or
+** malloc error occurs during a rollback, then this will itself cause
+** the pager to enter the error state. Which will be cleared by the
+** call to pager_unlock(), as described above.
+*/
+static void pagerUnlockAndRollback(Pager *pPager){
+ if( pPager->errCode==SQLITE_OK && pPager->state>=PAGER_RESERVED ){
+ sqlite3BeginBenignMalloc();
+ sqlite3PagerRollback(pPager);
+ sqlite3EndBenignMalloc();
+ }
+ pager_unlock(pPager);
+}
/*
-** Clear the in-memory cache. This routine
-** sets the state of the pager back to what it was when it was first
-** opened. Any outstanding pages are invalidated and subsequent attempts
-** to access those pages will likely result in a coredump.
+** This routine ends a transaction. A transaction is usually ended by
+** either a COMMIT or a ROLLBACK operation. This routine may be called
+** after rollback of a hot-journal, or if an error occurs while opening
+** the journal file or writing the very first journal-header of a
+** database transaction.
+**
+** If the pager is in PAGER_SHARED or PAGER_UNLOCK state when this
+** routine is called, it is a no-op (returns SQLITE_OK).
+**
+** Otherwise, any active savepoints are released.
+**
+** If the journal file is open, then it is "finalized". Once a journal
+** file has been finalized it is not possible to use it to roll back a
+** transaction. Nor will it be considered to be a hot-journal by this
+** or any other database connection. Exactly how a journal is finalized
+** depends on whether or not the pager is running in exclusive mode and
+** the current journal-mode (Pager.journalMode value), as follows:
+**
+** journalMode==MEMORY
+** Journal file descriptor is simply closed. This destroys an
+** in-memory journal.
+**
+** journalMode==TRUNCATE
+** Journal file is truncated to zero bytes in size.
+**
+** journalMode==PERSIST
+** The first 28 bytes of the journal file are zeroed. This invalidates
+** the first journal header in the file, and hence the entire journal
+** file. An invalid journal file cannot be rolled back.
+**
+** journalMode==DELETE
+** The journal file is closed and deleted using sqlite3OsDelete().
+**
+** If the pager is running in exclusive mode, this method of finalizing
+** the journal file is never used. Instead, if the journalMode is
+** DELETE and the pager is in exclusive mode, the method described under
+** journalMode==PERSIST is used instead.
+**
+** After the journal is finalized, if running in non-exclusive mode, the
+** pager moves to PAGER_SHARED state (and downgrades the lock on the
+** database file accordingly).
+**
+** If the pager is running in exclusive mode and is in PAGER_SYNCED state,
+** it moves to PAGER_EXCLUSIVE. No locks are downgraded when running in
+** exclusive mode.
+**
+** SQLITE_OK is returned if no error occurs. If an error occurs during
+** any of the IO operations to finalize the journal file or unlock the
+** database then the IO error code is returned to the user. If the
+** operation to finalize the journal file fails, then the code still
+** tries to unlock the database file if not in exclusive mode. If the
+** unlock operation fails as well, then the first error code related
+** to the first error encountered (the journal finalization one) is
+** returned.
*/
-static void pager_reset(Pager *pPager){
- PgHdr *pPg, *pNext;
- if( pPager->errCode ) return;
- for(pPg=pPager->pAll; pPg; pPg=pNext){
- IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
- PAGER_INCR(sqlite3_pager_pgfree_count);
- pNext = pPg->pNextAll;
- sqliteFree(pPg);
- }
- pPager->pStmt = 0;
- pPager->pFirst = 0;
- pPager->pFirstSynced = 0;
- pPager->pLast = 0;
- pPager->pAll = 0;
- pPager->nHash = 0;
- sqliteFree(pPager->aHash);
- pPager->nPage = 0;
- pPager->aHash = 0;
- pPager->nRef = 0;
-}
-
-/*
-** This routine ends a transaction. A transaction is ended by either
-** a COMMIT or a ROLLBACK.
-**
-** When this routine is called, the pager has the journal file open and
-** a RESERVED or EXCLUSIVE lock on the database. This routine will release
-** the database lock and acquires a SHARED lock in its place if that is
-** the appropriate thing to do. Release locks usually is appropriate,
-** unless we are in exclusive access mode or unless this is a
-** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
-**
-** The journal file is either deleted or truncated.
-**
-** TODO: Consider keeping the journal file open for temporary databases.
-** This might give a performance improvement on windows where opening
-** a file is an expensive operation.
-*/
-static int pager_end_transaction(Pager *pPager){
- PgHdr *pPg;
- int rc = SQLITE_OK;
- int rc2 = SQLITE_OK;
- assert( !MEMDB );
+static int pager_end_transaction(Pager *pPager, int hasMaster){
+ int rc = SQLITE_OK; /* Error code from journal finalization operation */
+ int rc2 = SQLITE_OK; /* Error code from db file unlock operation */
+
if( pPager->state<PAGER_RESERVED ){
return SQLITE_OK;
}
- sqlite3PagerStmtCommit(pPager);
- if( pPager->stmtOpen && !pPager->exclusiveMode ){
- sqlite3OsClose(&pPager->stfd);
- pPager->stmtOpen = 0;
- }
- if( pPager->journalOpen ){
- if( pPager->exclusiveMode
- && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){;
- sqlite3OsSeek(pPager->jfd, 0);
+ releaseAllSavepoints(pPager);
+
+ assert( isOpen(pPager->jfd) || pPager->pInJournal==0 );
+ if( isOpen(pPager->jfd) ){
+
+ /* Finalize the journal file. */
+ if( sqlite3IsMemJournal(pPager->jfd) ){
+ assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY );
+ sqlite3OsClose(pPager->jfd);
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){
+ if( pPager->journalOff==0 ){
+ rc = SQLITE_OK;
+ }else{
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ }
+ pPager->journalOff = 0;
+ pPager->journalStarted = 0;
+ }else if( pPager->exclusiveMode
+ || pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ ){
+ rc = zeroJournalHdr(pPager, hasMaster);
+ pager_error(pPager, rc);
pPager->journalOff = 0;
pPager->journalStarted = 0;
}else{
- sqlite3OsClose(&pPager->jfd);
- pPager->journalOpen = 0;
- if( rc==SQLITE_OK ){
- rc = sqlite3OsDelete(pPager->zJournal);
+ /* This branch may be executed with Pager.journalMode==MEMORY if
+ ** a hot-journal was just rolled back. In this case the journal
+ ** file should be closed and deleted. If this connection writes to
+ ** the database file, it will do so using an in-memory journal. */
+ assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ );
+ sqlite3OsClose(pPager->jfd);
+ if( !pPager->tempFile ){
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
}
}
- sqliteFree( pPager->aInJournal );
- pPager->aInJournal = 0;
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- pPg->inJournal = 0;
- pPg->dirty = 0;
- pPg->needSync = 0;
- pPg->alwaysRollback = 0;
+
#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
+ sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
#endif
- }
- pPager->pDirty = 0;
- pPager->dirtyCache = 0;
+
+ sqlite3PcacheCleanAll(pPager->pPCache);
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
pPager->nRec = 0;
- }else{
- assert( pPager->aInJournal==0 );
- assert( pPager->dirtyCache==0 || pPager->useJournal==0 );
}
if( !pPager->exclusiveMode ){
- rc2 = sqlite3OsUnlock(pPager->fd, SHARED_LOCK);
+ rc2 = osUnlock(pPager->fd, SHARED_LOCK);
pPager->state = PAGER_SHARED;
+ pPager->changeCountDone = 0;
}else if( pPager->state==PAGER_SYNCED ){
pPager->state = PAGER_EXCLUSIVE;
}
- pPager->origDbSize = 0;
pPager->setMaster = 0;
pPager->needSync = 0;
- pPager->pFirstSynced = pPager->pFirst;
- pPager->dbSize = -1;
+ pPager->dbModified = 0;
+
+ /* TODO: Is this optimal? Why is the db size invalidated here
+ ** when the database file is not unlocked? */
+ pPager->dbOrigSize = 0;
+ sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
+ if( !MEMDB ){
+ pPager->dbSizeValid = 0;
+ }
return (rc==SQLITE_OK?rc2:rc);
}
/*
-** Compute and return a checksum for the page of data.
+** Parameter aData must point to a buffer of pPager->pageSize bytes
+** of data. Compute and return a checksum based ont the contents of the
+** page of data and the current value of pPager->cksumInit.
+**
+** This is not a real checksum. It is really just the sum of the
+** random initial value (pPager->cksumInit) and every 200th byte
+** of the page data, starting with byte offset (pPager->pageSize%200).
+** Each byte is interpreted as an 8-bit unsigned integer.
**
-** This is not a real checksum. It is really just the sum of the
-** random initial value and the page number. We experimented with
-** a checksum of the entire data, but that was found to be too slow.
+** Changing the formula used to compute this checksum results in an
+** incompatible journal file format.
**
-** Note that the page number is stored at the beginning of data and
-** the checksum is stored at the end. This is important. If journal
-** corruption occurs due to a power failure, the most likely scenario
-** is that one end or the other of the record will be changed. It is
-** much less likely that the two ends of the journal record will be
+** If journal corruption occurs due to a power failure, the most likely
+** scenario is that one end or the other of the record will be changed.
+** It is much less likely that the two ends of the journal record will be
** correct and the middle be corrupt. Thus, this "checksum" scheme,
** though fast and simple, catches the mostly likely kind of corruption.
-**
-** FIX ME: Consider adding every 200th (or so) byte of the data to the
-** checksum. That way if a single page spans 3 or more disk sectors and
-** only the middle sector is corrupt, we will still have a reasonable
-** chance of failing the checksum and thus detecting the problem.
*/
static u32 pager_cksum(Pager *pPager, const u8 *aData){
- u32 cksum = pPager->cksumInit;
- int i = pPager->pageSize-200;
+ u32 cksum = pPager->cksumInit; /* Checksum value to return */
+ int i = pPager->pageSize-200; /* Loop counter */
while( i>0 ){
cksum += aData[i];
i -= 200;
@@ -17793,35 +32592,76 @@ static u32 pager_cksum(Pager *pPager, const u8 *aData){
return cksum;
}
-/* Forward declaration */
-static void makeClean(PgHdr*);
-
/*
-** Read a single page from the journal file opened on file descriptor
-** jfd. Playback this one page.
+** Read a single page from either the journal file (if isMainJrnl==1) or
+** from the sub-journal (if isMainJrnl==0) and playback that page.
+** The page begins at offset *pOffset into the file. The *pOffset
+** value is increased to the start of the next page in the journal.
+**
+** The isMainJrnl flag is true if this is the main rollback journal and
+** false for the statement journal. The main rollback journal uses
+** checksums - the statement journal does not.
+**
+** If the page number of the page record read from the (sub-)journal file
+** is greater than the current value of Pager.dbSize, then playback is
+** skipped and SQLITE_OK is returned.
+**
+** If pDone is not NULL, then it is a record of pages that have already
+** been played back. If the page at *pOffset has already been played back
+** (if the corresponding pDone bit is set) then skip the playback.
+** Make sure the pDone bit corresponding to the *pOffset page is set
+** prior to returning.
+**
+** If the page record is successfully read from the (sub-)journal file
+** and played back, then SQLITE_OK is returned. If an IO error occurs
+** while reading the record from the (sub-)journal file or while writing
+** to the database file, then the IO error code is returned. If data
+** is successfully read from the (sub-)journal file but appears to be
+** corrupted, SQLITE_DONE is returned. Data is considered corrupted in
+** two circumstances:
**
-** If useCksum==0 it means this journal does not use checksums. Checksums
-** are not used in statement journals because statement journals do not
-** need to survive power failures.
+** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or
+** * If the record is being rolled back from the main journal file
+** and the checksum field does not match the record content.
+**
+** Neither of these two scenarios are possible during a savepoint rollback.
+**
+** If this is a savepoint rollback, then memory may have to be dynamically
+** allocated by this function. If this is the case and an allocation fails,
+** SQLITE_NOMEM is returned.
*/
-static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){
+static int pager_playback_one_page(
+ Pager *pPager, /* The pager being played back */
+ int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */
+ int isUnsync, /* True if reading from unsynced main journal */
+ i64 *pOffset, /* Offset of record to playback */
+ int isSavepnt, /* True for a savepoint rollback */
+ Bitvec *pDone /* Bitvec of pages already played back */
+){
int rc;
PgHdr *pPg; /* An existing page in the cache */
Pgno pgno; /* The page number of a page in journal */
u32 cksum; /* Checksum used for sanity checking */
- u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */
+ u8 *aData; /* Temporary storage for the page */
+ sqlite3_file *jfd; /* The file descriptor for the journal file */
- /* useCksum should be true for the main journal and false for
- ** statement journals. Verify that this is always the case
- */
- assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
- assert( aData );
+ assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */
+ assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */
+ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */
+ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */
+
+ aData = (u8*)pPager->pTmpSpace;
+ assert( aData ); /* Temp storage must have already been allocated */
- rc = read32bits(jfd, &pgno);
+ /* Read the page number and page data from the journal or sub-journal
+ ** file. Return an error code to the caller if an IO error occurs.
+ */
+ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd;
+ rc = read32bits(jfd, *pOffset, &pgno);
if( rc!=SQLITE_OK ) return rc;
- rc = sqlite3OsRead(jfd, aData, pPager->pageSize);
+ rc = sqlite3OsRead(jfd, aData, pPager->pageSize, (*pOffset)+4);
if( rc!=SQLITE_OK ) return rc;
- pPager->journalOff += pPager->pageSize + 4;
+ *pOffset += pPager->pageSize + 4 + isMainJrnl*4;
/* Sanity checking on the page. This is more important that I originally
** thought. If a power failure occurs while the journal is being written,
@@ -17829,26 +32669,37 @@ static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){
** detect this invalid data (with high probability) and ignore it.
*/
if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
+ assert( !isSavepnt );
return SQLITE_DONE;
}
- if( pgno>(unsigned)pPager->dbSize ){
+ if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){
return SQLITE_OK;
}
- if( useCksum ){
- rc = read32bits(jfd, &cksum);
+ if( isMainJrnl ){
+ rc = read32bits(jfd, (*pOffset)-4, &cksum);
if( rc ) return rc;
- pPager->journalOff += 4;
- if( pager_cksum(pPager, aData)!=cksum ){
+ if( !isSavepnt && pager_cksum(pPager, aData)!=cksum ){
return SQLITE_DONE;
}
}
+ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
+ return rc;
+ }
+
assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
/* If the pager is in RESERVED state, then there must be a copy of this
** page in the pager cache. In this case just update the pager cache,
** not the database file. The page is left marked dirty in this case.
**
+ ** An exception to the above rule: If the database is in no-sync mode
+ ** and a page is moved during an incremental vacuum then the page may
+ ** not be in the pager cache. Later: if a malloc() or IO error occurs
+ ** during a Movepage() call, then the page may not be in the cache
+ ** either. So the condition described in the above paragraph is not
+ ** assert()able.
+ **
** If in EXCLUSIVE state, then we update the pager cache if it exists
** and the main file. The page is then marked not dirty.
**
@@ -17857,25 +32708,63 @@ static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){
** This occurs when a page is changed prior to the start of a statement
** then changed again within the statement. When rolling back such a
** statement we must not write to the original database unless we know
- ** for certain that original page contents are in the main rollback
- ** journal. Otherwise, if a full ROLLBACK occurs after the statement
- ** rollback the full ROLLBACK will not restore the page to its original
- ** content. Two conditions must be met before writing to the database
- ** files. (1) the database must be locked. (2) we know that the original
- ** page content is in the main journal either because the page is not in
- ** cache or else it is marked as needSync==0.
+ ** for certain that original page contents are synced into the main rollback
+ ** journal. Otherwise, a power loss might leave modified data in the
+ ** database file without an entry in the rollback journal that can
+ ** restore the database to its original form. Two conditions must be
+ ** met before writing to the database files. (1) the database must be
+ ** locked. (2) we know that the original page content is fully synced
+ ** in the main journal either because the page is not in cache or else
+ ** the page is marked as needSync==0.
+ **
+ ** 2008-04-14: When attempting to vacuum a corrupt database file, it
+ ** is possible to fail a statement on a database that does not yet exist.
+ ** Do not attempt to write if database file has never been opened.
*/
pPg = pager_lookup(pPager, pgno);
- assert( pPager->state>=PAGER_EXCLUSIVE || pPg!=0 );
- PAGERTRACE3("PLAYBACK %d page %d\n", PAGERID(pPager), pgno);
- if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){
- rc = sqlite3OsSeek(pPager->fd, (pgno-1)*(i64)pPager->pageSize);
- if( rc==SQLITE_OK ){
- rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize);
- }
- if( pPg ){
- makeClean(pPg);
+ assert( pPg || !MEMDB );
+ PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n",
+ PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData),
+ (isMainJrnl?"main-journal":"sub-journal")
+ ));
+ if( (pPager->state>=PAGER_EXCLUSIVE)
+ && (pPg==0 || 0==(pPg->flags&PGHDR_NEED_SYNC))
+ && isOpen(pPager->fd)
+ && !isUnsync
+ ){
+ i64 ofst = (pgno-1)*(i64)pPager->pageSize;
+ rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, ofst);
+ if( pgno>pPager->dbFileSize ){
+ pPager->dbFileSize = pgno;
+ }
+ if( pPager->pBackup ){
+ CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM);
+ sqlite3BackupUpdate(pPager->pBackup, pgno, aData);
+ CODEC1(pPager, aData, pgno, 0, rc=SQLITE_NOMEM);
+ }
+ }else if( !isMainJrnl && pPg==0 ){
+ /* If this is a rollback of a savepoint and data was not written to
+ ** the database and the page is not in-memory, there is a potential
+ ** problem. When the page is next fetched by the b-tree layer, it
+ ** will be read from the database file, which may or may not be
+ ** current.
+ **
+ ** There are a couple of different ways this can happen. All are quite
+ ** obscure. When running in synchronous mode, this can only happen
+ ** if the page is on the free-list at the start of the transaction, then
+ ** populated, then moved using sqlite3PagerMovepage().
+ **
+ ** The solution is to add an in-memory page to the cache containing
+ ** the data just read from the sub-journal. Mark the page as dirty
+ ** and if the pager requires a journal-sync, then mark the page as
+ ** requiring a journal-sync before it is written.
+ */
+ assert( isSavepnt );
+ if( (rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1))!=SQLITE_OK ){
+ return rc;
}
+ pPg->flags &= ~PGHDR_NEED_READ;
+ sqlite3PcacheMakeDirty(pPg);
}
if( pPg ){
/* No page should ever be explicitly rolled back that is in use, except
@@ -17885,11 +32774,29 @@ static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){
** sqlite3PagerRollback().
*/
void *pData;
- /* assert( pPg->nRef==0 || pPg->pgno==1 ); */
- pData = PGHDR_TO_DATA(pPg);
+ pData = pPg->pData;
memcpy(pData, aData, pPager->pageSize);
- if( pPager->xReiniter ){
- pPager->xReiniter(pPg, pPager->pageSize);
+ pPager->xReiniter(pPg);
+ if( isMainJrnl && (!isSavepnt || *pOffset<=pPager->journalHdr) ){
+ /* If the contents of this page were just restored from the main
+ ** journal file, then its content must be as they were when the
+ ** transaction was first opened. In this case we can mark the page
+ ** as clean, since there will be no need to write it out to the.
+ **
+ ** There is one exception to this rule. If the page is being rolled
+ ** back as part of a savepoint (or statement) rollback from an
+ ** unsynced portion of the main journal file, then it is not safe
+ ** to mark the page as clean. This is because marking the page as
+ ** clean will clear the PGHDR_NEED_SYNC flag. Since the page is
+ ** already in the journal file (recorded in Pager.pInJournal) and
+ ** the PGHDR_NEED_SYNC flag is cleared, if the page is written to
+ ** again within this transaction, it will be marked as dirty but
+ ** the PGHDR_NEED_SYNC flag will not be set. It could then potentially
+ ** be written out into the database file before its journal file
+ ** segment is synced. If a crash occurs during or following this,
+ ** database corruption may ensue.
+ */
+ sqlite3PcacheMakeClean(pPg);
}
#ifdef SQLITE_CHECK_PAGES
pPg->pageHash = pager_pagehash(pPg);
@@ -17901,7 +32808,8 @@ static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){
}
/* Decode the page just read from disk */
- CODEC1(pPager, pData, pPg->pgno, 3);
+ CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM);
+ sqlite3PcacheRelease(pPg);
}
return rc;
}
@@ -17912,108 +32820,210 @@ static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){
** This routine checks if it is possible to delete the master journal file,
** and does so if it is.
**
-** The master journal file contains the names of all child journals.
-** To tell if a master journal can be deleted, check to each of the
-** children. If all children are either missing or do not refer to
-** a different master journal, then this master journal can be deleted.
+** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
+** available for use within this function.
+**
+** When a master journal file is created, it is populated with the names
+** of all of its child journals, one after another, formatted as utf-8
+** encoded text. The end of each child journal file is marked with a
+** nul-terminator byte (0x00). i.e. the entire contents of a master journal
+** file for a transaction involving two databases might be:
+**
+** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00"
+**
+** A master journal file may only be deleted once all of its child
+** journals have been rolled back.
+**
+** This function reads the contents of the master-journal file into
+** memory and loops through each of the child journal names. For
+** each child journal, it checks if:
+**
+** * if the child journal exists, and if so
+** * if the child journal contains a reference to master journal
+** file zMaster
+**
+** If a child journal can be found that matches both of the criteria
+** above, this function returns without doing anything. Otherwise, if
+** no such child journal can be found, file zMaster is deleted from
+** the file-system using sqlite3OsDelete().
+**
+** If an IO error within this function, an error code is returned. This
+** function allocates memory by calling sqlite3Malloc(). If an allocation
+** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors
+** occur, SQLITE_OK is returned.
+**
+** TODO: This function allocates a single block of memory to load
+** the entire contents of the master journal file. This could be
+** a couple of kilobytes or so - potentially larger than the page
+** size.
*/
-static int pager_delmaster(const char *zMaster){
- int rc;
- int master_open = 0;
- OsFile *master = 0;
+static int pager_delmaster(Pager *pPager, const char *zMaster){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ int rc; /* Return code */
+ sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */
+ sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */
char *zMasterJournal = 0; /* Contents of master journal file */
i64 nMasterJournal; /* Size of master journal file */
- /* Open the master journal file exclusively in case some other process
- ** is running this routine also. Not that it makes too much difference.
+ /* Allocate space for both the pJournal and pMaster file descriptors.
+ ** If successful, open the master journal file for reading.
*/
- rc = sqlite3OsOpenReadOnly(zMaster, &master);
- assert( rc!=SQLITE_OK || master );
+ pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2);
+ pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
+ if( !pMaster ){
+ rc = SQLITE_NOMEM;
+ }else{
+ const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
+ }
if( rc!=SQLITE_OK ) goto delmaster_out;
- master_open = 1;
- rc = sqlite3OsFileSize(master, &nMasterJournal);
+
+ rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
if( rc!=SQLITE_OK ) goto delmaster_out;
if( nMasterJournal>0 ){
char *zJournal;
char *zMasterPtr = 0;
+ int nMasterPtr = pVfs->mxPathname+1;
/* Load the entire master journal file into space obtained from
- ** sqliteMalloc() and pointed to by zMasterJournal.
+ ** sqlite3_malloc() and pointed to by zMasterJournal.
*/
- zMasterJournal = (char *)sqliteMalloc(nMasterJournal);
+ zMasterJournal = sqlite3Malloc((int)nMasterJournal + nMasterPtr + 1);
if( !zMasterJournal ){
rc = SQLITE_NOMEM;
goto delmaster_out;
}
- rc = sqlite3OsRead(master, zMasterJournal, nMasterJournal);
+ zMasterPtr = &zMasterJournal[nMasterJournal+1];
+ rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0);
if( rc!=SQLITE_OK ) goto delmaster_out;
+ zMasterJournal[nMasterJournal] = 0;
zJournal = zMasterJournal;
while( (zJournal-zMasterJournal)<nMasterJournal ){
- if( sqlite3OsFileExists(zJournal) ){
+ int exists;
+ rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ if( rc!=SQLITE_OK ){
+ goto delmaster_out;
+ }
+ if( exists ){
/* One of the journals pointed to by the master journal exists.
** Open it and check if it points at the master journal. If
** so, return without deleting the master journal file.
*/
- OsFile *journal = 0;
int c;
-
- rc = sqlite3OsOpenReadOnly(zJournal, &journal);
- assert( rc!=SQLITE_OK || journal );
+ int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
if( rc!=SQLITE_OK ){
goto delmaster_out;
}
- rc = readMasterJournal(journal, &zMasterPtr);
- sqlite3OsClose(&journal);
+ rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
+ sqlite3OsClose(pJournal);
if( rc!=SQLITE_OK ){
goto delmaster_out;
}
- c = zMasterPtr!=0 && strcmp(zMasterPtr, zMaster)==0;
- sqliteFree(zMasterPtr);
+ c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
if( c ){
/* We have a match. Do not delete the master journal file. */
goto delmaster_out;
}
}
- zJournal += (strlen(zJournal)+1);
+ zJournal += (sqlite3Strlen30(zJournal)+1);
}
}
- rc = sqlite3OsDelete(zMaster);
+ rc = sqlite3OsDelete(pVfs, zMaster, 0);
delmaster_out:
if( zMasterJournal ){
- sqliteFree(zMasterJournal);
+ sqlite3_free(zMasterJournal);
}
- if( master_open ){
- sqlite3OsClose(&master);
+ if( pMaster ){
+ sqlite3OsClose(pMaster);
+ assert( !isOpen(pJournal) );
}
+ sqlite3_free(pMaster);
return rc;
}
-static void pager_truncate_cache(Pager *pPager);
-
/*
-** Truncate the main file of the given pager to the number of pages
-** indicated. Also truncate the cached representation of the file.
+** This function is used to change the actual size of the database
+** file in the file-system. This only happens when committing a transaction,
+** or rolling back a transaction (including rolling back a hot-journal).
+**
+** If the main database file is not open, or an exclusive lock is not
+** held, this function is a no-op. Otherwise, the size of the file is
+** changed to nPage pages (nPage*pPager->pageSize bytes). If the file
+** on disk is currently larger than nPage pages, then use the VFS
+** xTruncate() method to truncate it.
+**
+** Or, it might might be the case that the file on disk is smaller than
+** nPage pages. Some operating system implementations can get confused if
+** you try to truncate a file to some size that is larger than it
+** currently is, so detect this case and write a single zero byte to
+** the end of the new file instead.
+**
+** If successful, return SQLITE_OK. If an IO error occurs while modifying
+** the database file, return the error code to the caller.
*/
-static int pager_truncate(Pager *pPager, int nPage){
+static int pager_truncate(Pager *pPager, Pgno nPage){
int rc = SQLITE_OK;
- if( pPager->state>=PAGER_EXCLUSIVE ){
- rc = sqlite3OsTruncate(pPager->fd, pPager->pageSize*(i64)nPage);
- }
- if( rc==SQLITE_OK ){
- pPager->dbSize = nPage;
- pager_truncate_cache(pPager);
+ if( pPager->state>=PAGER_EXCLUSIVE && isOpen(pPager->fd) ){
+ i64 currentSize, newSize;
+ /* TODO: Is it safe to use Pager.dbFileSize here? */
+ rc = sqlite3OsFileSize(pPager->fd, &currentSize);
+ newSize = pPager->pageSize*(i64)nPage;
+ if( rc==SQLITE_OK && currentSize!=newSize ){
+ if( currentSize>newSize ){
+ rc = sqlite3OsTruncate(pPager->fd, newSize);
+ }else{
+ rc = sqlite3OsWrite(pPager->fd, "", 1, newSize-1);
+ }
+ if( rc==SQLITE_OK ){
+ pPager->dbFileSize = nPage;
+ }
+ }
}
return rc;
}
/*
+** Set the value of the Pager.sectorSize variable for the given
+** pager based on the value returned by the xSectorSize method
+** of the open database file. The sector size will be used used
+** to determine the size and alignment of journal header and
+** master journal pointers within created journal files.
+**
+** For temporary files the effective sector size is always 512 bytes.
+**
+** Otherwise, for non-temporary files, the effective sector size is
+** the value returned by the xSectorSize() method rounded up to 512 if
+** it is less than 512, or rounded down to MAX_SECTOR_SIZE if it
+** is greater than MAX_SECTOR_SIZE.
+*/
+static void setSectorSize(Pager *pPager){
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+
+ if( !pPager->tempFile ){
+ /* Sector size doesn't matter for temporary files. Also, the file
+ ** may not have been opened yet, in which case the OsSectorSize()
+ ** call will segfault.
+ */
+ pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
+ }
+ if( pPager->sectorSize<512 ){
+ pPager->sectorSize = 512;
+ }
+ if( pPager->sectorSize>MAX_SECTOR_SIZE ){
+ assert( MAX_SECTOR_SIZE>=512 );
+ pPager->sectorSize = MAX_SECTOR_SIZE;
+ }
+}
+
+/*
** Playback the journal and thus restore the database file to
** the state it was in before we started making changes.
**
@@ -18027,20 +33037,23 @@ static int pager_truncate(Pager *pPager, int nPage){
** sanity checksum.
** (4) 4 byte integer which is the number of pages to truncate the
** database to during a rollback.
-** (5) 4 byte integer which is the number of bytes in the master journal
+** (5) 4 byte big-endian integer which is the sector size. The header
+** is this many bytes in size.
+** (6) 4 byte big-endian integer which is the page case.
+** (7) 4 byte integer which is the number of bytes in the master journal
** name. The value may be zero (indicate that there is no master
** journal.)
-** (6) N bytes of the master journal name. The name will be nul-terminated
+** (8) N bytes of the master journal name. The name will be nul-terminated
** and might be shorter than the value read from (5). If the first byte
** of the name is \000 then there is no master journal. The master
** journal name is stored in UTF-8.
-** (7) Zero or more pages instances, each as follows:
+** (9) Zero or more pages instances, each as follows:
** + 4 byte page number.
** + pPager->pageSize bytes of data.
** + 4 byte checksum
**
-** When we speak of the journal header, we mean the first 6 items above.
-** Each entry in the journal is an instance of the 7th item.
+** When we speak of the journal header, we mean the first 8 items above.
+** Each entry in the journal is an instance of the 9th item.
**
** Call the value from the second bullet "nRec". nRec is the number of
** valid page entries in the journal. In most cases, you can compute the
@@ -18065,19 +33078,29 @@ static int pager_truncate(Pager *pPager, int nPage){
**
** If an I/O or malloc() error occurs, the journal-file is not deleted
** and an error code is returned.
+**
+** The isHot parameter indicates that we are trying to rollback a journal
+** that might be a hot journal. Or, it could be that the journal is
+** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE.
+** If the journal really is hot, reset the pager cache prior rolling
+** back any content. If the journal is merely persistent, no reset is
+** needed.
*/
static int pager_playback(Pager *pPager, int isHot){
+ sqlite3_vfs *pVfs = pPager->pVfs;
i64 szJ; /* Size of the journal file in bytes */
u32 nRec; /* Number of Records in the journal */
- int i; /* Loop counter */
+ u32 u; /* Unsigned loop counter */
Pgno mxPg = 0; /* Size of the original file in pages */
int rc; /* Result code of a subroutine */
+ int res = 1; /* Value returned by sqlite3OsAccess() */
char *zMaster = 0; /* Name of master journal file if any */
+ int needPagerReset; /* True to reset page prior to first page rollback */
/* Figure out how many records are in the journal. Abort early if
** the journal is empty.
*/
- assert( pPager->journalOpen );
+ assert( isOpen(pPager->jfd) );
rc = sqlite3OsFileSize(pPager->jfd, &szJ);
if( rc!=SQLITE_OK || szJ==0 ){
goto end_playback;
@@ -18087,28 +33110,38 @@ static int pager_playback(Pager *pPager, int isHot){
** If a master journal file name is specified, but the file is not
** present on disk, then the journal is not hot and does not need to be
** played back.
+ **
+ ** TODO: Technically the following is an error because it assumes that
+ ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that
+ ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c,
+ ** mxPathname is 512, which is the same as the minimum allowable value
+ ** for pageSize.
*/
- rc = readMasterJournal(pPager->jfd, &zMaster);
- assert( rc!=SQLITE_DONE );
- if( rc!=SQLITE_OK || (zMaster && !sqlite3OsFileExists(zMaster)) ){
- sqliteFree(zMaster);
- zMaster = 0;
- if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ zMaster = pPager->pTmpSpace;
+ rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
+ if( rc==SQLITE_OK && zMaster[0] ){
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
+ }
+ zMaster = 0;
+ if( rc!=SQLITE_OK || !res ){
goto end_playback;
}
- sqlite3OsSeek(pPager->jfd, 0);
pPager->journalOff = 0;
+ needPagerReset = isHot;
- /* This loop terminates either when the readJournalHdr() call returns
- ** SQLITE_DONE or an IO error occurs. */
+ /* This loop terminates either when a readJournalHdr() or
+ ** pager_playback_one_page() call returns SQLITE_DONE or an IO error
+ ** occurs.
+ */
while( 1 ){
+ int isUnsync = 0;
/* Read the next journal header from the journal file. If there are
** not enough bytes left in the journal file for a complete header, or
** it is corrupted, then a process must of failed while writing it.
** This indicates nothing more needs to be rolled back.
*/
- rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
+ rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
@@ -18123,37 +33156,60 @@ static int pager_playback(Pager *pPager, int isHot){
*/
if( nRec==0xffffffff ){
assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
- nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
+ nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager));
}
/* If nRec is 0 and this rollback is of a transaction created by this
- ** process. In this case the rest of the journal file consists of
- ** journalled copies of pages that need to be read back into the cache.
+ ** process and if this is the final header in the journal, then it means
+ ** that this part of the journal was being filled but has not yet been
+ ** synced to disk. Compute the number of pages based on the remaining
+ ** size of the file.
+ **
+ ** The third term of the test was added to fix ticket #2565.
+ ** When rolling back a hot journal, nRec==0 always means that the next
+ ** chunk of the journal contains zero pages to be rolled back. But
+ ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in
+ ** the journal, it means that the journal might contain additional
+ ** pages that need to be rolled back and that the number of pages
+ ** should be computed based on the journal file size.
*/
- if( nRec==0 && !isHot ){
- nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
+ if( nRec==0 && !isHot &&
+ pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
+ nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager));
+ isUnsync = 1;
}
/* If this is the first header read from the journal, truncate the
- ** database file back to it's original size.
+ ** database file back to its original size.
*/
if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
rc = pager_truncate(pPager, mxPg);
if( rc!=SQLITE_OK ){
goto end_playback;
}
+ pPager->dbSize = mxPg;
}
- /* Copy original pages out of the journal and back into the database file.
+ /* Copy original pages out of the journal and back into the
+ ** database file and/or page cache.
*/
- for(i=0; i<nRec; i++){
- rc = pager_playback_one_page(pPager, pPager->jfd, 1);
+ for(u=0; u<nRec; u++){
+ if( needPagerReset ){
+ pager_reset(pPager);
+ needPagerReset = 0;
+ }
+ rc = pager_playback_one_page(pPager,1,isUnsync,&pPager->journalOff,0,0);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
pPager->journalOff = szJ;
break;
}else{
+ /* If we are unable to rollback, quit and return the error
+ ** code. This will cause the pager to enter the error state
+ ** so that no further harm will be done. Perhaps the next
+ ** process to come along will be able to rollback the database.
+ */
goto end_playback;
}
}
@@ -18163,135 +33219,180 @@ static int pager_playback(Pager *pPager, int isHot){
assert( 0 );
end_playback:
+ /* Following a rollback, the database file should be back in its original
+ ** state prior to the start of the transaction, so invoke the
+ ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the
+ ** assertion that the transaction counter was modified.
+ */
+ assert(
+ pPager->fd->pMethods==0 ||
+ sqlite3OsFileControl(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0)>=SQLITE_OK
+ );
+
+ /* If this playback is happening automatically as a result of an IO or
+ ** malloc error that occurred after the change-counter was updated but
+ ** before the transaction was committed, then the change-counter
+ ** modification may just have been reverted. If this happens in exclusive
+ ** mode, then subsequent transactions performed by the connection will not
+ ** update the change-counter at all. This may lead to cache inconsistency
+ ** problems for other processes at some point in the future. So, just
+ ** in case this has happened, clear the changeCountDone flag now.
+ */
+ pPager->changeCountDone = pPager->tempFile;
+
+ if( rc==SQLITE_OK ){
+ zMaster = pPager->pTmpSpace;
+ rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
+ testcase( rc!=SQLITE_OK );
+ }
if( rc==SQLITE_OK ){
- rc = pager_end_transaction(pPager);
+ rc = pager_end_transaction(pPager, zMaster[0]!='\0');
+ testcase( rc!=SQLITE_OK );
}
- if( zMaster ){
+ if( rc==SQLITE_OK && zMaster[0] && res ){
/* If there was a master journal and this routine will return success,
** see if it is possible to delete the master journal.
*/
- if( rc==SQLITE_OK ){
- rc = pager_delmaster(zMaster);
- }
- sqliteFree(zMaster);
+ rc = pager_delmaster(pPager, zMaster);
+ testcase( rc!=SQLITE_OK );
}
/* The Pager.sectorSize variable may have been updated while rolling
** back a journal created by a process with a different sector size
** value. Reset it to the correct value for this process.
*/
- pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
+ setSectorSize(pPager);
return rc;
}
/*
-** Playback the statement journal.
+** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback
+** the entire master journal file. The case pSavepoint==NULL occurs when
+** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction
+** savepoint.
+**
+** When pSavepoint is not NULL (meaning a non-transaction savepoint is
+** being rolled back), then the rollback consists of up to three stages,
+** performed in the order specified:
+**
+** * Pages are played back from the main journal starting at byte
+** offset PagerSavepoint.iOffset and continuing to
+** PagerSavepoint.iHdrOffset, or to the end of the main journal
+** file if PagerSavepoint.iHdrOffset is zero.
**
-** This is similar to playing back the transaction journal but with
-** a few extra twists.
+** * If PagerSavepoint.iHdrOffset is not zero, then pages are played
+** back starting from the journal header immediately following
+** PagerSavepoint.iHdrOffset to the end of the main journal file.
**
-** (1) The number of pages in the database file at the start of
-** the statement is stored in pPager->stmtSize, not in the
-** journal file itself.
+** * Pages are then played back from the sub-journal file, starting
+** with the PagerSavepoint.iSubRec and continuing to the end of
+** the journal file.
**
-** (2) In addition to playing back the statement journal, also
-** playback all pages of the transaction journal beginning
-** at offset pPager->stmtJSize.
+** Throughout the rollback process, each time a page is rolled back, the
+** corresponding bit is set in a bitvec structure (variable pDone in the
+** implementation below). This is used to ensure that a page is only
+** rolled back the first time it is encountered in either journal.
+**
+** If pSavepoint is NULL, then pages are only played back from the main
+** journal file. There is no need for a bitvec in this case.
+**
+** In either case, before playback commences the Pager.dbSize variable
+** is reset to the value that it held at the start of the savepoint
+** (or transaction). No page with a page-number greater than this value
+** is played back. If one is encountered it is simply skipped.
*/
-static int pager_stmt_playback(Pager *pPager){
- i64 szJ; /* Size of the full journal */
- i64 hdrOff;
- int nRec; /* Number of Records */
- int i; /* Loop counter */
- int rc;
+static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){
+ i64 szJ; /* Effective size of the main journal */
+ i64 iHdrOff; /* End of first segment of main-journal records */
+ int rc = SQLITE_OK; /* Return code */
+ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */
- szJ = pPager->journalOff;
-#ifndef NDEBUG
- {
- i64 os_szJ;
- rc = sqlite3OsFileSize(pPager->jfd, &os_szJ);
- if( rc!=SQLITE_OK ) return rc;
- assert( szJ==os_szJ );
- }
-#endif
+ assert( pPager->state>=PAGER_SHARED );
- /* Set hdrOff to be the offset just after the end of the last journal
- ** page written before the first journal-header for this statement
- ** transaction was written, or the end of the file if no journal
- ** header was written.
- */
- hdrOff = pPager->stmtHdrOff;
- assert( pPager->fullSync || !hdrOff );
- if( !hdrOff ){
- hdrOff = szJ;
+ /* Allocate a bitvec to use to store the set of pages rolled back */
+ if( pSavepoint ){
+ pDone = sqlite3BitvecCreate(pSavepoint->nOrig);
+ if( !pDone ){
+ return SQLITE_NOMEM;
+ }
}
-
- /* Truncate the database back to its original size.
+
+ /* Set the database size back to the value it was before the savepoint
+ ** being reverted was opened.
*/
- rc = pager_truncate(pPager, pPager->stmtSize);
- assert( pPager->state>=PAGER_SHARED );
+ pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize;
- /* Figure out how many records are in the statement journal.
+ /* Use pPager->journalOff as the effective size of the main rollback
+ ** journal. The actual file might be larger than this in
+ ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything
+ ** past pPager->journalOff is off-limits to us.
*/
- assert( pPager->stmtInUse && pPager->journalOpen );
- sqlite3OsSeek(pPager->stfd, 0);
- nRec = pPager->stmtNRec;
-
- /* Copy original pages out of the statement journal and back into the
- ** database file. Note that the statement journal omits checksums from
- ** each record since power-failure recovery is not important to statement
- ** journals.
+ szJ = pPager->journalOff;
+
+ /* Begin by rolling back records from the main journal starting at
+ ** PagerSavepoint.iOffset and continuing to the next journal header.
+ ** There might be records in the main journal that have a page number
+ ** greater than the current database size (pPager->dbSize) but those
+ ** will be skipped automatically. Pages are added to pDone as they
+ ** are played back.
*/
- for(i=nRec-1; i>=0; i--){
- rc = pager_playback_one_page(pPager, pPager->stfd, 0);
+ if( pSavepoint ){
+ iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ;
+ pPager->journalOff = pSavepoint->iOffset;
+ while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){
+ rc = pager_playback_one_page(pPager, 1, 0, &pPager->journalOff, 1, pDone);
+ }
assert( rc!=SQLITE_DONE );
- if( rc!=SQLITE_OK ) goto end_stmt_playback;
+ }else{
+ pPager->journalOff = 0;
}
- /* Now roll some pages back from the transaction journal. Pager.stmtJSize
- ** was the size of the journal file when this statement was started, so
- ** everything after that needs to be rolled back, either into the
- ** database, the memory cache, or both.
- **
- ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
- ** of the first journal header written during this statement transaction.
+ /* Continue rolling back records out of the main journal starting at
+ ** the first journal header seen and continuing until the effective end
+ ** of the main journal file. Continue to skip out-of-range pages and
+ ** continue adding pages rolled back to pDone.
*/
- rc = sqlite3OsSeek(pPager->jfd, pPager->stmtJSize);
- if( rc!=SQLITE_OK ){
- goto end_stmt_playback;
- }
- pPager->journalOff = pPager->stmtJSize;
- pPager->cksumInit = pPager->stmtCksum;
- while( pPager->journalOff < hdrOff ){
- rc = pager_playback_one_page(pPager, pPager->jfd, 1);
+ while( rc==SQLITE_OK && pPager->journalOff<szJ ){
+ u32 ii; /* Loop counter */
+ u32 nJRec = 0; /* Number of Journal Records */
+ u32 dummy;
+ rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy);
assert( rc!=SQLITE_DONE );
- if( rc!=SQLITE_OK ) goto end_stmt_playback;
- }
- while( pPager->journalOff < szJ ){
- u32 nJRec; /* Number of Journal Records */
- u32 dummy;
- rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
- if( rc!=SQLITE_OK ){
- assert( rc!=SQLITE_DONE );
- goto end_stmt_playback;
+ /*
+ ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff"
+ ** test is related to ticket #2565. See the discussion in the
+ ** pager_playback() function for additional information.
+ */
+ if( nJRec==0
+ && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff
+ ){
+ nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager));
}
- if( nJRec==0 ){
- nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
+ for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){
+ rc = pager_playback_one_page(pPager, 1, 0, &pPager->journalOff, 1, pDone);
}
- for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
- rc = pager_playback_one_page(pPager, pPager->jfd, 1);
- assert( rc!=SQLITE_DONE );
- if( rc!=SQLITE_OK ) goto end_stmt_playback;
+ assert( rc!=SQLITE_DONE );
+ }
+ assert( rc!=SQLITE_OK || pPager->journalOff==szJ );
+
+ /* Finally, rollback pages from the sub-journal. Page that were
+ ** previously rolled back out of the main journal (and are hence in pDone)
+ ** will be skipped. Out-of-range pages are also skipped.
+ */
+ if( pSavepoint ){
+ u32 ii; /* Loop counter */
+ i64 offset = pSavepoint->iSubRec*(4+pPager->pageSize);
+ for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){
+ assert( offset==ii*(4+pPager->pageSize) );
+ rc = pager_playback_one_page(pPager, 0, 0, &offset, 1, pDone);
}
+ assert( rc!=SQLITE_DONE );
}
- pPager->journalOff = szJ;
-
-end_stmt_playback:
- if( rc==SQLITE_OK) {
+ sqlite3BitvecDestroy(pDone);
+ if( rc==SQLITE_OK ){
pPager->journalOff = szJ;
- /* pager_reload_cache(pPager); */
}
return rc;
}
@@ -18299,12 +33400,8 @@ end_stmt_playback:
/*
** Change the maximum number of in-memory pages that are allowed.
*/
-void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
- if( mxPage>10 ){
- pPager->mxPage = mxPage;
- }else{
- pPager->mxPage = 10;
- }
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
+ sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
}
/*
@@ -18334,10 +33431,10 @@ void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
** and FULL=3.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
- pPager->noSync = level==1 || pPager->tempFile;
- pPager->fullSync = level==3 && !pPager->tempFile;
- pPager->full_fsync = full_fsync;
+SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int bFullFsync){
+ pPager->noSync = (level==1 || pPager->tempFile) ?1:0;
+ pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0;
+ pPager->sync_flags = (bFullFsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
if( pPager->noSync ) pPager->needSync = 0;
}
#endif
@@ -18348,240 +33445,172 @@ void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
** testing and analysis only.
*/
#ifdef SQLITE_TEST
-int sqlite3_opentemp_count = 0;
+SQLITE_API int sqlite3_opentemp_count = 0;
#endif
/*
-** Open a temporary file.
+** Open a temporary file.
**
-** Write the file descriptor into *fd. Return SQLITE_OK on success or some
-** other error code if we fail.
+** Write the file descriptor into *pFile. Return SQLITE_OK on success
+** or some other error code if we fail. The OS will automatically
+** delete the temporary file when it is closed.
**
-** The OS will automatically delete the temporary file when it is
-** closed.
+** The flags passed to the VFS layer xOpen() call are those specified
+** by parameter vfsFlags ORed with the following:
+**
+** SQLITE_OPEN_READWRITE
+** SQLITE_OPEN_CREATE
+** SQLITE_OPEN_EXCLUSIVE
+** SQLITE_OPEN_DELETEONCLOSE
*/
-static int sqlite3PagerOpentemp(OsFile **pFd){
- int cnt = 8;
- int rc;
- char zFile[SQLITE_TEMPNAME_SIZE];
+static int pagerOpentemp(
+ Pager *pPager, /* The pager object */
+ sqlite3_file *pFile, /* Write the file descriptor here */
+ int vfsFlags /* Flags passed through to the VFS */
+){
+ int rc; /* Return code */
#ifdef SQLITE_TEST
sqlite3_opentemp_count++; /* Used for testing and analysis only */
#endif
- do{
- cnt--;
- sqlite3OsTempFileName(zFile);
- rc = sqlite3OsOpenExclusive(zFile, pFd, 1);
- assert( rc!=SQLITE_OK || *pFd );
- }while( cnt>0 && rc!=SQLITE_OK && rc!=SQLITE_NOMEM );
+
+ vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
+ rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
+ assert( rc!=SQLITE_OK || isOpen(pFile) );
return rc;
}
/*
-** Create a new page cache and put a pointer to the page cache in *ppPager.
-** The file to be cached need not exist. The file is not locked until
-** the first call to sqlite3PagerGet() and is only held open until the
-** last page is released using sqlite3PagerUnref().
-**
-** If zFilename is NULL then a randomly-named temporary file is created
-** and used as the file to be cached. The file will be deleted
-** automatically when it is closed.
+** Set the busy handler function.
**
-** If zFilename is ":memory:" then all information is held in cache.
-** It is never written to disk. This can be used to implement an
-** in-memory database.
-*/
-int sqlite3PagerOpen(
- Pager **ppPager, /* Return the Pager structure here */
- const char *zFilename, /* Name of the database file to open */
- int nExtra, /* Extra bytes append to each in-memory page */
- int flags /* flags controlling this file */
+** The pager invokes the busy-handler if sqlite3OsLock() returns
+** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock,
+** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE
+** lock. It does *not* invoke the busy handler when upgrading from
+** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE
+** (which occurs during hot-journal rollback). Summary:
+**
+** Transition | Invokes xBusyHandler
+** --------------------------------------------------------
+** NO_LOCK -> SHARED_LOCK | Yes
+** SHARED_LOCK -> RESERVED_LOCK | No
+** SHARED_LOCK -> EXCLUSIVE_LOCK | No
+** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes
+**
+** If the busy-handler callback returns non-zero, the lock is
+** retried. If it returns zero, then the SQLITE_BUSY error is
+** returned to the caller of the pager API function.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(
+ Pager *pPager, /* Pager object */
+ int (*xBusyHandler)(void *), /* Pointer to busy-handler function */
+ void *pBusyHandlerArg /* Argument to pass to xBusyHandler */
){
- Pager *pPager = 0;
- char *zFullPathname = 0;
- int nameLen; /* Compiler is wrong. This is always initialized before use */
- OsFile *fd = 0;
- int rc = SQLITE_OK;
- int i;
- int tempFile = 0;
- int memDb = 0;
- int readOnly = 0;
- int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
- int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
- char zTemp[SQLITE_TEMPNAME_SIZE];
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- /* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to
- ** malloc() must have already been made by this thread before it gets
- ** to this point. This means the ThreadData must have been allocated already
- ** so that ThreadData.nAlloc can be set. It would be nice to assert
- ** that ThreadData.nAlloc is non-zero, but alas this breaks test cases
- ** written to invoke the pager directly.
- */
- ThreadData *pTsd = sqlite3ThreadData();
- assert( pTsd );
-#endif
-
- /* We used to test if malloc() had already failed before proceeding.
- ** But the way this function is used in SQLite means that can never
- ** happen. Furthermore, if the malloc-failed flag is already set,
- ** either the call to sqliteStrDup() or sqliteMalloc() below will
- ** fail shortly and SQLITE_NOMEM returned anyway.
- */
- *ppPager = 0;
-
- /* Open the pager file and set zFullPathname to point at malloc()ed
- ** memory containing the complete filename (i.e. including the directory).
- */
- if( zFilename && zFilename[0] ){
-#ifndef SQLITE_OMIT_MEMORYDB
- if( strcmp(zFilename,":memory:")==0 ){
- memDb = 1;
- zFullPathname = sqliteStrDup("");
- }else
-#endif
- {
- zFullPathname = sqlite3OsFullPathname(zFilename);
- if( zFullPathname ){
- rc = sqlite3OsOpenReadWrite(zFullPathname, &fd, &readOnly);
- assert( rc!=SQLITE_OK || fd );
- }
- }
- }else{
- rc = sqlite3PagerOpentemp(&fd);
- sqlite3OsTempFileName(zTemp);
- zFilename = zTemp;
- zFullPathname = sqlite3OsFullPathname(zFilename);
- if( rc==SQLITE_OK ){
- tempFile = 1;
- }
- }
-
- /* Allocate the Pager structure. As part of the same allocation, allocate
- ** space for the full paths of the file, directory and journal
- ** (Pager.zFilename, Pager.zDirectory and Pager.zJournal).
- */
- if( zFullPathname ){
- nameLen = strlen(zFullPathname);
- pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 );
- if( pPager && rc==SQLITE_OK ){
- pPager->pTmpSpace = (char *)sqliteMallocRaw(SQLITE_DEFAULT_PAGE_SIZE);
- }
- }
-
-
- /* If an error occured in either of the blocks above, free the memory
- ** pointed to by zFullPathname, free the Pager structure and close the
- ** file. Since the pager is not allocated there is no need to set
- ** any Pager.errMask variables.
- */
- if( !pPager || !zFullPathname || !pPager->pTmpSpace || rc!=SQLITE_OK ){
- sqlite3OsClose(&fd);
- sqliteFree(zFullPathname);
- sqliteFree(pPager);
- return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
- }
-
- PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(fd), zFullPathname);
- IOTRACE(("OPEN %p %s\n", pPager, zFullPathname))
- pPager->zFilename = (char*)&pPager[1];
- pPager->zDirectory = &pPager->zFilename[nameLen+1];
- pPager->zJournal = &pPager->zDirectory[nameLen+1];
- strcpy(pPager->zFilename, zFullPathname);
- strcpy(pPager->zDirectory, zFullPathname);
-
- for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){}
- if( i>0 ) pPager->zDirectory[i-1] = 0;
- strcpy(pPager->zJournal, zFullPathname);
- sqliteFree(zFullPathname);
- strcpy(&pPager->zJournal[nameLen], "-journal");
- pPager->fd = fd;
- /* pPager->journalOpen = 0; */
- pPager->useJournal = useJournal && !memDb;
- pPager->noReadlock = noReadlock && readOnly;
- /* pPager->stmtOpen = 0; */
- /* pPager->stmtInUse = 0; */
- /* pPager->nRef = 0; */
- pPager->dbSize = memDb-1;
- pPager->pageSize = SQLITE_DEFAULT_PAGE_SIZE;
- /* pPager->stmtSize = 0; */
- /* pPager->stmtJSize = 0; */
- /* pPager->nPage = 0; */
- /* pPager->nMaxPage = 0; */
- pPager->mxPage = 100;
- assert( PAGER_UNLOCK==0 );
- /* pPager->state = PAGER_UNLOCK; */
- /* pPager->errMask = 0; */
- pPager->tempFile = tempFile;
- assert( tempFile==PAGER_LOCKINGMODE_NORMAL
- || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
- assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
- pPager->exclusiveMode = tempFile;
- pPager->memDb = memDb;
- pPager->readOnly = readOnly;
- /* pPager->needSync = 0; */
- pPager->noSync = pPager->tempFile || !useJournal;
- pPager->fullSync = (pPager->noSync?0:1);
- /* pPager->pFirst = 0; */
- /* pPager->pFirstSynced = 0; */
- /* pPager->pLast = 0; */
- pPager->nExtra = FORCE_ALIGNMENT(nExtra);
- assert(fd||memDb);
- if( !memDb ){
- pPager->sectorSize = sqlite3OsSectorSize(fd);
- }
- /* pPager->pBusyHandler = 0; */
- /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
- *ppPager = pPager;
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- pPager->pNext = pTsd->pPager;
- pTsd->pPager = pPager;
-#endif
- return SQLITE_OK;
+ pPager->xBusyHandler = xBusyHandler;
+ pPager->pBusyHandlerArg = pBusyHandlerArg;
}
/*
-** Set the busy handler function.
+** Report the current page size and number of reserved bytes back
+** to the codec.
*/
-void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
- pPager->pBusyHandler = pBusyHandler;
+#ifdef SQLITE_HAS_CODEC
+static void pagerReportSize(Pager *pPager){
+ if( pPager->xCodecSizeChng ){
+ pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize,
+ (int)pPager->nReserve);
+ }
}
+#else
+# define pagerReportSize(X) /* No-op if we do not support a codec */
+#endif
/*
-** Set the destructor for this pager. If not NULL, the destructor is called
-** when the reference count on each page reaches zero. The destructor can
-** be used to clean up information in the extra segment appended to each page.
+** Change the page size used by the Pager object. The new page size
+** is passed in *pPageSize.
+**
+** If the pager is in the error state when this function is called, it
+** is a no-op. The value returned is the error state error code (i.e.
+** one of SQLITE_IOERR, SQLITE_CORRUPT or SQLITE_FULL).
+**
+** Otherwise, if all of the following are true:
+**
+** * the new page size (value of *pPageSize) is valid (a power
+** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and
+**
+** * there are no outstanding page references, and
**
-** The destructor is not called as a result sqlite3PagerClose().
-** Destructors are only called by sqlite3PagerUnref().
+** * the database is either not an in-memory database or it is
+** an in-memory database that currently consists of zero pages.
+**
+** then the pager object page size is set to *pPageSize.
+**
+** If the page size is changed, then this function uses sqlite3PagerMalloc()
+** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt
+** fails, SQLITE_NOMEM is returned and the page size remains unchanged.
+** In all other cases, SQLITE_OK is returned.
+**
+** If the page size is not changed, either because one of the enumerated
+** conditions above is not true, the pager was in error state when this
+** function was called, or because the memory allocation attempt failed,
+** then *pPageSize is set to the old, retained page size before returning.
*/
-void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
- pPager->xDestructor = xDesc;
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize, int nReserve){
+ int rc = pPager->errCode;
+
+ if( rc==SQLITE_OK ){
+ u16 pageSize = *pPageSize;
+ assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
+ if( (pPager->memDb==0 || pPager->dbSize==0)
+ && sqlite3PcacheRefCount(pPager->pPCache)==0
+ && pageSize && pageSize!=pPager->pageSize
+ ){
+ char *pNew = (char *)sqlite3PageMalloc(pageSize);
+ if( !pNew ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pager_reset(pPager);
+ pPager->pageSize = pageSize;
+ sqlite3PageFree(pPager->pTmpSpace);
+ pPager->pTmpSpace = pNew;
+ sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
+ }
+ }
+ *pPageSize = (u16)pPager->pageSize;
+ if( nReserve<0 ) nReserve = pPager->nReserve;
+ assert( nReserve>=0 && nReserve<1000 );
+ pPager->nReserve = (i16)nReserve;
+ pagerReportSize(pPager);
+ }
+ return rc;
}
/*
-** Set the reinitializer for this pager. If not NULL, the reinitializer
-** is called when the content of a page in cache is restored to its original
-** value as a result of a rollback. The callback gives higher-level code
-** an opportunity to restore the EXTRA section to agree with the restored
-** page data.
+** Return a pointer to the "temporary page" buffer held internally
+** by the pager. This is a buffer that is big enough to hold the
+** entire content of a database page. This buffer is used internally
+** during rollback and will be overwritten whenever a rollback
+** occurs. But other modules are free to use it too, as long as
+** no rollbacks are happening.
*/
-void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
- pPager->xReiniter = xReinit;
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
+ return pPager->pTmpSpace;
}
/*
-** Set the page size. Return the new size. If the suggest new page
-** size is inappropriate, then an alternative page size is selected
-** and returned.
+** Attempt to set the maximum database page count if mxPage is positive.
+** Make no changes if mxPage is zero or negative. And never reduce the
+** maximum page count below the current size of the database.
+**
+** Regardless of mxPage, return the current maximum page count.
*/
-int sqlite3PagerSetPagesize(Pager *pPager, int pageSize){
- assert( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE );
- if( !pPager->memDb && pPager->nRef==0 ){
- pager_reset(pPager);
- pPager->pageSize = pageSize;
- pPager->pTmpSpace = sqlite3ReallocOrFree(pPager->pTmpSpace, pageSize);
+SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
+ if( mxPage>0 ){
+ pPager->mxPgno = mxPage;
}
- return pPager->pageSize;
+ sqlite3PagerPagecount(pPager, 0);
+ return pPager->mxPgno;
}
/*
@@ -18593,8 +33622,8 @@ int sqlite3PagerSetPagesize(Pager *pPager, int pageSize){
** and generate no code.
*/
#ifdef SQLITE_TEST
-extern int sqlite3_io_error_pending;
-extern int sqlite3_io_error_hit;
+SQLITE_API extern int sqlite3_io_error_pending;
+SQLITE_API extern int sqlite3_io_error_hit;
static int saved_cnt;
void disable_simulated_io_errors(void){
saved_cnt = sqlite3_io_error_pending;
@@ -18612,21 +33641,23 @@ void enable_simulated_io_errors(void){
** Read the first N bytes from the beginning of the file into memory
** that pDest points to.
**
-** No error checking is done. The rational for this is that this function
-** may be called even if the file does not exist or contain a header. In
-** these cases sqlite3OsRead() will return an error, to which the correct
-** response is to zero the memory at pDest and continue. A real IO error
-** will presumably recur and be picked up later (Todo: Think about this).
+** If the pager was opened on a transient file (zFilename==""), or
+** opened on a file less than N bytes in size, the output buffer is
+** zeroed and SQLITE_OK returned. The rationale for this is that this
+** function is used to read database headers, and a new transient or
+** zero sized database has a header than consists entirely of zeroes.
+**
+** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered,
+** the error code is returned to the caller and the contents of the
+** output buffer undefined.
*/
-int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
int rc = SQLITE_OK;
memset(pDest, 0, N);
- if( MEMDB==0 ){
- disable_simulated_io_errors();
- sqlite3OsSeek(pPager->fd, 0);
- enable_simulated_io_errors();
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+ if( isOpen(pPager->fd) ){
IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
- rc = sqlite3OsRead(pPager->fd, pDest, N);
+ rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
if( rc==SQLITE_IOERR_SHORT_READ ){
rc = SQLITE_OK;
}
@@ -18635,170 +33666,84 @@ int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
}
/*
-** Return the total number of pages in the disk file associated with
-** pPager.
+** Return the total number of pages in the database file associated
+** with pPager. Normally, this is calculated as (<db file size>/<page-size>).
+** However, if the file is between 1 and <page-size> bytes in size, then
+** this is considered a 1 page file.
**
-** If the PENDING_BYTE lies on the page directly after the end of the
-** file, then consider this page part of the file too. For example, if
-** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
-** file is 4096 bytes, 5 is returned instead of 4.
+** If the pager is in error state when this function is called, then the
+** error state error code is returned and *pnPage left unchanged. Or,
+** if the file system has to be queried for the size of the file and
+** the query attempt returns an IO error, the IO error code is returned
+** and *pnPage is left unchanged.
+**
+** Otherwise, if everything is successful, then SQLITE_OK is returned
+** and *pnPage is set to the number of pages in the database.
*/
-int sqlite3PagerPagecount(Pager *pPager){
- i64 n;
- int rc;
- assert( pPager!=0 );
+SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager, int *pnPage){
+ Pgno nPage; /* Value to return via *pnPage */
+
+ /* If the pager is already in the error state, return the error code. */
if( pPager->errCode ){
- return 0;
+ return pPager->errCode;
}
- if( pPager->dbSize>=0 ){
- n = pPager->dbSize;
- } else {
- if( (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
+
+ /* Determine the number of pages in the file. Store this in nPage. */
+ if( pPager->dbSizeValid ){
+ nPage = pPager->dbSize;
+ }else{
+ int rc; /* Error returned by OsFileSize() */
+ i64 n = 0; /* File size in bytes returned by OsFileSize() */
+
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+ if( isOpen(pPager->fd) && (0 != (rc = sqlite3OsFileSize(pPager->fd, &n))) ){
pager_error(pPager, rc);
- return 0;
+ return rc;
}
if( n>0 && n<pPager->pageSize ){
- n = 1;
+ nPage = 1;
}else{
- n /= pPager->pageSize;
+ nPage = (Pgno)(n / pPager->pageSize);
}
if( pPager->state!=PAGER_UNLOCK ){
- pPager->dbSize = n;
+ pPager->dbSize = nPage;
+ pPager->dbFileSize = nPage;
+ pPager->dbSizeValid = 1;
}
}
- if( n==(PENDING_BYTE/pPager->pageSize) ){
- n++;
- }
- return n;
-}
-
-#ifndef SQLITE_OMIT_MEMORYDB
-/*
-** Clear a PgHistory block
-*/
-static void clearHistory(PgHistory *pHist){
- sqliteFree(pHist->pOrig);
- sqliteFree(pHist->pStmt);
- pHist->pOrig = 0;
- pHist->pStmt = 0;
-}
-#else
-#define clearHistory(x)
-#endif
-
-/*
-** Forward declaration
-*/
-static int syncJournal(Pager*);
-
-/*
-** Unlink pPg from it's hash chain. Also set the page number to 0 to indicate
-** that the page is not part of any hash chain. This is required because the
-** sqlite3PagerMovepage() routine can leave a page in the
-** pNextFree/pPrevFree list that is not a part of any hash-chain.
-*/
-static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
- if( pPg->pgno==0 ){
- assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
- return;
- }
- if( pPg->pNextHash ){
- pPg->pNextHash->pPrevHash = pPg->pPrevHash;
- }
- if( pPg->pPrevHash ){
- assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
- pPg->pPrevHash->pNextHash = pPg->pNextHash;
- }else{
- int h = pPg->pgno & (pPager->nHash-1);
- pPager->aHash[h] = pPg->pNextHash;
- }
- if( MEMDB ){
- clearHistory(PGHDR_TO_HIST(pPg, pPager));
- }
- pPg->pgno = 0;
- pPg->pNextHash = pPg->pPrevHash = 0;
-}
-
-/*
-** Unlink a page from the free list (the list of all pages where nRef==0)
-** and from its hash collision chain.
-*/
-static void unlinkPage(PgHdr *pPg){
- Pager *pPager = pPg->pPager;
-
- /* Keep the pFirstSynced pointer pointing at the first synchronized page */
- if( pPg==pPager->pFirstSynced ){
- PgHdr *p = pPg->pNextFree;
- while( p && p->needSync ){ p = p->pNextFree; }
- pPager->pFirstSynced = p;
+ /* If the current number of pages in the file is greater than the
+ ** configured maximum pager number, increase the allowed limit so
+ ** that the file can be read.
+ */
+ if( nPage>pPager->mxPgno ){
+ pPager->mxPgno = (Pgno)nPage;
}
- /* Unlink from the freelist */
- if( pPg->pPrevFree ){
- pPg->pPrevFree->pNextFree = pPg->pNextFree;
- }else{
- assert( pPager->pFirst==pPg );
- pPager->pFirst = pPg->pNextFree;
- }
- if( pPg->pNextFree ){
- pPg->pNextFree->pPrevFree = pPg->pPrevFree;
- }else{
- assert( pPager->pLast==pPg );
- pPager->pLast = pPg->pPrevFree;
+ /* Set the output variable and return SQLITE_OK */
+ if( pnPage ){
+ *pnPage = nPage;
}
- pPg->pNextFree = pPg->pPrevFree = 0;
-
- /* Unlink from the pgno hash table */
- unlinkHashChain(pPager, pPg);
+ return SQLITE_OK;
}
-/*
-** This routine is used to truncate the cache when a database
-** is truncated. Drop from the cache all pages whose pgno is
-** larger than pPager->dbSize and is unreferenced.
-**
-** Referenced pages larger than pPager->dbSize are zeroed.
-**
-** Actually, at the point this routine is called, it would be
-** an error to have a referenced page. But rather than delete
-** that page and guarantee a subsequent segfault, it seems better
-** to zero it and hope that we error out sanely.
-*/
-static void pager_truncate_cache(Pager *pPager){
- PgHdr *pPg;
- PgHdr **ppPg;
- int dbSize = pPager->dbSize;
-
- ppPg = &pPager->pAll;
- while( (pPg = *ppPg)!=0 ){
- if( pPg->pgno<=dbSize ){
- ppPg = &pPg->pNextAll;
- }else if( pPg->nRef>0 ){
- memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
- ppPg = &pPg->pNextAll;
- }else{
- *ppPg = pPg->pNextAll;
- IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
- PAGER_INCR(sqlite3_pager_pgfree_count);
- unlinkPage(pPg);
- makeClean(pPg);
- sqliteFree(pPg);
- pPager->nPage--;
- }
- }
-}
/*
-** Try to obtain a lock on a file. Invoke the busy callback if the lock
-** is currently not available. Repeat until the busy callback returns
-** false or until the lock succeeds.
+** Try to obtain a lock of type locktype on the database file. If
+** a similar or greater lock is already held, this function is a no-op
+** (returning SQLITE_OK immediately).
+**
+** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke
+** the busy callback if the lock is currently not available. Repeat
+** until the busy callback returns false or until the attempt to
+** obtain the lock succeeds.
**
** Return SQLITE_OK on success and an error code if we cannot obtain
-** the lock.
+** the lock. If the lock is obtained successfully, set the Pager.state
+** variable to locktype before returning.
*/
static int pager_wait_on_lock(Pager *pPager, int locktype){
- int rc;
+ int rc; /* Return code */
/* The OS lock values must be the same as the Pager lock values */
assert( PAGER_SHARED==SHARED_LOCK );
@@ -18806,16 +33751,26 @@ static int pager_wait_on_lock(Pager *pPager, int locktype){
assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
/* If the file is currently unlocked then the size must be unknown */
- assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
+ assert( pPager->state>=PAGER_SHARED || pPager->dbSizeValid==0 );
+
+ /* Check that this is either a no-op (because the requested lock is
+ ** already held, or one of the transistions that the busy-handler
+ ** may be invoked during, according to the comment above
+ ** sqlite3PagerSetBusyhandler().
+ */
+ assert( (pPager->state>=locktype)
+ || (pPager->state==PAGER_UNLOCK && locktype==PAGER_SHARED)
+ || (pPager->state==PAGER_RESERVED && locktype==PAGER_EXCLUSIVE)
+ );
if( pPager->state>=locktype ){
rc = SQLITE_OK;
}else{
do {
rc = sqlite3OsLock(pPager->fd, locktype);
- }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
+ }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
if( rc==SQLITE_OK ){
- pPager->state = locktype;
+ pPager->state = (u8)locktype;
IOTRACE(("LOCK %p %d\n", pPager, locktype))
}
}
@@ -18823,37 +33778,51 @@ static int pager_wait_on_lock(Pager *pPager, int locktype){
}
/*
-** Truncate the file to the number of pages specified.
+** Function assertTruncateConstraint(pPager) checks that one of the
+** following is true for all dirty pages currently in the page-cache:
+**
+** a) The page number is less than or equal to the size of the
+** current database image, in pages, OR
+**
+** b) if the page content were written at this time, it would not
+** be necessary to write the current content out to the sub-journal
+** (as determined by function subjRequiresPage()).
+**
+** If the condition asserted by this function were not true, and the
+** dirty page were to be discarded from the cache via the pagerStress()
+** routine, pagerStress() would not write the current page content to
+** the database file. If a savepoint transaction were rolled back after
+** this happened, the correct behaviour would be to restore the current
+** content of the page. However, since this content is not present in either
+** the database file or the portion of the rollback journal and
+** sub-journal rolled back the content could not be restored and the
+** database image would become corrupt. It is therefore fortunate that
+** this circumstance cannot arise.
*/
-int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
- int rc;
- assert( pPager->state>=PAGER_SHARED || MEMDB );
- sqlite3PagerPagecount(pPager);
- if( pPager->errCode ){
- rc = pPager->errCode;
- return rc;
- }
- if( nPage>=(unsigned)pPager->dbSize ){
- return SQLITE_OK;
- }
- if( MEMDB ){
- pPager->dbSize = nPage;
- pager_truncate_cache(pPager);
- return SQLITE_OK;
- }
- rc = syncJournal(pPager);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- /* Get an exclusive lock on the database before truncating. */
- rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
- if( rc!=SQLITE_OK ){
- return rc;
- }
+#if defined(SQLITE_DEBUG)
+static void assertTruncateConstraintCb(PgHdr *pPg){
+ assert( pPg->flags&PGHDR_DIRTY );
+ assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize );
+}
+static void assertTruncateConstraint(Pager *pPager){
+ sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
+}
+#else
+# define assertTruncateConstraint(pPager)
+#endif
- rc = pager_truncate(pPager, nPage);
- return rc;
+/*
+** Truncate the in-memory database file image to nPage pages. This
+** function does not actually modify the database file on disk. It
+** just sets the internal state of the pager object so that the
+** truncation will be done when the current transaction is committed.
+*/
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
+ assert( pPager->dbSizeValid );
+ assert( pPager->dbSize>=nPage );
+ assert( pPager->state>=PAGER_RESERVED );
+ pPager->dbSize = nPage;
+ assertTruncateConstraint(pPager);
}
/*
@@ -18870,307 +33839,231 @@ int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
** a hot journal may be left in the filesystem but no error is returned
** to the caller.
*/
-int sqlite3PagerClose(Pager *pPager){
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- /* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to
- ** malloc() must have already been made by this thread before it gets
- ** to this point. This means the ThreadData must have been allocated already
- ** so that ThreadData.nAlloc can be set.
- */
- ThreadData *pTsd = sqlite3ThreadData();
- assert( pPager );
- assert( pTsd && pTsd->nAlloc );
-#endif
-
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){
disable_simulated_io_errors();
+ sqlite3BeginBenignMalloc();
pPager->errCode = 0;
pPager->exclusiveMode = 0;
pager_reset(pPager);
- pagerUnlockAndRollback(pPager);
+ if( MEMDB ){
+ pager_unlock(pPager);
+ }else{
+ /* Set Pager.journalHdr to -1 for the benefit of the pager_playback()
+ ** call which may be made from within pagerUnlockAndRollback(). If it
+ ** is not -1, then the unsynced portion of an open journal file may
+ ** be played back into the database. If a power failure occurs while
+ ** this is happening, the database may become corrupt.
+ */
+ pPager->journalHdr = -1;
+ pagerUnlockAndRollback(pPager);
+ }
+ sqlite3EndBenignMalloc();
enable_simulated_io_errors();
- PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
+ PAGERTRACE(("CLOSE %d\n", PAGERID(pPager)));
IOTRACE(("CLOSE %p\n", pPager))
- assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) );
- if( pPager->journalOpen ){
- sqlite3OsClose(&pPager->jfd);
- }
- sqliteFree(pPager->aInJournal);
- if( pPager->stmtOpen ){
- sqlite3OsClose(&pPager->stfd);
- }
- sqlite3OsClose(&pPager->fd);
- /* Temp files are automatically deleted by the OS
- ** if( pPager->tempFile ){
- ** sqlite3OsDelete(pPager->zFilename);
- ** }
- */
+ sqlite3OsClose(pPager->fd);
+ sqlite3PageFree(pPager->pTmpSpace);
+ sqlite3PcacheClose(pPager->pPCache);
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- /* Remove the pager from the linked list of pagers starting at
- ** ThreadData.pPager if memory-management is enabled.
- */
- if( pPager==pTsd->pPager ){
- pTsd->pPager = pPager->pNext;
- }else{
- Pager *pTmp;
- for(pTmp = pTsd->pPager; pTmp->pNext!=pPager; pTmp=pTmp->pNext){}
- pTmp->pNext = pPager->pNext;
- }
+#ifdef SQLITE_HAS_CODEC
+ if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
#endif
- sqliteFree(pPager->aHash);
- sqliteFree(pPager->pTmpSpace);
- sqliteFree(pPager);
- return SQLITE_OK;
-}
-/*
-** Return the page number for the given page data.
-*/
-Pgno sqlite3PagerPagenumber(DbPage *p){
- return p->pgno;
+ assert( !pPager->aSavepoint && !pPager->pInJournal );
+ assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) );
+
+ sqlite3_free(pPager);
+ return SQLITE_OK;
}
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
/*
-** The page_ref() function increments the reference count for a page.
-** If the page is currently on the freelist (the reference count is zero) then
-** remove it from the freelist.
-**
-** For non-test systems, page_ref() is a macro that calls _page_ref()
-** online of the reference count is zero. For test systems, page_ref()
-** is a real function so that we can set breakpoints and trace it.
+** Return the page number for page pPg.
*/
-static void _page_ref(PgHdr *pPg){
- if( pPg->nRef==0 ){
- /* The page is currently on the freelist. Remove it. */
- if( pPg==pPg->pPager->pFirstSynced ){
- PgHdr *p = pPg->pNextFree;
- while( p && p->needSync ){ p = p->pNextFree; }
- pPg->pPager->pFirstSynced = p;
- }
- if( pPg->pPrevFree ){
- pPg->pPrevFree->pNextFree = pPg->pNextFree;
- }else{
- pPg->pPager->pFirst = pPg->pNextFree;
- }
- if( pPg->pNextFree ){
- pPg->pNextFree->pPrevFree = pPg->pPrevFree;
- }else{
- pPg->pPager->pLast = pPg->pPrevFree;
- }
- pPg->pPager->nRef++;
- }
- pPg->nRef++;
- REFINFO(pPg);
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){
+ return pPg->pgno;
}
-#ifdef SQLITE_DEBUG
- static void page_ref(PgHdr *pPg){
- if( pPg->nRef==0 ){
- _page_ref(pPg);
- }else{
- pPg->nRef++;
- REFINFO(pPg);
- }
- }
-#else
-# define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
#endif
/*
-** Increment the reference count for a page. The input pointer is
-** a reference to the page data.
+** Increment the reference count for page pPg.
*/
-int sqlite3PagerRef(DbPage *pPg){
- page_ref(pPg);
- return SQLITE_OK;
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){
+ sqlite3PcacheRef(pPg);
}
/*
-** Sync the journal. In other words, make sure all the pages that have
+** Sync the journal. In other words, make sure all the pages that have
** been written to the journal have actually reached the surface of the
-** disk. It is not safe to modify the original database file until after
-** the journal has been synced. If the original database is modified before
-** the journal is synced and a power failure occurs, the unsynced journal
-** data would be lost and we would be unable to completely rollback the
-** database changes. Database corruption would occur.
-**
-** This routine also updates the nRec field in the header of the journal.
-** (See comments on the pager_playback() routine for additional information.)
-** If the sync mode is FULL, two syncs will occur. First the whole journal
-** is synced, then the nRec field is updated, then a second sync occurs.
+** disk and can be restored in the event of a hot-journal rollback.
**
-** For temporary databases, we do not care if we are able to rollback
-** after a power failure, so sync occurs.
+** If the Pager.needSync flag is not set, then this function is a
+** no-op. Otherwise, the actions required depend on the journal-mode
+** and the device characteristics of the the file-system, as follows:
**
-** This routine clears the needSync field of every page current held in
-** memory.
+** * If the journal file is an in-memory journal file, no action need
+** be taken.
+**
+** * Otherwise, if the device does not support the SAFE_APPEND property,
+** then the nRec field of the most recently written journal header
+** is updated to contain the number of journal records that have
+** been written following it. If the pager is operating in full-sync
+** mode, then the journal file is synced before this field is updated.
+**
+** * If the device does not support the SEQUENTIAL property, then
+** journal file is synced.
+**
+** Or, in pseudo-code:
+**
+** if( NOT <in-memory journal> ){
+** if( NOT SAFE_APPEND ){
+** if( <full-sync mode> ) xSync(<journal file>);
+** <update nRec field>
+** }
+** if( NOT SEQUENTIAL ) xSync(<journal file>);
+** }
+**
+** The Pager.needSync flag is never be set for temporary files, or any
+** file operating in no-sync mode (Pager.noSync set to non-zero).
+**
+** If successful, this routine clears the PGHDR_NEED_SYNC flag of every
+** page currently held in memory before returning SQLITE_OK. If an IO
+** error is encountered, then the IO error code is returned to the caller.
*/
static int syncJournal(Pager *pPager){
- PgHdr *pPg;
- int rc = SQLITE_OK;
-
- /* Sync the journal before modifying the main database
- ** (assuming there is a journal and it needs to be synced.)
- */
if( pPager->needSync ){
- if( !pPager->tempFile ){
- assert( pPager->journalOpen );
- /* assert( !pPager->noSync ); // noSync might be set if synchronous
- ** was turned off after the transaction was started. Ticket #615 */
-#ifndef NDEBUG
- {
- /* Make sure the pPager->nRec counter we are keeping agrees
- ** with the nRec computed from the size of the journal file.
+ assert( !pPager->tempFile );
+ if( pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
+ int rc; /* Return code */
+ const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ assert( isOpen(pPager->jfd) );
+
+ if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ /* This block deals with an obscure problem. If the last connection
+ ** that wrote to this database was operating in persistent-journal
+ ** mode, then the journal file may at this point actually be larger
+ ** than Pager.journalOff bytes. If the next thing in the journal
+ ** file happens to be a journal-header (written as part of the
+ ** previous connections transaction), and a crash or power-failure
+ ** occurs after nRec is updated but before this connection writes
+ ** anything else to the journal file (or commits/rolls back its
+ ** transaction), then SQLite may become confused when doing the
+ ** hot-journal rollback following recovery. It may roll back all
+ ** of this connections data, then proceed to rolling back the old,
+ ** out-of-date data that follows it. Database corruption.
+ **
+ ** To work around this, if the journal file does appear to contain
+ ** a valid header following Pager.journalOff, then write a 0x00
+ ** byte to the start of it to prevent it from being recognized.
+ **
+ ** Variable iNextHdrOffset is set to the offset at which this
+ ** problematic header will occur, if it exists. aMagic is used
+ ** as a temporary buffer to inspect the first couple of bytes of
+ ** the potential journal header.
*/
- i64 jSz;
- rc = sqlite3OsFileSize(pPager->jfd, &jSz);
- if( rc!=0 ) return rc;
- assert( pPager->journalOff==jSz );
- }
-#endif
- {
+ i64 iNextHdrOffset;
+ u8 aMagic[8];
+ u8 zHeader[sizeof(aJournalMagic)+4];
+
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+ put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec);
+
+ iNextHdrOffset = journalHdrOffset(pPager);
+ rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset);
+ if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){
+ static const u8 zerobyte = 0;
+ rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset);
+ }
+ if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
+ return rc;
+ }
+
/* Write the nRec value into the journal file header. If in
** full-synchronous mode, sync the journal first. This ensures that
** all data has really hit the disk before nRec is updated to mark
- ** it as a candidate for rollback.
+ ** it as a candidate for rollback.
+ **
+ ** This is not required if the persistent media supports the
+ ** SAFE_APPEND property. Because in this case it is not possible
+ ** for garbage data to be appended to the file, the nRec field
+ ** is populated with 0xFFFFFFFF when the journal header is written
+ ** and never needs to be updated.
*/
- if( pPager->fullSync ){
- PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
+ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
IOTRACE(("JSYNC %p\n", pPager))
- rc = sqlite3OsSync(pPager->jfd, 0);
- if( rc!=0 ) return rc;
+ rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
+ if( rc!=SQLITE_OK ) return rc;
}
- rc = sqlite3OsSeek(pPager->jfd,
- pPager->journalHdr + sizeof(aJournalMagic));
- if( rc ) return rc;
- IOTRACE(("JHDR %p %lld %d\n", pPager,
- pPager->journalHdr + sizeof(aJournalMagic), 4))
- rc = write32bits(pPager->jfd, pPager->nRec);
- if( rc ) return rc;
-
- rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff);
- if( rc ) return rc;
+ IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr));
+ rc = sqlite3OsWrite(
+ pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags|
+ (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
+ );
+ if( rc!=SQLITE_OK ) return rc;
}
- PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
- IOTRACE(("JSYNC %d\n", pPager))
- rc = sqlite3OsSync(pPager->jfd, pPager->full_fsync);
- if( rc!=0 ) return rc;
- pPager->journalStarted = 1;
}
- pPager->needSync = 0;
- /* Erase the needSync flag from every page.
+ /* The journal file was just successfully synced. Set Pager.needSync
+ ** to zero and clear the PGHDR_NEED_SYNC flag on all pagess.
*/
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- pPg->needSync = 0;
- }
- pPager->pFirstSynced = pPager->pFirst;
- }
-
-#ifndef NDEBUG
- /* If the Pager.needSync flag is clear then the PgHdr.needSync
- ** flag must also be clear for all pages. Verify that this
- ** invariant is true.
- */
- else{
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- assert( pPg->needSync==0 );
- }
- assert( pPager->pFirstSynced==pPager->pFirst );
- }
-#endif
-
- return rc;
-}
-
-/*
-** Merge two lists of pages connected by pDirty and in pgno order.
-** Do not both fixing the pPrevDirty pointers.
-*/
-static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
- PgHdr result, *pTail;
- pTail = &result;
- while( pA && pB ){
- if( pA->pgno<pB->pgno ){
- pTail->pDirty = pA;
- pTail = pA;
- pA = pA->pDirty;
- }else{
- pTail->pDirty = pB;
- pTail = pB;
- pB = pB->pDirty;
- }
- }
- if( pA ){
- pTail->pDirty = pA;
- }else if( pB ){
- pTail->pDirty = pB;
- }else{
- pTail->pDirty = 0;
+ pPager->needSync = 0;
+ pPager->journalStarted = 1;
+ sqlite3PcacheClearSyncFlags(pPager->pPCache);
}
- return result.pDirty;
-}
-/*
-** Sort the list of pages in accending order by pgno. Pages are
-** connected by pDirty pointers. The pPrevDirty pointers are
-** corrupted by this sort.
-*/
-#define N_SORT_BUCKET_ALLOC 25
-#define N_SORT_BUCKET 25
-#ifdef SQLITE_TEST
- int sqlite3_pager_n_sort_bucket = 0;
- #undef N_SORT_BUCKET
- #define N_SORT_BUCKET \
- (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
-#endif
-static PgHdr *sort_pagelist(PgHdr *pIn){
- PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
- int i;
- memset(a, 0, sizeof(a));
- while( pIn ){
- p = pIn;
- pIn = p->pDirty;
- p->pDirty = 0;
- for(i=0; i<N_SORT_BUCKET-1; i++){
- if( a[i]==0 ){
- a[i] = p;
- break;
- }else{
- p = merge_pagelist(a[i], p);
- a[i] = 0;
- }
- }
- if( i==N_SORT_BUCKET-1 ){
- /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
- ** elements in the input list. This is possible, but impractical.
- ** Testing this line is the point of global variable
- ** sqlite3_pager_n_sort_bucket.
- */
- a[i] = merge_pagelist(a[i], p);
- }
- }
- p = a[0];
- for(i=1; i<N_SORT_BUCKET; i++){
- p = merge_pagelist(p, a[i]);
- }
- return p;
+ return SQLITE_OK;
}
/*
-** Given a list of pages (connected by the PgHdr.pDirty pointer) write
-** every one of those pages out to the database file and mark them all
-** as clean.
+** The argument is the first in a linked list of dirty pages connected
+** by the PgHdr.pDirty pointer. This function writes each one of the
+** in-memory pages in the list to the database file. The argument may
+** be NULL, representing an empty list. In this case this function is
+** a no-op.
+**
+** The pager must hold at least a RESERVED lock when this function
+** is called. Before writing anything to the database file, this lock
+** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained,
+** SQLITE_BUSY is returned and no data is written to the database file.
+**
+** If the pager is a temp-file pager and the actual file-system file
+** is not yet open, it is created and opened before any data is
+** written out.
+**
+** Once the lock has been upgraded and, if necessary, the file opened,
+** the pages are written out to the database file in list order. Writing
+** a page is skipped if it meets either of the following criteria:
+**
+** * The page number is greater than Pager.dbSize, or
+** * The PGHDR_DONT_WRITE flag is set on the page.
+**
+** If writing out a page causes the database file to grow, Pager.dbFileSize
+** is updated accordingly. If page 1 is written out, then the value cached
+** in Pager.dbFileVers[] is updated to match the new value stored in
+** the database file.
+**
+** If everything is successful, SQLITE_OK is returned. If an IO error
+** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot
+** be obtained, SQLITE_BUSY is returned.
*/
static int pager_write_pagelist(PgHdr *pList){
- Pager *pPager;
- int rc;
+ Pager *pPager; /* Pager object */
+ int rc; /* Return code */
- if( pList==0 ) return SQLITE_OK;
+ if( NEVER(pList==0) ) return SQLITE_OK;
pPager = pList->pPager;
/* At this point there may be either a RESERVED or EXCLUSIVE lock on the
** database file. If there is already an EXCLUSIVE lock, the following
- ** calls to sqlite3OsLock() are no-ops.
+ ** call is a no-op.
**
** Moving the lock from RESERVED to EXCLUSIVE actually involves going
** through an intermediate state PENDING. A PENDING lock prevents new
@@ -19184,655 +34077,1047 @@ static int pager_write_pagelist(PgHdr *pList){
** EXCLUSIVE, it means the database file has been changed and any rollback
** will require a journal playback.
*/
+ assert( pPager->state>=PAGER_RESERVED );
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
- if( rc!=SQLITE_OK ){
- return rc;
+
+ /* If the file is a temp-file has not yet been opened, open it now. It
+ ** is not possible for rc to be other than SQLITE_OK if this branch
+ ** is taken, as pager_wait_on_lock() is a no-op for temp-files.
+ */
+ if( !isOpen(pPager->fd) ){
+ assert( pPager->tempFile && rc==SQLITE_OK );
+ rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
}
- pList = sort_pagelist(pList);
- while( pList ){
- assert( pList->dirty );
- rc = sqlite3OsSeek(pPager->fd, (pList->pgno-1)*(i64)pPager->pageSize);
- if( rc ) return rc;
+ while( rc==SQLITE_OK && pList ){
+ Pgno pgno = pList->pgno;
+
/* If there are dirty pages in the page cache with page numbers greater
- ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
+ ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to
** make the file smaller (presumably by auto-vacuum code). Do not write
** any such pages to the file.
+ **
+ ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag
+ ** set (set by sqlite3PagerDontWrite()).
*/
- if( pList->pgno<=pPager->dbSize ){
- char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
- PAGERTRACE3("STORE %d page %d\n", PAGERID(pPager), pList->pgno);
- IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
- rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize);
- PAGER_INCR(sqlite3_pager_writedb_count);
- PAGER_INCR(pPager->nWrite);
- if( pList->pgno==1 ){
+ if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
+ i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */
+ char *pData; /* Data to write */
+
+ /* Encode the database */
+ CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData);
+
+ /* Write out the page data. */
+ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
+
+ /* If page 1 was just written, update Pager.dbFileVers to match
+ ** the value now stored in the database file. If writing this
+ ** page caused the database file to grow, update dbFileSize.
+ */
+ if( pgno==1 ){
memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
}
+ if( pgno>pPager->dbFileSize ){
+ pPager->dbFileSize = pgno;
+ }
+
+ /* Update any backup objects copying the contents of this pager. */
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData);
+
+ PAGERTRACE(("STORE %d page %d hash(%08x)\n",
+ PAGERID(pPager), pgno, pager_pagehash(pList)));
+ IOTRACE(("PGOUT %p %d\n", pPager, pgno));
+ PAGER_INCR(sqlite3_pager_writedb_count);
+ PAGER_INCR(pPager->nWrite);
+ }else{
+ PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno));
}
-#ifndef NDEBUG
- else{
- PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
- }
-#endif
- if( rc ) return rc;
- pList->dirty = 0;
#ifdef SQLITE_CHECK_PAGES
pList->pageHash = pager_pagehash(pList);
#endif
pList = pList->pDirty;
}
- return SQLITE_OK;
-}
-/*
-** Collect every dirty page into a dirty list and
-** return a pointer to the head of that list. All pages are
-** collected even if they are still in use.
-*/
-static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
- return pPager->pDirty;
+ return rc;
}
/*
-** Return TRUE if there is a hot journal on the given pager.
-** A hot journal is one that needs to be played back.
+** Append a record of the current state of page pPg to the sub-journal.
+** It is the callers responsibility to use subjRequiresPage() to check
+** that it is really required before calling this function.
**
-** If the current size of the database file is 0 but a journal file
-** exists, that is probably an old journal left over from a prior
-** database with the same name. Just delete the journal.
+** If successful, set the bit corresponding to pPg->pgno in the bitvecs
+** for all open savepoints before returning.
+**
+** This function returns SQLITE_OK if everything is successful, an IO
+** error code if the attempt to write to the sub-journal fails, or
+** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint
+** bitvec.
*/
-static int hasHotJournal(Pager *pPager){
- if( !pPager->useJournal ) return 0;
- if( !sqlite3OsFileExists(pPager->zJournal) ){
- return 0;
- }
- if( sqlite3OsCheckReservedLock(pPager->fd) ){
- return 0;
+static int subjournalPage(PgHdr *pPg){
+ int rc = SQLITE_OK;
+ Pager *pPager = pPg->pPager;
+ if( isOpen(pPager->sjfd) ){
+ void *pData = pPg->pData;
+ i64 offset = pPager->nSubRec*(4+pPager->pageSize);
+ char *pData2;
+
+ CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
+ PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
+
+ assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize );
+ rc = write32bits(pPager->sjfd, offset, pPg->pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
+ }
}
- if( sqlite3PagerPagecount(pPager)==0 ){
- sqlite3OsDelete(pPager->zJournal);
- return 0;
- }else{
- return 1;
+ if( rc==SQLITE_OK ){
+ pPager->nSubRec++;
+ assert( pPager->nSavepoint>0 );
+ rc = addToSavepointBitvecs(pPager, pPg->pgno);
}
+ return rc;
}
+
/*
-** Try to find a page in the cache that can be recycled.
+** This function is called by the pcache layer when it has reached some
+** soft memory limit. The first argument is a pointer to a Pager object
+** (cast as a void*). The pager is always 'purgeable' (not an in-memory
+** database). The second argument is a reference to a page that is
+** currently dirty but has no outstanding references. The page
+** is always associated with the Pager object passed as the first
+** argument.
**
-** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It
-** does not set the pPager->errCode variable.
+** The job of this function is to make pPg clean by writing its contents
+** out to the database file, if possible. This may involve syncing the
+** journal file.
+**
+** If successful, sqlite3PcacheMakeClean() is called on the page and
+** SQLITE_OK returned. If an IO error occurs while trying to make the
+** page clean, the IO error code is returned. If the page cannot be
+** made clean for some other reason, but no error occurs, then SQLITE_OK
+** is returned by sqlite3PcacheMakeClean() is not called.
*/
-static int pager_recycle(Pager *pPager, int syncOk, PgHdr **ppPg){
- PgHdr *pPg;
- *ppPg = 0;
-
- assert(!MEMDB);
+static int pagerStress(void *p, PgHdr *pPg){
+ Pager *pPager = (Pager *)p;
+ int rc = SQLITE_OK;
- /* Find a page to recycle. Try to locate a page that does not
- ** require us to do an fsync() on the journal.
+ assert( pPg->pPager==pPager );
+ assert( pPg->flags&PGHDR_DIRTY );
+
+ /* The doNotSync flag is set by the sqlite3PagerWrite() function while it
+ ** is journalling a set of two or more database pages that are stored
+ ** on the same disk sector. Syncing the journal is not allowed while
+ ** this is happening as it is important that all members of such a
+ ** set of pages are synced to disk together. So, if the page this function
+ ** is trying to make clean will require a journal sync and the doNotSync
+ ** flag is set, return without doing anything. The pcache layer will
+ ** just have to go ahead and allocate a new page buffer instead of
+ ** reusing pPg.
+ **
+ ** Similarly, if the pager has already entered the error state, do not
+ ** try to write the contents of pPg to disk.
*/
- pPg = pPager->pFirstSynced;
+ if( NEVER(pPager->errCode)
+ || (pPager->doNotSync && pPg->flags&PGHDR_NEED_SYNC)
+ ){
+ return SQLITE_OK;
+ }
- /* If we could not find a page that does not require an fsync()
- ** on the journal file then fsync the journal file. This is a
- ** very slow operation, so we work hard to avoid it. But sometimes
- ** it can't be helped.
- */
- if( pPg==0 && pPager->pFirst && syncOk && !MEMDB){
- int rc = syncJournal(pPager);
- if( rc!=0 ){
- return rc;
- }
- if( pPager->fullSync ){
- /* If in full-sync mode, write a new journal header into the
- ** journal file. This is done to avoid ever modifying a journal
- ** header that is involved in the rollback of pages that have
- ** already been written to the database (in case the header is
- ** trashed when the nRec field is updated).
- */
+ /* Sync the journal file if required. */
+ if( pPg->flags&PGHDR_NEED_SYNC ){
+ rc = syncJournal(pPager);
+ if( rc==SQLITE_OK && pPager->fullSync &&
+ !(pPager->journalMode==PAGER_JOURNALMODE_MEMORY) &&
+ !(sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
+ ){
pPager->nRec = 0;
- assert( pPager->journalOff > 0 );
- assert( pPager->doNotSync==0 );
rc = writeJournalHdr(pPager);
- if( rc!=0 ){
- return rc;
- }
}
- pPg = pPager->pFirst;
}
- if( pPg==0 ){
- return SQLITE_OK;
+
+ /* If the page number of this page is larger than the current size of
+ ** the database image, it may need to be written to the sub-journal.
+ ** This is because the call to pager_write_pagelist() below will not
+ ** actually write data to the file in this case.
+ **
+ ** Consider the following sequence of events:
+ **
+ ** BEGIN;
+ ** <journal page X>
+ ** <modify page X>
+ ** SAVEPOINT sp;
+ ** <shrink database file to Y pages>
+ ** pagerStress(page X)
+ ** ROLLBACK TO sp;
+ **
+ ** If (X>Y), then when pagerStress is called page X will not be written
+ ** out to the database file, but will be dropped from the cache. Then,
+ ** following the "ROLLBACK TO sp" statement, reading page X will read
+ ** data from the database file. This will be the copy of page X as it
+ ** was when the transaction started, not as it was when "SAVEPOINT sp"
+ ** was executed.
+ **
+ ** The solution is to write the current data for page X into the
+ ** sub-journal file now (if it is not already there), so that it will
+ ** be restored to its current value when the "ROLLBACK TO sp" is
+ ** executed.
+ */
+ if( NEVER(
+ rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg)
+ ) ){
+ rc = subjournalPage(pPg);
+ }
+
+ /* Write the contents of the page out to the database file. */
+ if( rc==SQLITE_OK ){
+ pPg->pDirty = 0;
+ rc = pager_write_pagelist(pPg);
}
- assert( pPg->nRef==0 );
+ /* Mark the page as clean. */
+ if( rc==SQLITE_OK ){
+ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
+ sqlite3PcacheMakeClean(pPg);
+ }
- /* Write the page to the database file if it is dirty.
+ return pager_error(pPager, rc);
+}
+
+
+/*
+** Allocate and initialize a new Pager object and put a pointer to it
+** in *ppPager. The pager should eventually be freed by passing it
+** to sqlite3PagerClose().
+**
+** The zFilename argument is the path to the database file to open.
+** If zFilename is NULL then a randomly-named temporary file is created
+** and used as the file to be cached. Temporary files are be deleted
+** automatically when they are closed. If zFilename is ":memory:" then
+** all information is held in cache. It is never written to disk.
+** This can be used to implement an in-memory database.
+**
+** The nExtra parameter specifies the number of bytes of space allocated
+** along with each page reference. This space is available to the user
+** via the sqlite3PagerGetExtra() API.
+**
+** The flags argument is used to specify properties that affect the
+** operation of the pager. It should be passed some bitwise combination
+** of the PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK flags.
+**
+** The vfsFlags parameter is a bitmask to pass to the flags parameter
+** of the xOpen() method of the supplied VFS when opening files.
+**
+** If the pager object is allocated and the specified file opened
+** successfully, SQLITE_OK is returned and *ppPager set to point to
+** the new pager object. If an error occurs, *ppPager is set to NULL
+** and error code returned. This function may return SQLITE_NOMEM
+** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or
+** various SQLITE_IO_XXX errors.
+*/
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs *pVfs, /* The virtual file system to use */
+ Pager **ppPager, /* OUT: Return the Pager structure here */
+ const char *zFilename, /* Name of the database file to open */
+ int nExtra, /* Extra bytes append to each in-memory page */
+ int flags, /* flags controlling this file */
+ int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */
+ void (*xReinit)(DbPage*) /* Function to reinitialize pages */
+){
+ u8 *pPtr;
+ Pager *pPager = 0; /* Pager object to allocate and return */
+ int rc = SQLITE_OK; /* Return code */
+ int tempFile = 0; /* True for temp files (incl. in-memory files) */
+ int memDb = 0; /* True if this is an in-memory file */
+ int readOnly = 0; /* True if this is a read-only file */
+ int journalFileSize; /* Bytes to allocate for each journal fd */
+ char *zPathname = 0; /* Full path to database file */
+ int nPathname = 0; /* Number of bytes in zPathname */
+ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */
+ int noReadlock = (flags & PAGER_NO_READLOCK)!=0; /* True to omit read-lock */
+ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */
+ u16 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */
+
+ /* Figure out how much space is required for each journal file-handle
+ ** (there are two of them, the main journal and the sub-journal). This
+ ** is the maximum space required for an in-memory journal file handle
+ ** and a regular journal file-handle. Note that a "regular journal-handle"
+ ** may be a wrapper capable of caching the first portion of the journal
+ ** file in memory to implement the atomic-write optimization (see
+ ** source file journal.c).
*/
- if( pPg->dirty ){
- int rc;
- assert( pPg->needSync==0 );
- makeClean(pPg);
- pPg->dirty = 1;
- pPg->pDirty = 0;
- rc = pager_write_pagelist( pPg );
+ if( sqlite3JournalSize(pVfs)>sqlite3MemJournalSize() ){
+ journalFileSize = ROUND8(sqlite3JournalSize(pVfs));
+ }else{
+ journalFileSize = ROUND8(sqlite3MemJournalSize());
+ }
+
+ /* Set the output variable to NULL in case an error occurs. */
+ *ppPager = 0;
+
+ /* Compute and store the full pathname in an allocated buffer pointed
+ ** to by zPathname, length nPathname. Or, if this is a temporary file,
+ ** leave both nPathname and zPathname set to 0.
+ */
+ if( zFilename && zFilename[0] ){
+ nPathname = pVfs->mxPathname+1;
+ zPathname = sqlite3Malloc(nPathname*2);
+ if( zPathname==0 ){
+ return SQLITE_NOMEM;
+ }
+#ifndef SQLITE_OMIT_MEMORYDB
+ if( strcmp(zFilename,":memory:")==0 ){
+ memDb = 1;
+ zPathname[0] = 0;
+ }else
+#endif
+ {
+ zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
+ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
+ }
+
+ nPathname = sqlite3Strlen30(zPathname);
+ if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){
+ /* This branch is taken when the journal path required by
+ ** the database being opened will be more than pVfs->mxPathname
+ ** bytes in length. This means the database cannot be opened,
+ ** as it will not be possible to open the journal file or even
+ ** check for a hot-journal before reading.
+ */
+ rc = SQLITE_CANTOPEN;
+ }
if( rc!=SQLITE_OK ){
+ sqlite3_free(zPathname);
return rc;
}
}
- assert( pPg->dirty==0 );
- /* If the page we are recycling is marked as alwaysRollback, then
- ** set the global alwaysRollback flag, thus disabling the
- ** sqlite3PagerDontRollback() optimization for the rest of this transaction.
- ** It is necessary to do this because the page marked alwaysRollback
- ** might be reloaded at a later time but at that point we won't remember
- ** that is was marked alwaysRollback. This means that all pages must
- ** be marked as alwaysRollback from here on out.
+ /* Allocate memory for the Pager structure, PCache object, the
+ ** three file descriptors, the database file name and the journal
+ ** file name. The layout in memory is as follows:
+ **
+ ** Pager object (sizeof(Pager) bytes)
+ ** PCache object (sqlite3PcacheSize() bytes)
+ ** Database file handle (pVfs->szOsFile bytes)
+ ** Sub-journal file handle (journalFileSize bytes)
+ ** Main journal file handle (journalFileSize bytes)
+ ** Database file name (nPathname+1 bytes)
+ ** Journal file name (nPathname+8+1 bytes)
+ */
+ pPtr = (u8 *)sqlite3MallocZero(
+ ROUND8(sizeof(*pPager)) + /* Pager structure */
+ ROUND8(pcacheSize) + /* PCache object */
+ ROUND8(pVfs->szOsFile) + /* The main db file */
+ journalFileSize * 2 + /* The two journal files */
+ nPathname + 1 + /* zFilename */
+ nPathname + 8 + 1 /* zJournal */
+ );
+ assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) );
+ if( !pPtr ){
+ sqlite3_free(zPathname);
+ return SQLITE_NOMEM;
+ }
+ pPager = (Pager*)(pPtr);
+ pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager)));
+ pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize));
+ pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile));
+ pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize);
+ pPager->zFilename = (char*)(pPtr += journalFileSize);
+ assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) );
+
+ /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */
+ if( zPathname ){
+ pPager->zJournal = (char*)(pPtr += nPathname + 1);
+ memcpy(pPager->zFilename, zPathname, nPathname);
+ memcpy(pPager->zJournal, zPathname, nPathname);
+ memcpy(&pPager->zJournal[nPathname], "-journal", 8);
+ if( pPager->zFilename[0]==0 ) pPager->zJournal[0] = 0;
+ sqlite3_free(zPathname);
+ }
+ pPager->pVfs = pVfs;
+ pPager->vfsFlags = vfsFlags;
+
+ /* Open the pager file.
+ */
+ if( zFilename && zFilename[0] && !memDb ){
+ int fout = 0; /* VFS flags returned by xOpen() */
+ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout);
+ readOnly = (fout&SQLITE_OPEN_READONLY);
+
+ /* If the file was successfully opened for read/write access,
+ ** choose a default page size in case we have to create the
+ ** database file. The default page size is the maximum of:
+ **
+ ** + SQLITE_DEFAULT_PAGE_SIZE,
+ ** + The value returned by sqlite3OsSectorSize()
+ ** + The largest page size that can be written atomically.
+ */
+ if( rc==SQLITE_OK && !readOnly ){
+ setSectorSize(pPager);
+ assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE);
+ if( szPageDflt<pPager->sectorSize ){
+ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
+ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
+ }else{
+ szPageDflt = (u16)pPager->sectorSize;
+ }
+ }
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ {
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ int ii;
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
+ for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
+ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){
+ szPageDflt = ii;
+ }
+ }
+ }
+#endif
+ }
+ }else{
+ /* If a temporary file is requested, it is not opened immediately.
+ ** In this case we accept the default page size and delay actually
+ ** opening the file until the first call to OsWrite().
+ **
+ ** This branch is also run for an in-memory database. An in-memory
+ ** database is the same as a temp-file that is never written out to
+ ** disk and uses an in-memory rollback journal.
+ */
+ tempFile = 1;
+ pPager->state = PAGER_EXCLUSIVE;
+ readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
+ }
+
+ /* The following call to PagerSetPagesize() serves to set the value of
+ ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
*/
- if( pPg->alwaysRollback ){
- IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
- pPager->alwaysRollback = 1;
+ if( rc==SQLITE_OK ){
+ assert( pPager->memDb==0 );
+ rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1);
+ testcase( rc!=SQLITE_OK );
}
- /* Unlink the old page from the free list and the hash table
+ /* If an error occurred in either of the blocks above, free the
+ ** Pager structure and close the file.
*/
- unlinkPage(pPg);
- assert( pPg->pgno==0 );
+ if( rc!=SQLITE_OK ){
+ assert( !pPager->pTmpSpace );
+ sqlite3OsClose(pPager->fd);
+ sqlite3_free(pPager);
+ return rc;
+ }
- *ppPg = pPg;
+ /* Initialize the PCache object. */
+ assert( nExtra<1000 );
+ nExtra = ROUND8(nExtra);
+ sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
+ !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
+
+ PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename));
+ IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
+
+ pPager->useJournal = (u8)useJournal;
+ pPager->noReadlock = (noReadlock && readOnly) ?1:0;
+ /* pPager->stmtOpen = 0; */
+ /* pPager->stmtInUse = 0; */
+ /* pPager->nRef = 0; */
+ pPager->dbSizeValid = (u8)memDb;
+ /* pPager->stmtSize = 0; */
+ /* pPager->stmtJSize = 0; */
+ /* pPager->nPage = 0; */
+ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
+ /* pPager->state = PAGER_UNLOCK; */
+ assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
+ /* pPager->errMask = 0; */
+ pPager->tempFile = (u8)tempFile;
+ assert( tempFile==PAGER_LOCKINGMODE_NORMAL
+ || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
+ pPager->exclusiveMode = (u8)tempFile;
+ pPager->changeCountDone = pPager->tempFile;
+ pPager->memDb = (u8)memDb;
+ pPager->readOnly = (u8)readOnly;
+ /* pPager->needSync = 0; */
+ assert( useJournal || pPager->tempFile );
+ pPager->noSync = pPager->tempFile;
+ pPager->fullSync = pPager->noSync ?0:1;
+ pPager->sync_flags = SQLITE_SYNC_NORMAL;
+ /* pPager->pFirst = 0; */
+ /* pPager->pFirstSynced = 0; */
+ /* pPager->pLast = 0; */
+ pPager->nExtra = (u16)nExtra;
+ pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
+ assert( isOpen(pPager->fd) || tempFile );
+ setSectorSize(pPager);
+ if( !useJournal ){
+ pPager->journalMode = PAGER_JOURNALMODE_OFF;
+ }else if( memDb ){
+ pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
+ }
+ /* pPager->xBusyHandler = 0; */
+ /* pPager->pBusyHandlerArg = 0; */
+ pPager->xReiniter = xReinit;
+ /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
+ *ppPager = pPager;
return SQLITE_OK;
}
+
+
/*
-** This function is called to free superfluous dynamically allocated memory
-** held by the pager system. Memory in use by any SQLite pager allocated
-** by the current thread may be sqliteFree()ed.
+** This function is called after transitioning from PAGER_UNLOCK to
+** PAGER_SHARED state. It tests if there is a hot journal present in
+** the file-system for the given pager. A hot journal is one that
+** needs to be played back. According to this function, a hot-journal
+** file exists if the following criteria are met:
**
-** nReq is the number of bytes of memory required. Once this much has
-** been released, the function returns. A negative value for nReq means
-** free as much memory as possible. The return value is the total number
-** of bytes of memory released.
+** * The journal file exists in the file system, and
+** * No process holds a RESERVED or greater lock on the database file, and
+** * The database file itself is greater than 0 bytes in size, and
+** * The first byte of the journal file exists and is not 0x00.
+**
+** If the current size of the database file is 0 but a journal file
+** exists, that is probably an old journal left over from a prior
+** database with the same name. In this case the journal file is
+** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK
+** is returned.
+**
+** This routine does not check if there is a master journal filename
+** at the end of the file. If there is, and that master journal file
+** does not exist, then the journal file is not really hot. In this
+** case this routine will return a false-positive. The pager_playback()
+** routine will discover that the journal file is not really hot and
+** will not roll it back.
+**
+** If a hot-journal file is found to exist, *pExists is set to 1 and
+** SQLITE_OK returned. If no hot-journal file is present, *pExists is
+** set to 0 and SQLITE_OK returned. If an IO error occurs while trying
+** to determine whether or not a hot-journal file exists, the IO error
+** code is returned and the value of *pExists is undefined.
*/
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-int sqlite3PagerReleaseMemory(int nReq){
- const ThreadData *pTsdro = sqlite3ThreadDataReadOnly();
- int nReleased = 0;
- int i;
-
- /* If the the global mutex is held, this subroutine becomes a
- ** o-op; zero bytes of memory are freed. This is because
- ** some of the code invoked by this function may also
- ** try to obtain the mutex, resulting in a deadlock.
- */
- if( sqlite3OsInMutex(0) ){
- return 0;
- }
+static int hasHotJournal(Pager *pPager, int *pExists){
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int rc; /* Return code */
+ int exists; /* True if a journal file is present */
- /* Outermost loop runs for at most two iterations. First iteration we
- ** try to find memory that can be released without calling fsync(). Second
- ** iteration (which only runs if the first failed to free nReq bytes of
- ** memory) is permitted to call fsync(). This is of course much more
- ** expensive.
- */
- for(i=0; i<=1; i++){
-
- /* Loop through all the SQLite pagers opened by the current thread. */
- Pager *pPager = pTsdro->pPager;
- for( ; pPager && (nReq<0 || nReleased<nReq); pPager=pPager->pNext){
- PgHdr *pPg;
- int rc;
-
- if( MEMDB ){
- continue;
- }
-
- /* For each pager, try to free as many pages as possible (without
- ** calling fsync() if this is the first iteration of the outermost
- ** loop).
+ assert( pPager!=0 );
+ assert( pPager->useJournal );
+ assert( isOpen(pPager->fd) );
+ assert( !isOpen(pPager->jfd) );
+ assert( pPager->state <= PAGER_SHARED );
+
+ *pExists = 0;
+ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ if( rc==SQLITE_OK && exists ){
+ int locked; /* True if some process holds a RESERVED lock */
+
+ /* Race condition here: Another process might have been holding the
+ ** the RESERVED lock and have a journal open at the sqlite3OsAccess()
+ ** call above, but then delete the journal and drop the lock before
+ ** we get to the following sqlite3OsCheckReservedLock() call. If that
+ ** is the case, this routine might think there is a hot journal when
+ ** in fact there is none. This results in a false-positive which will
+ ** be dealt with by the playback routine. Ticket #3883.
+ */
+ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
+ if( rc==SQLITE_OK && !locked ){
+ int nPage;
+
+ /* Check the size of the database file. If it consists of 0 pages,
+ ** then delete the journal file. See the header comment above for
+ ** the reasoning here. Delete the obsolete journal file under
+ ** a RESERVED lock to avoid race conditions and to avoid violating
+ ** [H33020].
*/
- while( SQLITE_OK==(rc = pager_recycle(pPager, i, &pPg)) && pPg) {
- /* We've found a page to free. At this point the page has been
- ** removed from the page hash-table, free-list and synced-list
- ** (pFirstSynced). It is still in the all pages (pAll) list.
- ** Remove it from this list before freeing.
- **
- ** Todo: Check the Pager.pStmt list to make sure this is Ok. It
- ** probably is though.
- */
- PgHdr *pTmp;
- assert( pPg );
- if( pPg==pPager->pAll ){
- pPager->pAll = pPg->pNextAll;
+ rc = sqlite3PagerPagecount(pPager, &nPage);
+ if( rc==SQLITE_OK ){
+ if( nPage==0 ){
+ sqlite3BeginBenignMalloc();
+ if( sqlite3OsLock(pPager->fd, RESERVED_LOCK)==SQLITE_OK ){
+ sqlite3OsDelete(pVfs, pPager->zJournal, 0);
+ sqlite3OsUnlock(pPager->fd, SHARED_LOCK);
+ }
+ sqlite3EndBenignMalloc();
}else{
- for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
- pTmp->pNextAll = pPg->pNextAll;
+ /* The journal file exists and no other connection has a reserved
+ ** or greater lock on the database file. Now check that there is
+ ** at least one non-zero bytes at the start of the journal file.
+ ** If there is, then we consider this journal to be hot. If not,
+ ** it can be ignored.
+ */
+ int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL;
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f);
+ if( rc==SQLITE_OK ){
+ u8 first = 0;
+ rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ sqlite3OsClose(pPager->jfd);
+ *pExists = (first!=0);
+ }else if( rc==SQLITE_CANTOPEN ){
+ /* If we cannot open the rollback journal file in order to see if
+ ** its has a zero header, that might be due to an I/O error, or
+ ** it might be due to the race condition described above and in
+ ** ticket #3883. Either way, assume that the journal is hot.
+ ** This might be a false positive. But if it is, then the
+ ** automatic journal playback and recovery mechanism will deal
+ ** with it under an EXCLUSIVE lock where we do not need to
+ ** worry so much with race conditions.
+ */
+ *pExists = 1;
+ rc = SQLITE_OK;
+ }
}
- nReleased += sqliteAllocSize(pPg);
- IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
- PAGER_INCR(sqlite3_pager_pgfree_count);
- sqliteFree(pPg);
- }
-
- if( rc!=SQLITE_OK ){
- /* An error occured whilst writing to the database file or
- ** journal in pager_recycle(). The error is not returned to the
- ** caller of this function. Instead, set the Pager.errCode variable.
- ** The error will be returned to the user (or users, in the case
- ** of a shared pager cache) of the pager for which the error occured.
- */
- assert( (rc&0xff)==SQLITE_IOERR || rc==SQLITE_FULL );
- assert( pPager->state>=PAGER_RESERVED );
- pager_error(pPager, rc);
}
}
}
- return nReleased;
+ return rc;
}
-#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
/*
-** Read the content of page pPg out of the database file.
+** Read the content for page pPg out of the database file and into
+** pPg->pData. A shared lock or greater must be held on the database
+** file before this function is called.
+**
+** If page 1 is read, then the value of Pager.dbFileVers[] is set to
+** the value read from the database file.
+**
+** If an IO error occurs, then the IO error is returned to the caller.
+** Otherwise, SQLITE_OK is returned.
*/
-static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
- int rc;
- assert( MEMDB==0 );
- rc = sqlite3OsSeek(pPager->fd, (pgno-1)*(i64)pPager->pageSize);
- if( rc==SQLITE_OK ){
- rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg),
- pPager->pageSize);
+static int readDbPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */
+ Pgno pgno = pPg->pgno; /* Page number to read */
+ int rc; /* Return code */
+ i64 iOffset; /* Byte offset of file to read from */
+
+ assert( pPager->state>=PAGER_SHARED && !MEMDB );
+ assert( isOpen(pPager->fd) );
+
+ if( NEVER(!isOpen(pPager->fd)) ){
+ assert( pPager->tempFile );
+ memset(pPg->pData, 0, pPager->pageSize);
+ return SQLITE_OK;
}
+ iOffset = (pgno-1)*(i64)pPager->pageSize;
+ rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ if( pgno==1 ){
+ u8 *dbFileVers = &((u8*)pPg->pData)[24];
+ memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
+ }
+ CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM);
+
PAGER_INCR(sqlite3_pager_readdb_count);
PAGER_INCR(pPager->nRead);
IOTRACE(("PGIN %p %d\n", pPager, pgno));
- PAGERTRACE3("FETCH %d page %d\n", PAGERID(pPager), pPg->pgno);
- if( pgno==1 ){
- memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
- sizeof(pPager->dbFileVers));
- }
- CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
+ PAGERTRACE(("FETCH %d page %d hash(%08x)\n",
+ PAGERID(pPager), pgno, pager_pagehash(pPg)));
+
return rc;
}
-
/*
-** This function is called to obtain the shared lock required before
-** data may be read from the pager cache. If the shared lock has already
-** been obtained, this function is a no-op.
+** This function is called to obtain a shared lock on the database file.
+** It is illegal to call sqlite3PagerAcquire() until after this function
+** has been successfully called. If a shared-lock is already held when
+** this function is called, it is a no-op.
**
-** Immediately after obtaining the shared lock (if required), this function
-** checks for a hot-journal file. If one is found, an emergency rollback
-** is performed immediately.
+** The following operations are also performed by this function.
+**
+** 1) If the pager is currently in PAGER_UNLOCK state (no lock held
+** on the database file), then an attempt is made to obtain a
+** SHARED lock on the database file. Immediately after obtaining
+** the SHARED lock, the file-system is checked for a hot-journal,
+** which is played back if present. Following any hot-journal
+** rollback, the contents of the cache are validated by checking
+** the 'change-counter' field of the database file header and
+** discarded if they are found to be invalid.
+**
+** 2) If the pager is running in exclusive-mode, and there are currently
+** no outstanding references to any pages, and is in the error state,
+** then an attempt is made to clear the error state by discarding
+** the contents of the page cache and rolling back any open journal
+** file.
+**
+** If the operation described by (2) above is not attempted, and if the
+** pager is in an error state other than SQLITE_FULL when this is called,
+** the error state error code is returned. It is permitted to read the
+** database when in SQLITE_FULL error state.
+**
+** Otherwise, if everything is successful, SQLITE_OK is returned. If an
+** IO error occurs while locking the database, checking for a hot-journal
+** file or rolling back a journal file, the IO error code is returned.
*/
-static int pagerSharedLock(Pager *pPager){
- int rc = SQLITE_OK;
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ int isErrorReset = 0; /* True if recovering from error state */
- if( pPager->state==PAGER_UNLOCK ){
- if( !MEMDB ){
- assert( pPager->nRef==0 );
- if( !pPager->noReadlock ){
- rc = pager_wait_on_lock(pPager, SHARED_LOCK);
- if( rc!=SQLITE_OK ){
- return pager_error(pPager, rc);
- }
- assert( pPager->state>=SHARED_LOCK );
+ /* This routine is only called from b-tree and only when there are no
+ ** outstanding pages */
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
+ if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; }
+
+ /* If this database is in an error-state, now is a chance to clear
+ ** the error. Discard the contents of the pager-cache and rollback
+ ** any hot journal in the file-system.
+ */
+ if( pPager->errCode ){
+ if( isOpen(pPager->jfd) || pPager->zJournal ){
+ isErrorReset = 1;
+ }
+ pPager->errCode = SQLITE_OK;
+ pager_reset(pPager);
+ }
+
+ if( pPager->state==PAGER_UNLOCK || isErrorReset ){
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int isHotJournal = 0;
+ assert( !MEMDB );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
+ if( pPager->noReadlock ){
+ assert( pPager->readOnly );
+ pPager->state = PAGER_SHARED;
+ }else{
+ rc = pager_wait_on_lock(pPager, SHARED_LOCK);
+ if( rc!=SQLITE_OK ){
+ assert( pPager->state==PAGER_UNLOCK );
+ return pager_error(pPager, rc);
}
-
- /* If a journal file exists, and there is no RESERVED lock on the
- ** database file, then it either needs to be played back or deleted.
+ }
+ assert( pPager->state>=SHARED_LOCK );
+
+ /* If a journal file exists, and there is no RESERVED lock on the
+ ** database file, then it either needs to be played back or deleted.
+ */
+ if( !isErrorReset ){
+ assert( pPager->state <= PAGER_SHARED );
+ rc = hasHotJournal(pPager, &isHotJournal);
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+ }
+ if( isErrorReset || isHotJournal ){
+ /* Get an EXCLUSIVE lock on the database file. At this point it is
+ ** important that a RESERVED lock is not obtained on the way to the
+ ** EXCLUSIVE lock. If it were, another process might open the
+ ** database file, detect the RESERVED lock, and conclude that the
+ ** database is safe to read while this process is still rolling the
+ ** hot-journal back.
+ **
+ ** Because the intermediate RESERVED lock is not requested, any
+ ** other process attempting to access the database file will get to
+ ** this point in the code and fail to obtain its own EXCLUSIVE lock
+ ** on the database file.
*/
- if( hasHotJournal(pPager) ){
- /* Get an EXCLUSIVE lock on the database file. At this point it is
- ** important that a RESERVED lock is not obtained on the way to the
- ** EXCLUSIVE lock. If it were, another process might open the
- ** database file, detect the RESERVED lock, and conclude that the
- ** database is safe to read while this process is still rolling it
- ** back.
- **
- ** Because the intermediate RESERVED lock is not requested, the
- ** second process will get to this point in the code and fail to
- ** obtain it's own EXCLUSIVE lock on the database file.
- */
+ if( pPager->state<EXCLUSIVE_LOCK ){
rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
if( rc!=SQLITE_OK ){
- pager_unlock(pPager);
- return pager_error(pPager, rc);
+ rc = pager_error(pPager, rc);
+ goto failed;
}
pPager->state = PAGER_EXCLUSIVE;
+ }
- /* Open the journal for reading only. Return SQLITE_BUSY if
- ** we are unable to open the journal file.
- **
- ** The journal file does not need to be locked itself. The
- ** journal file is never open unless the main database file holds
- ** a write lock, so there is never any chance of two or more
- ** processes opening the journal at the same time.
- **
- ** Open the journal for read/write access. This is because in
- ** exclusive-access mode the file descriptor will be kept open and
- ** possibly used for a transaction later on. On some systems, the
- ** OsTruncate() call used in exclusive-access mode also requires
- ** a read/write file handle.
- */
- rc = SQLITE_BUSY;
- if( sqlite3OsFileExists(pPager->zJournal) ){
- int ro;
- assert( !pPager->tempFile );
- rc = sqlite3OsOpenReadWrite(pPager->zJournal, &pPager->jfd, &ro);
- assert( rc!=SQLITE_OK || pPager->jfd );
- if( ro ){
- rc = SQLITE_BUSY;
- sqlite3OsClose(&pPager->jfd);
+ /* Open the journal for read/write access. This is because in
+ ** exclusive-access mode the file descriptor will be kept open and
+ ** possibly used for a transaction later on. On some systems, the
+ ** OsTruncate() call used in exclusive-access mode also requires
+ ** a read/write file handle.
+ */
+ if( !isOpen(pPager->jfd) ){
+ int res;
+ rc = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS,&res);
+ if( rc==SQLITE_OK ){
+ if( res ){
+ int fout = 0;
+ int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
+ assert( !pPager->tempFile );
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
+ rc = SQLITE_CANTOPEN;
+ sqlite3OsClose(pPager->jfd);
+ }
+ }else{
+ /* If the journal does not exist, it usually means that some
+ ** other connection managed to get in and roll it back before
+ ** this connection obtained the exclusive lock above. Or, it
+ ** may mean that the pager was in the error-state when this
+ ** function was called and the journal file does not exist. */
+ rc = pager_end_transaction(pPager, 0);
}
}
- if( rc!=SQLITE_OK ){
- pager_unlock(pPager);
- return SQLITE_BUSY;
- }
- pPager->journalOpen = 1;
- pPager->journalStarted = 0;
- pPager->journalOff = 0;
- pPager->setMaster = 0;
- pPager->journalHdr = 0;
+ }
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+
+ /* TODO: Why are these cleared here? Is it necessary? */
+ pPager->journalStarted = 0;
+ pPager->journalOff = 0;
+ pPager->setMaster = 0;
+ pPager->journalHdr = 0;
- /* Playback and delete the journal. Drop the database write
- ** lock and reacquire the read lock.
- */
+ /* Playback and delete the journal. Drop the database write
+ ** lock and reacquire the read lock. Purge the cache before
+ ** playing back the hot-journal so that we don't end up with
+ ** an inconsistent cache.
+ */
+ if( isOpen(pPager->jfd) ){
rc = pager_playback(pPager, 1);
if( rc!=SQLITE_OK ){
- return pager_error(pPager, rc);
+ rc = pager_error(pPager, rc);
+ goto failed;
}
- assert(pPager->state==PAGER_SHARED ||
- (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
- );
}
+ assert( (pPager->state==PAGER_SHARED)
+ || (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
+ );
+ }
- if( pPager->pAll ){
- /* The shared-lock has just been acquired on the database file
- ** and there are already pages in the cache (from a previous
- ** read or write transaction). Check to see if the database
- ** has been modified. If the database has changed, flush the
- ** cache.
- **
- ** Database changes is detected by looking at 15 bytes beginning
- ** at offset 24 into the file. The first 4 of these 16 bytes are
- ** a 32-bit counter that is incremented with each change. The
- ** other bytes change randomly with each file change when
- ** a codec is in use.
- **
- ** There is a vanishingly small chance that a change will not be
- ** deteched. The chance of an undetected change is so small that
- ** it can be neglected.
- */
- char dbFileVers[sizeof(pPager->dbFileVers)];
- sqlite3PagerPagecount(pPager);
+ if( pPager->pBackup || sqlite3PcachePagecount(pPager->pPCache)>0 ){
+ /* The shared-lock has just been acquired on the database file
+ ** and there are already pages in the cache (from a previous
+ ** read or write transaction). Check to see if the database
+ ** has been modified. If the database has changed, flush the
+ ** cache.
+ **
+ ** Database changes is detected by looking at 15 bytes beginning
+ ** at offset 24 into the file. The first 4 of these 16 bytes are
+ ** a 32-bit counter that is incremented with each change. The
+ ** other bytes change randomly with each file change when
+ ** a codec is in use.
+ **
+ ** There is a vanishingly small chance that a change will not be
+ ** detected. The chance of an undetected change is so small that
+ ** it can be neglected.
+ */
+ char dbFileVers[sizeof(pPager->dbFileVers)];
+ sqlite3PagerPagecount(pPager, 0);
- if( pPager->errCode ){
- return pPager->errCode;
- }
+ if( pPager->errCode ){
+ rc = pPager->errCode;
+ goto failed;
+ }
- if( pPager->dbSize>0 ){
- rc = sqlite3OsSeek(pPager->fd, 24);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers));
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }else{
- memset(dbFileVers, 0, sizeof(dbFileVers));
+ assert( pPager->dbSizeValid );
+ if( pPager->dbSize>0 ){
+ IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
+ rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
+ if( rc!=SQLITE_OK ){
+ goto failed;
}
+ }else{
+ memset(dbFileVers, 0, sizeof(dbFileVers));
+ }
- if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
- pager_reset(pPager);
- }
+ if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
+ pager_reset(pPager);
}
}
- assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
- if( pPager->state==PAGER_UNLOCK ){
- pPager->state = PAGER_SHARED;
- }
+ assert( pPager->exclusiveMode || pPager->state==PAGER_SHARED );
}
+ failed:
+ if( rc!=SQLITE_OK ){
+ /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */
+ pager_unlock(pPager);
+ }
return rc;
}
/*
-** Allocate a PgHdr object. Either create a new one or reuse
-** an existing one that is not otherwise in use.
-**
-** A new PgHdr structure is created if any of the following are
-** true:
-**
-** (1) We have not exceeded our maximum allocated cache size
-** as set by the "PRAGMA cache_size" command.
-**
-** (2) There are no unused PgHdr objects available at this time.
-**
-** (3) This is an in-memory database.
-**
-** (4) There are no PgHdr objects that do not require a journal
-** file sync and a sync of the journal file is currently
-** prohibited.
+** If the reference count has reached zero, rollback any active
+** transaction and unlock the pager.
**
-** Otherwise, reuse an existing PgHdr. In other words, reuse an
-** existing PgHdr if all of the following are true:
-**
-** (1) We have reached or exceeded the maximum cache size
-** allowed by "PRAGMA cache_size".
-**
-** (2) There is a PgHdr available with PgHdr->nRef==0
-**
-** (3) We are not in an in-memory database
-**
-** (4) Either there is an available PgHdr that does not need
-** to be synced to disk or else disk syncing is currently
-** allowed.
+** Except, in locking_mode=EXCLUSIVE when there is nothing to in
+** the rollback journal, the unlock is not performed and there is
+** nothing to rollback, so this routine is a no-op.
*/
-static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
- int rc = SQLITE_OK;
- PgHdr *pPg;
-
- /* Create a new PgHdr if any of the four conditions defined
- ** above is met: */
- if( pPager->nPage<pPager->mxPage
- || pPager->pFirst==0
- || MEMDB
- || (pPager->pFirstSynced==0 && pPager->doNotSync)
+static void pagerUnlockIfUnused(Pager *pPager){
+ if( (sqlite3PcacheRefCount(pPager->pPCache)==0)
+ && (!pPager->exclusiveMode || pPager->journalOff>0)
){
- if( pPager->nPage>=pPager->nHash ){
- pager_resize_hash_table(pPager,
- pPager->nHash<256 ? 256 : pPager->nHash*2);
- if( pPager->nHash==0 ){
- rc = SQLITE_NOMEM;
- goto pager_allocate_out;
- }
- }
- pPg = sqliteMallocRaw( sizeof(*pPg) + pPager->pageSize
- + sizeof(u32) + pPager->nExtra
- + MEMDB*sizeof(PgHistory) );
- if( pPg==0 ){
- rc = SQLITE_NOMEM;
- goto pager_allocate_out;
- }
- memset(pPg, 0, sizeof(*pPg));
- if( MEMDB ){
- memset(PGHDR_TO_HIST(pPg, pPager), 0, sizeof(PgHistory));
- }
- pPg->pPager = pPager;
- pPg->pNextAll = pPager->pAll;
- pPager->pAll = pPg;
- pPager->nPage++;
- if( pPager->nPage>pPager->nMaxPage ){
- assert( pPager->nMaxPage==(pPager->nPage-1) );
- pPager->nMaxPage++;
- }
- }else{
- /* Recycle an existing page with a zero ref-count. */
- rc = pager_recycle(pPager, 1, &pPg);
- if( rc!=SQLITE_OK ){
- goto pager_allocate_out;
- }
- assert( pPager->state>=SHARED_LOCK );
- assert(pPg);
+ pagerUnlockAndRollback(pPager);
}
- *ppPg = pPg;
-
-pager_allocate_out:
- return rc;
}
/*
-** Acquire a page.
+** Acquire a reference to page number pgno in pager pPager (a page
+** reference has type DbPage*). If the requested reference is
+** successfully obtained, it is copied to *ppPage and SQLITE_OK returned.
**
-** A read lock on the disk file is obtained when the first page is acquired.
-** This read lock is dropped when the last page is released.
+** If the requested page is already in the cache, it is returned.
+** Otherwise, a new page object is allocated and populated with data
+** read from the database file. In some cases, the pcache module may
+** choose not to allocate a new page object and may reuse an existing
+** object with no outstanding references.
**
-** A _get works for any page number greater than 0. If the database
-** file is smaller than the requested page, then no actual disk
-** read occurs and the memory image of the page is initialized to
-** all zeros. The extra data appended to a page is always initialized
-** to zeros the first time a page is loaded into memory.
+** The extra data appended to a page is always initialized to zeros the
+** first time a page is loaded into memory. If the page requested is
+** already in the cache when this function is called, then the extra
+** data is left as it was when the page object was last used.
+**
+** If the database image is smaller than the requested page or if a
+** non-zero value is passed as the noContent parameter and the
+** requested page is not already stored in the cache, then no
+** actual disk read occurs. In this case the memory image of the
+** page is initialized to all zeros.
+**
+** If noContent is true, it means that we do not care about the contents
+** of the page. This occurs in two seperate scenarios:
+**
+** a) When reading a free-list leaf page from the database, and
+**
+** b) When a savepoint is being rolled back and we need to load
+** a new page into the cache to populate with the data read
+** from the savepoint journal.
+**
+** If noContent is true, then the data returned is zeroed instead of
+** being read from the database. Additionally, the bits corresponding
+** to pgno in Pager.pInJournal (bitvec of pages already written to the
+** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open
+** savepoints are set. This means if the page is made writable at any
+** point in the future, using a call to sqlite3PagerWrite(), its contents
+** will not be journaled. This saves IO.
**
** The acquisition might fail for several reasons. In all cases,
** an appropriate error code is returned and *ppPage is set to NULL.
**
-** See also sqlite3PagerLookup(). Both this routine and _lookup() attempt
+** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
** to find a page in the in-memory cache first. If the page is not already
-** in memory, this routine goes to disk to read it in whereas _lookup()
+** in memory, this routine goes to disk to read it in whereas Lookup()
** just returns 0. This routine acquires a read-lock the first time it
** has to go to disk, and could also playback an old journal if necessary.
-** Since _lookup() never goes to disk, it never has to deal with locks
+** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
-**
-** If noContent is false, the page contents are actually read from disk.
-** If noContent is true, it means that we do not care about the contents
-** of the page at this time, so do not do a disk read. Just fill in the
-** page content with zeros. But mark the fact that we have not read the
-** content by setting the PgHdr.needRead flag. Later on, if
-** sqlite3PagerWrite() is called on this page, that means that the
-** content is needed and the disk read should occur at that point.
*/
-int sqlite3PagerAcquire(
+SQLITE_PRIVATE int sqlite3PagerAcquire(
Pager *pPager, /* The pager open on the database file */
Pgno pgno, /* Page number to fetch */
DbPage **ppPage, /* Write a pointer to the page here */
int noContent /* Do not bother reading content from disk if true */
){
- PgHdr *pPg;
int rc;
+ PgHdr *pPg;
- assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->state>PAGER_UNLOCK );
- /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
- ** number greater than this, or zero, is requested.
- */
- if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
+ if( pgno==0 ){
return SQLITE_CORRUPT_BKPT;
}
- /* Make sure we have not hit any critical errors.
- */
- assert( pPager!=0 );
- *ppPage = 0;
- if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
- return pPager->errCode;
+ /* If the pager is in the error state, return an error immediately.
+ ** Otherwise, request the page from the PCache layer. */
+ if( pPager->errCode!=SQLITE_OK && pPager->errCode!=SQLITE_FULL ){
+ rc = pPager->errCode;
+ }else{
+ rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, ppPage);
}
- /* If this is the first page accessed, then get a SHARED lock
- ** on the database file. pagerSharedLock() is a no-op if
- ** a database lock is already held.
- */
- rc = pagerSharedLock(pPager);
if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( pPager->state!=PAGER_UNLOCK );
+ /* Either the call to sqlite3PcacheFetch() returned an error or the
+ ** pager was already in the error-state when this function was called.
+ ** Set pPg to 0 and jump to the exception handler. */
+ pPg = 0;
+ goto pager_acquire_err;
+ }
+ assert( (*ppPage)->pgno==pgno );
+ assert( (*ppPage)->pPager==pPager || (*ppPage)->pPager==0 );
+
+ if( (*ppPage)->pPager ){
+ /* In this case the pcache already contains an initialized copy of
+ ** the page. Return without further ado. */
+ assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) );
+ PAGER_INCR(pPager->nHit);
+ return SQLITE_OK;
- pPg = pager_lookup(pPager, pgno);
- if( pPg==0 ){
- /* The requested page is not in the page cache. */
+ }else{
+ /* The pager cache has created a new page. Its content needs to
+ ** be initialized. */
int nMax;
- int h;
+
PAGER_INCR(pPager->nMiss);
- rc = pagerAllocatePage(pPager, &pPg);
- if( rc!=SQLITE_OK ){
- return rc;
- }
+ pPg = *ppPage;
+ pPg->pPager = pPager;
- pPg->pgno = pgno;
- assert( !MEMDB || pgno>pPager->stmtSize );
- if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
- sqlite3CheckMemory(pPager->aInJournal, pgno/8);
- assert( pPager->journalOpen );
- pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
- pPg->needSync = 0;
- }else{
- pPg->inJournal = 0;
- pPg->needSync = 0;
+ /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
+ ** number greater than this, or the unused locking-page, is requested. */
+ if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto pager_acquire_err;
}
- makeClean(pPg);
- pPg->nRef = 1;
- REFINFO(pPg);
-
- pPager->nRef++;
- if( pPager->nExtra>0 ){
- memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
- }
- nMax = sqlite3PagerPagecount(pPager);
- if( pPager->errCode ){
- sqlite3PagerUnref(pPg);
- rc = pPager->errCode;
- return rc;
+ rc = sqlite3PagerPagecount(pPager, &nMax);
+ if( rc!=SQLITE_OK ){
+ goto pager_acquire_err;
}
- /* Populate the page with data, either by reading from the database
- ** file, or by setting the entire page to zero.
- */
- if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
- memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
- pPg->needRead = noContent && !pPager->alwaysRollback;
+ if( nMax<(int)pgno || MEMDB || noContent ){
+ if( pgno>pPager->mxPgno ){
+ rc = SQLITE_FULL;
+ goto pager_acquire_err;
+ }
+ if( noContent ){
+ /* Failure to set the bits in the InJournal bit-vectors is benign.
+ ** It merely means that we might do some extra work to journal a
+ ** page that does not need to be journaled. Nevertheless, be sure
+ ** to test the case where a malloc error occurs while trying to set
+ ** a bit in a bit vector.
+ */
+ sqlite3BeginBenignMalloc();
+ if( pgno<=pPager->dbOrigSize ){
+ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ }
+ TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ sqlite3EndBenignMalloc();
+ }else{
+ memset(pPg->pData, 0, pPager->pageSize);
+ }
IOTRACE(("ZERO %p %d\n", pPager, pgno));
}else{
- rc = readDbPage(pPager, pPg, pgno);
- if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
- pPg->pgno = 0;
- sqlite3PagerUnref(pPg);
- return rc;
+ assert( pPg->pPager==pPager );
+ rc = readDbPage(pPg);
+ if( rc!=SQLITE_OK ){
+ goto pager_acquire_err;
}
}
-
- /* Link the page into the page hash table */
- h = pgno & (pPager->nHash-1);
- assert( pgno!=0 );
- pPg->pNextHash = pPager->aHash[h];
- pPager->aHash[h] = pPg;
- if( pPg->pNextHash ){
- assert( pPg->pNextHash->pPrevHash==0 );
- pPg->pNextHash->pPrevHash = pPg;
- }
-
#ifdef SQLITE_CHECK_PAGES
pPg->pageHash = pager_pagehash(pPg);
#endif
- }else{
- /* The requested page is in the page cache. */
- assert(pPager->nRef>0 || pgno==1);
- PAGER_INCR(pPager->nHit);
- page_ref(pPg);
}
- *ppPage = pPg;
+
return SQLITE_OK;
+
+pager_acquire_err:
+ assert( rc!=SQLITE_OK );
+ if( pPg ){
+ sqlite3PcacheDrop(pPg);
+ }
+ pagerUnlockIfUnused(pPager);
+
+ *ppPage = 0;
+ return rc;
}
/*
** Acquire a page if it is already in the in-memory cache. Do
** not read the page from disk. Return a pointer to the page,
-** or 0 if the page is not in cache.
+** or 0 if the page is not in cache. Also, return 0 if the
+** pager is in PAGER_UNLOCK state when this function is called,
+** or if the pager is in an error state other than SQLITE_FULL.
**
** See also sqlite3PagerGet(). The difference between this routine
** and sqlite3PagerGet() is that _get() will go to the disk and read
@@ -19840,396 +35125,354 @@ int sqlite3PagerAcquire(
** returns NULL if the page is not in cache or if a disk I/O error
** has ever happened.
*/
-DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
- PgHdr *pPg;
-
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
+ PgHdr *pPg = 0;
assert( pPager!=0 );
assert( pgno!=0 );
-
- if( pPager->state==PAGER_UNLOCK ){
- assert( !pPager->pAll || pPager->exclusiveMode );
- return 0;
- }
- if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
- return 0;
- }
- pPg = pager_lookup(pPager, pgno);
- if( pPg==0 ) return 0;
- page_ref(pPg);
+ assert( pPager->pPCache!=0 );
+ assert( pPager->state > PAGER_UNLOCK );
+ sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg);
return pPg;
}
/*
-** Release a page.
+** Release a page reference.
**
** If the number of references to the page drop to zero, then the
** page is added to the LRU list. When all references to all pages
** are released, a rollback occurs and the lock on the database is
** removed.
*/
-int sqlite3PagerUnref(DbPage *pPg){
-
- /* Decrement the reference count for this page
- */
- assert( pPg->nRef>0 );
- pPg->nRef--;
- REFINFO(pPg);
-
- CHECK_PAGE(pPg);
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){
+ if( pPg ){
+ Pager *pPager = pPg->pPager;
+ sqlite3PcacheRelease(pPg);
+ pagerUnlockIfUnused(pPager);
+ }
+}
- /* When the number of references to a page reach 0, call the
- ** destructor and add the page to the freelist.
- */
- if( pPg->nRef==0 ){
- Pager *pPager;
- pPager = pPg->pPager;
- pPg->pNextFree = 0;
- pPg->pPrevFree = pPager->pLast;
- pPager->pLast = pPg;
- if( pPg->pPrevFree ){
- pPg->pPrevFree->pNextFree = pPg;
+/*
+** If the main journal file has already been opened, ensure that the
+** sub-journal file is open too. If the main journal is not open,
+** this function is a no-op.
+**
+** SQLITE_OK is returned if everything goes according to plan.
+** An SQLITE_IOERR_XXX error code is returned if a call to
+** sqlite3OsOpen() fails.
+*/
+static int openSubJournal(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ){
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){
+ sqlite3MemJournalOpen(pPager->sjfd);
}else{
- pPager->pFirst = pPg;
- }
- if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
- pPager->pFirstSynced = pPg;
- }
- if( pPager->xDestructor ){
- pPager->xDestructor(pPg, pPager->pageSize);
- }
-
- /* When all pages reach the freelist, drop the read lock from
- ** the database file.
- */
- pPager->nRef--;
- assert( pPager->nRef>=0 );
- if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
- pagerUnlockAndRollback(pPager);
+ rc = pagerOpentemp(pPager, pPager->sjfd, SQLITE_OPEN_SUBJOURNAL);
}
}
- return SQLITE_OK;
+ return rc;
}
/*
-** Create a journal file for pPager. There should already be a RESERVED
-** or EXCLUSIVE lock on the database file when this routine is called.
+** This function is called at the start of every write transaction.
+** There must already be a RESERVED or EXCLUSIVE lock on the database
+** file when this routine is called.
+**
+** Open the journal file for pager pPager and write a journal header
+** to the start of it. If there are active savepoints, open the sub-journal
+** as well. This function is only used when the journal file is being
+** opened to write a rollback log for a transaction. It is not used
+** when opening a hot journal file to roll it back.
**
-** Return SQLITE_OK if everything. Return an error code and release the
-** write lock if anything goes wrong.
+** If the journal file is already open (as it may be in exclusive mode),
+** then this function just writes a journal header to the start of the
+** already open file.
+**
+** Whether or not the journal file is opened by this function, the
+** Pager.pInJournal bitvec structure is allocated.
+**
+** Return SQLITE_OK if everything is successful. Otherwise, return
+** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or
+** an IO error code if opening or writing the journal file fails.
*/
static int pager_open_journal(Pager *pPager){
- int rc;
- assert( !MEMDB );
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */
+
assert( pPager->state>=PAGER_RESERVED );
- assert( pPager->journalOpen==0 );
assert( pPager->useJournal );
- assert( pPager->aInJournal==0 );
- sqlite3PagerPagecount(pPager);
- pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
- if( pPager->aInJournal==0 ){
- rc = SQLITE_NOMEM;
- goto failed_to_open_journal;
+ assert( pPager->journalMode!=PAGER_JOURNALMODE_OFF );
+ assert( pPager->pInJournal==0 );
+
+ /* If already in the error state, this function is a no-op. But on
+ ** the other hand, this routine is never called if we are already in
+ ** an error state. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ /* TODO: Is it really possible to get here with dbSizeValid==0? If not,
+ ** the call to PagerPagecount() can be removed.
+ */
+ testcase( pPager->dbSizeValid==0 );
+ sqlite3PagerPagecount(pPager, 0);
+
+ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
+ if( pPager->pInJournal==0 ){
+ return SQLITE_NOMEM;
}
- rc = sqlite3OsOpenExclusive(pPager->zJournal, &pPager->jfd,
- pPager->tempFile);
- assert( rc!=SQLITE_OK || pPager->jfd );
- pPager->journalOff = 0;
- pPager->setMaster = 0;
- pPager->journalHdr = 0;
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_NOMEM ){
- sqlite3OsDelete(pPager->zJournal);
+
+ /* Open the journal file if it is not already open. */
+ if( !isOpen(pPager->jfd) ){
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
+ sqlite3MemJournalOpen(pPager->jfd);
+ }else{
+ const int flags = /* VFS flags to open journal file */
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
+ (pPager->tempFile ?
+ (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL):
+ (SQLITE_OPEN_MAIN_JOURNAL)
+ );
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ rc = sqlite3JournalOpen(
+ pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
+ );
+#else
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
+#endif
}
- goto failed_to_open_journal;
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
}
- sqlite3OsSetFullSync(pPager->jfd, pPager->full_fsync);
- sqlite3OsSetFullSync(pPager->fd, pPager->full_fsync);
- sqlite3OsOpenDirectory(pPager->jfd, pPager->zDirectory);
- pPager->journalOpen = 1;
- pPager->journalStarted = 0;
- pPager->needSync = 0;
- pPager->alwaysRollback = 0;
- pPager->nRec = 0;
- if( pPager->errCode ){
- rc = pPager->errCode;
- goto failed_to_open_journal;
- }
- pPager->origDbSize = pPager->dbSize;
- rc = writeJournalHdr(pPager);
- if( pPager->stmtAutoopen && rc==SQLITE_OK ){
- rc = sqlite3PagerStmtBegin(pPager);
+ /* Write the first journal header to the journal file and open
+ ** the sub-journal if necessary.
+ */
+ if( rc==SQLITE_OK ){
+ /* TODO: Check if all of these are really required. */
+ pPager->dbOrigSize = pPager->dbSize;
+ pPager->journalStarted = 0;
+ pPager->needSync = 0;
+ pPager->nRec = 0;
+ pPager->journalOff = 0;
+ pPager->setMaster = 0;
+ pPager->journalHdr = 0;
+ rc = writeJournalHdr(pPager);
}
- if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){
- rc = pager_end_transaction(pPager);
- if( rc==SQLITE_OK ){
- rc = SQLITE_FULL;
- }
+ if( rc==SQLITE_OK && pPager->nSavepoint ){
+ rc = openSubJournal(pPager);
}
- return rc;
-failed_to_open_journal:
- sqliteFree(pPager->aInJournal);
- pPager->aInJournal = 0;
+ if( rc!=SQLITE_OK ){
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ }
return rc;
}
/*
-** Acquire a write-lock on the database. The lock is removed when
-** the any of the following happen:
+** Begin a write-transaction on the specified pager object. If a
+** write-transaction has already been opened, this function is a no-op.
**
-** * sqlite3PagerCommitPhaseTwo() is called.
-** * sqlite3PagerRollback() is called.
-** * sqlite3PagerClose() is called.
-** * sqlite3PagerUnref() is called to on every outstanding page.
+** If the exFlag argument is false, then acquire at least a RESERVED
+** lock on the database file. If exFlag is true, then acquire at least
+** an EXCLUSIVE lock. If such a lock is already held, no locking
+** functions need be called.
**
-** The first parameter to this routine is a pointer to any open page of the
-** database file. Nothing changes about the page - it is used merely to
-** acquire a pointer to the Pager structure and as proof that there is
-** already a read-lock on the database.
+** If this is not a temporary or in-memory file and, the journal file is
+** opened if it has not been already. For a temporary file, the opening
+** of the journal file is deferred until there is an actual need to
+** write to the journal. TODO: Why handle temporary files differently?
**
-** The second parameter indicates how much space in bytes to reserve for a
-** master journal file-name at the start of the journal when it is created.
+** If the journal file is opened (or if it is already open), then a
+** journal-header is written to the start of it.
**
-** A journal file is opened if this is not a temporary file. For temporary
-** files, the opening of the journal file is deferred until there is an
-** actual need to write to the journal.
-**
-** If the database is already reserved for writing, this routine is a no-op.
-**
-** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
-** immediately instead of waiting until we try to flush the cache. The
-** exFlag is ignored if a transaction is already active.
+** If the subjInMemory argument is non-zero, then any sub-journal opened
+** within this transaction will be opened as an in-memory file. This
+** has no effect if the sub-journal is already opened (as it may be when
+** running in exclusive mode) or if the transaction does not require a
+** sub-journal. If the subjInMemory argument is zero, then any required
+** sub-journal is implemented in-memory if pPager is an in-memory database,
+** or using a temporary file otherwise.
*/
-int sqlite3PagerBegin(DbPage *pPg, int exFlag){
- Pager *pPager = pPg->pPager;
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){
int rc = SQLITE_OK;
- assert( pPg->nRef>0 );
assert( pPager->state!=PAGER_UNLOCK );
+ pPager->subjInMemory = (u8)subjInMemory;
if( pPager->state==PAGER_SHARED ){
- assert( pPager->aInJournal==0 );
- if( MEMDB ){
- pPager->state = PAGER_EXCLUSIVE;
- pPager->origDbSize = pPager->dbSize;
- }else{
- rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
- if( rc==SQLITE_OK ){
- pPager->state = PAGER_RESERVED;
- if( exFlag ){
- rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
- }
- }
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pPager->dirtyCache = 0;
- PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
- if( pPager->useJournal && !pPager->tempFile ){
- rc = pager_open_journal(pPager);
+ assert( pPager->pInJournal==0 );
+ assert( !MEMDB && !pPager->tempFile );
+
+ /* Obtain a RESERVED lock on the database file. If the exFlag parameter
+ ** is true, then immediately upgrade this to an EXCLUSIVE lock. The
+ ** busy-handler callback can be used when upgrading to the EXCLUSIVE
+ ** lock, but not when obtaining the RESERVED lock.
+ */
+ rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
+ if( rc==SQLITE_OK ){
+ pPager->state = PAGER_RESERVED;
+ if( exFlag ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
}
}
- }else if( pPager->journalOpen && pPager->journalOff==0 ){
- /* This happens when the pager was in exclusive-access mode last
+
+ /* If the required locks were successfully obtained, open the journal
+ ** file and write the first journal-header to it.
+ */
+ if( rc==SQLITE_OK && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ rc = pager_open_journal(pPager);
+ }
+ }else if( isOpen(pPager->jfd) && pPager->journalOff==0 ){
+ /* This happens when the pager was in exclusive-access mode the last
** time a (read or write) transaction was successfully concluded
** by this connection. Instead of deleting the journal file it was
- ** kept open and truncated to 0 bytes.
+ ** kept open and either was truncated to 0 bytes or its header was
+ ** overwritten with zeros.
*/
assert( pPager->nRec==0 );
- assert( pPager->origDbSize==0 );
- assert( pPager->aInJournal==0 );
- sqlite3PagerPagecount(pPager);
- pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
- if( !pPager->aInJournal ){
- rc = SQLITE_NOMEM;
- }else{
- pPager->origDbSize = pPager->dbSize;
- rc = writeJournalHdr(pPager);
- }
- }
- assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
- return rc;
-}
-
-/*
-** Make a page dirty. Set its dirty flag and add it to the dirty
-** page list.
-*/
-static void makeDirty(PgHdr *pPg){
- if( pPg->dirty==0 ){
- Pager *pPager = pPg->pPager;
- pPg->dirty = 1;
- pPg->pDirty = pPager->pDirty;
- if( pPager->pDirty ){
- pPager->pDirty->pPrevDirty = pPg;
- }
- pPg->pPrevDirty = 0;
- pPager->pDirty = pPg;
+ assert( pPager->dbOrigSize==0 );
+ assert( pPager->pInJournal==0 );
+ rc = pager_open_journal(pPager);
}
-}
-/*
-** Make a page clean. Clear its dirty bit and remove it from the
-** dirty page list.
-*/
-static void makeClean(PgHdr *pPg){
- if( pPg->dirty ){
- pPg->dirty = 0;
- if( pPg->pDirty ){
- pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
- }
- if( pPg->pPrevDirty ){
- pPg->pPrevDirty->pDirty = pPg->pDirty;
- }else{
- pPg->pPager->pDirty = pPg->pDirty;
- }
+ PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
+ assert( !isOpen(pPager->jfd) || pPager->journalOff>0 || rc!=SQLITE_OK );
+ if( rc!=SQLITE_OK ){
+ assert( !pPager->dbModified );
+ /* Ignore any IO error that occurs within pager_end_transaction(). The
+ ** purpose of this call is to reset the internal state of the pager
+ ** sub-system. It doesn't matter if the journal-file is not properly
+ ** finalized at this point (since it is not a valid journal file anyway).
+ */
+ pager_end_transaction(pPager, 0);
}
+ return rc;
}
-
/*
-** Mark a data page as writeable. The page is written into the journal
-** if it is not there already. This routine must be called before making
-** changes to a page.
-**
-** The first time this routine is called, the pager creates a new
-** journal and acquires a RESERVED lock on the database. If the RESERVED
-** lock could not be acquired, this routine returns SQLITE_BUSY. The
-** calling routine must check for that return value and be careful not to
-** change any page data until this routine returns SQLITE_OK.
-**
-** If the journal file could not be written because the disk is full,
-** then this routine returns SQLITE_FULL and does an immediate rollback.
-** All subsequent write attempts also return SQLITE_FULL until there
-** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
-** reset.
+** Mark a single data page as writeable. The page is written into the
+** main journal or sub-journal as required. If the page is written into
+** one of the journals, the corresponding bit is set in the
+** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
+** of any open savepoints as appropriate.
*/
static int pager_write(PgHdr *pPg){
- void *pData = PGHDR_TO_DATA(pPg);
+ void *pData = pPg->pData;
Pager *pPager = pPg->pPager;
int rc = SQLITE_OK;
- /* Check for errors
+ /* This routine is not called unless a transaction has already been
+ ** started.
*/
- if( pPager->errCode ){
- return pPager->errCode;
- }
- if( pPager->readOnly ){
- return SQLITE_PERM;
- }
+ assert( pPager->state>=PAGER_RESERVED );
+
+ /* If an error has been previously detected, we should not be
+ ** calling this routine. Repeat the error for robustness.
+ */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ /* Higher-level routines never call this function if database is not
+ ** writable. But check anyway, just for robustness. */
+ if( NEVER(pPager->readOnly) ) return SQLITE_PERM;
assert( !pPager->setMaster );
CHECK_PAGE(pPg);
- /* If this page was previously acquired with noContent==1, that means
- ** we didn't really read in the content of the page. This can happen
- ** (for example) when the page is being moved to the freelist. But
- ** now we are (perhaps) moving the page off of the freelist for
- ** reuse and we need to know its original content so that content
- ** can be stored in the rollback journal. So do the read at this
- ** time.
- */
- if( pPg->needRead ){
- rc = readDbPage(pPager, pPg, pPg->pgno);
- if( rc==SQLITE_OK ){
- pPg->needRead = 0;
- }else{
- return rc;
- }
- }
-
/* Mark the page as dirty. If the page has already been written
** to the journal then we can return right away.
*/
- makeDirty(pPg);
- if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
- pPager->dirtyCache = 1;
+ sqlite3PcacheMakeDirty(pPg);
+ if( pageInJournal(pPg) && !subjRequiresPage(pPg) ){
+ pPager->dbModified = 1;
}else{
/* If we get this far, it means that the page needs to be
** written to the transaction journal or the ckeckpoint journal
** or both.
**
- ** First check to see that the transaction journal exists and
- ** create it if it does not.
+ ** Higher level routines should have already started a transaction,
+ ** which means they have acquired the necessary locks and opened
+ ** a rollback journal. Double-check to makes sure this is the case.
*/
- assert( pPager->state!=PAGER_UNLOCK );
- rc = sqlite3PagerBegin(pPg, 0);
- if( rc!=SQLITE_OK ){
+ rc = sqlite3PagerBegin(pPager, 0, pPager->subjInMemory);
+ if( NEVER(rc!=SQLITE_OK) ){
return rc;
}
- assert( pPager->state>=PAGER_RESERVED );
- if( !pPager->journalOpen && pPager->useJournal ){
+ if( !isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ assert( pPager->useJournal );
rc = pager_open_journal(pPager);
if( rc!=SQLITE_OK ) return rc;
}
- assert( pPager->journalOpen || !pPager->useJournal );
- pPager->dirtyCache = 1;
+ pPager->dbModified = 1;
/* The transaction journal now exists and we have a RESERVED or an
** EXCLUSIVE lock on the main database file. Write the current page to
** the transaction journal if it is not there already.
*/
- if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){
- if( (int)pPg->pgno <= pPager->origDbSize ){
- int szPg;
- if( MEMDB ){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
- assert( pHist->pOrig==0 );
- pHist->pOrig = sqliteMallocRaw( pPager->pageSize );
- if( pHist->pOrig ){
- memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
- }
- }else{
- u32 cksum, saved;
- char *pData2, *pEnd;
- /* We should never write to the journal file the page that
- ** contains the database locks. The following assert verifies
- ** that we do not. */
- assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
- pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
- cksum = pager_cksum(pPager, (u8*)pData2);
- pEnd = pData2 + pPager->pageSize;
- pData2 -= 4;
- saved = *(u32*)pEnd;
- put32bits(pEnd, cksum);
- szPg = pPager->pageSize+8;
- put32bits(pData2, pPg->pgno);
- rc = sqlite3OsWrite(pPager->jfd, pData2, szPg);
- IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
- pPager->journalOff, szPg));
- PAGER_INCR(sqlite3_pager_writej_count);
- pPager->journalOff += szPg;
- PAGERTRACE4("JOURNAL %d page %d needSync=%d\n",
- PAGERID(pPager), pPg->pgno, pPg->needSync);
- *(u32*)pEnd = saved;
-
- /* An error has occured writing to the journal file. The
- ** transaction will be rolled back by the layer above.
- */
- if( rc!=SQLITE_OK ){
- return rc;
- }
+ if( !pageInJournal(pPg) && isOpen(pPager->jfd) ){
+ if( pPg->pgno<=pPager->dbOrigSize ){
+ u32 cksum;
+ char *pData2;
+
+ /* We should never write to the journal file the page that
+ ** contains the database locks. The following assert verifies
+ ** that we do not. */
+ assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
+ CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
+ cksum = pager_cksum(pPager, (u8*)pData2);
+ rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
+ pPager->journalOff + 4);
+ pPager->journalOff += pPager->pageSize+4;
+ }
+ if( rc==SQLITE_OK ){
+ rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
+ pPager->journalOff += 4;
+ }
+ IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
+ pPager->journalOff, pPager->pageSize));
+ PAGER_INCR(sqlite3_pager_writej_count);
+ PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));
+
+ /* Even if an IO or diskfull error occurred while journalling the
+ ** page in the block above, set the need-sync flag for the page.
+ ** Otherwise, when the transaction is rolled back, the logic in
+ ** playback_one_page() will think that the page needs to be restored
+ ** in the database file. And if an IO error occurs while doing so,
+ ** then corruption may follow.
+ */
+ if( !pPager->noSync ){
+ pPg->flags |= PGHDR_NEED_SYNC;
+ pPager->needSync = 1;
+ }
- pPager->nRec++;
- assert( pPager->aInJournal!=0 );
- pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
- pPg->needSync = !pPager->noSync;
- if( pPager->stmtInUse ){
- pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
- }
+ /* An error has occurred writing to the journal file. The
+ ** transaction will be rolled back by the layer above.
+ */
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ pPager->nRec++;
+ assert( pPager->pInJournal!=0 );
+ rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
+ testcase( rc==SQLITE_NOMEM );
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ rc |= addToSavepointBitvecs(pPager, pPg->pgno);
+ if( rc!=SQLITE_OK ){
+ assert( rc==SQLITE_NOMEM );
+ return rc;
}
}else{
- pPg->needSync = !pPager->journalStarted && !pPager->noSync;
- PAGERTRACE4("APPEND %d page %d needSync=%d\n",
- PAGERID(pPager), pPg->pgno, pPg->needSync);
- }
- if( pPg->needSync ){
- pPager->needSync = 1;
+ if( !pPager->journalStarted && !pPager->noSync ){
+ pPg->flags |= PGHDR_NEED_SYNC;
+ pPager->needSync = 1;
+ }
+ PAGERTRACE(("APPEND %d page %d needSync=%d\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
}
- pPg->inJournal = 1;
}
/* If the statement journal is open and the page is not in it,
@@ -20237,73 +35480,52 @@ static int pager_write(PgHdr *pPg){
** the statement journal format differs from the standard journal format
** in that it omits the checksums and the header.
*/
- if( pPager->stmtInUse
- && !pageInStatement(pPg)
- && (int)pPg->pgno<=pPager->stmtSize
- ){
- assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
- if( MEMDB ){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- assert( pHist->pStmt==0 );
- pHist->pStmt = sqliteMallocRaw( pPager->pageSize );
- if( pHist->pStmt ){
- memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
- }
- PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
- page_add_to_stmt_list(pPg);
- }else{
- char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7)-4;
- put32bits(pData2, pPg->pgno);
- rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize+4);
- PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pPager->stmtNRec++;
- assert( pPager->aInStmt!=0 );
- pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
- }
+ if( subjRequiresPage(pPg) ){
+ rc = subjournalPage(pPg);
}
}
/* Update the database size and return.
*/
assert( pPager->state>=PAGER_SHARED );
- if( pPager->dbSize<(int)pPg->pgno ){
+ if( pPager->dbSize<pPg->pgno ){
pPager->dbSize = pPg->pgno;
- if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
- pPager->dbSize++;
- }
}
return rc;
}
/*
-** This function is used to mark a data-page as writable. It uses
-** pager_write() to open a journal file (if it is not already open)
-** and write the page *pData to the journal.
+** Mark a data page as writeable. This routine must be called before
+** making changes to a page. The caller must check the return value
+** of this function and be careful not to change any page data unless
+** this routine returns SQLITE_OK.
**
** The difference between this function and pager_write() is that this
** function also deals with the special case where 2 or more pages
** fit on a single disk sector. In this case all co-resident pages
** must have been written to the journal file before returning.
+**
+** If an error occurs, SQLITE_NOMEM or an IO error code is returned
+** as appropriate. Otherwise, SQLITE_OK.
*/
-int sqlite3PagerWrite(DbPage *pDbPage){
+SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){
int rc = SQLITE_OK;
PgHdr *pPg = pDbPage;
Pager *pPager = pPg->pPager;
Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
- if( !MEMDB && nPagePerSector>1 ){
+ if( nPagePerSector>1 ){
Pgno nPageCount; /* Total number of pages in database file */
Pgno pg1; /* First page of the sector pPg is located on. */
int nPage; /* Number of pages starting at pg1 to journal */
- int ii;
+ int ii; /* Loop counter */
+ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */
/* Set the doNotSync flag to 1. This is because we cannot allow a journal
** header to be written between the pages journaled by this function.
*/
+ assert( !MEMDB );
assert( pPager->doNotSync==0 );
pPager->doNotSync = 1;
@@ -20313,7 +35535,7 @@ int sqlite3PagerWrite(DbPage *pDbPage){
*/
pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
- nPageCount = sqlite3PagerPagecount(pPager);
+ sqlite3PagerPagecount(pPager, (int *)&nPageCount);
if( pPg->pgno>nPageCount ){
nPage = (pPg->pgno - pg1)+1;
}else if( (pg1+nPagePerSector-1)>nPageCount ){
@@ -20327,20 +35549,45 @@ int sqlite3PagerWrite(DbPage *pDbPage){
for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
Pgno pg = pg1+ii;
- if( !pPager->aInJournal || pg==pPg->pgno ||
- pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7)))
- ) {
+ PgHdr *pPage;
+ if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
if( pg!=PAGER_MJ_PGNO(pPager) ){
- PgHdr *pPage;
rc = sqlite3PagerGet(pPager, pg, &pPage);
if( rc==SQLITE_OK ){
rc = pager_write(pPage);
+ if( pPage->flags&PGHDR_NEED_SYNC ){
+ needSync = 1;
+ assert(pPager->needSync);
+ }
sqlite3PagerUnref(pPage);
}
}
+ }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
+ if( pPage->flags&PGHDR_NEED_SYNC ){
+ needSync = 1;
+ }
+ sqlite3PagerUnref(pPage);
}
}
+ /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages
+ ** starting at pg1, then it needs to be set for all of them. Because
+ ** writing to any of these nPage pages may damage the others, the
+ ** journal file must contain sync()ed copies of all of them
+ ** before any of them can be written out to the database file.
+ */
+ if( rc==SQLITE_OK && needSync ){
+ assert( !MEMDB && pPager->noSync==0 );
+ for(ii=0; ii<nPage; ii++){
+ PgHdr *pPage = pager_lookup(pPager, pg1+ii);
+ if( pPage ){
+ pPage->flags |= PGHDR_NEED_SYNC;
+ sqlite3PagerUnref(pPage);
+ }
+ }
+ assert(pPager->needSync);
+ }
+
assert( pPager->doNotSync==1 );
pPager->doNotSync = 0;
}else{
@@ -20355,151 +35602,135 @@ int sqlite3PagerWrite(DbPage *pDbPage){
** to change the content of the page.
*/
#ifndef NDEBUG
-int sqlite3PagerIswriteable(DbPage *pPg){
- return pPg->dirty;
-}
-#endif
-
-#ifndef SQLITE_OMIT_VACUUM
-/*
-** Replace the content of a single page with the information in the third
-** argument.
-*/
-int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){
- PgHdr *pPg;
- int rc;
-
- rc = sqlite3PagerGet(pPager, pgno, &pPg);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerWrite(pPg);
- if( rc==SQLITE_OK ){
- memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize);
- }
- sqlite3PagerUnref(pPg);
- }
- return rc;
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
+ return pPg->flags&PGHDR_DIRTY;
}
#endif
/*
** A call to this routine tells the pager that it is not necessary to
** write the information on page pPg back to the disk, even though
-** that page might be marked as dirty.
+** that page might be marked as dirty. This happens, for example, when
+** the page has been added as a leaf of the freelist and so its
+** content no longer matters.
**
** The overlying software layer calls this routine when all of the data
-** on the given page is unused. The pager marks the page as clean so
+** on the given page is unused. The pager marks the page as clean so
** that it does not get written to disk.
**
-** Tests show that this optimization, together with the
-** sqlite3PagerDontRollback() below, more than double the speed
-** of large INSERT operations and quadruple the speed of large DELETEs.
-**
-** When this routine is called, set the alwaysRollback flag to true.
-** Subsequent calls to sqlite3PagerDontRollback() for the same page
-** will thereafter be ignored. This is necessary to avoid a problem
-** where a page with data is added to the freelist during one part of
-** a transaction then removed from the freelist during a later part
-** of the same transaction and reused for some other purpose. When it
-** is first added to the freelist, this routine is called. When reused,
-** the sqlite3PagerDontRollback() routine is called. But because the
-** page contains critical data, we still need to be sure it gets
-** rolled back in spite of the sqlite3PagerDontRollback() call.
-*/
-void sqlite3PagerDontWrite(DbPage *pDbPage){
- PgHdr *pPg = pDbPage;
+** Tests show that this optimization can quadruple the speed of large
+** DELETE operations.
+*/
+SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){
Pager *pPager = pPg->pPager;
-
- if( MEMDB ) return;
- pPg->alwaysRollback = 1;
- if( pPg->dirty && !pPager->stmtInUse ){
- assert( pPager->state>=PAGER_SHARED );
- if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
- /* If this pages is the last page in the file and the file has grown
- ** during the current transaction, then do NOT mark the page as clean.
- ** When the database file grows, we must make sure that the last page
- ** gets written at least once so that the disk file will be the correct
- ** size. If you do not write this page and the size of the file
- ** on the disk ends up being too small, that can lead to database
- ** corruption during the next transaction.
- */
- }else{
- PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
- IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
- makeClean(pPg);
+ if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
+ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
+ IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
+ pPg->flags |= PGHDR_DONT_WRITE;
#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
+ pPg->pageHash = pager_pagehash(pPg);
#endif
- }
}
}
/*
-** A call to this routine tells the pager that if a rollback occurs,
-** it is not necessary to restore the data on the given page. This
-** means that the pager does not have to record the given page in the
-** rollback journal.
+** This routine is called to increment the value of the database file
+** change-counter, stored as a 4-byte big-endian integer starting at
+** byte offset 24 of the pager file.
**
-** If we have not yet actually read the content of this page (if
-** the PgHdr.needRead flag is set) then this routine acts as a promise
-** that we will never need to read the page content in the future.
-** so the needRead flag can be cleared at this point.
+** If the isDirectMode flag is zero, then this is done by calling
+** sqlite3PagerWrite() on page 1, then modifying the contents of the
+** page data. In this case the file will be updated when the current
+** transaction is committed.
+**
+** The isDirectMode flag may only be non-zero if the library was compiled
+** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case,
+** if isDirect is non-zero, then the database file is updated directly
+** by writing an updated version of page 1 using a call to the
+** sqlite3OsWrite() function.
*/
-void sqlite3PagerDontRollback(DbPage *pPg){
- Pager *pPager = pPg->pPager;
+static int pager_incr_changecounter(Pager *pPager, int isDirectMode){
+ int rc = SQLITE_OK;
- assert( pPager->state>=PAGER_RESERVED );
- if( pPager->journalOpen==0 ) return;
- if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return;
- if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
- assert( pPager->aInJournal!=0 );
- pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
- pPg->inJournal = 1;
- pPg->needRead = 0;
- if( pPager->stmtInUse ){
- pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
- }
- PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
- IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
- }
- if( pPager->stmtInUse
- && !pageInStatement(pPg)
- && (int)pPg->pgno<=pPager->stmtSize
- ){
- assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
- assert( pPager->aInStmt!=0 );
- pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
- }
-}
+ /* Declare and initialize constant integer 'isDirect'. If the
+ ** atomic-write optimization is enabled in this build, then isDirect
+ ** is initialized to the value passed as the isDirectMode parameter
+ ** to this function. Otherwise, it is always set to zero.
+ **
+ ** The idea is that if the atomic-write optimization is not
+ ** enabled at compile time, the compiler can omit the tests of
+ ** 'isDirect' below, as well as the block enclosed in the
+ ** "if( isDirect )" condition.
+ */
+#ifndef SQLITE_ENABLE_ATOMIC_WRITE
+# define DIRECT_MODE 0
+ assert( isDirectMode==0 );
+ UNUSED_PARAMETER(isDirectMode);
+#else
+# define DIRECT_MODE isDirectMode
+#endif
+ assert( pPager->state>=PAGER_RESERVED );
+ if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){
+ PgHdr *pPgHdr; /* Reference to page 1 */
+ u32 change_counter; /* Initial value of change-counter field */
-/*
-** This routine is called to increment the database file change-counter,
-** stored at byte 24 of the pager file.
-*/
-static int pager_incr_changecounter(Pager *pPager){
- PgHdr *pPgHdr;
- u32 change_counter;
- int rc;
+ assert( !pPager->tempFile && isOpen(pPager->fd) );
- if( !pPager->changeCountDone ){
/* Open page 1 of the file for writing. */
rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
- if( rc!=SQLITE_OK ) return rc;
- rc = sqlite3PagerWrite(pPgHdr);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Read the current value at byte 24. */
- change_counter = retrieve32bits(pPgHdr, 24);
-
- /* Increment the value just read and write it back to byte 24. */
- change_counter++;
- put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
-
+ assert( pPgHdr==0 || rc==SQLITE_OK );
+
+ /* If page one was fetched successfully, and this function is not
+ ** operating in direct-mode, make page 1 writable. When not in
+ ** direct mode, page 1 is always held in cache and hence the PagerGet()
+ ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
+ */
+ if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){
+ rc = sqlite3PagerWrite(pPgHdr);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Increment the value just read and write it back to byte 24. */
+ change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
+ change_counter++;
+ put32bits(((char*)pPgHdr->pData)+24, change_counter);
+
+ /* If running in direct mode, write the contents of page 1 to the file. */
+ if( DIRECT_MODE ){
+ const void *zBuf = pPgHdr->pData;
+ assert( pPager->dbFileSize>0 );
+ rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
+ if( rc==SQLITE_OK ){
+ pPager->changeCountDone = 1;
+ }
+ }else{
+ pPager->changeCountDone = 1;
+ }
+ }
+
/* Release the page reference. */
sqlite3PagerUnref(pPgHdr);
- pPager->changeCountDone = 1;
}
- return SQLITE_OK;
+ return rc;
+}
+
+/*
+** Sync the pager file to disk. This is a no-op for in-memory files
+** or pages with the Pager.noSync flag set.
+**
+** If successful, or called on a pager for which it is a no-op, this
+** function returns SQLITE_OK. Otherwise, an IO error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager){
+ int rc; /* Return code */
+ assert( !MEMDB );
+ if( pPager->noSync ){
+ rc = SQLITE_OK;
+ }else{
+ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
+ }
+ return rc;
}
/*
@@ -20508,249 +35739,345 @@ static int pager_incr_changecounter(Pager *pPager){
** journal file. zMaster may be NULL, which is interpreted as no master
** journal (a single database transaction).
**
-** This routine ensures that the journal is synced, all dirty pages written
-** to the database file and the database file synced. The only thing that
-** remains to commit the transaction is to delete the journal file (or
-** master journal file if specified).
+** This routine ensures that:
+**
+** * The database file change-counter is updated,
+** * the journal is synced (unless the atomic-write optimization is used),
+** * all dirty pages are written to the database file,
+** * the database file is truncated (if required), and
+** * the database file synced.
+**
+** The only thing that remains to commit the transaction is to finalize
+** (delete, truncate or zero the first part of) the journal file (or
+** delete the master journal file if specified).
**
** Note that if zMaster==NULL, this does not overwrite a previous value
** passed to an sqlite3PagerCommitPhaseOne() call.
**
-** If parameter nTrunc is non-zero, then the pager file is truncated to
-** nTrunc pages (this is used by auto-vacuum databases).
+** If the final parameter - noSync - is true, then the database file itself
+** is not synced. The caller must call sqlite3PagerSync() directly to
+** sync the database file before calling CommitPhaseTwo() to delete the
+** journal file in this case.
*/
-int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){
- int rc = SQLITE_OK;
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(
+ Pager *pPager, /* Pager object */
+ const char *zMaster, /* If not NULL, the master journal name */
+ int noSync /* True to omit the xSync on the db file */
+){
+ int rc = SQLITE_OK; /* Return code */
- PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
- pPager->zFilename, zMaster, nTrunc);
+ /* The dbOrigSize is never set if journal_mode=OFF */
+ assert( pPager->journalMode!=PAGER_JOURNALMODE_OFF || pPager->dbOrigSize==0 );
- /* If this is an in-memory db, or no pages have been written to, or this
- ** function has already been called, it is a no-op.
- */
- if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
- PgHdr *pPg;
- assert( pPager->journalOpen );
+ /* If a prior error occurred, this routine should not be called. ROLLBACK
+ ** is the appropriate response to an error, not COMMIT. Guard against
+ ** coding errors by repeating the prior error. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n",
+ pPager->zFilename, zMaster, pPager->dbSize));
- /* If a master journal file name has already been written to the
- ** journal file, then no sync is required. This happens when it is
- ** written, then the process fails to upgrade from a RESERVED to an
- ** EXCLUSIVE lock. The next time the process tries to commit the
- ** transaction the m-j name will have already been written.
+ if( MEMDB && pPager->dbModified ){
+ /* If this is an in-memory db, or no pages have been written to, or this
+ ** function has already been called, it is mostly a no-op. However, any
+ ** backup in progress needs to be restarted.
*/
- if( !pPager->setMaster ){
- rc = pager_incr_changecounter(pPager);
- if( rc!=SQLITE_OK ) goto sync_exit;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( nTrunc!=0 ){
- /* If this transaction has made the database smaller, then all pages
- ** being discarded by the truncation must be written to the journal
- ** file.
- */
- Pgno i;
- int iSkip = PAGER_MJ_PGNO(pPager);
- for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
- if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){
- rc = sqlite3PagerGet(pPager, i, &pPg);
- if( rc!=SQLITE_OK ) goto sync_exit;
- rc = sqlite3PagerWrite(pPg);
- sqlite3PagerUnref(pPg);
- if( rc!=SQLITE_OK ) goto sync_exit;
- }
- }
+ sqlite3BackupRestart(pPager->pBackup);
+ }else if( pPager->state!=PAGER_SYNCED && pPager->dbModified ){
+
+ /* The following block updates the change-counter. Exactly how it
+ ** does this depends on whether or not the atomic-update optimization
+ ** was enabled at compile time, and if this transaction meets the
+ ** runtime criteria to use the operation:
+ **
+ ** * The file-system supports the atomic-write property for
+ ** blocks of size page-size, and
+ ** * This commit is not part of a multi-file transaction, and
+ ** * Exactly one page has been modified and store in the journal file.
+ **
+ ** If the optimization was not enabled at compile time, then the
+ ** pager_incr_changecounter() function is called to update the change
+ ** counter in 'indirect-mode'. If the optimization is compiled in but
+ ** is not applicable to this transaction, call sqlite3JournalCreate()
+ ** to make sure the journal file has actually been created, then call
+ ** pager_incr_changecounter() to update the change-counter in indirect
+ ** mode.
+ **
+ ** Otherwise, if the optimization is both enabled and applicable,
+ ** then call pager_incr_changecounter() to update the change-counter
+ ** in 'direct' mode. In this case the journal file will never be
+ ** created for this transaction.
+ */
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ PgHdr *pPg;
+ assert( isOpen(pPager->jfd) || pPager->journalMode==PAGER_JOURNALMODE_OFF );
+ if( !zMaster && isOpen(pPager->jfd)
+ && pPager->journalOff==jrnlBufferSize(pPager)
+ && pPager->dbSize>=pPager->dbFileSize
+ && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty)
+ ){
+ /* Update the db file change counter via the direct-write method. The
+ ** following call will modify the in-memory representation of page 1
+ ** to include the updated change counter and then write page 1
+ ** directly to the database file. Because of the atomic-write
+ ** property of the host file-system, this is safe.
+ */
+ rc = pager_incr_changecounter(pPager, 1);
+ }else{
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc==SQLITE_OK ){
+ rc = pager_incr_changecounter(pPager, 0);
}
-#endif
- rc = writeMasterJournal(pPager, zMaster);
- if( rc!=SQLITE_OK ) goto sync_exit;
- rc = syncJournal(pPager);
- if( rc!=SQLITE_OK ) goto sync_exit;
}
+#else
+ rc = pager_incr_changecounter(pPager, 0);
+#endif
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ /* If this transaction has made the database smaller, then all pages
+ ** being discarded by the truncation must be written to the journal
+ ** file. This can only happen in auto-vacuum mode.
+ **
+ ** Before reading the pages with page numbers larger than the
+ ** current value of Pager.dbSize, set dbSize back to the value
+ ** that it took at the start of the transaction. Otherwise, the
+ ** calls to sqlite3PagerGet() return zeroed pages instead of
+ ** reading data from the database file.
+ **
+ ** When journal_mode==OFF the dbOrigSize is always zero, so this
+ ** block never runs if journal_mode=OFF.
+ */
#ifndef SQLITE_OMIT_AUTOVACUUM
- if( nTrunc!=0 ){
- rc = sqlite3PagerTruncate(pPager, nTrunc);
- if( rc!=SQLITE_OK ) goto sync_exit;
+ if( pPager->dbSize<pPager->dbOrigSize
+ && ALWAYS(pPager->journalMode!=PAGER_JOURNALMODE_OFF)
+ ){
+ Pgno i; /* Iterator variable */
+ const Pgno iSkip = PAGER_MJ_PGNO(pPager); /* Pending lock page */
+ const Pgno dbSize = pPager->dbSize; /* Database image size */
+ pPager->dbSize = pPager->dbOrigSize;
+ for( i=dbSize+1; i<=pPager->dbOrigSize; i++ ){
+ if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
+ PgHdr *pPage; /* Page to journal */
+ rc = sqlite3PagerGet(pPager, i, &pPage);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ rc = sqlite3PagerWrite(pPage);
+ sqlite3PagerUnref(pPage);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ }
+ }
+ pPager->dbSize = dbSize;
}
#endif
- /* Write all dirty pages to the database file */
- pPg = pager_get_all_dirty_pages(pPager);
- rc = pager_write_pagelist(pPg);
- if( rc!=SQLITE_OK ) goto sync_exit;
- pPager->pDirty = 0;
+ /* Write the master journal name into the journal file. If a master
+ ** journal file name has already been written to the journal file,
+ ** or if zMaster is NULL (no master journal), then this call is a no-op.
+ */
+ rc = writeMasterJournal(pPager, zMaster);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ /* Sync the journal file. If the atomic-update optimization is being
+ ** used, this call will not create the journal file or perform any
+ ** real IO.
+ */
+ rc = syncJournal(pPager);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
- /* Sync the database file. */
- if( !pPager->noSync ){
- rc = sqlite3OsSync(pPager->fd, 0);
+ /* Write all dirty pages to the database file. */
+ rc = pager_write_pagelist(sqlite3PcacheDirtyList(pPager->pPCache));
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_IOERR_BLOCKED );
+ goto commit_phase_one_exit;
+ }
+ sqlite3PcacheCleanAll(pPager->pPCache);
+
+ /* If the file on disk is not the same size as the database image,
+ ** then use pager_truncate to grow or shrink the file here.
+ */
+ if( pPager->dbSize!=pPager->dbFileSize ){
+ Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager));
+ assert( pPager->state>=PAGER_EXCLUSIVE );
+ rc = pager_truncate(pPager, nNew);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ }
+
+ /* Finally, sync the database file. */
+ if( !pPager->noSync && !noSync ){
+ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
}
IOTRACE(("DBSYNC %p\n", pPager))
pPager->state = PAGER_SYNCED;
- }else if( MEMDB && nTrunc!=0 ){
- rc = sqlite3PagerTruncate(pPager, nTrunc);
}
-sync_exit:
+commit_phase_one_exit:
return rc;
}
/*
-** Commit all changes to the database and release the write lock.
+** When this function is called, the database file has been completely
+** updated to reflect the changes made by the current transaction and
+** synced to disk. The journal file still exists in the file-system
+** though, and if a failure occurs at this point it will eventually
+** be used as a hot-journal and the current transaction rolled back.
**
-** If the commit fails for any reason, a rollback attempt is made
-** and an error code is returned. If the commit worked, SQLITE_OK
-** is returned.
+** This function finalizes the journal file, either by deleting,
+** truncating or partially zeroing it, so that it cannot be used
+** for hot-journal rollback. Once this is done the transaction is
+** irrevocably committed.
+**
+** If an error occurs, an IO error code is returned and the pager
+** moves into the error state. Otherwise, SQLITE_OK is returned.
*/
-int sqlite3PagerCommitPhaseTwo(Pager *pPager){
- int rc;
- PgHdr *pPg;
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
- if( pPager->errCode ){
- return pPager->errCode;
- }
- if( pPager->state<PAGER_RESERVED ){
- return SQLITE_ERROR;
- }
- PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
- if( MEMDB ){
- pPg = pager_get_all_dirty_pages(pPager);
- while( pPg ){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- clearHistory(pHist);
- pPg->dirty = 0;
- pPg->inJournal = 0;
- pHist->inStmt = 0;
- pPg->needSync = 0;
- pHist->pPrevStmt = pHist->pNextStmt = 0;
- pPg = pPg->pDirty;
- }
- pPager->pDirty = 0;
-#ifndef NDEBUG
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- assert( !pPg->alwaysRollback );
- assert( !pHist->pOrig );
- assert( !pHist->pStmt );
- }
-#endif
- pPager->pStmt = 0;
- pPager->state = PAGER_SHARED;
+ /* This routine should not be called if a prior error has occurred.
+ ** But if (due to a coding error elsewhere in the system) it does get
+ ** called, just return the same error code without doing anything. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ /* This function should not be called if the pager is not in at least
+ ** PAGER_RESERVED state. And indeed SQLite never does this. But it is
+ ** nice to have this defensive test here anyway.
+ */
+ if( NEVER(pPager->state<PAGER_RESERVED) ) return SQLITE_ERROR;
+
+ /* An optimization. If the database was not actually modified during
+ ** this transaction, the pager is running in exclusive-mode and is
+ ** using persistent journals, then this function is a no-op.
+ **
+ ** The start of the journal file currently contains a single journal
+ ** header with the nRec field set to 0. If such a journal is used as
+ ** a hot-journal during hot-journal rollback, 0 changes will be made
+ ** to the database file. So there is no need to zero the journal
+ ** header. Since the pager is in exclusive mode, there is no need
+ ** to drop any locks either.
+ */
+ if( pPager->dbModified==0 && pPager->exclusiveMode
+ && pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ ){
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
return SQLITE_OK;
}
- assert( pPager->journalOpen || !pPager->dirtyCache );
- assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
- rc = pager_end_transaction(pPager);
+
+ PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
+ assert( pPager->state==PAGER_SYNCED || MEMDB || !pPager->dbModified );
+ rc = pager_end_transaction(pPager, pPager->setMaster);
return pager_error(pPager, rc);
}
/*
-** Rollback all changes. The database falls back to PAGER_SHARED mode.
-** All in-memory cache pages revert to their original data contents.
-** The journal is deleted.
+** Rollback all changes. The database falls back to PAGER_SHARED mode.
**
-** This routine cannot fail unless some other process is not following
-** the correct locking protocol or unless some other
-** process is writing trash into the journal file (SQLITE_CORRUPT) or
-** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
-** codes are returned for all these occasions. Otherwise,
-** SQLITE_OK is returned.
+** This function performs two tasks:
+**
+** 1) It rolls back the journal file, restoring all database file and
+** in-memory cache pages to the state they were in when the transaction
+** was opened, and
+** 2) It finalizes the journal file, so that it is not used for hot
+** rollback at any point in the future.
+**
+** subject to the following qualifications:
+**
+** * If the journal file is not yet open when this function is called,
+** then only (2) is performed. In this case there is no journal file
+** to roll back.
+**
+** * If in an error state other than SQLITE_FULL, then task (1) is
+** performed. If successful, task (2). Regardless of the outcome
+** of either, the error state error code is returned to the caller
+** (i.e. either SQLITE_IOERR or SQLITE_CORRUPT).
+**
+** * If the pager is in PAGER_RESERVED state, then attempt (1). Whether
+** or not (1) is succussful, also attempt (2). If successful, return
+** SQLITE_OK. Otherwise, enter the error state and return the first
+** error code encountered.
+**
+** In this case there is no chance that the database was written to.
+** So is safe to finalize the journal file even if the playback
+** (operation 1) failed. However the pager must enter the error state
+** as the contents of the in-memory cache are now suspect.
+**
+** * Finally, if in PAGER_EXCLUSIVE state, then attempt (1). Only
+** attempt (2) if (1) is successful. Return SQLITE_OK if successful,
+** otherwise enter the error state and return the error code from the
+** failing operation.
+**
+** In this case the database file may have been written to. So if the
+** playback operation did not succeed it would not be safe to finalize
+** the journal file. It needs to be left in the file-system so that
+** some other process can use it to restore the database state (by
+** hot-journal rollback).
*/
-int sqlite3PagerRollback(Pager *pPager){
- int rc;
- PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
- if( MEMDB ){
- PgHdr *p;
- for(p=pPager->pAll; p; p=p->pNextAll){
- PgHistory *pHist;
- assert( !p->alwaysRollback );
- if( !p->dirty ){
- assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
- assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
- continue;
- }
-
- pHist = PGHDR_TO_HIST(p, pPager);
- if( pHist->pOrig ){
- memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
- PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
- }else{
- PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
- }
- clearHistory(pHist);
- p->dirty = 0;
- p->inJournal = 0;
- pHist->inStmt = 0;
- pHist->pPrevStmt = pHist->pNextStmt = 0;
- if( pPager->xReiniter ){
- pPager->xReiniter(p, pPager->pageSize);
- }
- }
- pPager->pDirty = 0;
- pPager->pStmt = 0;
- pPager->dbSize = pPager->origDbSize;
- pager_truncate_cache(pPager);
- pPager->stmtInUse = 0;
- pPager->state = PAGER_SHARED;
- return SQLITE_OK;
- }
-
- if( !pPager->dirtyCache || !pPager->journalOpen ){
- rc = pager_end_transaction(pPager);
- return rc;
- }
-
- if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager)));
+ if( !pPager->dbModified || !isOpen(pPager->jfd) ){
+ rc = pager_end_transaction(pPager, pPager->setMaster);
+ }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
if( pPager->state>=PAGER_EXCLUSIVE ){
pager_playback(pPager, 0);
}
- return pPager->errCode;
- }
- if( pPager->state==PAGER_RESERVED ){
- int rc2;
- rc = pager_playback(pPager, 0);
- rc2 = pager_end_transaction(pPager);
- if( rc==SQLITE_OK ){
- rc = rc2;
- }
+ rc = pPager->errCode;
}else{
- rc = pager_playback(pPager, 0);
- }
- /* pager_reset(pPager); */
- pPager->dbSize = -1;
+ if( pPager->state==PAGER_RESERVED ){
+ int rc2;
+ rc = pager_playback(pPager, 0);
+ rc2 = pager_end_transaction(pPager, pPager->setMaster);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }else{
+ rc = pager_playback(pPager, 0);
+ }
- /* If an error occurs during a ROLLBACK, we can no longer trust the pager
- ** cache. So call pager_error() on the way out to make any error
- ** persistent.
- */
- return pager_error(pPager, rc);
+ if( !MEMDB ){
+ pPager->dbSizeValid = 0;
+ }
+
+ /* If an error occurs during a ROLLBACK, we can no longer trust the pager
+ ** cache. So call pager_error() on the way out to make any error
+ ** persistent.
+ */
+ rc = pager_error(pPager, rc);
+ }
+ return rc;
}
/*
** Return TRUE if the database file is opened read-only. Return FALSE
** if the database is (in theory) writable.
*/
-int sqlite3PagerIsreadonly(Pager *pPager){
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){
return pPager->readOnly;
}
/*
** Return the number of references to the pager.
*/
-int sqlite3PagerRefcount(Pager *pPager){
- return pPager->nRef;
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
+ return sqlite3PcacheRefCount(pPager->pPCache);
+}
+
+/*
+** Return the number of references to the specified page.
+*/
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){
+ return sqlite3PcachePageRefcount(pPage);
}
#ifdef SQLITE_TEST
/*
** This routine is used for testing and analysis only.
*/
-int *sqlite3PagerStats(Pager *pPager){
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
static int a[11];
- a[0] = pPager->nRef;
- a[1] = pPager->nPage;
- a[2] = pPager->mxPage;
- a[3] = pPager->dbSize;
+ a[0] = sqlite3PcacheRefCount(pPager->pPCache);
+ a[1] = sqlite3PcachePagecount(pPager->pPCache);
+ a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
+ a[3] = pPager->dbSizeValid ? (int) pPager->dbSize : -1;
a[4] = pPager->state;
a[5] = pPager->errCode;
a[6] = pPager->nHit;
@@ -20763,140 +36090,172 @@ int *sqlite3PagerStats(Pager *pPager){
#endif
/*
-** Set the statement rollback point.
-**
-** This routine should be called with the transaction journal already
-** open. A new statement journal is created that can be used to rollback
-** changes of a single SQL command within a larger transaction.
+** Return true if this is an in-memory pager.
*/
-int sqlite3PagerStmtBegin(Pager *pPager){
- int rc;
- assert( !pPager->stmtInUse );
- assert( pPager->state>=PAGER_SHARED );
- assert( pPager->dbSize>=0 );
- PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
- if( MEMDB ){
- pPager->stmtInUse = 1;
- pPager->stmtSize = pPager->dbSize;
- return SQLITE_OK;
- }
- if( !pPager->journalOpen ){
- pPager->stmtAutoopen = 1;
- return SQLITE_OK;
- }
- assert( pPager->journalOpen );
- pPager->aInStmt = sqliteMalloc( pPager->dbSize/8 + 1 );
- if( pPager->aInStmt==0 ){
- /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
- return SQLITE_NOMEM;
- }
-#ifndef NDEBUG
- rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize);
- if( rc ) goto stmt_begin_failed;
- assert( pPager->stmtJSize == pPager->journalOff );
-#endif
- pPager->stmtJSize = pPager->journalOff;
- pPager->stmtSize = pPager->dbSize;
- pPager->stmtHdrOff = 0;
- pPager->stmtCksum = pPager->cksumInit;
- if( !pPager->stmtOpen ){
- rc = sqlite3PagerOpentemp(&pPager->stfd);
- if( rc ) goto stmt_begin_failed;
- pPager->stmtOpen = 1;
- pPager->stmtNRec = 0;
- }
- pPager->stmtInUse = 1;
- return SQLITE_OK;
-
-stmt_begin_failed:
- if( pPager->aInStmt ){
- sqliteFree(pPager->aInStmt);
- pPager->aInStmt = 0;
- }
- return rc;
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){
+ return MEMDB;
}
/*
-** Commit a statement.
+** Check that there are at least nSavepoint savepoints open. If there are
+** currently less than nSavepoints open, then open one or more savepoints
+** to make up the difference. If the number of savepoints is already
+** equal to nSavepoint, then this function is a no-op.
+**
+** If a memory allocation fails, SQLITE_NOMEM is returned. If an error
+** occurs while opening the sub-journal file, then an IO error code is
+** returned. Otherwise, SQLITE_OK.
*/
-int sqlite3PagerStmtCommit(Pager *pPager){
- if( pPager->stmtInUse ){
- PgHdr *pPg, *pNext;
- PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
- if( !MEMDB ){
- sqlite3OsSeek(pPager->stfd, 0);
- /* sqlite3OsTruncate(pPager->stfd, 0); */
- sqliteFree( pPager->aInStmt );
- pPager->aInStmt = 0;
- }else{
- for(pPg=pPager->pStmt; pPg; pPg=pNext){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- pNext = pHist->pNextStmt;
- assert( pHist->inStmt );
- pHist->inStmt = 0;
- pHist->pPrevStmt = pHist->pNextStmt = 0;
- sqliteFree(pHist->pStmt);
- pHist->pStmt = 0;
- }
- }
- pPager->stmtNRec = 0;
- pPager->stmtInUse = 0;
- pPager->pStmt = 0;
- }
- pPager->stmtAutoopen = 0;
- return SQLITE_OK;
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){
+ int rc = SQLITE_OK; /* Return code */
+ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */
+
+ if( nSavepoint>nCurrent && pPager->useJournal ){
+ int ii; /* Iterator variable */
+ PagerSavepoint *aNew; /* New Pager.aSavepoint array */
+
+ /* Either there is no active journal or the sub-journal is open or
+ ** the journal is always stored in memory */
+ assert( pPager->nSavepoint==0 || isOpen(pPager->sjfd) ||
+ pPager->journalMode==PAGER_JOURNALMODE_MEMORY );
+
+ /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
+ ** if the allocation fails. Otherwise, zero the new portion in case a
+ ** malloc failure occurs while populating it in the for(...) loop below.
+ */
+ aNew = (PagerSavepoint *)sqlite3Realloc(
+ pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
+ );
+ if( !aNew ){
+ return SQLITE_NOMEM;
+ }
+ memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
+ pPager->aSavepoint = aNew;
+ pPager->nSavepoint = nSavepoint;
+
+ /* Populate the PagerSavepoint structures just allocated. */
+ for(ii=nCurrent; ii<nSavepoint; ii++){
+ assert( pPager->dbSizeValid );
+ aNew[ii].nOrig = pPager->dbSize;
+ if( isOpen(pPager->jfd) && ALWAYS(pPager->journalOff>0) ){
+ aNew[ii].iOffset = pPager->journalOff;
+ }else{
+ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
+ }
+ aNew[ii].iSubRec = pPager->nSubRec;
+ aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
+ if( !aNew[ii].pInSavepoint ){
+ return SQLITE_NOMEM;
+ }
+ }
+
+ /* Open the sub-journal, if it is not already opened. */
+ rc = openSubJournal(pPager);
+ assertTruncateConstraint(pPager);
+ }
+
+ return rc;
}
/*
-** Rollback a statement.
+** This function is called to rollback or release (commit) a savepoint.
+** The savepoint to release or rollback need not be the most recently
+** created savepoint.
+**
+** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.
+** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with
+** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes
+** that have occurred since the specified savepoint was created.
+**
+** The savepoint to rollback or release is identified by parameter
+** iSavepoint. A value of 0 means to operate on the outermost savepoint
+** (the first created). A value of (Pager.nSavepoint-1) means operate
+** on the most recently created savepoint. If iSavepoint is greater than
+** (Pager.nSavepoint-1), then this function is a no-op.
+**
+** If a negative value is passed to this function, then the current
+** transaction is rolled back. This is different to calling
+** sqlite3PagerRollback() because this function does not terminate
+** the transaction or unlock the database, it just restores the
+** contents of the database to its original state.
+**
+** In any case, all savepoints with an index greater than iSavepoint
+** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE),
+** then savepoint iSavepoint is also destroyed.
+**
+** This function may return SQLITE_NOMEM if a memory allocation fails,
+** or an IO error code if an IO error occurs while rolling back a
+** savepoint. If no errors occur, SQLITE_OK is returned.
*/
-int sqlite3PagerStmtRollback(Pager *pPager){
- int rc;
- if( pPager->stmtInUse ){
- PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
- if( MEMDB ){
- PgHdr *pPg;
- PgHistory *pHist;
- for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
- pHist = PGHDR_TO_HIST(pPg, pPager);
- if( pHist->pStmt ){
- memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
- sqliteFree(pHist->pStmt);
- pHist->pStmt = 0;
- }
- }
- pPager->dbSize = pPager->stmtSize;
- pager_truncate_cache(pPager);
- rc = SQLITE_OK;
- }else{
- rc = pager_stmt_playback(pPager);
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){
+ int rc = SQLITE_OK;
+
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
+ assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK );
+
+ if( iSavepoint<pPager->nSavepoint ){
+ int ii; /* Iterator variable */
+ int nNew; /* Number of remaining savepoints after this op. */
+
+ /* Figure out how many savepoints will still be active after this
+ ** operation. Store this value in nNew. Then free resources associated
+ ** with any savepoints that are destroyed by this operation.
+ */
+ nNew = iSavepoint + (op==SAVEPOINT_ROLLBACK);
+ for(ii=nNew; ii<pPager->nSavepoint; ii++){
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
+ }
+ pPager->nSavepoint = nNew;
+
+ /* If this is a rollback operation, playback the specified savepoint.
+ ** If this is a temp-file, it is possible that the journal file has
+ ** not yet been opened. In this case there have been no changes to
+ ** the database file, so the playback operation can be skipped.
+ */
+ if( op==SAVEPOINT_ROLLBACK && isOpen(pPager->jfd) ){
+ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1];
+ rc = pagerPlaybackSavepoint(pPager, pSavepoint);
+ assert(rc!=SQLITE_DONE);
+ }
+
+ /* If this is a release of the outermost savepoint, truncate
+ ** the sub-journal to zero bytes in size. */
+ if( nNew==0 && op==SAVEPOINT_RELEASE && isOpen(pPager->sjfd) ){
+ assert( rc==SQLITE_OK );
+ rc = sqlite3OsTruncate(pPager->sjfd, 0);
+ pPager->nSubRec = 0;
}
- sqlite3PagerStmtCommit(pPager);
- }else{
- rc = SQLITE_OK;
}
- pPager->stmtAutoopen = 0;
return rc;
}
/*
** Return the full pathname of the database file.
*/
-const char *sqlite3PagerFilename(Pager *pPager){
+SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager){
return pPager->zFilename;
}
/*
-** Return the directory of the database file.
+** Return the VFS structure for the pager.
+*/
+SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
+ return pPager->pVfs;
+}
+
+/*
+** Return the file handle for the database file associated
+** with the pager. This might return NULL if the file has
+** not yet been opened.
*/
-const char *sqlite3PagerDirname(Pager *pPager){
- return pPager->zDirectory;
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
+ return pPager->fd;
}
/*
** Return the full pathname of the journal file.
*/
-const char *sqlite3PagerJournalname(Pager *pPager){
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
return pPager->zJournal;
}
@@ -20904,118 +36263,179 @@ const char *sqlite3PagerJournalname(Pager *pPager){
** Return true if fsync() calls are disabled for this pager. Return FALSE
** if fsync()s are executed normally.
*/
-int sqlite3PagerNosync(Pager *pPager){
+SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){
return pPager->noSync;
}
#ifdef SQLITE_HAS_CODEC
/*
-** Set the codec for this pager
+** Set or retrieve the codec for this pager
*/
-void sqlite3PagerSetCodec(
+static void sqlite3PagerSetCodec(
Pager *pPager,
void *(*xCodec)(void*,void*,Pgno,int),
- void *pCodecArg
+ void (*xCodecSizeChng)(void*,int,int),
+ void (*xCodecFree)(void*),
+ void *pCodec
){
+ if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
pPager->xCodec = xCodec;
- pPager->pCodecArg = pCodecArg;
+ pPager->xCodecSizeChng = xCodecSizeChng;
+ pPager->xCodecFree = xCodecFree;
+ pPager->pCodec = pCodec;
+ pagerReportSize(pPager);
+}
+static void *sqlite3PagerGetCodec(Pager *pPager){
+ return pPager->pCodec;
}
#endif
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
-** Move the page identified by pData to location pgno in the file.
+** Move the page pPg to location pgno in the file.
**
-** There must be no references to the current page pgno. If current page
-** pgno is not already in the rollback journal, it is not written there by
-** by this routine. The same applies to the page pData refers to on entry to
-** this routine.
+** There must be no references to the page previously located at
+** pgno (which we call pPgOld) though that page is allowed to be
+** in cache. If the page previously located at pgno is not already
+** in the rollback journal, it is not put there by by this routine.
**
-** References to the page refered to by pData remain valid. Updating any
-** meta-data associated with page pData (i.e. data stored in the nExtra bytes
+** References to the page pPg remain valid. Updating any
+** meta-data associated with pPg (i.e. data stored in the nExtra bytes
** allocated along with the page) is the responsibility of the caller.
**
** A transaction must be active when this routine is called. It used to be
** required that a statement transaction was not active, but this restriction
** has been removed (CREATE INDEX needs to move a page when a statement
** transaction is active).
+**
+** If the fourth argument, isCommit, is non-zero, then this page is being
+** moved as part of a database reorganization just before the transaction
+** is being committed. In this case, it is guaranteed that the database page
+** pPg refers to will not be written to again within this transaction.
+**
+** This function may return SQLITE_NOMEM or an IO error code if an error
+** occurs. Otherwise, it returns SQLITE_OK.
*/
-int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
- PgHdr *pPgOld;
- int h;
- Pgno needSyncPgno = 0;
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
+ PgHdr *pPgOld; /* The page being overwritten. */
+ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */
+ int rc; /* Return code */
+ Pgno origPgno; /* The original page number */
assert( pPg->nRef>0 );
- PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
- PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
+ /* If the page being moved is dirty and has not been saved by the latest
+ ** savepoint, then save the current contents of the page into the
+ ** sub-journal now. This is required to handle the following scenario:
+ **
+ ** BEGIN;
+ ** <journal page X, then modify it in memory>
+ ** SAVEPOINT one;
+ ** <Move page X to location Y>
+ ** ROLLBACK TO one;
+ **
+ ** If page X were not written to the sub-journal here, it would not
+ ** be possible to restore its contents when the "ROLLBACK TO one"
+ ** statement were is processed.
+ **
+ ** subjournalPage() may need to allocate space to store pPg->pgno into
+ ** one or more savepoint bitvecs. This is the reason this function
+ ** may return SQLITE_NOMEM.
+ */
+ if( pPg->flags&PGHDR_DIRTY
+ && subjRequiresPage(pPg)
+ && SQLITE_OK!=(rc = subjournalPage(pPg))
+ ){
+ return rc;
+ }
+
+ PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n",
+ PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
- if( pPg->needSync ){
+ /* If the journal needs to be sync()ed before page pPg->pgno can
+ ** be written to, store pPg->pgno in local variable needSyncPgno.
+ **
+ ** If the isCommit flag is set, there is no need to remember that
+ ** the journal needs to be sync()ed before database page pPg->pgno
+ ** can be written to. The caller has already promised not to write to it.
+ */
+ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
needSyncPgno = pPg->pgno;
- assert( pPg->inJournal );
- assert( pPg->dirty );
+ assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize );
+ assert( pPg->flags&PGHDR_DIRTY );
assert( pPager->needSync );
}
- /* Unlink pPg from it's hash-chain */
- unlinkHashChain(pPager, pPg);
-
/* If the cache contains a page with page-number pgno, remove it
- ** from it's hash chain. Also, if the PgHdr.needSync was set for
+ ** from its hash chain. Also, if the PgHdr.needSync was set for
** page pgno before the 'move' operation, it needs to be retained
** for the page moved there.
*/
+ pPg->flags &= ~PGHDR_NEED_SYNC;
pPgOld = pager_lookup(pPager, pgno);
+ assert( !pPgOld || pPgOld->nRef==1 );
if( pPgOld ){
- assert( pPgOld->nRef==0 );
- unlinkHashChain(pPager, pPgOld);
- makeClean(pPgOld);
- if( pPgOld->needSync ){
- assert( pPgOld->inJournal );
- pPg->inJournal = 1;
- pPg->needSync = 1;
- assert( pPager->needSync );
- }
- }
-
- /* Change the page number for pPg and insert it into the new hash-chain. */
- assert( pgno!=0 );
- pPg->pgno = pgno;
- h = pgno & (pPager->nHash-1);
- if( pPager->aHash[h] ){
- assert( pPager->aHash[h]->pPrevHash==0 );
- pPager->aHash[h]->pPrevHash = pPg;
+ pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
+ sqlite3PcacheDrop(pPgOld);
}
- pPg->pNextHash = pPager->aHash[h];
- pPager->aHash[h] = pPg;
- pPg->pPrevHash = 0;
- makeDirty(pPg);
- pPager->dirtyCache = 1;
+ origPgno = pPg->pgno;
+ sqlite3PcacheMove(pPg, pgno);
+ sqlite3PcacheMakeDirty(pPg);
+ pPager->dbModified = 1;
if( needSyncPgno ){
/* If needSyncPgno is non-zero, then the journal file needs to be
** sync()ed before any data is written to database file page needSyncPgno.
** Currently, no such page exists in the page-cache and the
- ** Pager.aInJournal bit has been set. This needs to be remedied by loading
- ** the page into the pager-cache and setting the PgHdr.needSync flag.
+ ** "is journaled" bitvec flag has been set. This needs to be remedied by
+ ** loading the page into the pager-cache and setting the PgHdr.needSync
+ ** flag.
+ **
+ ** If the attempt to load the page into the page-cache fails, (due
+ ** to a malloc() or IO failure), clear the bit in the pInJournal[]
+ ** array. Otherwise, if the page is loaded and written again in
+ ** this transaction, it may be written to the database file before
+ ** it is synced into the journal file. This way, it may end up in
+ ** the journal file twice, but that is not a problem.
**
** The sqlite3PagerGet() call may cause the journal to sync. So make
** sure the Pager.needSync flag is set too.
*/
- int rc;
PgHdr *pPgHdr;
assert( pPager->needSync );
rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
- if( rc!=SQLITE_OK ) return rc;
+ if( rc!=SQLITE_OK ){
+ if( needSyncPgno<=pPager->dbOrigSize ){
+ assert( pPager->pTmpSpace!=0 );
+ sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
+ }
+ return rc;
+ }
pPager->needSync = 1;
- pPgHdr->needSync = 1;
- pPgHdr->inJournal = 1;
- makeDirty(pPgHdr);
+ assert( pPager->noSync==0 && !MEMDB );
+ pPgHdr->flags |= PGHDR_NEED_SYNC;
+ sqlite3PcacheMakeDirty(pPgHdr);
sqlite3PagerUnref(pPgHdr);
}
+ /*
+ ** For an in-memory database, make sure the original page continues
+ ** to exist, in case the transaction needs to roll back. We allocate
+ ** the page now, instead of at rollback, because we can better deal
+ ** with an out-of-memory error now. Ticket #3761.
+ */
+ if( MEMDB ){
+ DbPage *pNew;
+ rc = sqlite3PagerAcquire(pPager, origPgno, &pNew, 1);
+ if( rc!=SQLITE_OK ){
+ sqlite3PcacheMove(pPg, origPgno);
+ return rc;
+ }
+ sqlite3PagerUnref(pNew);
+ }
+
return SQLITE_OK;
}
#endif
@@ -21023,17 +36443,17 @@ int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
/*
** Return a pointer to the data for the specified page.
*/
-void *sqlite3PagerGetData(DbPage *pPg){
- return PGHDR_TO_DATA(pPg);
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
+ assert( pPg->nRef>0 || pPg->pPager->memDb );
+ return pPg->pData;
}
/*
** Return a pointer to the Pager.nExtra bytes of "extra" space
** allocated along with the specified page.
*/
-void *sqlite3PagerGetExtra(DbPage *pPg){
- Pager *pPager = pPg->pPager;
- return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
+ return pPg->pExtra;
}
/*
@@ -21046,47 +36466,109 @@ void *sqlite3PagerGetExtra(DbPage *pPg){
** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
** locking-mode.
*/
-int sqlite3PagerLockingMode(Pager *pPager, int eMode){
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
assert( eMode==PAGER_LOCKINGMODE_QUERY
|| eMode==PAGER_LOCKINGMODE_NORMAL
|| eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
assert( PAGER_LOCKINGMODE_QUERY<0 );
assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
if( eMode>=0 && !pPager->tempFile ){
- pPager->exclusiveMode = eMode;
+ pPager->exclusiveMode = (u8)eMode;
}
return (int)pPager->exclusiveMode;
}
-#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
/*
-** Return the current state of the file lock for the given pager.
-** The return value is one of NO_LOCK, SHARED_LOCK, RESERVED_LOCK,
-** PENDING_LOCK, or EXCLUSIVE_LOCK.
+** Get/set the journal-mode for this pager. Parameter eMode must be one of:
+**
+** PAGER_JOURNALMODE_QUERY
+** PAGER_JOURNALMODE_DELETE
+** PAGER_JOURNALMODE_TRUNCATE
+** PAGER_JOURNALMODE_PERSIST
+** PAGER_JOURNALMODE_OFF
+** PAGER_JOURNALMODE_MEMORY
+**
+** If the parameter is not _QUERY, then the journal_mode is set to the
+** value specified if the change is allowed. The change is disallowed
+** for the following reasons:
+**
+** * An in-memory database can only have its journal_mode set to _OFF
+** or _MEMORY.
+**
+** * The journal mode may not be changed while a transaction is active.
+**
+** The returned indicate the current (possibly updated) journal-mode.
*/
-int sqlite3PagerLockstate(Pager *pPager){
- return sqlite3OsLockState(pPager->fd);
+SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *pPager, int eMode){
+ assert( eMode==PAGER_JOURNALMODE_QUERY
+ || eMode==PAGER_JOURNALMODE_DELETE
+ || eMode==PAGER_JOURNALMODE_TRUNCATE
+ || eMode==PAGER_JOURNALMODE_PERSIST
+ || eMode==PAGER_JOURNALMODE_OFF
+ || eMode==PAGER_JOURNALMODE_MEMORY );
+ assert( PAGER_JOURNALMODE_QUERY<0 );
+ if( eMode>=0
+ && (!MEMDB || eMode==PAGER_JOURNALMODE_MEMORY
+ || eMode==PAGER_JOURNALMODE_OFF)
+ && !pPager->dbModified
+ && (!isOpen(pPager->jfd) || 0==pPager->journalOff)
+ ){
+ if( isOpen(pPager->jfd) ){
+ sqlite3OsClose(pPager->jfd);
+ }
+ pPager->journalMode = (u8)eMode;
+ }
+ return (int)pPager->journalMode;
}
-#endif
-#ifdef SQLITE_DEBUG
/*
-** Print a listing of all referenced pages and their ref count.
+** Get/set the size-limit used for persistent journal files.
+**
+** Setting the size limit to -1 means no limit is enforced.
+** An attempt to set a limit smaller than -1 is a no-op.
*/
-void sqlite3PagerRefdump(Pager *pPager){
- PgHdr *pPg;
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- if( pPg->nRef<=0 ) continue;
- sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
- pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
+ if( iLimit>=-1 ){
+ pPager->journalSizeLimit = iLimit;
}
+ return pPager->journalSizeLimit;
+}
+
+/*
+** Return a pointer to the pPager->pBackup variable. The backup module
+** in backup.c maintains the content of this variable. This module
+** uses it opaquely as an argument to sqlite3BackupRestart() and
+** sqlite3BackupUpdate() only.
+*/
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){
+ return &pPager->pBackup;
}
-#endif
#endif /* SQLITE_OMIT_DISKIO */
/************** End of pager.c ***********************************************/
-/************** Begin file btree.c *******************************************/
+/************** Begin file btmutex.c *****************************************/
+/*
+** 2007 August 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** $Id: btmutex.c,v 1.17 2009/07/20 12:33:33 drh Exp $
+**
+** This file contains code used to implement mutexes on Btree objects.
+** This code really belongs in btree.c. But btree.c is getting too
+** big and we want to break it down some. This packaged seemed like
+** a good breakout.
+*/
+/************** Include btreeInt.h in the middle of btmutex.c ****************/
+/************** Begin file btreeInt.h ****************************************/
/*
** 2004 April 6
**
@@ -21098,7 +36580,7 @@ void sqlite3PagerRefdump(Pager *pPager){
** May you share freely, never taking more than you give.
**
*************************************************************************
-** $Id: btree.c,v 1.355 2007/04/13 02:14:30 drh Exp $
+** $Id: btreeInt.h,v 1.52 2009/07/15 17:25:46 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
@@ -21160,13 +36642,22 @@ void sqlite3PagerRefdump(Pager *pPager){
** 36 4 Number of freelist pages in the file
** 40 60 15 4-byte meta values passed to higher layers
**
+** 40 4 Schema cookie
+** 44 4 File format of schema layer
+** 48 4 Size of page cache
+** 52 4 Largest root-page (auto/incr_vacuum)
+** 56 4 1=UTF-8 2=UTF16le 3=UTF16be
+** 60 4 User version
+** 64 4 Incremental vacuum mode
+** 68 4 unused
+** 72 4 unused
+** 76 4 unused
+**
** All of the integer values are big-endian (most significant byte first).
**
-** The file change counter is incremented when the database is changed more
-** than once within the same second. This counter, together with the
-** modification time of the file, allows other processes to know
-** when the file has changed and thus when they need to flush their
-** cache.
+** The file change counter is incremented when the database is changed
+** This counter allows other processes to know when the file has changed
+** and thus when they need to flush their cache.
**
** The max embedded payload fraction is the amount of the total usable
** space in a page that can be consumed by a single cell for standard
@@ -21185,7 +36676,7 @@ void sqlite3PagerRefdump(Pager *pPager){
** not specified in the header.
**
** Each btree pages is divided into three sections: The header, the
-** cell pointer array, and the cell area area. Page 1 also has a 100-byte
+** cell pointer array, and the cell content area. Page 1 also has a 100-byte
** file header that occurs before the page header.
**
** |----------------|
@@ -21285,7 +36776,7 @@ void sqlite3PagerRefdump(Pager *pPager){
** * Data
**
** Freelist pages come in two subtypes: trunk pages and leaf pages. The
-** file header points to first in a linked list of trunk page. Each trunk
+** file header points to the first in a linked list of trunk page. Each trunk
** page points to multiple leaf pages. The content of a leaf page is
** unspecified. A trunk page looks like this:
**
@@ -21295,11 +36786,6 @@ void sqlite3PagerRefdump(Pager *pPager){
** * zero or more pages numbers of leaves
*/
-/* Round up a number to the next larger multiple of 8. This is used
-** to force 8-byte alignment on 64-bit architectures.
-*/
-#define ROUND8(x) ((x+7)&~7)
-
/* The following value is the maximum cell size assuming a maximum page
** size give above.
@@ -21307,10 +36793,11 @@ void sqlite3PagerRefdump(Pager *pPager){
#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
/* The maximum number of cells on a single page of the database. This
-** assumes a minimum cell size of 3 bytes. Such small cells will be
-** exceedingly rare, but they are possible.
+** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
+** plus 2 bytes for the index to the cell in the page header). Such
+** small cells will be rare, but they are possible.
*/
-#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
+#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
/* Forward declarations */
typedef struct MemPage MemPage;
@@ -21331,11 +36818,10 @@ typedef struct BtLock BtLock;
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
# define SQLITE_FILE_HEADER "SQLite format 3"
#endif
-static const char zMagicHeader[] = SQLITE_FILE_HEADER;
/*
** Page type flags. An ORed combination of these flags appear as the
-** first byte of every BTree page.
+** first byte of on-disk image of every BTree page.
*/
#define PTF_INTKEY 0x01
#define PTF_ZERODATA 0x02
@@ -21351,33 +36837,32 @@ static const char zMagicHeader[] = SQLITE_FILE_HEADER;
** walk up the BTree from any leaf to the root. Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
+**
+** Access to all fields of this structure is controlled by the mutex
+** stored in MemPage.pBt->mutex.
*/
struct MemPage {
u8 isInit; /* True if previously initialized. MUST BE FIRST! */
- u8 idxShift; /* True if Cell indices have changed */
u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
u8 intKey; /* True if intkey flag is set */
u8 leaf; /* True if leaf flag is set */
- u8 zeroData; /* True if table stores keys only */
- u8 leafData; /* True if tables stores data on leaves only */
u8 hasData; /* True if this page stores data */
u8 hdrOffset; /* 100 for page 1. 0 otherwise */
u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
- u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
- u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
+ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
+ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
u16 cellOffset; /* Index in aData of first cell pointer */
- u16 idxParent; /* Index in parent of this node */
u16 nFree; /* Number of free bytes on the page */
u16 nCell; /* Number of cells on this page, local and ovfl */
+ u16 maskPage; /* Mask for page offset */
struct _OvflCell { /* Cells that will not fit on aData[] */
u8 *pCell; /* Pointers to the body of the overflow cell */
u16 idx; /* Insert this cell before idx-th non-overflow cell */
} aOvfl[5];
- BtShared *pBt; /* Pointer back to BTree structure */
- u8 *aData; /* Pointer back to the start of the page */
+ BtShared *pBt; /* Pointer to BtShared that this page is part of */
+ u8 *aData; /* Pointer to disk image of the page data */
DbPage *pDbPage; /* Pager page handle */
Pgno pgno; /* Page number for this page */
- MemPage *pParent; /* The parent of this page. NULL for root */
};
/*
@@ -21387,11 +36872,58 @@ struct MemPage {
*/
#define EXTRA_SIZE sizeof(MemPage)
-/* Btree handle */
+/*
+** A linked list of the following structures is stored at BtShared.pLock.
+** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
+** is opened on the table with root page BtShared.iTable. Locks are removed
+** from this list when a transaction is committed or rolled back, or when
+** a btree handle is closed.
+*/
+struct BtLock {
+ Btree *pBtree; /* Btree handle holding this lock */
+ Pgno iTable; /* Root page of table */
+ u8 eLock; /* READ_LOCK or WRITE_LOCK */
+ BtLock *pNext; /* Next in BtShared.pLock list */
+};
+
+/* Candidate values for BtLock.eLock */
+#define READ_LOCK 1
+#define WRITE_LOCK 2
+
+/* A Btree handle
+**
+** A database connection contains a pointer to an instance of
+** this object for every database file that it has open. This structure
+** is opaque to the database connection. The database connection cannot
+** see the internals of this structure and only deals with pointers to
+** this structure.
+**
+** For some database files, the same underlying database cache might be
+** shared between multiple connections. In that case, each contection
+** has it own pointer to this object. But each instance of this object
+** points to the same BtShared object. The database cache and the
+** schema associated with the database file are all contained within
+** the BtShared object.
+**
+** All fields in this structure are accessed under sqlite3.mutex.
+** The pBt pointer itself may not be changed while there exists cursors
+** in the referenced BtShared that point back to this Btree since those
+** cursors have to do go through this Btree to find their BtShared and
+** they often do so without holding sqlite3.mutex.
+*/
struct Btree {
- sqlite3 *pSqlite;
- BtShared *pBt;
- u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
+ sqlite3 *db; /* The database connection holding this btree */
+ BtShared *pBt; /* Sharable content of this btree */
+ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
+ u8 sharable; /* True if we can share pBt with another db */
+ u8 locked; /* True if db currently has pBt locked */
+ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
+ int nBackup; /* Number of backup operations reading this btree */
+ Btree *pNext; /* List of other sharable Btrees from the same db */
+ Btree *pPrev; /* Back pointer of the same list */
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ BtLock lock; /* Object used to lock page 1 */
+#endif
};
/*
@@ -21399,45 +36931,79 @@ struct Btree {
**
** If the shared-data extension is enabled, there may be multiple users
** of the Btree structure. At most one of these may open a write transaction,
-** but any number may have active read transactions. Variable Btree.pDb
-** points to the handle that owns any current write-transaction.
+** but any number may have active read transactions.
*/
#define TRANS_NONE 0
#define TRANS_READ 1
#define TRANS_WRITE 2
/*
-** Everything we need to know about an open database
+** An instance of this object represents a single database file.
+**
+** A single database file can be in use as the same time by two
+** or more database connections. When two or more connections are
+** sharing the same database file, each connection has it own
+** private Btree object for the file and each of those Btrees points
+** to this one BtShared object. BtShared.nRef is the number of
+** connections currently sharing this database file.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** mutex, except for nRef and pNext which are accessed under the
+** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
+** may not be modified once it is initially set as long as nRef>0.
+** The pSchema field may be set once under BtShared.mutex and
+** thereafter is unchanged as long as nRef>0.
+**
+** isPending:
+**
+** If a BtShared client fails to obtain a write-lock on a database
+** table (because there exists one or more read-locks on the table),
+** the shared-cache enters 'pending-lock' state and isPending is
+** set to true.
+**
+** The shared-cache leaves the 'pending lock' state when either of
+** the following occur:
+**
+** 1) The current writer (BtShared.pWriter) concludes its transaction, OR
+** 2) The number of locks held by other connections drops to zero.
+**
+** while in the 'pending-lock' state, no connection may start a new
+** transaction.
+**
+** This feature is included to help prevent writer-starvation.
*/
struct BtShared {
Pager *pPager; /* The page cache */
+ sqlite3 *db; /* Database connection currently using this Btree */
BtCursor *pCursor; /* A list of all open cursors */
MemPage *pPage1; /* First page of the database */
- u8 inStmt; /* True if we are in a statement subtransaction */
u8 readOnly; /* True if the underlying file is readonly */
- u8 maxEmbedFrac; /* Maximum payload as % of total page size */
- u8 minEmbedFrac; /* Minimum payload as % of total page size */
- u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
u8 pageSizeFixed; /* True if the page size can no longer be changed */
#ifndef SQLITE_OMIT_AUTOVACUUM
- u8 autoVacuum; /* True if database supports auto-vacuum */
+ u8 autoVacuum; /* True if auto-vacuum is enabled */
+ u8 incrVacuum; /* True if incr-vacuum is enabled */
#endif
u16 pageSize; /* Total number of bytes on a page */
u16 usableSize; /* Number of usable bytes on each page */
- int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
- int minLocal; /* Minimum local payload in non-LEAFDATA tables */
- int maxLeaf; /* Maximum local payload in a LEAFDATA table */
- int minLeaf; /* Minimum local payload in a LEAFDATA table */
- BusyHandler *pBusyHandler; /* Callback for when there is lock contention */
+ u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
+ u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
+ u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
+ u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
u8 inTransaction; /* Transaction state */
- int nRef; /* Number of references to this structure */
int nTransaction; /* Number of open transactions (read + write) */
void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
+ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
+ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */
#ifndef SQLITE_OMIT_SHARED_CACHE
+ int nRef; /* Number of references to this structure */
+ BtShared *pNext; /* Next on a list of sharable BtShared structs */
BtLock *pLock; /* List of locks held on this shared-btree struct */
- BtShared *pNext; /* Next in ThreadData.pBtree linked list */
+ Btree *pWriter; /* Btree with currently open write transaction */
+ u8 isExclusive; /* True if pWriter has an EXCLUSIVE lock on the db */
+ u8 isPending; /* If waiting for read-locks to clear */
#endif
+ u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
};
/*
@@ -21458,24 +37024,52 @@ struct CellInfo {
};
/*
-** A cursor is a pointer to a particular entry in the BTree.
+** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
+** this will be declared corrupt. This value is calculated based on a
+** maximum database size of 2^31 pages a minimum fanout of 2 for a
+** root-node and 3 for all other internal nodes.
+**
+** If a tree that appears to be taller than this is encountered, it is
+** assumed that the database is corrupt.
+*/
+#define BTCURSOR_MAX_DEPTH 20
+
+/*
+** A cursor is a pointer to a particular entry within a particular
+** b-tree within a database file.
+**
** The entry is identified by its MemPage and the index in
** MemPage.aCell[] of the entry.
+**
+** When a single database file can shared by two more database connections,
+** but cursors cannot be shared. Each cursor is associated with a
+** particular database connection identified BtCursor.pBtree.db.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** found at self->pBt->mutex.
*/
struct BtCursor {
Btree *pBtree; /* The Btree to which this cursor belongs */
+ BtShared *pBt; /* The BtShared this cursor points to */
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
- int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
- void *pArg; /* First arg to xCompare() */
+ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
Pgno pgnoRoot; /* The root page of this tree */
- MemPage *pPage; /* Page that contains the entry */
- int idx; /* Index of the entry in pPage->aCell[] */
+ sqlite3_int64 cachedRowid; /* Next rowid cache. 0 means not valid */
CellInfo info; /* A parse of the cell we are pointing at */
u8 wrFlag; /* True if writable */
+ u8 atLast; /* Cursor pointing to the last entry */
+ u8 validNKey; /* True if info.nKey is valid */
u8 eState; /* One of the CURSOR_XXX constants (see below) */
void *pKey; /* Saved key that was cursor's last known position */
i64 nKey; /* Size of pKey, or last integer key */
- int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
+ int skipNext; /* Prev() is noop if negative. Next() is noop if positive */
+#ifndef SQLITE_OMIT_INCRBLOB
+ u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
+ Pgno *aOverflow; /* Cache of overflow page locations */
+#endif
+ i16 iPage; /* Index of current page in apPage */
+ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */
+ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */
};
/*
@@ -21493,186 +37087,760 @@ struct BtCursor {
** The table that this cursor was opened on still exists, but has been
** modified since the cursor was last used. The cursor position is saved
** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
-** this state, restoreOrClearCursorPosition() can be called to attempt to
+** this state, restoreCursorPosition() can be called to attempt to
** seek the cursor to the saved position.
+**
+** CURSOR_FAULT:
+** A unrecoverable error (an I/O error or a malloc failure) has occurred
+** on a different connection that shares the BtShared cache with this
+** cursor. The error has left the cache in an inconsistent state.
+** Do nothing else with this cursor. Any attempt to use the cursor
+** should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID 0
#define CURSOR_VALID 1
#define CURSOR_REQUIRESEEK 2
+#define CURSOR_FAULT 3
+
+/*
+** The database page the PENDING_BYTE occupies. This page is never used.
+*/
+# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
+
+/*
+** These macros define the location of the pointer-map entry for a
+** database page. The first argument to each is the number of usable
+** bytes on each page of the database (often 1024). The second is the
+** page number to look up in the pointer map.
+**
+** PTRMAP_PAGENO returns the database page number of the pointer-map
+** page that stores the required pointer. PTRMAP_PTROFFSET returns
+** the offset of the requested map entry.
+**
+** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
+** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
+** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
+** this test.
+*/
+#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
+#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
+#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
+
+/*
+** The pointer map is a lookup table that identifies the parent page for
+** each child page in the database file. The parent page is the page that
+** contains a pointer to the child. Every page in the database contains
+** 0 or 1 parent pages. (In this context 'database page' refers
+** to any page that is not part of the pointer map itself.) Each pointer map
+** entry consists of a single byte 'type' and a 4 byte parent page number.
+** The PTRMAP_XXX identifiers below are the valid types.
+**
+** The purpose of the pointer map is to facility moving pages from one
+** position in the file to another as part of autovacuum. When a page
+** is moved, the pointer in its parent must be updated to point to the
+** new location. The pointer map is used to locate the parent page quickly.
+**
+** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
+** used in this case.
+**
+** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
+** is not used in this case.
+**
+** PTRMAP_OVERFLOW1: The database page is the first page in a list of
+** overflow pages. The page number identifies the page that
+** contains the cell with a pointer to this overflow page.
+**
+** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
+** overflow pages. The page-number identifies the previous
+** page in the overflow page list.
+**
+** PTRMAP_BTREE: The database page is a non-root btree page. The page number
+** identifies the parent page in the btree.
+*/
+#define PTRMAP_ROOTPAGE 1
+#define PTRMAP_FREEPAGE 2
+#define PTRMAP_OVERFLOW1 3
+#define PTRMAP_OVERFLOW2 4
+#define PTRMAP_BTREE 5
+
+/* A bunch of assert() statements to check the transaction state variables
+** of handle p (type Btree*) are internally consistent.
+*/
+#define btreeIntegrity(p) \
+ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
+ assert( p->pBt->inTransaction>=p->inTrans );
+
/*
-** The TRACE macro will print high-level status information about the
-** btree operation when the global variable sqlite3_btree_trace is
-** enabled.
+** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
+** if the database supports auto-vacuum or not. Because it is used
+** within an expression that is an argument to another macro
+** (sqliteMallocRaw), it is not possible to use conditional compilation.
+** So, this macro is defined instead.
*/
-#if SQLITE_TEST
-# define TRACE(X) if( sqlite3_btree_trace )\
-/* { sqlite3DebugPrintf X; fflush(stdout); } */ \
-{ printf X; fflush(stdout); }
-int sqlite3_btree_trace=0; /* True to enable tracing */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+#define ISAUTOVACUUM (pBt->autoVacuum)
#else
-# define TRACE(X)
+#define ISAUTOVACUUM 0
#endif
+
/*
-** Forward declaration
+** This structure is passed around through all the sanity checking routines
+** in order to keep track of some global state information.
*/
-static int checkReadLocks(Btree*,Pgno,BtCursor*);
+typedef struct IntegrityCk IntegrityCk;
+struct IntegrityCk {
+ BtShared *pBt; /* The tree being checked out */
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
+ Pgno nPage; /* Number of pages in the database */
+ int *anRef; /* Number of times each page is referenced */
+ int mxErr; /* Stop accumulating errors when this reaches zero */
+ int nErr; /* Number of messages written to zErrMsg so far */
+ int mallocFailed; /* A memory allocation error has occurred */
+ StrAccum errMsg; /* Accumulate the error message text here */
+};
/*
** Read or write a two- and four-byte big-endian integer values.
*/
-static u32 get2byte(unsigned char *p){
- return (p[0]<<8) | p[1];
+#define get2byte(x) ((x)[0]<<8 | (x)[1])
+#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
+#define get4byte sqlite3Get4byte
+#define put4byte sqlite3Put4byte
+
+/************** End of btreeInt.h ********************************************/
+/************** Continuing where we left off in btmutex.c ********************/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+#if SQLITE_THREADSAFE
+
+/*
+** Obtain the BtShared mutex associated with B-Tree handle p. Also,
+** set BtShared.db to the database handle associated with p and the
+** p->locked boolean to true.
+*/
+static void lockBtreeMutex(Btree *p){
+ assert( p->locked==0 );
+ assert( sqlite3_mutex_notheld(p->pBt->mutex) );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ sqlite3_mutex_enter(p->pBt->mutex);
+ p->pBt->db = p->db;
+ p->locked = 1;
}
-static u32 get4byte(unsigned char *p){
- return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
+
+/*
+** Release the BtShared mutex associated with B-Tree handle p and
+** clear the p->locked boolean.
+*/
+static void unlockBtreeMutex(Btree *p){
+ assert( p->locked==1 );
+ assert( sqlite3_mutex_held(p->pBt->mutex) );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ assert( p->db==p->pBt->db );
+
+ sqlite3_mutex_leave(p->pBt->mutex);
+ p->locked = 0;
}
-static void put2byte(unsigned char *p, u32 v){
- p[0] = v>>8;
- p[1] = v;
+
+/*
+** Enter a mutex on the given BTree object.
+**
+** If the object is not sharable, then no mutex is ever required
+** and this routine is a no-op. The underlying mutex is non-recursive.
+** But we keep a reference count in Btree.wantToLock so the behavior
+** of this interface is recursive.
+**
+** To avoid deadlocks, multiple Btrees are locked in the same order
+** by all database connections. The p->pNext is a list of other
+** Btrees belonging to the same database connection as the p Btree
+** which need to be locked after p. If we cannot get a lock on
+** p, then first unlock all of the others on p->pNext, then wait
+** for the lock to become available on p, then relock all of the
+** subsequent Btrees that desire a lock.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ Btree *pLater;
+
+ /* Some basic sanity checking on the Btree. The list of Btrees
+ ** connected by pNext and pPrev should be in sorted order by
+ ** Btree.pBt value. All elements of the list should belong to
+ ** the same connection. Only shared Btrees are on the list. */
+ assert( p->pNext==0 || p->pNext->pBt>p->pBt );
+ assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
+ assert( p->pNext==0 || p->pNext->db==p->db );
+ assert( p->pPrev==0 || p->pPrev->db==p->db );
+ assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
+
+ /* Check for locking consistency */
+ assert( !p->locked || p->wantToLock>0 );
+ assert( p->sharable || p->wantToLock==0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ /* Unless the database is sharable and unlocked, then BtShared.db
+ ** should already be set correctly. */
+ assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
+
+ if( !p->sharable ) return;
+ p->wantToLock++;
+ if( p->locked ) return;
+
+ /* In most cases, we should be able to acquire the lock we
+ ** want without having to go throught the ascending lock
+ ** procedure that follows. Just be sure not to block.
+ */
+ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
+ p->pBt->db = p->db;
+ p->locked = 1;
+ return;
+ }
+
+ /* To avoid deadlock, first release all locks with a larger
+ ** BtShared address. Then acquire our lock. Then reacquire
+ ** the other BtShared locks that we used to hold in ascending
+ ** order.
+ */
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ assert( pLater->sharable );
+ assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
+ assert( !pLater->locked || pLater->wantToLock>0 );
+ if( pLater->locked ){
+ unlockBtreeMutex(pLater);
+ }
+ }
+ lockBtreeMutex(p);
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ if( pLater->wantToLock ){
+ lockBtreeMutex(pLater);
+ }
+ }
}
-static void put4byte(unsigned char *p, u32 v){
- p[0] = v>>24;
- p[1] = v>>16;
- p[2] = v>>8;
- p[3] = v;
+
+/*
+** Exit the recursive mutex on a Btree.
+*/
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
+ if( p->sharable ){
+ assert( p->wantToLock>0 );
+ p->wantToLock--;
+ if( p->wantToLock==0 ){
+ unlockBtreeMutex(p);
+ }
+ }
}
+#ifndef NDEBUG
/*
-** Routines to read and write variable-length integers. These used to
-** be defined locally, but now we use the varint routines in the util.c
-** file.
+** Return true if the BtShared mutex is held on the btree, or if the
+** B-Tree is not marked as sharable.
+**
+** This routine is used only from within assert() statements.
*/
-#define getVarint sqlite3GetVarint
-/* #define getVarint32 sqlite3GetVarint32 */
-#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
-#define putVarint sqlite3PutVarint
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
+ assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
+ assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
+
+ return (p->sharable==0 || p->locked);
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Enter and leave a mutex on a Btree given a cursor owned by that
+** Btree. These entry points are used by incremental I/O and can be
+** omitted if that module is not used.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
+ sqlite3BtreeEnter(pCur->pBtree);
+}
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
+ sqlite3BtreeLeave(pCur->pBtree);
+}
+#endif /* SQLITE_OMIT_INCRBLOB */
+
+
+/*
+** Enter the mutex on every Btree associated with a database
+** connection. This is needed (for example) prior to parsing
+** a statement since we will be comparing table and column names
+** against all schemas and we do not want those schemas being
+** reset out from under us.
+**
+** There is a corresponding leave-all procedures.
+**
+** Enter the mutexes in accending order by BtShared pointer address
+** to avoid the possibility of deadlock when two threads with
+** two or more btrees in common both try to lock all their btrees
+** at the same instant.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ int i;
+ Btree *p, *pLater;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ assert( !p || (p->locked==0 && p->sharable) || p->pBt->db==p->db );
+ if( p && p->sharable ){
+ p->wantToLock++;
+ if( !p->locked ){
+ assert( p->wantToLock==1 );
+ while( p->pPrev ) p = p->pPrev;
+ /* Reason for ALWAYS: There must be at least on unlocked Btree in
+ ** the chain. Otherwise the !p->locked test above would have failed */
+ while( p->locked && ALWAYS(p->pNext) ) p = p->pNext;
+ for(pLater = p->pNext; pLater; pLater=pLater->pNext){
+ if( pLater->locked ){
+ unlockBtreeMutex(pLater);
+ }
+ }
+ while( p ){
+ lockBtreeMutex(p);
+ p = p->pNext;
+ }
+ }
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
+ int i;
+ Btree *p;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p && p->sharable ){
+ assert( p->wantToLock>0 );
+ p->wantToLock--;
+ if( p->wantToLock==0 ){
+ unlockBtreeMutex(p);
+ }
+ }
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the current thread holds the database connection
+** mutex and all required BtShared mutexes.
+**
+** This routine is used inside assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
+ int i;
+ if( !sqlite3_mutex_held(db->mutex) ){
+ return 0;
+ }
+ for(i=0; i<db->nDb; i++){
+ Btree *p;
+ p = db->aDb[i].pBt;
+ if( p && p->sharable &&
+ (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
+ return 0;
+ }
+ }
+ return 1;
+}
+#endif /* NDEBUG */
-/* The database page the PENDING_BYTE occupies. This page is never used.
-** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
-** should possibly be consolidated (presumably in pager.h).
+/*
+** Add a new Btree pointer to a BtreeMutexArray.
+** if the pointer can possibly be shared with
+** another database connection.
+**
+** The pointers are kept in sorted order by pBtree->pBt. That
+** way when we go to enter all the mutexes, we can enter them
+** in order without every having to backup and retry and without
+** worrying about deadlock.
**
-** If disk I/O is omitted (meaning that the database is stored purely
-** in memory) then there is no pending byte.
+** The number of shared btrees will always be small (usually 0 or 1)
+** so an insertion sort is an adequate algorithm here.
+*/
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
+ int i, j;
+ BtShared *pBt;
+ if( pBtree==0 || pBtree->sharable==0 ) return;
+#ifndef NDEBUG
+ {
+ for(i=0; i<pArray->nMutex; i++){
+ assert( pArray->aBtree[i]!=pBtree );
+ }
+ }
+#endif
+ assert( pArray->nMutex>=0 );
+ assert( pArray->nMutex<ArraySize(pArray->aBtree)-1 );
+ pBt = pBtree->pBt;
+ for(i=0; i<pArray->nMutex; i++){
+ assert( pArray->aBtree[i]!=pBtree );
+ if( pArray->aBtree[i]->pBt>pBt ){
+ for(j=pArray->nMutex; j>i; j--){
+ pArray->aBtree[j] = pArray->aBtree[j-1];
+ }
+ pArray->aBtree[i] = pBtree;
+ pArray->nMutex++;
+ return;
+ }
+ }
+ pArray->aBtree[pArray->nMutex++] = pBtree;
+}
+
+/*
+** Enter the mutex of every btree in the array. This routine is
+** called at the beginning of sqlite3VdbeExec(). The mutexes are
+** exited at the end of the same function.
*/
-#ifdef SQLITE_OMIT_DISKIO
-# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
+ int i;
+ for(i=0; i<pArray->nMutex; i++){
+ Btree *p = pArray->aBtree[i];
+ /* Some basic sanity checking */
+ assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
+ assert( !p->locked || p->wantToLock>0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ /* The Btree is sharable because only sharable Btrees are entered
+ ** into the array in the first place. */
+ assert( p->sharable );
+
+ p->wantToLock++;
+ if( !p->locked ){
+ lockBtreeMutex(p);
+ }
+ }
+}
+
+/*
+** Leave the mutex of every btree in the group.
+*/
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
+ int i;
+ for(i=0; i<pArray->nMutex; i++){
+ Btree *p = pArray->aBtree[i];
+ /* Some basic sanity checking */
+ assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
+ assert( p->locked );
+ assert( p->wantToLock>0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ p->wantToLock--;
+ if( p->wantToLock==0 ){
+ unlockBtreeMutex(p);
+ }
+ }
+}
+
#else
-# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ p->pBt->db = p->db;
+}
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p ){
+ p->pBt->db = p->db;
+ }
+ }
+}
+#endif /* if SQLITE_THREADSAFE */
+#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
+
+/************** End of btmutex.c *********************************************/
+/************** Begin file btree.c *******************************************/
+/*
+** 2004 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: btree.c,v 1.705 2009/08/10 03:57:58 shane Exp $
+**
+** This file implements a external (disk-based) database using BTrees.
+** See the header comment on "btreeInt.h" for additional information.
+** Including a description of file format and an overview of operation.
+*/
+
+/*
+** The header string that appears at the beginning of every
+** SQLite database.
+*/
+static const char zMagicHeader[] = SQLITE_FILE_HEADER;
+
+/*
+** Set this global variable to 1 to enable tracing using the TRACE
+** macro.
+*/
+#if 0
+int sqlite3BtreeTrace=1; /* True to enable tracing */
+# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
+#else
+# define TRACE(X)
+#endif
+
+
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** A list of BtShared objects that are eligible for participation
+** in shared cache. This variable has file scope during normal builds,
+** but the test harness needs to access it so we make it global for
+** test builds.
+**
+** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
+*/
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
+#else
+static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
#endif
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+#ifndef SQLITE_OMIT_SHARED_CACHE
/*
-** A linked list of the following structures is stored at BtShared.pLock.
-** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
-** is opened on the table with root page BtShared.iTable. Locks are removed
-** from this list when a transaction is committed or rolled back, or when
-** a btree handle is closed.
+** Enable or disable the shared pager and schema features.
+**
+** This routine has no effect on existing database connections.
+** The shared cache setting effects only future calls to
+** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
*/
-struct BtLock {
- Btree *pBtree; /* Btree handle holding this lock */
- Pgno iTable; /* Root page of table */
- u8 eLock; /* READ_LOCK or WRITE_LOCK */
- BtLock *pNext; /* Next in BtShared.pLock list */
-};
+SQLITE_API int sqlite3_enable_shared_cache(int enable){
+ sqlite3GlobalConfig.sharedCacheEnabled = enable;
+ return SQLITE_OK;
+}
+#endif
+
-/* Candidate values for BtLock.eLock */
-#define READ_LOCK 1
-#define WRITE_LOCK 2
#ifdef SQLITE_OMIT_SHARED_CACHE
/*
- ** The functions queryTableLock(), lockTable() and unlockAllTables()
+ ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
+ ** and clearAllSharedCacheTableLocks()
** manipulate entries in the BtShared.pLock linked list used to store
** shared-cache table level locks. If the library is compiled with the
** shared-cache feature disabled, then there is only ever one user
** of each BtShared structure and so this locking is not necessary.
** So define the lock related functions as no-ops.
*/
- #define queryTableLock(a,b,c) SQLITE_OK
- #define lockTable(a,b,c) SQLITE_OK
- #define unlockAllTables(a)
-#else
+ #define querySharedCacheTableLock(a,b,c) SQLITE_OK
+ #define setSharedCacheTableLock(a,b,c) SQLITE_OK
+ #define clearAllSharedCacheTableLocks(a)
+ #define downgradeAllSharedCacheTableLocks(a)
+ #define hasSharedCacheTableLock(a,b,c,d) 1
+ #define hasReadConflicts(a, b) 0
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+
+#ifdef SQLITE_DEBUG
+/*
+** This function is only used as part of an assert() statement. It checks
+** that connection p holds the required locks to read or write to the
+** b-tree with root page iRoot. If so, true is returned. Otherwise, false.
+** For example, when writing to a table b-tree with root-page iRoot via
+** Btree connection pBtree:
+**
+** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
+**
+** When writing to an index b-tree that resides in a sharable database, the
+** caller should have first obtained a lock specifying the root page of
+** the corresponding table b-tree. This makes things a bit more complicated,
+** as this module treats each b-tree as a separate structure. To determine
+** the table b-tree corresponding to the index b-tree being written, this
+** function has to search through the database schema.
+**
+** Instead of a lock on the b-tree rooted at page iRoot, the caller may
+** hold a write-lock on the schema table (root page 1). This is also
+** acceptable.
+*/
+static int hasSharedCacheTableLock(
+ Btree *pBtree, /* Handle that must hold lock */
+ Pgno iRoot, /* Root page of b-tree */
+ int isIndex, /* True if iRoot is the root of an index b-tree */
+ int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
+){
+ Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
+ Pgno iTab = 0;
+ BtLock *pLock;
+
+ /* If this b-tree database is not shareable, or if the client is reading
+ ** and has the read-uncommitted flag set, then no lock is required.
+ ** In these cases return true immediately. If the client is reading
+ ** or writing an index b-tree, but the schema is not loaded, then return
+ ** true also. In this case the lock is required, but it is too difficult
+ ** to check if the client actually holds it. This doesn't happen very
+ ** often. */
+ if( (pBtree->sharable==0)
+ || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
+ || (isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0 ))
+ ){
+ return 1;
+ }
+
+ /* Figure out the root-page that the lock should be held on. For table
+ ** b-trees, this is just the root page of the b-tree being read or
+ ** written. For index b-trees, it is the root page of the associated
+ ** table. */
+ if( isIndex ){
+ HashElem *p;
+ for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
+ Index *pIdx = (Index *)sqliteHashData(p);
+ if( pIdx->tnum==(int)iRoot ){
+ iTab = pIdx->pTable->tnum;
+ }
+ }
+ }else{
+ iTab = iRoot;
+ }
+
+ /* Search for the required lock. Either a write-lock on root-page iTab, a
+ ** write-lock on the schema table, or (if the client is reading) a
+ ** read-lock on iTab will suffice. Return 1 if any of these are found. */
+ for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
+ if( pLock->pBtree==pBtree
+ && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
+ && pLock->eLock>=eLockType
+ ){
+ return 1;
+ }
+ }
+ /* Failed to find the required lock. */
+ return 0;
+}
+
+/*
+** This function is also used as part of assert() statements only. It
+** returns true if there exist one or more cursors open on the table
+** with root page iRoot that do not belong to either connection pBtree
+** or some other connection that has the read-uncommitted flag set.
+**
+** For example, before writing to page iRoot:
+**
+** assert( !hasReadConflicts(pBtree, iRoot) );
+*/
+static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
+ BtCursor *p;
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ if( p->pgnoRoot==iRoot
+ && p->pBtree!=pBtree
+ && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+#endif /* #ifdef SQLITE_DEBUG */
/*
** Query to see if btree handle p may obtain a lock of type eLock
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
-** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
-** SQLITE_LOCKED if not.
+** SQLITE_OK if the lock may be obtained (by calling
+** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
*/
-static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
+static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
BtShared *pBt = p->pBt;
BtLock *pIter;
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
+ assert( p->db!=0 );
+ assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
+
+ /* If requesting a write-lock, then the Btree must have an open write
+ ** transaction on this file. And, obviously, for this to be so there
+ ** must be an open write transaction on the file itself.
+ */
+ assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
+ assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
+
/* This is a no-op if the shared-cache is not enabled */
- if( 0==sqlite3ThreadDataReadOnly()->useSharedData ){
+ if( !p->sharable ){
return SQLITE_OK;
}
- /* This (along with lockTable()) is where the ReadUncommitted flag is
- ** dealt with. If the caller is querying for a read-lock and the flag is
- ** set, it is unconditionally granted - even if there are write-locks
- ** on the table. If a write-lock is requested, the ReadUncommitted flag
- ** is not considered.
- **
- ** In function lockTable(), if a read-lock is demanded and the
- ** ReadUncommitted flag is set, no entry is added to the locks list
- ** (BtShared.pLock).
- **
- ** To summarize: If the ReadUncommitted flag is set, then read cursors do
- ** not create or respect table locks. The locking procedure for a
- ** write-cursor does not change.
+ /* If some other connection is holding an exclusive lock, the
+ ** requested lock may not be obtained.
*/
- if(
- !p->pSqlite ||
- 0==(p->pSqlite->flags&SQLITE_ReadUncommitted) ||
- eLock==WRITE_LOCK ||
- iTab==MASTER_ROOT
- ){
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
- if( pIter->pBtree!=p && pIter->iTable==iTab &&
- (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
- return SQLITE_LOCKED;
+ if( pBt->pWriter!=p && pBt->isExclusive ){
+ sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
+ return SQLITE_LOCKED_SHAREDCACHE;
+ }
+
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ /* The condition (pIter->eLock!=eLock) in the following if(...)
+ ** statement is a simplification of:
+ **
+ ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
+ **
+ ** since we know that if eLock==WRITE_LOCK, then no other connection
+ ** may hold a WRITE_LOCK on any table in this file (since there can
+ ** only be a single writer).
+ */
+ assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
+ assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
+ if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
+ sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
+ if( eLock==WRITE_LOCK ){
+ assert( p==pBt->pWriter );
+ pBt->isPending = 1;
}
+ return SQLITE_LOCKED_SHAREDCACHE;
}
}
return SQLITE_OK;
}
+#endif /* !SQLITE_OMIT_SHARED_CACHE */
+#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or
** WRITE_LOCK.
**
-** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
-** SQLITE_NOMEM may also be returned.
+** This function assumes the following:
+**
+** (a) The specified b-tree connection handle is connected to a sharable
+** b-tree database (one with the BtShared.sharable) flag set, and
+**
+** (b) No other b-tree connection handle holds a lock that conflicts
+** with the requested lock (i.e. querySharedCacheTableLock() has
+** already been called and returned SQLITE_OK).
+**
+** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
+** is returned if a malloc attempt fails.
*/
-static int lockTable(Btree *p, Pgno iTable, u8 eLock){
+static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
BtShared *pBt = p->pBt;
BtLock *pLock = 0;
BtLock *pIter;
- /* This is a no-op if the shared-cache is not enabled */
- if( 0==sqlite3ThreadDataReadOnly()->useSharedData ){
- return SQLITE_OK;
- }
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
+ assert( p->db!=0 );
- assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
+ /* A connection with the read-uncommitted flag set will never try to
+ ** obtain a read-lock using this function. The only read-lock obtained
+ ** by a connection in read-uncommitted mode is on the sqlite_master
+ ** table, and that lock is obtained in BtreeBeginTrans(). */
+ assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
- /* If the read-uncommitted flag is set and a read-lock is requested,
- ** return early without adding an entry to the BtShared.pLock list. See
- ** comment in function queryTableLock() for more info on handling
- ** the ReadUncommitted flag.
- */
- if(
- (p->pSqlite) &&
- (p->pSqlite->flags&SQLITE_ReadUncommitted) &&
- (eLock==READ_LOCK) &&
- iTable!=MASTER_ROOT
- ){
- return SQLITE_OK;
- }
+ /* This function should only be called on a sharable b-tree after it
+ ** has been determined that no other b-tree holds a conflicting lock. */
+ assert( p->sharable );
+ assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
/* First search the list for an existing lock on this table. */
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
@@ -21686,7 +37854,7 @@ static int lockTable(Btree *p, Pgno iTable, u8 eLock){
** with table iTable, allocate one and link it into the list.
*/
if( !pLock ){
- pLock = (BtLock *)sqliteMalloc(sizeof(BtLock));
+ pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
if( !pLock ){
return SQLITE_NOMEM;
}
@@ -21707,45 +37875,236 @@ static int lockTable(Btree *p, Pgno iTable, u8 eLock){
return SQLITE_OK;
}
+#endif /* !SQLITE_OMIT_SHARED_CACHE */
+#ifndef SQLITE_OMIT_SHARED_CACHE
/*
-** Release all the table locks (locks obtained via calls to the lockTable()
-** procedure) held by Btree handle p.
+** Release all the table locks (locks obtained via calls to
+** the setSharedCacheTableLock() procedure) held by Btree handle p.
+**
+** This function assumes that handle p has an open read or write
+** transaction. If it does not, then the BtShared.isPending variable
+** may be incorrectly cleared.
*/
-static void unlockAllTables(Btree *p){
- BtLock **ppIter = &p->pBt->pLock;
+static void clearAllSharedCacheTableLocks(Btree *p){
+ BtShared *pBt = p->pBt;
+ BtLock **ppIter = &pBt->pLock;
- /* If the shared-cache extension is not enabled, there should be no
- ** locks in the BtShared.pLock list, making this procedure a no-op. Assert
- ** that this is the case.
- */
- assert( sqlite3ThreadDataReadOnly()->useSharedData || 0==*ppIter );
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( p->sharable || 0==*ppIter );
+ assert( p->inTrans>0 );
while( *ppIter ){
BtLock *pLock = *ppIter;
+ assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
+ assert( pLock->pBtree->inTrans>=pLock->eLock );
if( pLock->pBtree==p ){
*ppIter = pLock->pNext;
- sqliteFree(pLock);
+ assert( pLock->iTable!=1 || pLock==&p->lock );
+ if( pLock->iTable!=1 ){
+ sqlite3_free(pLock);
+ }
}else{
ppIter = &pLock->pNext;
}
}
+
+ assert( pBt->isPending==0 || pBt->pWriter );
+ if( pBt->pWriter==p ){
+ pBt->pWriter = 0;
+ pBt->isExclusive = 0;
+ pBt->isPending = 0;
+ }else if( pBt->nTransaction==2 ){
+ /* This function is called when connection p is concluding its
+ ** transaction. If there currently exists a writer, and p is not
+ ** that writer, then the number of locks held by connections other
+ ** than the writer must be about to drop to zero. In this case
+ ** set the isPending flag to 0.
+ **
+ ** If there is not currently a writer, then BtShared.isPending must
+ ** be zero already. So this next line is harmless in that case.
+ */
+ pBt->isPending = 0;
+ }
+}
+
+/*
+** This function changes all write-locks held by connection p to read-locks.
+*/
+static void downgradeAllSharedCacheTableLocks(Btree *p){
+ BtShared *pBt = p->pBt;
+ if( pBt->pWriter==p ){
+ BtLock *pLock;
+ pBt->pWriter = 0;
+ pBt->isExclusive = 0;
+ pBt->isPending = 0;
+ for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
+ assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
+ pLock->eLock = READ_LOCK;
+ }
+ }
}
+
#endif /* SQLITE_OMIT_SHARED_CACHE */
static void releasePage(MemPage *pPage); /* Forward reference */
/*
+** Verify that the cursor holds a mutex on the BtShared
+*/
+#ifndef NDEBUG
+static int cursorHoldsMutex(BtCursor *p){
+ return sqlite3_mutex_held(p->pBt->mutex);
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Invalidate the overflow page-list cache for cursor pCur, if any.
+*/
+static void invalidateOverflowCache(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ sqlite3_free(pCur->aOverflow);
+ pCur->aOverflow = 0;
+}
+
+/*
+** Invalidate the overflow page-list cache for all cursors opened
+** on the shared btree structure pBt.
+*/
+static void invalidateAllOverflowCache(BtShared *pBt){
+ BtCursor *p;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ invalidateOverflowCache(p);
+ }
+}
+
+/*
+** This function is called before modifying the contents of a table
+** b-tree to invalidate any incrblob cursors that are open on the
+** row or one of the rows being modified.
+**
+** If argument isClearTable is true, then the entire contents of the
+** table is about to be deleted. In this case invalidate all incrblob
+** cursors open on any row within the table with root-page pgnoRoot.
+**
+** Otherwise, if argument isClearTable is false, then the row with
+** rowid iRow is being replaced or deleted. In this case invalidate
+** only those incrblob cursors open on this specific row.
+*/
+static void invalidateIncrblobCursors(
+ Btree *pBtree, /* The database file to check */
+ i64 iRow, /* The rowid that might be changing */
+ int isClearTable /* True if all rows are being deleted */
+){
+ BtCursor *p;
+ BtShared *pBt = pBtree->pBt;
+ assert( sqlite3BtreeHoldsMutex(pBtree) );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
+ p->eState = CURSOR_INVALID;
+ }
+ }
+}
+
+#else
+ #define invalidateOverflowCache(x)
+ #define invalidateAllOverflowCache(x)
+ #define invalidateIncrblobCursors(x,y,z)
+#endif
+
+/*
+** Set bit pgno of the BtShared.pHasContent bitvec. This is called
+** when a page that previously contained data becomes a free-list leaf
+** page.
+**
+** The BtShared.pHasContent bitvec exists to work around an obscure
+** bug caused by the interaction of two useful IO optimizations surrounding
+** free-list leaf pages:
+**
+** 1) When all data is deleted from a page and the page becomes
+** a free-list leaf page, the page is not written to the database
+** (as free-list leaf pages contain no meaningful data). Sometimes
+** such a page is not even journalled (as it will not be modified,
+** why bother journalling it?).
+**
+** 2) When a free-list leaf page is reused, its content is not read
+** from the database or written to the journal file (why should it
+** be, if it is not at all meaningful?).
+**
+** By themselves, these optimizations work fine and provide a handy
+** performance boost to bulk delete or insert operations. However, if
+** a page is moved to the free-list and then reused within the same
+** transaction, a problem comes up. If the page is not journalled when
+** it is moved to the free-list and it is also not journalled when it
+** is extracted from the free-list and reused, then the original data
+** may be lost. In the event of a rollback, it may not be possible
+** to restore the database to its original configuration.
+**
+** The solution is the BtShared.pHasContent bitvec. Whenever a page is
+** moved to become a free-list leaf page, the corresponding bit is
+** set in the bitvec. Whenever a leaf page is extracted from the free-list,
+** optimization 2 above is ommitted if the corresponding bit is already
+** set in BtShared.pHasContent. The contents of the bitvec are cleared
+** at the end of every transaction.
+*/
+static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
+ int rc = SQLITE_OK;
+ if( !pBt->pHasContent ){
+ int nPage = 100;
+ sqlite3PagerPagecount(pBt->pPager, &nPage);
+ /* If sqlite3PagerPagecount() fails there is no harm because the
+ ** nPage variable is unchanged from its default value of 100 */
+ pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
+ if( !pBt->pHasContent ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+ if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
+ rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
+ }
+ return rc;
+}
+
+/*
+** Query the BtShared.pHasContent vector.
+**
+** This function is called when a free-list leaf page is removed from the
+** free-list for reuse. It returns false if it is safe to retrieve the
+** page from the pager layer with the 'no-content' flag set. True otherwise.
+*/
+static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
+ Bitvec *p = pBt->pHasContent;
+ return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
+}
+
+/*
+** Clear (destroy) the BtShared.pHasContent bitvec. This should be
+** invoked at the conclusion of each write-transaction.
+*/
+static void btreeClearHasContent(BtShared *pBt){
+ sqlite3BitvecDestroy(pBt->pHasContent);
+ pBt->pHasContent = 0;
+}
+
+/*
** Save the current cursor position in the variables BtCursor.nKey
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
+**
+** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
+** prior to calling this routine.
*/
static int saveCursorPosition(BtCursor *pCur){
int rc;
assert( CURSOR_VALID==pCur->eState );
assert( 0==pCur->pKey );
+ assert( cursorHoldsMutex(pCur) );
rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
+ assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
/* If this is an intKey table, then the above call to BtreeKeySize()
** stores the integer key in pCur->nKey. In this case this value is
@@ -21753,27 +38112,32 @@ static int saveCursorPosition(BtCursor *pCur){
** table, then malloc space for and store the pCur->nKey bytes of key
** data.
*/
- if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
- void *pKey = sqliteMalloc(pCur->nKey);
+ if( 0==pCur->apPage[0]->intKey ){
+ void *pKey = sqlite3Malloc( (int)pCur->nKey );
if( pKey ){
- rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
+ rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
if( rc==SQLITE_OK ){
pCur->pKey = pKey;
}else{
- sqliteFree(pKey);
+ sqlite3_free(pKey);
}
}else{
rc = SQLITE_NOMEM;
}
}
- assert( !pCur->pPage->intKey || !pCur->pKey );
+ assert( !pCur->apPage[0]->intKey || !pCur->pKey );
if( rc==SQLITE_OK ){
- releasePage(pCur->pPage);
- pCur->pPage = 0;
+ int i;
+ for(i=0; i<=pCur->iPage; i++){
+ releasePage(pCur->apPage[i]);
+ pCur->apPage[i] = 0;
+ }
+ pCur->iPage = -1;
pCur->eState = CURSOR_REQUIRESEEK;
}
+ invalidateOverflowCache(pCur);
return rc;
}
@@ -21784,6 +38148,8 @@ static int saveCursorPosition(BtCursor *pCur){
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
BtCursor *p;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pExcept==0 || pExcept->pBt==pBt );
for(p=pBt->pCursor; p; p=p->pNext){
if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
p->eState==CURSOR_VALID ){
@@ -21799,63 +38165,110 @@ static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
/*
** Clear the current cursor position.
*/
-static void clearCursorPosition(BtCursor *pCur){
- sqliteFree(pCur->pKey);
+SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ sqlite3_free(pCur->pKey);
pCur->pKey = 0;
pCur->eState = CURSOR_INVALID;
}
/*
+** In this version of BtreeMoveto, pKey is a packed index record
+** such as is generated by the OP_MakeRecord opcode. Unpack the
+** record and then call BtreeMovetoUnpacked() to do the work.
+*/
+static int btreeMoveto(
+ BtCursor *pCur, /* Cursor open on the btree to be searched */
+ const void *pKey, /* Packed key if the btree is an index */
+ i64 nKey, /* Integer key for tables. Size of pKey for indices */
+ int bias, /* Bias search to the high end */
+ int *pRes /* Write search results here */
+){
+ int rc; /* Status code */
+ UnpackedRecord *pIdxKey; /* Unpacked index key */
+ char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
+
+ if( pKey ){
+ assert( nKey==(i64)(int)nKey );
+ pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
+ aSpace, sizeof(aSpace));
+ if( pIdxKey==0 ) return SQLITE_NOMEM;
+ }else{
+ pIdxKey = 0;
+ }
+ rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
+ if( pKey ){
+ sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
+ }
+ return rc;
+}
+
+/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the
** saved position info stored by saveCursorPosition(), so there can be
-** at most one effective restoreOrClearCursorPosition() call after each
+** at most one effective restoreCursorPosition() call after each
** saveCursorPosition().
-**
-** If the second argument argument - doSeek - is false, then instead of
-** returning the cursor to it's saved position, any saved position is deleted
-** and the cursor state set to CURSOR_INVALID.
*/
-static int restoreOrClearCursorPositionX(BtCursor *pCur){
+static int btreeRestoreCursorPosition(BtCursor *pCur){
int rc;
- assert( pCur->eState==CURSOR_REQUIRESEEK );
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState>=CURSOR_REQUIRESEEK );
+ if( pCur->eState==CURSOR_FAULT ){
+ return pCur->skipNext;
+ }
pCur->eState = CURSOR_INVALID;
- rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
+ rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
if( rc==SQLITE_OK ){
- sqliteFree(pCur->pKey);
+ sqlite3_free(pCur->pKey);
pCur->pKey = 0;
assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
}
return rc;
}
-#define restoreOrClearCursorPosition(p) \
- (p->eState==CURSOR_REQUIRESEEK?restoreOrClearCursorPositionX(p):SQLITE_OK)
+#define restoreCursorPosition(p) \
+ (p->eState>=CURSOR_REQUIRESEEK ? \
+ btreeRestoreCursorPosition(p) : \
+ SQLITE_OK)
-#ifndef SQLITE_OMIT_AUTOVACUUM
/*
-** These macros define the location of the pointer-map entry for a
-** database page. The first argument to each is the number of usable
-** bytes on each page of the database (often 1024). The second is the
-** page number to look up in the pointer map.
+** Determine whether or not a cursor has moved from the position it
+** was last placed at. Cursors can move when the row they are pointing
+** at is deleted out from under them.
**
-** PTRMAP_PAGENO returns the database page number of the pointer-map
-** page that stores the required pointer. PTRMAP_PTROFFSET returns
-** the offset of the requested map entry.
-**
-** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
-** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
-** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
-** this test.
+** This routine returns an error code if something goes wrong. The
+** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
*/
-#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
-#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
-#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
+ int rc;
+ rc = restoreCursorPosition(pCur);
+ if( rc ){
+ *pHasMoved = 1;
+ return rc;
+ }
+ if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
+ *pHasMoved = 1;
+ }else{
+ *pHasMoved = 0;
+ }
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Given a page number of a regular database page, return the page
+** number for the pointer-map page that contains the entry for the
+** input page number.
+*/
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
- int nPagesPerMapPage = (pBt->usableSize/5)+1;
- int iPtrMap = (pgno-2)/nPagesPerMapPage;
- int ret = (iPtrMap*nPagesPerMapPage) + 2;
+ int nPagesPerMapPage;
+ Pgno iPtrMap, ret;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ nPagesPerMapPage = (pBt->usableSize/5)+1;
+ iPtrMap = (pgno-2)/nPagesPerMapPage;
+ ret = (iPtrMap*nPagesPerMapPage) + 2;
if( ret==PENDING_BYTE_PAGE(pBt) ){
ret++;
}
@@ -21863,82 +38276,57 @@ static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
}
/*
-** The pointer map is a lookup table that identifies the parent page for
-** each child page in the database file. The parent page is the page that
-** contains a pointer to the child. Every page in the database contains
-** 0 or 1 parent pages. (In this context 'database page' refers
-** to any page that is not part of the pointer map itself.) Each pointer map
-** entry consists of a single byte 'type' and a 4 byte parent page number.
-** The PTRMAP_XXX identifiers below are the valid types.
-**
-** The purpose of the pointer map is to facility moving pages from one
-** position in the file to another as part of autovacuum. When a page
-** is moved, the pointer in its parent must be updated to point to the
-** new location. The pointer map is used to locate the parent page quickly.
-**
-** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
-** used in this case.
-**
-** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
-** is not used in this case.
-**
-** PTRMAP_OVERFLOW1: The database page is the first page in a list of
-** overflow pages. The page number identifies the page that
-** contains the cell with a pointer to this overflow page.
-**
-** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
-** overflow pages. The page-number identifies the previous
-** page in the overflow page list.
-**
-** PTRMAP_BTREE: The database page is a non-root btree page. The page number
-** identifies the parent page in the btree.
-*/
-#define PTRMAP_ROOTPAGE 1
-#define PTRMAP_FREEPAGE 2
-#define PTRMAP_OVERFLOW1 3
-#define PTRMAP_OVERFLOW2 4
-#define PTRMAP_BTREE 5
-
-/*
** Write an entry into the pointer map.
**
** This routine updates the pointer map entry for page number 'key'
** so that it maps to type 'eType' and parent page number 'pgno'.
-** An error code is returned if something goes wrong, otherwise SQLITE_OK.
+**
+** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
+** a no-op. If an error occurs, the appropriate error code is written
+** into *pRC.
*/
-static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
+static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
DbPage *pDbPage; /* The pointer map page */
u8 *pPtrmap; /* The pointer map data */
Pgno iPtrmap; /* The pointer map page number */
int offset; /* Offset in pointer map page */
- int rc;
+ int rc; /* Return code from subfunctions */
+ if( *pRC ) return;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
/* The master-journal page number must never be used as a pointer map page */
assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
assert( pBt->autoVacuum );
if( key==0 ){
- return SQLITE_CORRUPT_BKPT;
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
}
iPtrmap = PTRMAP_PAGENO(pBt, key);
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
if( rc!=SQLITE_OK ){
- return rc;
+ *pRC = rc;
+ return;
+ }
+ offset = PTRMAP_PTROFFSET(iPtrmap, key);
+ if( offset<0 ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ goto ptrmap_exit;
}
- offset = PTRMAP_PTROFFSET(pBt, key);
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
- rc = sqlite3PagerWrite(pDbPage);
+ *pRC= rc = sqlite3PagerWrite(pDbPage);
if( rc==SQLITE_OK ){
pPtrmap[offset] = eType;
put4byte(&pPtrmap[offset+1], parent);
}
}
+ptrmap_exit:
sqlite3PagerUnref(pDbPage);
- return rc;
}
/*
@@ -21955,6 +38343,8 @@ static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
int offset; /* Offset of entry in pointer map */
int rc;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
iPtrmap = PTRMAP_PAGENO(pBt, key);
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
if( rc!=0 ){
@@ -21962,7 +38352,7 @@ static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
}
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
- offset = PTRMAP_PTROFFSET(pBt, key);
+ offset = PTRMAP_PTROFFSET(iPtrmap, key);
assert( pEType!=0 );
*pEType = pPtrmap[offset];
if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
@@ -21972,7 +38362,11 @@ static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
return SQLITE_OK;
}
-#endif /* SQLITE_OMIT_AUTOVACUUM */
+#else /* if defined SQLITE_OMIT_AUTOVACUUM */
+ #define ptrmapPut(w,x,y,z,rc)
+ #define ptrmapGet(w,x,y,z) SQLITE_OK
+ #define ptrmapPutOvflPtr(x, y, rc)
+#endif
/*
** Given a btree page and a cell index (0 means the first cell on
@@ -21981,19 +38375,16 @@ static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
**
** This routine works only for pages that do not contain overflow cells.
*/
-static u8 *findCell(MemPage *pPage, int iCell){
- u8 *data = pPage->aData;
- assert( iCell>=0 );
- assert( iCell<get2byte(&data[pPage->hdrOffset+3]) );
- return data + get2byte(&data[pPage->cellOffset+2*iCell]);
-}
+#define findCell(P,I) \
+ ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
/*
** This a more complex version of findCell() that works for
-** pages that do contain overflow cells. See insert
+** pages that do contain overflow cells.
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
int i;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
for(i=pPage->nOverflow-1; i>=0; i--){
int k;
struct _OvflCell *pOvfl;
@@ -22011,50 +38402,56 @@ static u8 *findOverflowCell(MemPage *pPage, int iCell){
/*
** Parse a cell content block and fill in the CellInfo structure. There
-** are two versions of this function. parseCell() takes a cell index
-** as the second argument and parseCellPtr() takes a pointer to the
-** body of the cell as its second argument.
+** are two versions of this function. btreeParseCell() takes a
+** cell index as the second argument and btreeParseCellPtr()
+** takes a pointer to the body of the cell as its second argument.
+**
+** Within this file, the parseCell() macro can be called instead of
+** btreeParseCellPtr(). Using some compilers, this will be faster.
*/
-static void parseCellPtr(
+static void btreeParseCellPtr(
MemPage *pPage, /* Page containing the cell */
u8 *pCell, /* Pointer to the cell text. */
CellInfo *pInfo /* Fill in this structure */
){
- int n; /* Number bytes in cell content header */
+ u16 n; /* Number bytes in cell content header */
u32 nPayload; /* Number of bytes of cell payload */
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+
pInfo->pCell = pCell;
assert( pPage->leaf==0 || pPage->leaf==1 );
n = pPage->childPtrSize;
assert( n==4-4*pPage->leaf );
- if( pPage->hasData ){
- n += getVarint32(&pCell[n], &nPayload);
- }else{
- nPayload = 0;
- }
- pInfo->nData = nPayload;
if( pPage->intKey ){
- n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
+ if( pPage->hasData ){
+ n += getVarint32(&pCell[n], nPayload);
+ }else{
+ nPayload = 0;
+ }
+ n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
+ pInfo->nData = nPayload;
}else{
- u32 x;
- n += getVarint32(&pCell[n], &x);
- pInfo->nKey = x;
- nPayload += x;
+ pInfo->nData = 0;
+ n += getVarint32(&pCell[n], nPayload);
+ pInfo->nKey = nPayload;
}
pInfo->nPayload = nPayload;
pInfo->nHeader = n;
- if( nPayload<=pPage->maxLocal ){
+ testcase( nPayload==pPage->maxLocal );
+ testcase( nPayload==pPage->maxLocal+1 );
+ if( likely(nPayload<=pPage->maxLocal) ){
/* This is the (easy) common case where the entire payload fits
** on the local page. No overflow is required.
*/
int nSize; /* Total size of cell content in bytes */
- pInfo->nLocal = nPayload;
- pInfo->iOverflow = 0;
nSize = nPayload + n;
- if( nSize<4 ){
+ pInfo->nLocal = (u16)nPayload;
+ pInfo->iOverflow = 0;
+ if( (nSize & ~3)==0 ){
nSize = 4; /* Minimum cell size is 4 */
}
- pInfo->nSize = nSize;
+ pInfo->nSize = (u16)nSize;
}else{
/* If the payload will not fit completely on the local page, we have
** to decide how much to store locally and how much to spill onto
@@ -22072,21 +38469,25 @@ static void parseCellPtr(
minLocal = pPage->minLocal;
maxLocal = pPage->maxLocal;
surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
+ testcase( surplus==maxLocal );
+ testcase( surplus==maxLocal+1 );
if( surplus <= maxLocal ){
- pInfo->nLocal = surplus;
+ pInfo->nLocal = (u16)surplus;
}else{
- pInfo->nLocal = minLocal;
+ pInfo->nLocal = (u16)minLocal;
}
- pInfo->iOverflow = pInfo->nLocal + n;
+ pInfo->iOverflow = (u16)(pInfo->nLocal + n);
pInfo->nSize = pInfo->iOverflow + 4;
}
}
-static void parseCell(
+#define parseCell(pPage, iCell, pInfo) \
+ btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
+static void btreeParseCell(
MemPage *pPage, /* Page containing the cell */
int iCell, /* The cell index. First cell is 0 */
CellInfo *pInfo /* Fill in this structure */
){
- parseCellPtr(pPage, findCell(pPage, iCell), pInfo);
+ parseCell(pPage, iCell, pInfo);
}
/*
@@ -22095,18 +38496,63 @@ static void parseCell(
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
*/
+static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
+ u8 *pIter = &pCell[pPage->childPtrSize];
+ u32 nSize;
+
+#ifdef SQLITE_DEBUG
+ /* The value returned by this function should always be the same as
+ ** the (CellInfo.nSize) value found by doing a full parse of the
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
+ ** this function verifies that this invariant is not violated. */
+ CellInfo debuginfo;
+ btreeParseCellPtr(pPage, pCell, &debuginfo);
+#endif
+
+ if( pPage->intKey ){
+ u8 *pEnd;
+ if( pPage->hasData ){
+ pIter += getVarint32(pIter, nSize);
+ }else{
+ nSize = 0;
+ }
+
+ /* pIter now points at the 64-bit integer key value, a variable length
+ ** integer. The following block moves pIter to point at the first byte
+ ** past the end of the key value. */
+ pEnd = &pIter[9];
+ while( (*pIter++)&0x80 && pIter<pEnd );
+ }else{
+ pIter += getVarint32(pIter, nSize);
+ }
+
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==pPage->maxLocal+1 );
+ if( nSize>pPage->maxLocal ){
+ int minLocal = pPage->minLocal;
+ nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==pPage->maxLocal+1 );
+ if( nSize>pPage->maxLocal ){
+ nSize = minLocal;
+ }
+ nSize += 4;
+ }
+ nSize += (u32)(pIter - pCell);
+
+ /* The minimum size of any cell is 4 bytes. */
+ if( nSize<4 ){
+ nSize = 4;
+ }
+
+ assert( nSize==debuginfo.nSize );
+ return (u16)nSize;
+}
#ifndef NDEBUG
-static int cellSize(MemPage *pPage, int iCell){
- CellInfo info;
- parseCell(pPage, iCell, &info);
- return info.nSize;
+static u16 cellSize(MemPage *pPage, int iCell){
+ return cellSizePtr(pPage, findCell(pPage, iCell));
}
#endif
-static int cellSizePtr(MemPage *pPage, u8 *pCell){
- CellInfo info;
- parseCellPtr(pPage, pCell, &info);
- return info.nSize;
-}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
@@ -22114,40 +38560,20 @@ static int cellSizePtr(MemPage *pPage, u8 *pCell){
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
-static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
- if( pCell ){
- CellInfo info;
- parseCellPtr(pPage, pCell, &info);
- assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
- if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
- Pgno ovfl = get4byte(&pCell[info.iOverflow]);
- return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
- }
+static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
+ CellInfo info;
+ if( *pRC ) return;
+ assert( pCell!=0 );
+ btreeParseCellPtr(pPage, pCell, &info);
+ assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
+ if( info.iOverflow ){
+ Pgno ovfl = get4byte(&pCell[info.iOverflow]);
+ ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
}
- return SQLITE_OK;
-}
-/*
-** If the cell with index iCell on page pPage contains a pointer
-** to an overflow page, insert an entry into the pointer-map
-** for the overflow page.
-*/
-static int ptrmapPutOvfl(MemPage *pPage, int iCell){
- u8 *pCell;
- pCell = findOverflowCell(pPage, iCell);
- return ptrmapPutOvflPtr(pPage, pCell);
}
#endif
-/* A bunch of assert() statements to check the transaction state variables
-** of handle p (type Btree*) are internally consistent.
-*/
-#define btreeIntegrity(p) \
- assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \
- assert( p->pBt->nTransaction<=p->pBt->nRef ); \
- assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
- assert( p->pBt->inTransaction>=p->inTrans );
-
/*
** Defragment the page given. All Cells are moved to the
** end of the page and all free space is collected into one
@@ -22157,116 +38583,174 @@ static int ptrmapPutOvfl(MemPage *pPage, int iCell){
static int defragmentPage(MemPage *pPage){
int i; /* Loop counter */
int pc; /* Address of a i-th cell */
- int addr; /* Offset of first byte after cell pointer array */
int hdr; /* Offset to the page header */
int size; /* Size of a cell */
int usableSize; /* Number of usable bytes on a page */
int cellOffset; /* Offset to the cell pointer array */
- int brk; /* Offset to the cell content area */
+ int cbrk; /* Offset to the cell content area */
int nCell; /* Number of cells on the page */
unsigned char *data; /* The page data */
unsigned char *temp; /* Temp area for cell content */
+ int iCellFirst; /* First allowable cell index */
+ int iCellLast; /* Last possible cell index */
+
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( pPage->pBt!=0 );
assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
assert( pPage->nOverflow==0 );
- temp = sqliteMalloc( pPage->pBt->pageSize );
- if( temp==0 ) return SQLITE_NOMEM;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
data = pPage->aData;
hdr = pPage->hdrOffset;
cellOffset = pPage->cellOffset;
nCell = pPage->nCell;
assert( nCell==get2byte(&data[hdr+3]) );
usableSize = pPage->pBt->usableSize;
- brk = get2byte(&data[hdr+5]);
- memcpy(&temp[brk], &data[brk], usableSize - brk);
- brk = usableSize;
+ cbrk = get2byte(&data[hdr+5]);
+ memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
+ cbrk = usableSize;
+ iCellFirst = cellOffset + 2*nCell;
+ iCellLast = usableSize - 4;
for(i=0; i<nCell; i++){
u8 *pAddr; /* The i-th cell pointer */
pAddr = &data[cellOffset + i*2];
pc = get2byte(pAddr);
- assert( pc<pPage->pBt->usableSize );
+ testcase( pc==iCellFirst );
+ testcase( pc==iCellLast );
+#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
+ /* These conditions have already been verified in btreeInitPage()
+ ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
+ */
+ if( pc<iCellFirst || pc>iCellLast ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+#endif
+ assert( pc>=iCellFirst && pc<=iCellLast );
size = cellSizePtr(pPage, &temp[pc]);
- brk -= size;
- memcpy(&data[brk], &temp[pc], size);
- put2byte(pAddr, brk);
+ cbrk -= size;
+#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
+ if( cbrk<iCellFirst ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+#else
+ if( cbrk<iCellFirst || pc+size>usableSize ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+#endif
+ assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
+ testcase( cbrk+size==usableSize );
+ testcase( pc+size==usableSize );
+ memcpy(&data[cbrk], &temp[pc], size);
+ put2byte(pAddr, cbrk);
}
- assert( brk>=cellOffset+2*nCell );
- put2byte(&data[hdr+5], brk);
+ assert( cbrk>=iCellFirst );
+ put2byte(&data[hdr+5], cbrk);
data[hdr+1] = 0;
data[hdr+2] = 0;
data[hdr+7] = 0;
- addr = cellOffset+2*nCell;
- memset(&data[addr], 0, brk-addr);
- sqliteFree(temp);
+ memset(&data[iCellFirst], 0, cbrk-iCellFirst);
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ if( cbrk-iCellFirst!=pPage->nFree ){
+ return SQLITE_CORRUPT_BKPT;
+ }
return SQLITE_OK;
}
/*
-** Allocate nByte bytes of space on a page.
+** Allocate nByte bytes of space from within the B-Tree page passed
+** as the first argument. Write into *pIdx the index into pPage->aData[]
+** of the first byte of allocated space. Return either SQLITE_OK or
+** an error code (usually SQLITE_CORRUPT).
**
-** Return the index into pPage->aData[] of the first byte of
-** the new allocation. Or return 0 if there is not enough free
-** space on the page to satisfy the allocation request.
-**
-** If the page contains nBytes of free space but does not contain
-** nBytes of contiguous free space, then this routine automatically
-** calls defragementPage() to consolidate all free space before
-** allocating the new chunk.
+** The caller guarantees that there is sufficient space to make the
+** allocation. This routine might need to defragment in order to bring
+** all the space together, however. This routine will avoid using
+** the first two bytes past the cell pointer area since presumably this
+** allocation is being made in order to insert a new cell, so we will
+** also end up needing a new cell pointer.
*/
-static int allocateSpace(MemPage *pPage, int nByte){
- int addr, pc, hdr;
- int size;
- int nFrag;
- int top;
- int nCell;
- int cellOffset;
- unsigned char *data;
+static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
+ const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
+ u8 * const data = pPage->aData; /* Local cache of pPage->aData */
+ int nFrag; /* Number of fragmented bytes on pPage */
+ int top; /* First byte of cell content area */
+ int gap; /* First byte of gap between cell pointers and cell content */
+ int rc; /* Integer return code */
- data = pPage->aData;
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( pPage->pBt );
- if( nByte<4 ) nByte = 4;
- if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
- pPage->nFree -= nByte;
- hdr = pPage->hdrOffset;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( nByte>=0 ); /* Minimum cell size is 4 */
+ assert( pPage->nFree>=nByte );
+ assert( pPage->nOverflow==0 );
+ assert( nByte<pPage->pBt->usableSize-8 );
nFrag = data[hdr+7];
- if( nFrag<60 ){
- /* Search the freelist looking for a slot big enough to satisfy the
- ** space request. */
- addr = hdr+1;
- while( (pc = get2byte(&data[addr]))>0 ){
- size = get2byte(&data[pc+2]);
+ assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
+ gap = pPage->cellOffset + 2*pPage->nCell;
+ top = get2byte(&data[hdr+5]);
+ if( gap>top ) return SQLITE_CORRUPT_BKPT;
+ testcase( gap+2==top );
+ testcase( gap+1==top );
+ testcase( gap==top );
+
+ if( nFrag>=60 ){
+ /* Always defragment highly fragmented pages */
+ rc = defragmentPage(pPage);
+ if( rc ) return rc;
+ top = get2byte(&data[hdr+5]);
+ }else if( gap+2<=top ){
+ /* Search the freelist looking for a free slot big enough to satisfy
+ ** the request. The allocation is made from the first free slot in
+ ** the list that is large enough to accomadate it.
+ */
+ int pc, addr;
+ for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
+ int size = get2byte(&data[pc+2]); /* Size of free slot */
if( size>=nByte ){
- if( size<nByte+4 ){
+ int x = size - nByte;
+ testcase( x==4 );
+ testcase( x==3 );
+ if( x<4 ){
+ /* Remove the slot from the free-list. Update the number of
+ ** fragmented bytes within the page. */
memcpy(&data[addr], &data[pc], 2);
- data[hdr+7] = nFrag + size - nByte;
- return pc;
+ data[hdr+7] = (u8)(nFrag + x);
}else{
- put2byte(&data[pc+2], size-nByte);
- return pc + size - nByte;
+ /* The slot remains on the free-list. Reduce its size to account
+ ** for the portion used by the new allocation. */
+ put2byte(&data[pc+2], x);
}
+ *pIdx = pc + x;
+ return SQLITE_OK;
}
- addr = pc;
}
}
- /* Allocate memory from the gap in between the cell pointer array
- ** and the cell content area.
+ /* Check to make sure there is enough space in the gap to satisfy
+ ** the allocation. If not, defragment.
*/
- top = get2byte(&data[hdr+5]);
- nCell = get2byte(&data[hdr+3]);
- cellOffset = pPage->cellOffset;
- if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
- if( defragmentPage(pPage) ) return 0;
+ testcase( gap+2+nByte==top );
+ if( gap+2+nByte>top ){
+ rc = defragmentPage(pPage);
+ if( rc ) return rc;
top = get2byte(&data[hdr+5]);
+ assert( gap+nByte<=top );
}
+
+
+ /* Allocate memory from the gap in between the cell pointer array
+ ** and the cell content area. The btreeInitPage() call has already
+ ** validated the freelist. Given that the freelist is valid, there
+ ** is no way that the allocation can extend off the end of the page.
+ ** The assert() below verifies the previous sentence.
+ */
top -= nByte;
- assert( cellOffset + 2*nCell <= top );
put2byte(&data[hdr+5], top);
- return top;
+ assert( top+nByte <= pPage->pBt->usableSize );
+ *pIdx = top;
+ return SQLITE_OK;
}
/*
@@ -22277,15 +38761,17 @@ static int allocateSpace(MemPage *pPage, int nByte){
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
-static void freeSpace(MemPage *pPage, int start, int size){
+static int freeSpace(MemPage *pPage, int start, int size){
int addr, pbegin, hdr;
+ int iLast; /* Largest possible freeblock offset */
unsigned char *data = pPage->aData;
assert( pPage->pBt!=0 );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
+ assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
assert( (start + size)<=pPage->pBt->usableSize );
- if( size<4 ) size = 4;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( size>=0 ); /* Minimum cell size is 4 */
#ifdef SQLITE_SECURE_DELETE
/* Overwrite deleted information with zeros when the SECURE_DELETE
@@ -22293,35 +38779,52 @@ static void freeSpace(MemPage *pPage, int start, int size){
memset(&data[start], 0, size);
#endif
- /* Add the space back into the linked list of freeblocks */
+ /* Add the space back into the linked list of freeblocks. Note that
+ ** even though the freeblock list was checked by btreeInitPage(),
+ ** btreeInitPage() did not detect overlapping cells or
+ ** freeblocks that overlapped cells. Nor does it detect when the
+ ** cell content area exceeds the value in the page header. If these
+ ** situations arise, then subsequent insert operations might corrupt
+ ** the freelist. So we do need to check for corruption while scanning
+ ** the freelist.
+ */
hdr = pPage->hdrOffset;
addr = hdr + 1;
+ iLast = pPage->pBt->usableSize - 4;
+ assert( start<=iLast );
while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
- assert( pbegin<=pPage->pBt->usableSize-4 );
- assert( pbegin>addr );
+ if( pbegin<addr+4 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
addr = pbegin;
}
- assert( pbegin<=pPage->pBt->usableSize-4 );
+ if( pbegin>iLast ){
+ return SQLITE_CORRUPT_BKPT;
+ }
assert( pbegin>addr || pbegin==0 );
put2byte(&data[addr], start);
put2byte(&data[start], pbegin);
put2byte(&data[start+2], size);
- pPage->nFree += size;
+ pPage->nFree = pPage->nFree + (u16)size;
/* Coalesce adjacent free blocks */
- addr = pPage->hdrOffset + 1;
+ addr = hdr + 1;
while( (pbegin = get2byte(&data[addr]))>0 ){
- int pnext, psize;
+ int pnext, psize, x;
assert( pbegin>addr );
assert( pbegin<=pPage->pBt->usableSize-4 );
pnext = get2byte(&data[pbegin]);
psize = get2byte(&data[pbegin+2]);
if( pbegin + psize + 3 >= pnext && pnext>0 ){
int frag = pnext - (pbegin+psize);
- assert( frag<=data[pPage->hdrOffset+7] );
- data[pPage->hdrOffset+7] -= frag;
- put2byte(&data[pbegin], get2byte(&data[pnext]));
- put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
+ if( (frag<0) || (frag>(int)data[hdr+7]) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ data[hdr+7] -= (u8)frag;
+ x = get2byte(&data[pnext]);
+ put2byte(&data[pbegin], x);
+ x = pnext + get2byte(&data[pnext+2]) - pbegin;
+ put2byte(&data[pbegin+2], x);
}else{
addr = pbegin;
}
@@ -22332,119 +38835,162 @@ static void freeSpace(MemPage *pPage, int start, int size){
int top;
pbegin = get2byte(&data[hdr+1]);
memcpy(&data[hdr+1], &data[pbegin], 2);
- top = get2byte(&data[hdr+5]);
- put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
+ top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
+ put2byte(&data[hdr+5], top);
}
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ return SQLITE_OK;
}
/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
+**
+** Only the following combinations are supported. Anything different
+** indicates a corrupt database files:
+**
+** PTF_ZERODATA
+** PTF_ZERODATA | PTF_LEAF
+** PTF_LEAFDATA | PTF_INTKEY
+** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
*/
-static void decodeFlags(MemPage *pPage, int flagByte){
+static int decodeFlags(MemPage *pPage, int flagByte){
BtShared *pBt; /* A copy of pPage->pBt */
assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
- pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
- pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
- pPage->leaf = (flagByte & PTF_LEAF)!=0;
- pPage->childPtrSize = 4*(pPage->leaf==0);
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
+ flagByte &= ~PTF_LEAF;
+ pPage->childPtrSize = 4-4*pPage->leaf;
pBt = pPage->pBt;
- if( flagByte & PTF_LEAFDATA ){
- pPage->leafData = 1;
+ if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
+ pPage->intKey = 1;
+ pPage->hasData = pPage->leaf;
pPage->maxLocal = pBt->maxLeaf;
pPage->minLocal = pBt->minLeaf;
- }else{
- pPage->leafData = 0;
+ }else if( flagByte==PTF_ZERODATA ){
+ pPage->intKey = 0;
+ pPage->hasData = 0;
pPage->maxLocal = pBt->maxLocal;
pPage->minLocal = pBt->minLocal;
+ }else{
+ return SQLITE_CORRUPT_BKPT;
}
- pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
+ return SQLITE_OK;
}
/*
** Initialize the auxiliary information for a disk block.
**
-** The pParent parameter must be a pointer to the MemPage which
-** is the parent of the page being initialized. The root of a
-** BTree has no parent and so for that page, pParent==NULL.
-**
** Return SQLITE_OK on success. If we see that the page does
** not contain a well-formed database page, then return
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed. It only shows that
** we failed to detect any corruption.
*/
-static int initPage(
- MemPage *pPage, /* The page to be initialized */
- MemPage *pParent /* The parent. Might be NULL */
-){
- int pc; /* Address of a freeblock within pPage->aData[] */
- int hdr; /* Offset to beginning of page header */
- u8 *data; /* Equal to pPage->aData */
- BtShared *pBt; /* The main btree structure */
- int usableSize; /* Amount of usable space on each page */
- int cellOffset; /* Offset from start of page to first cell pointer */
- int nFree; /* Number of unused bytes on the page */
- int top; /* First byte of the cell content area */
+static int btreeInitPage(MemPage *pPage){
- pBt = pPage->pBt;
- assert( pBt!=0 );
- assert( pParent==0 || pParent->pBt==pBt );
+ assert( pPage->pBt!=0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
- assert( pPage->aData == &((unsigned char*)pPage)[-pBt->pageSize] );
- if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
- /* The parent page should never change unless the file is corrupt */
- return SQLITE_CORRUPT_BKPT;
- }
- if( pPage->isInit ) return SQLITE_OK;
- if( pPage->pParent==0 && pParent!=0 ){
- pPage->pParent = pParent;
- sqlite3PagerRef(pParent->pDbPage);
- }
- hdr = pPage->hdrOffset;
- data = pPage->aData;
- decodeFlags(pPage, data[hdr]);
- pPage->nOverflow = 0;
- pPage->idxShift = 0;
- usableSize = pBt->usableSize;
- pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
- top = get2byte(&data[hdr+5]);
- pPage->nCell = get2byte(&data[hdr+3]);
- if( pPage->nCell>MX_CELL(pBt) ){
- /* To many cells for a single page. The page must be corrupt */
- return SQLITE_CORRUPT_BKPT;
- }
- if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
- /* All pages must have at least one cell, except for root pages */
- return SQLITE_CORRUPT_BKPT;
- }
+ assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
+ assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
+
+ if( !pPage->isInit ){
+ u16 pc; /* Address of a freeblock within pPage->aData[] */
+ u8 hdr; /* Offset to beginning of page header */
+ u8 *data; /* Equal to pPage->aData */
+ BtShared *pBt; /* The main btree structure */
+ u16 usableSize; /* Amount of usable space on each page */
+ u16 cellOffset; /* Offset from start of page to first cell pointer */
+ u16 nFree; /* Number of unused bytes on the page */
+ u16 top; /* First byte of the cell content area */
+ int iCellFirst; /* First allowable cell or freeblock offset */
+ int iCellLast; /* Last possible cell or freeblock offset */
+
+ pBt = pPage->pBt;
- /* Compute the total free space on the page */
- pc = get2byte(&data[hdr+1]);
- nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
- while( pc>0 ){
- int next, size;
- if( pc>usableSize-4 ){
- /* Free block is off the page */
- return SQLITE_CORRUPT_BKPT;
+ hdr = pPage->hdrOffset;
+ data = pPage->aData;
+ if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
+ assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
+ pPage->maskPage = pBt->pageSize - 1;
+ pPage->nOverflow = 0;
+ usableSize = pBt->usableSize;
+ pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
+ top = get2byte(&data[hdr+5]);
+ pPage->nCell = get2byte(&data[hdr+3]);
+ if( pPage->nCell>MX_CELL(pBt) ){
+ /* To many cells for a single page. The page must be corrupt */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ testcase( pPage->nCell==MX_CELL(pBt) );
+
+ /* A malformed database page might cause us to read past the end
+ ** of page when parsing a cell.
+ **
+ ** The following block of code checks early to see if a cell extends
+ ** past the end of a page boundary and causes SQLITE_CORRUPT to be
+ ** returned if it does.
+ */
+ iCellFirst = cellOffset + 2*pPage->nCell;
+ iCellLast = usableSize - 4;
+#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
+ {
+ int i; /* Index into the cell pointer array */
+ int sz; /* Size of a cell */
+
+ if( !pPage->leaf ) iCellLast--;
+ for(i=0; i<pPage->nCell; i++){
+ pc = get2byte(&data[cellOffset+i*2]);
+ testcase( pc==iCellFirst );
+ testcase( pc==iCellLast );
+ if( pc<iCellFirst || pc>iCellLast ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ sz = cellSizePtr(pPage, &data[pc]);
+ testcase( pc+sz==usableSize );
+ if( pc+sz>usableSize ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+ if( !pPage->leaf ) iCellLast++;
}
- next = get2byte(&data[pc]);
- size = get2byte(&data[pc+2]);
- if( next>0 && next<=pc+size+3 ){
- /* Free blocks must be in accending order */
+#endif
+
+ /* Compute the total free space on the page */
+ pc = get2byte(&data[hdr+1]);
+ nFree = data[hdr+7] + top;
+ while( pc>0 ){
+ u16 next, size;
+ if( pc<iCellFirst || pc>iCellLast ){
+ /* Start of free block is off the page */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ next = get2byte(&data[pc]);
+ size = get2byte(&data[pc+2]);
+ if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
+ /* Free blocks must be in ascending order. And the last byte of
+ ** the free-block must lie on the database page. */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ nFree = nFree + size;
+ pc = next;
+ }
+
+ /* At this point, nFree contains the sum of the offset to the start
+ ** of the cell-content area plus the number of free bytes within
+ ** the cell-content area. If this is greater than the usable-size
+ ** of the page, then the page must be corrupted. This check also
+ ** serves to verify that the offset to the start of the cell-content
+ ** area, according to the page header, lies within the page.
+ */
+ if( nFree>usableSize ){
return SQLITE_CORRUPT_BKPT;
}
- nFree += size;
- pc = next;
- }
- pPage->nFree = nFree;
- if( nFree>=usableSize ){
- /* Free space cannot exceed total page size */
- return SQLITE_CORRUPT_BKPT;
+ pPage->nFree = (u16)(nFree - iCellFirst);
+ pPage->isInit = 1;
}
-
- pPage->isInit = 1;
return SQLITE_OK;
}
@@ -22455,15 +39001,17 @@ static int initPage(
static void zeroPage(MemPage *pPage, int flags){
unsigned char *data = pPage->aData;
BtShared *pBt = pPage->pBt;
- int hdr = pPage->hdrOffset;
- int first;
+ u8 hdr = pPage->hdrOffset;
+ u16 first;
assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
- assert( &data[pBt->pageSize] == (unsigned char*)pPage );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage) == data );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- memset(&data[hdr], 0, pBt->usableSize - hdr);
- data[hdr] = flags;
- first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
+ data[hdr] = (char)flags;
+ first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
memset(&data[hdr+1], 0, 4);
data[hdr+7] = 0;
put2byte(&data[hdr+5], pBt->usableSize);
@@ -22472,11 +39020,27 @@ static void zeroPage(MemPage *pPage, int flags){
pPage->hdrOffset = hdr;
pPage->cellOffset = first;
pPage->nOverflow = 0;
- pPage->idxShift = 0;
+ assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
+ pPage->maskPage = pBt->pageSize - 1;
pPage->nCell = 0;
pPage->isInit = 1;
}
+
+/*
+** Convert a DbPage obtained from the pager into a MemPage used by
+** the btree layer.
+*/
+static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
+ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
+ pPage->aData = sqlite3PagerGetData(pDbPage);
+ pPage->pDbPage = pDbPage;
+ pPage->pBt = pBt;
+ pPage->pgno = pgno;
+ pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
+ return pPage;
+}
+
/*
** Get a page from the pager. Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
@@ -22488,76 +39052,103 @@ static void zeroPage(MemPage *pPage, int flags){
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
-static int getPage(BtShared *pBt, Pgno pgno, MemPage **ppPage, int noContent){
+static int btreeGetPage(
+ BtShared *pBt, /* The btree */
+ Pgno pgno, /* Number of the page to fetch */
+ MemPage **ppPage, /* Return the page in this parameter */
+ int noContent /* Do not load page content if true */
+){
int rc;
- MemPage *pPage;
DbPage *pDbPage;
+ assert( sqlite3_mutex_held(pBt->mutex) );
rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
if( rc ) return rc;
- pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
- pPage->aData = sqlite3PagerGetData(pDbPage);
- pPage->pDbPage = pDbPage;
- pPage->pBt = pBt;
- pPage->pgno = pgno;
- pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
- *ppPage = pPage;
+ *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
return SQLITE_OK;
}
/*
-** Get a page from the pager and initialize it. This routine
-** is just a convenience wrapper around separate calls to
-** getPage() and initPage().
+** Retrieve a page from the pager cache. If the requested page is not
+** already in the pager cache return NULL. Initialize the MemPage.pBt and
+** MemPage.aData elements if needed.
+*/
+static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
+ DbPage *pDbPage;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
+ if( pDbPage ){
+ return btreePageFromDbPage(pDbPage, pgno, pBt);
+ }
+ return 0;
+}
+
+/*
+** Return the size of the database file in pages. If there is any kind of
+** error, return ((unsigned int)-1).
+*/
+static Pgno pagerPagecount(BtShared *pBt){
+ int nPage = -1;
+ int rc;
+ assert( pBt->pPage1 );
+ rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
+ assert( rc==SQLITE_OK || nPage==-1 );
+ return (Pgno)nPage;
+}
+
+/*
+** Get a page from the pager and initialize it. This routine is just a
+** convenience wrapper around separate calls to btreeGetPage() and
+** btreeInitPage().
+**
+** If an error occurs, then the value *ppPage is set to is undefined. It
+** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
BtShared *pBt, /* The database file */
Pgno pgno, /* Number of the page to get */
- MemPage **ppPage, /* Write the page pointer here */
- MemPage *pParent /* Parent of the page */
+ MemPage **ppPage /* Write the page pointer here */
){
int rc;
- if( pgno==0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- rc = getPage(pBt, pgno, ppPage, 0);
- if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
- rc = initPage(*ppPage, pParent);
+ TESTONLY( Pgno iLastPg = pagerPagecount(pBt); )
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
+ rc = btreeGetPage(pBt, pgno, ppPage, 0);
+ if( rc==SQLITE_OK ){
+ rc = btreeInitPage(*ppPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(*ppPage);
+ }
}
+
+ /* If the requested page number was either 0 or greater than the page
+ ** number of the last page in the database, this function should return
+ ** SQLITE_CORRUPT or some other error (i.e. SQLITE_FULL). Check that this
+ ** is the case. */
+ assert( (pgno>0 && pgno<=iLastPg) || rc!=SQLITE_OK );
+ testcase( pgno==0 );
+ testcase( pgno==iLastPg );
+
return rc;
}
/*
** Release a MemPage. This should be called once for each prior
-** call to getPage.
+** call to btreeGetPage.
*/
static void releasePage(MemPage *pPage){
if( pPage ){
+ assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
assert( pPage->aData );
assert( pPage->pBt );
- assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
sqlite3PagerUnref(pPage->pDbPage);
}
}
/*
-** This routine is called when the reference count for a page
-** reaches zero. We need to unref the pParent pointer when that
-** happens.
-*/
-static void pageDestructor(DbPage *pData, int pageSize){
- MemPage *pPage;
- assert( (pageSize & 7)==0 );
- pPage = (MemPage *)sqlite3PagerGetExtra(pData);
- if( pPage->pParent ){
- MemPage *pParent = pPage->pParent;
- pPage->pParent = 0;
- releasePage(pParent);
- }
- pPage->isInit = 0;
-}
-
-/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
@@ -22565,37 +39156,64 @@ static void pageDestructor(DbPage *pData, int pageSize){
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
-static void pageReinit(DbPage *pData, int pageSize){
+static void pageReinit(DbPage *pData){
MemPage *pPage;
- assert( (pageSize & 7)==0 );
pPage = (MemPage *)sqlite3PagerGetExtra(pData);
+ assert( sqlite3PagerPageRefcount(pData)>0 );
if( pPage->isInit ){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
pPage->isInit = 0;
- initPage(pPage, pPage->pParent);
+ if( sqlite3PagerPageRefcount(pData)>1 ){
+ /* pPage might not be a btree page; it might be an overflow page
+ ** or ptrmap page or a free page. In those cases, the following
+ ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
+ ** But no harm is done by this. And it is very important that
+ ** btreeInitPage() be called on every btree page so we make
+ ** the call for every page that comes in for re-initing. */
+ btreeInitPage(pPage);
+ }
}
}
/*
+** Invoke the busy handler for a btree.
+*/
+static int btreeInvokeBusyHandler(void *pArg){
+ BtShared *pBt = (BtShared*)pArg;
+ assert( pBt->db );
+ assert( sqlite3_mutex_held(pBt->db->mutex) );
+ return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
+}
+
+/*
** Open a database file.
**
** zFilename is the name of the database file. If zFilename is NULL
** a new database with a random name is created. This randomly named
** database file will be deleted when sqlite3BtreeClose() is called.
+** If zFilename is ":memory:" then an in-memory database is created
+** that is automatically destroyed when it is closed.
+**
+** If the database is already opened in the same database connection
+** and we are in shared cache mode, then the open will fail with an
+** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
+** objects in the same database connection since doing so will lead
+** to problems with locking.
*/
-int sqlite3BtreeOpen(
+SQLITE_PRIVATE int sqlite3BtreeOpen(
const char *zFilename, /* Name of the file containing the BTree database */
- sqlite3 *pSqlite, /* Associated database handle */
+ sqlite3 *db, /* Associated database handle */
Btree **ppBtree, /* Pointer to new Btree object written here */
- int flags /* Options */
+ int flags, /* Options */
+ int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
){
- BtShared *pBt; /* Shared part of btree structure */
- Btree *p; /* Handle to return */
- int rc;
- int nReserve;
- unsigned char zDbHeader[100];
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- const ThreadData *pTsdro;
-#endif
+ sqlite3_vfs *pVfs; /* The VFS to use for this btree */
+ BtShared *pBt = 0; /* Shared part of btree structure */
+ Btree *p; /* Handle to return */
+ sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
+ int rc = SQLITE_OK; /* Result code from this function */
+ u8 nReserve; /* Byte of unused space on each page */
+ unsigned char zDbHeader[100]; /* Database header content */
/* Set the variable isMemdb to true for an in-memory database, or
** false for a file-based database. This symbol is only required if
@@ -22610,134 +39228,278 @@ int sqlite3BtreeOpen(
#endif
#endif
- p = sqliteMalloc(sizeof(Btree));
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ pVfs = db->pVfs;
+ p = sqlite3MallocZero(sizeof(Btree));
if( !p ){
return SQLITE_NOMEM;
}
p->inTrans = TRANS_NONE;
- p->pSqlite = pSqlite;
+ p->db = db;
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ p->lock.pBtree = p;
+ p->lock.iTable = 1;
+#endif
- /* Try to find an existing Btree structure opened on zFilename. */
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- pTsdro = sqlite3ThreadDataReadOnly();
- if( pTsdro->useSharedData && zFilename && !isMemdb ){
- char *zFullPathname = sqlite3OsFullPathname(zFilename);
- if( !zFullPathname ){
- sqliteFree(p);
- return SQLITE_NOMEM;
- }
- for(pBt=pTsdro->pBtree; pBt; pBt=pBt->pNext){
- assert( pBt->nRef>0 );
- if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager)) ){
- p->pBt = pBt;
- *ppBtree = p;
- pBt->nRef++;
- sqliteFree(zFullPathname);
- return SQLITE_OK;
+ /*
+ ** If this Btree is a candidate for shared cache, try to find an
+ ** existing BtShared object that we can share with
+ */
+ if( isMemdb==0 && zFilename && zFilename[0] ){
+ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
+ int nFullPathname = pVfs->mxPathname+1;
+ char *zFullPathname = sqlite3Malloc(nFullPathname);
+ sqlite3_mutex *mutexShared;
+ p->sharable = 1;
+ if( !zFullPathname ){
+ sqlite3_free(p);
+ return SQLITE_NOMEM;
}
+ sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
+ mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
+ sqlite3_mutex_enter(mutexOpen);
+ mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex_enter(mutexShared);
+ for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
+ assert( pBt->nRef>0 );
+ if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
+ && sqlite3PagerVfs(pBt->pPager)==pVfs ){
+ int iDb;
+ for(iDb=db->nDb-1; iDb>=0; iDb--){
+ Btree *pExisting = db->aDb[iDb].pBt;
+ if( pExisting && pExisting->pBt==pBt ){
+ sqlite3_mutex_leave(mutexShared);
+ sqlite3_mutex_leave(mutexOpen);
+ sqlite3_free(zFullPathname);
+ sqlite3_free(p);
+ return SQLITE_CONSTRAINT;
+ }
+ }
+ p->pBt = pBt;
+ pBt->nRef++;
+ break;
+ }
+ }
+ sqlite3_mutex_leave(mutexShared);
+ sqlite3_free(zFullPathname);
+ }
+#ifdef SQLITE_DEBUG
+ else{
+ /* In debug mode, we mark all persistent databases as sharable
+ ** even when they are not. This exercises the locking code and
+ ** gives more opportunity for asserts(sqlite3_mutex_held())
+ ** statements to find locking problems.
+ */
+ p->sharable = 1;
}
- sqliteFree(zFullPathname);
+#endif
}
#endif
-
- /*
- ** The following asserts make sure that structures used by the btree are
- ** the right size. This is to guard against size changes that result
- ** when compiling on a different architecture.
- */
- assert( sizeof(i64)==8 || sizeof(i64)==4 );
- assert( sizeof(u64)==8 || sizeof(u64)==4 );
- assert( sizeof(u32)==4 );
- assert( sizeof(u16)==2 );
- assert( sizeof(Pgno)==4 );
-
- pBt = sqliteMalloc( sizeof(*pBt) );
if( pBt==0 ){
- *ppBtree = 0;
- sqliteFree(p);
- return SQLITE_NOMEM;
- }
- rc = sqlite3PagerOpen(&pBt->pPager, zFilename, EXTRA_SIZE, flags);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
- }
- if( rc!=SQLITE_OK ){
- if( pBt->pPager ){
- sqlite3PagerClose(pBt->pPager);
+ /*
+ ** The following asserts make sure that structures used by the btree are
+ ** the right size. This is to guard against size changes that result
+ ** when compiling on a different architecture.
+ */
+ assert( sizeof(i64)==8 || sizeof(i64)==4 );
+ assert( sizeof(u64)==8 || sizeof(u64)==4 );
+ assert( sizeof(u32)==4 );
+ assert( sizeof(u16)==2 );
+ assert( sizeof(Pgno)==4 );
+
+ pBt = sqlite3MallocZero( sizeof(*pBt) );
+ if( pBt==0 ){
+ rc = SQLITE_NOMEM;
+ goto btree_open_out;
}
- sqliteFree(pBt);
- sqliteFree(p);
- *ppBtree = 0;
- return rc;
- }
- p->pBt = pBt;
+ rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
+ EXTRA_SIZE, flags, vfsFlags, pageReinit);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
+ }
+ if( rc!=SQLITE_OK ){
+ goto btree_open_out;
+ }
+ pBt->db = db;
+ sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
+ p->pBt = pBt;
- sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
- sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
- pBt->pCursor = 0;
- pBt->pPage1 = 0;
- pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
- pBt->pageSize = get2byte(&zDbHeader[16]);
- if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
- || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
- pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE;
- pBt->maxEmbedFrac = 64; /* 25% */
- pBt->minEmbedFrac = 32; /* 12.5% */
- pBt->minLeafFrac = 32; /* 12.5% */
+ pBt->pCursor = 0;
+ pBt->pPage1 = 0;
+ pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
+ pBt->pageSize = get2byte(&zDbHeader[16]);
+ if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
+ || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
+ pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If the magic name ":memory:" will create an in-memory database, then
- ** do not set the auto-vacuum flag, even if SQLITE_DEFAULT_AUTOVACUUM
- ** is true. On the other hand, if SQLITE_OMIT_MEMORYDB has been defined,
- ** then ":memory:" is just a regular file-name. Respect the auto-vacuum
- ** default in this case.
- */
- if( zFilename && !isMemdb ){
- pBt->autoVacuum = SQLITE_DEFAULT_AUTOVACUUM;
- }
+ /* If the magic name ":memory:" will create an in-memory database, then
+ ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
+ ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
+ ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
+ ** regular file-name. In this case the auto-vacuum applies as per normal.
+ */
+ if( zFilename && !isMemdb ){
+ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
+ pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
+ }
#endif
- nReserve = 0;
- }else{
- nReserve = zDbHeader[20];
- pBt->maxEmbedFrac = zDbHeader[21];
- pBt->minEmbedFrac = zDbHeader[22];
- pBt->minLeafFrac = zDbHeader[23];
- pBt->pageSizeFixed = 1;
+ nReserve = 0;
+ }else{
+ nReserve = zDbHeader[20];
+ pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
- pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
+ pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
+ pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
+#endif
+ }
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
+ if( rc ) goto btree_open_out;
+ pBt->usableSize = pBt->pageSize - nReserve;
+ assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /* Add the new BtShared object to the linked list sharable BtShareds.
+ */
+ if( p->sharable ){
+ sqlite3_mutex *mutexShared;
+ pBt->nRef = 1;
+ mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+ if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
+ pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
+ if( pBt->mutex==0 ){
+ rc = SQLITE_NOMEM;
+ db->mallocFailed = 0;
+ goto btree_open_out;
+ }
+ }
+ sqlite3_mutex_enter(mutexShared);
+ pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
+ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
+ sqlite3_mutex_leave(mutexShared);
+ }
#endif
}
- pBt->usableSize = pBt->pageSize - nReserve;
- assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
- sqlite3PagerSetPagesize(pBt->pPager, pBt->pageSize);
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- /* Add the new btree to the linked list starting at ThreadData.pBtree.
- ** There is no chance that a malloc() may fail inside of the
- ** sqlite3ThreadData() call, as the ThreadData structure must have already
- ** been allocated for pTsdro->useSharedData to be non-zero.
+ /* If the new Btree uses a sharable pBtShared, then link the new
+ ** Btree into the list of all sharable Btrees for the same connection.
+ ** The list is kept in ascending order by pBt address.
*/
- if( pTsdro->useSharedData && zFilename && !isMemdb ){
- pBt->pNext = pTsdro->pBtree;
- sqlite3ThreadData()->pBtree = pBt;
+ if( p->sharable ){
+ int i;
+ Btree *pSib;
+ for(i=0; i<db->nDb; i++){
+ if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
+ while( pSib->pPrev ){ pSib = pSib->pPrev; }
+ if( p->pBt<pSib->pBt ){
+ p->pNext = pSib;
+ p->pPrev = 0;
+ pSib->pPrev = p;
+ }else{
+ while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
+ pSib = pSib->pNext;
+ }
+ p->pNext = pSib->pNext;
+ p->pPrev = pSib;
+ if( p->pNext ){
+ p->pNext->pPrev = p;
+ }
+ pSib->pNext = p;
+ }
+ break;
+ }
+ }
}
#endif
- pBt->nRef = 1;
*ppBtree = p;
- return SQLITE_OK;
+
+btree_open_out:
+ if( rc!=SQLITE_OK ){
+ if( pBt && pBt->pPager ){
+ sqlite3PagerClose(pBt->pPager);
+ }
+ sqlite3_free(pBt);
+ sqlite3_free(p);
+ *ppBtree = 0;
+ }
+ if( mutexOpen ){
+ assert( sqlite3_mutex_held(mutexOpen) );
+ sqlite3_mutex_leave(mutexOpen);
+ }
+ return rc;
+}
+
+/*
+** Decrement the BtShared.nRef counter. When it reaches zero,
+** remove the BtShared structure from the sharing list. Return
+** true if the BtShared.nRef counter reaches zero and return
+** false if it is still positive.
+*/
+static int removeFromSharingList(BtShared *pBt){
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ sqlite3_mutex *pMaster;
+ BtShared *pList;
+ int removed = 0;
+
+ assert( sqlite3_mutex_notheld(pBt->mutex) );
+ pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex_enter(pMaster);
+ pBt->nRef--;
+ if( pBt->nRef<=0 ){
+ if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
+ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
+ }else{
+ pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
+ while( ALWAYS(pList) && pList->pNext!=pBt ){
+ pList=pList->pNext;
+ }
+ if( ALWAYS(pList) ){
+ pList->pNext = pBt->pNext;
+ }
+ }
+ if( SQLITE_THREADSAFE ){
+ sqlite3_mutex_free(pBt->mutex);
+ }
+ removed = 1;
+ }
+ sqlite3_mutex_leave(pMaster);
+ return removed;
+#else
+ return 1;
+#endif
+}
+
+/*
+** Make sure pBt->pTmpSpace points to an allocation of
+** MX_CELL_SIZE(pBt) bytes.
+*/
+static void allocateTempSpace(BtShared *pBt){
+ if( !pBt->pTmpSpace ){
+ pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
+ }
+}
+
+/*
+** Free the pBt->pTmpSpace allocation
+*/
+static void freeTempSpace(BtShared *pBt){
+ sqlite3PageFree( pBt->pTmpSpace);
+ pBt->pTmpSpace = 0;
}
/*
** Close an open database and invalidate all cursors.
*/
-int sqlite3BtreeClose(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
BtShared *pBt = p->pBt;
BtCursor *pCur;
-#ifndef SQLITE_OMIT_SHARED_CACHE
- ThreadData *pTsd;
-#endif
-
/* Close all cursors opened via this handle. */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
pCur = pBt->pCursor;
while( pCur ){
BtCursor *pTmp = pCur;
@@ -22752,55 +39514,37 @@ int sqlite3BtreeClose(Btree *p){
** this handle.
*/
sqlite3BtreeRollback(p);
- sqliteFree(p);
+ sqlite3BtreeLeave(p);
-#ifndef SQLITE_OMIT_SHARED_CACHE
/* If there are still other outstanding references to the shared-btree
** structure, return now. The remainder of this procedure cleans
** up the shared-btree.
*/
- assert( pBt->nRef>0 );
- pBt->nRef--;
- if( pBt->nRef ){
- return SQLITE_OK;
- }
-
- /* Remove the shared-btree from the thread wide list. Call
- ** ThreadDataReadOnly() and then cast away the const property of the
- ** pointer to avoid allocating thread data if it is not really required.
- */
- pTsd = (ThreadData *)sqlite3ThreadDataReadOnly();
- if( pTsd->pBtree==pBt ){
- assert( pTsd==sqlite3ThreadData() );
- pTsd->pBtree = pBt->pNext;
- }else{
- BtShared *pPrev;
- for(pPrev=pTsd->pBtree; pPrev && pPrev->pNext!=pBt; pPrev=pPrev->pNext){}
- if( pPrev ){
- assert( pTsd==sqlite3ThreadData() );
- pPrev->pNext = pBt->pNext;
+ assert( p->wantToLock==0 && p->locked==0 );
+ if( !p->sharable || removeFromSharingList(pBt) ){
+ /* The pBt is no longer on the sharing list, so we can access
+ ** it without having to hold the mutex.
+ **
+ ** Clean out and delete the BtShared object.
+ */
+ assert( !pBt->pCursor );
+ sqlite3PagerClose(pBt->pPager);
+ if( pBt->xFreeSchema && pBt->pSchema ){
+ pBt->xFreeSchema(pBt->pSchema);
}
+ sqlite3_free(pBt->pSchema);
+ freeTempSpace(pBt);
+ sqlite3_free(pBt);
}
-#endif
- /* Close the pager and free the shared-btree structure */
- assert( !pBt->pCursor );
- sqlite3PagerClose(pBt->pPager);
- if( pBt->xFreeSchema && pBt->pSchema ){
- pBt->xFreeSchema(pBt->pSchema);
- }
- sqliteFree(pBt->pSchema);
- sqliteFree(pBt);
- return SQLITE_OK;
-}
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ assert( p->wantToLock==0 );
+ assert( p->locked==0 );
+ if( p->pPrev ) p->pPrev->pNext = p->pNext;
+ if( p->pNext ) p->pNext->pPrev = p->pPrev;
+#endif
-/*
-** Change the busy handler callback function.
-*/
-int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
- BtShared *pBt = p->pBt;
- pBt->pBusyHandler = pHandler;
- sqlite3PagerSetBusyhandler(pBt->pPager, pHandler);
+ sqlite3_free(p);
return SQLITE_OK;
}
@@ -22819,9 +39563,12 @@ int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
-int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
sqlite3PagerSetCachesize(pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
return SQLITE_OK;
}
@@ -22834,9 +39581,12 @@ int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
+SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
+ sqlite3BtreeLeave(p);
return SQLITE_OK;
}
#endif
@@ -22845,15 +39595,22 @@ int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
** Return TRUE if the given btree is set to safety level 1. In other
** words, return TRUE if no sync() occurs on the disk files.
*/
-int sqlite3BtreeSyncDisabled(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){
BtShared *pBt = p->pBt;
+ int rc;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
assert( pBt && pBt->pPager );
- return sqlite3PagerNosync(pBt->pPager);
+ rc = sqlite3PagerNosync(pBt->pPager);
+ sqlite3BtreeLeave(p);
+ return rc;
}
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
/*
** Change the default pages size and the number of reserved bytes per page.
+** Or, if the page size has already been fixed, return SQLITE_READONLY
+** without changing anything.
**
** The page size must be a power of 2 between 512 and 65536. If the page
** size supplied does not meet this constraint then the page size is not
@@ -22866,33 +39623,68 @@ int sqlite3BtreeSyncDisabled(Btree *p){
**
** If parameter nReserve is less than zero, then the number of reserved
** bytes per page is left unchanged.
+**
+** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
+** and autovacuum mode can no longer be changed.
*/
-int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
+ int rc = SQLITE_OK;
BtShared *pBt = p->pBt;
+ assert( nReserve>=-1 && nReserve<=255 );
+ sqlite3BtreeEnter(p);
if( pBt->pageSizeFixed ){
+ sqlite3BtreeLeave(p);
return SQLITE_READONLY;
}
if( nReserve<0 ){
nReserve = pBt->pageSize - pBt->usableSize;
}
+ assert( nReserve>=0 && nReserve<=255 );
if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
((pageSize-1)&pageSize)==0 ){
assert( (pageSize & 7)==0 );
assert( !pBt->pPage1 && !pBt->pCursor );
- pBt->pageSize = sqlite3PagerSetPagesize(pBt->pPager, pageSize);
+ pBt->pageSize = (u16)pageSize;
+ freeTempSpace(pBt);
}
- pBt->usableSize = pBt->pageSize - nReserve;
- return SQLITE_OK;
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
+ pBt->usableSize = pBt->pageSize - (u16)nReserve;
+ if( iFix ) pBt->pageSizeFixed = 1;
+ sqlite3BtreeLeave(p);
+ return rc;
}
/*
** Return the currently defined page size
*/
-int sqlite3BtreeGetPageSize(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
return p->pBt->pageSize;
}
-int sqlite3BtreeGetReserve(Btree *p){
- return p->pBt->pageSize - p->pBt->usableSize;
+
+/*
+** Return the number of bytes of space at the end of every page that
+** are intentually left unused. This is the "reserved" space that is
+** sometimes used by extensions.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){
+ int n;
+ sqlite3BtreeEnter(p);
+ n = p->pBt->pageSize - p->pBt->usableSize;
+ sqlite3BtreeLeave(p);
+ return n;
+}
+
+/*
+** Set the maximum page count for a database if mxPage is positive.
+** No changes are made if mxPage is 0 or negative.
+** Regardless of the value of mxPage, return the maximum page count.
+*/
+SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
+ int n;
+ sqlite3BtreeEnter(p);
+ n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return n;
}
#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
@@ -22902,16 +39694,23 @@ int sqlite3BtreeGetReserve(Btree *p){
** is disabled. The default value for the auto-vacuum property is
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
-int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
- BtShared *pBt = p->pBt;;
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
#ifdef SQLITE_OMIT_AUTOVACUUM
return SQLITE_READONLY;
#else
- if( pBt->pageSizeFixed ){
- return SQLITE_READONLY;
+ BtShared *pBt = p->pBt;
+ int rc = SQLITE_OK;
+ u8 av = (u8)autoVacuum;
+
+ sqlite3BtreeEnter(p);
+ if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
+ rc = SQLITE_READONLY;
+ }else{
+ pBt->autoVacuum = av ?1:0;
+ pBt->incrVacuum = av==2 ?1:0;
}
- pBt->autoVacuum = (autoVacuum?1:0);
- return SQLITE_OK;
+ sqlite3BtreeLeave(p);
+ return rc;
#endif
}
@@ -22919,11 +39718,19 @@ int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
** Return the value of the 'auto-vacuum' property. If auto-vacuum is
** enabled 1 is returned. Otherwise 0.
*/
-int sqlite3BtreeGetAutoVacuum(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
#ifdef SQLITE_OMIT_AUTOVACUUM
- return 0;
+ return BTREE_AUTOVACUUM_NONE;
#else
- return p->pBt->autoVacuum;
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = (
+ (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
+ (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
+ BTREE_AUTOVACUUM_INCR
+ );
+ sqlite3BtreeLeave(p);
+ return rc;
#endif
}
@@ -22938,40 +39745,77 @@ int sqlite3BtreeGetAutoVacuum(Btree *p){
** is returned if we run out of memory.
*/
static int lockBtree(BtShared *pBt){
- int rc, pageSize;
+ int rc;
MemPage *pPage1;
- if( pBt->pPage1 ) return SQLITE_OK;
- rc = getPage(pBt, 1, &pPage1, 0);
+ int nPage;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pBt->pPage1==0 );
+ rc = sqlite3PagerSharedLock(pBt->pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = btreeGetPage(pBt, 1, &pPage1, 0);
if( rc!=SQLITE_OK ) return rc;
-
/* Do some checking to help insure the file we opened really is
** a valid database file.
*/
- rc = SQLITE_NOTADB;
- if( sqlite3PagerPagecount(pBt->pPager)>0 ){
+ rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
+ if( rc!=SQLITE_OK ){
+ goto page1_init_failed;
+ }else if( nPage>0 ){
+ int pageSize;
+ int usableSize;
u8 *page1 = pPage1->aData;
+ rc = SQLITE_NOTADB;
if( memcmp(page1, zMagicHeader, 16)!=0 ){
goto page1_init_failed;
}
- if( page1[18]>1 || page1[19]>1 ){
+ if( page1[18]>1 ){
+ pBt->readOnly = 1;
+ }
+ if( page1[19]>1 ){
+ goto page1_init_failed;
+ }
+
+ /* The maximum embedded fraction must be exactly 25%. And the minimum
+ ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
+ ** The original design allowed these amounts to vary, but as of
+ ** version 3.6.0, we require them to be fixed.
+ */
+ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
goto page1_init_failed;
}
pageSize = get2byte(&page1[16]);
- if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ){
+ if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
+ (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
+ ){
goto page1_init_failed;
}
assert( (pageSize & 7)==0 );
- pBt->pageSize = pageSize;
- pBt->usableSize = pageSize - page1[20];
- if( pBt->usableSize<500 ){
+ usableSize = pageSize - page1[20];
+ if( pageSize!=pBt->pageSize ){
+ /* After reading the first page of the database assuming a page size
+ ** of BtShared.pageSize, we have discovered that the page-size is
+ ** actually pageSize. Unlock the database, leave pBt->pPage1 at
+ ** zero and return SQLITE_OK. The caller will call this function
+ ** again with the correct page-size.
+ */
+ releasePage(pPage1);
+ pBt->usableSize = (u16)usableSize;
+ pBt->pageSize = (u16)pageSize;
+ freeTempSpace(pBt);
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
+ pageSize-usableSize);
+ return rc;
+ }
+ if( usableSize<480 ){
goto page1_init_failed;
}
- pBt->maxEmbedFrac = page1[21];
- pBt->minEmbedFrac = page1[22];
- pBt->minLeafFrac = page1[23];
+ pBt->pageSize = (u16)pageSize;
+ pBt->usableSize = (u16)usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
+ pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
#endif
}
@@ -22988,13 +39832,10 @@ static int lockBtree(BtShared *pBt){
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
** page pointer.
*/
- pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
- pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
+ pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
+ pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
pBt->maxLeaf = pBt->usableSize - 35;
- pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
- if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
- goto page1_init_failed;
- }
+ pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
pBt->pPage1 = pPage1;
return SQLITE_OK;
@@ -23006,61 +39847,44 @@ page1_init_failed:
}
/*
-** This routine works like lockBtree() except that it also invokes the
-** busy callback if there is lock contention.
-*/
-static int lockBtreeWithRetry(Btree *pRef){
- int rc = SQLITE_OK;
- if( pRef->inTrans==TRANS_NONE ){
- u8 inTransaction = pRef->pBt->inTransaction;
- btreeIntegrity(pRef);
- rc = sqlite3BtreeBeginTrans(pRef, 0);
- pRef->pBt->inTransaction = inTransaction;
- pRef->inTrans = TRANS_NONE;
- if( rc==SQLITE_OK ){
- pRef->pBt->nTransaction--;
- }
- btreeIntegrity(pRef);
- }
- return rc;
-}
-
-
-/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which
** has the effect of releasing the read lock.
**
-** If there are any outstanding cursors, this routine is a no-op.
-**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(BtShared *pBt){
- if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
- if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
- if( pBt->pPage1->aData==0 ){
- MemPage *pPage = pBt->pPage1;
- pPage->aData = &((u8*)pPage)[-pBt->pageSize];
- pPage->pBt = pBt;
- pPage->pgno = 1;
- }
- releasePage(pBt->pPage1);
- }
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
+ if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
+ assert( pBt->pPage1->aData );
+ assert( sqlite3PagerRefcount(pBt->pPager)==1 );
+ assert( pBt->pPage1->aData );
+ releasePage(pBt->pPage1);
pBt->pPage1 = 0;
- pBt->inStmt = 0;
}
}
/*
-** Create a new database by initializing the first page of the
-** file.
+** If pBt points to an empty file then convert that empty file
+** into a new empty database by initializing the first page of
+** the database.
*/
static int newDatabase(BtShared *pBt){
MemPage *pP1;
unsigned char *data;
int rc;
- if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
+ int nPage;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ /* The database size has already been measured and cached, so failure
+ ** is impossible here. If the original size measurement failed, then
+ ** processing aborts before entering this routine. */
+ rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
+ if( NEVER(rc!=SQLITE_OK) || nPage>0 ){
+ return rc;
+ }
pP1 = pBt->pPage1;
assert( pP1!=0 );
data = pP1->aData;
@@ -23071,17 +39895,19 @@ static int newDatabase(BtShared *pBt){
put2byte(&data[16], pBt->pageSize);
data[18] = 1;
data[19] = 1;
- data[20] = pBt->pageSize - pBt->usableSize;
- data[21] = pBt->maxEmbedFrac;
- data[22] = pBt->minEmbedFrac;
- data[23] = pBt->minLeafFrac;
+ assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
+ data[20] = (u8)(pBt->pageSize - pBt->usableSize);
+ data[21] = 64;
+ data[22] = 32;
+ data[23] = 32;
memset(&data[24], 0, 100-24);
zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- put4byte(&data[36 + 4*4], 1);
- }
+ assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
+ assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
+ put4byte(&data[36 + 4*4], pBt->autoVacuum);
+ put4byte(&data[36 + 7*4], pBt->incrVacuum);
#endif
return SQLITE_OK;
}
@@ -23121,10 +39947,12 @@ static int newDatabase(BtShared *pBt){
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
-int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
+ sqlite3 *pBlock = 0;
BtShared *pBt = p->pBt;
int rc = SQLITE_OK;
+ sqlite3BtreeEnter(p);
btreeIntegrity(p);
/* If the btree is already in a write-transaction, or it
@@ -23132,53 +39960,108 @@ int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
** is requested, this is a no-op.
*/
if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
- return SQLITE_OK;
+ goto trans_begun;
}
/* Write transactions are not possible on a read-only database */
if( pBt->readOnly && wrflag ){
- return SQLITE_READONLY;
+ rc = SQLITE_READONLY;
+ goto trans_begun;
}
+#ifndef SQLITE_OMIT_SHARED_CACHE
/* If another database handle has already opened a write transaction
** on this shared-btree structure and a second write transaction is
- ** requested, return SQLITE_BUSY.
+ ** requested, return SQLITE_LOCKED.
*/
- if( pBt->inTransaction==TRANS_WRITE && wrflag ){
- return SQLITE_BUSY;
+ if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
+ pBlock = pBt->pWriter->db;
+ }else if( wrflag>1 ){
+ BtLock *pIter;
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ if( pIter->pBtree!=p ){
+ pBlock = pIter->pBtree->db;
+ break;
+ }
+ }
+ }
+ if( pBlock ){
+ sqlite3ConnectionBlocked(p->db, pBlock);
+ rc = SQLITE_LOCKED_SHAREDCACHE;
+ goto trans_begun;
}
+#endif
+
+ /* Any read-only or read-write transaction implies a read-lock on
+ ** page 1. So if some other shared-cache client already has a write-lock
+ ** on page 1, the transaction cannot be opened. */
+ rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
+ if( SQLITE_OK!=rc ) goto trans_begun;
do {
- if( pBt->pPage1==0 ){
- rc = lockBtree(pBt);
- }
-
+ /* Call lockBtree() until either pBt->pPage1 is populated or
+ ** lockBtree() returns something other than SQLITE_OK. lockBtree()
+ ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
+ ** reading page 1 it discovers that the page-size of the database
+ ** file is not pBt->pageSize. In this case lockBtree() will update
+ ** pBt->pageSize to the page-size of the file on disk.
+ */
+ while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
+
if( rc==SQLITE_OK && wrflag ){
- rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
- if( rc==SQLITE_OK ){
- rc = newDatabase(pBt);
+ if( pBt->readOnly ){
+ rc = SQLITE_READONLY;
+ }else{
+ rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
+ if( rc==SQLITE_OK ){
+ rc = newDatabase(pBt);
+ }
}
}
- if( rc==SQLITE_OK ){
- if( wrflag ) pBt->inStmt = 0;
- }else{
+ if( rc!=SQLITE_OK ){
unlockBtreeIfUnused(pBt);
}
}while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
- sqlite3InvokeBusyHandler(pBt->pBusyHandler) );
+ btreeInvokeBusyHandler(pBt) );
if( rc==SQLITE_OK ){
if( p->inTrans==TRANS_NONE ){
pBt->nTransaction++;
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( p->sharable ){
+ assert( p->lock.pBtree==p && p->lock.iTable==1 );
+ p->lock.eLock = READ_LOCK;
+ p->lock.pNext = pBt->pLock;
+ pBt->pLock = &p->lock;
+ }
+#endif
}
p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
if( p->inTrans>pBt->inTransaction ){
pBt->inTransaction = p->inTrans;
}
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( wrflag ){
+ assert( !pBt->pWriter );
+ pBt->pWriter = p;
+ pBt->isExclusive = (u8)(wrflag>1);
+ }
+#endif
+ }
+
+
+trans_begun:
+ if( rc==SQLITE_OK && wrflag ){
+ /* This call makes sure that the pager has the correct number of
+ ** open savepoints. If the second parameter is greater than 0 and
+ ** the sub-journal is not already open, then it will be opened here.
+ */
+ rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
}
btreeIntegrity(p);
+ sqlite3BtreeLeave(p);
return rc;
}
@@ -23192,32 +40075,32 @@ int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
static int setChildPtrmaps(MemPage *pPage){
int i; /* Counter variable */
int nCell; /* Number of cells in page pPage */
- int rc = SQLITE_OK; /* Return code */
+ int rc; /* Return code */
BtShared *pBt = pPage->pBt;
- int isInitOrig = pPage->isInit;
+ u8 isInitOrig = pPage->isInit;
Pgno pgno = pPage->pgno;
- initPage(pPage, 0);
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ rc = btreeInitPage(pPage);
+ if( rc!=SQLITE_OK ){
+ goto set_child_ptrmaps_out;
+ }
nCell = pPage->nCell;
for(i=0; i<nCell; i++){
u8 *pCell = findCell(pPage, i);
- rc = ptrmapPutOvflPtr(pPage, pCell);
- if( rc!=SQLITE_OK ){
- goto set_child_ptrmaps_out;
- }
+ ptrmapPutOvflPtr(pPage, pCell, &rc);
if( !pPage->leaf ){
Pgno childPgno = get4byte(pCell);
- rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
- if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
+ ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
}
}
if( !pPage->leaf ){
Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
+ ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
}
set_child_ptrmaps_out:
@@ -23226,10 +40109,9 @@ set_child_ptrmaps_out:
}
/*
-** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
-** page, is a pointer to page iFrom. Modify this pointer so that it points to
-** iTo. Parameter eType describes the type of pointer to be modified, as
-** follows:
+** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
+** that it points to iTo. Parameter eType describes the type of pointer to
+** be modified, as follows:
**
** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
** page of pPage.
@@ -23241,6 +40123,8 @@ set_child_ptrmaps_out:
** overflow page in the list.
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
if( eType==PTRMAP_OVERFLOW2 ){
/* The pointer is always the first 4 bytes of the page in this case. */
if( get4byte(pPage->aData)!=iFrom ){
@@ -23248,18 +40132,18 @@ static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
}
put4byte(pPage->aData, iTo);
}else{
- int isInitOrig = pPage->isInit;
+ u8 isInitOrig = pPage->isInit;
int i;
int nCell;
- initPage(pPage, 0);
+ btreeInitPage(pPage);
nCell = pPage->nCell;
for(i=0; i<nCell; i++){
u8 *pCell = findCell(pPage, i);
if( eType==PTRMAP_OVERFLOW1 ){
CellInfo info;
- parseCellPtr(pPage, pCell, &info);
+ btreeParseCellPtr(pPage, pCell, &info);
if( info.iOverflow ){
if( iFrom==get4byte(&pCell[info.iOverflow]) ){
put4byte(&pCell[info.iOverflow], iTo);
@@ -23291,13 +40175,19 @@ static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
/*
** Move the open database page pDbPage to location iFreePage in the
** database. The pDbPage reference remains valid.
+**
+** The isCommit flag indicates that there is no need to remember that
+** the journal needs to be sync()ed before database page pDbPage->pgno
+** can be written to. The caller has already promised not to write to that
+** page.
*/
static int relocatePage(
BtShared *pBt, /* Btree */
MemPage *pDbPage, /* Open page to move */
u8 eType, /* Pointer map 'type' entry for pDbPage */
Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
- Pgno iFreePage /* The location to move pDbPage to */
+ Pgno iFreePage, /* The location to move pDbPage to */
+ int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
){
MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
Pgno iDbPage = pDbPage->pgno;
@@ -23306,11 +40196,13 @@ static int relocatePage(
assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pDbPage->pBt==pBt );
- /* Move page iDbPage from it's current location to page number iFreePage */
+ /* Move page iDbPage from its current location to page number iFreePage */
TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
iDbPage, iFreePage, iPtrPage, eType));
- rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
+ rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
if( rc!=SQLITE_OK ){
return rc;
}
@@ -23332,7 +40224,7 @@ static int relocatePage(
}else{
Pgno nextOvfl = get4byte(pDbPage->aData);
if( nextOvfl!=0 ){
- rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
+ ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
if( rc!=SQLITE_OK ){
return rc;
}
@@ -23344,7 +40236,7 @@ static int relocatePage(
** iPtrPage.
*/
if( eType!=PTRMAP_ROOTPAGE ){
- rc = getPage(pBt, iPtrPage, &pPtrPage, 0);
+ rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
if( rc!=SQLITE_OK ){
return rc;
}
@@ -23356,154 +40248,224 @@ static int relocatePage(
rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
releasePage(pPtrPage);
if( rc==SQLITE_OK ){
- rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
+ ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
}
}
return rc;
}
-/* Forward declaration required by autoVacuumCommit(). */
+/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
/*
-** This routine is called prior to sqlite3PagerCommit when a transaction
-** is commited for an auto-vacuum database.
+** Perform a single step of an incremental-vacuum. If successful,
+** return SQLITE_OK. If there is no work to do (and therefore no
+** point in calling this function again), return SQLITE_DONE.
**
-** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
-** the database file should be truncated to during the commit process.
-** i.e. the database has been reorganized so that only the first *pnTrunc
-** pages are in use.
+** More specificly, this function attempts to re-organize the
+** database so that the last page of the file currently in use
+** is no longer in use.
+**
+** If the nFin parameter is non-zero, this function assumes
+** that the caller will keep calling incrVacuumStep() until
+** it returns SQLITE_DONE or an error, and that nFin is the
+** number of pages the database file will contain after this
+** process is complete. If nFin is zero, it is assumed that
+** incrVacuumStep() will be called a finite amount of times
+** which may or may not empty the freelist. A full autovacuum
+** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
*/
-static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
- Pager *pPager = pBt->pPager;
- Pgno nFreeList; /* Number of pages remaining on the free-list. */
- int nPtrMap; /* Number of pointer-map pages deallocated */
- Pgno origSize; /* Pages in the database file */
- Pgno finSize; /* Pages in the database file after truncation */
- int rc; /* Return code */
- u8 eType;
- int pgsz = pBt->pageSize; /* Page size for this database */
- Pgno iDbPage; /* The database page to move */
- MemPage *pDbMemPage = 0; /* "" */
- Pgno iPtrPage; /* The page that contains a pointer to iDbPage */
- Pgno iFreePage; /* The free-list page to move iDbPage to */
- MemPage *pFreeMemPage = 0; /* "" */
-
-#ifndef NDEBUG
- int nRef = sqlite3PagerRefcount(pPager);
-#endif
+static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
+ Pgno nFreeList; /* Number of pages still on the free-list */
- assert( pBt->autoVacuum );
- if( PTRMAP_ISPAGE(pBt, sqlite3PagerPagecount(pPager)) ){
- return SQLITE_CORRUPT_BKPT;
- }
-
- /* Figure out how many free-pages are in the database. If there are no
- ** free pages, then auto-vacuum is a no-op.
- */
- nFreeList = get4byte(&pBt->pPage1->aData[36]);
- if( nFreeList==0 ){
- *pnTrunc = 0;
- return SQLITE_OK;
- }
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( iLastPg>nFin );
- /* This block figures out how many pages there are in the database
- ** now (variable origSize), and how many there will be after the
- ** truncation (variable finSize).
- **
- ** The final size is the original size, less the number of free pages
- ** in the database, less any pointer-map pages that will no longer
- ** be required, less 1 if the pending-byte page was part of the database
- ** but is not after the truncation.
- **/
- origSize = sqlite3PagerPagecount(pPager);
- if( origSize==PENDING_BYTE_PAGE(pBt) ){
- origSize--;
- }
- nPtrMap = (nFreeList-origSize+PTRMAP_PAGENO(pBt, origSize)+pgsz/5)/(pgsz/5);
- finSize = origSize - nFreeList - nPtrMap;
- if( origSize>PENDING_BYTE_PAGE(pBt) && finSize<=PENDING_BYTE_PAGE(pBt) ){
- finSize--;
- }
- while( PTRMAP_ISPAGE(pBt, finSize) || finSize==PENDING_BYTE_PAGE(pBt) ){
- finSize--;
- }
- TRACE(("AUTOVACUUM: Begin (db size %d->%d)\n", origSize, finSize));
+ if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
+ int rc;
+ u8 eType;
+ Pgno iPtrPage;
- /* Variable 'finSize' will be the size of the file in pages after
- ** the auto-vacuum has completed (the current file size minus the number
- ** of pages on the free list). Loop through the pages that lie beyond
- ** this mark, and if they are not already on the free list, move them
- ** to a free page earlier in the file (somewhere before finSize).
- */
- for( iDbPage=finSize+1; iDbPage<=origSize; iDbPage++ ){
- /* If iDbPage is a pointer map page, or the pending-byte page, skip it. */
- if( PTRMAP_ISPAGE(pBt, iDbPage) || iDbPage==PENDING_BYTE_PAGE(pBt) ){
- continue;
+ nFreeList = get4byte(&pBt->pPage1->aData[36]);
+ if( nFreeList==0 ){
+ return SQLITE_DONE;
}
- rc = ptrmapGet(pBt, iDbPage, &eType, &iPtrPage);
- if( rc!=SQLITE_OK ) goto autovacuum_out;
+ rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
if( eType==PTRMAP_ROOTPAGE ){
- rc = SQLITE_CORRUPT_BKPT;
- goto autovacuum_out;
+ return SQLITE_CORRUPT_BKPT;
}
- /* If iDbPage is free, do not swap it. */
if( eType==PTRMAP_FREEPAGE ){
- continue;
- }
- rc = getPage(pBt, iDbPage, &pDbMemPage, 0);
- if( rc!=SQLITE_OK ) goto autovacuum_out;
+ if( nFin==0 ){
+ /* Remove the page from the files free-list. This is not required
+ ** if nFin is non-zero. In that case, the free-list will be
+ ** truncated to zero after this function returns, so it doesn't
+ ** matter if it still contains some garbage entries.
+ */
+ Pgno iFreePg;
+ MemPage *pFreePg;
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( iFreePg==iLastPg );
+ releasePage(pFreePg);
+ }
+ } else {
+ Pgno iFreePg; /* Index of free page to move pLastPg to */
+ MemPage *pLastPg;
- /* Find the next page in the free-list that is not already at the end
- ** of the file. A page can be pulled off the free list using the
- ** allocateBtreePage() routine.
- */
- do{
- if( pFreeMemPage ){
- releasePage(pFreeMemPage);
- pFreeMemPage = 0;
+ rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
}
- rc = allocateBtreePage(pBt, &pFreeMemPage, &iFreePage, 0, 0);
+
+ /* If nFin is zero, this loop runs exactly once and page pLastPg
+ ** is swapped with the first free page pulled off the free list.
+ **
+ ** On the other hand, if nFin is greater than zero, then keep
+ ** looping until a free-page located within the first nFin pages
+ ** of the file is found.
+ */
+ do {
+ MemPage *pFreePg;
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
+ if( rc!=SQLITE_OK ){
+ releasePage(pLastPg);
+ return rc;
+ }
+ releasePage(pFreePg);
+ }while( nFin!=0 && iFreePg>nFin );
+ assert( iFreePg<iLastPg );
+
+ rc = sqlite3PagerWrite(pLastPg->pDbPage);
+ if( rc==SQLITE_OK ){
+ rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
+ }
+ releasePage(pLastPg);
if( rc!=SQLITE_OK ){
- releasePage(pDbMemPage);
- goto autovacuum_out;
+ return rc;
}
- assert( iFreePage<=origSize );
- }while( iFreePage>finSize );
- releasePage(pFreeMemPage);
- pFreeMemPage = 0;
+ }
+ }
- /* Relocate the page into the body of the file. Note that although the
- ** page has moved within the database file, the pDbMemPage pointer
- ** remains valid. This means that this function can run without
- ** invalidating cursors open on the btree. This is important in
- ** shared-cache mode.
- */
- rc = relocatePage(pBt, pDbMemPage, eType, iPtrPage, iFreePage);
- releasePage(pDbMemPage);
- if( rc!=SQLITE_OK ) goto autovacuum_out;
+ if( nFin==0 ){
+ iLastPg--;
+ while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
+ if( PTRMAP_ISPAGE(pBt, iLastPg) ){
+ MemPage *pPg;
+ int rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3PagerWrite(pPg->pDbPage);
+ releasePage(pPg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ iLastPg--;
+ }
+ sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
}
+ return SQLITE_OK;
+}
- /* The entire free-list has been swapped to the end of the file. So
- ** truncate the database file to finSize pages and consider the
- ** free-list empty.
- */
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
- if( rc!=SQLITE_OK ) goto autovacuum_out;
- put4byte(&pBt->pPage1->aData[32], 0);
- put4byte(&pBt->pPage1->aData[36], 0);
- *pnTrunc = finSize;
- assert( finSize!=PENDING_BYTE_PAGE(pBt) );
+/*
+** A write-transaction must be opened before calling this function.
+** It performs a single unit of work towards an incremental vacuum.
+**
+** If the incremental vacuum is finished after this function has run,
+** SQLITE_DONE is returned. If it is not finished, but no error occurred,
+** SQLITE_OK is returned. Otherwise an SQLite error code.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
+ int rc;
+ BtShared *pBt = p->pBt;
-autovacuum_out:
- assert( nRef==sqlite3PagerRefcount(pPager) );
- if( rc!=SQLITE_OK ){
- sqlite3PagerRollback(pPager);
+ sqlite3BtreeEnter(p);
+ assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
+ if( !pBt->autoVacuum ){
+ rc = SQLITE_DONE;
+ }else{
+ invalidateAllOverflowCache(pBt);
+ rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** This routine is called prior to sqlite3PagerCommit when a transaction
+** is commited for an auto-vacuum database.
+**
+** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
+** the database file should be truncated to during the commit process.
+** i.e. the database has been reorganized so that only the first *pnTrunc
+** pages are in use.
+*/
+static int autoVacuumCommit(BtShared *pBt){
+ int rc = SQLITE_OK;
+ Pager *pPager = pBt->pPager;
+ VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ invalidateAllOverflowCache(pBt);
+ assert(pBt->autoVacuum);
+ if( !pBt->incrVacuum ){
+ Pgno nFin; /* Number of pages in database after autovacuuming */
+ Pgno nFree; /* Number of pages on the freelist initially */
+ Pgno nPtrmap; /* Number of PtrMap pages to be freed */
+ Pgno iFree; /* The next page to be freed */
+ int nEntry; /* Number of entries on one ptrmap page */
+ Pgno nOrig; /* Database size before freeing */
+
+ nOrig = pagerPagecount(pBt);
+ if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
+ /* It is not possible to create a database for which the final page
+ ** is either a pointer-map page or the pending-byte page. If one
+ ** is encountered, this indicates corruption.
+ */
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ nFree = get4byte(&pBt->pPage1->aData[36]);
+ nEntry = pBt->usableSize/5;
+ nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
+ nFin = nOrig - nFree - nPtrmap;
+ if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
+ nFin--;
+ }
+ while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
+ nFin--;
+ }
+ if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
+
+ for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
+ rc = incrVacuumStep(pBt, nFin, iFree);
+ }
+ if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
+ rc = SQLITE_OK;
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ put4byte(&pBt->pPage1->aData[32], 0);
+ put4byte(&pBt->pPage1->aData[36], 0);
+ sqlite3PagerTruncateImage(pBt->pPager, nFin);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3PagerRollback(pPager);
+ }
}
+
+ assert( nRef==sqlite3PagerRefcount(pPager) );
return rc;
}
+
+#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
+# define setChildPtrmaps(x) SQLITE_OK
#endif
/*
@@ -23516,7 +40478,7 @@ autovacuum_out:
** database are written into the database file and flushed to oxide.
** At the end of this call, the rollback journal still exists on the
** disk and we are still holding all locks, so the transaction has not
-** committed. See sqlite3BtreeCommit() for the second phase of the
+** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
** commit process.
**
** This call is a no-op if no write-transaction is currently active on pBt.
@@ -23532,41 +40494,87 @@ autovacuum_out:
** Once this is routine has returned, the only thing required to commit
** the write-transaction for this database file is to delete the journal.
*/
-int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
int rc = SQLITE_OK;
if( p->inTrans==TRANS_WRITE ){
BtShared *pBt = p->pBt;
- Pgno nTrunc = 0;
+ sqlite3BtreeEnter(p);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
- rc = autoVacuumCommit(pBt, &nTrunc);
+ rc = autoVacuumCommit(pBt);
if( rc!=SQLITE_OK ){
+ sqlite3BtreeLeave(p);
return rc;
}
}
#endif
- rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc);
+ rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
+ sqlite3BtreeLeave(p);
}
return rc;
}
/*
+** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
+** at the conclusion of a transaction.
+*/
+static void btreeEndTransaction(Btree *p){
+ BtShared *pBt = p->pBt;
+ BtCursor *pCsr;
+ assert( sqlite3BtreeHoldsMutex(p) );
+
+ /* Search for a cursor held open by this b-tree connection. If one exists,
+ ** then the transaction will be downgraded to a read-only transaction
+ ** instead of actually concluded. A subsequent call to CommitPhaseTwo()
+ ** or Rollback() will finish the transaction and unlock the database. */
+ for(pCsr=pBt->pCursor; pCsr && pCsr->pBtree!=p; pCsr=pCsr->pNext);
+ assert( pCsr==0 || p->inTrans>TRANS_NONE );
+
+ btreeClearHasContent(pBt);
+ if( pCsr ){
+ downgradeAllSharedCacheTableLocks(p);
+ p->inTrans = TRANS_READ;
+ }else{
+ /* If the handle had any kind of transaction open, decrement the
+ ** transaction count of the shared btree. If the transaction count
+ ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
+ ** call below will unlock the pager. */
+ if( p->inTrans!=TRANS_NONE ){
+ clearAllSharedCacheTableLocks(p);
+ pBt->nTransaction--;
+ if( 0==pBt->nTransaction ){
+ pBt->inTransaction = TRANS_NONE;
+ }
+ }
+
+ /* Set the current transaction state to TRANS_NONE and unlock the
+ ** pager if this call closed the only read or write transaction. */
+ p->inTrans = TRANS_NONE;
+ unlockBtreeIfUnused(pBt);
+ }
+
+ btreeIntegrity(p);
+}
+
+/*
** Commit the transaction currently in progress.
**
** This routine implements the second phase of a 2-phase commit. The
-** sqlite3BtreeSync() routine does the first phase and should be invoked
-** prior to calling this routine. The sqlite3BtreeSync() routine did
-** all the work of writing information out to disk and flushing the
+** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
+** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
+** routine did all the work of writing information out to disk and flushing the
** contents so that they are written onto the disk platter. All this
-** routine has to do is delete or truncate the rollback journal
-** (which causes the transaction to commit) and drop locks.
+** routine has to do is delete or truncate or zero the header in the
+** the rollback journal (which causes the transaction to commit) and
+** drop locks.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
-int sqlite3BtreeCommitPhaseTwo(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p){
BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
btreeIntegrity(p);
/* If the handle has a write-transaction open, commit the shared-btrees
@@ -23578,44 +40586,28 @@ int sqlite3BtreeCommitPhaseTwo(Btree *p){
assert( pBt->nTransaction>0 );
rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
if( rc!=SQLITE_OK ){
+ sqlite3BtreeLeave(p);
return rc;
}
pBt->inTransaction = TRANS_READ;
- pBt->inStmt = 0;
- }
- unlockAllTables(p);
-
- /* If the handle has any kind of transaction open, decrement the transaction
- ** count of the shared btree. If the transaction count reaches 0, set
- ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
- ** will unlock the pager.
- */
- if( p->inTrans!=TRANS_NONE ){
- pBt->nTransaction--;
- if( 0==pBt->nTransaction ){
- pBt->inTransaction = TRANS_NONE;
- }
}
- /* Set the handles current transaction state to TRANS_NONE and unlock
- ** the pager if this call closed the only read or write transaction.
- */
- p->inTrans = TRANS_NONE;
- unlockBtreeIfUnused(pBt);
-
- btreeIntegrity(p);
+ btreeEndTransaction(p);
+ sqlite3BtreeLeave(p);
return SQLITE_OK;
}
/*
** Do both phases of a commit.
*/
-int sqlite3BtreeCommit(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
int rc;
+ sqlite3BtreeEnter(p);
rc = sqlite3BtreeCommitPhaseOne(p, 0);
if( rc==SQLITE_OK ){
rc = sqlite3BtreeCommitPhaseTwo(p);
}
+ sqlite3BtreeLeave(p);
return rc;
}
@@ -23624,35 +40616,54 @@ int sqlite3BtreeCommit(Btree *p){
** Return the number of write-cursors open on this handle. This is for use
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
+**
+** For the purposes of this routine, a write-cursor is any cursor that
+** is capable of writing to the databse. That means the cursor was
+** originally opened for writing and the cursor has not be disabled
+** by having its state changed to CURSOR_FAULT.
*/
static int countWriteCursors(BtShared *pBt){
BtCursor *pCur;
int r = 0;
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
- if( pCur->wrFlag ) r++;
+ if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
}
return r;
}
#endif
-#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
/*
-** Print debugging information about all cursors to standard output.
+** This routine sets the state to CURSOR_FAULT and the error
+** code to errCode for every cursor on BtShared that pBtree
+** references.
+**
+** Every cursor is tripped, including cursors that belong
+** to other database connections that happen to be sharing
+** the cache with pBtree.
+**
+** This routine gets called when a rollback occurs.
+** All cursors using the same cache must be tripped
+** to prevent them from trying to use the btree after
+** the rollback. The rollback may have deleted tables
+** or moved root pages, so it is not sufficient to
+** save the state of the cursor. The cursor must be
+** invalidated.
*/
-void sqlite3BtreeCursorList(Btree *p){
- BtCursor *pCur;
- BtShared *pBt = p->pBt;
- for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
- MemPage *pPage = pCur->pPage;
- char *zMode = pCur->wrFlag ? "rw" : "ro";
- sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n",
- pCur, pCur->pgnoRoot, zMode,
- pPage ? pPage->pgno : 0, pCur->idx,
- (pCur->eState==CURSOR_VALID) ? "" : " eof"
- );
+SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
+ BtCursor *p;
+ sqlite3BtreeEnter(pBtree);
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ int i;
+ sqlite3BtreeClearCursor(p);
+ p->eState = CURSOR_FAULT;
+ p->skipNext = errCode;
+ for(i=0; i<=p->iPage; i++){
+ releasePage(p->apPage[i]);
+ p->apPage[i] = 0;
+ }
}
+ sqlite3BtreeLeave(pBtree);
}
-#endif
/*
** Rollback the transaction in progress. All cursors will be
@@ -23663,31 +40674,26 @@ void sqlite3BtreeCursorList(Btree *p){
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
-int sqlite3BtreeRollback(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p){
int rc;
BtShared *pBt = p->pBt;
MemPage *pPage1;
+ sqlite3BtreeEnter(p);
rc = saveAllCursors(pBt, 0, 0);
#ifndef SQLITE_OMIT_SHARED_CACHE
if( rc!=SQLITE_OK ){
- /* This is a horrible situation. An IO or malloc() error occured whilst
+ /* This is a horrible situation. An IO or malloc() error occurred whilst
** trying to save cursor positions. If this is an automatic rollback (as
** the result of a constraint, malloc() failure or IO error) then
** the cache may be internally inconsistent (not contain valid trees) so
** we cannot simply return the error to the caller. Instead, abort
** all queries that may be using any of the cursors that failed to save.
*/
- while( pBt->pCursor ){
- sqlite3 *db = pBt->pCursor->pBtree->pSqlite;
- if( db ){
- sqlite3AbortOtherActiveVdbes(db, 0);
- }
- }
+ sqlite3BtreeTripAllCursors(p, rc);
}
#endif
btreeIntegrity(p);
- unlockAllTables(p);
if( p->inTrans==TRANS_WRITE ){
int rc2;
@@ -23699,117 +40705,95 @@ int sqlite3BtreeRollback(Btree *p){
}
/* The rollback may have destroyed the pPage1->aData value. So
- ** call getPage() on page 1 again to make sure pPage1->aData is
- ** set correctly. */
- if( getPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
+ ** call btreeGetPage() on page 1 again to make
+ ** sure pPage1->aData is set correctly. */
+ if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
releasePage(pPage1);
}
assert( countWriteCursors(pBt)==0 );
pBt->inTransaction = TRANS_READ;
}
- if( p->inTrans!=TRANS_NONE ){
- assert( pBt->nTransaction>0 );
- pBt->nTransaction--;
- if( 0==pBt->nTransaction ){
- pBt->inTransaction = TRANS_NONE;
- }
- }
-
- p->inTrans = TRANS_NONE;
- pBt->inStmt = 0;
- unlockBtreeIfUnused(pBt);
-
- btreeIntegrity(p);
+ btreeEndTransaction(p);
+ sqlite3BtreeLeave(p);
return rc;
}
/*
-** Start a statement subtransaction. The subtransaction can
-** can be rolled back independently of the main transaction.
-** You must start a transaction before starting a subtransaction.
-** The subtransaction is ended automatically if the main transaction
-** commits or rolls back.
-**
-** Only one subtransaction may be active at a time. It is an error to try
-** to start a new subtransaction if another subtransaction is already active.
+** Start a statement subtransaction. The subtransaction can can be rolled
+** back independently of the main transaction. You must start a transaction
+** before starting a subtransaction. The subtransaction is ended automatically
+** if the main transaction commits or rolls back.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block. If a constraint
** error occurs within the statement, the effect of that one statement
** can be rolled back without having to rollback the entire transaction.
+**
+** A statement sub-transaction is implemented as an anonymous savepoint. The
+** value passed as the second parameter is the total number of savepoints,
+** including the new anonymous savepoint, open on the B-Tree. i.e. if there
+** are no active savepoints and no other statement-transactions open,
+** iStatement is 1. This anonymous savepoint can be released or rolled back
+** using the sqlite3BtreeSavepoint() function.
*/
-int sqlite3BtreeBeginStmt(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
- if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
- assert( pBt->inTransaction==TRANS_WRITE );
- rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
- pBt->inStmt = 1;
- return rc;
-}
-
-
-/*
-** Commit the statment subtransaction currently in progress. If no
-** subtransaction is active, this is a no-op.
-*/
-int sqlite3BtreeCommitStmt(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
int rc;
BtShared *pBt = p->pBt;
- if( pBt->inStmt && !pBt->readOnly ){
- rc = sqlite3PagerStmtCommit(pBt->pPager);
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
+ assert( pBt->readOnly==0 );
+ assert( iStatement>0 );
+ assert( iStatement>p->db->nSavepoint );
+ if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
+ rc = SQLITE_INTERNAL;
}else{
- rc = SQLITE_OK;
+ assert( pBt->inTransaction==TRANS_WRITE );
+ /* At the pager level, a statement transaction is a savepoint with
+ ** an index greater than all savepoints created explicitly using
+ ** SQL statements. It is illegal to open, release or rollback any
+ ** such savepoints while the statement transaction savepoint is active.
+ */
+ rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
}
- pBt->inStmt = 0;
+ sqlite3BtreeLeave(p);
return rc;
}
/*
-** Rollback the active statement subtransaction. If no subtransaction
-** is active this routine is a no-op.
+** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
+** or SAVEPOINT_RELEASE. This function either releases or rolls back the
+** savepoint identified by parameter iSavepoint, depending on the value
+** of op.
**
-** All cursors will be invalidated by this operation. Any attempt
-** to use a cursor that was open at the beginning of this operation
-** will result in an error.
+** Normally, iSavepoint is greater than or equal to zero. However, if op is
+** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
+** contents of the entire transaction are rolled back. This is different
+** from a normal transaction rollback, as no locks are released and the
+** transaction remains open.
*/
-int sqlite3BtreeRollbackStmt(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
int rc = SQLITE_OK;
- BtShared *pBt = p->pBt;
- sqlite3MallocDisallow();
- if( pBt->inStmt && !pBt->readOnly ){
- rc = sqlite3PagerStmtRollback(pBt->pPager);
- assert( countWriteCursors(pBt)==0 );
- pBt->inStmt = 0;
+ if( p && p->inTrans==TRANS_WRITE ){
+ BtShared *pBt = p->pBt;
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
+ assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
+ sqlite3BtreeEnter(p);
+ rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
+ if( rc==SQLITE_OK ){
+ rc = newDatabase(pBt);
+ }
+ sqlite3BtreeLeave(p);
}
- sqlite3MallocAllow();
return rc;
}
/*
-** Default key comparison function to be used if no comparison function
-** is specified on the sqlite3BtreeCursor() call.
-*/
-static int dfltCompare(
- void *NotUsed, /* User data is not used */
- int n1, const void *p1, /* First key to compare */
- int n2, const void *p2 /* Second key to compare */
-){
- int c;
- c = memcmp(p1, p2, n1<n2 ? n1 : n2);
- if( c==0 ){
- c = n1 - n2;
- }
- return c;
-}
-
-/*
** Create a new cursor for the BTree whose root is on the page
-** iTable. The act of acquiring a cursor gets a read lock on
-** the database file.
+** iTable. If a read-only cursor is requested, it is assumed that
+** the caller already has at least a read-only transaction open
+** on the database already. If a write-cursor is requested, then
+** the caller is assumed to have an open write transaction.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
@@ -23833,158 +40817,202 @@ static int dfltCompare(
** root page of a b-tree. If it is not, then the cursor acquired
** will not work correctly.
**
-** The comparison function must be logically the same for every cursor
-** on a particular table. Changing the comparison function will result
-** in incorrect operations. If the comparison function is NULL, a
-** default comparison function is used. The comparison function is
-** always ignored for INTKEY tables.
+** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
+** pointed to by pCur have been zeroed by the caller.
*/
-int sqlite3BtreeCursor(
- Btree *p, /* The btree */
- int iTable, /* Root page of table to open */
- int wrFlag, /* 1 to write. 0 read-only */
- int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
- void *pArg, /* First arg to xCompare() */
- BtCursor **ppCur /* Write new cursor here */
+static int btreeCursor(
+ Btree *p, /* The btree */
+ int iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to comparison function */
+ BtCursor *pCur /* Space for new cursor */
){
- int rc;
- BtCursor *pCur;
- BtShared *pBt = p->pBt;
+ BtShared *pBt = p->pBt; /* Shared b-tree handle */
- *ppCur = 0;
- if( wrFlag ){
- if( pBt->readOnly ){
- return SQLITE_READONLY;
- }
- if( checkReadLocks(p, iTable, 0) ){
- return SQLITE_LOCKED;
- }
- }
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( wrFlag==0 || wrFlag==1 );
- if( pBt->pPage1==0 ){
- rc = lockBtreeWithRetry(p);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- pCur = sqliteMalloc( sizeof(*pCur) );
- if( pCur==0 ){
- rc = SQLITE_NOMEM;
- goto create_cursor_exception;
- }
- pCur->pgnoRoot = (Pgno)iTable;
- if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
- rc = SQLITE_EMPTY;
- goto create_cursor_exception;
+ /* The following assert statements verify that if this is a sharable
+ ** b-tree database, the connection is holding the required table locks,
+ ** and that no other connection has any open cursor that conflicts with
+ ** this lock. */
+ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
+ assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
+
+ /* Assert that the caller has opened the required transaction. */
+ assert( p->inTrans>TRANS_NONE );
+ assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
+ assert( pBt->pPage1 && pBt->pPage1->aData );
+
+ if( NEVER(wrFlag && pBt->readOnly) ){
+ return SQLITE_READONLY;
}
- rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
- if( rc!=SQLITE_OK ){
- goto create_cursor_exception;
+ if( iTable==1 && pagerPagecount(pBt)==0 ){
+ return SQLITE_EMPTY;
}
/* Now that no other errors can occur, finish filling in the BtCursor
- ** variables, link the cursor into the BtShared list and set *ppCur (the
- ** output argument to this function).
- */
- pCur->xCompare = xCmp ? xCmp : dfltCompare;
- pCur->pArg = pArg;
+ ** variables and link the cursor into the BtShared list. */
+ pCur->pgnoRoot = (Pgno)iTable;
+ pCur->iPage = -1;
+ pCur->pKeyInfo = pKeyInfo;
pCur->pBtree = p;
- pCur->wrFlag = wrFlag;
+ pCur->pBt = pBt;
+ pCur->wrFlag = (u8)wrFlag;
pCur->pNext = pBt->pCursor;
if( pCur->pNext ){
pCur->pNext->pPrev = pCur;
}
pBt->pCursor = pCur;
pCur->eState = CURSOR_INVALID;
- *ppCur = pCur;
-
+ pCur->cachedRowid = 0;
return SQLITE_OK;
-create_cursor_exception:
- if( pCur ){
- releasePage(pCur->pPage);
- sqliteFree(pCur);
- }
- unlockBtreeIfUnused(pBt);
+}
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree *p, /* The btree */
+ int iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
+ BtCursor *pCur /* Write new cursor here */
+){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
+ sqlite3BtreeLeave(p);
return rc;
}
-#if 0 /* Not Used */
/*
-** Change the value of the comparison function used by a cursor.
+** Return the size of a BtCursor object in bytes.
+**
+** This interfaces is needed so that users of cursors can preallocate
+** sufficient storage to hold a cursor. The BtCursor object is opaque
+** to users so they cannot do the sizeof() themselves - they must call
+** this routine.
*/
-void sqlite3BtreeSetCompare(
- BtCursor *pCur, /* The cursor to whose comparison function is changed */
- int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
- void *pArg /* First argument to xCmp() */
-){
- pCur->xCompare = xCmp ? xCmp : dfltCompare;
- pCur->pArg = pArg;
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){
+ return sizeof(BtCursor);
}
-#endif
/*
-** Close a cursor. The read lock on the database file is released
-** when the last cursor is closed.
+** Set the cached rowid value of every cursor in the same database file
+** as pCur and having the same root page number as pCur. The value is
+** set to iRowid.
+**
+** Only positive rowid values are considered valid for this cache.
+** The cache is initialized to zero, indicating an invalid cache.
+** A btree will work fine with zero or negative rowids. We just cannot
+** cache zero or negative rowids, which means tables that use zero or
+** negative rowids might run a little slower. But in practice, zero
+** or negative rowids are very uncommon so this should not be a problem.
*/
-int sqlite3BtreeCloseCursor(BtCursor *pCur){
- BtShared *pBt = pCur->pBtree->pBt;
- clearCursorPosition(pCur);
- if( pCur->pPrev ){
- pCur->pPrev->pNext = pCur->pNext;
- }else{
- pBt->pCursor = pCur->pNext;
- }
- if( pCur->pNext ){
- pCur->pNext->pPrev = pCur->pPrev;
+SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
+ BtCursor *p;
+ for(p=pCur->pBt->pCursor; p; p=p->pNext){
+ if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
}
- releasePage(pCur->pPage);
- unlockBtreeIfUnused(pBt);
- sqliteFree(pCur);
- return SQLITE_OK;
+ assert( pCur->cachedRowid==iRowid );
}
/*
-** Make a temporary cursor by filling in the fields of pTempCur.
-** The temporary cursor is not on the cursor list for the Btree.
+** Return the cached rowid for the given cursor. A negative or zero
+** return value indicates that the rowid cache is invalid and should be
+** ignored. If the rowid cache has never before been set, then a
+** zero is returned.
*/
-static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
- memcpy(pTempCur, pCur, sizeof(*pCur));
- pTempCur->pNext = 0;
- pTempCur->pPrev = 0;
- if( pTempCur->pPage ){
- sqlite3PagerRef(pTempCur->pPage->pDbPage);
- }
+SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
+ return pCur->cachedRowid;
}
/*
-** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
-** function above.
+** Close a cursor. The read lock on the database file is released
+** when the last cursor is closed.
*/
-static void releaseTempCursor(BtCursor *pCur){
- if( pCur->pPage ){
- sqlite3PagerUnref(pCur->pPage->pDbPage);
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
+ Btree *pBtree = pCur->pBtree;
+ if( pBtree ){
+ int i;
+ BtShared *pBt = pCur->pBt;
+ sqlite3BtreeEnter(pBtree);
+ sqlite3BtreeClearCursor(pCur);
+ if( pCur->pPrev ){
+ pCur->pPrev->pNext = pCur->pNext;
+ }else{
+ pBt->pCursor = pCur->pNext;
+ }
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur->pPrev;
+ }
+ for(i=0; i<=pCur->iPage; i++){
+ releasePage(pCur->apPage[i]);
+ }
+ unlockBtreeIfUnused(pBt);
+ invalidateOverflowCache(pCur);
+ /* sqlite3_free(pCur); */
+ sqlite3BtreeLeave(pBtree);
}
+ return SQLITE_OK;
}
/*
-** Make sure the BtCursor.info field of the given cursor is valid.
-** If it is not already valid, call parseCell() to fill it in.
+** Make sure the BtCursor* given in the argument has a valid
+** BtCursor.info structure. If it is not already valid, call
+** btreeParseCell() to fill it in.
**
** BtCursor.info is a cache of the information in the current cell.
-** Using this cache reduces the number of calls to parseCell().
+** Using this cache reduces the number of calls to btreeParseCell().
+**
+** 2007-06-25: There is a bug in some versions of MSVC that cause the
+** compiler to crash when getCellInfo() is implemented as a macro.
+** But there is a measureable speed advantage to using the macro on gcc
+** (when less compiler optimizations like -Os or -O0 are used and the
+** compiler is not doing agressive inlining.) So we use a real function
+** for MSVC and a macro for everything else. Ticket #2457.
*/
-static void getCellInfo(BtCursor *pCur){
- if( pCur->info.nSize==0 ){
- parseCell(pCur->pPage, pCur->idx, &pCur->info);
- }else{
#ifndef NDEBUG
+ static void assertCellInfo(BtCursor *pCur){
CellInfo info;
+ int iPage = pCur->iPage;
memset(&info, 0, sizeof(info));
- parseCell(pCur->pPage, pCur->idx, &info);
+ btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
-#endif
}
+#else
+ #define assertCellInfo(x)
+#endif
+#ifdef _MSC_VER
+ /* Use a real function in MSVC to work around bugs in that compiler. */
+ static void getCellInfo(BtCursor *pCur){
+ if( pCur->info.nSize==0 ){
+ int iPage = pCur->iPage;
+ btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
+ pCur->validNKey = 1;
+ }else{
+ assertCellInfo(pCur);
+ }
+ }
+#else /* if not _MSC_VER */
+ /* Use a macro in all other compilers so that the function is inlined */
+#define getCellInfo(pCur) \
+ if( pCur->info.nSize==0 ){ \
+ int iPage = pCur->iPage; \
+ btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
+ pCur->validNKey = 1; \
+ }else{ \
+ assertCellInfo(pCur); \
+ }
+#endif /* _MSC_VER */
+
+#ifndef NDEBUG /* The next routine used only within assert() statements */
+/*
+** Return true if the given BtCursor is valid. A valid cursor is one
+** that is currently pointing to a row in a (non-empty) table.
+** This is a verification routine is used only within assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){
+ return pCur && pCur->eState==CURSOR_VALID;
}
+#endif /* NDEBUG */
/*
** Set *pSize to the size of the buffer needed to hold the value of
@@ -23993,132 +41021,309 @@ static void getCellInfo(BtCursor *pCur){
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
+**
+** The caller must position the cursor prior to invoking this routine.
+**
+** This routine cannot fail. It always returns SQLITE_OK.
*/
-int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
- int rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
- if( pCur->eState==CURSOR_INVALID ){
- *pSize = 0;
- }else{
- getCellInfo(pCur);
- *pSize = pCur->info.nKey;
- }
+SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
+ if( pCur->eState!=CURSOR_VALID ){
+ *pSize = 0;
+ }else{
+ getCellInfo(pCur);
+ *pSize = pCur->info.nKey;
}
- return rc;
+ return SQLITE_OK;
}
/*
** Set *pSize to the number of bytes of data in the entry the
-** cursor currently points to. Always return SQLITE_OK.
-** Failure is not possible. If the cursor is not currently
-** pointing to an entry (which can happen, for example, if
-** the database is empty) then *pSize is set to 0.
+** cursor currently points to.
+**
+** The caller must guarantee that the cursor is pointing to a non-NULL
+** valid entry. In other words, the calling procedure must guarantee
+** that the cursor has Cursor.eState==CURSOR_VALID.
+**
+** Failure is not possible. This function always returns SQLITE_OK.
+** It might just as well be a procedure (returning void) but we continue
+** to return an integer result code for historical reasons.
*/
-int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
- int rc = restoreOrClearCursorPosition(pCur);
+SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ getCellInfo(pCur);
+ *pSize = pCur->info.nData;
+ return SQLITE_OK;
+}
+
+/*
+** Given the page number of an overflow page in the database (parameter
+** ovfl), this function finds the page number of the next page in the
+** linked list of overflow pages. If possible, it uses the auto-vacuum
+** pointer-map data instead of reading the content of page ovfl to do so.
+**
+** If an error occurs an SQLite error code is returned. Otherwise:
+**
+** The page number of the next overflow page in the linked list is
+** written to *pPgnoNext. If page ovfl is the last page in its linked
+** list, *pPgnoNext is set to zero.
+**
+** If ppPage is not NULL, and a reference to the MemPage object corresponding
+** to page number pOvfl was obtained, then *ppPage is set to point to that
+** reference. It is the responsibility of the caller to call releasePage()
+** on *ppPage to free the reference. In no reference was obtained (because
+** the pointer-map was used to obtain the value for *pPgnoNext), then
+** *ppPage is set to zero.
+*/
+static int getOverflowPage(
+ BtShared *pBt, /* The database file */
+ Pgno ovfl, /* Current overflow page number */
+ MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
+ Pgno *pPgnoNext /* OUT: Next overflow page number */
+){
+ Pgno next = 0;
+ MemPage *pPage = 0;
+ int rc = SQLITE_OK;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert(pPgnoNext);
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* Try to find the next page in the overflow list using the
+ ** autovacuum pointer-map pages. Guess that the next page in
+ ** the overflow list is page number (ovfl+1). If that guess turns
+ ** out to be wrong, fall back to loading the data of page
+ ** number ovfl to determine the next page number.
+ */
+ if( pBt->autoVacuum ){
+ Pgno pgno;
+ Pgno iGuess = ovfl+1;
+ u8 eType;
+
+ while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
+ iGuess++;
+ }
+
+ if( iGuess<=pagerPagecount(pBt) ){
+ rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
+ if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
+ next = iGuess;
+ rc = SQLITE_DONE;
+ }
+ }
+ }
+#endif
+
+ assert( next==0 || rc==SQLITE_DONE );
if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
- if( pCur->eState==CURSOR_INVALID ){
- /* Not pointing at a valid entry - set *pSize to 0. */
- *pSize = 0;
- }else{
- getCellInfo(pCur);
- *pSize = pCur->info.nData;
+ rc = btreeGetPage(pBt, ovfl, &pPage, 0);
+ assert( rc==SQLITE_OK || pPage==0 );
+ if( rc==SQLITE_OK ){
+ next = get4byte(pPage->aData);
}
}
- return rc;
+
+ *pPgnoNext = next;
+ if( ppPage ){
+ *ppPage = pPage;
+ }else{
+ releasePage(pPage);
+ }
+ return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}
/*
-** Read payload information from the entry that the pCur cursor is
-** pointing to. Begin reading the payload at "offset" and read
-** a total of "amt" bytes. Put the result in zBuf.
+** Copy data from a buffer to a page, or from a page to a buffer.
**
-** This routine does not make a distinction between key and data.
-** It just reads bytes from the payload area. Data might appear
-** on the main page or be scattered out on multiple overflow pages.
+** pPayload is a pointer to data stored on database page pDbPage.
+** If argument eOp is false, then nByte bytes of data are copied
+** from pPayload to the buffer pointed at by pBuf. If eOp is true,
+** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
+** of data are copied from the buffer pBuf to pPayload.
+**
+** SQLITE_OK is returned on success, otherwise an error code.
*/
-static int getPayload(
+static int copyPayload(
+ void *pPayload, /* Pointer to page data */
+ void *pBuf, /* Pointer to buffer */
+ int nByte, /* Number of bytes to copy */
+ int eOp, /* 0 -> copy from page, 1 -> copy to page */
+ DbPage *pDbPage /* Page containing pPayload */
+){
+ if( eOp ){
+ /* Copy data from buffer to page (a write operation) */
+ int rc = sqlite3PagerWrite(pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ memcpy(pPayload, pBuf, nByte);
+ }else{
+ /* Copy data from page to buffer (a read operation) */
+ memcpy(pBuf, pPayload, nByte);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is used to read or overwrite payload information
+** for the entry that the pCur cursor is pointing to. If the eOp
+** parameter is 0, this is a read operation (data copied into
+** buffer pBuf). If it is non-zero, a write (data copied from
+** buffer pBuf).
+**
+** A total of "amt" bytes are read or written beginning at "offset".
+** Data is read to or from the buffer pBuf.
+**
+** The content being read or written might appear on the main page
+** or be scattered out on multiple overflow pages.
+**
+** If the BtCursor.isIncrblobHandle flag is set, and the current
+** cursor entry uses one or more overflow pages, this function
+** allocates space for and lazily popluates the overflow page-list
+** cache array (BtCursor.aOverflow). Subsequent calls use this
+** cache to make seeking to the supplied offset more efficient.
+**
+** Once an overflow page-list cache has been allocated, it may be
+** invalidated if some other cursor writes to the same table, or if
+** the cursor is moved to a different row. Additionally, in auto-vacuum
+** mode, the following events may invalidate an overflow page-list cache.
+**
+** * An incremental vacuum,
+** * A commit in auto_vacuum="full" mode,
+** * Creating a table (may require moving an overflow page).
+*/
+static int accessPayload(
BtCursor *pCur, /* Cursor pointing to entry to read from */
- int offset, /* Begin reading this far into payload */
- int amt, /* Read this many bytes */
+ u32 offset, /* Begin reading this far into payload */
+ u32 amt, /* Read this many bytes */
unsigned char *pBuf, /* Write the bytes into this buffer */
- int skipKey /* offset begins at data if this is true */
+ int eOp /* zero to read. non-zero to write. */
){
unsigned char *aPayload;
- Pgno nextPage;
- int rc;
- MemPage *pPage;
- BtShared *pBt;
- int ovflSize;
+ int rc = SQLITE_OK;
u32 nKey;
+ int iIdx = 0;
+ MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
+ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
- assert( pCur!=0 && pCur->pPage!=0 );
+ assert( pPage );
assert( pCur->eState==CURSOR_VALID );
- pBt = pCur->pBtree->pBt;
- pPage = pCur->pPage;
- assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
+ assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
+ assert( cursorHoldsMutex(pCur) );
+
getCellInfo(pCur);
aPayload = pCur->info.pCell + pCur->info.nHeader;
- if( pPage->intKey ){
- nKey = 0;
- }else{
- nKey = pCur->info.nKey;
- }
- assert( offset>=0 );
- if( skipKey ){
- offset += nKey;
- }
- if( offset+amt > nKey+pCur->info.nData ){
- return SQLITE_ERROR;
+ nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
+
+ if( NEVER(offset+amt > nKey+pCur->info.nData)
+ || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
+ ){
+ /* Trying to read or write past the end of the data is an error */
+ return SQLITE_CORRUPT_BKPT;
}
+
+ /* Check if data must be read/written to/from the btree page itself. */
if( offset<pCur->info.nLocal ){
int a = amt;
if( a+offset>pCur->info.nLocal ){
a = pCur->info.nLocal - offset;
}
- memcpy(pBuf, &aPayload[offset], a);
- if( a==amt ){
- return SQLITE_OK;
- }
+ rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
offset = 0;
pBuf += a;
amt -= a;
}else{
offset -= pCur->info.nLocal;
}
- ovflSize = pBt->usableSize - 4;
- if( amt>0 ){
+
+ if( rc==SQLITE_OK && amt>0 ){
+ const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
+ Pgno nextPage;
+
nextPage = get4byte(&aPayload[pCur->info.nLocal]);
- while( amt>0 && nextPage ){
- DbPage *pDbPage;
- rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
- if( rc!=0 ){
- return rc;
+
+#ifndef SQLITE_OMIT_INCRBLOB
+ /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
+ ** has not been allocated, allocate it now. The array is sized at
+ ** one entry for each overflow page in the overflow chain. The
+ ** page number of the first overflow page is stored in aOverflow[0],
+ ** etc. A value of 0 in the aOverflow[] array means "not yet known"
+ ** (the cache is lazily populated).
+ */
+ if( pCur->isIncrblobHandle && !pCur->aOverflow ){
+ int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
+ pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
+ /* nOvfl is always positive. If it were zero, fetchPayload would have
+ ** been used instead of this routine. */
+ if( ALWAYS(nOvfl) && !pCur->aOverflow ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ /* If the overflow page-list cache has been allocated and the
+ ** entry for the first required overflow page is valid, skip
+ ** directly to it.
+ */
+ if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
+ iIdx = (offset/ovflSize);
+ nextPage = pCur->aOverflow[iIdx];
+ offset = (offset%ovflSize);
+ }
+#endif
+
+ for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
+
+#ifndef SQLITE_OMIT_INCRBLOB
+ /* If required, populate the overflow page-list cache. */
+ if( pCur->aOverflow ){
+ assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
+ pCur->aOverflow[iIdx] = nextPage;
}
- aPayload = sqlite3PagerGetData(pDbPage);
- nextPage = get4byte(aPayload);
- if( offset<ovflSize ){
+#endif
+
+ if( offset>=ovflSize ){
+ /* The only reason to read this page is to obtain the page
+ ** number for the next page in the overflow chain. The page
+ ** data is not required. So first try to lookup the overflow
+ ** page-list cache, if any, then fall back to the getOverflowPage()
+ ** function.
+ */
+#ifndef SQLITE_OMIT_INCRBLOB
+ if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
+ nextPage = pCur->aOverflow[iIdx+1];
+ } else
+#endif
+ rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
+ offset -= ovflSize;
+ }else{
+ /* Need to read this page properly. It contains some of the
+ ** range of data that is being read (eOp==0) or written (eOp!=0).
+ */
+ DbPage *pDbPage;
int a = amt;
- if( a + offset > ovflSize ){
- a = ovflSize - offset;
+ rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
+ if( rc==SQLITE_OK ){
+ aPayload = sqlite3PagerGetData(pDbPage);
+ nextPage = get4byte(aPayload);
+ if( a + offset > ovflSize ){
+ a = ovflSize - offset;
+ }
+ rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
+ sqlite3PagerUnref(pDbPage);
+ offset = 0;
+ amt -= a;
+ pBuf += a;
}
- memcpy(pBuf, &aPayload[offset+4], a);
- offset = 0;
- amt -= a;
- pBuf += a;
- }else{
- offset -= ovflSize;
}
- sqlite3PagerUnref(pDbPage);
}
}
- if( amt>0 ){
+ if( rc==SQLITE_OK && amt>0 ){
return SQLITE_CORRUPT_BKPT;
}
- return SQLITE_OK;
+ return rc;
}
/*
@@ -24126,23 +41331,19 @@ static int getPayload(
** "amt" bytes will be transfered into pBuf[]. The transfer
** begins at "offset".
**
+** The caller must ensure that pCur is pointing to a valid row
+** in the table.
+**
** Return SQLITE_OK on success or an error code if anything goes
** wrong. An error is returned if "offset+amt" is larger than
** the available payload.
*/
-int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
- int rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_VALID );
- assert( pCur->pPage!=0 );
- if( pCur->pPage->intKey ){
- return SQLITE_CORRUPT_BKPT;
- }
- assert( pCur->pPage->intKey==0 );
- assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
- rc = getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
- }
- return rc;
+SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
+ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
+ return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}
/*
@@ -24154,13 +41355,22 @@ int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
** wrong. An error is returned if "offset+amt" is larger than
** the available payload.
*/
-int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
- int rc = restoreOrClearCursorPosition(pCur);
+SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
+ int rc;
+
+#ifndef SQLITE_OMIT_INCRBLOB
+ if ( pCur->eState==CURSOR_INVALID ){
+ return SQLITE_ABORT;
+ }
+#endif
+
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreCursorPosition(pCur);
if( rc==SQLITE_OK ){
assert( pCur->eState==CURSOR_VALID );
- assert( pCur->pPage!=0 );
- assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
- rc = getPayload(pCur, offset, amt, pBuf, 1);
+ assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
+ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
+ rc = accessPayload(pCur, offset, amt, pBuf, 0);
}
return rc;
}
@@ -24177,7 +41387,7 @@ int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
** and data to fit on the local page and for there to be no overflow
** pages. When that is so, this routine can be used to access the
** key and data without making a copy. If the key and/or data spills
-** onto overflow pages, then getPayload() must be used to reassembly
+** onto overflow pages, then accessPayload() must be used to reassemble
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
@@ -24192,28 +41402,30 @@ static const unsigned char *fetchPayload(
unsigned char *aPayload;
MemPage *pPage;
u32 nKey;
- int nLocal;
+ u32 nLocal;
- assert( pCur!=0 && pCur->pPage!=0 );
+ assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
assert( pCur->eState==CURSOR_VALID );
- pPage = pCur->pPage;
- assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
- getCellInfo(pCur);
+ assert( cursorHoldsMutex(pCur) );
+ pPage = pCur->apPage[pCur->iPage];
+ assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
+ if( NEVER(pCur->info.nSize==0) ){
+ btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
+ &pCur->info);
+ }
aPayload = pCur->info.pCell;
aPayload += pCur->info.nHeader;
if( pPage->intKey ){
nKey = 0;
}else{
- nKey = pCur->info.nKey;
+ nKey = (int)pCur->info.nKey;
}
if( skipKey ){
aPayload += nKey;
nLocal = pCur->info.nLocal - nKey;
}else{
nLocal = pCur->info.nLocal;
- if( nLocal>nKey ){
- nLocal = nKey;
- }
+ assert( nLocal<=nKey );
}
*pAmt = nLocal;
return aPayload;
@@ -24226,67 +41438,88 @@ static const unsigned char *fetchPayload(
** b-tree page. Write the number of available bytes into *pAmt.
**
** The pointer returned is ephemeral. The key/data may move
-** or be destroyed on the next call to any Btree routine.
+** or be destroyed on the next call to any Btree routine,
+** including calls from other threads against the same cache.
+** Hence, a mutex on the BtShared should be held prior to calling
+** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
-const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
- if( pCur->eState==CURSOR_VALID ){
- return (const void*)fetchPayload(pCur, pAmt, 0);
+SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
+ const void *p = 0;
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( cursorHoldsMutex(pCur) );
+ if( ALWAYS(pCur->eState==CURSOR_VALID) ){
+ p = (const void*)fetchPayload(pCur, pAmt, 0);
}
- return 0;
+ return p;
}
-const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
- if( pCur->eState==CURSOR_VALID ){
- return (const void*)fetchPayload(pCur, pAmt, 1);
+SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
+ const void *p = 0;
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( cursorHoldsMutex(pCur) );
+ if( ALWAYS(pCur->eState==CURSOR_VALID) ){
+ p = (const void*)fetchPayload(pCur, pAmt, 1);
}
- return 0;
+ return p;
}
/*
** Move the cursor down to a new child page. The newPgno argument is the
** page number of the child page to move to.
+**
+** This function returns SQLITE_CORRUPT if the page-header flags field of
+** the new child page does not match the flags field of the parent (i.e.
+** if an intkey page appears to be the parent of a non-intkey page, or
+** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
int rc;
+ int i = pCur->iPage;
MemPage *pNewPage;
- MemPage *pOldPage;
- BtShared *pBt = pCur->pBtree->pBt;
+ BtShared *pBt = pCur->pBt;
+ assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
- rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
+ assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
+ if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ rc = getAndInitPage(pBt, newPgno, &pNewPage);
if( rc ) return rc;
- pNewPage->idxParent = pCur->idx;
- pOldPage = pCur->pPage;
- pOldPage->idxShift = 0;
- releasePage(pOldPage);
- pCur->pPage = pNewPage;
- pCur->idx = 0;
+ pCur->apPage[i+1] = pNewPage;
+ pCur->aiIdx[i+1] = 0;
+ pCur->iPage++;
+
pCur->info.nSize = 0;
- if( pNewPage->nCell<1 ){
+ pCur->validNKey = 0;
+ if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
return SQLITE_CORRUPT_BKPT;
}
return SQLITE_OK;
}
+#ifndef NDEBUG
/*
-** Return true if the page is the virtual root of its table.
-**
-** The virtual root page is the root page for most tables. But
-** for the table rooted on page 1, sometime the real root page
-** is empty except for the right-pointer. In such cases the
-** virtual root page is the page that the right-pointer of page
-** 1 is pointing to.
+** Page pParent is an internal (non-leaf) tree page. This function
+** asserts that page number iChild is the left-child if the iIdx'th
+** cell in page pParent. Or, if iIdx is equal to the total number of
+** cells in pParent, that page number iChild is the right-child of
+** the page.
*/
-static int isRootPage(MemPage *pPage){
- MemPage *pParent = pPage->pParent;
- if( pParent==0 ) return 1;
- if( pParent->pgno>1 ) return 0;
- if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
- return 0;
+static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
+ assert( iIdx<=pParent->nCell );
+ if( iIdx==pParent->nCell ){
+ assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
+ }else{
+ assert( get4byte(findCell(pParent, iIdx))==iChild );
+ }
}
+#else
+# define assertParentIndex(x,y,z)
+#endif
/*
** Move the cursor up to the parent page.
@@ -24297,60 +41530,108 @@ static int isRootPage(MemPage *pPage){
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
- MemPage *pParent;
- MemPage *pPage;
- int idxParent;
-
+ assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
- pPage = pCur->pPage;
- assert( pPage!=0 );
- assert( !isRootPage(pPage) );
- pParent = pPage->pParent;
- assert( pParent!=0 );
- idxParent = pPage->idxParent;
- sqlite3PagerRef(pParent->pDbPage);
- releasePage(pPage);
- pCur->pPage = pParent;
+ assert( pCur->iPage>0 );
+ assert( pCur->apPage[pCur->iPage] );
+ assertParentIndex(
+ pCur->apPage[pCur->iPage-1],
+ pCur->aiIdx[pCur->iPage-1],
+ pCur->apPage[pCur->iPage]->pgno
+ );
+ releasePage(pCur->apPage[pCur->iPage]);
+ pCur->iPage--;
pCur->info.nSize = 0;
- assert( pParent->idxShift==0 );
- pCur->idx = idxParent;
+ pCur->validNKey = 0;
}
/*
-** Move the cursor to the root page
+** Move the cursor to point to the root page of its b-tree structure.
+**
+** If the table has a virtual root page, then the cursor is moved to point
+** to the virtual root page instead of the actual root page. A table has a
+** virtual root page when the actual root page contains no cells and a
+** single child page. This can only happen with the table rooted at page 1.
+**
+** If the b-tree structure is empty, the cursor state is set to
+** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
+** cell located on the root (or virtual root) page and the cursor state
+** is set to CURSOR_VALID.
+**
+** If this function returns successfully, it may be assumed that the
+** page-header flags indicate that the [virtual] root-page is the expected
+** kind of b-tree page (i.e. if when opening the cursor the caller did not
+** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
+** indicating a table b-tree, or if the caller did specify a KeyInfo
+** structure the flags byte is set to 0x02 or 0x0A, indicating an index
+** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
MemPage *pRoot;
int rc = SQLITE_OK;
- BtShared *pBt = pCur->pBtree->pBt;
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
- if( pCur->eState==CURSOR_REQUIRESEEK ){
- clearCursorPosition(pCur);
+ assert( cursorHoldsMutex(pCur) );
+ assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
+ assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
+ assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){
+ if( pCur->eState==CURSOR_FAULT ){
+ assert( pCur->skipNext!=SQLITE_OK );
+ return pCur->skipNext;
+ }
+ sqlite3BtreeClearCursor(pCur);
}
- pRoot = pCur->pPage;
- if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
- assert( pRoot->isInit );
+
+ if( pCur->iPage>=0 ){
+ int i;
+ for(i=1; i<=pCur->iPage; i++){
+ releasePage(pCur->apPage[i]);
+ }
+ pCur->iPage = 0;
}else{
- if(
- SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
- ){
+ rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
+ if( rc!=SQLITE_OK ){
pCur->eState = CURSOR_INVALID;
return rc;
}
- releasePage(pCur->pPage);
- pCur->pPage = pRoot;
+ pCur->iPage = 0;
+
+ /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
+ ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
+ ** NULL, the caller expects a table b-tree. If this is not the case,
+ ** return an SQLITE_CORRUPT error. */
+ assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
+ if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
+ return SQLITE_CORRUPT_BKPT;
+ }
}
- pCur->idx = 0;
+
+ /* Assert that the root page is of the correct type. This must be the
+ ** case as the call to this function that loaded the root-page (either
+ ** this call or a previous invocation) would have detected corruption
+ ** if the assumption were not true, and it is not possible for the flags
+ ** byte to have been modified while this cursor is holding a reference
+ ** to the page. */
+ pRoot = pCur->apPage[0];
+ assert( pRoot->pgno==pCur->pgnoRoot );
+ assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
+
+ pCur->aiIdx[0] = 0;
pCur->info.nSize = 0;
+ pCur->atLast = 0;
+ pCur->validNKey = 0;
+
if( pRoot->nCell==0 && !pRoot->leaf ){
Pgno subpage;
- assert( pRoot->pgno==1 );
+ if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
- assert( subpage>0 );
pCur->eState = CURSOR_VALID;
rc = moveToChild(pCur, subpage);
+ }else{
+ pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
}
- pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
return rc;
}
@@ -24363,17 +41644,17 @@ static int moveToRoot(BtCursor *pCur){
*/
static int moveToLeftmost(BtCursor *pCur){
Pgno pgno;
- int rc;
+ int rc = SQLITE_OK;
MemPage *pPage;
+ assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
- while( !(pPage = pCur->pPage)->leaf ){
- assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
- pgno = get4byte(findCell(pPage, pCur->idx));
+ while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
+ assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
+ pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
rc = moveToChild(pCur, pgno);
- if( rc ) return rc;
}
- return SQLITE_OK;
+ return rc;
}
/*
@@ -24388,37 +41669,45 @@ static int moveToLeftmost(BtCursor *pCur){
*/
static int moveToRightmost(BtCursor *pCur){
Pgno pgno;
- int rc;
- MemPage *pPage;
+ int rc = SQLITE_OK;
+ MemPage *pPage = 0;
+ assert( cursorHoldsMutex(pCur) );
assert( pCur->eState==CURSOR_VALID );
- while( !(pPage = pCur->pPage)->leaf ){
+ while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- pCur->idx = pPage->nCell;
+ pCur->aiIdx[pCur->iPage] = pPage->nCell;
rc = moveToChild(pCur, pgno);
- if( rc ) return rc;
}
- pCur->idx = pPage->nCell - 1;
- pCur->info.nSize = 0;
- return SQLITE_OK;
+ if( rc==SQLITE_OK ){
+ pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ }
+ return rc;
}
/* Move the cursor to the first entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
-int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
int rc;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
rc = moveToRoot(pCur);
- if( rc ) return rc;
- if( pCur->eState==CURSOR_INVALID ){
- assert( pCur->pPage->nCell==0 );
- *pRes = 1;
- return SQLITE_OK;
+ if( rc==SQLITE_OK ){
+ if( pCur->eState==CURSOR_INVALID ){
+ assert( pCur->apPage[pCur->iPage]->nCell==0 );
+ *pRes = 1;
+ rc = SQLITE_OK;
+ }else{
+ assert( pCur->apPage[pCur->iPage]->nCell>0 );
+ *pRes = 0;
+ rc = moveToLeftmost(pCur);
+ }
}
- assert( pCur->pPage->nCell>0 );
- *pRes = 0;
- rc = moveToLeftmost(pCur);
return rc;
}
@@ -24426,133 +41715,220 @@ int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
-int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
int rc;
- rc = moveToRoot(pCur);
- if( rc ) return rc;
- if( CURSOR_INVALID==pCur->eState ){
- assert( pCur->pPage->nCell==0 );
- *pRes = 1;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+
+ /* If the cursor already points to the last entry, this is a no-op. */
+ if( CURSOR_VALID==pCur->eState && pCur->atLast ){
+#ifdef SQLITE_DEBUG
+ /* This block serves to assert() that the cursor really does point
+ ** to the last entry in the b-tree. */
+ int ii;
+ for(ii=0; ii<pCur->iPage; ii++){
+ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
+ }
+ assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
+ assert( pCur->apPage[pCur->iPage]->leaf );
+#endif
return SQLITE_OK;
}
- assert( pCur->eState==CURSOR_VALID );
- *pRes = 0;
- rc = moveToRightmost(pCur);
+
+ rc = moveToRoot(pCur);
+ if( rc==SQLITE_OK ){
+ if( CURSOR_INVALID==pCur->eState ){
+ assert( pCur->apPage[pCur->iPage]->nCell==0 );
+ *pRes = 1;
+ }else{
+ assert( pCur->eState==CURSOR_VALID );
+ *pRes = 0;
+ rc = moveToRightmost(pCur);
+ pCur->atLast = rc==SQLITE_OK ?1:0;
+ }
+ }
return rc;
}
-/* Move the cursor so that it points to an entry near pKey/nKey.
-** Return a success code.
+/* Move the cursor so that it points to an entry near the key
+** specified by pIdxKey or intKey. Return a success code.
**
-** For INTKEY tables, only the nKey parameter is used. pKey is
-** ignored. For other tables, nKey is the number of bytes of data
-** in pKey. The comparison function specified when the cursor was
-** created is used to compare keys.
+** For INTKEY tables, the intKey parameter is used. pIdxKey
+** must be NULL. For index tables, pIdxKey is used and intKey
+** is ignored.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present. The cursor might point to an entry that comes
** before or after the key.
**
-** The result of comparing the key with the entry to which the
-** cursor is written to *pRes if pRes!=NULL. The meaning of
-** this value is as follows:
+** An integer is written into *pRes which is the result of
+** comparing the key with the entry to which the cursor is
+** pointing. The meaning of the integer written into
+** *pRes is as follows:
**
** *pRes<0 The cursor is left pointing at an entry that
-** is smaller than pKey or if the table is empty
+** is smaller than intKey/pIdxKey or if the table is empty
** and the cursor is therefore left point to nothing.
**
** *pRes==0 The cursor is left pointing at an entry that
-** exactly matches pKey.
+** exactly matches intKey/pIdxKey.
**
** *pRes>0 The cursor is left pointing at an entry that
-** is larger than pKey.
+** is larger than intKey/pIdxKey.
+**
*/
-int sqlite3BtreeMoveto(
- BtCursor *pCur, /* The cursor to be moved */
- const void *pKey, /* The key content for indices. Not used by tables */
- i64 nKey, /* Size of pKey. Or the key for tables */
- int biasRight, /* If true, bias the search to the high end */
- int *pRes /* Search result flag */
+SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
+ BtCursor *pCur, /* The cursor to be moved */
+ UnpackedRecord *pIdxKey, /* Unpacked index key */
+ i64 intKey, /* The table key */
+ int biasRight, /* If true, bias the search to the high end */
+ int *pRes /* Write search results here */
){
int rc;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( pRes );
+ assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
+
+ /* If the cursor is already positioned at the point we are trying
+ ** to move to, then just return without doing any work */
+ if( pCur->eState==CURSOR_VALID && pCur->validNKey
+ && pCur->apPage[0]->intKey
+ ){
+ if( pCur->info.nKey==intKey ){
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ if( pCur->atLast && pCur->info.nKey<intKey ){
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ }
+
rc = moveToRoot(pCur);
- if( rc ) return rc;
- assert( pCur->pPage );
- assert( pCur->pPage->isInit );
+ if( rc ){
+ return rc;
+ }
+ assert( pCur->apPage[pCur->iPage] );
+ assert( pCur->apPage[pCur->iPage]->isInit );
+ assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
if( pCur->eState==CURSOR_INVALID ){
*pRes = -1;
- assert( pCur->pPage->nCell==0 );
+ assert( pCur->apPage[pCur->iPage]->nCell==0 );
return SQLITE_OK;
}
+ assert( pCur->apPage[0]->intKey || pIdxKey );
for(;;){
int lwr, upr;
Pgno chldPg;
- MemPage *pPage = pCur->pPage;
- int c = -1; /* pRes return if table is empty must be -1 */
+ MemPage *pPage = pCur->apPage[pCur->iPage];
+ int c;
+
+ /* pPage->nCell must be greater than zero. If this is the root-page
+ ** the cursor would have been INVALID above and this for(;;) loop
+ ** not run. If this is not the root-page, then the moveToChild() routine
+ ** would have already detected db corruption. Similarly, pPage must
+ ** be the right kind (index or table) of b-tree page. Otherwise
+ ** a moveToChild() or moveToRoot() call would have detected corruption. */
+ assert( pPage->nCell>0 );
+ assert( pPage->intKey==(pIdxKey==0) );
lwr = 0;
upr = pPage->nCell-1;
- if( !pPage->intKey && pKey==0 ){
- return SQLITE_CORRUPT_BKPT;
- }
if( biasRight ){
- pCur->idx = upr;
+ pCur->aiIdx[pCur->iPage] = (u16)upr;
}else{
- pCur->idx = (upr+lwr)/2;
+ pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
}
- if( lwr<=upr ) for(;;){
- void *pCellKey;
- i64 nCellKey;
+ for(;;){
+ int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
+ u8 *pCell; /* Pointer to current cell in pPage */
+
pCur->info.nSize = 0;
+ pCell = findCell(pPage, idx) + pPage->childPtrSize;
if( pPage->intKey ){
- u8 *pCell;
- pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
+ i64 nCellKey;
if( pPage->hasData ){
u32 dummy;
- pCell += getVarint32(pCell, &dummy);
+ pCell += getVarint32(pCell, dummy);
}
- getVarint(pCell, (u64 *)&nCellKey);
- if( nCellKey<nKey ){
+ getVarint(pCell, (u64*)&nCellKey);
+ if( nCellKey==intKey ){
+ c = 0;
+ }else if( nCellKey<intKey ){
c = -1;
- }else if( nCellKey>nKey ){
- c = +1;
}else{
- c = 0;
+ assert( nCellKey>intKey );
+ c = +1;
}
+ pCur->validNKey = 1;
+ pCur->info.nKey = nCellKey;
}else{
- int available;
- pCellKey = (void *)fetchPayload(pCur, &available, 0);
- nCellKey = pCur->info.nKey;
- if( available>=nCellKey ){
- c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
+ /* The maximum supported page-size is 32768 bytes. This means that
+ ** the maximum number of record bytes stored on an index B-Tree
+ ** page is at most 8198 bytes, which may be stored as a 2-byte
+ ** varint. This information is used to attempt to avoid parsing
+ ** the entire cell by checking for the cases where the record is
+ ** stored entirely within the b-tree page by inspecting the first
+ ** 2 bytes of the cell.
+ */
+ int nCell = pCell[0];
+ if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
+ /* This branch runs if the record-size field of the cell is a
+ ** single byte varint and the record fits entirely on the main
+ ** b-tree page. */
+ c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
+ }else if( !(pCell[1] & 0x80)
+ && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
+ ){
+ /* The record-size field is a 2 byte varint and the record
+ ** fits entirely on the main b-tree page. */
+ c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
}else{
- pCellKey = sqliteMallocRaw( nCellKey );
- if( pCellKey==0 ) return SQLITE_NOMEM;
- rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
- c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
- sqliteFree(pCellKey);
- if( rc ) return rc;
+ /* The record flows over onto one or more overflow pages. In
+ ** this case the whole cell needs to be parsed, a buffer allocated
+ ** and accessPayload() used to retrieve the record into the
+ ** buffer before VdbeRecordCompare() can be called. */
+ void *pCellKey;
+ u8 * const pCellBody = pCell - pPage->childPtrSize;
+ btreeParseCellPtr(pPage, pCellBody, &pCur->info);
+ nCell = (int)pCur->info.nKey;
+ pCellKey = sqlite3Malloc( nCell );
+ if( pCellKey==0 ){
+ rc = SQLITE_NOMEM;
+ goto moveto_finish;
+ }
+ rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
+ if( rc ){
+ sqlite3_free(pCellKey);
+ goto moveto_finish;
+ }
+ c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
+ sqlite3_free(pCellKey);
}
}
if( c==0 ){
- if( pPage->leafData && !pPage->leaf ){
- lwr = pCur->idx;
+ if( pPage->intKey && !pPage->leaf ){
+ lwr = idx;
upr = lwr - 1;
break;
}else{
- if( pRes ) *pRes = 0;
- return SQLITE_OK;
+ *pRes = 0;
+ rc = SQLITE_OK;
+ goto moveto_finish;
}
}
if( c<0 ){
- lwr = pCur->idx+1;
+ lwr = idx+1;
}else{
- upr = pCur->idx-1;
+ upr = idx-1;
}
if( lwr>upr ){
break;
}
- pCur->idx = (lwr+upr)/2;
+ pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
}
assert( lwr==upr+1 );
assert( pPage->isInit );
@@ -24564,20 +41940,22 @@ int sqlite3BtreeMoveto(
chldPg = get4byte(findCell(pPage, lwr));
}
if( chldPg==0 ){
- assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
- if( pRes ) *pRes = c;
- return SQLITE_OK;
+ assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
+ *pRes = c;
+ rc = SQLITE_OK;
+ goto moveto_finish;
}
- pCur->idx = lwr;
+ pCur->aiIdx[pCur->iPage] = (u16)lwr;
pCur->info.nSize = 0;
+ pCur->validNKey = 0;
rc = moveToChild(pCur, chldPg);
- if( rc ){
- return rc;
- }
+ if( rc ) goto moveto_finish;
}
- /* NOT REACHED */
+moveto_finish:
+ return rc;
}
+
/*
** Return TRUE if the cursor is not pointing at an entry of the table.
**
@@ -24585,7 +41963,7 @@ int sqlite3BtreeMoveto(
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry. TRUE is also returned if the table is empty.
*/
-int sqlite3BtreeEof(BtCursor *pCur){
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
/* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
** have been deleted? This API will need to change to return an error code
** as well as the boolean result value.
@@ -24599,37 +41977,36 @@ int sqlite3BtreeEof(BtCursor *pCur){
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
-int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
int rc;
+ int idx;
MemPage *pPage;
-#ifndef SQLITE_OMIT_SHARED_CACHE
- rc = restoreOrClearCursorPosition(pCur);
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreCursorPosition(pCur);
if( rc!=SQLITE_OK ){
return rc;
}
-#endif
assert( pRes!=0 );
- pPage = pCur->pPage;
if( CURSOR_INVALID==pCur->eState ){
*pRes = 1;
return SQLITE_OK;
}
-#ifndef SQLITE_OMIT_SHARED_CACHE
- if( pCur->skip>0 ){
- pCur->skip = 0;
+ if( pCur->skipNext>0 ){
+ pCur->skipNext = 0;
*pRes = 0;
return SQLITE_OK;
}
- pCur->skip = 0;
-#endif
+ pCur->skipNext = 0;
+ pPage = pCur->apPage[pCur->iPage];
+ idx = ++pCur->aiIdx[pCur->iPage];
assert( pPage->isInit );
- assert( pCur->idx<pPage->nCell );
+ assert( idx<=pPage->nCell );
- pCur->idx++;
pCur->info.nSize = 0;
- if( pCur->idx>=pPage->nCell ){
+ pCur->validNKey = 0;
+ if( idx>=pPage->nCell ){
if( !pPage->leaf ){
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
if( rc ) return rc;
@@ -24638,16 +42015,16 @@ int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
return rc;
}
do{
- if( isRootPage(pPage) ){
+ if( pCur->iPage==0 ){
*pRes = 1;
pCur->eState = CURSOR_INVALID;
return SQLITE_OK;
}
moveToParent(pCur);
- pPage = pCur->pPage;
- }while( pCur->idx>=pPage->nCell );
+ pPage = pCur->apPage[pCur->iPage];
+ }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
*pRes = 0;
- if( pPage->leafData ){
+ if( pPage->intKey ){
rc = sqlite3BtreeNext(pCur, pRes);
}else{
rc = SQLITE_OK;
@@ -24662,57 +42039,58 @@ int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
return rc;
}
+
/*
** Step the cursor to the back to the previous entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
-int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
int rc;
- Pgno pgno;
MemPage *pPage;
-#ifndef SQLITE_OMIT_SHARED_CACHE
- rc = restoreOrClearCursorPosition(pCur);
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreCursorPosition(pCur);
if( rc!=SQLITE_OK ){
return rc;
}
-#endif
+ pCur->atLast = 0;
if( CURSOR_INVALID==pCur->eState ){
*pRes = 1;
return SQLITE_OK;
}
-#ifndef SQLITE_OMIT_SHARED_CACHE
- if( pCur->skip<0 ){
- pCur->skip = 0;
+ if( pCur->skipNext<0 ){
+ pCur->skipNext = 0;
*pRes = 0;
return SQLITE_OK;
}
- pCur->skip = 0;
-#endif
+ pCur->skipNext = 0;
- pPage = pCur->pPage;
+ pPage = pCur->apPage[pCur->iPage];
assert( pPage->isInit );
- assert( pCur->idx>=0 );
if( !pPage->leaf ){
- pgno = get4byte( findCell(pPage, pCur->idx) );
- rc = moveToChild(pCur, pgno);
- if( rc ) return rc;
+ int idx = pCur->aiIdx[pCur->iPage];
+ rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
+ if( rc ){
+ return rc;
+ }
rc = moveToRightmost(pCur);
}else{
- while( pCur->idx==0 ){
- if( isRootPage(pPage) ){
+ while( pCur->aiIdx[pCur->iPage]==0 ){
+ if( pCur->iPage==0 ){
pCur->eState = CURSOR_INVALID;
*pRes = 1;
return SQLITE_OK;
}
moveToParent(pCur);
- pPage = pCur->pPage;
}
- pCur->idx--;
pCur->info.nSize = 0;
- if( pPage->leafData && !pPage->leaf ){
+ pCur->validNKey = 0;
+
+ pCur->aiIdx[pCur->iPage]--;
+ pPage = pCur->apPage[pCur->iPage];
+ if( pPage->intKey && !pPage->leaf ){
rc = sqlite3BtreePrevious(pCur, pRes);
}else{
rc = SQLITE_OK;
@@ -24752,13 +42130,20 @@ static int allocateBtreePage(
){
MemPage *pPage1;
int rc;
- int n; /* Number of pages on the freelist */
- int k; /* Number of leaves on the trunk of the freelist */
+ u32 n; /* Number of pages on the freelist */
+ u32 k; /* Number of leaves on the trunk of the freelist */
MemPage *pTrunk = 0;
MemPage *pPrevTrunk = 0;
+ Pgno mxPage; /* Total size of the database file */
+ assert( sqlite3_mutex_held(pBt->mutex) );
pPage1 = pBt->pPage1;
+ mxPage = pagerPagecount(pBt);
n = get4byte(&pPage1->aData[36]);
+ testcase( n==mxPage-1 );
+ if( n>=mxPage ){
+ return SQLITE_CORRUPT_BKPT;
+ }
if( n>0 ){
/* There are pages on the freelist. Reuse one of those pages. */
Pgno iTrunk;
@@ -24769,7 +42154,7 @@ static int allocateBtreePage(
** the entire-list will be searched for that page.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
- if( exact ){
+ if( exact && nearby<=mxPage ){
u8 eType;
assert( nearby>0 );
assert( pBt->autoVacuum );
@@ -24800,7 +42185,12 @@ static int allocateBtreePage(
}else{
iTrunk = get4byte(&pPage1->aData[32]);
}
- rc = getPage(pBt, iTrunk, &pTrunk, 0);
+ testcase( iTrunk==mxPage );
+ if( iTrunk>mxPage ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
+ }
if( rc ){
pTrunk = 0;
goto end_allocate_page;
@@ -24821,7 +42211,7 @@ static int allocateBtreePage(
*ppPage = pTrunk;
pTrunk = 0;
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
- }else if( k>pBt->usableSize/4 - 8 ){
+ }else if( k>(u32)(pBt->usableSize/4 - 2) ){
/* Value of k is out of range. Database corruption */
rc = SQLITE_CORRUPT_BKPT;
goto end_allocate_page;
@@ -24850,7 +42240,12 @@ static int allocateBtreePage(
*/
MemPage *pNewTrunk;
Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
- rc = getPage(pBt, iNewTrunk, &pNewTrunk, 0);
+ if( iNewTrunk>mxPage ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto end_allocate_page;
+ }
+ testcase( iNewTrunk==mxPage );
+ rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
if( rc!=SQLITE_OK ){
goto end_allocate_page;
}
@@ -24864,6 +42259,7 @@ static int allocateBtreePage(
memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
releasePage(pNewTrunk);
if( !pPrevTrunk ){
+ assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
put4byte(&pPage1->aData[32], iNewTrunk);
}else{
rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
@@ -24876,9 +42272,9 @@ static int allocateBtreePage(
pTrunk = 0;
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
#endif
- }else{
+ }else if( k>0 ){
/* Extract a leaf from the trunk */
- int closest;
+ u32 closest;
Pgno iPage;
unsigned char *aData = pTrunk->aData;
rc = sqlite3PagerWrite(pTrunk->pDbPage);
@@ -24886,7 +42282,8 @@ static int allocateBtreePage(
goto end_allocate_page;
}
if( nearby>0 ){
- int i, dist;
+ u32 i;
+ int dist;
closest = 0;
dist = get4byte(&aData[8]) - nearby;
if( dist<0 ) dist = -dist;
@@ -24903,12 +42300,15 @@ static int allocateBtreePage(
}
iPage = get4byte(&aData[8+closest*4]);
+ testcase( iPage==mxPage );
+ if( iPage>mxPage ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto end_allocate_page;
+ }
+ testcase( iPage==mxPage );
if( !searchList || iPage==nearby ){
+ int noContent;
*pPgno = iPage;
- if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
- /* Free page off the end of the file */
- return SQLITE_CORRUPT_BKPT;
- }
TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
": %d more free pages\n",
*pPgno, closest+1, k, pTrunk->pgno, n-1));
@@ -24916,9 +42316,10 @@ static int allocateBtreePage(
memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
}
put4byte(&aData[4], k-1);
- rc = getPage(pBt, *pPgno, ppPage, 1);
+ assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
+ noContent = !btreeGetHasContent(pBt, *pPgno);
+ rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
if( rc==SQLITE_OK ){
- sqlite3PagerDontRollback((*ppPage)->pDbPage);
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
if( rc!=SQLITE_OK ){
releasePage(*ppPage);
@@ -24933,7 +42334,12 @@ static int allocateBtreePage(
}else{
/* There are no pages on the freelist, so create a new page at the
** end of the file */
- *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
+ int nPage = pagerPagecount(pBt);
+ *pPgno = nPage + 1;
+
+ if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
+ (*pPgno)++;
+ }
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
@@ -24941,14 +42347,22 @@ static int allocateBtreePage(
** at the end of the file instead of one. The first allocated page
** becomes a new pointer-map page, the second is used by the caller.
*/
+ MemPage *pPg = 0;
TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
+ rc = btreeGetPage(pBt, *pPgno, &pPg, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pPg->pDbPage);
+ releasePage(pPg);
+ }
+ if( rc ) return rc;
(*pPgno)++;
+ if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
}
#endif
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
- rc = getPage(pBt, *pPgno, ppPage, 0);
+ rc = btreeGetPage(pBt, *pPgno, ppPage, 0);
if( rc ) return rc;
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
if( rc!=SQLITE_OK ){
@@ -24962,90 +42376,159 @@ static int allocateBtreePage(
end_allocate_page:
releasePage(pTrunk);
releasePage(pPrevTrunk);
+ if( rc==SQLITE_OK ){
+ if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
+ releasePage(*ppPage);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ (*ppPage)->isInit = 0;
+ }else{
+ *ppPage = 0;
+ }
return rc;
}
/*
-** Add a page of the database file to the freelist.
+** This function is used to add page iPage to the database file free-list.
+** It is assumed that the page is not already a part of the free-list.
+**
+** The value passed as the second argument to this function is optional.
+** If the caller happens to have a pointer to the MemPage object
+** corresponding to page iPage handy, it may pass it as the second value.
+** Otherwise, it may pass NULL.
**
-** sqlite3PagerUnref() is NOT called for pPage.
+** If a pointer to a MemPage object is passed as the second argument,
+** its reference count is not altered by this function.
*/
-static int freePage(MemPage *pPage){
- BtShared *pBt = pPage->pBt;
- MemPage *pPage1 = pBt->pPage1;
- int rc, n, k;
+static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
+ MemPage *pTrunk = 0; /* Free-list trunk page */
+ Pgno iTrunk = 0; /* Page number of free-list trunk page */
+ MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
+ MemPage *pPage; /* Page being freed. May be NULL. */
+ int rc; /* Return Code */
+ int nFree; /* Initial number of pages on free-list */
- /* Prepare the page for freeing */
- assert( pPage->pgno>1 );
- pPage->isInit = 0;
- releasePage(pPage->pParent);
- pPage->pParent = 0;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( iPage>1 );
+ assert( !pMemPage || pMemPage->pgno==iPage );
+
+ if( pMemPage ){
+ pPage = pMemPage;
+ sqlite3PagerRef(pPage->pDbPage);
+ }else{
+ pPage = btreePageLookup(pBt, iPage);
+ }
/* Increment the free page count on pPage1 */
rc = sqlite3PagerWrite(pPage1->pDbPage);
- if( rc ) return rc;
- n = get4byte(&pPage1->aData[36]);
- put4byte(&pPage1->aData[36], n+1);
+ if( rc ) goto freepage_out;
+ nFree = get4byte(&pPage1->aData[36]);
+ put4byte(&pPage1->aData[36], nFree+1);
#ifdef SQLITE_SECURE_DELETE
/* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
** always fully overwrite deleted information with zeros.
*/
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ) return rc;
+ if( (!pPage && (rc = btreeGetPage(pBt, iPage, &pPage, 0)))
+ || (rc = sqlite3PagerWrite(pPage->pDbPage))
+ ){
+ goto freepage_out;
+ }
memset(pPage->aData, 0, pPage->pBt->pageSize);
#endif
-#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the database supports auto-vacuum, write an entry in the pointer-map
** to indicate that the page is free.
*/
- if( pBt->autoVacuum ){
- rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
- if( rc ) return rc;
+ if( ISAUTOVACUUM ){
+ ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
+ if( rc ) goto freepage_out;
}
-#endif
- if( n==0 ){
- /* This is the first free page */
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ) return rc;
- memset(pPage->aData, 0, 8);
- put4byte(&pPage1->aData[32], pPage->pgno);
- TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
- }else{
- /* Other free pages already exist. Retrive the first trunk page
- ** of the freelist and find out how many leaves it has. */
- MemPage *pTrunk;
- rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
- if( rc ) return rc;
- k = get4byte(&pTrunk->aData[4]);
- if( k>=pBt->usableSize/4 - 8 ){
- /* The trunk is full. Turn the page being freed into a new
- ** trunk page with no leaves. */
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ) return rc;
- put4byte(pPage->aData, pTrunk->pgno);
- put4byte(&pPage->aData[4], 0);
- put4byte(&pPage1->aData[32], pPage->pgno);
- TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
- pPage->pgno, pTrunk->pgno));
- }else{
- /* Add the newly freed page as a leaf on the current trunk */
+ /* Now manipulate the actual database free-list structure. There are two
+ ** possibilities. If the free-list is currently empty, or if the first
+ ** trunk page in the free-list is full, then this page will become a
+ ** new free-list trunk page. Otherwise, it will become a leaf of the
+ ** first trunk page in the current free-list. This block tests if it
+ ** is possible to add the page as a new free-list leaf.
+ */
+ if( nFree!=0 ){
+ u32 nLeaf; /* Initial number of leaf cells on trunk page */
+
+ iTrunk = get4byte(&pPage1->aData[32]);
+ rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
+ if( rc!=SQLITE_OK ){
+ goto freepage_out;
+ }
+
+ nLeaf = get4byte(&pTrunk->aData[4]);
+ assert( pBt->usableSize>32 );
+ if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto freepage_out;
+ }
+ if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
+ /* In this case there is room on the trunk page to insert the page
+ ** being freed as a new leaf.
+ **
+ ** Note that the trunk page is not really full until it contains
+ ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
+ ** coded. But due to a coding error in versions of SQLite prior to
+ ** 3.6.0, databases with freelist trunk pages holding more than
+ ** usableSize/4 - 8 entries will be reported as corrupt. In order
+ ** to maintain backwards compatibility with older versions of SQLite,
+ ** we will continue to restrict the number of entries to usableSize/4 - 8
+ ** for now. At some point in the future (once everyone has upgraded
+ ** to 3.6.0 or later) we should consider fixing the conditional above
+ ** to read "usableSize/4-2" instead of "usableSize/4-8".
+ */
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if( rc==SQLITE_OK ){
- put4byte(&pTrunk->aData[4], k+1);
- put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
+ put4byte(&pTrunk->aData[4], nLeaf+1);
+ put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
#ifndef SQLITE_SECURE_DELETE
- sqlite3PagerDontWrite(pPage->pDbPage);
+ if( pPage ){
+ sqlite3PagerDontWrite(pPage->pDbPage);
+ }
#endif
+ rc = btreeSetHasContent(pBt, iPage);
}
TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
+ goto freepage_out;
}
- releasePage(pTrunk);
}
+
+ /* If control flows to this point, then it was not possible to add the
+ ** the page being freed as a leaf page of the first trunk in the free-list.
+ ** Possibly because the free-list is empty, or possibly because the
+ ** first trunk in the free-list is full. Either way, the page being freed
+ ** will become the new first trunk page in the free-list.
+ */
+ if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
+ goto freepage_out;
+ }
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ goto freepage_out;
+ }
+ put4byte(pPage->aData, iTrunk);
+ put4byte(&pPage->aData[4], 0);
+ put4byte(&pPage1->aData[32], iPage);
+ TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
+
+freepage_out:
+ if( pPage ){
+ pPage->isInit = 0;
+ }
+ releasePage(pPage);
+ releasePage(pTrunk);
return rc;
}
+static void freePage(MemPage *pPage, int *pRC){
+ if( (*pRC)==SQLITE_OK ){
+ *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
+ }
+}
/*
** Free any overflow pages associated with the given Cell.
@@ -25056,29 +42539,37 @@ static int clearCell(MemPage *pPage, unsigned char *pCell){
Pgno ovflPgno;
int rc;
int nOvfl;
- int ovflPageSize;
+ u16 ovflPageSize;
- parseCellPtr(pPage, pCell, &info);
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ btreeParseCellPtr(pPage, pCell, &info);
if( info.iOverflow==0 ){
return SQLITE_OK; /* No overflow pages. Return without doing anything */
}
ovflPgno = get4byte(&pCell[info.iOverflow]);
+ assert( pBt->usableSize > 4 );
ovflPageSize = pBt->usableSize - 4;
nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
assert( ovflPgno==0 || nOvfl>0 );
while( nOvfl-- ){
- MemPage *pOvfl;
- if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
+ Pgno iNext = 0;
+ MemPage *pOvfl = 0;
+ if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
+ /* 0 is not a legal page number and page 1 cannot be an
+ ** overflow page. Therefore if ovflPgno<2 or past the end of the
+ ** file the database must be corrupt. */
return SQLITE_CORRUPT_BKPT;
}
- rc = getPage(pBt, ovflPgno, &pOvfl, nOvfl==0);
- if( rc ) return rc;
if( nOvfl ){
- ovflPgno = get4byte(pOvfl->aData);
+ rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
+ if( rc ) return rc;
+ }
+ rc = freePage2(pBt, pOvfl, ovflPgno);
+ if( pOvfl ){
+ sqlite3PagerUnref(pOvfl->pDbPage);
}
- rc = freePage(pOvfl);
- sqlite3PagerUnref(pOvfl->pDbPage);
if( rc ) return rc;
+ ovflPgno = iNext;
}
return SQLITE_OK;
}
@@ -25100,6 +42591,7 @@ static int fillInCell(
unsigned char *pCell, /* Complete text of the cell */
const void *pKey, i64 nKey, /* The key */
const void *pData,int nData, /* The data */
+ int nZero, /* Extra zero bytes to append to pData */
int *pnSize /* Write cell size here */
){
int nPayload;
@@ -25115,32 +42607,42 @@ static int fillInCell(
int nHeader;
CellInfo info;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+
+ /* pPage is not necessarily writeable since pCell might be auxiliary
+ ** buffer space that is separate from the pPage buffer area */
+ assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
/* Fill in the header. */
nHeader = 0;
if( !pPage->leaf ){
nHeader += 4;
}
if( pPage->hasData ){
- nHeader += putVarint(&pCell[nHeader], nData);
+ nHeader += putVarint(&pCell[nHeader], nData+nZero);
}else{
- nData = 0;
+ nData = nZero = 0;
}
nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
- parseCellPtr(pPage, pCell, &info);
+ btreeParseCellPtr(pPage, pCell, &info);
assert( info.nHeader==nHeader );
assert( info.nKey==nKey );
- assert( info.nData==nData );
+ assert( info.nData==(u32)(nData+nZero) );
/* Fill in the payload */
- nPayload = nData;
+ nPayload = nData + nZero;
if( pPage->intKey ){
pSrc = pData;
nSrc = nData;
nData = 0;
}else{
- nPayload += nKey;
+ if( NEVER(nKey>0x7fffffff || pKey==0) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ nPayload += (int)nKey;
pSrc = pKey;
- nSrc = nKey;
+ nSrc = (int)nKey;
}
*pnSize = info.nSize;
spaceLeft = info.nLocal;
@@ -25151,22 +42653,48 @@ static int fillInCell(
if( spaceLeft==0 ){
#ifndef SQLITE_OMIT_AUTOVACUUM
Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
+ if( pBt->autoVacuum ){
+ do{
+ pgnoOvfl++;
+ } while(
+ PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
+ );
+ }
#endif
rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the database supports auto-vacuum, and the second or subsequent
** overflow page is being allocated, add an entry to the pointer-map
- ** for that page now. The entry for the first overflow page will be
- ** added later, by the insertCell() routine.
+ ** for that page now.
+ **
+ ** If this is the first overflow page, then write a partial entry
+ ** to the pointer-map. If we write nothing to this pointer-map slot,
+ ** then the optimistic overflow chain processing in clearCell()
+ ** may misinterpret the uninitialised values and delete the
+ ** wrong pages from the database.
*/
- if( pBt->autoVacuum && pgnoPtrmap!=0 && rc==SQLITE_OK ){
- rc = ptrmapPut(pBt, pgnoOvfl, PTRMAP_OVERFLOW2, pgnoPtrmap);
+ if( pBt->autoVacuum && rc==SQLITE_OK ){
+ u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
+ ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
+ if( rc ){
+ releasePage(pOvfl);
+ }
}
#endif
if( rc ){
releasePage(pToRelease);
return rc;
}
+
+ /* If pToRelease is not zero than pPrior points into the data area
+ ** of pToRelease. Make sure pToRelease is still writeable. */
+ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
+
+ /* If pPrior is part of the data area of pPage, then make sure pPage
+ ** is still writeable */
+ assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
put4byte(pPrior, pgnoOvfl);
releasePage(pToRelease);
pToRelease = pOvfl;
@@ -25177,9 +42705,23 @@ static int fillInCell(
}
n = nPayload;
if( n>spaceLeft ) n = spaceLeft;
- if( n>nSrc ) n = nSrc;
- assert( pSrc );
- memcpy(pPayload, pSrc, n);
+
+ /* If pToRelease is not zero than pPayload points into the data area
+ ** of pToRelease. Make sure pToRelease is still writeable. */
+ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
+
+ /* If pPayload is part of the data area of pPage, then make sure pPage
+ ** is still writeable */
+ assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
+ if( nSrc>0 ){
+ if( n>nSrc ) n = nSrc;
+ assert( pSrc );
+ memcpy(pPayload, pSrc, n);
+ }else{
+ memset(pPayload, 0, n);
+ }
nPayload -= n;
pPayload += n;
pSrc += n;
@@ -25195,75 +42737,6 @@ static int fillInCell(
}
/*
-** Change the MemPage.pParent pointer on the page whose number is
-** given in the second argument so that MemPage.pParent holds the
-** pointer in the third argument.
-*/
-static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
- MemPage *pThis;
- DbPage *pDbPage;
-
- assert( pNewParent!=0 );
- if( pgno==0 ) return SQLITE_OK;
- assert( pBt->pPager!=0 );
- pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
- if( pDbPage ){
- pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
- if( pThis->isInit ){
- assert( pThis->aData==(sqlite3PagerGetData(pDbPage)) );
- if( pThis->pParent!=pNewParent ){
- if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
- pThis->pParent = pNewParent;
- sqlite3PagerRef(pNewParent->pDbPage);
- }
- pThis->idxParent = idx;
- }
- sqlite3PagerUnref(pDbPage);
- }
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
- }
-#endif
- return SQLITE_OK;
-}
-
-
-
-/*
-** Change the pParent pointer of all children of pPage to point back
-** to pPage.
-**
-** In other words, for every child of pPage, invoke reparentPage()
-** to make sure that each child knows that pPage is its parent.
-**
-** This routine gets called after you memcpy() one page into
-** another.
-*/
-static int reparentChildPages(MemPage *pPage){
- int i;
- BtShared *pBt = pPage->pBt;
- int rc = SQLITE_OK;
-
- if( pPage->leaf ) return SQLITE_OK;
-
- for(i=0; i<pPage->nCell; i++){
- u8 *pCell = findCell(pPage, i);
- if( !pPage->leaf ){
- rc = reparentPage(pBt, get4byte(pCell), pPage, i);
- if( rc!=SQLITE_OK ) return rc;
- }
- }
- if( !pPage->leaf ){
- rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
- pPage, i);
- pPage->idxShift = 0;
- }
- return rc;
-}
-
-/*
** Remove the i-th cell from pPage. This routine effects pPage only.
** The cell content is not freed or deallocated. It is assumed that
** the cell content has been copied someplace else. This routine just
@@ -25271,28 +42744,42 @@ static int reparentChildPages(MemPage *pPage){
**
** "sz" must be the number of bytes in the cell.
*/
-static void dropCell(MemPage *pPage, int idx, int sz){
+static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
int i; /* Loop counter */
int pc; /* Offset to cell content of cell being deleted */
u8 *data; /* pPage->aData */
u8 *ptr; /* Used to move bytes around within data[] */
+ int rc; /* The return code */
+ int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
+
+ if( *pRC ) return;
assert( idx>=0 && idx<pPage->nCell );
assert( sz==cellSize(pPage, idx) );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
data = pPage->aData;
ptr = &data[pPage->cellOffset + 2*idx];
pc = get2byte(ptr);
- assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
- freeSpace(pPage, pc, sz);
+ hdr = pPage->hdrOffset;
+ testcase( pc==get2byte(&data[hdr+5]) );
+ testcase( pc+sz==pPage->pBt->usableSize );
+ if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
+ }
+ rc = freeSpace(pPage, pc, sz);
+ if( rc ){
+ *pRC = rc;
+ return;
+ }
for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
ptr[0] = ptr[2];
ptr[1] = ptr[3];
}
pPage->nCell--;
- put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
+ put2byte(&data[hdr+3], pPage->nCell);
pPage->nFree += 2;
- pPage->idxShift = 1;
}
/*
@@ -25312,81 +42799,82 @@ static void dropCell(MemPage *pPage, int idx, int sz){
** nSkip is non-zero, then pCell may not point to an invalid memory location
** (but pCell+nSkip is always valid).
*/
-static int insertCell(
+static void insertCell(
MemPage *pPage, /* Page into which we are copying */
int i, /* New cell becomes the i-th cell of the page */
u8 *pCell, /* Content of the new cell */
int sz, /* Bytes of content in pCell */
u8 *pTemp, /* Temp storage space for pCell, if needed */
- u8 nSkip /* Do not write the first nSkip bytes of the cell */
+ Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
+ int *pRC /* Read and write return code from here */
){
int idx; /* Where to write new cell content in data[] */
int j; /* Loop counter */
- int top; /* First byte of content for any cell in data[] */
int end; /* First byte past the last cell pointer in data[] */
int ins; /* Index in data[] where new cell pointer is inserted */
- int hdr; /* Offset into data[] of the page header */
int cellOffset; /* Address of first cell pointer in data[] */
u8 *data; /* The content of the whole page */
u8 *ptr; /* Used for moving information around in data[] */
+ int nSkip = (iChild ? 4 : 0);
+
+ if( *pRC ) return;
+
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
+ assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
+ assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
assert( sz==cellSizePtr(pPage, pCell) );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
if( pPage->nOverflow || sz+2>pPage->nFree ){
if( pTemp ){
memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
pCell = pTemp;
}
+ if( iChild ){
+ put4byte(pCell, iChild);
+ }
j = pPage->nOverflow++;
- assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
+ assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
pPage->aOvfl[j].pCell = pCell;
- pPage->aOvfl[j].idx = i;
- pPage->nFree = 0;
+ pPage->aOvfl[j].idx = (u16)i;
}else{
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ *pRC = rc;
+ return;
+ }
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
data = pPage->aData;
- hdr = pPage->hdrOffset;
- top = get2byte(&data[hdr+5]);
cellOffset = pPage->cellOffset;
- end = cellOffset + 2*pPage->nCell + 2;
+ end = cellOffset + 2*pPage->nCell;
ins = cellOffset + 2*i;
- if( end > top - sz ){
- int rc = defragmentPage(pPage);
- if( rc!=SQLITE_OK ) return rc;
- top = get2byte(&data[hdr+5]);
- assert( end + sz <= top );
- }
- idx = allocateSpace(pPage, sz);
- assert( idx>0 );
- assert( end <= get2byte(&data[hdr+5]) );
+ rc = allocateSpace(pPage, sz, &idx);
+ if( rc ){ *pRC = rc; return; }
+ /* The allocateSpace() routine guarantees the following two properties
+ ** if it returns success */
+ assert( idx >= end+2 );
+ assert( idx+sz <= pPage->pBt->usableSize );
pPage->nCell++;
- pPage->nFree -= 2;
+ pPage->nFree -= (u16)(2 + sz);
memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
- for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
+ if( iChild ){
+ put4byte(&data[idx], iChild);
+ }
+ for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
ptr[0] = ptr[-2];
ptr[1] = ptr[-1];
}
put2byte(&data[ins], idx);
- put2byte(&data[hdr+3], pPage->nCell);
- pPage->idxShift = 1;
+ put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pPage->pBt->autoVacuum ){
/* The cell may contain a pointer to an overflow page. If so, write
** the entry for the overflow page into the pointer map.
*/
- CellInfo info;
- parseCellPtr(pPage, pCell, &info);
- assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
- if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
- Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
- int rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
- if( rc!=SQLITE_OK ) return rc;
- }
+ ptrmapPutOvflPtr(pPage, pCell, pRC);
}
#endif
}
-
- return SQLITE_OK;
}
/*
@@ -25397,40 +42885,36 @@ static void assemblePage(
MemPage *pPage, /* The page to be assemblied */
int nCell, /* The number of cells to add to this page */
u8 **apCell, /* Pointers to cell bodies */
- int *aSize /* Sizes of the cells */
+ u16 *aSize /* Sizes of the cells */
){
int i; /* Loop counter */
- int totalSize; /* Total size of all cells */
- int hdr; /* Index of page header */
- int cellptr; /* Address of next cell pointer */
+ u8 *pCellptr; /* Address of next cell pointer */
int cellbody; /* Address of next cell body */
- u8 *data; /* Data for the page */
+ u8 * const data = pPage->aData; /* Pointer to data for pPage */
+ const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
+ const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
assert( pPage->nOverflow==0 );
- totalSize = 0;
- for(i=0; i<nCell; i++){
- totalSize += aSize[i];
- }
- assert( totalSize+2*nCell<=pPage->nFree );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+
+ /* Check that the page has just been zeroed by zeroPage() */
assert( pPage->nCell==0 );
- cellptr = pPage->cellOffset;
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- put2byte(&data[hdr+3], nCell);
- if( nCell ){
- cellbody = allocateSpace(pPage, totalSize);
- assert( cellbody>0 );
- assert( pPage->nFree >= 2*nCell );
- pPage->nFree -= 2*nCell;
- for(i=0; i<nCell; i++){
- put2byte(&data[cellptr], cellbody);
- memcpy(&data[cellbody], apCell[i], aSize[i]);
- cellptr += 2;
- cellbody += aSize[i];
- }
- assert( cellbody==pPage->pBt->usableSize );
+ assert( get2byte(&data[hdr+5])==nUsable );
+
+ pCellptr = &data[pPage->cellOffset + nCell*2];
+ cellbody = nUsable;
+ for(i=nCell-1; i>=0; i--){
+ pCellptr -= 2;
+ cellbody -= aSize[i];
+ put2byte(pCellptr, cellbody);
+ memcpy(&data[cellbody], apCell[i], aSize[i]);
}
- pPage->nCell = nCell;
+ put2byte(&data[hdr+3], nCell);
+ put2byte(&data[hdr+5], cellbody);
+ pPage->nFree -= (nCell*2 + nUsable - cellbody);
+ pPage->nCell = (u16)nCell;
}
/*
@@ -25448,8 +42932,6 @@ static void assemblePage(
#define NN 1 /* Number of neighbors on either side of pPage */
#define NB (NN*2+1) /* Total pages involved in the balance */
-/* Forward reference */
-static int balance(MemPage*, int);
#ifndef SQLITE_OMIT_QUICKBALANCE
/*
@@ -25458,7 +42940,7 @@ static int balance(MemPage*, int);
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
-** Instead of trying balance the 3 right-most leaf pages, just add
+** Instead of trying to balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page. This leaves the right side of the tree somewhat
** unbalanced. But odds are that we will be inserting new entries
@@ -25468,312 +42950,384 @@ static int balance(MemPage*, int);
** pPage is the leaf page which is the right-most page in the tree.
** pParent is its parent. pPage must have a single overflow entry
** which is also the right-most entry on the page.
+**
+** The pSpace buffer is used to store a temporary copy of the divider
+** cell that will be inserted into pParent. Such a cell consists of a 4
+** byte page number followed by a variable length integer. In other
+** words, at most 13 bytes. Hence the pSpace buffer must be at
+** least 13 bytes in size.
*/
-static int balance_quick(MemPage *pPage, MemPage *pParent){
- int rc;
- MemPage *pNew;
- Pgno pgnoNew;
- u8 *pCell;
- int szCell;
- CellInfo info;
- BtShared *pBt = pPage->pBt;
- int parentIdx = pParent->nCell; /* pParent new divider cell index */
- int parentSize; /* Size of new divider cell */
- u8 parentCell[64]; /* Space for the new divider cell */
+static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
+ BtShared *const pBt = pPage->pBt; /* B-Tree Database */
+ MemPage *pNew; /* Newly allocated page */
+ int rc; /* Return Code */
+ Pgno pgnoNew; /* Page number of pNew */
- /* Allocate a new page. Insert the overflow cell from pPage
- ** into it. Then remove the overflow cell from pPage.
- */
- rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pCell = pPage->aOvfl[0].pCell;
- szCell = cellSizePtr(pPage, pCell);
- zeroPage(pNew, pPage->aData[0]);
- assemblePage(pNew, 1, &pCell, &szCell);
- pPage->nOverflow = 0;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ assert( pPage->nOverflow==1 );
- /* Set the parent of the newly allocated page to pParent. */
- pNew->pParent = pParent;
- sqlite3PagerRef(pParent->pDbPage);
+ if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
- /* pPage is currently the right-child of pParent. Change this
- ** so that the right-child is the new page allocated above and
- ** pPage is the next-to-right child.
+ /* Allocate a new page. This page will become the right-sibling of
+ ** pPage. Make the parent page writable, so that the new divider cell
+ ** may be inserted. If both these operations are successful, proceed.
*/
- assert( pPage->nCell>0 );
- parseCellPtr(pPage, findCell(pPage, pPage->nCell-1), &info);
- rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, &parentSize);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( parentSize<64 );
- rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
- put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
+ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, update the pointer map
- ** with entries for the new page, and any pointer from the
- ** cell on the page to an overflow page.
- */
- if( pBt->autoVacuum ){
- rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = ptrmapPutOvfl(pNew, 0);
- if( rc!=SQLITE_OK ){
- return rc;
+ if( rc==SQLITE_OK ){
+
+ u8 *pOut = &pSpace[4];
+ u8 *pCell = pPage->aOvfl[0].pCell;
+ u16 szCell = cellSizePtr(pPage, pCell);
+ u8 *pStop;
+
+ assert( sqlite3PagerIswriteable(pNew->pDbPage) );
+ assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
+ zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
+ assemblePage(pNew, 1, &pCell, &szCell);
+
+ /* If this is an auto-vacuum database, update the pointer map
+ ** with entries for the new page, and any pointer from the
+ ** cell on the page to an overflow page. If either of these
+ ** operations fails, the return code is set, but the contents
+ ** of the parent page are still manipulated by thh code below.
+ ** That is Ok, at this point the parent page is guaranteed to
+ ** be marked as dirty. Returning an error code will cause a
+ ** rollback, undoing any changes made to the parent page.
+ */
+ if( ISAUTOVACUUM ){
+ ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
+ if( szCell>pNew->minLocal ){
+ ptrmapPutOvflPtr(pNew, pCell, &rc);
+ }
}
+
+ /* Create a divider cell to insert into pParent. The divider cell
+ ** consists of a 4-byte page number (the page number of pPage) and
+ ** a variable length key value (which must be the same value as the
+ ** largest key on pPage).
+ **
+ ** To find the largest key value on pPage, first find the right-most
+ ** cell on pPage. The first two fields of this cell are the
+ ** record-length (a variable length integer at most 32-bits in size)
+ ** and the key value (a variable length integer, may have any value).
+ ** The first of the while(...) loops below skips over the record-length
+ ** field. The second while(...) loop copies the key value from the
+ ** cell on pPage into the pSpace buffer.
+ */
+ pCell = findCell(pPage, pPage->nCell-1);
+ pStop = &pCell[9];
+ while( (*(pCell++)&0x80) && pCell<pStop );
+ pStop = &pCell[9];
+ while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
+
+ /* Insert the new divider cell into pParent. */
+ insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
+ 0, pPage->pgno, &rc);
+
+ /* Set the right-child pointer of pParent to point to the new page. */
+ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
+
+ /* Release the reference to the new page. */
+ releasePage(pNew);
}
-#endif
- /* Release the reference to the new page and balance the parent page,
- ** in case the divider cell inserted caused it to become overfull.
- */
- releasePage(pNew);
- return balance(pParent, 0);
+ return rc;
}
#endif /* SQLITE_OMIT_QUICKBALANCE */
+#if 0
/*
-** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
-** if the database supports auto-vacuum or not. Because it is used
-** within an expression that is an argument to another macro
-** (sqliteMallocRaw), it is not possible to use conditional compilation.
-** So, this macro is defined instead.
+** This function does not contribute anything to the operation of SQLite.
+** it is sometimes activated temporarily while debugging code responsible
+** for setting pointer-map entries.
*/
-#ifndef SQLITE_OMIT_AUTOVACUUM
-#define ISAUTOVACUUM (pBt->autoVacuum)
-#else
-#define ISAUTOVACUUM 0
+static int ptrmapCheckPages(MemPage **apPage, int nPage){
+ int i, j;
+ for(i=0; i<nPage; i++){
+ Pgno n;
+ u8 e;
+ MemPage *pPage = apPage[i];
+ BtShared *pBt = pPage->pBt;
+ assert( pPage->isInit );
+
+ for(j=0; j<pPage->nCell; j++){
+ CellInfo info;
+ u8 *z;
+
+ z = findCell(pPage, j);
+ btreeParseCellPtr(pPage, z, &info);
+ if( info.iOverflow ){
+ Pgno ovfl = get4byte(&z[info.iOverflow]);
+ ptrmapGet(pBt, ovfl, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
+ }
+ if( !pPage->leaf ){
+ Pgno child = get4byte(z);
+ ptrmapGet(pBt, child, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_BTREE );
+ }
+ }
+ if( !pPage->leaf ){
+ Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ ptrmapGet(pBt, child, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_BTREE );
+ }
+ }
+ return 1;
+}
#endif
/*
-** This routine redistributes Cells on pPage and up to NN*2 siblings
-** of pPage so that all pages have about the same amount of free space.
-** Usually NN siblings on either side of pPage is used in the balancing,
-** though more siblings might come from one side if pPage is the first
-** or last child of its parent. If pPage has fewer than 2*NN siblings
-** (something which can only happen if pPage is the root page or a
-** child of root) then all available siblings participate in the balancing.
+** This function is used to copy the contents of the b-tree node stored
+** on page pFrom to page pTo. If page pFrom was not a leaf page, then
+** the pointer-map entries for each child page are updated so that the
+** parent page stored in the pointer map is page pTo. If pFrom contained
+** any cells with overflow page pointers, then the corresponding pointer
+** map entries are also updated so that the parent page is page pTo.
+**
+** If pFrom is currently carrying any overflow cells (entries in the
+** MemPage.aOvfl[] array), they are not copied to pTo.
+**
+** Before returning, page pTo is reinitialized using btreeInitPage().
+**
+** The performance of this function is not critical. It is only used by
+** the balance_shallower() and balance_deeper() procedures, neither of
+** which are called often under normal circumstances.
+*/
+static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
+ if( (*pRC)==SQLITE_OK ){
+ BtShared * const pBt = pFrom->pBt;
+ u8 * const aFrom = pFrom->aData;
+ u8 * const aTo = pTo->aData;
+ int const iFromHdr = pFrom->hdrOffset;
+ int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
+ TESTONLY(int rc;)
+ int iData;
+
+
+ assert( pFrom->isInit );
+ assert( pFrom->nFree>=iToHdr );
+ assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
+
+ /* Copy the b-tree node content from page pFrom to page pTo. */
+ iData = get2byte(&aFrom[iFromHdr+5]);
+ memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
+ memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
+
+ /* Reinitialize page pTo so that the contents of the MemPage structure
+ ** match the new data. The initialization of pTo "cannot" fail, as the
+ ** data copied from pFrom is known to be valid. */
+ pTo->isInit = 0;
+ TESTONLY(rc = ) btreeInitPage(pTo);
+ assert( rc==SQLITE_OK );
+
+ /* If this is an auto-vacuum database, update the pointer-map entries
+ ** for any b-tree or overflow pages that pTo now contains the pointers to.
+ */
+ if( ISAUTOVACUUM ){
+ *pRC = setChildPtrmaps(pTo);
+ }
+ }
+}
+
+/*
+** This routine redistributes cells on the iParentIdx'th child of pParent
+** (hereafter "the page") and up to 2 siblings so that all pages have about the
+** same amount of free space. Usually a single sibling on either side of the
+** page are used in the balancing, though both siblings might come from one
+** side if the page is the first or last child of its parent. If the page
+** has fewer than 2 siblings (something which can only happen if the page
+** is a root page or a child of a root page) then all available siblings
+** participate in the balancing.
**
-** The number of siblings of pPage might be increased or decreased by one or
-** two in an effort to keep pages nearly full but not over full. The root page
-** is special and is allowed to be nearly empty. If pPage is
-** the root page, then the depth of the tree might be increased
-** or decreased by one, as necessary, to keep the root page from being
-** overfull or completely empty.
+** The number of siblings of the page might be increased or decreased by
+** one or two in an effort to keep pages nearly full but not over full.
**
-** Note that when this routine is called, some of the Cells on pPage
-** might not actually be stored in pPage->aData[]. This can happen
-** if the page is overfull. Part of the job of this routine is to
-** make sure all Cells for pPage once again fit in pPage->aData[].
+** Note that when this routine is called, some of the cells on the page
+** might not actually be stored in MemPage.aData[]. This can happen
+** if the page is overfull. This routine ensures that all cells allocated
+** to the page and its siblings fit into MemPage.aData[] before returning.
**
-** In the course of balancing the siblings of pPage, the parent of pPage
-** might become overfull or underfull. If that happens, then this routine
-** is called recursively on the parent.
+** In the course of balancing the page and its siblings, cells may be
+** inserted into or removed from the parent page (pParent). Doing so
+** may cause the parent page to become overfull or underfull. If this
+** happens, it is the responsibility of the caller to invoke the correct
+** balancing routine to fix this problem (see the balance() routine).
**
** If this routine fails for any reason, it might leave the database
-** in a corrupted state. So if this routine fails, the database should
+** in a corrupted state. So if this routine fails, the database should
** be rolled back.
-*/
-static int balance_nonroot(MemPage *pPage){
- MemPage *pParent; /* The parent of pPage */
- BtShared *pBt; /* The whole database */
+**
+** The third argument to this function, aOvflSpace, is a pointer to a
+** buffer big enough to hold one page. If while inserting cells into the parent
+** page (pParent) the parent page becomes overfull, this buffer is
+** used to store the parent's overflow cells. Because this function inserts
+** a maximum of four divider cells into the parent page, and the maximum
+** size of a cell stored within an internal node is always less than 1/4
+** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
+** enough for all overflow cells.
+**
+** If aOvflSpace is set to a null pointer, this function returns
+** SQLITE_NOMEM.
+*/
+static int balance_nonroot(
+ MemPage *pParent, /* Parent page of siblings being balanced */
+ int iParentIdx, /* Index of "the page" in pParent */
+ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
+ int isRoot /* True if pParent is a root-page */
+){
+ BtShared *pBt; /* The whole database */
int nCell = 0; /* Number of cells in apCell[] */
int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
+ int nNew = 0; /* Number of pages in apNew[] */
int nOld; /* Number of pages in apOld[] */
- int nNew; /* Number of pages in apNew[] */
- int nDiv; /* Number of cells in apDiv[] */
int i, j, k; /* Loop counters */
- int idx; /* Index of pPage in pParent->aCell[] */
int nxDiv; /* Next divider slot in pParent->aCell[] */
- int rc; /* The return code */
- int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
+ int rc = SQLITE_OK; /* The return code */
+ u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
int usableSpace; /* Bytes in pPage beyond the header */
int pageFlags; /* Value of pPage->aData[0] */
int subtotal; /* Subtotal of bytes in cells on one page */
- int iSpace = 0; /* First unused byte of aSpace[] */
+ int iSpace1 = 0; /* First unused byte of aSpace1[] */
+ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
+ int szScratch; /* Size of scratch memory requested */
MemPage *apOld[NB]; /* pPage and up to two siblings */
- Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
- Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
- u8 *apDiv[NB]; /* Divider cells in pParent */
+ u8 *pRight; /* Location in parent of right-sibling pointer */
+ u8 *apDiv[NB-1]; /* Divider cells in pParent */
int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
int szNew[NB+2]; /* Combined size of cells place on i-th page */
u8 **apCell = 0; /* All cells begin balanced */
- int *szCell; /* Local size of all cells in apCell[] */
- u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
- u8 *aSpace; /* Space to hold copies of dividers cells */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- u8 *aFrom = 0;
-#endif
+ u16 *szCell; /* Local size of all cells in apCell[] */
+ u8 *aSpace1; /* Space for copies of dividers cells */
+ Pgno pgno; /* Temp var to store a page number in */
- /*
- ** Find the parent page.
- */
- assert( pPage->isInit );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- pBt = pPage->pBt;
- pParent = pPage->pParent;
- assert( pParent );
- if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
- return rc;
- }
- TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
+ pBt = pParent->pBt;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
-#ifndef SQLITE_OMIT_QUICKBALANCE
- /*
- ** A special case: If a new entry has just been inserted into a
- ** table (that is, a btree with integer keys and all data at the leaves)
- ** and the new entry is the right-most entry in the tree (it has the
- ** largest key) then use the special balance_quick() routine for
- ** balancing. balance_quick() is much faster and results in a tighter
- ** packing of data in the common case.
- */
- if( pPage->leaf &&
- pPage->intKey &&
- pPage->leafData &&
- pPage->nOverflow==1 &&
- pPage->aOvfl[0].idx==pPage->nCell &&
- pPage->pParent->pgno!=1 &&
- get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
- ){
- /*
- ** TODO: Check the siblings to the left of pPage. It may be that
- ** they are not full and no new page is required.
- */
- return balance_quick(pPage, pParent);
- }
+#if 0
+ TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#endif
- /*
- ** Find the cell in the parent page whose left child points back
- ** to pPage. The "idx" variable is the index of that cell. If pPage
- ** is the rightmost child of pParent then set idx to pParent->nCell
+ /* At this point pParent may have at most one overflow cell. And if
+ ** this overflow cell is present, it must be the cell with
+ ** index iParentIdx. This scenario comes about when this function
+ ** is called (indirectly) from sqlite3BtreeDelete().
*/
- if( pParent->idxShift ){
- Pgno pgno;
- pgno = pPage->pgno;
- assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
- for(idx=0; idx<pParent->nCell; idx++){
- if( get4byte(findCell(pParent, idx))==pgno ){
- break;
- }
- }
- assert( idx<pParent->nCell
- || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
- }else{
- idx = pPage->idxParent;
- }
+ assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
+ assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
- /*
- ** Initialize variables so that it will be safe to jump
- ** directly to balance_cleanup at any moment.
- */
- nOld = nNew = 0;
- sqlite3PagerRef(pParent->pDbPage);
+ if( !aOvflSpace ){
+ return SQLITE_NOMEM;
+ }
- /*
- ** Find sibling pages to pPage and the cells in pParent that divide
- ** the siblings. An attempt is made to find NN siblings on either
- ** side of pPage. More siblings are taken from one side, however, if
- ** pPage there are fewer than NN siblings on the other side. If pParent
+ /* Find the sibling pages to balance. Also locate the cells in pParent
+ ** that divide the siblings. An attempt is made to find NN siblings on
+ ** either side of pPage. More siblings are taken from one side, however,
+ ** if there are fewer than NN siblings on the other side. If pParent
** has NB or fewer children then all children of pParent are taken.
+ **
+ ** This loop also drops the divider cells from the parent page. This
+ ** way, the remainder of the function does not have to deal with any
+ ** overflow cells in the parent page, since if any existed they will
+ ** have already been removed.
*/
- nxDiv = idx - NN;
- if( nxDiv + NB > pParent->nCell ){
- nxDiv = pParent->nCell - NB + 1;
- }
- if( nxDiv<0 ){
+ i = pParent->nOverflow + pParent->nCell;
+ if( i<2 ){
nxDiv = 0;
- }
- nDiv = 0;
- for(i=0, k=nxDiv; i<NB; i++, k++){
- if( k<pParent->nCell ){
- apDiv[i] = findCell(pParent, k);
- nDiv++;
- assert( !pParent->leaf );
- pgnoOld[i] = get4byte(apDiv[i]);
- }else if( k==pParent->nCell ){
- pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
+ nOld = i+1;
+ }else{
+ nOld = 3;
+ if( iParentIdx==0 ){
+ nxDiv = 0;
+ }else if( iParentIdx==i ){
+ nxDiv = i-2;
}else{
- break;
+ nxDiv = iParentIdx-1;
+ }
+ i = 2;
+ }
+ if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
+ pRight = &pParent->aData[pParent->hdrOffset+8];
+ }else{
+ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
+ }
+ pgno = get4byte(pRight);
+ while( 1 ){
+ rc = getAndInitPage(pBt, pgno, &apOld[i]);
+ if( rc ){
+ memset(apOld, 0, (i+1)*sizeof(MemPage*));
+ goto balance_cleanup;
}
- rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
- if( rc ) goto balance_cleanup;
- apOld[i]->idxParent = k;
- apCopy[i] = 0;
- assert( i==nOld );
- nOld++;
nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
+ if( (i--)==0 ) break;
+
+ if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
+ apDiv[i] = pParent->aOvfl[0].pCell;
+ pgno = get4byte(apDiv[i]);
+ szNew[i] = cellSizePtr(pParent, apDiv[i]);
+ pParent->nOverflow = 0;
+ }else{
+ apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
+ pgno = get4byte(apDiv[i]);
+ szNew[i] = cellSizePtr(pParent, apDiv[i]);
+
+ /* Drop the cell from the parent page. apDiv[i] still points to
+ ** the cell within the parent, even though it has been dropped.
+ ** This is safe because dropping a cell only overwrites the first
+ ** four bytes of it, and this function does not need the first
+ ** four bytes of the divider cell. So the pointer is safe to use
+ ** later on.
+ **
+ ** Unless SQLite is compiled in secure-delete mode. In this case,
+ ** the dropCell() routine will overwrite the entire cell with zeroes.
+ ** In this case, temporarily copy the cell into the aOvflSpace[]
+ ** buffer. It will be copied out again as soon as the aSpace[] buffer
+ ** is allocated. */
+#ifdef SQLITE_SECURE_DELETE
+ memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
+ apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
+#endif
+ dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
+ }
}
- /* Make nMaxCells a multiple of 2 in order to preserve 8-byte
+ /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
** alignment */
- nMaxCells = (nMaxCells + 1)&~1;
+ nMaxCells = (nMaxCells + 3)&~3;
/*
** Allocate space for memory structures
*/
- apCell = sqliteMallocRaw(
- nMaxCells*sizeof(u8*) /* apCell */
- + nMaxCells*sizeof(int) /* szCell */
- + ROUND8(sizeof(MemPage))*NB /* aCopy */
- + pBt->pageSize*(5+NB) /* aSpace */
- + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
- );
+ k = pBt->pageSize + ROUND8(sizeof(MemPage));
+ szScratch =
+ nMaxCells*sizeof(u8*) /* apCell */
+ + nMaxCells*sizeof(u16) /* szCell */
+ + pBt->pageSize /* aSpace1 */
+ + k*nOld; /* Page copies (apCopy) */
+ apCell = sqlite3ScratchMalloc( szScratch );
if( apCell==0 ){
rc = SQLITE_NOMEM;
goto balance_cleanup;
}
- szCell = (int*)&apCell[nMaxCells];
- aCopy[0] = (u8*)&szCell[nMaxCells];
- assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
- for(i=1; i<NB; i++){
- aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
- assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
- }
- aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
- assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- aFrom = &aSpace[5*pBt->pageSize];
- }
-#endif
-
- /*
- ** Make copies of the content of pPage and its siblings into aOld[].
- ** The rest of this function will use data from the copies rather
- ** that the original pages since the original pages will be in the
- ** process of being overwritten.
- */
- for(i=0; i<nOld; i++){
- MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->pageSize];
- p->aData = &((u8*)p)[-pBt->pageSize];
- memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage));
- /* The memcpy() above changes the value of p->aData so we have to
- ** set it again. */
- p->aData = &((u8*)p)[-pBt->pageSize];
- }
+ szCell = (u16*)&apCell[nMaxCells];
+ aSpace1 = (u8*)&szCell[nMaxCells];
+ assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
/*
** Load pointers to all cells on sibling pages and the divider cells
** into the local apCell[] array. Make copies of the divider cells
- ** into space obtained form aSpace[] and remove the the divider Cells
+ ** into space obtained from aSpace1[] and remove the the divider Cells
** from pParent.
**
** If the siblings are on leaf pages, then the child pointers of the
** divider cells are stripped from the cells before they are copied
- ** into aSpace[]. In this way, all cells in apCell[] are without
+ ** into aSpace1[]. In this way, all cells in apCell[] are without
** child pointers. If siblings are not leaves, then all cell in
** apCell[] include child pointers. Either way, all cells in apCell[]
** are alike.
@@ -25781,66 +43335,54 @@ static int balance_nonroot(MemPage *pPage){
** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
** leafData: 1 if pPage holds key+data and pParent holds only keys.
*/
- nCell = 0;
- leafCorrection = pPage->leaf*4;
- leafData = pPage->leafData && pPage->leaf;
+ leafCorrection = apOld[0]->leaf*4;
+ leafData = apOld[0]->hasData;
for(i=0; i<nOld; i++){
- MemPage *pOld = apCopy[i];
- int limit = pOld->nCell+pOld->nOverflow;
+ int limit;
+
+ /* Before doing anything else, take a copy of the i'th original sibling
+ ** The rest of this function will use data from the copies rather
+ ** that the original pages since the original pages will be in the
+ ** process of being overwritten. */
+ MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
+ memcpy(pOld, apOld[i], sizeof(MemPage));
+ pOld->aData = (void*)&pOld[1];
+ memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
+
+ limit = pOld->nCell+pOld->nOverflow;
for(j=0; j<limit; j++){
assert( nCell<nMaxCells );
apCell[nCell] = findOverflowCell(pOld, j);
szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- int a;
- aFrom[nCell] = i;
- for(a=0; a<pOld->nOverflow; a++){
- if( pOld->aOvfl[a].pCell==apCell[nCell] ){
- aFrom[nCell] = 0xFF;
- break;
- }
- }
- }
-#endif
nCell++;
}
- if( i<nOld-1 ){
- int sz = cellSizePtr(pParent, apDiv[i]);
- if( leafData ){
- /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
- ** are duplicates of keys on the child pages. We need to remove
- ** the divider cells from pParent, but the dividers cells are not
- ** added to apCell[] because they are duplicates of child cells.
- */
- dropCell(pParent, nxDiv, sz);
+ if( i<nOld-1 && !leafData){
+ u16 sz = (u16)szNew[i];
+ u8 *pTemp;
+ assert( nCell<nMaxCells );
+ szCell[nCell] = sz;
+ pTemp = &aSpace1[iSpace1];
+ iSpace1 += sz;
+ assert( sz<=pBt->pageSize/4 );
+ assert( iSpace1<=pBt->pageSize );
+ memcpy(pTemp, apDiv[i], sz);
+ apCell[nCell] = pTemp+leafCorrection;
+ assert( leafCorrection==0 || leafCorrection==4 );
+ szCell[nCell] = szCell[nCell] - leafCorrection;
+ if( !pOld->leaf ){
+ assert( leafCorrection==0 );
+ assert( pOld->hdrOffset==0 );
+ /* The right pointer of the child page pOld becomes the left
+ ** pointer of the divider cell */
+ memcpy(apCell[nCell], &pOld->aData[8], 4);
}else{
- u8 *pTemp;
- assert( nCell<nMaxCells );
- szCell[nCell] = sz;
- pTemp = &aSpace[iSpace];
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
- memcpy(pTemp, apDiv[i], sz);
- apCell[nCell] = pTemp+leafCorrection;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- aFrom[nCell] = 0xFF;
- }
-#endif
- dropCell(pParent, nxDiv, sz);
- szCell[nCell] -= leafCorrection;
- assert( get4byte(pTemp)==pgnoOld[i] );
- if( !pOld->leaf ){
- assert( leafCorrection==0 );
- /* The right pointer of the child page pOld becomes the left
- ** pointer of the divider cell */
- memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
- }else{
- assert( leafCorrection==4 );
+ assert( leafCorrection==4 );
+ if( szCell[nCell]<4 ){
+ /* Do not allow any cells smaller than 4 bytes. */
+ szCell[nCell] = 4;
}
- nCell++;
}
+ nCell++;
}
}
@@ -25870,6 +43412,7 @@ static int balance_nonroot(MemPage *pPage){
if( leafData ){ i--; }
subtotal = 0;
k++;
+ if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
}
}
szNew[k] = subtotal;
@@ -25907,40 +43450,55 @@ static int balance_nonroot(MemPage *pPage){
szNew[i-1] = szLeft;
}
- /* Either we found one or more cells (cntnew[0])>0) or we are the
+ /* Either we found one or more cells (cntnew[0])>0) or pPage is
** a virtual root page. A virtual root page is when the real root
** page is page 1 and we are the only child of that page.
*/
assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
+ TRACE(("BALANCE: old: %d %d %d ",
+ apOld[0]->pgno,
+ nOld>=2 ? apOld[1]->pgno : 0,
+ nOld>=3 ? apOld[2]->pgno : 0
+ ));
+
/*
** Allocate k new pages. Reuse old pages where possible.
*/
- assert( pPage->pgno>1 );
- pageFlags = pPage->aData[0];
+ if( apOld[0]->pgno<=1 ){
+ rc = SQLITE_CORRUPT;
+ goto balance_cleanup;
+ }
+ pageFlags = apOld[0]->aData[0];
for(i=0; i<k; i++){
MemPage *pNew;
if( i<nOld ){
pNew = apNew[i] = apOld[i];
- pgnoNew[i] = pgnoOld[i];
apOld[i] = 0;
rc = sqlite3PagerWrite(pNew->pDbPage);
nNew++;
if( rc ) goto balance_cleanup;
}else{
assert( i>0 );
- rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
+ rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
if( rc ) goto balance_cleanup;
apNew[i] = pNew;
nNew++;
+
+ /* Set the pointer-map entry for the new sibling page. */
+ if( ISAUTOVACUUM ){
+ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
+ if( rc!=SQLITE_OK ){
+ goto balance_cleanup;
+ }
+ }
}
- zeroPage(pNew, pageFlags);
}
/* Free any old pages that were not reused as new pages.
*/
while( i<nOld ){
- rc = freePage(apOld[i]);
+ freePage(apOld[i], &rc);
if( rc ) goto balance_cleanup;
releasePage(apOld[i]);
apOld[i] = 0;
@@ -25962,34 +43520,32 @@ static int balance_nonroot(MemPage *pPage){
** about 25% faster for large insertions and deletions.
*/
for(i=0; i<k-1; i++){
- int minV = pgnoNew[i];
+ int minV = apNew[i]->pgno;
int minI = i;
for(j=i+1; j<k; j++){
- if( pgnoNew[j]<(unsigned)minV ){
+ if( apNew[j]->pgno<(unsigned)minV ){
minI = j;
- minV = pgnoNew[j];
+ minV = apNew[j]->pgno;
}
}
if( minI>i ){
int t;
MemPage *pT;
- t = pgnoNew[i];
+ t = apNew[i]->pgno;
pT = apNew[i];
- pgnoNew[i] = pgnoNew[minI];
apNew[i] = apNew[minI];
- pgnoNew[minI] = t;
apNew[minI] = pT;
}
}
- TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
- pgnoOld[0],
- nOld>=2 ? pgnoOld[1] : 0,
- nOld>=3 ? pgnoOld[2] : 0,
- pgnoNew[0], szNew[0],
- nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
- nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
- nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
- nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
+ TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
+ apNew[0]->pgno, szNew[0],
+ nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
+ nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
+ nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
+ nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
+
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ put4byte(pRight, apNew[nNew-1]->pgno);
/*
** Evenly distribute the data in apCell[] across the new pages.
@@ -26000,36 +43556,18 @@ static int balance_nonroot(MemPage *pPage){
/* Assemble the new sibling page. */
MemPage *pNew = apNew[i];
assert( j<nMaxCells );
- assert( pNew->pgno==pgnoNew[i] );
+ zeroPage(pNew, pageFlags);
assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
assert( pNew->nOverflow==0 );
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, update the pointer map entries
- ** that point to the siblings that were rearranged. These can be: left
- ** children of cells, the right-child of the page, or overflow pages
- ** pointed to by cells.
- */
- if( pBt->autoVacuum ){
- for(k=j; k<cntNew[i]; k++){
- assert( k<nMaxCells );
- if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
- rc = ptrmapPutOvfl(pNew, k-j);
- if( rc!=SQLITE_OK ){
- goto balance_cleanup;
- }
- }
- }
- }
-#endif
-
j = cntNew[i];
/* If the sibling page assembled above was not the right-most sibling,
** insert a divider cell into the parent page.
*/
- if( i<nNew-1 && j<nCell ){
+ assert( i<nNew-1 || j==nCell );
+ if( j<nCell ){
u8 *pCell;
u8 *pTemp;
int sz;
@@ -26037,44 +43575,46 @@ static int balance_nonroot(MemPage *pPage){
assert( j<nMaxCells );
pCell = apCell[j];
sz = szCell[j] + leafCorrection;
+ pTemp = &aOvflSpace[iOvflSpace];
if( !pNew->leaf ){
memcpy(&pNew->aData[8], pCell, 4);
- pTemp = 0;
}else if( leafData ){
- /* If the tree is a leaf-data tree, and the siblings are leaves,
+ /* If the tree is a leaf-data tree, and the siblings are leaves,
** then there is no divider cell in apCell[]. Instead, the divider
** cell consists of the integer key for the right-most cell of
** the sibling-page assembled above only.
*/
CellInfo info;
j--;
- parseCellPtr(pNew, apCell[j], &info);
- pCell = &aSpace[iSpace];
- fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
+ btreeParseCellPtr(pNew, apCell[j], &info);
+ pCell = pTemp;
+ sz = 4 + putVarint(&pCell[4], info.nKey);
pTemp = 0;
}else{
pCell -= 4;
- pTemp = &aSpace[iSpace];
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
- }
- rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
- if( rc!=SQLITE_OK ) goto balance_cleanup;
- put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, and not a leaf-data tree,
- ** then update the pointer map with an entry for the overflow page
- ** that the cell just inserted points to (if any).
- */
- if( pBt->autoVacuum && !leafData ){
- rc = ptrmapPutOvfl(pParent, nxDiv);
- if( rc!=SQLITE_OK ){
- goto balance_cleanup;
+ /* Obscure case for non-leaf-data trees: If the cell at pCell was
+ ** previously stored on a leaf node, and its reported size was 4
+ ** bytes, then it may actually be smaller than this
+ ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
+ ** any cell). But it is important to pass the correct size to
+ ** insertCell(), so reparse the cell now.
+ **
+ ** Note that this can never happen in an SQLite data file, as all
+ ** cells are at least 4 bytes. It only happens in b-trees used
+ ** to evaluate "IN (SELECT ...)" and similar clauses.
+ */
+ if( szCell[j]==4 ){
+ assert(leafCorrection==4);
+ sz = cellSizePtr(pParent, pCell);
}
}
-#endif
+ iOvflSpace += sz;
+ assert( sz<=pBt->pageSize/4 );
+ assert( iOvflSpace<=pBt->pageSize );
+ insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
+ if( rc!=SQLITE_OK ) goto balance_cleanup;
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+
j++;
nxDiv++;
}
@@ -26083,273 +43623,341 @@ static int balance_nonroot(MemPage *pPage){
assert( nOld>0 );
assert( nNew>0 );
if( (pageFlags & PTF_LEAF)==0 ){
- memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
- }
- if( nxDiv==pParent->nCell+pParent->nOverflow ){
- /* Right-most sibling is the right-most child of pParent */
- put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
- }else{
- /* Right-most sibling is the left child of the first entry in pParent
- ** past the right-most divider entry */
- put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
+ u8 *zChild = &apCopy[nOld-1]->aData[8];
+ memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
}
- /*
- ** Reparent children of all cells.
- */
- for(i=0; i<nNew; i++){
- rc = reparentChildPages(apNew[i]);
- if( rc!=SQLITE_OK ) goto balance_cleanup;
+ if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
+ /* The root page of the b-tree now contains no cells. The only sibling
+ ** page is the right-child of the parent. Copy the contents of the
+ ** child page into the parent, decreasing the overall height of the
+ ** b-tree structure by one. This is described as the "balance-shallower"
+ ** sub-algorithm in some documentation.
+ **
+ ** If this is an auto-vacuum database, the call to copyNodeContent()
+ ** sets all pointer-map entries corresponding to database image pages
+ ** for which the pointer is stored within the content being copied.
+ **
+ ** The second assert below verifies that the child page is defragmented
+ ** (it must be, as it was just reconstructed using assemblePage()). This
+ ** is important if the parent page happens to be page 1 of the database
+ ** image. */
+ assert( nNew==1 );
+ assert( apNew[0]->nFree ==
+ (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
+ );
+ copyNodeContent(apNew[0], pParent, &rc);
+ freePage(apNew[0], &rc);
+ }else if( ISAUTOVACUUM ){
+ /* Fix the pointer-map entries for all the cells that were shifted around.
+ ** There are several different types of pointer-map entries that need to
+ ** be dealt with by this routine. Some of these have been set already, but
+ ** many have not. The following is a summary:
+ **
+ ** 1) The entries associated with new sibling pages that were not
+ ** siblings when this function was called. These have already
+ ** been set. We don't need to worry about old siblings that were
+ ** moved to the free-list - the freePage() code has taken care
+ ** of those.
+ **
+ ** 2) The pointer-map entries associated with the first overflow
+ ** page in any overflow chains used by new divider cells. These
+ ** have also already been taken care of by the insertCell() code.
+ **
+ ** 3) If the sibling pages are not leaves, then the child pages of
+ ** cells stored on the sibling pages may need to be updated.
+ **
+ ** 4) If the sibling pages are not internal intkey nodes, then any
+ ** overflow pages used by these cells may need to be updated
+ ** (internal intkey nodes never contain pointers to overflow pages).
+ **
+ ** 5) If the sibling pages are not leaves, then the pointer-map
+ ** entries for the right-child pages of each sibling may need
+ ** to be updated.
+ **
+ ** Cases 1 and 2 are dealt with above by other code. The next
+ ** block deals with cases 3 and 4 and the one after that, case 5. Since
+ ** setting a pointer map entry is a relatively expensive operation, this
+ ** code only sets pointer map entries for child or overflow pages that have
+ ** actually moved between pages. */
+ MemPage *pNew = apNew[0];
+ MemPage *pOld = apCopy[0];
+ int nOverflow = pOld->nOverflow;
+ int iNextOld = pOld->nCell + nOverflow;
+ int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
+ j = 0; /* Current 'old' sibling page */
+ k = 0; /* Current 'new' sibling page */
+ for(i=0; i<nCell; i++){
+ int isDivider = 0;
+ while( i==iNextOld ){
+ /* Cell i is the cell immediately following the last cell on old
+ ** sibling page j. If the siblings are not leaf pages of an
+ ** intkey b-tree, then cell i was a divider cell. */
+ pOld = apCopy[++j];
+ iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
+ if( pOld->nOverflow ){
+ nOverflow = pOld->nOverflow;
+ iOverflow = i + !leafData + pOld->aOvfl[0].idx;
+ }
+ isDivider = !leafData;
+ }
+
+ assert(nOverflow>0 || iOverflow<i );
+ assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
+ assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
+ if( i==iOverflow ){
+ isDivider = 1;
+ if( (--nOverflow)>0 ){
+ iOverflow++;
+ }
+ }
+
+ if( i==cntNew[k] ){
+ /* Cell i is the cell immediately following the last cell on new
+ ** sibling page k. If the siblings are not leaf pages of an
+ ** intkey b-tree, then cell i is a divider cell. */
+ pNew = apNew[++k];
+ if( !leafData ) continue;
+ }
+ assert( j<nOld );
+ assert( k<nNew );
+
+ /* If the cell was originally divider cell (and is not now) or
+ ** an overflow cell, or if the cell was located on a different sibling
+ ** page before the balancing, then the pointer map entries associated
+ ** with any child or overflow pages need to be updated. */
+ if( isDivider || pOld->pgno!=pNew->pgno ){
+ if( !leafCorrection ){
+ ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
+ }
+ if( szCell[i]>pNew->minLocal ){
+ ptrmapPutOvflPtr(pNew, apCell[i], &rc);
+ }
+ }
+ }
+
+ if( !leafCorrection ){
+ for(i=0; i<nNew; i++){
+ u32 key = get4byte(&apNew[i]->aData[8]);
+ ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
+ }
+ }
+
+#if 0
+ /* The ptrmapCheckPages() contains assert() statements that verify that
+ ** all pointer map pages are set correctly. This is helpful while
+ ** debugging. This is usually disabled because a corrupt database may
+ ** cause an assert() statement to fail. */
+ ptrmapCheckPages(apNew, nNew);
+ ptrmapCheckPages(&pParent, 1);
+#endif
}
- rc = reparentChildPages(pParent);
- if( rc!=SQLITE_OK ) goto balance_cleanup;
- /*
- ** Balance the parent page. Note that the current page (pPage) might
- ** have been added to the freelist so it might no longer be initialized.
- ** But the parent page will always be initialized.
- */
assert( pParent->isInit );
- rc = balance(pParent, 0);
-
+ TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
+ nOld, nNew, nCell));
+
/*
** Cleanup before returning.
*/
balance_cleanup:
- sqliteFree(apCell);
+ sqlite3ScratchFree(apCell);
for(i=0; i<nOld; i++){
releasePage(apOld[i]);
}
for(i=0; i<nNew; i++){
releasePage(apNew[i]);
}
- releasePage(pParent);
- TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
- pPage->pgno, nOld, nNew, nCell));
+
return rc;
}
+
/*
-** This routine is called for the root page of a btree when the root
-** page contains no cells. This is an opportunity to make the tree
-** shallower by one level.
+** This function is called when the root page of a b-tree structure is
+** overfull (has one or more overflow pages).
+**
+** A new child page is allocated and the contents of the current root
+** page, including overflow cells, are copied into the child. The root
+** page is then overwritten to make it an empty page with the right-child
+** pointer pointing to the new page.
+**
+** Before returning, all pointer-map entries corresponding to pages
+** that the new child-page now contains pointers to are updated. The
+** entry corresponding to the new right-child pointer of the root
+** page is also updated.
+**
+** If successful, *ppChild is set to contain a reference to the child
+** page and SQLITE_OK is returned. In this case the caller is required
+** to call releasePage() on *ppChild exactly once. If an error occurs,
+** an error code is returned and *ppChild is set to 0.
*/
-static int balance_shallower(MemPage *pPage){
- MemPage *pChild; /* The only child page of pPage */
- Pgno pgnoChild; /* Page number for pChild */
- int rc = SQLITE_OK; /* Return code from subprocedures */
- BtShared *pBt; /* The main BTree structure */
- int mxCellPerPage; /* Maximum number of cells per page */
- u8 **apCell; /* All cells from pages being balanced */
- int *szCell; /* Local size of all cells */
+static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
+ int rc; /* Return value from subprocedures */
+ MemPage *pChild = 0; /* Pointer to a new child page */
+ Pgno pgnoChild = 0; /* Page number of the new child page */
+ BtShared *pBt = pRoot->pBt; /* The BTree */
- assert( pPage->pParent==0 );
- assert( pPage->nCell==0 );
- pBt = pPage->pBt;
- mxCellPerPage = MX_CELL(pBt);
- apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
- if( apCell==0 ) return SQLITE_NOMEM;
- szCell = (int*)&apCell[mxCellPerPage];
- if( pPage->leaf ){
- /* The table is completely empty */
- TRACE(("BALANCE: empty table %d\n", pPage->pgno));
- }else{
- /* The root page is empty but has one child. Transfer the
- ** information from that one child into the root page if it
- ** will fit. This reduces the depth of the tree by one.
- **
- ** If the root page is page 1, it has less space available than
- ** its child (due to the 100 byte header that occurs at the beginning
- ** of the database fle), so it might not be able to hold all of the
- ** information currently contained in the child. If this is the
- ** case, then do not do the transfer. Leave page 1 empty except
- ** for the right-pointer to the child page. The child page becomes
- ** the virtual root of the tree.
- */
- pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- assert( pgnoChild>0 );
- assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
- rc = getPage(pPage->pBt, pgnoChild, &pChild, 0);
- if( rc ) goto end_shallow_balance;
- if( pPage->pgno==1 ){
- rc = initPage(pChild, pPage);
- if( rc ) goto end_shallow_balance;
- assert( pChild->nOverflow==0 );
- if( pChild->nFree>=100 ){
- /* The child information will fit on the root page, so do the
- ** copy */
- int i;
- zeroPage(pPage, pChild->aData[0]);
- for(i=0; i<pChild->nCell; i++){
- apCell[i] = findCell(pChild,i);
- szCell[i] = cellSizePtr(pChild, apCell[i]);
- }
- assemblePage(pPage, pChild->nCell, apCell, szCell);
- /* Copy the right-pointer of the child to the parent. */
- put4byte(&pPage->aData[pPage->hdrOffset+8],
- get4byte(&pChild->aData[pChild->hdrOffset+8]));
- freePage(pChild);
- TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
- }else{
- /* The child has more information that will fit on the root.
- ** The tree is already balanced. Do nothing. */
- TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
- }
- }else{
- memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
- pPage->isInit = 0;
- pPage->pParent = 0;
- rc = initPage(pPage, 0);
- assert( rc==SQLITE_OK );
- freePage(pChild);
- TRACE(("BALANCE: transfer child %d into root %d\n",
- pChild->pgno, pPage->pgno));
- }
- rc = reparentChildPages(pPage);
- assert( pPage->nOverflow==0 );
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- int i;
- for(i=0; i<pPage->nCell; i++){
- rc = ptrmapPutOvfl(pPage, i);
- if( rc!=SQLITE_OK ){
- goto end_shallow_balance;
- }
- }
+ assert( pRoot->nOverflow>0 );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
+ /* Make pRoot, the root page of the b-tree, writable. Allocate a new
+ ** page that will become the new right-child of pPage. Copy the contents
+ ** of the node stored on pRoot into the new child page.
+ */
+ rc = sqlite3PagerWrite(pRoot->pDbPage);
+ if( rc==SQLITE_OK ){
+ rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
+ copyNodeContent(pRoot, pChild, &rc);
+ if( ISAUTOVACUUM ){
+ ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
}
-#endif
- if( rc!=SQLITE_OK ) goto end_shallow_balance;
+ }
+ if( rc ){
+ *ppChild = 0;
releasePage(pChild);
+ return rc;
}
-end_shallow_balance:
- sqliteFree(apCell);
- return rc;
-}
+ assert( sqlite3PagerIswriteable(pChild->pDbPage) );
+ assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
+ assert( pChild->nCell==pRoot->nCell );
+
+ TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
+ /* Copy the overflow cells from pRoot to pChild */
+ memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
+ pChild->nOverflow = pRoot->nOverflow;
+
+ /* Zero the contents of pRoot. Then install pChild as the right-child. */
+ zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
+ put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
+
+ *ppChild = pChild;
+ return SQLITE_OK;
+}
/*
-** The root page is overfull
+** The page that pCur currently points to has just been modified in
+** some way. This function figures out if this modification means the
+** tree needs to be balanced, and if so calls the appropriate balancing
+** routine. Balancing routines are:
**
-** When this happens, Create a new child page and copy the
-** contents of the root into the child. Then make the root
-** page an empty page with rightChild pointing to the new
-** child. Finally, call balance_internal() on the new child
-** to cause it to split.
+** balance_quick()
+** balance_deeper()
+** balance_nonroot()
*/
-static int balance_deeper(MemPage *pPage){
- int rc; /* Return value from subprocedures */
- MemPage *pChild; /* Pointer to a new child page */
- Pgno pgnoChild; /* Page number of the new child page */
- BtShared *pBt; /* The BTree */
- int usableSize; /* Total usable size of a page */
- u8 *data; /* Content of the parent page */
- u8 *cdata; /* Content of the child page */
- int hdr; /* Offset to page header in parent */
- int brk; /* Offset to content of first cell in parent */
+static int balance(BtCursor *pCur){
+ int rc = SQLITE_OK;
+ const int nMin = pCur->pBt->usableSize * 2 / 3;
+ u8 aBalanceQuickSpace[13];
+ u8 *pFree = 0;
- assert( pPage->pParent==0 );
- assert( pPage->nOverflow>0 );
- pBt = pPage->pBt;
- rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
- if( rc ) return rc;
- assert( sqlite3PagerIswriteable(pChild->pDbPage) );
- usableSize = pBt->usableSize;
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- brk = get2byte(&data[hdr+5]);
- cdata = pChild->aData;
- memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
- memcpy(&cdata[brk], &data[brk], usableSize-brk);
- assert( pChild->isInit==0 );
- rc = initPage(pChild, pPage);
- if( rc ) goto balancedeeper_out;
- memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
- pChild->nOverflow = pPage->nOverflow;
- if( pChild->nOverflow ){
- pChild->nFree = 0;
- }
- assert( pChild->nCell==pPage->nCell );
- zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
- put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
- TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- int i;
- rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
- if( rc ) goto balancedeeper_out;
- for(i=0; i<pChild->nCell; i++){
- rc = ptrmapPutOvfl(pChild, i);
- if( rc!=SQLITE_OK ){
- return rc;
+ TESTONLY( int balance_quick_called = 0 );
+ TESTONLY( int balance_deeper_called = 0 );
+
+ do {
+ int iPage = pCur->iPage;
+ MemPage *pPage = pCur->apPage[iPage];
+
+ if( iPage==0 ){
+ if( pPage->nOverflow ){
+ /* The root page of the b-tree is overfull. In this case call the
+ ** balance_deeper() function to create a new child for the root-page
+ ** and copy the current contents of the root-page to it. The
+ ** next iteration of the do-loop will balance the child page.
+ */
+ assert( (balance_deeper_called++)==0 );
+ rc = balance_deeper(pPage, &pCur->apPage[1]);
+ if( rc==SQLITE_OK ){
+ pCur->iPage = 1;
+ pCur->aiIdx[0] = 0;
+ pCur->aiIdx[1] = 0;
+ assert( pCur->apPage[1]->nOverflow );
+ }
+ }else{
+ break;
}
- }
- }
+ }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
+ break;
+ }else{
+ MemPage * const pParent = pCur->apPage[iPage-1];
+ int const iIdx = pCur->aiIdx[iPage-1];
+
+ rc = sqlite3PagerWrite(pParent->pDbPage);
+ if( rc==SQLITE_OK ){
+#ifndef SQLITE_OMIT_QUICKBALANCE
+ if( pPage->hasData
+ && pPage->nOverflow==1
+ && pPage->aOvfl[0].idx==pPage->nCell
+ && pParent->pgno!=1
+ && pParent->nCell==iIdx
+ ){
+ /* Call balance_quick() to create a new sibling of pPage on which
+ ** to store the overflow cell. balance_quick() inserts a new cell
+ ** into pParent, which may cause pParent overflow. If this
+ ** happens, the next interation of the do-loop will balance pParent
+ ** use either balance_nonroot() or balance_deeper(). Until this
+ ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
+ ** buffer.
+ **
+ ** The purpose of the following assert() is to check that only a
+ ** single call to balance_quick() is made for each call to this
+ ** function. If this were not verified, a subtle bug involving reuse
+ ** of the aBalanceQuickSpace[] might sneak in.
+ */
+ assert( (balance_quick_called++)==0 );
+ rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
+ }else
#endif
- rc = balance_nonroot(pChild);
+ {
+ /* In this case, call balance_nonroot() to redistribute cells
+ ** between pPage and up to 2 of its sibling pages. This involves
+ ** modifying the contents of pParent, which may cause pParent to
+ ** become overfull or underfull. The next iteration of the do-loop
+ ** will balance the parent page to correct this.
+ **
+ ** If the parent page becomes overfull, the overflow cell or cells
+ ** are stored in the pSpace buffer allocated immediately below.
+ ** A subsequent iteration of the do-loop will deal with this by
+ ** calling balance_nonroot() (balance_deeper() may be called first,
+ ** but it doesn't deal with overflow cells - just moves them to a
+ ** different page). Once this subsequent call to balance_nonroot()
+ ** has completed, it is safe to release the pSpace buffer used by
+ ** the previous call, as the overflow cell data will have been
+ ** copied either into the body of a database page or into the new
+ ** pSpace buffer passed to the latter call to balance_nonroot().
+ */
+ u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
+ rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
+ if( pFree ){
+ /* If pFree is not NULL, it points to the pSpace buffer used
+ ** by a previous call to balance_nonroot(). Its contents are
+ ** now stored either on real database pages or within the
+ ** new pSpace buffer, so it may be safely freed here. */
+ sqlite3PageFree(pFree);
+ }
-balancedeeper_out:
- releasePage(pChild);
- return rc;
-}
+ /* The pSpace buffer will be freed after the next call to
+ ** balance_nonroot(), or just before this function returns, whichever
+ ** comes first. */
+ pFree = pSpace;
+ }
+ }
-/*
-** Decide if the page pPage needs to be balanced. If balancing is
-** required, call the appropriate balancing routine.
-*/
-static int balance(MemPage *pPage, int insert){
- int rc = SQLITE_OK;
- if( pPage->pParent==0 ){
- if( pPage->nOverflow>0 ){
- rc = balance_deeper(pPage);
- }
- if( rc==SQLITE_OK && pPage->nCell==0 ){
- rc = balance_shallower(pPage);
- }
- }else{
- if( pPage->nOverflow>0 ||
- (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
- rc = balance_nonroot(pPage);
+ pPage->nOverflow = 0;
+
+ /* The next iteration of the do-loop balances the parent page. */
+ releasePage(pPage);
+ pCur->iPage--;
}
+ }while( rc==SQLITE_OK );
+
+ if( pFree ){
+ sqlite3PageFree(pFree);
}
return rc;
}
-/*
-** This routine checks all cursors that point to table pgnoRoot.
-** If any of those cursors were opened with wrFlag==0 in a different
-** database connection (a database connection that shares the pager
-** cache with the current connection) and that other connection
-** is not in the ReadUncommmitted state, then this routine returns
-** SQLITE_LOCKED.
-**
-** In addition to checking for read-locks (where a read-lock
-** means a cursor opened with wrFlag==0) this routine also moves
-** all cursors write cursors so that they are pointing to the
-** first Cell on the root page. This is necessary because an insert
-** or delete might change the number of cells on a page or delete
-** a page entirely and we do not want to leave any cursors
-** pointing to non-existant pages or cells.
-*/
-static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
- BtCursor *p;
- BtShared *pBt = pBtree->pBt;
- sqlite3 *db = pBtree->pSqlite;
- for(p=pBt->pCursor; p; p=p->pNext){
- if( p==pExclude ) continue;
- if( p->eState!=CURSOR_VALID ) continue;
- if( p->pgnoRoot!=pgnoRoot ) continue;
- if( p->wrFlag==0 ){
- sqlite3 *dbOther = p->pBtree->pSqlite;
- if( dbOther==0 ||
- (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
- return SQLITE_LOCKED;
- }
- }else if( p->pPage->pgno!=p->pgnoRoot ){
- moveToRoot(p);
- }
- }
- return SQLITE_OK;
-}
/*
** Insert a new record into the BTree. The key is given by (pKey,nKey)
@@ -26359,191 +43967,268 @@ static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
**
** For an INTKEY table, only the nKey value of the key is used. pKey is
** ignored. For a ZERODATA table, the pData and nData are both ignored.
+**
+** If the seekResult parameter is non-zero, then a successful call to
+** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
+** been performed. seekResult is the search result returned (a negative
+** number if pCur points at an entry that is smaller than (pKey, nKey), or
+** a positive value if pCur points at an etry that is larger than
+** (pKey, nKey)).
+**
+** If the seekResult parameter is non-zero, then the caller guarantees that
+** cursor pCur is pointing at the existing copy of a row that is to be
+** overwritten. If the seekResult parameter is 0, then cursor pCur may
+** point to any entry or to no entry at all and so this function has to seek
+** the cursor before the new key can be inserted.
*/
-int sqlite3BtreeInsert(
+SQLITE_PRIVATE int sqlite3BtreeInsert(
BtCursor *pCur, /* Insert data into the table of this cursor */
const void *pKey, i64 nKey, /* The key of the new record */
const void *pData, int nData, /* The data of the new record */
- int appendBias /* True if this is likely an append */
+ int nZero, /* Number of extra 0 bytes to append to data */
+ int appendBias, /* True if this is likely an append */
+ int seekResult /* Result of prior MovetoUnpacked() call */
){
int rc;
- int loc;
+ int loc = seekResult; /* -1: before desired location +1: after */
int szNew;
+ int idx;
MemPage *pPage;
- BtShared *pBt = pCur->pBtree->pBt;
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
unsigned char *oldCell;
unsigned char *newCell = 0;
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction before doing an insert */
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
- assert( !pBt->readOnly );
- if( !pCur->wrFlag ){
- return SQLITE_PERM; /* Cursor not open for writing */
+ if( pCur->eState==CURSOR_FAULT ){
+ assert( pCur->skipNext!=SQLITE_OK );
+ return pCur->skipNext;
}
- if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
- return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
+ assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
+
+ /* Assert that the caller has been consistent. If this cursor was opened
+ ** expecting an index b-tree, then the caller should be inserting blob
+ ** keys with no associated data. If the cursor was opened expecting an
+ ** intkey table, the caller should be inserting integer keys with a
+ ** blob of associated data. */
+ assert( (pKey==0)==(pCur->pKeyInfo==0) );
+
+ /* If this is an insert into a table b-tree, invalidate any incrblob
+ ** cursors open on the row being replaced (assuming this is a replace
+ ** operation - if it is not, the following is a no-op). */
+ if( pCur->pKeyInfo==0 ){
+ invalidateIncrblobCursors(p, nKey, 0);
}
- /* Save the positions of any other cursors open on this table */
- clearCursorPosition(pCur);
- if(
- SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
- SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
- ){
- return rc;
+ /* Save the positions of any other cursors open on this table.
+ **
+ ** In some cases, the call to btreeMoveto() below is a no-op. For
+ ** example, when inserting data into a table with auto-generated integer
+ ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
+ ** integer key to use. It then calls this function to actually insert the
+ ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
+ ** that the cursor is already where it needs to be and returns without
+ ** doing any work. To avoid thwarting these optimizations, it is important
+ ** not to clear the cursor here.
+ */
+ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
+ if( rc ) return rc;
+ if( !loc ){
+ rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
+ if( rc ) return rc;
}
+ assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
- pPage = pCur->pPage;
+ pPage = pCur->apPage[pCur->iPage];
assert( pPage->intKey || nKey>=0 );
- assert( pPage->leaf || !pPage->leafData );
+ assert( pPage->leaf || !pPage->intKey );
+
TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
pCur->pgnoRoot, nKey, nData, pPage->pgno,
loc==0 ? "overwrite" : "new entry"));
assert( pPage->isInit );
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ) return rc;
- newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
+ allocateTempSpace(pBt);
+ newCell = pBt->pTmpSpace;
if( newCell==0 ) return SQLITE_NOMEM;
- rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
+ rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
if( rc ) goto end_insert;
assert( szNew==cellSizePtr(pPage, newCell) );
assert( szNew<=MX_CELL_SIZE(pBt) );
- if( loc==0 && CURSOR_VALID==pCur->eState ){
- int szOld;
- assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
- oldCell = findCell(pPage, pCur->idx);
+ idx = pCur->aiIdx[pCur->iPage];
+ if( loc==0 ){
+ u16 szOld;
+ assert( idx<pPage->nCell );
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ){
+ goto end_insert;
+ }
+ oldCell = findCell(pPage, idx);
if( !pPage->leaf ){
memcpy(newCell, oldCell, 4);
}
szOld = cellSizePtr(pPage, oldCell);
rc = clearCell(pPage, oldCell);
+ dropCell(pPage, idx, szOld, &rc);
if( rc ) goto end_insert;
- dropCell(pPage, pCur->idx, szOld);
}else if( loc<0 && pPage->nCell>0 ){
assert( pPage->leaf );
- pCur->idx++;
- pCur->info.nSize = 0;
+ idx = ++pCur->aiIdx[pCur->iPage];
}else{
assert( pPage->leaf );
}
- rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
- if( rc!=SQLITE_OK ) goto end_insert;
- rc = balance(pPage, 1);
- /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
- /* fflush(stdout); */
- if( rc==SQLITE_OK ){
- moveToRoot(pCur);
+ insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
+ assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
+
+ /* If no error has occured and pPage has an overflow cell, call balance()
+ ** to redistribute the cells within the tree. Since balance() may move
+ ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
+ ** variables.
+ **
+ ** Previous versions of SQLite called moveToRoot() to move the cursor
+ ** back to the root page as balance() used to invalidate the contents
+ ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
+ ** set the cursor state to "invalid". This makes common insert operations
+ ** slightly faster.
+ **
+ ** There is a subtle but important optimization here too. When inserting
+ ** multiple records into an intkey b-tree using a single cursor (as can
+ ** happen while processing an "INSERT INTO ... SELECT" statement), it
+ ** is advantageous to leave the cursor pointing to the last entry in
+ ** the b-tree if possible. If the cursor is left pointing to the last
+ ** entry in the table, and the next row inserted has an integer key
+ ** larger than the largest existing key, it is possible to insert the
+ ** row without seeking the cursor. This can be a big performance boost.
+ */
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ if( rc==SQLITE_OK && pPage->nOverflow ){
+ rc = balance(pCur);
+
+ /* Must make sure nOverflow is reset to zero even if the balance()
+ ** fails. Internal data structure corruption will result otherwise.
+ ** Also, set the cursor state to invalid. This stops saveCursorPosition()
+ ** from trying to save the current position of the cursor. */
+ pCur->apPage[pCur->iPage]->nOverflow = 0;
+ pCur->eState = CURSOR_INVALID;
}
+ assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
+
end_insert:
- sqliteFree(newCell);
return rc;
}
/*
** Delete the entry that the cursor is pointing to. The cursor
-** is left pointing at a random location.
+** is left pointing at a arbitrary location.
*/
-int sqlite3BtreeDelete(BtCursor *pCur){
- MemPage *pPage = pCur->pPage;
- unsigned char *pCell;
- int rc;
- Pgno pgnoChild = 0;
- BtShared *pBt = pCur->pBtree->pBt;
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
+ int rc; /* Return code */
+ MemPage *pPage; /* Page to delete cell from */
+ unsigned char *pCell; /* Pointer to cell to delete */
+ int iCellIdx; /* Index of cell to delete */
+ int iCellDepth; /* Depth of node containing pCell */
- assert( pPage->isInit );
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction before doing a delete */
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
+ assert( cursorHoldsMutex(pCur) );
+ assert( pBt->inTransaction==TRANS_WRITE );
assert( !pBt->readOnly );
- if( pCur->idx >= pPage->nCell ){
- return SQLITE_ERROR; /* The cursor is not pointing to anything */
- }
- if( !pCur->wrFlag ){
- return SQLITE_PERM; /* Did not open this cursor for writing */
- }
- if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
- return SQLITE_LOCKED; /* The table pCur points to has a read lock */
- }
+ assert( pCur->wrFlag );
+ assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
+ assert( !hasReadConflicts(p, pCur->pgnoRoot) );
- /* Restore the current cursor position (a no-op if the cursor is not in
- ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
- ** open on the same table. Then call sqlite3PagerWrite() on the page
- ** that the entry will be deleted from.
- */
- if(
- (rc = restoreOrClearCursorPosition(pCur))!=0 ||
- (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
- (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
+ if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
+ || NEVER(pCur->eState!=CURSOR_VALID)
){
- return rc;
+ return SQLITE_ERROR; /* Something has gone awry. */
}
- /* Locate the cell within it's page and leave pCell pointing to the
- ** data. The clearCell() call frees any overflow pages associated with the
- ** cell. The cell itself is still intact.
- */
- pCell = findCell(pPage, pCur->idx);
+ /* If this is a delete operation to remove a row from a table b-tree,
+ ** invalidate any incrblob cursors open on the row being deleted. */
+ if( pCur->pKeyInfo==0 ){
+ invalidateIncrblobCursors(p, pCur->info.nKey, 0);
+ }
+
+ iCellDepth = pCur->iPage;
+ iCellIdx = pCur->aiIdx[iCellDepth];
+ pPage = pCur->apPage[iCellDepth];
+ pCell = findCell(pPage, iCellIdx);
+
+ /* If the page containing the entry to delete is not a leaf page, move
+ ** the cursor to the largest entry in the tree that is smaller than
+ ** the entry being deleted. This cell will replace the cell being deleted
+ ** from the internal node. The 'previous' entry is used for this instead
+ ** of the 'next' entry, as the previous entry is always a part of the
+ ** sub-tree headed by the child page of the cell being deleted. This makes
+ ** balancing the tree following the delete operation easier. */
if( !pPage->leaf ){
- pgnoChild = get4byte(pCell);
+ int notUsed;
+ rc = sqlite3BtreePrevious(pCur, &notUsed);
+ if( rc ) return rc;
}
+
+ /* Save the positions of any other cursors open on this table before
+ ** making any modifications. Make the page containing the entry to be
+ ** deleted writable. Then free any overflow pages associated with the
+ ** entry and finally remove the cell itself from within the page.
+ */
+ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
+ if( rc ) return rc;
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
rc = clearCell(pPage, pCell);
+ dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
if( rc ) return rc;
+ /* If the cell deleted was not located on a leaf page, then the cursor
+ ** is currently pointing to the largest entry in the sub-tree headed
+ ** by the child-page of the cell that was just deleted from an internal
+ ** node. The cell from the leaf node needs to be moved to the internal
+ ** node to replace the deleted cell. */
if( !pPage->leaf ){
- /*
- ** The entry we are about to delete is not a leaf so if we do not
- ** do something we will leave a hole on an internal page.
- ** We have to fill the hole by moving in a cell from a leaf. The
- ** next Cell after the one to be deleted is guaranteed to exist and
- ** to be a leaf so we can use it.
- */
- BtCursor leafCur;
- unsigned char *pNext;
- int szNext; /* The compiler warning is wrong: szNext is always
- ** initialized before use. Adding an extra initialization
- ** to silence the compiler slows down the code. */
- int notUsed;
- unsigned char *tempCell = 0;
- assert( !pPage->leafData );
- getTempCursor(pCur, &leafCur);
- rc = sqlite3BtreeNext(&leafCur, &notUsed);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
- }
- if( rc==SQLITE_OK ){
- TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
- pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
- dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
- pNext = findCell(leafCur.pPage, leafCur.idx);
- szNext = cellSizePtr(leafCur.pPage, pNext);
- assert( MX_CELL_SIZE(pBt)>=szNext+4 );
- tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
- if( tempCell==0 ){
- rc = SQLITE_NOMEM;
- }
- }
- if( rc==SQLITE_OK ){
- rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
- }
- if( rc==SQLITE_OK ){
- put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
- rc = balance(pPage, 0);
- }
- if( rc==SQLITE_OK ){
- dropCell(leafCur.pPage, leafCur.idx, szNext);
- rc = balance(leafCur.pPage, 0);
- }
- sqliteFree(tempCell);
- releaseTempCursor(&leafCur);
- }else{
- TRACE(("DELETE: table=%d delete from leaf %d\n",
- pCur->pgnoRoot, pPage->pgno));
- dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
- rc = balance(pPage, 0);
+ MemPage *pLeaf = pCur->apPage[pCur->iPage];
+ int nCell;
+ Pgno n = pCur->apPage[iCellDepth+1]->pgno;
+ unsigned char *pTmp;
+
+ pCell = findCell(pLeaf, pLeaf->nCell-1);
+ nCell = cellSizePtr(pLeaf, pCell);
+ assert( MX_CELL_SIZE(pBt)>=nCell );
+
+ allocateTempSpace(pBt);
+ pTmp = pBt->pTmpSpace;
+
+ rc = sqlite3PagerWrite(pLeaf->pDbPage);
+ insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
+ dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
+ if( rc ) return rc;
+ }
+
+ /* Balance the tree. If the entry deleted was located on a leaf page,
+ ** then the cursor still points to that page. In this case the first
+ ** call to balance() repairs the tree, and the if(...) condition is
+ ** never true.
+ **
+ ** Otherwise, if the entry deleted was on an internal node page, then
+ ** pCur is pointing to the leaf page from which a cell was removed to
+ ** replace the cell deleted from the internal node. This is slightly
+ ** tricky as the leaf node may be underfull, and the internal node may
+ ** be either under or overfull. In this case run the balancing algorithm
+ ** on the leaf node first. If the balance proceeds far enough up the
+ ** tree that we can be sure that any problem in the internal node has
+ ** been corrected, so be it. Otherwise, after balancing the leaf node,
+ ** walk the cursor up the tree to the internal node and balance it as
+ ** well. */
+ rc = balance(pCur);
+ if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
+ while( pCur->iPage>iCellDepth ){
+ releasePage(pCur->apPage[pCur->iPage--]);
+ }
+ rc = balance(pCur);
}
+
if( rc==SQLITE_OK ){
moveToRoot(pCur);
}
@@ -26561,46 +44246,44 @@ int sqlite3BtreeDelete(BtCursor *pCur){
** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
** BTREE_ZERODATA Used for SQL indices
*/
-int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
+static int btreeCreateTable(Btree *p, int *piTable, int flags){
BtShared *pBt = p->pBt;
MemPage *pRoot;
Pgno pgnoRoot;
int rc;
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction first */
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
- assert( !pBt->readOnly );
- /* It is illegal to create a table if any cursors are open on the
- ** database. This is because in auto-vacuum mode the backend may
- ** need to move a database page to make room for the new root-page.
- ** If an open cursor was using the page a problem would occur.
- */
- if( pBt->pCursor ){
- return SQLITE_LOCKED;
- }
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( pBt->inTransaction==TRANS_WRITE );
+ assert( !pBt->readOnly );
#ifdef SQLITE_OMIT_AUTOVACUUM
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
- if( rc ) return rc;
+ if( rc ){
+ return rc;
+ }
#else
if( pBt->autoVacuum ){
Pgno pgnoMove; /* Move a page here to make room for the root-page */
MemPage *pPageMove; /* The page to move to. */
+ /* Creating a new table may probably require moving an existing database
+ ** to make room for the new tables root page. In case this page turns
+ ** out to be an overflow page, delete all overflow page-map caches
+ ** held by open cursors.
+ */
+ invalidateAllOverflowCache(pBt);
+
/* Read the value of meta[3] from the database to determine where the
** root page of the new table should go. meta[3] is the largest root-page
** created so far, so the new root-page is (meta[3]+1).
*/
- rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
- if( rc!=SQLITE_OK ) return rc;
+ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
pgnoRoot++;
/* The new root-page may not be allocated on a pointer-map page, or the
** PENDING_BYTE page.
*/
- if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
+ while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
pgnoRoot++;
}
@@ -26622,36 +44305,34 @@ int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
** by extending the file), the current page at position pgnoMove
** is already journaled.
*/
- u8 eType;
- Pgno iPtrPage;
+ u8 eType = 0;
+ Pgno iPtrPage = 0;
releasePage(pPageMove);
/* Move the page currently at pgnoRoot to pgnoMove. */
- rc = getPage(pBt, pgnoRoot, &pRoot, 0);
+ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
if( rc!=SQLITE_OK ){
return rc;
}
rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
- if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
- releasePage(pRoot);
- return rc;
+ if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
+ rc = SQLITE_CORRUPT_BKPT;
}
- assert( eType!=PTRMAP_ROOTPAGE );
- assert( eType!=PTRMAP_FREEPAGE );
- rc = sqlite3PagerWrite(pRoot->pDbPage);
if( rc!=SQLITE_OK ){
releasePage(pRoot);
return rc;
}
- rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
+ assert( eType!=PTRMAP_ROOTPAGE );
+ assert( eType!=PTRMAP_FREEPAGE );
+ rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
releasePage(pRoot);
/* Obtain the page at pgnoRoot */
if( rc!=SQLITE_OK ){
return rc;
}
- rc = getPage(pBt, pgnoRoot, &pRoot, 0);
+ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
if( rc!=SQLITE_OK ){
return rc;
}
@@ -26665,7 +44346,7 @@ int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
}
/* Update the pointer-map and meta-data with the new root-page number. */
- rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
+ ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
if( rc ){
releasePage(pRoot);
return rc;
@@ -26687,6 +44368,13 @@ int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
*piTable = (int)pgnoRoot;
return SQLITE_OK;
}
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeCreateTable(p, piTable, flags);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
/*
** Erase the given database page and all its children. Return
@@ -26695,35 +44383,39 @@ int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
static int clearDatabasePage(
BtShared *pBt, /* The BTree that contains the table */
Pgno pgno, /* Page number to clear */
- MemPage *pParent, /* Parent page. NULL for the root */
- int freePageFlag /* Deallocate page if true */
+ int freePageFlag, /* Deallocate page if true */
+ int *pnChange
){
- MemPage *pPage = 0;
+ MemPage *pPage;
int rc;
unsigned char *pCell;
int i;
- if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pgno>pagerPagecount(pBt) ){
return SQLITE_CORRUPT_BKPT;
}
- rc = getAndInitPage(pBt, pgno, &pPage, pParent);
- if( rc ) goto cleardatabasepage_out;
+ rc = getAndInitPage(pBt, pgno, &pPage);
+ if( rc ) return rc;
for(i=0; i<pPage->nCell; i++){
pCell = findCell(pPage, i);
if( !pPage->leaf ){
- rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
+ rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
if( rc ) goto cleardatabasepage_out;
}
rc = clearCell(pPage, pCell);
if( rc ) goto cleardatabasepage_out;
}
if( !pPage->leaf ){
- rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
+ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
if( rc ) goto cleardatabasepage_out;
+ }else if( pnChange ){
+ assert( pPage->intKey );
+ *pnChange += pPage->nCell;
}
if( freePageFlag ){
- rc = freePage(pPage);
+ freePage(pPage, &rc);
}else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
}
@@ -26741,24 +44433,28 @@ cleardatabasepage_out:
** This routine will fail with SQLITE_LOCKED if there are any open
** read cursors on the table. Open write cursors are moved to the
** root of the table.
+**
+** If pnChange is not NULL, then table iTable must be an intkey table. The
+** integer value pointed to by pnChange is incremented by the number of
+** entries in the table.
*/
-int sqlite3BtreeClearTable(Btree *p, int iTable){
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
int rc;
BtShared *pBt = p->pBt;
- if( p->inTrans!=TRANS_WRITE ){
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
- rc = checkReadLocks(p, iTable, 0);
- if( rc ){
- return rc;
- }
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
- /* Save the position of all cursors open on this table */
- if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
- return rc;
- }
+ /* Invalidate all incrblob cursors open on table iTable (assuming iTable
+ ** is the root of a table b-tree - if it is not, the following call is
+ ** a no-op). */
+ invalidateIncrblobCursors(p, 0, 1);
- return clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
+ rc = saveAllCursors(pBt, (Pgno)iTable, 0);
+ if( SQLITE_OK==rc ){
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
}
/*
@@ -26781,28 +44477,30 @@ int sqlite3BtreeClearTable(Btree *p, int iTable){
** The last root page is recorded in meta[3] and the value of
** meta[3] is updated by this procedure.
*/
-int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
+static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
int rc;
MemPage *pPage = 0;
BtShared *pBt = p->pBt;
- if( p->inTrans!=TRANS_WRITE ){
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( p->inTrans==TRANS_WRITE );
/* It is illegal to drop a table if any cursors are open on the
** database. This is because in auto-vacuum mode the backend may
** need to move another root-page to fill a gap left by the deleted
** root page. If an open cursor was using this page a problem would
** occur.
+ **
+ ** This error is caught long before control reaches this point.
*/
- if( pBt->pCursor ){
- return SQLITE_LOCKED;
+ if( NEVER(pBt->pCursor) ){
+ sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
+ return SQLITE_LOCKED_SHAREDCACHE;
}
- rc = getPage(pBt, (Pgno)iTable, &pPage, 0);
+ rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
if( rc ) return rc;
- rc = sqlite3BtreeClearTable(p, iTable);
+ rc = sqlite3BtreeClearTable(p, iTable, 0);
if( rc ){
releasePage(pPage);
return rc;
@@ -26812,22 +44510,18 @@ int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
if( iTable>1 ){
#ifdef SQLITE_OMIT_AUTOVACUUM
- rc = freePage(pPage);
+ freePage(pPage, &rc);
releasePage(pPage);
#else
if( pBt->autoVacuum ){
Pgno maxRootPgno;
- rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
- if( rc!=SQLITE_OK ){
- releasePage(pPage);
- return rc;
- }
+ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
if( iTable==maxRootPgno ){
/* If the table being dropped is the table with the largest root-page
** number in the database, put the root page on the free list.
*/
- rc = freePage(pPage);
+ freePage(pPage, &rc);
releasePage(pPage);
if( rc!=SQLITE_OK ){
return rc;
@@ -26839,20 +44533,18 @@ int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
*/
MemPage *pMove;
releasePage(pPage);
- rc = getPage(pBt, maxRootPgno, &pMove, 0);
+ rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
if( rc!=SQLITE_OK ){
return rc;
}
- rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
+ rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
releasePage(pMove);
if( rc!=SQLITE_OK ){
return rc;
}
- rc = getPage(pBt, maxRootPgno, &pMove, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = freePage(pMove);
+ pMove = 0;
+ rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
+ freePage(pMove, &rc);
releasePage(pMove);
if( rc!=SQLITE_OK ){
return rc;
@@ -26866,30 +44558,41 @@ int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
** PENDING_BYTE_PAGE.
*/
maxRootPgno--;
- if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
- maxRootPgno--;
- }
- if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
+ while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
+ || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
maxRootPgno--;
}
assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
}else{
- rc = freePage(pPage);
+ freePage(pPage, &rc);
releasePage(pPage);
}
#endif
}else{
- /* If sqlite3BtreeDropTable was called on page 1. */
+ /* If sqlite3BtreeDropTable was called on page 1.
+ ** This really never should happen except in a corrupt
+ ** database.
+ */
zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
releasePage(pPage);
}
return rc;
}
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeDropTable(p, iTable, piMoved);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
/*
+** This function may only be called if the b-tree connection already
+** has a read or write transaction open on the database.
+**
** Read the meta-information out of a database file. Meta[0]
** is the number of free pages currently in the database. Meta[1]
** through meta[15] are available for use by higher layers. Meta[0]
@@ -26899,250 +44602,121 @@ int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible. So Cookie[0] is the same as Meta[1].
*/
-int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
- DbPage *pDbPage;
- int rc;
- unsigned char *pP1;
+SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
BtShared *pBt = p->pBt;
- /* Reading a meta-data value requires a read-lock on page 1 (and hence
- ** the sqlite_master table. We grab this lock regardless of whether or
- ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
- ** 1 is treated as a special case by queryTableLock() and lockTable()).
- */
- rc = queryTableLock(p, 1, READ_LOCK);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans>TRANS_NONE );
+ assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
+ assert( pBt->pPage1 );
assert( idx>=0 && idx<=15 );
- rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
- if( rc ) return rc;
- pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
- *pMeta = get4byte(&pP1[36 + idx*4]);
- sqlite3PagerUnref(pDbPage);
- /* If autovacuumed is disabled in this build but we are trying to
- ** access an autovacuumed database, then make the database readonly.
- */
+ *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
+
+ /* If auto-vacuum is disabled in this build and this is an auto-vacuum
+ ** database, mark the database as read-only. */
#ifdef SQLITE_OMIT_AUTOVACUUM
- if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
+ if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
#endif
- /* Grab the read-lock on page 1. */
- rc = lockTable(p, 1, READ_LOCK);
- return rc;
+ sqlite3BtreeLeave(p);
}
/*
** Write meta-information back into the database. Meta[0] is
** read-only and may not be written.
*/
-int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
BtShared *pBt = p->pBt;
unsigned char *pP1;
int rc;
assert( idx>=1 && idx<=15 );
- if( p->inTrans!=TRANS_WRITE ){
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
assert( pBt->pPage1!=0 );
pP1 = pBt->pPage1->aData;
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
- if( rc ) return rc;
- put4byte(&pP1[36 + idx*4], iMeta);
- return SQLITE_OK;
+ if( rc==SQLITE_OK ){
+ put4byte(&pP1[36 + idx*4], iMeta);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( idx==BTREE_INCR_VACUUM ){
+ assert( pBt->autoVacuum || iMeta==0 );
+ assert( iMeta==0 || iMeta==1 );
+ pBt->incrVacuum = (u8)iMeta;
+ }
+#endif
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
}
+#ifndef SQLITE_OMIT_BTREECOUNT
/*
-** Return the flag byte at the beginning of the page that the cursor
-** is currently pointing to.
+** The first argument, pCur, is a cursor opened on some b-tree. Count the
+** number of entries in the b-tree and write the result to *pnEntry.
+**
+** SQLITE_OK is returned if the operation is successfully executed.
+** Otherwise, if an error is encountered (i.e. an IO error or database
+** corruption) an SQLite error code is returned.
*/
-int sqlite3BtreeFlags(BtCursor *pCur){
- /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
- ** restoreOrClearCursorPosition() here.
- */
- MemPage *pPage = pCur->pPage;
- return pPage ? pPage->aData[pPage->hdrOffset] : 0;
-}
+SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
+ i64 nEntry = 0; /* Value to return in *pnEntry */
+ int rc; /* Return code */
+ rc = moveToRoot(pCur);
-#ifdef SQLITE_DEBUG
-/*
-** Print a disassembly of the given page on standard output. This routine
-** is used for debugging and testing only.
-*/
-static int btreePageDump(BtShared *pBt, int pgno, int recursive, MemPage *pParent){
- int rc;
- MemPage *pPage;
- int i, j, c;
- int nFree;
- u16 idx;
- int hdr;
- int nCell;
- int isInit;
- unsigned char *data;
- char range[20];
- unsigned char payload[20];
+ /* Unless an error occurs, the following loop runs one iteration for each
+ ** page in the B-Tree structure (not including overflow pages).
+ */
+ while( rc==SQLITE_OK ){
+ int iIdx; /* Index of child node in parent */
+ MemPage *pPage; /* Current page of the b-tree */
- rc = getPage(pBt, (Pgno)pgno, &pPage, 0);
- isInit = pPage->isInit;
- if( pPage->isInit==0 ){
- initPage(pPage, pParent);
- }
- if( rc ){
- return rc;
- }
- hdr = pPage->hdrOffset;
- data = pPage->aData;
- c = data[hdr];
- pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
- pPage->zeroData = (c & PTF_ZERODATA)!=0;
- pPage->leafData = (c & PTF_LEAFDATA)!=0;
- pPage->leaf = (c & PTF_LEAF)!=0;
- pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
- nCell = get2byte(&data[hdr+3]);
- sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
- data[hdr], data[hdr+7],
- (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
- assert( hdr == (pgno==1 ? 100 : 0) );
- idx = hdr + 12 - pPage->leaf*4;
- for(i=0; i<nCell; i++){
- CellInfo info;
- Pgno child;
- unsigned char *pCell;
- int sz;
- int addr;
+ /* If this is a leaf page or the tree is not an int-key tree, then
+ ** this page contains countable entries. Increment the entry counter
+ ** accordingly.
+ */
+ pPage = pCur->apPage[pCur->iPage];
+ if( pPage->leaf || !pPage->intKey ){
+ nEntry += pPage->nCell;
+ }
- addr = get2byte(&data[idx + 2*i]);
- pCell = &data[addr];
- parseCellPtr(pPage, pCell, &info);
- sz = info.nSize;
- sprintf(range,"%d..%d", addr, addr+sz-1);
+ /* pPage is a leaf node. This loop navigates the cursor so that it
+ ** points to the first interior cell that it points to the parent of
+ ** the next page in the tree that has not yet been visited. The
+ ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
+ ** of the page, or to the number of cells in the page if the next page
+ ** to visit is the right-child of its parent.
+ **
+ ** If all pages in the tree have been visited, return SQLITE_OK to the
+ ** caller.
+ */
if( pPage->leaf ){
- child = 0;
- }else{
- child = get4byte(pCell);
- }
- sz = info.nData;
- if( !pPage->intKey ) sz += info.nKey;
- if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
- memcpy(payload, &pCell[info.nHeader], sz);
- for(j=0; j<sz; j++){
- if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
- }
- payload[sz] = 0;
- sqlite3DebugPrintf(
- "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
- i, range, child, info.nKey, info.nData, payload
- );
- }
- if( !pPage->leaf ){
- sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8]));
- }
- nFree = 0;
- i = 0;
- idx = get2byte(&data[hdr+1]);
- while( idx>0 && idx<pPage->pBt->usableSize ){
- int sz = get2byte(&data[idx+2]);
- sprintf(range,"%d..%d", idx, idx+sz-1);
- nFree += sz;
- sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
- i, range, sz, nFree);
- idx = get2byte(&data[idx]);
- i++;
- }
- if( idx!=0 ){
- sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx);
- }
- if( recursive && !pPage->leaf ){
- for(i=0; i<nCell; i++){
- unsigned char *pCell = findCell(pPage, i);
- btreePageDump(pBt, get4byte(pCell), 1, pPage);
- idx = get2byte(pCell);
+ do {
+ if( pCur->iPage==0 ){
+ /* All pages of the b-tree have been visited. Return successfully. */
+ *pnEntry = nEntry;
+ return SQLITE_OK;
+ }
+ moveToParent(pCur);
+ }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
+
+ pCur->aiIdx[pCur->iPage]++;
+ pPage = pCur->apPage[pCur->iPage];
}
- btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage);
- }
- pPage->isInit = isInit;
- sqlite3PagerUnref(pPage->pDbPage);
- fflush(stdout);
- return SQLITE_OK;
-}
-int sqlite3BtreePageDump(Btree *p, int pgno, int recursive){
- return btreePageDump(p->pBt, pgno, recursive, 0);
-}
-#endif
-#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
-/*
-** Fill aResult[] with information about the entry and page that the
-** cursor is pointing to.
-**
-** aResult[0] = The page number
-** aResult[1] = The entry number
-** aResult[2] = Total number of entries on this page
-** aResult[3] = Cell size (local payload + header)
-** aResult[4] = Number of free bytes on this page
-** aResult[5] = Number of free blocks on the page
-** aResult[6] = Total payload size (local + overflow)
-** aResult[7] = Header size in bytes
-** aResult[8] = Local payload size
-** aResult[9] = Parent page number
-** aResult[10]= Page number of the first overflow page
-**
-** This routine is used for testing and debugging only.
-*/
-int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){
- int cnt, idx;
- MemPage *pPage = pCur->pPage;
- BtCursor tmpCur;
-
- int rc = restoreOrClearCursorPosition(pCur);
- if( rc!=SQLITE_OK ){
- return rc;
+ /* Descend to the child node of the cell that the cursor currently
+ ** points at. This is the right-child if (iIdx==pPage->nCell).
+ */
+ iIdx = pCur->aiIdx[pCur->iPage];
+ if( iIdx==pPage->nCell ){
+ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
+ }else{
+ rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
+ }
}
- assert( pPage->isInit );
- getTempCursor(pCur, &tmpCur);
- while( upCnt-- ){
- moveToParent(&tmpCur);
- }
- pPage = tmpCur.pPage;
- aResult[0] = sqlite3PagerPagenumber(pPage->pDbPage);
- assert( aResult[0]==pPage->pgno );
- aResult[1] = tmpCur.idx;
- aResult[2] = pPage->nCell;
- if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){
- getCellInfo(&tmpCur);
- aResult[3] = tmpCur.info.nSize;
- aResult[6] = tmpCur.info.nData;
- aResult[7] = tmpCur.info.nHeader;
- aResult[8] = tmpCur.info.nLocal;
- }else{
- aResult[3] = 0;
- aResult[6] = 0;
- aResult[7] = 0;
- aResult[8] = 0;
- }
- aResult[4] = pPage->nFree;
- cnt = 0;
- idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
- while( idx>0 && idx<pPage->pBt->usableSize ){
- cnt++;
- idx = get2byte(&pPage->aData[idx]);
- }
- aResult[5] = cnt;
- if( pPage->pParent==0 || isRootPage(pPage) ){
- aResult[9] = 0;
- }else{
- aResult[9] = pPage->pParent->pgno;
- }
- if( tmpCur.info.iOverflow ){
- aResult[10] = get4byte(&tmpCur.info.pCell[tmpCur.info.iOverflow]);
- }else{
- aResult[10] = 0;
- }
- releaseTempCursor(&tmpCur);
- return SQLITE_OK;
+ /* An error has occurred. Return an error code. */
+ return rc;
}
#endif
@@ -27150,25 +44724,10 @@ int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){
** Return the pager associated with a BTree. This routine is used for
** testing and debugging only.
*/
-Pager *sqlite3BtreePager(Btree *p){
+SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
return p->pBt->pPager;
}
-/*
-** This structure is passed around through all the sanity checking routines
-** in order to keep track of some global state information.
-*/
-typedef struct IntegrityCk IntegrityCk;
-struct IntegrityCk {
- BtShared *pBt; /* The tree being checked out */
- Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
- int nPage; /* Number of pages in the database */
- int *anRef; /* Number of times each page is referenced */
- int mxErr; /* Stop accumulating errors when this reaches zero */
- char *zErrMsg; /* An error message. NULL if no errors seen. */
- int nErr; /* Number of messages written to zErrMsg so far */
-};
-
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
@@ -27180,23 +44739,21 @@ static void checkAppendMsg(
...
){
va_list ap;
- char *zMsg2;
if( !pCheck->mxErr ) return;
pCheck->mxErr--;
pCheck->nErr++;
va_start(ap, zFormat);
- zMsg2 = sqlite3VMPrintf(zFormat, ap);
+ if( pCheck->errMsg.nChar ){
+ sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
+ }
+ if( zMsg1 ){
+ sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
+ }
+ sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
va_end(ap);
- if( zMsg1==0 ) zMsg1 = "";
- if( pCheck->zErrMsg ){
- char *zOld = pCheck->zErrMsg;
- pCheck->zErrMsg = 0;
- sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
- sqliteFree(zOld);
- }else{
- sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
+ if( pCheck->errMsg.mallocFailed ){
+ pCheck->mallocFailed = 1;
}
- sqliteFree(zMsg2);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
@@ -27209,9 +44766,9 @@ static void checkAppendMsg(
**
** Also check that the page number is in bounds.
*/
-static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
+static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
if( iPage==0 ) return 1;
- if( iPage>pCheck->nPage || iPage<0 ){
+ if( iPage>pCheck->nPage ){
checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
return 1;
}
@@ -27241,6 +44798,7 @@ static void checkPtrmap(
rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
return;
}
@@ -27289,7 +44847,7 @@ static void checkList(
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
}
#endif
- if( n>pCheck->pBt->usableSize/4-8 ){
+ if( n>pCheck->pBt->usableSize/4-2 ){
checkAppendMsg(pCheck, zContext,
"freelist leaf count too big on page %d", iPage);
N--;
@@ -27346,7 +44904,6 @@ static void checkList(
static int checkTreePage(
IntegrityCk *pCheck, /* Context for the sanity check */
int iPage, /* Page number of the page to check */
- MemPage *pParent, /* Parent page */
char *zParentContext /* Parent context */
){
MemPage *pPage;
@@ -27357,9 +44914,9 @@ static int checkTreePage(
BtShared *pBt;
int usableSize;
char zContext[100];
- char *hit;
+ char *hit = 0;
- sprintf(zContext, "Page %d: ", iPage);
+ sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
/* Check that the page exists
*/
@@ -27367,13 +44924,19 @@ static int checkTreePage(
usableSize = pBt->usableSize;
if( iPage==0 ) return 0;
if( checkRef(pCheck, iPage, zParentContext) ) return 0;
- if( (rc = getPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
+ if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
checkAppendMsg(pCheck, zContext,
"unable to get the page. error code=%d", rc);
return 0;
}
- if( (rc = initPage(pPage, pParent))!=0 ){
- checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc);
+
+ /* Clear MemPage.isInit to make sure the corruption detection code in
+ ** btreeInitPage() is executed. */
+ pPage->isInit = 0;
+ if( (rc = btreeInitPage(pPage))!=0 ){
+ assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
+ checkAppendMsg(pCheck, zContext,
+ "btreeInitPage() returns error code %d", rc);
releasePage(pPage);
return 0;
}
@@ -27383,18 +44946,21 @@ static int checkTreePage(
depth = 0;
for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
u8 *pCell;
- int sz;
+ u32 sz;
CellInfo info;
/* Check payload overflow pages
*/
- sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
+ sqlite3_snprintf(sizeof(zContext), zContext,
+ "On tree page %d cell %d: ", iPage, i);
pCell = findCell(pPage,i);
- parseCellPtr(pPage, pCell, &info);
+ btreeParseCellPtr(pPage, pCell, &info);
sz = info.nData;
- if( !pPage->intKey ) sz += info.nKey;
+ if( !pPage->intKey ) sz += (int)info.nKey;
assert( sz==info.nPayload );
- if( sz>info.nLocal ){
+ if( (sz>info.nLocal)
+ && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
+ ){
int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
#ifndef SQLITE_OMIT_AUTOVACUUM
@@ -27414,7 +44980,7 @@ static int checkTreePage(
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
}
#endif
- d2 = checkTreePage(pCheck,pgno,pPage,zContext);
+ d2 = checkTreePage(pCheck, pgno, zContext);
if( i>0 && d2!=depth ){
checkAppendMsg(pCheck, zContext, "Child page depth differs");
}
@@ -27423,46 +44989,55 @@ static int checkTreePage(
}
if( !pPage->leaf ){
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- sprintf(zContext, "On page %d at right child: ", iPage);
+ sqlite3_snprintf(sizeof(zContext), zContext,
+ "On page %d at right child: ", iPage);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
}
#endif
- checkTreePage(pCheck, pgno, pPage, zContext);
+ checkTreePage(pCheck, pgno, zContext);
}
/* Check for complete coverage of the page
*/
data = pPage->aData;
hdr = pPage->hdrOffset;
- hit = sqliteMalloc( usableSize );
- if( hit ){
- memset(hit, 1, get2byte(&data[hdr+5]));
+ hit = sqlite3PageMalloc( pBt->pageSize );
+ if( hit==0 ){
+ pCheck->mallocFailed = 1;
+ }else{
+ u16 contentOffset = get2byte(&data[hdr+5]);
+ assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
+ memset(hit+contentOffset, 0, usableSize-contentOffset);
+ memset(hit, 1, contentOffset);
nCell = get2byte(&data[hdr+3]);
cellStart = hdr + 12 - 4*pPage->leaf;
for(i=0; i<nCell; i++){
int pc = get2byte(&data[cellStart+i*2]);
- int size = cellSizePtr(pPage, &data[pc]);
+ u16 size = 1024;
int j;
- if( (pc+size-1)>=usableSize || pc<0 ){
+ if( pc<=usableSize-4 ){
+ size = cellSizePtr(pPage, &data[pc]);
+ }
+ if( (pc+size-1)>=usableSize ){
checkAppendMsg(pCheck, 0,
"Corruption detected in cell %d on page %d",i,iPage,0);
}else{
for(j=pc+size-1; j>=pc; j--) hit[j]++;
}
}
- for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
- cnt++){
- int size = get2byte(&data[i+2]);
- int j;
- if( (i+size-1)>=usableSize || i<0 ){
- checkAppendMsg(pCheck, 0,
- "Corruption detected in cell %d on page %d",i,iPage,0);
- }else{
- for(j=i+size-1; j>=i; j--) hit[j]++;
- }
- i = get2byte(&data[i]);
+ i = get2byte(&data[hdr+1]);
+ while( i>0 ){
+ int size, j;
+ assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
+ size = get2byte(&data[i+2]);
+ assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
+ for(j=i+size-1; j>=i; j--) hit[j]++;
+ j = get2byte(&data[i]);
+ assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
+ assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
+ i = j;
}
for(i=cnt=0; i<usableSize; i++){
if( hit[i]==0 ){
@@ -27475,12 +45050,11 @@ static int checkTreePage(
}
if( cnt!=data[hdr+7] ){
checkAppendMsg(pCheck, 0,
- "Fragmented space is %d byte reported as %d on page %d",
+ "Fragmentation of %d bytes reported as %d on page %d",
cnt, data[hdr+7], iPage);
}
}
- sqliteFree(hit);
-
+ sqlite3PageFree(hit);
releasePage(pPage);
return depth+1;
}
@@ -27492,50 +45066,53 @@ static int checkTreePage(
** an array of pages numbers were each page number is the root page of
** a table. nRoot is the number of entries in aRoot.
**
-** If everything checks out, this routine returns NULL. If something is
-** amiss, an error message is written into memory obtained from malloc()
-** and a pointer to that error message is returned. The calling function
-** is responsible for freeing the error message when it is done.
+** A read-only or read-write transaction must be opened before calling
+** this function.
+**
+** Write the number of error seen in *pnErr. Except for some memory
+** allocation errors, an error message held in memory obtained from
+** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
+** returned. If a memory allocation error occurs, NULL is returned.
*/
-char *sqlite3BtreeIntegrityCheck(
+SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
Btree *p, /* The btree to be checked */
int *aRoot, /* An array of root pages numbers for individual trees */
int nRoot, /* Number of entries in aRoot[] */
int mxErr, /* Stop reporting errors after this many */
int *pnErr /* Write number of errors seen to this variable */
){
- int i;
+ Pgno i;
int nRef;
IntegrityCk sCheck;
BtShared *pBt = p->pBt;
+ char zErr[100];
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
nRef = sqlite3PagerRefcount(pBt->pPager);
- if( lockBtreeWithRetry(p)!=SQLITE_OK ){
- return sqliteStrDup("Unable to acquire a read lock on the database");
- }
sCheck.pBt = pBt;
sCheck.pPager = pBt->pPager;
- sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
+ sCheck.nPage = pagerPagecount(sCheck.pBt);
sCheck.mxErr = mxErr;
sCheck.nErr = 0;
+ sCheck.mallocFailed = 0;
*pnErr = 0;
if( sCheck.nPage==0 ){
- unlockBtreeIfUnused(pBt);
+ sqlite3BtreeLeave(p);
return 0;
}
- sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
+ sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
if( !sCheck.anRef ){
- unlockBtreeIfUnused(pBt);
*pnErr = 1;
- return sqlite3MPrintf("Unable to malloc %d bytes",
- (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
+ sqlite3BtreeLeave(p);
+ return 0;
}
for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
i = PENDING_BYTE_PAGE(pBt);
if( i<=sCheck.nPage ){
sCheck.anRef[i] = 1;
}
- sCheck.zErrMsg = 0;
+ sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
/* Check the integrity of the freelist
*/
@@ -27544,14 +45121,14 @@ char *sqlite3BtreeIntegrityCheck(
/* Check all the tables.
*/
- for(i=0; i<nRoot && sCheck.mxErr; i++){
+ for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum && aRoot[i]>1 ){
checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
}
#endif
- checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
+ checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
}
/* Make sure every page in the file is referenced
@@ -27576,10 +45153,11 @@ char *sqlite3BtreeIntegrityCheck(
#endif
}
- /* Make sure this analysis did not leave any unref() pages
+ /* Make sure this analysis did not leave any unref() pages.
+ ** This is an internal consistency check; an integrity check
+ ** of the integrity check.
*/
- unlockBtreeIfUnused(pBt);
- if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
+ if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
checkAppendMsg(&sCheck, 0,
"Outstanding page count goes from %d to %d during this analysis",
nRef, sqlite3PagerRefcount(pBt->pPager)
@@ -27588,124 +45166,69 @@ char *sqlite3BtreeIntegrityCheck(
/* Clean up and report errors.
*/
- sqliteFree(sCheck.anRef);
+ sqlite3BtreeLeave(p);
+ sqlite3_free(sCheck.anRef);
+ if( sCheck.mallocFailed ){
+ sqlite3StrAccumReset(&sCheck.errMsg);
+ *pnErr = sCheck.nErr+1;
+ return 0;
+ }
*pnErr = sCheck.nErr;
- return sCheck.zErrMsg;
+ if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
+ return sqlite3StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/*
** Return the full pathname of the underlying database file.
+**
+** The pager filename is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
*/
-const char *sqlite3BtreeGetFilename(Btree *p){
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
assert( p->pBt->pPager!=0 );
return sqlite3PagerFilename(p->pBt->pPager);
}
/*
-** Return the pathname of the directory that contains the database file.
-*/
-const char *sqlite3BtreeGetDirname(Btree *p){
- assert( p->pBt->pPager!=0 );
- return sqlite3PagerDirname(p->pBt->pPager);
-}
-
-/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
+**
+** The pager journal filename is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
*/
-const char *sqlite3BtreeGetJournalname(Btree *p){
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
assert( p->pBt->pPager!=0 );
return sqlite3PagerJournalname(p->pBt->pPager);
}
-#ifndef SQLITE_OMIT_VACUUM
-/*
-** Copy the complete content of pBtFrom into pBtTo. A transaction
-** must be active for both files.
-**
-** The size of file pBtFrom may be reduced by this operation.
-** If anything goes wrong, the transaction on pBtFrom is rolled back.
-*/
-int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
- int rc = SQLITE_OK;
- Pgno i, nPage, nToPage, iSkip;
-
- BtShared *pBtTo = pTo->pBt;
- BtShared *pBtFrom = pFrom->pBt;
-
- if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
- return SQLITE_ERROR;
- }
- if( pBtTo->pCursor ) return SQLITE_BUSY;
- nToPage = sqlite3PagerPagecount(pBtTo->pPager);
- nPage = sqlite3PagerPagecount(pBtFrom->pPager);
- iSkip = PENDING_BYTE_PAGE(pBtTo);
- for(i=1; rc==SQLITE_OK && i<=nPage; i++){
- DbPage *pDbPage;
- if( i==iSkip ) continue;
- rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage);
- if( rc ) break;
- rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage));
- sqlite3PagerUnref(pDbPage);
- }
-
- /* If the file is shrinking, journal the pages that are being truncated
- ** so that they can be rolled back if the commit fails.
- */
- for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
- DbPage *pDbPage;
- if( i==iSkip ) continue;
- rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
- if( rc ) break;
- rc = sqlite3PagerWrite(pDbPage);
- sqlite3PagerDontWrite(pDbPage);
- /* Yeah. It seems wierd to call DontWrite() right after Write(). But
- ** that is because the names of those procedures do not exactly
- ** represent what they do. Write() really means "put this page in the
- ** rollback journal and mark it as dirty so that it will be written
- ** to the database file later." DontWrite() undoes the second part of
- ** that and prevents the page from being written to the database. The
- ** page is still on the rollback journal, though. And that is the whole
- ** point of this loop: to put pages on the rollback journal. */
- sqlite3PagerUnref(pDbPage);
- }
- if( !rc && nPage<nToPage ){
- rc = sqlite3PagerTruncate(pBtTo->pPager, nPage);
- }
-
- if( rc ){
- sqlite3BtreeRollback(pTo);
- }
- return rc;
-}
-#endif /* SQLITE_OMIT_VACUUM */
-
/*
** Return non-zero if a transaction is active.
*/
-int sqlite3BtreeIsInTrans(Btree *p){
+SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){
+ assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
return (p && (p->inTrans==TRANS_WRITE));
}
/*
-** Return non-zero if a statement transaction is active.
+** Return non-zero if a read (or write) transaction is active.
*/
-int sqlite3BtreeIsInStmt(Btree *p){
- return (p->pBt && p->pBt->inStmt);
+SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){
+ assert( p );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ return p->inTrans!=TRANS_NONE;
}
-/*
-** Return non-zero if a read (or write) transaction is active.
-*/
-int sqlite3BtreeIsInReadTrans(Btree *p){
- return (p && (p->inTrans!=TRANS_NONE));
+SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){
+ assert( p );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ return p->nBackup!=0;
}
/*
** This function returns a pointer to a blob of memory associated with
-** a single shared-btree. The memory is used by client code for it's own
+** a single shared-btree. The memory is used by client code for its own
** purposes (for example, to store a high-level schema associated with
** the shared-btree). The btree layer manages reference counting issues.
**
@@ -27714,26 +45237,39 @@ int sqlite3BtreeIsInReadTrans(Btree *p){
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned.
**
+** If the nBytes parameter is 0 and the blob of memory has not yet been
+** allocated, a null pointer is returned. If the blob has already been
+** allocated, it is returned as normal.
+**
** Just before the shared-btree is closed, the function passed as the
** xFree argument when the memory allocation was made is invoked on the
-** blob of allocated memory. This function should not call sqliteFree()
+** blob of allocated memory. This function should not call sqlite3_free()
** on the memory, the btree layer does that.
*/
-void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
BtShared *pBt = p->pBt;
- if( !pBt->pSchema ){
- pBt->pSchema = sqliteMalloc(nBytes);
+ sqlite3BtreeEnter(p);
+ if( !pBt->pSchema && nBytes ){
+ pBt->pSchema = sqlite3MallocZero(nBytes);
pBt->xFreeSchema = xFree;
}
+ sqlite3BtreeLeave(p);
return pBt->pSchema;
}
/*
-** Return true if another user of the same shared btree as the argument
-** handle holds an exclusive lock on the sqlite_master table.
+** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
+** btree as the argument handle holds an exclusive lock on the
+** sqlite_master table. Otherwise SQLITE_OK.
*/
-int sqlite3BtreeSchemaLocked(Btree *p){
- return (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
+ int rc;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
+ assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
+ sqlite3BtreeLeave(p);
+ return rc;
}
@@ -27743,50 +45279,92 @@ int sqlite3BtreeSchemaLocked(Btree *p){
** lock is a write lock if isWritelock is true or a read lock
** if it is false.
*/
-int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
int rc = SQLITE_OK;
- u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
- rc = queryTableLock(p, iTab, lockType);
- if( rc==SQLITE_OK ){
- rc = lockTable(p, iTab, lockType);
+ assert( p->inTrans!=TRANS_NONE );
+ if( p->sharable ){
+ u8 lockType = READ_LOCK + isWriteLock;
+ assert( READ_LOCK+1==WRITE_LOCK );
+ assert( isWriteLock==0 || isWriteLock==1 );
+
+ sqlite3BtreeEnter(p);
+ rc = querySharedCacheTableLock(p, iTab, lockType);
+ if( rc==SQLITE_OK ){
+ rc = setSharedCacheTableLock(p, iTab, lockType);
+ }
+ sqlite3BtreeLeave(p);
}
return rc;
}
#endif
+#ifndef SQLITE_OMIT_INCRBLOB
/*
-** The following debugging interface has to be in this file (rather
-** than in, for example, test1.c) so that it can get access to
-** the definition of BtShared.
+** Argument pCsr must be a cursor opened for writing on an
+** INTKEY table currently pointing at a valid table entry.
+** This function modifies the data stored as part of that entry.
+**
+** Only the data content may only be modified, it is not possible to
+** change the length of the data stored. If this function is called with
+** parameters that attempt to write past the end of the existing data,
+** no modifications are made and SQLITE_CORRUPT is returned.
*/
-#if defined(SQLITE_DEBUG) && defined(TCLSH)
-int sqlite3_shared_cache_report(
- void * clientData,
- Tcl_Interp *interp,
- int objc,
- Tcl_Obj *CONST objv[]
-){
-#ifndef SQLITE_OMIT_SHARED_CACHE
- const ThreadData *pTd = sqlite3ThreadDataReadOnly();
- if( pTd->useSharedData ){
- BtShared *pBt;
- Tcl_Obj *pRet = Tcl_NewObj();
- for(pBt=pTd->pBtree; pBt; pBt=pBt->pNext){
- const char *zFile = sqlite3PagerFilename(pBt->pPager);
- Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj(zFile, -1));
- Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(pBt->nRef));
- }
- Tcl_SetObjResult(interp, pRet);
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
+ int rc;
+ assert( cursorHoldsMutex(pCsr) );
+ assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
+ assert( pCsr->isIncrblobHandle );
+
+ rc = restoreCursorPosition(pCsr);
+ if( rc!=SQLITE_OK ){
+ return rc;
}
-#endif
- return TCL_OK;
+ assert( pCsr->eState!=CURSOR_REQUIRESEEK );
+ if( pCsr->eState!=CURSOR_VALID ){
+ return SQLITE_ABORT;
+ }
+
+ /* Check some assumptions:
+ ** (a) the cursor is open for writing,
+ ** (b) there is a read/write transaction open,
+ ** (c) the connection holds a write-lock on the table (if required),
+ ** (d) there are no conflicting read-locks, and
+ ** (e) the cursor points at a valid row of an intKey table.
+ */
+ if( !pCsr->wrFlag ){
+ return SQLITE_READONLY;
+ }
+ assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
+ assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
+ assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
+ assert( pCsr->apPage[pCsr->iPage]->intKey );
+
+ return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
+}
+
+/*
+** Set a flag on this cursor to cache the locations of pages from the
+** overflow list for the current row. This is used by cursors opened
+** for incremental blob IO only.
+**
+** This function sets a flag only. The actual page location cache
+** (stored in BtCursor.aOverflow[]) is allocated and used by function
+** accessPayload() (the worker function for sqlite3BtreeData() and
+** sqlite3BtreePutData()).
+*/
+SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert(!pCur->isIncrblobHandle);
+ assert(!pCur->aOverflow);
+ pCur->isIncrblobHandle = 1;
}
#endif
/************** End of btree.c ***********************************************/
-/************** Begin file vdbefifo.c ****************************************/
+/************** Begin file backup.c ******************************************/
/*
-** 2005 June 16
+** 2009 January 28
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
@@ -27796,109 +45374,625 @@ int sqlite3_shared_cache_report(
** May you share freely, never taking more than you give.
**
*************************************************************************
-** This file implements a FIFO queue of rowids used for processing
-** UPDATE and DELETE statements.
+** This file contains the implementation of the sqlite3_backup_XXX()
+** API functions and the related features.
+**
+** $Id: backup.c,v 1.19 2009/07/06 19:03:13 drh Exp $
+*/
+
+/* Macro to find the minimum of two numeric values.
+*/
+#ifndef MIN
+# define MIN(x,y) ((x)<(y)?(x):(y))
+#endif
+
+/*
+** Structure allocated for each backup operation.
+*/
+struct sqlite3_backup {
+ sqlite3* pDestDb; /* Destination database handle */
+ Btree *pDest; /* Destination b-tree file */
+ u32 iDestSchema; /* Original schema cookie in destination */
+ int bDestLocked; /* True once a write-transaction is open on pDest */
+
+ Pgno iNext; /* Page number of the next source page to copy */
+ sqlite3* pSrcDb; /* Source database handle */
+ Btree *pSrc; /* Source b-tree file */
+
+ int rc; /* Backup process error code */
+
+ /* These two variables are set by every call to backup_step(). They are
+ ** read by calls to backup_remaining() and backup_pagecount().
+ */
+ Pgno nRemaining; /* Number of pages left to copy */
+ Pgno nPagecount; /* Total number of pages to copy */
+
+ int isAttached; /* True once backup has been registered with pager */
+ sqlite3_backup *pNext; /* Next backup associated with source pager */
+};
+
+/*
+** THREAD SAFETY NOTES:
+**
+** Once it has been created using backup_init(), a single sqlite3_backup
+** structure may be accessed via two groups of thread-safe entry points:
+**
+** * Via the sqlite3_backup_XXX() API function backup_step() and
+** backup_finish(). Both these functions obtain the source database
+** handle mutex and the mutex associated with the source BtShared
+** structure, in that order.
+**
+** * Via the BackupUpdate() and BackupRestart() functions, which are
+** invoked by the pager layer to report various state changes in
+** the page cache associated with the source database. The mutex
+** associated with the source database BtShared structure will always
+** be held when either of these functions are invoked.
+**
+** The other sqlite3_backup_XXX() API functions, backup_remaining() and
+** backup_pagecount() are not thread-safe functions. If they are called
+** while some other thread is calling backup_step() or backup_finish(),
+** the values returned may be invalid. There is no way for a call to
+** BackupUpdate() or BackupRestart() to interfere with backup_remaining()
+** or backup_pagecount().
+**
+** Depending on the SQLite configuration, the database handles and/or
+** the Btree objects may have their own mutexes that require locking.
+** Non-sharable Btrees (in-memory databases for example), do not have
+** associated mutexes.
*/
/*
-** Allocate a new FifoPage and return a pointer to it. Return NULL if
-** we run out of memory. Leave space on the page for nEntry entries.
+** Return a pointer corresponding to database zDb (i.e. "main", "temp")
+** in connection handle pDb. If such a database cannot be found, return
+** a NULL pointer and write an error message to pErrorDb.
+**
+** If the "temp" database is requested, it may need to be opened by this
+** function. If an error occurs while doing so, return 0 and write an
+** error message to pErrorDb.
*/
-static FifoPage *allocateFifoPage(int nEntry){
- FifoPage *pPage;
- if( nEntry>32767 ){
- nEntry = 32767;
+static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){
+ int i = sqlite3FindDbName(pDb, zDb);
+
+ if( i==1 ){
+ Parse *pParse;
+ int rc = 0;
+ pParse = sqlite3StackAllocZero(pErrorDb, sizeof(*pParse));
+ if( pParse==0 ){
+ sqlite3Error(pErrorDb, SQLITE_NOMEM, "out of memory");
+ rc = SQLITE_NOMEM;
+ }else{
+ pParse->db = pDb;
+ if( sqlite3OpenTempDatabase(pParse) ){
+ sqlite3ErrorClear(pParse);
+ sqlite3Error(pErrorDb, pParse->rc, "%s", pParse->zErrMsg);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3StackFree(pErrorDb, pParse);
+ }
+ if( rc ){
+ return 0;
+ }
}
- pPage = sqliteMallocRaw( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
- if( pPage ){
- pPage->nSlot = nEntry;
- pPage->iWrite = 0;
- pPage->iRead = 0;
- pPage->pNext = 0;
+
+ if( i<0 ){
+ sqlite3Error(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb);
+ return 0;
}
- return pPage;
+
+ return pDb->aDb[i].pBt;
}
/*
-** Initialize a Fifo structure.
+** Create an sqlite3_backup process to copy the contents of zSrcDb from
+** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
+** a pointer to the new sqlite3_backup object.
+**
+** If an error occurs, NULL is returned and an error code and error message
+** stored in database handle pDestDb.
*/
-void sqlite3VdbeFifoInit(Fifo *pFifo){
- memset(pFifo, 0, sizeof(*pFifo));
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3* pDestDb, /* Database to write to */
+ const char *zDestDb, /* Name of database within pDestDb */
+ sqlite3* pSrcDb, /* Database connection to read from */
+ const char *zSrcDb /* Name of database within pSrcDb */
+){
+ sqlite3_backup *p; /* Value to return */
+
+ /* Lock the source database handle. The destination database
+ ** handle is not locked in this routine, but it is locked in
+ ** sqlite3_backup_step(). The user is required to ensure that no
+ ** other thread accesses the destination handle for the duration
+ ** of the backup operation. Any attempt to use the destination
+ ** database connection while a backup is in progress may cause
+ ** a malfunction or a deadlock.
+ */
+ sqlite3_mutex_enter(pSrcDb->mutex);
+ sqlite3_mutex_enter(pDestDb->mutex);
+
+ if( pSrcDb==pDestDb ){
+ sqlite3Error(
+ pDestDb, SQLITE_ERROR, "source and destination must be distinct"
+ );
+ p = 0;
+ }else {
+ /* Allocate space for a new sqlite3_backup object */
+ p = (sqlite3_backup *)sqlite3_malloc(sizeof(sqlite3_backup));
+ if( !p ){
+ sqlite3Error(pDestDb, SQLITE_NOMEM, 0);
+ }
+ }
+
+ /* If the allocation succeeded, populate the new object. */
+ if( p ){
+ memset(p, 0, sizeof(sqlite3_backup));
+ p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
+ p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
+ p->pDestDb = pDestDb;
+ p->pSrcDb = pSrcDb;
+ p->iNext = 1;
+ p->isAttached = 0;
+
+ if( 0==p->pSrc || 0==p->pDest ){
+ /* One (or both) of the named databases did not exist. An error has
+ ** already been written into the pDestDb handle. All that is left
+ ** to do here is free the sqlite3_backup structure.
+ */
+ sqlite3_free(p);
+ p = 0;
+ }
+ }
+ if( p ){
+ p->pSrc->nBackup++;
+ }
+
+ sqlite3_mutex_leave(pDestDb->mutex);
+ sqlite3_mutex_leave(pSrcDb->mutex);
+ return p;
}
/*
-** Push a single 64-bit integer value into the Fifo. Return SQLITE_OK
-** normally. SQLITE_NOMEM is returned if we are unable to allocate
-** memory.
+** Argument rc is an SQLite error code. Return true if this error is
+** considered fatal if encountered during a backup operation. All errors
+** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED.
*/
-int sqlite3VdbeFifoPush(Fifo *pFifo, i64 val){
- FifoPage *pPage;
- pPage = pFifo->pLast;
- if( pPage==0 ){
- pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(20);
- if( pPage==0 ){
- return SQLITE_NOMEM;
- }
- }else if( pPage->iWrite>=pPage->nSlot ){
- pPage->pNext = allocateFifoPage(pFifo->nEntry);
- if( pPage->pNext==0 ){
- return SQLITE_NOMEM;
+static int isFatalError(int rc){
+ return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED));
+}
+
+/*
+** Parameter zSrcData points to a buffer containing the data for
+** page iSrcPg from the source database. Copy this data into the
+** destination database.
+*/
+static int backupOnePage(sqlite3_backup *p, Pgno iSrcPg, const u8 *zSrcData){
+ Pager * const pDestPager = sqlite3BtreePager(p->pDest);
+ const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
+ int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
+ const int nCopy = MIN(nSrcPgsz, nDestPgsz);
+ const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
+
+ int rc = SQLITE_OK;
+ i64 iOff;
+
+ assert( p->bDestLocked );
+ assert( !isFatalError(p->rc) );
+ assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) );
+ assert( zSrcData );
+
+ /* Catch the case where the destination is an in-memory database and the
+ ** page sizes of the source and destination differ.
+ */
+ if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(sqlite3BtreePager(p->pDest)) ){
+ rc = SQLITE_READONLY;
+ }
+
+ /* This loop runs once for each destination page spanned by the source
+ ** page. For each iteration, variable iOff is set to the byte offset
+ ** of the destination page.
+ */
+ for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
+ DbPage *pDestPg = 0;
+ Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
+ if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
+ if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg))
+ && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg))
+ ){
+ const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
+ u8 *zDestData = sqlite3PagerGetData(pDestPg);
+ u8 *zOut = &zDestData[iOff%nDestPgsz];
+
+ /* Copy the data from the source page into the destination page.
+ ** Then clear the Btree layer MemPage.isInit flag. Both this module
+ ** and the pager code use this trick (clearing the first byte
+ ** of the page 'extra' space to invalidate the Btree layers
+ ** cached parse of the page). MemPage.isInit is marked
+ ** "MUST BE FIRST" for this purpose.
+ */
+ memcpy(zOut, zIn, nCopy);
+ ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;
}
- pPage = pFifo->pLast = pPage->pNext;
+ sqlite3PagerUnref(pDestPg);
}
- pPage->aSlot[pPage->iWrite++] = val;
- pFifo->nEntry++;
- return SQLITE_OK;
+
+ return rc;
}
/*
-** Extract a single 64-bit integer value from the Fifo. The integer
-** extracted is the one least recently inserted. If the Fifo is empty
-** return SQLITE_DONE.
+** If pFile is currently larger than iSize bytes, then truncate it to
+** exactly iSize bytes. If pFile is not larger than iSize bytes, then
+** this function is a no-op.
+**
+** Return SQLITE_OK if everything is successful, or an SQLite error
+** code if an error occurs.
*/
-int sqlite3VdbeFifoPop(Fifo *pFifo, i64 *pVal){
- FifoPage *pPage;
- if( pFifo->nEntry==0 ){
- return SQLITE_DONE;
+static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){
+ i64 iCurrent;
+ int rc = sqlite3OsFileSize(pFile, &iCurrent);
+ if( rc==SQLITE_OK && iCurrent>iSize ){
+ rc = sqlite3OsTruncate(pFile, iSize);
+ }
+ return rc;
+}
+
+/*
+** Register this backup object with the associated source pager for
+** callbacks when pages are changed or the cache invalidated.
+*/
+static void attachBackupObject(sqlite3_backup *p){
+ sqlite3_backup **pp;
+ assert( sqlite3BtreeHoldsMutex(p->pSrc) );
+ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
+ p->pNext = *pp;
+ *pp = p;
+ p->isAttached = 1;
+}
+
+/*
+** Copy nPage pages from the source b-tree to the destination.
+*/
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){
+ int rc;
+
+ sqlite3_mutex_enter(p->pSrcDb->mutex);
+ sqlite3BtreeEnter(p->pSrc);
+ if( p->pDestDb ){
+ sqlite3_mutex_enter(p->pDestDb->mutex);
}
- assert( pFifo->nEntry>0 );
- pPage = pFifo->pFirst;
- assert( pPage!=0 );
- assert( pPage->iWrite>pPage->iRead );
- assert( pPage->iWrite<=pPage->nSlot );
- assert( pPage->iRead<pPage->nSlot );
- assert( pPage->iRead>=0 );
- *pVal = pPage->aSlot[pPage->iRead++];
- pFifo->nEntry--;
- if( pPage->iRead>=pPage->iWrite ){
- pFifo->pFirst = pPage->pNext;
- sqliteFree(pPage);
- if( pFifo->nEntry==0 ){
- assert( pFifo->pLast==pPage );
- pFifo->pLast = 0;
+
+ rc = p->rc;
+ if( !isFatalError(rc) ){
+ Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */
+ Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */
+ int ii; /* Iterator variable */
+ int nSrcPage = -1; /* Size of source db in pages */
+ int bCloseTrans = 0; /* True if src db requires unlocking */
+
+ /* If the source pager is currently in a write-transaction, return
+ ** SQLITE_BUSY immediately.
+ */
+ if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){
+ rc = SQLITE_BUSY;
}else{
- assert( pFifo->pFirst!=0 );
+ rc = SQLITE_OK;
}
- }else{
- assert( pFifo->nEntry>0 );
+
+ /* Lock the destination database, if it is not locked already. */
+ if( SQLITE_OK==rc && p->bDestLocked==0
+ && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2))
+ ){
+ p->bDestLocked = 1;
+ sqlite3BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema);
+ }
+
+ /* If there is no open read-transaction on the source database, open
+ ** one now. If a transaction is opened here, then it will be closed
+ ** before this function exits.
+ */
+ if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){
+ rc = sqlite3BtreeBeginTrans(p->pSrc, 0);
+ bCloseTrans = 1;
+ }
+
+ /* Now that there is a read-lock on the source database, query the
+ ** source pager for the number of pages in the database.
+ */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerPagecount(pSrcPager, &nSrcPage);
+ }
+ for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
+ const Pgno iSrcPg = p->iNext; /* Source page number */
+ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
+ DbPage *pSrcPg; /* Source page object */
+ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
+ if( rc==SQLITE_OK ){
+ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg));
+ sqlite3PagerUnref(pSrcPg);
+ }
+ }
+ p->iNext++;
+ }
+ if( rc==SQLITE_OK ){
+ p->nPagecount = nSrcPage;
+ p->nRemaining = nSrcPage+1-p->iNext;
+ if( p->iNext>(Pgno)nSrcPage ){
+ rc = SQLITE_DONE;
+ }else if( !p->isAttached ){
+ attachBackupObject(p);
+ }
+ }
+
+ /* Update the schema version field in the destination database. This
+ ** is to make sure that the schema-version really does change in
+ ** the case where the source and destination databases have the
+ ** same schema version.
+ */
+ if( rc==SQLITE_DONE
+ && (rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1))==SQLITE_OK
+ ){
+ const int nSrcPagesize = sqlite3BtreeGetPageSize(p->pSrc);
+ const int nDestPagesize = sqlite3BtreeGetPageSize(p->pDest);
+ int nDestTruncate;
+
+ if( p->pDestDb ){
+ sqlite3ResetInternalSchema(p->pDestDb, 0);
+ }
+
+ /* Set nDestTruncate to the final number of pages in the destination
+ ** database. The complication here is that the destination page
+ ** size may be different to the source page size.
+ **
+ ** If the source page size is smaller than the destination page size,
+ ** round up. In this case the call to sqlite3OsTruncate() below will
+ ** fix the size of the file. However it is important to call
+ ** sqlite3PagerTruncateImage() here so that any pages in the
+ ** destination file that lie beyond the nDestTruncate page mark are
+ ** journalled by PagerCommitPhaseOne() before they are destroyed
+ ** by the file truncation.
+ */
+ if( nSrcPagesize<nDestPagesize ){
+ int ratio = nDestPagesize/nSrcPagesize;
+ nDestTruncate = (nSrcPage+ratio-1)/ratio;
+ if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
+ nDestTruncate--;
+ }
+ }else{
+ nDestTruncate = nSrcPage * (nSrcPagesize/nDestPagesize);
+ }
+ sqlite3PagerTruncateImage(pDestPager, nDestTruncate);
+
+ if( nSrcPagesize<nDestPagesize ){
+ /* If the source page-size is smaller than the destination page-size,
+ ** two extra things may need to happen:
+ **
+ ** * The destination may need to be truncated, and
+ **
+ ** * Data stored on the pages immediately following the
+ ** pending-byte page in the source database may need to be
+ ** copied into the destination database.
+ */
+ const i64 iSize = (i64)nSrcPagesize * (i64)nSrcPage;
+ sqlite3_file * const pFile = sqlite3PagerFile(pDestPager);
+
+ assert( pFile );
+ assert( (i64)nDestTruncate*(i64)nDestPagesize >= iSize || (
+ nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
+ && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+nDestPagesize
+ ));
+ if( SQLITE_OK==(rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1))
+ && SQLITE_OK==(rc = backupTruncateFile(pFile, iSize))
+ && SQLITE_OK==(rc = sqlite3PagerSync(pDestPager))
+ ){
+ i64 iOff;
+ i64 iEnd = MIN(PENDING_BYTE + nDestPagesize, iSize);
+ for(
+ iOff=PENDING_BYTE+nSrcPagesize;
+ rc==SQLITE_OK && iOff<iEnd;
+ iOff+=nSrcPagesize
+ ){
+ PgHdr *pSrcPg = 0;
+ const Pgno iSrcPg = (Pgno)((iOff/nSrcPagesize)+1);
+ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
+ if( rc==SQLITE_OK ){
+ u8 *zData = sqlite3PagerGetData(pSrcPg);
+ rc = sqlite3OsWrite(pFile, zData, nSrcPagesize, iOff);
+ }
+ sqlite3PagerUnref(pSrcPg);
+ }
+ }
+ }else{
+ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0);
+ }
+
+ /* Finish committing the transaction to the destination database. */
+ if( SQLITE_OK==rc
+ && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest))
+ ){
+ rc = SQLITE_DONE;
+ }
+ }
+
+ /* If bCloseTrans is true, then this function opened a read transaction
+ ** on the source database. Close the read transaction here. There is
+ ** no need to check the return values of the btree methods here, as
+ ** "committing" a read-only transaction cannot fail.
+ */
+ if( bCloseTrans ){
+ TESTONLY( int rc2 );
+ TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0);
+ TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc);
+ assert( rc2==SQLITE_OK );
+ }
+
+ p->rc = rc;
}
- return SQLITE_OK;
+ if( p->pDestDb ){
+ sqlite3_mutex_leave(p->pDestDb->mutex);
+ }
+ sqlite3BtreeLeave(p->pSrc);
+ sqlite3_mutex_leave(p->pSrcDb->mutex);
+ return rc;
}
/*
-** Delete all information from a Fifo object. Free all memory held
-** by the Fifo.
+** Release all resources associated with an sqlite3_backup* handle.
*/
-void sqlite3VdbeFifoClear(Fifo *pFifo){
- FifoPage *pPage, *pNextPage;
- for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){
- pNextPage = pPage->pNext;
- sqliteFree(pPage);
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){
+ sqlite3_backup **pp; /* Ptr to head of pagers backup list */
+ sqlite3_mutex *mutex; /* Mutex to protect source database */
+ int rc; /* Value to return */
+
+ /* Enter the mutexes */
+ if( p==0 ) return SQLITE_OK;
+ sqlite3_mutex_enter(p->pSrcDb->mutex);
+ sqlite3BtreeEnter(p->pSrc);
+ mutex = p->pSrcDb->mutex;
+ if( p->pDestDb ){
+ sqlite3_mutex_enter(p->pDestDb->mutex);
}
- sqlite3VdbeFifoInit(pFifo);
+
+ /* Detach this backup from the source pager. */
+ if( p->pDestDb ){
+ p->pSrc->nBackup--;
+ }
+ if( p->isAttached ){
+ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
+ while( *pp!=p ){
+ pp = &(*pp)->pNext;
+ }
+ *pp = p->pNext;
+ }
+
+ /* If a transaction is still open on the Btree, roll it back. */
+ sqlite3BtreeRollback(p->pDest);
+
+ /* Set the error code of the destination database handle. */
+ rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
+ sqlite3Error(p->pDestDb, rc, 0);
+
+ /* Exit the mutexes and free the backup context structure. */
+ if( p->pDestDb ){
+ sqlite3_mutex_leave(p->pDestDb->mutex);
+ }
+ sqlite3BtreeLeave(p->pSrc);
+ if( p->pDestDb ){
+ sqlite3_free(p);
+ }
+ sqlite3_mutex_leave(mutex);
+ return rc;
}
-/************** End of vdbefifo.c ********************************************/
+/*
+** Return the number of pages still to be backed up as of the most recent
+** call to sqlite3_backup_step().
+*/
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){
+ return p->nRemaining;
+}
+
+/*
+** Return the total number of pages in the source database as of the most
+** recent call to sqlite3_backup_step().
+*/
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){
+ return p->nPagecount;
+}
+
+/*
+** This function is called after the contents of page iPage of the
+** source database have been modified. If page iPage has already been
+** copied into the destination database, then the data written to the
+** destination is now invalidated. The destination copy of iPage needs
+** to be updated with the new data before the backup operation is
+** complete.
+**
+** It is assumed that the mutex associated with the BtShared object
+** corresponding to the source database is held when this function is
+** called.
+*/
+SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){
+ sqlite3_backup *p; /* Iterator variable */
+ for(p=pBackup; p; p=p->pNext){
+ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
+ if( !isFatalError(p->rc) && iPage<p->iNext ){
+ /* The backup process p has already copied page iPage. But now it
+ ** has been modified by a transaction on the source pager. Copy
+ ** the new data into the backup.
+ */
+ int rc = backupOnePage(p, iPage, aData);
+ assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
+ if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ }
+ }
+ }
+}
+
+/*
+** Restart the backup process. This is called when the pager layer
+** detects that the database has been modified by an external database
+** connection. In this case there is no way of knowing which of the
+** pages that have been copied into the destination database are still
+** valid and which are not, so the entire process needs to be restarted.
+**
+** It is assumed that the mutex associated with the BtShared object
+** corresponding to the source database is held when this function is
+** called.
+*/
+SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){
+ sqlite3_backup *p; /* Iterator variable */
+ for(p=pBackup; p; p=p->pNext){
+ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
+ p->iNext = 1;
+ }
+}
+
+#ifndef SQLITE_OMIT_VACUUM
+/*
+** Copy the complete content of pBtFrom into pBtTo. A transaction
+** must be active for both files.
+**
+** The size of file pTo may be reduced by this operation. If anything
+** goes wrong, the transaction on pTo is rolled back. If successful, the
+** transaction is committed before returning.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
+ int rc;
+ sqlite3_backup b;
+ sqlite3BtreeEnter(pTo);
+ sqlite3BtreeEnter(pFrom);
+
+ /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set
+ ** to 0. This is used by the implementations of sqlite3_backup_step()
+ ** and sqlite3_backup_finish() to detect that they are being called
+ ** from this function, not directly by the user.
+ */
+ memset(&b, 0, sizeof(b));
+ b.pSrcDb = pFrom->db;
+ b.pSrc = pFrom;
+ b.pDest = pTo;
+ b.iNext = 1;
+
+ /* 0x7FFFFFFF is the hard limit for the number of pages in a database
+ ** file. By passing this as the number of pages to copy to
+ ** sqlite3_backup_step(), we can guarantee that the copy finishes
+ ** within a single call (unless an error occurs). The assert() statement
+ ** checks this assumption - (p->rc) should be set to either SQLITE_DONE
+ ** or an error code.
+ */
+ sqlite3_backup_step(&b, 0x7FFFFFFF);
+ assert( b.rc!=SQLITE_OK );
+ rc = sqlite3_backup_finish(&b);
+ if( rc==SQLITE_OK ){
+ pTo->pBt->pageSizeFixed = 0;
+ }
+
+ sqlite3BtreeLeave(pFrom);
+ sqlite3BtreeLeave(pTo);
+ return rc;
+}
+#endif /* SQLITE_OMIT_VACUUM */
+
+/************** End of backup.c **********************************************/
/************** Begin file vdbemem.c *****************************************/
/*
** 2004 May 26
@@ -27916,9 +46010,17 @@ void sqlite3VdbeFifoClear(Fifo *pFifo){
** stores a single value in the VDBE. Mem is an opaque structure visible
** only within the VDBE. Interface routines refer to a Mem using the
** name sqlite_value
+**
+** $Id: vdbemem.c,v 1.152 2009/07/22 18:07:41 drh Exp $
*/
/*
+** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
+** P if required.
+*/
+#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
+
+/*
** If pMem is an object with a valid string representation, this routine
** ensures the internal encoding for the string representation is
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
@@ -27931,20 +46033,23 @@ void sqlite3VdbeFifoClear(Fifo *pFifo){
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
-int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
int rc;
+ assert( (pMem->flags&MEM_RowSet)==0 );
+ assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
+ || desiredEnc==SQLITE_UTF16BE );
if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
return SQLITE_OK;
}
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
#ifdef SQLITE_OMIT_UTF16
return SQLITE_ERROR;
#else
-
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
** then the encoding of the value may not have changed.
*/
- rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
+ rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
@@ -27953,90 +46058,125 @@ int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
}
/*
-** Make the given Mem object MEM_Dyn.
+** Make sure pMem->z points to a writable allocation of at least
+** n bytes.
**
-** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
+** If the memory cell currently contains string or blob data
+** and the third argument passed to this function is true, the
+** current content of the cell is preserved. Otherwise, it may
+** be discarded.
+**
+** This function sets the MEM_Dyn flag and clears any xDel callback.
+** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
+** not set, Mem.n is zeroed.
*/
-int sqlite3VdbeMemDynamicify(Mem *pMem){
- int n = pMem->n;
- u8 *z;
- if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
- return SQLITE_OK;
+SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
+ assert( 1 >=
+ ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
+ (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
+ ((pMem->flags&MEM_Ephem) ? 1 : 0) +
+ ((pMem->flags&MEM_Static) ? 1 : 0)
+ );
+ assert( (pMem->flags&MEM_RowSet)==0 );
+
+ if( n<32 ) n = 32;
+ if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
+ if( preserve && pMem->z==pMem->zMalloc ){
+ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
+ preserve = 0;
+ }else{
+ sqlite3DbFree(pMem->db, pMem->zMalloc);
+ pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
+ }
}
- assert( (pMem->flags & MEM_Dyn)==0 );
- assert( pMem->flags & (MEM_Str|MEM_Blob) );
- z = sqliteMallocRaw( n+2 );
- if( z==0 ){
- return SQLITE_NOMEM;
+
+ if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
+ memcpy(pMem->zMalloc, pMem->z, pMem->n);
+ }
+ if( pMem->flags&MEM_Dyn && pMem->xDel ){
+ pMem->xDel((void *)(pMem->z));
+ }
+
+ pMem->z = pMem->zMalloc;
+ if( pMem->z==0 ){
+ pMem->flags = MEM_Null;
+ }else{
+ pMem->flags &= ~(MEM_Ephem|MEM_Static);
}
- pMem->flags |= MEM_Dyn|MEM_Term;
pMem->xDel = 0;
- memcpy(z, pMem->z, n );
- z[n] = 0;
- z[n+1] = 0;
- pMem->z = (char*)z;
- pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
- return SQLITE_OK;
+ return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
}
/*
-** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
-** of the Mem.z[] array can be modified.
+** Make the given Mem object MEM_Dyn. In other words, make it so
+** that any TEXT or BLOB content is stored in memory obtained from
+** malloc(). In this way, we know that the memory is safe to be
+** overwritten or altered.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
-int sqlite3VdbeMemMakeWriteable(Mem *pMem){
- int n;
- u8 *z;
- if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
- return SQLITE_OK;
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
+ int f;
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( (pMem->flags&MEM_RowSet)==0 );
+ expandBlob(pMem);
+ f = pMem->flags;
+ if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
+ if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
+ return SQLITE_NOMEM;
+ }
+ pMem->z[pMem->n] = 0;
+ pMem->z[pMem->n+1] = 0;
+ pMem->flags |= MEM_Term;
}
- assert( (pMem->flags & MEM_Dyn)==0 );
- assert( pMem->flags & (MEM_Str|MEM_Blob) );
- if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
- z = (u8*)pMem->zShort;
- pMem->flags |= MEM_Short|MEM_Term;
- }else{
- z = sqliteMallocRaw( n+2 );
- if( z==0 ){
+
+ return SQLITE_OK;
+}
+
+/*
+** If the given Mem* has a zero-filled tail, turn it into an ordinary
+** blob stored in dynamically allocated space.
+*/
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
+ if( pMem->flags & MEM_Zero ){
+ int nByte;
+ assert( pMem->flags&MEM_Blob );
+ assert( (pMem->flags&MEM_RowSet)==0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+
+ /* Set nByte to the number of bytes required to store the expanded blob. */
+ nByte = pMem->n + pMem->u.nZero;
+ if( nByte<=0 ){
+ nByte = 1;
+ }
+ if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
return SQLITE_NOMEM;
}
- pMem->flags |= MEM_Dyn|MEM_Term;
- pMem->xDel = 0;
+
+ memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
+ pMem->n += pMem->u.nZero;
+ pMem->flags &= ~(MEM_Zero|MEM_Term);
}
- memcpy(z, pMem->z, n );
- z[n] = 0;
- z[n+1] = 0;
- pMem->z = (char*)z;
- pMem->flags &= ~(MEM_Ephem|MEM_Static);
- assert(0==(1&(int)pMem->z));
return SQLITE_OK;
}
+#endif
+
/*
** Make sure the given Mem is \u0000 terminated.
*/
-int sqlite3VdbeMemNulTerminate(Mem *pMem){
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
return SQLITE_OK; /* Nothing to do */
}
- if( pMem->flags & (MEM_Static|MEM_Ephem) ){
- return sqlite3VdbeMemMakeWriteable(pMem);
- }else{
- char *z = sqliteMalloc(pMem->n+2);
- if( !z ) return SQLITE_NOMEM;
- memcpy(z, pMem->z, pMem->n);
- z[pMem->n] = 0;
- z[pMem->n+1] = 0;
- if( pMem->xDel ){
- pMem->xDel(pMem->z);
- }else{
- sqliteFree(pMem->z);
- }
- pMem->xDel = 0;
- pMem->z = z;
- pMem->flags |= MEM_Term;
+ if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
+ return SQLITE_NOMEM;
}
+ pMem->z[pMem->n] = 0;
+ pMem->z[pMem->n+1] = 0;
+ pMem->flags |= MEM_Term;
return SQLITE_OK;
}
@@ -28053,30 +46193,38 @@ int sqlite3VdbeMemNulTerminate(Mem *pMem){
** keys are strings. In the former case a NULL pointer is returned the
** user and the later is an internal programming error.
*/
-int sqlite3VdbeMemStringify(Mem *pMem, int enc){
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){
int rc = SQLITE_OK;
int fg = pMem->flags;
- char *z = pMem->zShort;
+ const int nByte = 32;
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !(fg&MEM_Zero) );
assert( !(fg&(MEM_Str|MEM_Blob)) );
assert( fg&(MEM_Int|MEM_Real) );
+ assert( (pMem->flags&MEM_RowSet)==0 );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
- /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
+
+ if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
+ return SQLITE_NOMEM;
+ }
+
+ /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
** string representation of the value. Then, if the required encoding
** is UTF-16le or UTF-16be do a translation.
**
** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
*/
if( fg & MEM_Int ){
- sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i);
+ sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
}else{
assert( fg & MEM_Real );
- sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
+ sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
}
- pMem->n = strlen(z);
- pMem->z = z;
+ pMem->n = sqlite3Strlen30(pMem->z);
pMem->enc = SQLITE_UTF8;
- pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
+ pMem->flags |= MEM_Str|MEM_Term;
sqlite3VdbeChangeEncoding(pMem, enc);
return rc;
}
@@ -28089,51 +46237,100 @@ int sqlite3VdbeMemStringify(Mem *pMem, int enc){
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
** otherwise.
*/
-int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
int rc = SQLITE_OK;
- if( pFunc && pFunc->xFinalize ){
+ if( ALWAYS(pFunc && pFunc->xFinalize) ){
sqlite3_context ctx;
assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ memset(&ctx, 0, sizeof(ctx));
ctx.s.flags = MEM_Null;
- ctx.s.z = pMem->zShort;
+ ctx.s.db = pMem->db;
ctx.pMem = pMem;
ctx.pFunc = pFunc;
- ctx.isError = 0;
pFunc->xFinalize(&ctx);
- if( pMem->z && pMem->z!=pMem->zShort ){
- sqliteFree( pMem->z );
- }
- *pMem = ctx.s;
- if( pMem->flags & MEM_Short ){
- pMem->z = pMem->zShort;
- }
- if( ctx.isError ){
- rc = SQLITE_ERROR;
- }
+ assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
+ sqlite3DbFree(pMem->db, pMem->zMalloc);
+ memcpy(pMem, &ctx.s, sizeof(ctx.s));
+ rc = ctx.isError;
}
return rc;
}
/*
+** If the memory cell contains a string value that must be freed by
+** invoking an external callback, free it now. Calling this function
+** does not free any Mem.zMalloc buffer.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){
+ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
+ testcase( p->flags & MEM_Agg );
+ testcase( p->flags & MEM_Dyn );
+ testcase( p->flags & MEM_RowSet );
+ testcase( p->flags & MEM_Frame );
+ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
+ if( p->flags&MEM_Agg ){
+ sqlite3VdbeMemFinalize(p, p->u.pDef);
+ assert( (p->flags & MEM_Agg)==0 );
+ sqlite3VdbeMemRelease(p);
+ }else if( p->flags&MEM_Dyn && p->xDel ){
+ assert( (p->flags&MEM_RowSet)==0 );
+ p->xDel((void *)p->z);
+ p->xDel = 0;
+ }else if( p->flags&MEM_RowSet ){
+ sqlite3RowSetClear(p->u.pRowSet);
+ }else if( p->flags&MEM_Frame ){
+ sqlite3VdbeMemSetNull(p);
+ }
+ }
+}
+
+/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
-void sqlite3VdbeMemRelease(Mem *p){
- if( p->flags & (MEM_Dyn|MEM_Agg) ){
- if( p->xDel ){
- if( p->flags & MEM_Agg ){
- sqlite3VdbeMemFinalize(p, p->u.pDef);
- assert( (p->flags & MEM_Agg)==0 );
- sqlite3VdbeMemRelease(p);
- }else{
- p->xDel((void *)p->z);
- }
- }else{
- sqliteFree(p->z);
- }
- p->z = 0;
- p->xDel = 0;
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
+ sqlite3VdbeMemReleaseExternal(p);
+ sqlite3DbFree(p->db, p->zMalloc);
+ p->z = 0;
+ p->zMalloc = 0;
+ p->xDel = 0;
+}
+
+/*
+** Convert a 64-bit IEEE double into a 64-bit signed integer.
+** If the double is too large, return 0x8000000000000000.
+**
+** Most systems appear to do this simply by assigning
+** variables and without the extra range tests. But
+** there are reports that windows throws an expection
+** if the floating point value is out of range. (See ticket #2880.)
+** Because we do not completely understand the problem, we will
+** take the conservative approach and always do range tests
+** before attempting the conversion.
+*/
+static i64 doubleToInt64(double r){
+ /*
+ ** Many compilers we encounter do not define constants for the
+ ** minimum and maximum 64-bit integers, or they define them
+ ** inconsistently. And many do not understand the "LL" notation.
+ ** So we define our own static constants here using nothing
+ ** larger than a 32-bit integer constant.
+ */
+ static const i64 maxInt = LARGEST_INT64;
+ static const i64 minInt = SMALLEST_INT64;
+
+ if( r<(double)minInt ){
+ return minInt;
+ }else if( r>(double)maxInt ){
+ /* minInt is correct here - not maxInt. It turns out that assigning
+ ** a very large positive number to an integer results in a very large
+ ** negative integer. This makes no sense, but it is what x86 hardware
+ ** does so for compatibility we will do the same in software. */
+ return minInt;
+ }else{
+ return (i64)r;
}
}
@@ -28143,24 +46340,29 @@ void sqlite3VdbeMemRelease(Mem *p){
** If pMem is an integer, then the value is exact. If pMem is
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
-** it into a integer and return that. If pMem is NULL, return 0.
+** it into a integer and return that. If pMem represents an
+** an SQL-NULL value, return 0.
**
-** If pMem is a string, its encoding might be changed.
+** If pMem represents a string value, its encoding might be changed.
*/
-i64 sqlite3VdbeIntValue(Mem *pMem){
- int flags = pMem->flags;
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
+ int flags;
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+ flags = pMem->flags;
if( flags & MEM_Int ){
return pMem->u.i;
}else if( flags & MEM_Real ){
- return (i64)pMem->r;
+ return doubleToInt64(pMem->r);
}else if( flags & (MEM_Str|MEM_Blob) ){
i64 value;
+ pMem->flags |= MEM_Str;
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|| sqlite3VdbeMemNulTerminate(pMem) ){
return 0;
}
assert( pMem->z );
- sqlite3atoi64(pMem->z, &value);
+ sqlite3Atoi64(pMem->z, &value);
return value;
}else{
return 0;
@@ -28173,22 +46375,28 @@ i64 sqlite3VdbeIntValue(Mem *pMem){
** value. If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
-double sqlite3VdbeRealValue(Mem *pMem){
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
if( pMem->flags & MEM_Real ){
return pMem->r;
}else if( pMem->flags & MEM_Int ){
return (double)pMem->u.i;
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
- double val = 0.0;
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ double val = (double)0;
+ pMem->flags |= MEM_Str;
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|| sqlite3VdbeMemNulTerminate(pMem) ){
- return 0.0;
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ return (double)0;
}
assert( pMem->z );
sqlite3AtoF(pMem->z, &val);
return val;
}else{
- return 0.0;
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ return (double)0;
}
}
@@ -28196,10 +46404,28 @@ double sqlite3VdbeRealValue(Mem *pMem){
** The MEM structure is already a MEM_Real. Try to also make it a
** MEM_Int if we can.
*/
-void sqlite3VdbeIntegerAffinity(Mem *pMem){
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
assert( pMem->flags & MEM_Real );
- pMem->u.i = pMem->r;
- if( ((double)pMem->u.i)==pMem->r ){
+ assert( (pMem->flags & MEM_RowSet)==0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+ pMem->u.i = doubleToInt64(pMem->r);
+
+ /* Only mark the value as an integer if
+ **
+ ** (1) the round-trip conversion real->int->real is a no-op, and
+ ** (2) The integer is neither the largest nor the smallest
+ ** possible integer (ticket #3922)
+ **
+ ** The second and third terms in the following conditional enforces
+ ** the second condition under the assumption that addition overflow causes
+ ** values to wrap around. On x86 hardware, the third term is always
+ ** true and could be omitted. But we leave it in because other
+ ** architectures might behave differently.
+ */
+ if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64
+ && ALWAYS(pMem->u.i<LARGEST_INT64) ){
pMem->flags |= MEM_Int;
}
}
@@ -28207,10 +46433,13 @@ void sqlite3VdbeIntegerAffinity(Mem *pMem){
/*
** Convert pMem to type integer. Invalidate any prior representations.
*/
-int sqlite3VdbeMemIntegerify(Mem *pMem){
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( (pMem->flags & MEM_RowSet)==0 );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
pMem->u.i = sqlite3VdbeIntValue(pMem);
- sqlite3VdbeMemRelease(pMem);
- pMem->flags = MEM_Int;
+ MemSetTypeFlag(pMem, MEM_Int);
return SQLITE_OK;
}
@@ -28218,10 +46447,12 @@ int sqlite3VdbeMemIntegerify(Mem *pMem){
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
-int sqlite3VdbeMemRealify(Mem *pMem){
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
pMem->r = sqlite3VdbeRealValue(pMem);
- sqlite3VdbeMemRelease(pMem);
- pMem->flags = MEM_Real;
+ MemSetTypeFlag(pMem, MEM_Real);
return SQLITE_OK;
}
@@ -28229,27 +46460,65 @@ int sqlite3VdbeMemRealify(Mem *pMem){
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
*/
-int sqlite3VdbeMemNumerify(Mem *pMem){
- sqlite3VdbeMemRealify(pMem);
- sqlite3VdbeIntegerAffinity(pMem);
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
+ double r1, r2;
+ i64 i;
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
+ assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ r1 = sqlite3VdbeRealValue(pMem);
+ i = doubleToInt64(r1);
+ r2 = (double)i;
+ if( r1==r2 ){
+ sqlite3VdbeMemIntegerify(pMem);
+ }else{
+ pMem->r = r1;
+ MemSetTypeFlag(pMem, MEM_Real);
+ }
return SQLITE_OK;
}
/*
** Delete any previous value and set the value stored in *pMem to NULL.
*/
-void sqlite3VdbeMemSetNull(Mem *pMem){
- sqlite3VdbeMemRelease(pMem);
- pMem->flags = MEM_Null;
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
+ if( pMem->flags & MEM_Frame ){
+ sqlite3VdbeFrameDelete(pMem->u.pFrame);
+ }
+ if( pMem->flags & MEM_RowSet ){
+ sqlite3RowSetClear(pMem->u.pRowSet);
+ }
+ MemSetTypeFlag(pMem, MEM_Null);
pMem->type = SQLITE_NULL;
+}
+
+/*
+** Delete any previous value and set the value to be a BLOB of length
+** n containing all zeros.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
+ sqlite3VdbeMemRelease(pMem);
+ pMem->flags = MEM_Blob|MEM_Zero;
+ pMem->type = SQLITE_BLOB;
pMem->n = 0;
+ if( n<0 ) n = 0;
+ pMem->u.nZero = n;
+ pMem->enc = SQLITE_UTF8;
+
+#ifdef SQLITE_OMIT_INCRBLOB
+ sqlite3VdbeMemGrow(pMem, n, 0);
+ if( pMem->z ){
+ pMem->n = n;
+ memset(pMem->z, 0, n);
+ }
+#endif
}
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
*/
-void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
sqlite3VdbeMemRelease(pMem);
pMem->u.i = val;
pMem->flags = MEM_Int;
@@ -28260,24 +46529,72 @@ void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
-void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
+ if( sqlite3IsNaN(val) ){
+ sqlite3VdbeMemSetNull(pMem);
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ pMem->r = val;
+ pMem->flags = MEM_Real;
+ pMem->type = SQLITE_FLOAT;
+ }
+}
+
+/*
+** Delete any previous value and set the value of pMem to be an
+** empty boolean index.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem *pMem){
+ sqlite3 *db = pMem->db;
+ assert( db!=0 );
+ assert( (pMem->flags & MEM_RowSet)==0 );
sqlite3VdbeMemRelease(pMem);
- pMem->r = val;
- pMem->flags = MEM_Real;
- pMem->type = SQLITE_FLOAT;
+ pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
+ if( db->mallocFailed ){
+ pMem->flags = MEM_Null;
+ }else{
+ assert( pMem->zMalloc );
+ pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc,
+ sqlite3DbMallocSize(db, pMem->zMalloc));
+ assert( pMem->u.pRowSet!=0 );
+ pMem->flags = MEM_RowSet;
+ }
}
/*
+** Return true if the Mem object contains a TEXT or BLOB that is
+** too large - whose size exceeds SQLITE_MAX_LENGTH.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
+ assert( p->db!=0 );
+ if( p->flags & (MEM_Str|MEM_Blob) ){
+ int n = p->n;
+ if( p->flags & MEM_Zero ){
+ n += p->u.nZero;
+ }
+ return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
+ }
+ return 0;
+}
+
+/*
+** Size of struct Mem not including the Mem.zMalloc member.
+*/
+#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
+
+/*
** Make an shallow copy of pFrom into pTo. Prior contents of
-** pTo are overwritten. The pFrom->z field is not duplicated. If
+** pTo are freed. The pFrom->z field is not duplicated. If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
-void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
- memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort));
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
+ assert( (pFrom->flags & MEM_RowSet)==0 );
+ sqlite3VdbeMemReleaseExternal(pTo);
+ memcpy(pTo, pFrom, MEMCELLSIZE);
pTo->xDel = 0;
- if( pTo->flags & (MEM_Str|MEM_Blob) ){
- pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem);
+ if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){
+ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
assert( srcType==MEM_Ephem || srcType==MEM_Static );
pTo->flags |= srcType;
}
@@ -28287,17 +46604,21 @@ void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
** Make a full copy of pFrom into pTo. Prior contents of pTo are
** freed before the copy is made.
*/
-int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
- int rc;
- if( pTo->flags & MEM_Dyn ){
- sqlite3VdbeMemRelease(pTo);
- }
- sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
- if( pTo->flags & MEM_Ephem ){
- rc = sqlite3VdbeMemMakeWriteable(pTo);
- }else{
- rc = SQLITE_OK;
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
+ int rc = SQLITE_OK;
+
+ assert( (pFrom->flags & MEM_RowSet)==0 );
+ sqlite3VdbeMemReleaseExternal(pTo);
+ memcpy(pTo, pFrom, MEMCELLSIZE);
+ pTo->flags &= ~MEM_Dyn;
+
+ if( pTo->flags&(MEM_Str|MEM_Blob) ){
+ if( 0==(pFrom->flags&MEM_Static) ){
+ pTo->flags |= MEM_Ephem;
+ rc = sqlite3VdbeMemMakeWriteable(pTo);
+ }
}
+
return rc;
}
@@ -28305,92 +46626,113 @@ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
** freed. If pFrom contains ephemeral data, a copy is made.
**
-** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM
-** might be returned if pFrom held ephemeral data and we were unable
-** to allocate enough space to make a copy.
+** pFrom contains an SQL NULL when this routine returns.
*/
-int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
- int rc;
- if( pTo->flags & MEM_Dyn ){
- sqlite3VdbeMemRelease(pTo);
- }
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
+ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
+ assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
+ assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
+
+ sqlite3VdbeMemRelease(pTo);
memcpy(pTo, pFrom, sizeof(Mem));
- if( pFrom->flags & MEM_Short ){
- pTo->z = pTo->zShort;
- }
pFrom->flags = MEM_Null;
pFrom->xDel = 0;
- if( pTo->flags & MEM_Ephem ){
- rc = sqlite3VdbeMemMakeWriteable(pTo);
- }else{
- rc = SQLITE_OK;
- }
- return rc;
+ pFrom->zMalloc = 0;
}
/*
** Change the value of a Mem to be a string or a BLOB.
+**
+** The memory management strategy depends on the value of the xDel
+** parameter. If the value passed is SQLITE_TRANSIENT, then the
+** string is copied into a (possibly existing) buffer managed by the
+** Mem structure. Otherwise, any existing buffer is freed and the
+** pointer copied.
+**
+** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
+** size limit) then no memory allocation occurs. If the string can be
+** stored without allocating memory, then it is. If a memory allocation
+** is required to store the string, then value of pMem is unchanged. In
+** either case, SQLITE_TOOBIG is returned.
*/
-int sqlite3VdbeMemSetStr(
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
Mem *pMem, /* Memory cell to set to string value */
const char *z, /* String pointer */
int n, /* Bytes in string, or negative */
u8 enc, /* Encoding of z. 0 for BLOBs */
void (*xDel)(void*) /* Destructor function */
){
- sqlite3VdbeMemRelease(pMem);
+ int nByte = n; /* New value for pMem->n */
+ int iLimit; /* Maximum allowed string or blob size */
+ u16 flags = 0; /* New value for pMem->flags */
+
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( (pMem->flags & MEM_RowSet)==0 );
+
+ /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
if( !z ){
- pMem->flags = MEM_Null;
- pMem->type = SQLITE_NULL;
+ sqlite3VdbeMemSetNull(pMem);
return SQLITE_OK;
}
- pMem->z = (char *)z;
- if( xDel==SQLITE_STATIC ){
- pMem->flags = MEM_Static;
- }else if( xDel==SQLITE_TRANSIENT ){
- pMem->flags = MEM_Ephem;
+ if( pMem->db ){
+ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
}else{
- pMem->flags = MEM_Dyn;
- pMem->xDel = xDel;
+ iLimit = SQLITE_MAX_LENGTH;
+ }
+ flags = (enc==0?MEM_Blob:MEM_Str);
+ if( nByte<0 ){
+ assert( enc!=0 );
+ if( enc==SQLITE_UTF8 ){
+ for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
+ }else{
+ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
+ }
+ flags |= MEM_Term;
}
- pMem->enc = enc;
- pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT;
- pMem->n = n;
-
- assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE
- || enc==SQLITE_UTF16BE );
- switch( enc ){
- case 0:
- pMem->flags |= MEM_Blob;
- pMem->enc = SQLITE_UTF8;
- break;
+ /* The following block sets the new values of Mem.z and Mem.xDel. It
+ ** also sets a flag in local variable "flags" to indicate the memory
+ ** management (one of MEM_Dyn or MEM_Static).
+ */
+ if( xDel==SQLITE_TRANSIENT ){
+ int nAlloc = nByte;
+ if( flags&MEM_Term ){
+ nAlloc += (enc==SQLITE_UTF8?1:2);
+ }
+ if( nByte>iLimit ){
+ return SQLITE_TOOBIG;
+ }
+ if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
+ return SQLITE_NOMEM;
+ }
+ memcpy(pMem->z, z, nAlloc);
+ }else if( xDel==SQLITE_DYNAMIC ){
+ sqlite3VdbeMemRelease(pMem);
+ pMem->zMalloc = pMem->z = (char *)z;
+ pMem->xDel = 0;
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ pMem->z = (char *)z;
+ pMem->xDel = xDel;
+ flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
+ }
- case SQLITE_UTF8:
- pMem->flags |= MEM_Str;
- if( n<0 ){
- pMem->n = strlen(z);
- pMem->flags |= MEM_Term;
- }
- break;
+ pMem->n = nByte;
+ pMem->flags = flags;
+ pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
+ pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
#ifndef SQLITE_OMIT_UTF16
- case SQLITE_UTF16LE:
- case SQLITE_UTF16BE:
- pMem->flags |= MEM_Str;
- if( pMem->n<0 ){
- pMem->n = sqlite3utf16ByteLen(pMem->z,-1);
- pMem->flags |= MEM_Term;
- }
- if( sqlite3VdbeMemHandleBom(pMem) ){
- return SQLITE_NOMEM;
- }
-#endif /* SQLITE_OMIT_UTF16 */
+ if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
+ return SQLITE_NOMEM;
}
- if( pMem->flags&MEM_Ephem ){
- return sqlite3VdbeMemMakeWriteable(pMem);
+#endif
+
+ if( nByte>iLimit ){
+ return SQLITE_TOOBIG;
}
+
return SQLITE_OK;
}
@@ -28403,7 +46745,7 @@ int sqlite3VdbeMemSetStr(
**
** Two NULL values are considered equal by this function.
*/
-int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
int rc;
int f1, f2;
int combined_flags;
@@ -28414,6 +46756,7 @@ int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
f1 = pMem1->flags;
f2 = pMem2->flags;
combined_flags = f1|f2;
+ assert( (combined_flags & MEM_RowSet)==0 );
/* If one value is NULL, it is less than the other. If both values
** are NULL, return 0.
@@ -28436,12 +46779,12 @@ int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
if( (f1 & f2 & MEM_Int)==0 ){
double r1, r2;
if( (f1&MEM_Real)==0 ){
- r1 = pMem1->u.i;
+ r1 = (double)pMem1->u.i;
}else{
r1 = pMem1->r;
}
if( (f2&MEM_Real)==0 ){
- r2 = pMem2->u.i;
+ r2 = (double)pMem2->u.i;
}else{
r2 = pMem2->r;
}
@@ -28484,22 +46827,21 @@ int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
** comparison function directly */
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
}else{
- u8 origEnc = pMem1->enc;
const void *v1, *v2;
int n1, n2;
- /* Convert the strings into the encoding that the comparison
- ** function expects */
- v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
- n1 = v1==0 ? 0 : pMem1->n;
- assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
- v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
- n2 = v2==0 ? 0 : pMem2->n;
- assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
- /* Do the comparison */
+ Mem c1;
+ Mem c2;
+ memset(&c1, 0, sizeof(c1));
+ memset(&c2, 0, sizeof(c2));
+ sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
+ sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
+ v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
+ n1 = v1==0 ? 0 : c1.n;
+ v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
+ n2 = v2==0 ? 0 : c2.n;
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
- /* Convert the strings back into the database encoding */
- sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
- sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
+ sqlite3VdbeMemRelease(&c1);
+ sqlite3VdbeMemRelease(&c2);
return rc;
}
}
@@ -28528,16 +46870,22 @@ int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
-int sqlite3VdbeMemFromBtree(
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
int offset, /* Offset from the start of data to return bytes from. */
int amt, /* Number of bytes to return. */
int key, /* If true, retrieve from the btree key, not data. */
Mem *pMem /* OUT: Return data in this Mem structure. */
){
- char *zData; /* Data from the btree layer */
- int available = 0; /* Number of bytes available on the local btree page */
+ char *zData; /* Data from the btree layer */
+ int available = 0; /* Number of bytes available on the local btree page */
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
+ ** that both the BtShared and database handle mutexes are held. */
+ assert( (pMem->flags & MEM_RowSet)==0 );
if( key ){
zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
}else{
@@ -28545,98 +46893,29 @@ int sqlite3VdbeMemFromBtree(
}
assert( zData!=0 );
- pMem->n = amt;
- if( offset+amt<=available ){
+ if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){
+ sqlite3VdbeMemRelease(pMem);
pMem->z = &zData[offset];
pMem->flags = MEM_Blob|MEM_Ephem;
- }else{
- int rc;
- if( amt>NBFS-2 ){
- zData = (char *)sqliteMallocRaw(amt+2);
- if( !zData ){
- return SQLITE_NOMEM;
- }
- pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
- pMem->xDel = 0;
- }else{
- zData = &(pMem->zShort[0]);
- pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
- }
- pMem->z = zData;
+ }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
+ pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
pMem->enc = 0;
pMem->type = SQLITE_BLOB;
-
if( key ){
- rc = sqlite3BtreeKey(pCur, offset, amt, zData);
+ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
}else{
- rc = sqlite3BtreeData(pCur, offset, amt, zData);
+ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
}
- zData[amt] = 0;
- zData[amt+1] = 0;
+ pMem->z[amt] = 0;
+ pMem->z[amt+1] = 0;
if( rc!=SQLITE_OK ){
- if( amt>NBFS-2 ){
- assert( zData!=pMem->zShort );
- assert( pMem->flags & MEM_Dyn );
- sqliteFree(zData);
- } else {
- assert( zData==pMem->zShort );
- assert( pMem->flags & MEM_Short );
- }
- return rc;
+ sqlite3VdbeMemRelease(pMem);
}
}
+ pMem->n = amt;
- return SQLITE_OK;
-}
-
-#ifndef NDEBUG
-/*
-** Perform various checks on the memory cell pMem. An assert() will
-** fail if pMem is internally inconsistent.
-*/
-void sqlite3VdbeMemSanity(Mem *pMem){
- int flags = pMem->flags;
- assert( flags!=0 ); /* Must define some type */
- if( pMem->flags & (MEM_Str|MEM_Blob) ){
- int x = pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
- assert( x!=0 ); /* Strings must define a string subtype */
- assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
- assert( pMem->z!=0 ); /* Strings must have a value */
- /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
- assert( (pMem->flags & MEM_Short)==0 || pMem->z==pMem->zShort );
- assert( (pMem->flags & MEM_Short)!=0 || pMem->z!=pMem->zShort );
- /* No destructor unless there is MEM_Dyn */
- assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
-
- if( (flags & MEM_Str) ){
- assert( pMem->enc==SQLITE_UTF8 ||
- pMem->enc==SQLITE_UTF16BE ||
- pMem->enc==SQLITE_UTF16LE
- );
- /* If the string is UTF-8 encoded and nul terminated, then pMem->n
- ** must be the length of the string. (Later:) If the database file
- ** has been corrupted, '\000' characters might have been inserted
- ** into the middle of the string. In that case, the strlen() might
- ** be less.
- */
- if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
- assert( strlen(pMem->z)<=pMem->n );
- assert( pMem->z[pMem->n]==0 );
- }
- }
- }else{
- /* Cannot define a string subtype for non-string objects */
- assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
- assert( pMem->xDel==0 );
- }
- /* MEM_Null excludes all other types */
- assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
- || (pMem->flags&MEM_Null)==0 );
- /* If the MEM is both real and integer, the values are equal */
- assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
- || pMem->r==pMem->u.i );
+ return rc;
}
-#endif
/* This function is only available internally, it is not part of the
** external API. It works in a similar way to sqlite3_value_text(),
@@ -28648,18 +46927,22 @@ void sqlite3VdbeMemSanity(Mem *pMem){
** If that is the case, then the result must be aligned on an even byte
** boundary.
*/
-const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
+SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
if( !pVal ) return 0;
+
+ assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
+ assert( (pVal->flags & MEM_RowSet)==0 );
if( pVal->flags&MEM_Null ){
return 0;
}
assert( (MEM_Blob>>3) == MEM_Str );
pVal->flags |= (pVal->flags & MEM_Blob)>>3;
+ expandBlob(pVal);
if( pVal->flags&MEM_Str ){
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
- if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
+ if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
return 0;
@@ -28669,9 +46952,10 @@ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
}else{
assert( (pVal->flags&MEM_Blob)==0 );
sqlite3VdbeMemStringify(pVal, enc);
- assert( 0==(1&(int)pVal->z) );
+ assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
}
- assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || sqlite3MallocFailed() );
+ assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
+ || pVal->db->mallocFailed );
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
return pVal->z;
}else{
@@ -28682,11 +46966,12 @@ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
/*
** Create a new sqlite3_value object.
*/
-sqlite3_value* sqlite3ValueNew(void){
- Mem *p = sqliteMalloc(sizeof(*p));
+SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
+ Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
if( p ){
p->flags = MEM_Null;
p->type = SQLITE_NULL;
+ p->db = db;
}
return p;
}
@@ -28695,17 +46980,18 @@ sqlite3_value* sqlite3ValueNew(void){
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
-** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can
+** token (i.e. "5", "5.1", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
-int sqlite3ValueFromExpr(
- Expr *pExpr,
- u8 enc,
- u8 affinity,
- sqlite3_value **ppVal
+SQLITE_PRIVATE int sqlite3ValueFromExpr(
+ sqlite3 *db, /* The database connection */
+ Expr *pExpr, /* The expression to evaluate */
+ u8 enc, /* Encoding to use */
+ u8 affinity, /* Affinity to use */
+ sqlite3_value **ppVal /* Write the new value here */
){
int op;
char *zVal = 0;
@@ -28716,34 +47002,48 @@ int sqlite3ValueFromExpr(
return SQLITE_OK;
}
op = pExpr->op;
+ if( op==TK_REGISTER ){
+ op = pExpr->op2;
+ }
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
- zVal = sqliteStrNDup((char*)pExpr->token.z, pExpr->token.n);
- pVal = sqlite3ValueNew();
- if( !zVal || !pVal ) goto no_mem;
- sqlite3Dequote(zVal);
- sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3FreeX);
+ pVal = sqlite3ValueNew(db);
+ if( pVal==0 ) goto no_mem;
+ if( ExprHasProperty(pExpr, EP_IntValue) ){
+ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue);
+ }else{
+ zVal = sqlite3DbStrDup(db, pExpr->u.zToken);
+ if( zVal==0 ) goto no_mem;
+ sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
+ if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
+ }
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
- sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
+ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
}else{
- sqlite3ValueApplyAffinity(pVal, affinity, enc);
+ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
+ }
+ if( enc!=SQLITE_UTF8 ){
+ sqlite3VdbeChangeEncoding(pVal, enc);
}
}else if( op==TK_UMINUS ) {
- if( SQLITE_OK==sqlite3ValueFromExpr(pExpr->pLeft, enc, affinity, &pVal) ){
+ if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
pVal->u.i = -1 * pVal->u.i;
- pVal->r = -1.0 * pVal->r;
+ /* (double)-1 In case of SQLITE_OMIT_FLOATING_POINT... */
+ pVal->r = (double)-1 * pVal->r;
}
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
else if( op==TK_BLOB ){
int nVal;
- pVal = sqlite3ValueNew();
- zVal = sqliteStrNDup((char*)pExpr->token.z+1, pExpr->token.n-1);
- if( !zVal || !pVal ) goto no_mem;
- sqlite3Dequote(zVal);
- nVal = strlen(zVal)/2;
- sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(zVal), nVal, 0, sqlite3FreeX);
- sqliteFree(zVal);
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
+ assert( pExpr->u.zToken[1]=='\'' );
+ pVal = sqlite3ValueNew(db);
+ if( !pVal ) goto no_mem;
+ zVal = &pExpr->u.zToken[2];
+ nVal = sqlite3Strlen30(zVal)-1;
+ assert( zVal[nVal]=='\'' );
+ sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
+ 0, SQLITE_DYNAMIC);
}
#endif
@@ -28751,7 +47051,8 @@ int sqlite3ValueFromExpr(
return SQLITE_OK;
no_mem:
- sqliteFree(zVal);
+ db->mallocFailed = 1;
+ sqlite3DbFree(db, zVal);
sqlite3ValueFree(pVal);
*ppVal = 0;
return SQLITE_NOMEM;
@@ -28760,12 +47061,12 @@ no_mem:
/*
** Change the string value of an sqlite3_value object
*/
-void sqlite3ValueSetStr(
- sqlite3_value *v,
- int n,
- const void *z,
- u8 enc,
- void (*xDel)(void*)
+SQLITE_PRIVATE void sqlite3ValueSetStr(
+ sqlite3_value *v, /* Value to be set */
+ int n, /* Length of string z */
+ const void *z, /* Text of the new string */
+ u8 enc, /* Encoding to use */
+ void (*xDel)(void*) /* Destructor for the string */
){
if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
}
@@ -28773,20 +47074,24 @@ void sqlite3ValueSetStr(
/*
** Free an sqlite3_value object
*/
-void sqlite3ValueFree(sqlite3_value *v){
+SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
if( !v ) return;
- sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
- sqliteFree(v);
+ sqlite3VdbeMemRelease((Mem *)v);
+ sqlite3DbFree(((Mem*)v)->db, v);
}
/*
** Return the number of bytes in the sqlite3_value object assuming
** that it uses the encoding "enc"
*/
-int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
+SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
Mem *p = (Mem*)pVal;
if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
- return p->n;
+ if( p->flags & MEM_Zero ){
+ return p->n + p->u.nZero;
+ }else{
+ return p->n;
+ }
}
return 0;
}
@@ -28808,25 +47113,28 @@ int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
+**
+** $Id: vdbeaux.c,v 1.480 2009/08/08 18:01:08 drh Exp $
*/
+
/*
** When debugging the code generator in a symbolic debugger, one can
-** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
+** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
** as they are added to the instruction stream.
*/
#ifdef SQLITE_DEBUG
-int sqlite3_vdbe_addop_trace = 0;
+SQLITE_PRIVATE int sqlite3VdbeAddopTrace = 0;
#endif
/*
** Create a new virtual database engine.
*/
-Vdbe *sqlite3VdbeCreate(sqlite3 *db){
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){
Vdbe *p;
- p = sqliteMalloc( sizeof(Vdbe) );
+ p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
if( p==0 ) return 0;
p->db = db;
if( db->pVdbe ){
@@ -28842,26 +47150,30 @@ Vdbe *sqlite3VdbeCreate(sqlite3 *db){
/*
** Remember the SQL string for a prepared statement.
*/
-void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
if( p==0 ) return;
+#ifdef SQLITE_OMIT_TRACE
+ if( !isPrepareV2 ) return;
+#endif
assert( p->zSql==0 );
- p->zSql = sqlite3StrNDup(z, n);
+ p->zSql = sqlite3DbStrNDup(p->db, z, n);
+ p->isPrepareV2 = isPrepareV2 ? 1 : 0;
}
/*
** Return the SQL associated with a prepared statement
*/
-const char *sqlite3VdbeGetSql(Vdbe *p){
- return p->zSql;
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe *)pStmt;
+ return (p->isPrepareV2 ? p->zSql : 0);
}
/*
** Swap all content between two VDBE structures.
*/
-void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
Vdbe tmp, *pTmp;
char *zTmp;
- int nTmp;
tmp = *pA;
*pA = *pB;
*pB = tmp;
@@ -28874,45 +47186,36 @@ void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
zTmp = pA->zSql;
pA->zSql = pB->zSql;
pB->zSql = zTmp;
- nTmp = pA->nSql;
- pA->nSql = pB->nSql;
- pB->nSql = nTmp;
+ pB->isPrepareV2 = pA->isPrepareV2;
}
+#ifdef SQLITE_DEBUG
/*
** Turn tracing on or off
*/
-void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
+SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
p->trace = trace;
}
+#endif
/*
-** Resize the Vdbe.aOp array so that it contains at least N
-** elements. If the Vdbe is in VDBE_MAGIC_RUN state, then
-** the Vdbe.aOp array will be sized to contain exactly N
-** elements. Vdbe.nOpAlloc is set to reflect the new size of
-** the array.
+** Resize the Vdbe.aOp array so that it is at least one op larger than
+** it was.
**
-** If an out-of-memory error occurs while resizing the array,
-** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
-** any opcodes already allocated can be correctly deallocated
-** along with the rest of the Vdbe).
+** If an out-of-memory error occurs while resizing the array, return
+** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
+** unchanged (this is so that any opcodes already allocated can be
+** correctly deallocated along with the rest of the Vdbe).
*/
-static void resizeOpArray(Vdbe *p, int N){
- int runMode = p->magic==VDBE_MAGIC_RUN;
- if( runMode || p->nOpAlloc<N ){
- VdbeOp *pNew;
- int nNew = N + 100*(!runMode);
- int oldSize = p->nOpAlloc;
- pNew = sqliteRealloc(p->aOp, nNew*sizeof(Op));
- if( pNew ){
- p->nOpAlloc = nNew;
- p->aOp = pNew;
- if( nNew>oldSize ){
- memset(&p->aOp[oldSize], 0, (nNew-oldSize)*sizeof(Op));
- }
- }
+static int growOpArray(Vdbe *p){
+ VdbeOp *pNew;
+ int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
+ pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
+ if( pNew ){
+ p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
+ p->aOp = pNew;
}
+ return (pNew ? SQLITE_OK : SQLITE_NOMEM);
}
/*
@@ -28925,44 +47228,69 @@ static void resizeOpArray(Vdbe *p, int N){
**
** op The opcode for this instruction
**
-** p1, p2 First two of the three possible operands.
+** p1, p2, p3 Operands
**
** Use the sqlite3VdbeResolveLabel() function to fix an address and
-** the sqlite3VdbeChangeP3() function to change the value of the P3
+** the sqlite3VdbeChangeP4() function to change the value of the P4
** operand.
*/
-int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
int i;
VdbeOp *pOp;
i = p->nOp;
assert( p->magic==VDBE_MAGIC_INIT );
+ assert( op>0 && op<0xff );
if( p->nOpAlloc<=i ){
- resizeOpArray(p, i+1);
- if( sqlite3MallocFailed() ){
- return 0;
+ if( growOpArray(p) ){
+ return 1;
}
}
p->nOp++;
pOp = &p->aOp[i];
- pOp->opcode = op;
+ pOp->opcode = (u8)op;
+ pOp->p5 = 0;
pOp->p1 = p1;
pOp->p2 = p2;
- pOp->p3 = 0;
- pOp->p3type = P3_NOTUSED;
+ pOp->p3 = p3;
+ pOp->p4.p = 0;
+ pOp->p4type = P4_NOTUSED;
p->expired = 0;
#ifdef SQLITE_DEBUG
- if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
+ pOp->zComment = 0;
+ if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
+#endif
+#ifdef VDBE_PROFILE
+ pOp->cycles = 0;
+ pOp->cnt = 0;
#endif
return i;
}
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
+ return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
+ return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
+ return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
+}
+
/*
-** Add an opcode that includes the p3 value.
+** Add an opcode that includes the p4 value as a pointer.
*/
-int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
- int addr = sqlite3VdbeAddOp(p, op, p1, p2);
- sqlite3VdbeChangeP3(p, addr, zP3, p3type);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ const char *zP4, /* The P4 operand */
+ int p4type /* P4 operand type */
+){
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+ sqlite3VdbeChangeP4(p, addr, zP4, p4type);
return addr;
}
@@ -28980,14 +47308,15 @@ int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
**
** Zero is returned if a malloc() fails.
*/
-int sqlite3VdbeMakeLabel(Vdbe *p){
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *p){
int i;
i = p->nLabel++;
assert( p->magic==VDBE_MAGIC_INIT );
if( i>=p->nLabelAlloc ){
- p->nLabelAlloc = p->nLabelAlloc*2 + 10;
- p->aLabel = sqliteReallocOrFree(p->aLabel,
- p->nLabelAlloc*sizeof(p->aLabel[0]));
+ int n = p->nLabelAlloc*2 + 5;
+ p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
+ n*sizeof(p->aLabel[0]));
+ p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
}
if( p->aLabel ){
p->aLabel[i] = -1;
@@ -29000,7 +47329,7 @@ int sqlite3VdbeMakeLabel(Vdbe *p){
** be inserted. The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
-void sqlite3VdbeResolveLabel(Vdbe *p, int x){
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){
int j = -1-x;
assert( p->magic==VDBE_MAGIC_INIT );
assert( j>=0 && j<p->nLabel );
@@ -29009,147 +47338,216 @@ void sqlite3VdbeResolveLabel(Vdbe *p, int x){
}
}
+#ifdef SQLITE_DEBUG
+
/*
-** Return non-zero if opcode 'op' is guarenteed not to push more values
-** onto the VDBE stack than it pops off.
+** The following type and function are used to iterate through all opcodes
+** in a Vdbe main program and each of the sub-programs (triggers) it may
+** invoke directly or indirectly. It should be used as follows:
+**
+** Op *pOp;
+** VdbeOpIter sIter;
+**
+** memset(&sIter, 0, sizeof(sIter));
+** sIter.v = v; // v is of type Vdbe*
+** while( (pOp = opIterNext(&sIter)) ){
+** // Do something with pOp
+** }
+** sqlite3DbFree(v->db, sIter.apSub);
+**
*/
-static int opcodeNoPush(u8 op){
- /* The 10 NOPUSH_MASK_n constants are defined in the automatically
- ** generated header file opcodes.h. Each is a 16-bit bitmask, one
- ** bit corresponding to each opcode implemented by the virtual
- ** machine in vdbe.c. The bit is true if the word "no-push" appears
- ** in a comment on the same line as the "case OP_XXX:" in
- ** sqlite3VdbeExec() in vdbe.c.
- **
- ** If the bit is true, then the corresponding opcode is guarenteed not
- ** to grow the stack when it is executed. Otherwise, it may grow the
- ** stack by at most one entry.
- **
- ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
- ** one bit for opcodes 16 to 31, and so on.
- **
- ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h
- ** because the file is generated by an awk program. Awk manipulates
- ** all numbers as floating-point and we don't want to risk a rounding
- ** error if someone builds with an awk that uses (for example) 32-bit
- ** IEEE floats.
- */
- static const u32 masks[5] = {
- NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16),
- NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16),
- NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16),
- NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16),
- NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16)
- };
- assert( op<32*5 );
- return (masks[op>>5] & (1<<(op&0x1F)));
+typedef struct VdbeOpIter VdbeOpIter;
+struct VdbeOpIter {
+ Vdbe *v; /* Vdbe to iterate through the opcodes of */
+ SubProgram **apSub; /* Array of subprograms */
+ int nSub; /* Number of entries in apSub */
+ int iAddr; /* Address of next instruction to return */
+ int iSub; /* 0 = main program, 1 = first sub-program etc. */
+};
+static Op *opIterNext(VdbeOpIter *p){
+ Vdbe *v = p->v;
+ Op *pRet = 0;
+ Op *aOp;
+ int nOp;
+
+ if( p->iSub<=p->nSub ){
+
+ if( p->iSub==0 ){
+ aOp = v->aOp;
+ nOp = v->nOp;
+ }else{
+ aOp = p->apSub[p->iSub-1]->aOp;
+ nOp = p->apSub[p->iSub-1]->nOp;
+ }
+ assert( p->iAddr<nOp );
+
+ pRet = &aOp[p->iAddr];
+ p->iAddr++;
+ if( p->iAddr==nOp ){
+ p->iSub++;
+ p->iAddr = 0;
+ }
+
+ if( pRet->p4type==P4_SUBPROGRAM ){
+ int nByte = (p->nSub+1)*sizeof(SubProgram*);
+ int j;
+ for(j=0; j<p->nSub; j++){
+ if( p->apSub[j]==pRet->p4.pProgram ) break;
+ }
+ if( j==p->nSub ){
+ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
+ if( !p->apSub ){
+ pRet = 0;
+ }else{
+ p->apSub[p->nSub++] = pRet->p4.pProgram;
+ }
+ }
+ }
+ }
+
+ return pRet;
}
-#ifndef NDEBUG
-int sqlite3VdbeOpcodeNoPush(u8 op){
- return opcodeNoPush(op);
+/*
+** Check if the program stored in the VM associated with pParse may
+** throw an ABORT exception (causing the statement, but not transaction
+** to be rolled back). This condition is true if the main program or any
+** sub-programs contains any of the following:
+**
+** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
+** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
+** * OP_Destroy
+** * OP_VUpdate
+** * OP_VRename
+**
+** Then check that the value of Parse.mayAbort is true if an
+** ABORT may be thrown, or false otherwise. Return true if it does
+** match, or false otherwise. This function is intended to be used as
+** part of an assert statement in the compiler. Similar to:
+**
+** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
+*/
+SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
+ int hasAbort = 0;
+ Op *pOp;
+ VdbeOpIter sIter;
+ memset(&sIter, 0, sizeof(sIter));
+ sIter.v = v;
+
+ while( (pOp = opIterNext(&sIter))!=0 ){
+ int opcode = pOp->opcode;
+ if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
+ || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
+ && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
+ ){
+ hasAbort = 1;
+ break;
+ }
+ }
+ sqlite3DbFree(v->db, sIter.apSub);
+
+ /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
+ ** If malloc failed, then the while() loop above may not have iterated
+ ** through all opcodes and hasAbort may be set incorrectly. Return
+ ** true for this case to prevent the assert() in the callers frame
+ ** from failing. */
+ return ( v->db->mallocFailed || hasAbort==mayAbort );
}
#endif
/*
-** Loop through the program looking for P2 values that are negative.
-** Each such value is a label. Resolve the label by setting the P2
-** value to its correct non-zero value.
+** Loop through the program looking for P2 values that are negative
+** on jump instructions. Each such value is a label. Resolve the
+** label by setting the P2 value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
-**
-** The integer *pMaxStack is set to the maximum number of vdbe stack
-** entries that static analysis reveals this program might need.
-**
-** This routine also does the following optimization: It scans for
-** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for
-** IdxInsert instructions where P2!=0. If no such instruction is
-** found, then every Statement instruction is changed to a Noop. In
-** this way, we avoid creating the statement journal file unnecessarily.
*/
-static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
+static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
int i;
- int nMaxArgs = 0;
- int nMaxStack = p->nOp;
+ int nMaxArgs = *pMaxFuncArgs;
Op *pOp;
int *aLabel = p->aLabel;
- int doesStatementRollback = 0;
- int hasStatementBegin = 0;
+ p->readOnly = 1;
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
u8 opcode = pOp->opcode;
- if( opcode==OP_Function || opcode==OP_AggStep
+ if( opcode==OP_Function || opcode==OP_AggStep ){
+ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
#ifndef SQLITE_OMIT_VIRTUALTABLE
- || opcode==OP_VUpdate
-#endif
- ){
+ }else if( opcode==OP_VUpdate ){
if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
- }else if( opcode==OP_Halt ){
- if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
- doesStatementRollback = 1;
- }
- }else if( opcode==OP_Statement ){
- hasStatementBegin = 1;
+#endif
+ }else if( opcode==OP_Transaction && pOp->p2!=0 ){
+ p->readOnly = 0;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
}else if( opcode==OP_VFilter ){
int n;
assert( p->nOp - i >= 3 );
- assert( pOp[-2].opcode==OP_Integer );
- n = pOp[-2].p1;
+ assert( pOp[-1].opcode==OP_Integer );
+ n = pOp[-1].p1;
if( n>nMaxArgs ) nMaxArgs = n;
- }
- if( opcodeNoPush(opcode) ){
- nMaxStack--;
+#endif
}
- if( pOp->p2>=0 ) continue;
- assert( -1-pOp->p2<p->nLabel );
- pOp->p2 = aLabel[-1-pOp->p2];
+ if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
+ assert( -1-pOp->p2<p->nLabel );
+ pOp->p2 = aLabel[-1-pOp->p2];
+ }
}
- sqliteFree(p->aLabel);
+ sqlite3DbFree(p->db, p->aLabel);
p->aLabel = 0;
*pMaxFuncArgs = nMaxArgs;
- *pMaxStack = nMaxStack;
-
- /* If we never rollback a statement transaction, then statement
- ** transactions are not needed. So change every OP_Statement
- ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
- ** which can be expensive on some platforms.
- */
- if( hasStatementBegin && !doesStatementRollback ){
- for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
- if( pOp->opcode==OP_Statement ){
- pOp->opcode = OP_Noop;
- }
- }
- }
}
/*
** Return the address of the next instruction to be inserted.
*/
-int sqlite3VdbeCurrentAddr(Vdbe *p){
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
assert( p->magic==VDBE_MAGIC_INIT );
return p->nOp;
}
/*
+** This function returns a pointer to the array of opcodes associated with
+** the Vdbe passed as the first argument. It is the callers responsibility
+** to arrange for the returned array to be eventually freed using the
+** vdbeFreeOpArray() function.
+**
+** Before returning, *pnOp is set to the number of entries in the returned
+** array. Also, *pnMaxArg is set to the larger of its current value and
+** the number of entries in the Vdbe.apArg[] array required to execute the
+** returned program.
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
+ VdbeOp *aOp = p->aOp;
+ assert( aOp && !p->db->mallocFailed );
+
+ /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
+ assert( p->aMutex.nMutex==0 );
+
+ resolveP2Values(p, pnMaxArg);
+ *pnOp = p->nOp;
+ p->aOp = 0;
+ return aOp;
+}
+
+/*
** Add a whole list of operations to the operation stack. Return the
** address of the first operation added.
*/
-int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
+SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
int addr;
assert( p->magic==VDBE_MAGIC_INIT );
- resizeOpArray(p, p->nOp + nOp);
- if( sqlite3MallocFailed() ){
+ if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
return 0;
}
addr = p->nOp;
- if( nOp>0 ){
+ if( ALWAYS(nOp>0) ){
int i;
VdbeOpList const *pIn = aOp;
for(i=0; i<nOp; i++, pIn++){
@@ -29157,11 +47555,18 @@ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
VdbeOp *pOut = &p->aOp[i+addr];
pOut->opcode = pIn->opcode;
pOut->p1 = pIn->p1;
- pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
+ if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
+ pOut->p2 = addr + ADDR(p2);
+ }else{
+ pOut->p2 = p2;
+ }
pOut->p3 = pIn->p3;
- pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
+ pOut->p4type = P4_NOTUSED;
+ pOut->p4.p = 0;
+ pOut->p5 = 0;
#ifdef SQLITE_DEBUG
- if( sqlite3_vdbe_addop_trace ){
+ pOut->zComment = 0;
+ if( sqlite3VdbeAddopTrace ){
sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
}
#endif
@@ -29177,9 +47582,10 @@ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
*/
-void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( p!=0 );
+ assert( addr>=0 );
+ if( p->nOp>addr ){
p->aOp[addr].p1 = val;
}
}
@@ -29188,19 +47594,42 @@ void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
** Change the value of the P2 operand for a specific instruction.
** This routine is useful for setting a jump destination.
*/
-void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
- assert( val>=0 );
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( p!=0 );
+ assert( addr>=0 );
+ if( p->nOp>addr ){
p->aOp[addr].p2 = val;
}
}
/*
+** Change the value of the P3 operand for a specific instruction.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
+ assert( p!=0 );
+ assert( addr>=0 );
+ if( p->nOp>addr ){
+ p->aOp[addr].p3 = val;
+ }
+}
+
+/*
+** Change the value of the P5 operand for the most recently
+** added operation.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
+ assert( p!=0 );
+ if( p->aOp ){
+ assert( p->nOp>0 );
+ p->aOp[p->nOp-1].p5 = val;
+ }
+}
+
+/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
-void sqlite3VdbeJumpHere(Vdbe *p, int addr){
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
sqlite3VdbeChangeP2(p, addr, p->nOp);
}
@@ -29209,247 +47638,420 @@ void sqlite3VdbeJumpHere(Vdbe *p, int addr){
** If the input FuncDef structure is ephemeral, then free it. If
** the FuncDef is not ephermal, then do nothing.
*/
-static void freeEphemeralFunction(FuncDef *pDef){
- if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
- sqliteFree(pDef);
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
+ if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
+ sqlite3DbFree(db, pDef);
}
}
/*
-** Delete a P3 value if necessary.
+** Delete a P4 value if necessary.
*/
-static void freeP3(int p3type, void *p3){
- if( p3 ){
- switch( p3type ){
- case P3_DYNAMIC:
- case P3_KEYINFO:
- case P3_KEYINFO_HANDOFF: {
- sqliteFree(p3);
+static void freeP4(sqlite3 *db, int p4type, void *p4){
+ if( p4 ){
+ switch( p4type ){
+ case P4_REAL:
+ case P4_INT64:
+ case P4_MPRINTF:
+ case P4_DYNAMIC:
+ case P4_KEYINFO:
+ case P4_INTARRAY:
+ case P4_KEYINFO_HANDOFF: {
+ sqlite3DbFree(db, p4);
+ break;
+ }
+ case P4_VDBEFUNC: {
+ VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
+ freeEphemeralFunction(db, pVdbeFunc->pFunc);
+ sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
+ sqlite3DbFree(db, pVdbeFunc);
break;
}
- case P3_MPRINTF: {
- sqlite3_free(p3);
+ case P4_FUNCDEF: {
+ freeEphemeralFunction(db, (FuncDef*)p4);
break;
}
- case P3_VDBEFUNC: {
- VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
- freeEphemeralFunction(pVdbeFunc->pFunc);
- sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
- sqliteFree(pVdbeFunc);
+ case P4_MEM: {
+ sqlite3ValueFree((sqlite3_value*)p4);
break;
}
- case P3_FUNCDEF: {
- freeEphemeralFunction((FuncDef*)p3);
+ case P4_VTAB : {
+ sqlite3VtabUnlock((VTable *)p4);
break;
}
- case P3_MEM: {
- sqlite3ValueFree((sqlite3_value*)p3);
+ case P4_SUBPROGRAM : {
+ sqlite3VdbeProgramDelete(db, (SubProgram *)p4, 1);
break;
}
}
}
}
+/*
+** Free the space allocated for aOp and any p4 values allocated for the
+** opcodes contained within. If aOp is not NULL it is assumed to contain
+** nOp entries.
+*/
+static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
+ if( aOp ){
+ Op *pOp;
+ for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
+ freeP4(db, pOp->p4type, pOp->p4.p);
+#ifdef SQLITE_DEBUG
+ sqlite3DbFree(db, pOp->zComment);
+#endif
+ }
+ }
+ sqlite3DbFree(db, aOp);
+}
+
+/*
+** Decrement the ref-count on the SubProgram structure passed as the
+** second argument. If the ref-count reaches zero, free the structure.
+**
+** The array of VDBE opcodes stored as SubProgram.aOp is freed if
+** either the ref-count reaches zero or parameter freeop is non-zero.
+**
+** Since the array of opcodes pointed to by SubProgram.aOp may directly
+** or indirectly contain a reference to the SubProgram structure itself.
+** By passing a non-zero freeop parameter, the caller may ensure that all
+** SubProgram structures and their aOp arrays are freed, even when there
+** are such circular references.
+*/
+SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *db, SubProgram *p, int freeop){
+ if( p ){
+ assert( p->nRef>0 );
+ if( freeop || p->nRef==1 ){
+ Op *aOp = p->aOp;
+ p->aOp = 0;
+ vdbeFreeOpArray(db, aOp, p->nOp);
+ p->nOp = 0;
+ }
+ p->nRef--;
+ if( p->nRef==0 ){
+ sqlite3DbFree(db, p);
+ }
+ }
+}
+
/*
** Change N opcodes starting at addr to No-ops.
*/
-void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
- VdbeOp *pOp = &p->aOp[addr];
- while( N-- ){
- freeP3(pOp->p3type, pOp->p3);
- memset(pOp, 0, sizeof(pOp[0]));
- pOp->opcode = OP_Noop;
- pOp++;
+SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
+ if( p->aOp ){
+ VdbeOp *pOp = &p->aOp[addr];
+ sqlite3 *db = p->db;
+ while( N-- ){
+ freeP4(db, pOp->p4type, pOp->p4.p);
+ memset(pOp, 0, sizeof(pOp[0]));
+ pOp->opcode = OP_Noop;
+ pOp++;
+ }
}
}
/*
-** Change the value of the P3 operand for a specific instruction.
+** Change the value of the P4 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
-** If n>=0 then the P3 operand is dynamic, meaning that a copy of
-** the string is made into memory obtained from sqliteMalloc().
-** A value of n==0 means copy bytes of zP3 up to and including the
-** first null byte. If n>0 then copy n+1 bytes of zP3.
+** If n>=0 then the P4 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqlite3_malloc().
+** A value of n==0 means copy bytes of zP4 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP4.
**
-** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
+** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
** A copy is made of the KeyInfo structure into memory obtained from
-** sqliteMalloc, to be freed when the Vdbe is finalized.
-** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
-** stored in memory that the caller has obtained from sqliteMalloc. The
+** sqlite3_malloc, to be freed when the Vdbe is finalized.
+** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
+** stored in memory that the caller has obtained from sqlite3_malloc. The
** caller should not free the allocation, it will be freed when the Vdbe is
** finalized.
**
-** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
+** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
-** If addr<0 then change P3 on the most recently inserted instruction.
+** If addr<0 then change P4 on the most recently inserted instruction.
*/
-void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
Op *pOp;
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p==0 || p->aOp==0 || sqlite3MallocFailed() ){
- if (n != P3_KEYINFO) {
- freeP3(n, (void*)*(char**)&zP3);
+ sqlite3 *db;
+ assert( p!=0 );
+ db = p->db;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || db->mallocFailed ){
+ if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
+ freeP4(db, n, (void*)*(char**)&zP4);
}
return;
}
- if( addr<0 || addr>=p->nOp ){
+ assert( p->nOp>0 );
+ assert( addr<p->nOp );
+ if( addr<0 ){
addr = p->nOp - 1;
- if( addr<0 ) return;
}
pOp = &p->aOp[addr];
- freeP3(pOp->p3type, pOp->p3);
- pOp->p3 = 0;
- if( zP3==0 ){
- pOp->p3 = 0;
- pOp->p3type = P3_NOTUSED;
- }else if( n==P3_KEYINFO ){
+ freeP4(db, pOp->p4type, pOp->p4.p);
+ pOp->p4.p = 0;
+ if( n==P4_INT32 ){
+ /* Note: this cast is safe, because the origin data point was an int
+ ** that was cast to a (const char *). */
+ pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
+ pOp->p4type = P4_INT32;
+ }else if( zP4==0 ){
+ pOp->p4.p = 0;
+ pOp->p4type = P4_NOTUSED;
+ }else if( n==P4_KEYINFO ){
KeyInfo *pKeyInfo;
int nField, nByte;
- nField = ((KeyInfo*)zP3)->nField;
+ nField = ((KeyInfo*)zP4)->nField;
nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
- pKeyInfo = sqliteMallocRaw( nByte );
- pOp->p3 = (char*)pKeyInfo;
+ pKeyInfo = sqlite3Malloc( nByte );
+ pOp->p4.pKeyInfo = pKeyInfo;
if( pKeyInfo ){
- unsigned char *aSortOrder;
- memcpy(pKeyInfo, zP3, nByte);
+ u8 *aSortOrder;
+ memcpy(pKeyInfo, zP4, nByte);
aSortOrder = pKeyInfo->aSortOrder;
if( aSortOrder ){
pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
}
- pOp->p3type = P3_KEYINFO;
+ pOp->p4type = P4_KEYINFO;
}else{
- pOp->p3type = P3_NOTUSED;
- }
- }else if( n==P3_KEYINFO_HANDOFF ){
- pOp->p3 = (char*)zP3;
- pOp->p3type = P3_KEYINFO;
+ p->db->mallocFailed = 1;
+ pOp->p4type = P4_NOTUSED;
+ }
+ }else if( n==P4_KEYINFO_HANDOFF ){
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = P4_KEYINFO;
+ }else if( n==P4_VTAB ){
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = P4_VTAB;
+ sqlite3VtabLock((VTable *)zP4);
+ assert( ((VTable *)zP4)->db==p->db );
}else if( n<0 ){
- pOp->p3 = (char*)zP3;
- pOp->p3type = n;
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = (signed char)n;
}else{
- if( n==0 ) n = strlen(zP3);
- pOp->p3 = sqliteStrNDup(zP3, n);
- pOp->p3type = P3_DYNAMIC;
+ if( n==0 ) n = sqlite3Strlen30(zP4);
+ pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
+ pOp->p4type = P4_DYNAMIC;
}
}
#ifndef NDEBUG
/*
-** Replace the P3 field of the most recently coded instruction with
-** comment text.
+** Change the comment on the the most recently coded instruction. Or
+** insert a No-op and add the comment to that new instruction. This
+** makes the code easier to read during debugging. None of this happens
+** in a production build.
*/
-void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
va_list ap;
+ if( !p ) return;
assert( p->nOp>0 || p->aOp==0 );
- assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 || sqlite3MallocFailed() );
- va_start(ap, zFormat);
- sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(zFormat, ap), P3_DYNAMIC);
- va_end(ap);
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
+ if( p->nOp ){
+ char **pz = &p->aOp[p->nOp-1].zComment;
+ va_start(ap, zFormat);
+ sqlite3DbFree(p->db, *pz);
+ *pz = sqlite3VMPrintf(p->db, zFormat, ap);
+ va_end(ap);
+ }
}
-#endif
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ if( !p ) return;
+ sqlite3VdbeAddOp0(p, OP_Noop);
+ assert( p->nOp>0 || p->aOp==0 );
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
+ if( p->nOp ){
+ char **pz = &p->aOp[p->nOp-1].zComment;
+ va_start(ap, zFormat);
+ sqlite3DbFree(p->db, *pz);
+ *pz = sqlite3VMPrintf(p->db, zFormat, ap);
+ va_end(ap);
+ }
+}
+#endif /* NDEBUG */
/*
-** Return the opcode for a given address.
+** Return the opcode for a given address. If the address is -1, then
+** return the most recently inserted opcode.
+**
+** If a memory allocation error has occurred prior to the calling of this
+** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
+** is readable and writable, but it has no effect. The return of a dummy
+** opcode allows the call to continue functioning after a OOM fault without
+** having to check to see if the return from this routine is a valid pointer.
+**
+** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
+** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
+** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
+** a new VDBE is created. So we are free to set addr to p->nOp-1 without
+** having to double-check to make sure that the result is non-negative. But
+** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
+** check the value of p->nOp-1 before continuing.
*/
-VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
+ static VdbeOp dummy;
assert( p->magic==VDBE_MAGIC_INIT );
- assert( (addr>=0 && addr<p->nOp) || sqlite3MallocFailed() );
- return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
+ if( addr<0 ){
+#ifdef SQLITE_OMIT_TRACE
+ if( p->nOp==0 ) return &dummy;
+#endif
+ addr = p->nOp - 1;
+ }
+ assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
+ if( p->db->mallocFailed ){
+ return &dummy;
+ }else{
+ return &p->aOp[addr];
+ }
}
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
|| defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
-** Compute a string that describes the P3 parameter for an opcode.
+** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
-static char *displayP3(Op *pOp, char *zTemp, int nTemp){
- char *zP3;
+static char *displayP4(Op *pOp, char *zTemp, int nTemp){
+ char *zP4 = zTemp;
assert( nTemp>=20 );
- switch( pOp->p3type ){
- case P3_KEYINFO: {
+ switch( pOp->p4type ){
+ case P4_KEYINFO_STATIC:
+ case P4_KEYINFO: {
int i, j;
- KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
- sprintf(zTemp, "keyinfo(%d", pKeyInfo->nField);
- i = strlen(zTemp);
+ KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
+ sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
+ i = sqlite3Strlen30(zTemp);
for(j=0; j<pKeyInfo->nField; j++){
CollSeq *pColl = pKeyInfo->aColl[j];
if( pColl ){
- int n = strlen(pColl->zName);
+ int n = sqlite3Strlen30(pColl->zName);
if( i+n>nTemp-6 ){
- strcpy(&zTemp[i],",...");
+ memcpy(&zTemp[i],",...",4);
break;
}
zTemp[i++] = ',';
if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
zTemp[i++] = '-';
}
- strcpy(&zTemp[i], pColl->zName);
+ memcpy(&zTemp[i], pColl->zName,n+1);
i += n;
}else if( i+4<nTemp-6 ){
- strcpy(&zTemp[i],",nil");
+ memcpy(&zTemp[i],",nil",4);
i += 4;
}
}
zTemp[i++] = ')';
zTemp[i] = 0;
assert( i<nTemp );
- zP3 = zTemp;
break;
}
- case P3_COLLSEQ: {
- CollSeq *pColl = (CollSeq*)pOp->p3;
- sprintf(zTemp, "collseq(%.20s)", pColl->zName);
- zP3 = zTemp;
+ case P4_COLLSEQ: {
+ CollSeq *pColl = pOp->p4.pColl;
+ sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
break;
}
- case P3_FUNCDEF: {
- FuncDef *pDef = (FuncDef*)pOp->p3;
+ case P4_FUNCDEF: {
+ FuncDef *pDef = pOp->p4.pFunc;
sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
- zP3 = zTemp;
+ break;
+ }
+ case P4_INT64: {
+ sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
+ break;
+ }
+ case P4_INT32: {
+ sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
+ break;
+ }
+ case P4_REAL: {
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
+ break;
+ }
+ case P4_MEM: {
+ Mem *pMem = pOp->p4.pMem;
+ assert( (pMem->flags & MEM_Null)==0 );
+ if( pMem->flags & MEM_Str ){
+ zP4 = pMem->z;
+ }else if( pMem->flags & MEM_Int ){
+ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
+ }else if( pMem->flags & MEM_Real ){
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
+ }else{
+ assert( pMem->flags & MEM_Blob );
+ zP4 = "(blob)";
+ }
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
- case P3_VTAB: {
- sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3;
+ case P4_VTAB: {
+ sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
- zP3 = zTemp;
break;
}
#endif
+ case P4_INTARRAY: {
+ sqlite3_snprintf(nTemp, zTemp, "intarray");
+ break;
+ }
+ case P4_SUBPROGRAM: {
+ sqlite3_snprintf(nTemp, zTemp, "program");
+ break;
+ }
default: {
- zP3 = pOp->p3;
- if( zP3==0 || pOp->opcode==OP_Noop ){
- zP3 = "";
+ zP4 = pOp->p4.z;
+ if( zP4==0 ){
+ zP4 = zTemp;
+ zTemp[0] = 0;
}
}
}
- assert( zP3!=0 );
- return zP3;
+ assert( zP4!=0 );
+ return zP4;
}
#endif
+/*
+** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
+*/
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
+ int mask;
+ assert( i>=0 && i<p->db->nDb && i<sizeof(u32)*8 );
+ assert( i<(int)sizeof(p->btreeMask)*8 );
+ mask = ((u32)1)<<i;
+ if( (p->btreeMask & mask)==0 ){
+ p->btreeMask |= mask;
+ sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
+ }
+}
+
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode. This routine is used for debugging only.
*/
-void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
- char *zP3;
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
+ char *zP4;
char zPtr[50];
- static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
+ static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
if( pOut==0 ) pOut = stdout;
- zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
- fprintf(pOut, zFormat1,
- pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3);
+ zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
+ fprintf(pOut, zFormat1, pc,
+ sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
+#ifdef SQLITE_DEBUG
+ pOp->zComment ? pOp->zComment : ""
+#else
+ ""
+#endif
+ );
fflush(pOut);
}
#endif
@@ -29458,13 +48060,74 @@ void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
- if( p ){
- while( N-->0 ){
- sqlite3VdbeMemRelease(p++);
+ if( p && N ){
+ Mem *pEnd;
+ sqlite3 *db = p->db;
+ u8 malloc_failed = db->mallocFailed;
+ for(pEnd=&p[N]; p<pEnd; p++){
+ assert( (&p[1])==pEnd || p[0].db==p[1].db );
+
+ /* This block is really an inlined version of sqlite3VdbeMemRelease()
+ ** that takes advantage of the fact that the memory cell value is
+ ** being set to NULL after releasing any dynamic resources.
+ **
+ ** The justification for duplicating code is that according to
+ ** callgrind, this causes a certain test case to hit the CPU 4.7
+ ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
+ ** sqlite3MemRelease() were called from here. With -O2, this jumps
+ ** to 6.6 percent. The test case is inserting 1000 rows into a table
+ ** with no indexes using a single prepared INSERT statement, bind()
+ ** and reset(). Inserts are grouped into a transaction.
+ */
+ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
+ sqlite3VdbeMemRelease(p);
+ }else if( p->zMalloc ){
+ sqlite3DbFree(db, p->zMalloc);
+ p->zMalloc = 0;
+ }
+
+ p->flags = MEM_Null;
}
+ db->mallocFailed = malloc_failed;
}
}
+/*
+** Delete a VdbeFrame object and its contents. VdbeFrame objects are
+** allocated by the OP_Program opcode in sqlite3VdbeExec().
+*/
+SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){
+ int i;
+ Mem *aMem = VdbeFrameMem(p);
+ VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
+ for(i=0; i<p->nChildCsr; i++){
+ sqlite3VdbeFreeCursor(p->v, apCsr[i]);
+ }
+ releaseMemArray(aMem, p->nChildMem);
+ sqlite3DbFree(p->v->db, p);
+}
+
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p){
+ int ii;
+ int nFree = 0;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ for(ii=1; ii<=p->nMem; ii++){
+ Mem *pMem = &p->aMem[ii];
+ if( pMem->flags & MEM_RowSet ){
+ sqlite3RowSetClear(pMem->u.pRowSet);
+ }
+ if( pMem->z && pMem->flags&MEM_Dyn ){
+ assert( !pMem->xDel );
+ nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ return nFree;
+}
+#endif
+
#ifndef SQLITE_OMIT_EXPLAIN
/*
** Give a listing of the program in the virtual machine.
@@ -29472,53 +48135,107 @@ static void releaseMemArray(Mem *p, int N){
** The interface is the same as sqlite3VdbeExec(). But instead of
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
+**
+** When p->explain==1, each instruction is listed. When
+** p->explain==2, only OP_Explain instructions are listed and these
+** are shown in a different format. p->explain==2 is used to implement
+** EXPLAIN QUERY PLAN.
*/
-int sqlite3VdbeList(
+SQLITE_PRIVATE int sqlite3VdbeList(
Vdbe *p /* The VDBE */
){
+ int nRow; /* Total number of rows to return */
+ int nSub = 0; /* Number of sub-vdbes seen so far */
+ SubProgram **apSub = 0; /* Array of sub-vdbes */
+ Mem *pSub = 0;
sqlite3 *db = p->db;
int i;
int rc = SQLITE_OK;
+ Mem *pMem = p->pResultSet = &p->aMem[1];
assert( p->explain );
- if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( p->magic==VDBE_MAGIC_RUN );
assert( db->magic==SQLITE_MAGIC_BUSY );
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
- /* Even though this opcode does not put dynamic strings onto the
- ** the stack, they may become dynamic if the user calls
+ /* Even though this opcode does not use dynamic strings for
+ ** the result, result columns may become dynamic if the user calls
** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
*/
- if( p->pTos==&p->aStack[4] ){
- releaseMemArray(p->aStack, 5);
+ releaseMemArray(pMem, 8);
+
+ if( p->rc==SQLITE_NOMEM ){
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or
+ ** sqlite3_column_text16() failed. */
+ db->mallocFailed = 1;
+ return SQLITE_ERROR;
+ }
+
+ /* Figure out total number of rows that will be returned by this
+ ** EXPLAIN program. */
+ nRow = p->nOp;
+ if( p->explain==1 ){
+ pSub = &p->aMem[9];
+ if( pSub->flags&MEM_Blob ){
+ nSub = pSub->n/sizeof(Vdbe*);
+ apSub = (SubProgram **)pSub->z;
+ }
+ for(i=0; i<nSub; i++){
+ nRow += apSub[i]->nOp;
+ }
}
- p->resOnStack = 0;
do{
i = p->pc++;
- }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
- if( i>=p->nOp ){
+ }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
+ if( i>=nRow ){
p->rc = SQLITE_OK;
rc = SQLITE_DONE;
}else if( db->u1.isInterrupted ){
p->rc = SQLITE_INTERRUPT;
rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
}else{
- Op *pOp = &p->aOp[i];
- Mem *pMem = p->aStack;
- pMem->flags = MEM_Int;
- pMem->type = SQLITE_INTEGER;
- pMem->u.i = i; /* Program counter */
- pMem++;
+ char *z;
+ Op *pOp;
+ if( i<p->nOp ){
+ pOp = &p->aOp[i];
+ }else{
+ int j;
+ i -= p->nOp;
+ for(j=0; i>=apSub[j]->nOp; j++){
+ i -= apSub[j]->nOp;
+ }
+ pOp = &apSub[j]->aOp[i];
+ }
+ if( p->explain==1 ){
+ pMem->flags = MEM_Int;
+ pMem->type = SQLITE_INTEGER;
+ pMem->u.i = i; /* Program counter */
+ pMem++;
+
+ pMem->flags = MEM_Static|MEM_Str|MEM_Term;
+ pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
+ assert( pMem->z!=0 );
+ pMem->n = sqlite3Strlen30(pMem->z);
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+ pMem++;
- pMem->flags = MEM_Static|MEM_Str|MEM_Term;
- pMem->z = (char*)sqlite3OpcodeNames[pOp->opcode]; /* Opcode */
- assert( pMem->z!=0 );
- pMem->n = strlen(pMem->z);
- pMem->type = SQLITE_TEXT;
- pMem->enc = SQLITE_UTF8;
- pMem++;
+ if( pOp->p4type==P4_SUBPROGRAM ){
+ int nByte = (nSub+1)*sizeof(SubProgram*);
+ int j;
+ for(j=0; j<nSub; j++){
+ if( apSub[j]==pOp->p4.pProgram ) break;
+ }
+ if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
+ apSub = (SubProgram **)pSub->z;
+ apSub[nSub++] = pOp->p4.pProgram;
+ pSub->flags |= MEM_Blob;
+ pSub->n = nSub*sizeof(SubProgram*);
+ }
+ }
+ }
pMem->flags = MEM_Int;
pMem->u.i = pOp->p1; /* P1 */
@@ -29530,17 +48247,58 @@ int sqlite3VdbeList(
pMem->type = SQLITE_INTEGER;
pMem++;
- pMem->flags = MEM_Ephem|MEM_Str|MEM_Term; /* P3 */
- pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
- assert( pMem->z!=0 );
- pMem->n = strlen(pMem->z);
+ if( p->explain==1 ){
+ pMem->flags = MEM_Int;
+ pMem->u.i = pOp->p3; /* P3 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+ }
+
+ if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
+ assert( p->db->mallocFailed );
+ return SQLITE_ERROR;
+ }
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
+ z = displayP4(pOp, pMem->z, 32);
+ if( z!=pMem->z ){
+ sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
+ }else{
+ assert( pMem->z!=0 );
+ pMem->n = sqlite3Strlen30(pMem->z);
+ pMem->enc = SQLITE_UTF8;
+ }
pMem->type = SQLITE_TEXT;
- pMem->enc = SQLITE_UTF8;
+ pMem++;
+
+ if( p->explain==1 ){
+ if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
+ assert( p->db->mallocFailed );
+ return SQLITE_ERROR;
+ }
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
+ pMem->n = 2;
+ sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+ pMem++;
+
+#ifdef SQLITE_DEBUG
+ if( pOp->zComment ){
+ pMem->flags = MEM_Str|MEM_Term;
+ pMem->z = pOp->zComment;
+ pMem->n = sqlite3Strlen30(pMem->z);
+ pMem->enc = SQLITE_UTF8;
+ pMem->type = SQLITE_TEXT;
+ }else
+#endif
+ {
+ pMem->flags = MEM_Null; /* Comment */
+ pMem->type = SQLITE_NULL;
+ }
+ }
- p->nResColumn = 5 - 2*(p->explain-1);
- p->pTos = pMem;
+ p->nResColumn = 8 - 5*(p->explain-1);
p->rc = SQLITE_OK;
- p->resOnStack = 1;
rc = SQLITE_ROW;
}
return rc;
@@ -29551,14 +48309,14 @@ int sqlite3VdbeList(
/*
** Print the SQL that was used to generate a VDBE program.
*/
-void sqlite3VdbePrintSql(Vdbe *p){
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
int nOp = p->nOp;
VdbeOp *pOp;
if( nOp<1 ) return;
- pOp = &p->aOp[nOp-1];
- if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
- const char *z = pOp->p3;
- while( isspace(*(u8*)z) ) z++;
+ pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
+ const char *z = pOp->p4.z;
+ while( sqlite3Isspace(*z) ) z++;
printf("SQL: [%s]\n", z);
}
}
@@ -29568,18 +48326,19 @@ void sqlite3VdbePrintSql(Vdbe *p){
/*
** Print an IOTRACE message showing SQL content.
*/
-void sqlite3VdbeIOTraceSql(Vdbe *p){
+SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
int nOp = p->nOp;
VdbeOp *pOp;
- if( sqlite3_io_trace==0 ) return;
+ if( sqlite3IoTrace==0 ) return;
if( nOp<1 ) return;
- pOp = &p->aOp[nOp-1];
- if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
- char *z = sqlite3StrDup(pOp->p3);
+ pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
int i, j;
- for(i=0; isspace(z[i]); i++){}
+ char z[1000];
+ sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
+ for(i=0; sqlite3Isspace(z[i]); i++){}
for(j=0; z[i]; i++){
- if( isspace(z[i]) ){
+ if( sqlite3Isspace(z[i]) ){
if( z[i-1]!=' ' ){
z[j++] = ' ';
}
@@ -29588,12 +48347,45 @@ void sqlite3VdbeIOTraceSql(Vdbe *p){
}
}
z[j] = 0;
- sqlite3_io_trace("SQL %s\n", z);
- sqliteFree(z);
+ sqlite3IoTrace("SQL %s\n", z);
}
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
+/*
+** Allocate space from a fixed size buffer. Make *pp point to the
+** allocated space. (Note: pp is a char* rather than a void** to
+** work around the pointer aliasing rules of C.) *pp should initially
+** be zero. If *pp is not zero, that means that the space has already
+** been allocated and this routine is a noop.
+**
+** nByte is the number of bytes of space needed.
+**
+** *ppFrom point to available space and pEnd points to the end of the
+** available space.
+**
+** *pnByte is a counter of the number of bytes of space that have failed
+** to allocate. If there is insufficient space in *ppFrom to satisfy the
+** request, then increment *pnByte by the amount of the request.
+*/
+static void allocSpace(
+ char *pp, /* IN/OUT: Set *pp to point to allocated buffer */
+ int nByte, /* Number of bytes to allocate */
+ u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
+ u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
+ int *pnByte /* If allocation cannot be made, increment *pnByte */
+){
+ assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
+ if( (*(void**)pp)==0 ){
+ nByte = ROUND8(nByte);
+ if( &(*ppFrom)[nByte] <= pEnd ){
+ *(void**)pp = (void *)*ppFrom;
+ *ppFrom += nByte;
+ }else{
+ *pnByte += nByte;
+ }
+ }
+}
/*
** Prepare a virtual machine for execution. This involves things such
@@ -29603,15 +48395,26 @@ void sqlite3VdbeIOTraceSql(Vdbe *p){
**
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
** VDBE_MAGIC_RUN.
+**
+** This function may be called more than once on a single virtual machine.
+** The first call is made while compiling the SQL statement. Subsequent
+** calls are made as part of the process of resetting a statement to be
+** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
+** and isExplain parameters are only passed correct values the first time
+** the function is called. On subsequent calls, from sqlite3_reset(), nVar
+** is passed -1 and nMem, nCursor and isExplain are all passed zero.
*/
-void sqlite3VdbeMakeReady(
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(
Vdbe *p, /* The VDBE */
int nVar, /* Number of '?' see in the SQL statement */
int nMem, /* Number of memory cells to allocate */
int nCursor, /* Number of cursors to allocate */
- int isExplain /* True if the EXPLAIN keywords is present */
+ int nArg, /* Maximum number of args in SubPrograms */
+ int isExplain, /* True if the EXPLAIN keywords is present */
+ int usesStmtJournal /* True to set Vdbe.usesStmtJournal */
){
int n;
+ sqlite3 *db = p->db;
assert( p!=0 );
assert( p->magic==VDBE_MAGIC_INIT );
@@ -29620,71 +48423,86 @@ void sqlite3VdbeMakeReady(
*/
assert( p->nOp>0 );
- /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
- * is because the call to resizeOpArray() below may shrink the
- * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
- * state.
- */
+ /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
p->magic = VDBE_MAGIC_RUN;
- /* No instruction ever pushes more than a single element onto the
- ** stack. And the stack never grows on successive executions of the
- ** same loop. So the total number of instructions is an upper bound
- ** on the maximum stack depth required. (Added later:) The
- ** resolveP2Values() call computes a tighter upper bound on the
- ** stack size.
+ /* For each cursor required, also allocate a memory cell. Memory
+ ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
+ ** the vdbe program. Instead they are used to allocate space for
+ ** VdbeCursor/BtCursor structures. The blob of memory associated with
+ ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
+ ** stores the blob of memory associated with cursor 1, etc.
**
- ** Allocation all the stack space we will ever need.
- */
- if( p->aStack==0 ){
- int nArg; /* Maximum number of args passed to a user function. */
- int nStack; /* Maximum number of stack entries required */
- resolveP2Values(p, &nArg, &nStack);
- resizeOpArray(p, p->nOp);
- assert( nVar>=0 );
- assert( nStack<p->nOp );
- if( isExplain ){
- nStack = 10;
- }
- p->aStack = sqliteMalloc(
- nStack*sizeof(p->aStack[0]) /* aStack */
- + nArg*sizeof(Mem*) /* apArg */
- + nVar*sizeof(Mem) /* aVar */
- + nVar*sizeof(char*) /* azVar */
- + nMem*sizeof(Mem) /* aMem */
- + nCursor*sizeof(Cursor*) /* apCsr */
- );
- if( !sqlite3MallocFailed() ){
- p->aMem = &p->aStack[nStack];
- p->nMem = nMem;
- p->aVar = &p->aMem[nMem];
- p->nVar = nVar;
- p->okVar = 0;
- p->apArg = (Mem**)&p->aVar[nVar];
- p->azVar = (char**)&p->apArg[nArg];
- p->apCsr = (Cursor**)&p->azVar[nVar];
- p->nCursor = nCursor;
+ ** See also: allocateCursor().
+ */
+ nMem += nCursor;
+
+ /* Allocate space for memory registers, SQL variables, VDBE cursors and
+ ** an array to marshal SQL function arguments in. This is only done the
+ ** first time this function is called for a given VDBE, not when it is
+ ** being called from sqlite3_reset() to reset the virtual machine.
+ */
+ if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
+ u8 *zCsr = (u8 *)&p->aOp[p->nOp];
+ u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];
+ int nByte;
+ resolveP2Values(p, &nArg);
+ p->usesStmtJournal = (u8)usesStmtJournal;
+ if( isExplain && nMem<10 ){
+ nMem = 10;
+ }
+ memset(zCsr, 0, zEnd-zCsr);
+ zCsr += (zCsr - (u8*)0)&7;
+ assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
+
+ do {
+ nByte = 0;
+ allocSpace((char*)&p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
+ allocSpace((char*)&p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
+ allocSpace((char*)&p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
+ allocSpace((char*)&p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
+ allocSpace((char*)&p->apCsr,
+ nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte
+ );
+ if( nByte ){
+ p->pFree = sqlite3DbMallocZero(db, nByte);
+ }
+ zCsr = p->pFree;
+ zEnd = &zCsr[nByte];
+ }while( nByte && !db->mallocFailed );
+
+ p->nCursor = (u16)nCursor;
+ if( p->aVar ){
+ p->nVar = (u16)nVar;
for(n=0; n<nVar; n++){
p->aVar[n].flags = MEM_Null;
+ p->aVar[n].db = db;
+ }
+ }
+ if( p->aMem ){
+ p->aMem--; /* aMem[] goes from 1..nMem */
+ p->nMem = nMem; /* not from 0..nMem-1 */
+ for(n=1; n<=nMem; n++){
+ p->aMem[n].flags = MEM_Null;
+ p->aMem[n].db = db;
}
}
}
- for(n=0; n<p->nMem; n++){
- p->aMem[n].flags = MEM_Null;
+#ifdef SQLITE_DEBUG
+ for(n=1; n<p->nMem; n++){
+ assert( p->aMem[n].db==db );
}
+#endif
- p->pTos = &p->aStack[-1];
p->pc = -1;
p->rc = SQLITE_OK;
- p->uniqueCnt = 0;
- p->returnDepth = 0;
p->errorAction = OE_Abort;
- p->popStack = 0;
p->explain |= isExplain;
p->magic = VDBE_MAGIC_RUN;
p->nChange = 0;
p->cacheCtr = 1;
p->minWriteFileFormat = 255;
+ p->iStatement = 0;
#ifdef VDBE_PROFILE
{
int i;
@@ -29697,47 +48515,81 @@ void sqlite3VdbeMakeReady(
}
/*
-** Close a cursor and release all the resources that cursor happens
-** to hold.
+** Close a VDBE cursor and release all the resources that cursor
+** happens to hold.
*/
-void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
if( pCx==0 ){
return;
}
- if( pCx->pCursor ){
- sqlite3BtreeCloseCursor(pCx->pCursor);
- }
if( pCx->pBt ){
sqlite3BtreeClose(pCx->pBt);
+ /* The pCx->pCursor will be close automatically, if it exists, by
+ ** the call above. */
+ }else if( pCx->pCursor ){
+ sqlite3BtreeCloseCursor(pCx->pCursor);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pCx->pVtabCursor ){
sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
const sqlite3_module *pModule = pCx->pModule;
p->inVtabMethod = 1;
- sqlite3SafetyOff(p->db);
+ (void)sqlite3SafetyOff(p->db);
pModule->xClose(pVtabCursor);
- sqlite3SafetyOn(p->db);
+ (void)sqlite3SafetyOn(p->db);
p->inVtabMethod = 0;
}
#endif
- sqliteFree(pCx->pData);
- sqliteFree(pCx->aType);
- sqliteFree(pCx);
}
/*
-** Close all cursors
+** Copy the values stored in the VdbeFrame structure to its Vdbe. This
+** is used, for example, when a trigger sub-program is halted to restore
+** control to the main program.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
+ Vdbe *v = pFrame->v;
+ v->aOp = pFrame->aOp;
+ v->nOp = pFrame->nOp;
+ v->aMem = pFrame->aMem;
+ v->nMem = pFrame->nMem;
+ v->apCsr = pFrame->apCsr;
+ v->nCursor = pFrame->nCursor;
+ v->db->lastRowid = pFrame->lastRowid;
+ v->nChange = pFrame->nChange;
+ return pFrame->pc;
+}
+
+/*
+** Close all cursors.
+**
+** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
+** cell array. This is necessary as the memory cell array may contain
+** pointers to VdbeFrame objects, which may in turn contain pointers to
+** open cursors.
*/
static void closeAllCursors(Vdbe *p){
- int i;
- if( p->apCsr==0 ) return;
- for(i=0; i<p->nCursor; i++){
- if( !p->inVtabMethod || (p->apCsr[i] && !p->apCsr[i]->pVtabCursor) ){
- sqlite3VdbeFreeCursor(p, p->apCsr[i]);
- p->apCsr[i] = 0;
+ if( p->pFrame ){
+ VdbeFrame *pFrame = p->pFrame;
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ sqlite3VdbeFrameRestore(pFrame);
+ }
+ p->pFrame = 0;
+ p->nFrame = 0;
+
+ if( p->apCsr ){
+ int i;
+ for(i=0; i<p->nCursor; i++){
+ VdbeCursor *pC = p->apCsr[i];
+ if( pC ){
+ sqlite3VdbeFreeCursor(p, pC);
+ p->apCsr[i] = 0;
+ }
}
}
+ if( p->aMem ){
+ releaseMemArray(&p->aMem[1], p->nMem);
+ }
}
/*
@@ -29748,25 +48600,19 @@ static void closeAllCursors(Vdbe *p){
** variables in the aVar[] array.
*/
static void Cleanup(Vdbe *p){
+ sqlite3 *db = p->db;
+
+#ifdef SQLITE_DEBUG
+ /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
+ ** Vdbe.aMem[] arrays have already been cleaned up. */
int i;
- if( p->aStack ){
- releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
- p->pTos = &p->aStack[-1];
- }
- closeAllCursors(p);
- releaseMemArray(p->aMem, p->nMem);
- sqlite3VdbeFifoClear(&p->sFifo);
- if( p->contextStack ){
- for(i=0; i<p->contextStackTop; i++){
- sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
- }
- sqliteFree(p->contextStack);
- }
- p->contextStack = 0;
- p->contextStackDepth = 0;
- p->contextStackTop = 0;
- sqliteFree(p->zErrMsg);
+ for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
+ for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
+#endif
+
+ sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
+ p->pResultSet = 0;
}
/*
@@ -29775,17 +48621,21 @@ static void Cleanup(Vdbe *p){
** execution of the vdbe program so that sqlite3_column_count() can
** be called on an SQL statement before sqlite3_step().
*/
-void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
Mem *pColName;
int n;
+ sqlite3 *db = p->db;
+
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
- sqliteFree(p->aColName);
+ sqlite3DbFree(db, p->aColName);
n = nResColumn*COLNAME_N;
- p->nResColumn = nResColumn;
- p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n );
+ p->nResColumn = (u16)nResColumn;
+ p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
if( p->aColName==0 ) return;
while( n-- > 0 ){
- (pColName++)->flags = MEM_Null;
+ pColName->flags = MEM_Null;
+ pColName->db = p->db;
+ pColName++;
}
}
@@ -29795,28 +48645,29 @@ void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
**
** This call must be made after a call to sqlite3VdbeSetNumCols().
**
-** If N==P3_STATIC it means that zName is a pointer to a constant static
-** string and we can just copy the pointer. If it is P3_DYNAMIC, then
-** the string is freed using sqliteFree() when the vdbe is finished with
-** it. Otherwise, N bytes of zName are copied.
+** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
+** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
+** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
*/
-int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
+SQLITE_PRIVATE int sqlite3VdbeSetColName(
+ Vdbe *p, /* Vdbe being configured */
+ int idx, /* Index of column zName applies to */
+ int var, /* One of the COLNAME_* constants */
+ const char *zName, /* Pointer to buffer containing name */
+ void (*xDel)(void*) /* Memory management strategy for zName */
+){
int rc;
Mem *pColName;
assert( idx<p->nResColumn );
assert( var<COLNAME_N );
- if( sqlite3MallocFailed() ) return SQLITE_NOMEM;
+ if( p->db->mallocFailed ){
+ assert( !zName || xDel!=SQLITE_DYNAMIC );
+ return SQLITE_NOMEM;
+ }
assert( p->aColName!=0 );
pColName = &(p->aColName[idx+var*p->nResColumn]);
- if( N==P3_DYNAMIC || N==P3_STATIC ){
- rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
- }else{
- rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
- }
- if( rc==SQLITE_OK && N==P3_DYNAMIC ){
- pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
- pColName->xDel = 0;
- }
+ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
+ assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
return rc;
}
@@ -29826,19 +48677,26 @@ int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
** write-transaction spanning more than one database file, this routine
** takes care of the master journal trickery.
*/
-static int vdbeCommit(sqlite3 *db){
+static int vdbeCommit(sqlite3 *db, Vdbe *p){
int i;
int nTrans = 0; /* Number of databases with an active write-transaction */
int rc = SQLITE_OK;
int needXcommit = 0;
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+ /* With this option, sqlite3VtabSync() is defined to be simply
+ ** SQLITE_OK so p is not used.
+ */
+ UNUSED_PARAMETER(p);
+#endif
+
/* Before doing anything else, call the xSync() callback for any
** virtual module tables written in this transaction. This has to
** be done before determining whether a master journal file is
** required, as an xSync() callback may add an attached database
** to the transaction.
*/
- rc = sqlite3VtabSync(db, rc);
+ rc = sqlite3VtabSync(db, &p->zErrMsg);
if( rc!=SQLITE_OK ){
return rc;
}
@@ -29851,7 +48709,7 @@ static int vdbeCommit(sqlite3 *db){
*/
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
- if( pBt && sqlite3BtreeIsInTrans(pBt) ){
+ if( sqlite3BtreeIsInTrans(pBt) ){
needXcommit = 1;
if( i!=1 ) nTrans++;
}
@@ -29859,9 +48717,9 @@ static int vdbeCommit(sqlite3 *db){
/* If there are any write-transactions at all, invoke the commit hook */
if( needXcommit && db->xCommitCallback ){
- sqlite3SafetyOff(db);
+ (void)sqlite3SafetyOff(db);
rc = db->xCommitCallback(db->pCommitArg);
- sqlite3SafetyOn(db);
+ (void)sqlite3SafetyOn(db);
if( rc ){
return SQLITE_CONSTRAINT;
}
@@ -29872,12 +48730,14 @@ static int vdbeCommit(sqlite3 *db){
** master-journal.
**
** If the return value of sqlite3BtreeGetFilename() is a zero length
- ** string, it means the main database is :memory:. In that case we do
- ** not support atomic multi-file commits, so use the simple case then
- ** too.
+ ** string, it means the main database is :memory: or a temp file. In
+ ** that case we do not support atomic multi-file commits, so use the
+ ** simple case then too.
*/
- if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
+ || nTrans<=1
+ ){
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
@@ -29906,26 +48766,34 @@ static int vdbeCommit(sqlite3 *db){
*/
#ifndef SQLITE_OMIT_DISKIO
else{
+ sqlite3_vfs *pVfs = db->pVfs;
int needSync = 0;
char *zMaster = 0; /* File-name for the master journal */
char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
- OsFile *master = 0;
+ sqlite3_file *pMaster = 0;
+ i64 offset = 0;
+ int res;
/* Select a master journal file name */
do {
- u32 random;
- sqliteFree(zMaster);
- sqlite3Randomness(sizeof(random), &random);
- zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random&0x7fffffff);
+ u32 iRandom;
+ sqlite3DbFree(db, zMaster);
+ sqlite3_randomness(sizeof(iRandom), &iRandom);
+ zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff);
if( !zMaster ){
return SQLITE_NOMEM;
}
- }while( sqlite3OsFileExists(zMaster) );
-
- /* Open the master journal. */
- rc = sqlite3OsOpenExclusive(zMaster, &master, 0);
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
+ }while( rc==SQLITE_OK && res );
+ if( rc==SQLITE_OK ){
+ /* Open the master journal. */
+ rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
+ SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
+ );
+ }
if( rc!=SQLITE_OK ){
- sqliteFree(zMaster);
+ sqlite3DbFree(db, zMaster);
return rc;
}
@@ -29935,36 +48803,36 @@ static int vdbeCommit(sqlite3 *db){
** still have 'null' as the master journal pointer, so they will roll
** back independently if a failure occurs.
*/
- for(i=0; i<db->nDb; i++){
+ for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( i==1 ) continue; /* Ignore the TEMP database */
- if( pBt && sqlite3BtreeIsInTrans(pBt) ){
+ if( sqlite3BtreeIsInTrans(pBt) ){
char const *zFile = sqlite3BtreeGetJournalname(pBt);
if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
needSync = 1;
}
- rc = sqlite3OsWrite(master, zFile, strlen(zFile)+1);
+ rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
+ offset += sqlite3Strlen30(zFile)+1;
if( rc!=SQLITE_OK ){
- sqlite3OsClose(&master);
- sqlite3OsDelete(zMaster);
- sqliteFree(zMaster);
+ sqlite3OsCloseFree(pMaster);
+ sqlite3OsDelete(pVfs, zMaster, 0);
+ sqlite3DbFree(db, zMaster);
return rc;
}
}
}
-
- /* Sync the master journal file. Before doing this, open the directory
- ** the master journal file is store in so that it gets synced too.
+ /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
+ ** flag is set this is not required.
*/
- zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
- rc = sqlite3OsOpenDirectory(master, zMainFile);
- if( rc!=SQLITE_OK ||
- (needSync && (rc=sqlite3OsSync(master,0))!=SQLITE_OK) ){
- sqlite3OsClose(&master);
- sqlite3OsDelete(zMaster);
- sqliteFree(zMaster);
+ if( needSync
+ && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
+ && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
+ ){
+ sqlite3OsCloseFree(pMaster);
+ sqlite3OsDelete(pVfs, zMaster, 0);
+ sqlite3DbFree(db, zMaster);
return rc;
}
@@ -29976,17 +48844,17 @@ static int vdbeCommit(sqlite3 *db){
** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
** master journal file will be orphaned. But we cannot delete it,
** in case the master journal file name was written into the journal
- ** file before the failure occured.
+ ** file before the failure occurred.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
- if( pBt && sqlite3BtreeIsInTrans(pBt) ){
+ if( pBt ){
rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
}
}
- sqlite3OsClose(&master);
+ sqlite3OsCloseFree(pMaster);
if( rc!=SQLITE_OK ){
- sqliteFree(zMaster);
+ sqlite3DbFree(db, zMaster);
return rc;
}
@@ -29994,23 +48862,12 @@ static int vdbeCommit(sqlite3 *db){
** doing this the directory is synced again before any individual
** transaction files are deleted.
*/
- rc = sqlite3OsDelete(zMaster);
- sqliteFree(zMaster);
+ rc = sqlite3OsDelete(pVfs, zMaster, 1);
+ sqlite3DbFree(db, zMaster);
zMaster = 0;
if( rc ){
return rc;
}
- rc = sqlite3OsSyncDirectory(zMainFile);
- if( rc!=SQLITE_OK ){
- /* This is not good. The master journal file has been deleted, but
- ** the directory sync failed. There is no completely safe course of
- ** action from here. The individual journals contain the name of the
- ** master journal file, but there is no way of knowing if that
- ** master journal exists now or if it will exist after the operating
- ** system crash that may follow the fsync() failure.
- */
- return rc;
- }
/* All files and directories have already been synced, so the following
** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
@@ -30020,12 +48877,14 @@ static int vdbeCommit(sqlite3 *db){
** may be lying around. Returning an error code won't help matters.
*/
disable_simulated_io_errors();
+ sqlite3BeginBenignMalloc();
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
sqlite3BtreeCommitPhaseTwo(pBt);
}
}
+ sqlite3EndBenignMalloc();
enable_simulated_io_errors();
sqlite3VtabCommit(db);
@@ -30048,163 +48907,216 @@ static int vdbeCommit(sqlite3 *db){
static void checkActiveVdbeCnt(sqlite3 *db){
Vdbe *p;
int cnt = 0;
+ int nWrite = 0;
p = db->pVdbe;
while( p ){
if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
cnt++;
+ if( p->readOnly==0 ) nWrite++;
}
p = p->pNext;
}
assert( cnt==db->activeVdbeCnt );
+ assert( nWrite==db->writeVdbeCnt );
}
#else
#define checkActiveVdbeCnt(x)
#endif
/*
-** Find every active VM other than pVdbe and change its status to
-** aborted. This happens when one VM causes a rollback due to an
-** ON CONFLICT ROLLBACK clause (for example). The other VMs must be
-** aborted so that they do not have data rolled out from underneath
-** them leading to a segfault.
+** For every Btree that in database connection db which
+** has been modified, "trip" or invalidate each cursor in
+** that Btree might have been modified so that the cursor
+** can never be used again. This happens when a rollback
+*** occurs. We have to trip all the other cursors, even
+** cursor from other VMs in different database connections,
+** so that none of them try to use the data at which they
+** were pointing and which now may have been changed due
+** to the rollback.
+**
+** Remember that a rollback can delete tables complete and
+** reorder rootpages. So it is not sufficient just to save
+** the state of the cursor. We have to invalidate the cursor
+** so that it is never used again.
*/
-void sqlite3AbortOtherActiveVdbes(sqlite3 *db, Vdbe *pExcept){
- Vdbe *pOther;
- for(pOther=db->pVdbe; pOther; pOther=pOther->pNext){
- if( pOther==pExcept ) continue;
- if( pOther->magic!=VDBE_MAGIC_RUN || pOther->pc<0 ) continue;
- checkActiveVdbeCnt(db);
- closeAllCursors(pOther);
- checkActiveVdbeCnt(db);
- pOther->aborted = 1;
+static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p && sqlite3BtreeIsInTrans(p) ){
+ sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
+ }
}
}
/*
+** If the Vdbe passed as the first argument opened a statement-transaction,
+** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
+** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
+** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
+** statement transaction is commtted.
+**
+** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
+** Otherwise SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
+ sqlite3 *const db = p->db;
+ int rc = SQLITE_OK;
+
+ /* If p->iStatement is greater than zero, then this Vdbe opened a
+ ** statement transaction that should be closed here. The only exception
+ ** is that an IO error may have occured, causing an emergency rollback.
+ ** In this case (db->nStatement==0), and there is nothing to do.
+ */
+ if( db->nStatement && p->iStatement ){
+ int i;
+ const int iSavepoint = p->iStatement-1;
+
+ assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
+ assert( db->nStatement>0 );
+ assert( p->iStatement==(db->nStatement+db->nSavepoint) );
+
+ for(i=0; i<db->nDb; i++){
+ int rc2 = SQLITE_OK;
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ if( eOp==SAVEPOINT_ROLLBACK ){
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
+ }
+ if( rc2==SQLITE_OK ){
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
+ }
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+ db->nStatement--;
+ p->iStatement = 0;
+ }
+ return rc;
+}
+
+/*
+** If SQLite is compiled to support shared-cache mode and to be threadsafe,
+** this routine obtains the mutex associated with each BtShared structure
+** that may be accessed by the VM passed as an argument. In doing so it
+** sets the BtShared.db member of each of the BtShared structures, ensuring
+** that the correct busy-handler callback is invoked if required.
+**
+** If SQLite is not threadsafe but does support shared-cache mode, then
+** sqlite3BtreeEnterAll() is invoked to set the BtShared.db variables
+** of all of BtShared structures accessible via the database handle
+** associated with the VM. Of course only a subset of these structures
+** will be accessed by the VM, and we could use Vdbe.btreeMask to figure
+** that subset out, but there is no advantage to doing so.
+**
+** If SQLite is not threadsafe and does not support shared-cache mode, this
+** function is a no-op.
+*/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3VdbeMutexArrayEnter(Vdbe *p){
+#if SQLITE_THREADSAFE
+ sqlite3BtreeMutexArrayEnter(&p->aMutex);
+#else
+ sqlite3BtreeEnterAll(p->db);
+#endif
+}
+#endif
+
+/*
** This routine is called the when a VDBE tries to halt. If the VDBE
** has made changes and is in autocommit mode, then commit those
** changes. If a rollback is needed, then do the rollback.
**
** This routine is the only way to move the state of a VM from
-** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.
+** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
+** call this on a VM that is in the SQLITE_MAGIC_HALT state.
**
** Return an error code. If the commit could not complete because of
** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
** means the close did not happen and needs to be repeated.
*/
-int sqlite3VdbeHalt(Vdbe *p){
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
+ int rc; /* Used to store transient return codes */
sqlite3 *db = p->db;
- int i;
- int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
- int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
/* This function contains the logic that determines if a statement or
** transaction will be committed or rolled back as a result of the
** execution of this virtual machine.
**
- ** Special errors:
- **
- ** If an SQLITE_NOMEM error has occured in a statement that writes to
- ** the database, then either a statement or transaction must be rolled
- ** back to ensure the tree-structures are in a consistent state. A
- ** statement transaction is rolled back if one is open, otherwise the
- ** entire transaction must be rolled back.
- **
- ** If an SQLITE_IOERR error has occured in a statement that writes to
- ** the database, then the entire transaction must be rolled back. The
- ** I/O error may have caused garbage to be written to the journal
- ** file. Were the transaction to continue and eventually be rolled
- ** back that garbage might end up in the database file.
- **
- ** In both of the above cases, the Vdbe.errorAction variable is
- ** ignored. If the sqlite3.autoCommit flag is false and a transaction
- ** is rolled back, it will be set to true.
- **
- ** Other errors:
+ ** If any of the following errors occur:
**
- ** No error:
+ ** SQLITE_NOMEM
+ ** SQLITE_IOERR
+ ** SQLITE_FULL
+ ** SQLITE_INTERRUPT
**
+ ** Then the internal cache might have been left in an inconsistent
+ ** state. We need to rollback the statement transaction, if there is
+ ** one, or the complete transaction if there is no statement transaction.
*/
- if( sqlite3MallocFailed() ){
+ if( p->db->mallocFailed ){
p->rc = SQLITE_NOMEM;
}
+ closeAllCursors(p);
if( p->magic!=VDBE_MAGIC_RUN ){
- /* Already halted. Nothing to do. */
- assert( p->magic==VDBE_MAGIC_HALT );
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- closeAllCursors(p);
-#endif
return SQLITE_OK;
}
- closeAllCursors(p);
checkActiveVdbeCnt(db);
/* No commit or rollback needed if the program never started */
if( p->pc>=0 ){
int mrc; /* Primary error code from p->rc */
- /* Check for one of the special errors - SQLITE_NOMEM or SQLITE_IOERR */
+ int eStatementOp = 0;
+ int isSpecialError; /* Set to true if a 'special' error */
+
+ /* Lock all btrees used by the statement */
+ sqlite3VdbeMutexArrayEnter(p);
+
+ /* Check for one of the special errors */
mrc = p->rc & 0xff;
- isSpecialError = ((mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR)?1:0);
+ assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
+ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
+ || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
if( isSpecialError ){
- /* This loop does static analysis of the query to see which of the
- ** following three categories it falls into:
- **
- ** Read-only
- ** Query with statement journal
- ** Query without statement journal
- **
- ** We could do something more elegant than this static analysis (i.e.
- ** store the type of query as part of the compliation phase), but
- ** handling malloc() or IO failure is a fairly obscure edge case so
- ** this is probably easier. Todo: Might be an opportunity to reduce
- ** code size a very small amount though...
- */
- int isReadOnly = 1;
- int isStatement = 0;
- assert(p->aOp || p->nOp==0);
- for(i=0; i<p->nOp; i++){
- switch( p->aOp[i].opcode ){
- case OP_Transaction:
- isReadOnly = 0;
- break;
- case OP_Statement:
- isStatement = 1;
- break;
- }
- }
-
/* If the query was read-only, we need do no rollback at all. Otherwise,
** proceed with the special handling.
*/
- if( !isReadOnly ){
- if( p->rc==SQLITE_NOMEM && isStatement ){
- xFunc = sqlite3BtreeRollbackStmt;
+ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
+ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
+ eStatementOp = SAVEPOINT_ROLLBACK;
}else{
/* We are forced to roll back the active transaction. Before doing
** so, abort any other statements this handle currently has active.
*/
- sqlite3AbortOtherActiveVdbes(db, p);
+ invalidateCursorsOnModifiedBtrees(db);
sqlite3RollbackAll(db);
+ sqlite3CloseSavepoints(db);
db->autoCommit = 1;
}
}
}
- /* If the auto-commit flag is set and this is the only active vdbe, then
- ** we do either a commit or rollback of the current transaction.
+ /* If the auto-commit flag is set and this is the only active writer
+ ** VM, then we do either a commit or rollback of the current transaction.
**
** Note: This block also runs if one of the special errors handled
- ** above has occured.
+ ** above has occurred.
*/
- if( db->autoCommit && db->activeVdbeCnt==1 ){
+ if( !sqlite3VtabInSync(db)
+ && db->autoCommit
+ && db->writeVdbeCnt==(p->readOnly==0)
+ ){
if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
- /* The auto-commit flag is true, and the vdbe program was
+ /* The auto-commit flag is true, and the vdbe program was
** successful or hit an 'OR FAIL' constraint. This means a commit
** is required.
*/
- int rc = vdbeCommit(db);
+ rc = vdbeCommit(db, p);
if( rc==SQLITE_BUSY ){
+ sqlite3BtreeMutexArrayLeave(&p->aMutex);
return SQLITE_BUSY;
}else if( rc!=SQLITE_OK ){
p->rc = rc;
@@ -30215,44 +49127,40 @@ int sqlite3VdbeHalt(Vdbe *p){
}else{
sqlite3RollbackAll(db);
}
- }else if( !xFunc ){
+ db->nStatement = 0;
+ }else if( eStatementOp==0 ){
if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
- xFunc = sqlite3BtreeCommitStmt;
+ eStatementOp = SAVEPOINT_RELEASE;
}else if( p->errorAction==OE_Abort ){
- xFunc = sqlite3BtreeRollbackStmt;
+ eStatementOp = SAVEPOINT_ROLLBACK;
}else{
- sqlite3AbortOtherActiveVdbes(db, p);
+ invalidateCursorsOnModifiedBtrees(db);
sqlite3RollbackAll(db);
+ sqlite3CloseSavepoints(db);
db->autoCommit = 1;
}
}
- /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
- ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
- ** and the return code is still SQLITE_OK, set the return code to the new
- ** error value.
- */
- assert(!xFunc ||
- xFunc==sqlite3BtreeCommitStmt ||
- xFunc==sqlite3BtreeRollbackStmt
- );
- for(i=0; xFunc && i<db->nDb; i++){
- int rc;
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = xFunc(pBt);
- if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
- p->rc = rc;
- sqlite3SetString(&p->zErrMsg, 0);
- }
+ /* If eStatementOp is non-zero, then a statement transaction needs to
+ ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
+ ** do so. If this operation returns an error, and the current statement
+ ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then set the error
+ ** code to the new value.
+ */
+ if( eStatementOp ){
+ rc = sqlite3VdbeCloseStatement(p, eStatementOp);
+ if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
+ p->rc = rc;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
}
}
- /* If this was an INSERT, UPDATE or DELETE and the statement was committed,
- ** set the change counter.
+ /* If this was an INSERT, UPDATE or DELETE and no statement transaction
+ ** has been rolled back, update the database connection change-counter.
*/
- if( p->changeCntOn && p->pc>=0 ){
- if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
+ if( p->changeCntOn ){
+ if( eStatementOp!=SAVEPOINT_ROLLBACK ){
sqlite3VdbeSetChanges(db, p->nChange);
}else{
sqlite3VdbeSetChanges(db, 0);
@@ -30265,23 +49173,43 @@ int sqlite3VdbeHalt(Vdbe *p){
sqlite3ResetInternalSchema(db, 0);
db->flags = (db->flags | SQLITE_InternChanges);
}
+
+ /* Release the locks */
+ sqlite3BtreeMutexArrayLeave(&p->aMutex);
}
/* We have successfully halted and closed the VM. Record this fact. */
if( p->pc>=0 ){
db->activeVdbeCnt--;
+ if( !p->readOnly ){
+ db->writeVdbeCnt--;
+ }
+ assert( db->activeVdbeCnt>=db->writeVdbeCnt );
}
p->magic = VDBE_MAGIC_HALT;
checkActiveVdbeCnt(db);
+ if( p->db->mallocFailed ){
+ p->rc = SQLITE_NOMEM;
+ }
+ /* If the auto-commit flag is set to true, then any locks that were held
+ ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
+ ** to invoke any required unlock-notify callbacks.
+ */
+ if( db->autoCommit ){
+ sqlite3ConnectionUnlocked(db);
+ }
+
+ assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
return SQLITE_OK;
}
+
/*
** Each VDBE holds the result of the most recent sqlite3_step() call
** in p->rc. This routine sets that result back to SQLITE_OK.
*/
-void sqlite3VdbeResetStepResult(Vdbe *p){
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
p->rc = SQLITE_OK;
}
@@ -30296,7 +49224,7 @@ void sqlite3VdbeResetStepResult(Vdbe *p){
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
** VDBE_MAGIC_INIT.
*/
-int sqlite3VdbeReset(Vdbe *p){
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){
sqlite3 *db;
db = p->db;
@@ -30304,9 +49232,9 @@ int sqlite3VdbeReset(Vdbe *p){
** error, then it might not have been halted properly. So halt
** it now.
*/
- sqlite3SafetyOn(db);
+ (void)sqlite3SafetyOn(db);
sqlite3VdbeHalt(p);
- sqlite3SafetyOff(db);
+ (void)sqlite3SafetyOff(db);
/* If the VDBE has be run even partially, then transfer the error code
** and error message from the VDBE into the main database structure. But
@@ -30315,8 +49243,11 @@ int sqlite3VdbeReset(Vdbe *p){
*/
if( p->pc>=0 ){
if( p->zErrMsg ){
- sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3FreeX);
+ sqlite3BeginBenignMalloc();
+ sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
+ sqlite3EndBenignMalloc();
db->errCode = p->rc;
+ sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
}else if( p->rc ){
sqlite3Error(db, p->rc, 0);
@@ -30329,6 +49260,9 @@ int sqlite3VdbeReset(Vdbe *p){
** called), set the database error in this case as well.
*/
sqlite3Error(db, p->rc, 0);
+ sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
}
/* Reclaim all memory used by the VDBE
@@ -30337,7 +49271,6 @@ int sqlite3VdbeReset(Vdbe *p){
/* Save profiling information from this VDBE run.
*/
- assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack );
#ifdef VDBE_PROFILE
{
FILE *out = fopen("vdbe_profile.out", "a");
@@ -30361,10 +49294,6 @@ int sqlite3VdbeReset(Vdbe *p){
}
#endif
p->magic = VDBE_MAGIC_INIT;
- p->aborted = 0;
- if( p->rc==SQLITE_SCHEMA ){
- sqlite3ResetInternalSchema(db, 0);
- }
return p->rc & db->errMask;
}
@@ -30372,13 +49301,11 @@ int sqlite3VdbeReset(Vdbe *p){
** Clean up and delete a VDBE after execution. Return an integer which is
** the result code. Write any error message text into *pzErrMsg.
*/
-int sqlite3VdbeFinalize(Vdbe *p){
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
int rc = SQLITE_OK;
if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
rc = sqlite3VdbeReset(p);
assert( (rc & p->db->errMask)==rc );
- }else if( p->magic!=VDBE_MAGIC_INIT ){
- return SQLITE_MISUSE;
}
sqlite3VdbeDelete(p);
return rc;
@@ -30390,11 +49317,11 @@ int sqlite3VdbeFinalize(Vdbe *p){
** are always destroyed. To destroy all auxdata entries, call this
** routine with mask==0.
*/
-void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
int i;
for(i=0; i<pVdbeFunc->nAux; i++){
struct AuxData *pAux = &pVdbeFunc->apAux[i];
- if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
+ if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
if( pAux->xDelete ){
pAux->xDelete(pAux->pAux);
}
@@ -30406,54 +49333,56 @@ void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
/*
** Delete an entire VDBE.
*/
-void sqlite3VdbeDelete(Vdbe *p){
- int i;
- if( p==0 ) return;
- Cleanup(p);
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
+ sqlite3 *db;
+
+ if( NEVER(p==0) ) return;
+ db = p->db;
if( p->pPrev ){
p->pPrev->pNext = p->pNext;
}else{
- assert( p->db->pVdbe==p );
- p->db->pVdbe = p->pNext;
+ assert( db->pVdbe==p );
+ db->pVdbe = p->pNext;
}
if( p->pNext ){
p->pNext->pPrev = p->pPrev;
}
- if( p->aOp ){
- for(i=0; i<p->nOp; i++){
- Op *pOp = &p->aOp[i];
- freeP3(pOp->p3type, pOp->p3);
- }
- sqliteFree(p->aOp);
- }
releaseMemArray(p->aVar, p->nVar);
- sqliteFree(p->aLabel);
- sqliteFree(p->aStack);
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
- sqliteFree(p->aColName);
- sqliteFree(p->zSql);
+ vdbeFreeOpArray(db, p->aOp, p->nOp);
+ sqlite3DbFree(db, p->aLabel);
+ sqlite3DbFree(db, p->aColName);
+ sqlite3DbFree(db, p->zSql);
p->magic = VDBE_MAGIC_DEAD;
- sqliteFree(p);
+ sqlite3DbFree(db, p->pFree);
+ sqlite3DbFree(db, p);
}
/*
+** Make sure the cursor p is ready to read or write the row to which it
+** was last positioned. Return an error code if an OOM fault or I/O error
+** prevents us from positioning the cursor to its correct position.
+**
** If a MoveTo operation is pending on the given cursor, then do that
-** MoveTo now. Return an error code. If no MoveTo is pending, this
-** routine does nothing and returns SQLITE_OK.
+** MoveTo now. If no move is pending, check to see if the row has been
+** deleted out from under the cursor and if it has, mark the row as
+** a NULL row.
+**
+** If the cursor is already pointing to the correct row and that row has
+** not been deleted out from under the cursor, then this routine is a no-op.
*/
-int sqlite3VdbeCursorMoveto(Cursor *p){
+SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor *p){
if( p->deferredMoveto ){
int res, rc;
#ifdef SQLITE_TEST
extern int sqlite3_search_count;
#endif
assert( p->isTable );
- rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res);
+ rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
if( rc ) return rc;
- *p->pIncrKey = 0;
- p->lastRowid = keyToInt(p->movetoTarget);
- p->rowidIsValid = res==0;
- if( res<0 ){
+ p->lastRowid = p->movetoTarget;
+ p->rowidIsValid = ALWAYS(res==0) ?1:0;
+ if( NEVER(res<0) ){
rc = sqlite3BtreeNext(p->pCursor, &res);
if( rc ) return rc;
}
@@ -30462,6 +49391,14 @@ int sqlite3VdbeCursorMoveto(Cursor *p){
#endif
p->deferredMoveto = 0;
p->cacheStatus = CACHE_STALE;
+ }else if( ALWAYS(p->pCursor) ){
+ int hasMoved;
+ int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
+ if( rc ) return rc;
+ if( hasMoved ){
+ p->cacheStatus = CACHE_STALE;
+ p->nullRow = 1;
+ }
}
return SQLITE_OK;
}
@@ -30471,9 +49408,9 @@ int sqlite3VdbeCursorMoveto(Cursor *p){
**
** sqlite3VdbeSerialType()
** sqlite3VdbeSerialTypeLen()
-** sqlite3VdbeSerialRead()
** sqlite3VdbeSerialLen()
-** sqlite3VdbeSerialWrite()
+** sqlite3VdbeSerialPut()
+** sqlite3VdbeSerialGet()
**
** encapsulate the code that serializes values for storage in SQLite
** data and index records. Each serialized value consists of a
@@ -30511,19 +49448,20 @@ int sqlite3VdbeCursorMoveto(Cursor *p){
/*
** Return the serial-type for the value stored in pMem.
*/
-u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
+SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
int flags = pMem->flags;
+ int n;
if( flags&MEM_Null ){
return 0;
}
if( flags&MEM_Int ){
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
-# define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
+# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
i64 i = pMem->u.i;
u64 u;
if( file_format>=4 && (i&1)==i ){
- return 8+i;
+ return 8+(u32)i;
}
u = i<0 ? -i : i;
if( u<=127 ) return 1;
@@ -30536,19 +49474,19 @@ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
if( flags&MEM_Real ){
return 7;
}
- if( flags&MEM_Str ){
- int n = pMem->n;
- assert( n>=0 );
- return ((n*2) + 13);
+ assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
+ n = pMem->n;
+ if( flags & MEM_Zero ){
+ n += pMem->u.nZero;
}
- assert( (flags & MEM_Blob)!=0 );
- return (pMem->n*2 + 12);
+ assert( n>=0 );
+ return ((n*2) + 12 + ((flags&MEM_Str)!=0));
}
/*
** Return the length of the data corresponding to the supplied serial-type.
*/
-int sqlite3VdbeSerialTypeLen(u32 serial_type){
+SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
if( serial_type>=12 ){
return (serial_type-12)/2;
}else{
@@ -30558,27 +49496,95 @@ int sqlite3VdbeSerialTypeLen(u32 serial_type){
}
/*
+** If we are on an architecture with mixed-endian floating
+** points (ex: ARM7) then swap the lower 4 bytes with the
+** upper 4 bytes. Return the result.
+**
+** For most architectures, this is a no-op.
+**
+** (later): It is reported to me that the mixed-endian problem
+** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
+** that early versions of GCC stored the two words of a 64-bit
+** float in the wrong order. And that error has been propagated
+** ever since. The blame is not necessarily with GCC, though.
+** GCC might have just copying the problem from a prior compiler.
+** I am also told that newer versions of GCC that follow a different
+** ABI get the byte order right.
+**
+** Developers using SQLite on an ARM7 should compile and run their
+** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
+** enabled, some asserts below will ensure that the byte order of
+** floating point values is correct.
+**
+** (2007-08-30) Frank van Vugt has studied this problem closely
+** and has send his findings to the SQLite developers. Frank
+** writes that some Linux kernels offer floating point hardware
+** emulation that uses only 32-bit mantissas instead of a full
+** 48-bits as required by the IEEE standard. (This is the
+** CONFIG_FPE_FASTFPE option.) On such systems, floating point
+** byte swapping becomes very complicated. To avoid problems,
+** the necessary byte swapping is carried out using a 64-bit integer
+** rather than a 64-bit float. Frank assures us that the code here
+** works for him. We, the developers, have no way to independently
+** verify this, but Frank seems to know what he is talking about
+** so we trust him.
+*/
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+static u64 floatSwap(u64 in){
+ union {
+ u64 r;
+ u32 i[2];
+ } u;
+ u32 t;
+
+ u.r = in;
+ t = u.i[0];
+ u.i[0] = u.i[1];
+ u.i[1] = t;
+ return u.r;
+}
+# define swapMixedEndianFloat(X) X = floatSwap(X)
+#else
+# define swapMixedEndianFloat(X)
+#endif
+
+/*
** Write the serialized data blob for the value stored in pMem into
** buf. It is assumed that the caller has allocated sufficient space.
** Return the number of bytes written.
+**
+** nBuf is the amount of space left in buf[]. nBuf must always be
+** large enough to hold the entire field. Except, if the field is
+** a blob with a zero-filled tail, then buf[] might be just the right
+** size to hold everything except for the zero-filled tail. If buf[]
+** is only big enough to hold the non-zero prefix, then only write that
+** prefix into buf[]. But if buf[] is large enough to hold both the
+** prefix and the tail then write the prefix and set the tail to all
+** zeros.
+**
+** Return the number of bytes actually written into buf[]. The number
+** of bytes in the zero-filled tail is included in the return value only
+** if those bytes were zeroed in buf[].
*/
-int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem, int file_format){
+SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
- int len;
+ u32 len;
/* Integer and Real */
if( serial_type<=7 && serial_type>0 ){
u64 v;
- int i;
+ u32 i;
if( serial_type==7 ){
assert( sizeof(v)==sizeof(pMem->r) );
memcpy(&v, &pMem->r, sizeof(v));
+ swapMixedEndianFloat(v);
}else{
v = pMem->u.i;
}
len = i = sqlite3VdbeSerialTypeLen(serial_type);
+ assert( len<=(u32)nBuf );
while( i-- ){
- buf[i] = (v&0xFF);
+ buf[i] = (u8)(v&0xFF);
v >>= 8;
}
return len;
@@ -30586,8 +49592,19 @@ int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem, int file_format){
/* String or blob */
if( serial_type>=12 ){
- len = sqlite3VdbeSerialTypeLen(serial_type);
+ assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
+ == (int)sqlite3VdbeSerialTypeLen(serial_type) );
+ assert( pMem->n<=nBuf );
+ len = pMem->n;
memcpy(buf, pMem->z, len);
+ if( pMem->flags & MEM_Zero ){
+ len += pMem->u.nZero;
+ assert( nBuf>=0 );
+ if( len > (u32)nBuf ){
+ len = (u32)nBuf;
+ }
+ memset(&buf[pMem->n], 0, len-pMem->n);
+ }
return len;
}
@@ -30599,7 +49616,7 @@ int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem, int file_format){
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem. Return the number of bytes read.
*/
-int sqlite3VdbeSerialGet(
+SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(
const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem *pMem /* Memory cell to write value into */
@@ -30645,11 +49662,15 @@ int sqlite3VdbeSerialGet(
u32 y;
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
/* Verify that integers and floating point values use the same
- ** byte order. The byte order differs on some (broken) architectures.
+ ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
+ ** defined that 64-bit floating point values really are mixed
+ ** endian.
*/
static const u64 t1 = ((u64)0x3ff00000)<<32;
static const double r1 = 1.0;
- assert( sizeof(r1)==sizeof(t1) && memcmp(&r1, &t1, sizeof(r1))==0 );
+ u64 t2 = t1;
+ swapMixedEndianFloat(t2);
+ assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
@@ -30660,9 +49681,9 @@ int sqlite3VdbeSerialGet(
pMem->flags = MEM_Int;
}else{
assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
+ swapMixedEndianFloat(x);
memcpy(&pMem->r, &x, sizeof(x));
- /* pMem->r = *(double*)&x; */
- pMem->flags = MEM_Real;
+ pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
}
return 8;
}
@@ -30673,7 +49694,7 @@ int sqlite3VdbeSerialGet(
return 0;
}
default: {
- int len = (serial_type-12)/2;
+ u32 len = (serial_type-12)/2;
pMem->z = (char *)buf;
pMem->n = len;
pMem->xDel = 0;
@@ -30688,92 +49709,204 @@ int sqlite3VdbeSerialGet(
return 0;
}
+
/*
-** The header of a record consists of a sequence variable-length integers.
-** These integers are almost always small and are encoded as a single byte.
-** The following macro takes advantage this fact to provide a fast decode
-** of the integers in a record header. It is faster for the common case
-** where the integer is a single byte. It is a little slower when the
-** integer is two or more bytes. But overall it is faster.
-**
-** The following expressions are equivalent:
+** Given the nKey-byte encoding of a record in pKey[], parse the
+** record into a UnpackedRecord structure. Return a pointer to
+** that structure.
**
-** x = sqlite3GetVarint32( A, &B );
-**
-** x = GetVarint( A, B );
+** The calling function might provide szSpace bytes of memory
+** space at pSpace. This space can be used to hold the returned
+** VDbeParsedRecord structure if it is large enough. If it is
+** not big enough, space is obtained from sqlite3_malloc().
**
+** The returned structure should be closed by a call to
+** sqlite3VdbeDeleteUnpackedRecord().
*/
-#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(
+ KeyInfo *pKeyInfo, /* Information about the record format */
+ int nKey, /* Size of the binary record */
+ const void *pKey, /* The binary record */
+ char *pSpace, /* Unaligned space available to hold the object */
+ int szSpace /* Size of pSpace[] in bytes */
+){
+ const unsigned char *aKey = (const unsigned char *)pKey;
+ UnpackedRecord *p; /* The unpacked record that we will return */
+ int nByte; /* Memory space needed to hold p, in bytes */
+ int d;
+ u32 idx;
+ u16 u; /* Unsigned loop counter */
+ u32 szHdr;
+ Mem *pMem;
+ int nOff; /* Increase pSpace by this much to 8-byte align it */
+
+ /*
+ ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
+ ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
+ ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
+ */
+ nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
+ pSpace += nOff;
+ szSpace -= nOff;
+ nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
+ if( nByte>szSpace ){
+ p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
+ if( p==0 ) return 0;
+ p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
+ }else{
+ p = (UnpackedRecord*)pSpace;
+ p->flags = UNPACKED_NEED_DESTROY;
+ }
+ p->pKeyInfo = pKeyInfo;
+ p->nField = pKeyInfo->nField + 1;
+ p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+ idx = getVarint32(aKey, szHdr);
+ d = szHdr;
+ u = 0;
+ while( idx<szHdr && u<p->nField && d<=nKey ){
+ u32 serial_type;
+
+ idx += getVarint32(&aKey[idx], serial_type);
+ pMem->enc = pKeyInfo->enc;
+ pMem->db = pKeyInfo->db;
+ pMem->flags = 0;
+ pMem->zMalloc = 0;
+ d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
+ pMem++;
+ u++;
+ }
+ assert( u<=pKeyInfo->nField + 1 );
+ p->nField = u;
+ return (void*)p;
+}
/*
-** This function compares the two table rows or index records specified by
-** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
-** or positive integer if {nKey1, pKey1} is less than, equal to or
-** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings
-** composed by the OP_MakeRecord opcode of the VDBE.
+** This routine destroys a UnpackedRecord object.
*/
-int sqlite3VdbeRecordCompare(
- void *userData,
- int nKey1, const void *pKey1,
- int nKey2, const void *pKey2
+SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
+ int i;
+ Mem *pMem;
+
+ assert( p!=0 );
+ assert( p->flags & UNPACKED_NEED_DESTROY );
+ for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
+ /* The unpacked record is always constructed by the
+ ** sqlite3VdbeUnpackRecord() function above, which makes all
+ ** strings and blobs static. And none of the elements are
+ ** ever transformed, so there is never anything to delete.
+ */
+ if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
+ }
+ if( p->flags & UNPACKED_NEED_FREE ){
+ sqlite3DbFree(p->pKeyInfo->db, p);
+ }
+}
+
+/*
+** This function compares the two table rows or index records
+** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
+** or positive integer if key1 is less than, equal to or
+** greater than key2. The {nKey1, pKey1} key must be a blob
+** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
+** key must be a parsed key such as obtained from
+** sqlite3VdbeParseRecord.
+**
+** Key1 and Key2 do not have to contain the same number of fields.
+** The key with fewer fields is usually compares less than the
+** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
+** and the common prefixes are equal, then key1 is less than key2.
+** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
+** equal, then the keys are considered to be equal and
+** the parts beyond the common prefix are ignored.
+**
+** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
+** the header of pKey1 is ignored. It is assumed that pKey1 is
+** an index key, and thus ends with a rowid value. The last byte
+** of the header will therefore be the serial type of the rowid:
+** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
+** The serial type of the final rowid will always be a single byte.
+** By ignoring this last byte of the header, we force the comparison
+** to ignore the rowid at the end of key1.
+*/
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2 /* Right key */
){
- KeyInfo *pKeyInfo = (KeyInfo*)userData;
- u32 d1, d2; /* Offset into aKey[] of next data element */
- u32 idx1, idx2; /* Offset into aKey[] of next header element */
- u32 szHdr1, szHdr2; /* Number of bytes in header */
+ int d1; /* Offset into aKey[] of next data element */
+ u32 idx1; /* Offset into aKey[] of next header element */
+ u32 szHdr1; /* Number of bytes in header */
int i = 0;
int nField;
int rc = 0;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
- const unsigned char *aKey2 = (const unsigned char *)pKey2;
-
+ KeyInfo *pKeyInfo;
Mem mem1;
- Mem mem2;
+
+ pKeyInfo = pPKey2->pKeyInfo;
mem1.enc = pKeyInfo->enc;
- mem2.enc = pKeyInfo->enc;
+ mem1.db = pKeyInfo->db;
+ mem1.flags = 0;
+ mem1.u.i = 0; /* not needed, here to silence compiler warning */
+ mem1.zMalloc = 0;
- idx1 = GetVarint(aKey1, szHdr1);
+ idx1 = getVarint32(aKey1, szHdr1);
d1 = szHdr1;
- idx2 = GetVarint(aKey2, szHdr2);
- d2 = szHdr2;
+ if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
+ szHdr1--;
+ }
nField = pKeyInfo->nField;
- while( idx1<szHdr1 && idx2<szHdr2 ){
+ while( idx1<szHdr1 && i<pPKey2->nField ){
u32 serial_type1;
- u32 serial_type2;
/* Read the serial types for the next element in each key. */
- idx1 += GetVarint( aKey1+idx1, serial_type1 );
+ idx1 += getVarint32( aKey1+idx1, serial_type1 );
if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
- idx2 += GetVarint( aKey2+idx2, serial_type2 );
- if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
/* Extract the values to be compared.
*/
d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
- d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
/* Do the comparison
*/
- rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
- if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
- if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
+ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
+ i<nField ? pKeyInfo->aColl[i] : 0);
if( rc!=0 ){
break;
}
i++;
}
- /* One of the keys ran out of fields, but all the fields up to that point
- ** were equal. If the incrKey flag is true, then the second key is
- ** treated as larger.
+ /* No memory allocation is ever used on mem1. */
+ if( NEVER(mem1.zMalloc) ) sqlite3VdbeMemRelease(&mem1);
+
+ /* If the PREFIX_SEARCH flag is set and all fields except the final
+ ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
+ ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
+ ** This is used by the OP_IsUnique opcode.
*/
+ if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
+ assert( idx1==szHdr1 && rc );
+ assert( mem1.flags & MEM_Int );
+ pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
+ pPKey2->rowid = mem1.u.i;
+ }
+
if( rc==0 ){
- if( pKeyInfo->incrKey ){
+ /* rc==0 here means that one of the keys ran out of fields and
+ ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
+ ** flag is set, then break the tie by treating key2 as larger.
+ ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
+ ** are considered to be equal. Otherwise, the longer key is the
+ ** larger. As it happens, the pPKey2 will always be the longer
+ ** if there is a difference.
+ */
+ if( pPKey2->flags & UNPACKED_INCRKEY ){
rc = -1;
- }else if( d1<nKey1 ){
+ }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
+ /* Leave rc==0 */
+ }else if( idx1<szHdr1 ){
rc = 1;
- }else if( d2<nKey2 ){
- rc = -1;
}
}else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
&& pKeyInfo->aSortOrder[i] ){
@@ -30783,28 +49916,16 @@ int sqlite3VdbeRecordCompare(
return rc;
}
-/*
-** The argument is an index entry composed using the OP_MakeRecord opcode.
-** The last entry in this record should be an integer (specifically
-** an integer rowid). This routine returns the number of bytes in
-** that integer.
-*/
-int sqlite3VdbeIdxRowidLen(const u8 *aKey){
- u32 szHdr; /* Size of the header */
- u32 typeRowid; /* Serial type of the rowid */
-
- sqlite3GetVarint32(aKey, &szHdr);
- sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
- return sqlite3VdbeSerialTypeLen(typeRowid);
-}
-
/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
+**
+** pCur might be pointing to text obtained from a corrupt database file.
+** So the content cannot be trusted. Do appropriate checks on the content.
*/
-int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
i64 nCellKey = 0;
int rc;
u32 szHdr; /* Size of the header */
@@ -30812,55 +49933,104 @@ int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
u32 lenRowid; /* Size of the rowid */
Mem m, v;
- sqlite3BtreeKeySize(pCur, &nCellKey);
- if( nCellKey<=0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
+ UNUSED_PARAMETER(db);
+
+ /* Get the size of the index entry. Only indices entries of less
+ ** than 2GiB are support - anything large must be database corruption.
+ ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
+ ** this code can safely assume that nCellKey is 32-bits
+ */
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ rc = sqlite3BtreeKeySize(pCur, &nCellKey);
+ assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
+ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
+
+ /* Read in the complete content of the index entry */
+ memset(&m, 0, sizeof(m));
+ rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
if( rc ){
return rc;
}
- sqlite3GetVarint32((u8*)m.z, &szHdr);
- sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
+
+ /* The index entry must begin with a header size */
+ (void)getVarint32((u8*)m.z, szHdr);
+ testcase( szHdr==3 );
+ testcase( szHdr==m.n );
+ if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
+ goto idx_rowid_corruption;
+ }
+
+ /* The last field of the index should be an integer - the ROWID.
+ ** Verify that the last entry really is an integer. */
+ (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
+ testcase( typeRowid==1 );
+ testcase( typeRowid==2 );
+ testcase( typeRowid==3 );
+ testcase( typeRowid==4 );
+ testcase( typeRowid==5 );
+ testcase( typeRowid==6 );
+ testcase( typeRowid==8 );
+ testcase( typeRowid==9 );
+ if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
+ goto idx_rowid_corruption;
+ }
lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
+ testcase( (u32)m.n==szHdr+lenRowid );
+ if( unlikely((u32)m.n<szHdr+lenRowid) ){
+ goto idx_rowid_corruption;
+ }
+
+ /* Fetch the integer off the end of the index record */
sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
*rowid = v.u.i;
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
+
+ /* Jump here if database corruption is detected after m has been
+ ** allocated. Free the m object and return SQLITE_CORRUPT. */
+idx_rowid_corruption:
+ testcase( m.zMalloc!=0 );
+ sqlite3VdbeMemRelease(&m);
+ return SQLITE_CORRUPT_BKPT;
}
/*
-** Compare the key of the index entry that cursor pC is point to against
-** the key string in pKey (of length nKey). Write into *pRes a number
+** Compare the key of the index entry that cursor pC is pointing to against
+** the key string in pUnpacked. Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
-** or greater than pKey. Return SQLITE_OK on success.
+** or greater than pUnpacked. Return SQLITE_OK on success.
**
-** pKey is either created without a rowid or is truncated so that it
+** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end. The rowid at the end of the index entry
-** is ignored as well.
+** is ignored as well. Hence, this routine only compares the prefixes
+** of the keys prior to the final rowid, not the entire key.
*/
-int sqlite3VdbeIdxKeyCompare(
- Cursor *pC, /* The cursor to compare against */
- int nKey, const u8 *pKey, /* The key to compare */
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
+ VdbeCursor *pC, /* The cursor to compare against */
+ UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
int *res /* Write the comparison result here */
){
i64 nCellKey = 0;
int rc;
BtCursor *pCur = pC->pCursor;
- int lenRowid;
Mem m;
- sqlite3BtreeKeySize(pCur, &nCellKey);
- if( nCellKey<=0 ){
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ rc = sqlite3BtreeKeySize(pCur, &nCellKey);
+ assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
+ /* nCellKey will always be between 0 and 0xffffffff because of the say
+ ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
+ if( nCellKey<=0 || nCellKey>0x7fffffff ){
*res = 0;
- return SQLITE_OK;
+ return SQLITE_CORRUPT;
}
- rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
+ memset(&m, 0, sizeof(m));
+ rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
if( rc ){
return rc;
}
- lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
- *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
+ assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
+ *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
@@ -30869,7 +50039,8 @@ int sqlite3VdbeIdxKeyCompare(
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'.
*/
-void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
+SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
+ assert( sqlite3_mutex_held(db->mutex) );
db->nChange = nChange;
db->nTotalChange += nChange;
}
@@ -30878,7 +50049,7 @@ void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.
*/
-void sqlite3VdbeCountChanges(Vdbe *v){
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
v->changeCntOn = 1;
}
@@ -30892,7 +50063,7 @@ void sqlite3VdbeCountChanges(Vdbe *v){
** sequences, or changing an authorization function are the types of
** things that make prepared statements obsolete.
*/
-void sqlite3ExpirePreparedStatements(sqlite3 *db){
+SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){
Vdbe *p;
for(p = db->pVdbe; p; p=p->pNext){
p->expired = 1;
@@ -30902,7 +50073,7 @@ void sqlite3ExpirePreparedStatements(sqlite3 *db){
/*
** Return the database associated with the Vdbe.
*/
-sqlite3 *sqlite3VdbeDb(Vdbe *v){
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
return v->db;
}
@@ -30922,8 +50093,11 @@ sqlite3 *sqlite3VdbeDb(Vdbe *v){
**
** This file contains code use to implement APIs that are part of the
** VDBE.
+**
+** $Id: vdbeapi.c,v 1.167 2009/06/25 01:47:12 drh Exp $
*/
+#ifndef SQLITE_OMIT_DEPRECATED
/*
** Return TRUE (non-zero) of the statement supplied as an argument needs
** to be recompiled. A statement needs to be recompiled whenever the
@@ -30932,130 +50106,257 @@ sqlite3 *sqlite3VdbeDb(Vdbe *v){
** collating sequences are registered or if an authorizer function is
** added or changed.
*/
-int sqlite3_expired(sqlite3_stmt *pStmt){
+SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
Vdbe *p = (Vdbe*)pStmt;
return p==0 || p->expired;
}
+#endif
+
+/*
+** The following routine destroys a virtual machine that is created by
+** the sqlite3_compile() routine. The integer returned is an SQLITE_
+** success/failure code that describes the result of executing the virtual
+** machine.
+**
+** This routine sets the error code and string returned by
+** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
+ int rc;
+ if( pStmt==0 ){
+ rc = SQLITE_OK;
+ }else{
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3 *db = v->db;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = v->db->mutex;
+#endif
+ sqlite3_mutex_enter(mutex);
+ rc = sqlite3VdbeFinalize(v);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(mutex);
+ }
+ return rc;
+}
+
+/*
+** Terminate the current execution of an SQL statement and reset it
+** back to its starting state so that it can be reused. A success code from
+** the prior execution is returned.
+**
+** This routine sets the error code and string returned by
+** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
+ int rc;
+ if( pStmt==0 ){
+ rc = SQLITE_OK;
+ }else{
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3_mutex_enter(v->db->mutex);
+ rc = sqlite3VdbeReset(v);
+ sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0);
+ assert( (rc & (v->db->errMask))==rc );
+ rc = sqlite3ApiExit(v->db, rc);
+ sqlite3_mutex_leave(v->db->mutex);
+ }
+ return rc;
+}
+
+/*
+** Set all the parameters in the compiled SQL statement to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
+ int i;
+ int rc = SQLITE_OK;
+ Vdbe *p = (Vdbe*)pStmt;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<p->nVar; i++){
+ sqlite3VdbeMemRelease(&p->aVar[i]);
+ p->aVar[i].flags = MEM_Null;
+ }
+ sqlite3_mutex_leave(mutex);
+ return rc;
+}
+
/**************************** sqlite3_value_ *******************************
** The following routines extract information from a Mem or sqlite3_value
** structure.
*/
-const void *sqlite3_value_blob(sqlite3_value *pVal){
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
Mem *p = (Mem*)pVal;
if( p->flags & (MEM_Blob|MEM_Str) ){
+ sqlite3VdbeMemExpandBlob(p);
+ p->flags &= ~MEM_Str;
+ p->flags |= MEM_Blob;
return p->z;
}else{
return sqlite3_value_text(pVal);
}
}
-int sqlite3_value_bytes(sqlite3_value *pVal){
+SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
}
-int sqlite3_value_bytes16(sqlite3_value *pVal){
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
}
-double sqlite3_value_double(sqlite3_value *pVal){
+SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
return sqlite3VdbeRealValue((Mem*)pVal);
}
-int sqlite3_value_int(sqlite3_value *pVal){
- return sqlite3VdbeIntValue((Mem*)pVal);
+SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
+ return (int)sqlite3VdbeIntValue((Mem*)pVal);
}
-sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
+SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
return sqlite3VdbeIntValue((Mem*)pVal);
}
-const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
-const void *sqlite3_value_text16(sqlite3_value* pVal){
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
}
-const void *sqlite3_value_text16be(sqlite3_value *pVal){
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
}
-const void *sqlite3_value_text16le(sqlite3_value *pVal){
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
}
#endif /* SQLITE_OMIT_UTF16 */
-int sqlite3_value_type(sqlite3_value* pVal){
+SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
return pVal->type;
}
-/* sqlite3_value_numeric_type() defined in vdbe.c */
/**************************** sqlite3_result_ *******************************
** The following routines are used by user-defined functions to specify
** the function result.
+**
+** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
+** result as a string or blob but if the string or blob is too large, it
+** then sets the error code to SQLITE_TOOBIG
*/
-void sqlite3_result_blob(
+static void setResultStrOrError(
+ sqlite3_context *pCtx, /* Function context */
+ const char *z, /* String pointer */
+ int n, /* Bytes in string, or negative */
+ u8 enc, /* Encoding of z. 0 for BLOBs */
+ void (*xDel)(void*) /* Destructor function */
+){
+ if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
+ sqlite3_result_error_toobig(pCtx);
+ }
+}
+SQLITE_API void sqlite3_result_blob(
sqlite3_context *pCtx,
const void *z,
int n,
void (*xDel)(void *)
){
assert( n>=0 );
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ setResultStrOrError(pCtx, z, n, 0, xDel);
}
-void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
+SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
}
-void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
- pCtx->isError = 1;
+SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pCtx->isError = SQLITE_ERROR;
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
-void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
- pCtx->isError = 1;
+SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pCtx->isError = SQLITE_ERROR;
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
-void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
+SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
}
-void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
+SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
}
-void sqlite3_result_null(sqlite3_context *pCtx){
+SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
sqlite3VdbeMemSetNull(&pCtx->s);
}
-void sqlite3_result_text(
+SQLITE_API void sqlite3_result_text(
sqlite3_context *pCtx,
const char *z,
int n,
void (*xDel)(void *)
){
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
}
#ifndef SQLITE_OMIT_UTF16
-void sqlite3_result_text16(
+SQLITE_API void sqlite3_result_text16(
sqlite3_context *pCtx,
const void *z,
int n,
void (*xDel)(void *)
){
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
}
-void sqlite3_result_text16be(
+SQLITE_API void sqlite3_result_text16be(
sqlite3_context *pCtx,
const void *z,
int n,
void (*xDel)(void *)
){
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
}
-void sqlite3_result_text16le(
+SQLITE_API void sqlite3_result_text16le(
sqlite3_context *pCtx,
const void *z,
int n,
void (*xDel)(void *)
){
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
}
#endif /* SQLITE_OMIT_UTF16 */
-void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
+SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
sqlite3VdbeMemCopy(&pCtx->s, pValue);
}
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
+}
+SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
+ pCtx->isError = errCode;
+ if( pCtx->s.flags & MEM_Null ){
+ sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
+ SQLITE_UTF8, SQLITE_STATIC);
+ }
+}
+/* Force an SQLITE_TOOBIG error. */
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pCtx->isError = SQLITE_TOOBIG;
+ sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
+ SQLITE_UTF8, SQLITE_STATIC);
+}
+
+/* An SQLITE_NOMEM error. */
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetNull(&pCtx->s);
+ pCtx->isError = SQLITE_NOMEM;
+ pCtx->s.db->mallocFailed = 1;
+}
/*
** Execute the statement pStmt, either until a row of data is ready, the
@@ -31070,23 +50371,24 @@ static int sqlite3Step(Vdbe *p){
sqlite3 *db;
int rc;
- /* Assert that malloc() has not failed */
- assert( !sqlite3MallocFailed() );
-
- if( p==0 || p->magic!=VDBE_MAGIC_RUN ){
+ assert(p);
+ if( p->magic!=VDBE_MAGIC_RUN ){
return SQLITE_MISUSE;
}
- if( p->aborted ){
- return SQLITE_ABORT;
+
+ /* Assert that malloc() has not failed */
+ db = p->db;
+ if( db->mallocFailed ){
+ return SQLITE_NOMEM;
}
+
if( p->pc<=0 && p->expired ){
- if( p->rc==SQLITE_OK ){
+ if( ALWAYS(p->rc==SQLITE_OK) ){
p->rc = SQLITE_SCHEMA;
}
rc = SQLITE_ERROR;
goto end_of_step;
}
- db = p->db;
if( sqlite3SafetyOn(db) ){
p->rc = SQLITE_MISUSE;
return SQLITE_MISUSE;
@@ -31101,37 +50403,15 @@ static int sqlite3Step(Vdbe *p){
}
#ifndef SQLITE_OMIT_TRACE
- /* Invoke the trace callback if there is one
- */
- if( db->xTrace && !db->init.busy ){
- assert( p->nOp>0 );
- assert( p->aOp[p->nOp-1].opcode==OP_Noop );
- assert( p->aOp[p->nOp-1].p3!=0 );
- assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
- sqlite3SafetyOff(db);
- db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
- if( sqlite3SafetyOn(db) ){
- p->rc = SQLITE_MISUSE;
- return SQLITE_MISUSE;
- }
- }
if( db->xProfile && !db->init.busy ){
double rNow;
- sqlite3OsCurrentTime(&rNow);
- p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
+ sqlite3OsCurrentTime(db->pVfs, &rNow);
+ p->startTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
}
#endif
- /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
- ** on in debugging mode.
- */
-#ifdef SQLITE_DEBUG
- if( (db->flags & SQLITE_SqlTrace)!=0 ){
- sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
- }
-#endif /* SQLITE_DEBUG */
-
db->activeVdbeCnt++;
+ if( p->readOnly==0 ) db->writeVdbeCnt++;
p->pc = 0;
}
#ifndef SQLITE_OMIT_EXPLAIN
@@ -31150,33 +50430,41 @@ static int sqlite3Step(Vdbe *p){
#ifndef SQLITE_OMIT_TRACE
/* Invoke the profile callback if there is one
*/
- if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
+ if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
double rNow;
u64 elapseTime;
- sqlite3OsCurrentTime(&rNow);
- elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
- assert( p->nOp>0 );
- assert( p->aOp[p->nOp-1].opcode==OP_Noop );
- assert( p->aOp[p->nOp-1].p3!=0 );
- assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
- db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
+ sqlite3OsCurrentTime(db->pVfs, &rNow);
+ elapseTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
+ elapseTime -= p->startTime;
+ db->xProfile(db->pProfileArg, p->zSql, elapseTime);
}
#endif
- sqlite3Error(p->db, rc, 0);
- p->rc = sqlite3ApiExit(p->db, p->rc);
+ db->errCode = rc;
+ if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
+ p->rc = SQLITE_NOMEM;
+ }
end_of_step:
- assert( (rc&0xff)==rc );
- if( p->zSql && (rc&0xff)<SQLITE_ROW ){
- /* This behavior occurs if sqlite3_prepare_v2() was used to build
- ** the prepared statement. Return error codes directly */
- return p->rc;
- }else{
- /* This is for legacy sqlite3_prepare() builds and when the code
- ** is SQLITE_ROW or SQLITE_DONE */
- return rc;
+ /* At this point local variable rc holds the value that should be
+ ** returned if this statement was compiled using the legacy
+ ** sqlite3_prepare() interface. According to the docs, this can only
+ ** be one of the values in the first assert() below. Variable p->rc
+ ** contains the value that would be returned if sqlite3_finalize()
+ ** were called on statement p.
+ */
+ assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
+ || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
+ );
+ assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
+ if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
+ /* If this statement was prepared using sqlite3_prepare_v2(), and an
+ ** error has occured, then return the error code in p->rc to the
+ ** caller. Set the error code in the database handle to the same value.
+ */
+ rc = db->errCode = p->rc;
}
+ return (rc&db->errMask);
}
/*
@@ -31184,35 +50472,62 @@ end_of_step:
** sqlite3Step() to do most of the work. If a schema error occurs,
** call sqlite3Reprepare() and try again.
*/
-#ifdef SQLITE_OMIT_PARSER
-int sqlite3_step(sqlite3_stmt *pStmt){
- return sqlite3Step((Vdbe*)pStmt);
-}
-#else
-int sqlite3_step(sqlite3_stmt *pStmt){
- int cnt = 0;
- int rc;
- Vdbe *v = (Vdbe*)pStmt;
- while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
- && cnt++ < 5
- && sqlite3Reprepare(v) ){
- sqlite3_reset(pStmt);
- v->expired = 0;
+SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
+ int rc = SQLITE_MISUSE;
+ if( pStmt ){
+ int cnt = 0;
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3 *db = v->db;
+ sqlite3_mutex_enter(db->mutex);
+ while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
+ && cnt++ < 5
+ && (rc = sqlite3Reprepare(v))==SQLITE_OK ){
+ sqlite3_reset(pStmt);
+ v->expired = 0;
+ }
+ if( rc==SQLITE_SCHEMA && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
+ /* This case occurs after failing to recompile an sql statement.
+ ** The error message from the SQL compiler has already been loaded
+ ** into the database handle. This block copies the error message
+ ** from the database handle into the statement and sets the statement
+ ** program counter to 0 to ensure that when the statement is
+ ** finalized or reset the parser error message is available via
+ ** sqlite3_errmsg() and sqlite3_errcode().
+ */
+ const char *zErr = (const char *)sqlite3_value_text(db->pErr);
+ sqlite3DbFree(db, v->zErrMsg);
+ if( !db->mallocFailed ){
+ v->zErrMsg = sqlite3DbStrDup(db, zErr);
+ } else {
+ v->zErrMsg = 0;
+ v->rc = SQLITE_NOMEM;
+ }
+ }
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
}
return rc;
}
-#endif
/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
*/
-void *sqlite3_user_data(sqlite3_context *p){
+SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
assert( p && p->pFunc );
return p->pFunc->pUserData;
}
/*
+** Extract the user data from a sqlite3_context structure and return a
+** pointer to it.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
+ assert( p && p->pFunc );
+ return p->s.db;
+}
+
+/*
** The following is the implementation of an SQL function that always
** fails with an error message stating that the function is used in the
** wrong context. The sqlite3_overload_function() API might construct
@@ -31220,17 +50535,18 @@ void *sqlite3_user_data(sqlite3_context *p){
** for name resolution but are actually overloaded by the xFindFunction
** method of virtual tables.
*/
-void sqlite3InvalidFunction(
+SQLITE_PRIVATE void sqlite3InvalidFunction(
sqlite3_context *context, /* The function calling context */
- int argc, /* Number of arguments to the function */
- sqlite3_value **argv /* Value of each argument */
+ int NotUsed, /* Number of arguments to the function */
+ sqlite3_value **NotUsed2 /* Value of each argument */
){
const char *zName = context->pFunc->zName;
char *zErr;
- zErr = sqlite3MPrintf(
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ zErr = sqlite3_mprintf(
"unable to use function %s in the requested context", zName);
sqlite3_result_error(context, zErr, -1);
- sqliteFree(zErr);
+ sqlite3_free(zErr);
}
/*
@@ -31238,22 +50554,22 @@ void sqlite3InvalidFunction(
** context is allocated on the first call. Subsequent calls return the
** same context that was returned on prior calls.
*/
-void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
- Mem *pMem = p->pMem;
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
+ Mem *pMem;
assert( p && p->pFunc && p->pFunc->xStep );
+ assert( sqlite3_mutex_held(p->s.db->mutex) );
+ pMem = p->pMem;
if( (pMem->flags & MEM_Agg)==0 ){
if( nByte==0 ){
- assert( pMem->flags==MEM_Null );
+ sqlite3VdbeMemReleaseExternal(pMem);
+ pMem->flags = MEM_Null;
pMem->z = 0;
}else{
+ sqlite3VdbeMemGrow(pMem, nByte, 0);
pMem->flags = MEM_Agg;
- pMem->xDel = sqlite3FreeX;
pMem->u.pDef = p->pFunc;
- if( nByte<=NBFS ){
- pMem->z = pMem->zShort;
+ if( pMem->z ){
memset(pMem->z, 0, nByte);
- }else{
- pMem->z = sqliteMalloc( nByte );
}
}
}
@@ -31264,8 +50580,11 @@ void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
** Return the auxilary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
-void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
- VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc;
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
+ VdbeFunc *pVdbeFunc;
+
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pVdbeFunc = pCtx->pVdbeFunc;
if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
return 0;
}
@@ -31277,7 +50596,7 @@ void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
*/
-void sqlite3_set_auxdata(
+SQLITE_API void sqlite3_set_auxdata(
sqlite3_context *pCtx,
int iArg,
void *pAux,
@@ -31285,16 +50604,19 @@ void sqlite3_set_auxdata(
){
struct AuxData *pAuxData;
VdbeFunc *pVdbeFunc;
- if( iArg<0 ) return;
+ if( iArg<0 ) goto failed;
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
pVdbeFunc = pCtx->pVdbeFunc;
if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
+ int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
- pVdbeFunc = sqliteRealloc(pVdbeFunc, nMalloc);
- if( !pVdbeFunc ) return;
+ pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
+ if( !pVdbeFunc ){
+ goto failed;
+ }
pCtx->pVdbeFunc = pVdbeFunc;
- memset(&pVdbeFunc->apAux[pVdbeFunc->nAux], 0,
- sizeof(struct AuxData)*(iArg+1-pVdbeFunc->nAux));
+ memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
pVdbeFunc->nAux = iArg+1;
pVdbeFunc->pFunc = pCtx->pFunc;
}
@@ -31305,8 +50627,15 @@ void sqlite3_set_auxdata(
}
pAuxData->pAux = pAux;
pAuxData->xDelete = xDelete;
+ return;
+
+failed:
+ if( xDelete ){
+ xDelete(pAux);
+ }
}
+#ifndef SQLITE_OMIT_DEPRECATED
/*
** Return the number of times the Step function of a aggregate has been
** called.
@@ -31316,15 +50645,16 @@ void sqlite3_set_auxdata(
** implementations should keep their own counts within their aggregate
** context.
*/
-int sqlite3_aggregate_count(sqlite3_context *p){
- assert( p && p->pFunc && p->pFunc->xStep );
+SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
+ assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
return p->pMem->n;
}
+#endif
/*
** Return the number of columns in the result set for the statement pStmt.
*/
-int sqlite3_column_count(sqlite3_stmt *pStmt){
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
Vdbe *pVm = (Vdbe *)pStmt;
return pVm ? pVm->nResColumn : 0;
}
@@ -31333,9 +50663,9 @@ int sqlite3_column_count(sqlite3_stmt *pStmt){
** Return the number of values available from the current row of the
** currently executing statement pStmt.
*/
-int sqlite3_data_count(sqlite3_stmt *pStmt){
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
Vdbe *pVm = (Vdbe *)pStmt;
- if( pVm==0 || !pVm->resOnStack ) return 0;
+ if( pVm==0 || pVm->pResultSet==0 ) return 0;
return pVm->nResColumn;
}
@@ -31347,14 +50677,40 @@ int sqlite3_data_count(sqlite3_stmt *pStmt){
** of NULL.
*/
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
- Vdbe *pVm = (Vdbe *)pStmt;
- int vals = sqlite3_data_count(pStmt);
- if( i>=vals || i<0 ){
- static const Mem nullMem = {{0}, 0.0, "", 0, MEM_Null, MEM_Null };
- sqlite3Error(pVm->db, SQLITE_RANGE, 0);
- return (Mem*)&nullMem;
+ Vdbe *pVm;
+ int vals;
+ Mem *pOut;
+
+ pVm = (Vdbe *)pStmt;
+ if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
+ sqlite3_mutex_enter(pVm->db->mutex);
+ vals = sqlite3_data_count(pStmt);
+ pOut = &pVm->pResultSet[i];
+ }else{
+ /* If the value passed as the second argument is out of range, return
+ ** a pointer to the following static Mem object which contains the
+ ** value SQL NULL. Even though the Mem structure contains an element
+ ** of type i64, on certain architecture (x86) with certain compiler
+ ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
+ ** instead of an 8-byte one. This all works fine, except that when
+ ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
+ ** that a Mem structure is located on an 8-byte boundary. To prevent
+ ** this assert() from failing, when building with SQLITE_DEBUG defined
+ ** using gcc, force nullMem to be 8-byte aligned using the magical
+ ** __attribute__((aligned(8))) macro. */
+ static const Mem nullMem
+#if defined(SQLITE_DEBUG) && defined(__GNUC__)
+ __attribute__((aligned(8)))
+#endif
+ = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
+
+ if( pVm && ALWAYS(pVm->db) ){
+ sqlite3_mutex_enter(pVm->db->mutex);
+ sqlite3Error(pVm->db, SQLITE_RANGE, 0);
+ }
+ pOut = (Mem*)&nullMem;
}
- return &pVm->pTos[(1-vals)+i];
+ return pOut;
}
/*
@@ -31364,7 +50720,7 @@ static Mem *columnMem(sqlite3_stmt *pStmt, int i){
** malloc() has failed, the threads mallocFailed flag is cleared and the result
** code of statement pStmt set to SQLITE_NOMEM.
**
-** Specificly, this is called from within:
+** Specifically, this is called from within:
**
** sqlite3_column_int()
** sqlite3_column_int64()
@@ -31384,62 +50740,76 @@ static void columnMallocFailure(sqlite3_stmt *pStmt)
** and _finalize() will return NOMEM.
*/
Vdbe *p = (Vdbe *)pStmt;
- p->rc = sqlite3ApiExit(0, p->rc);
+ if( p ){
+ p->rc = sqlite3ApiExit(p->db, p->rc);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
}
/**************************** sqlite3_column_ *******************************
** The following routines are used to access elements of the current row
** in the result set.
*/
-const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
const void *val;
- sqlite3MallocDisallow();
val = sqlite3_value_blob( columnMem(pStmt,i) );
- sqlite3MallocAllow();
+ /* Even though there is no encoding conversion, value_blob() might
+ ** need to call malloc() to expand the result of a zeroblob()
+ ** expression.
+ */
+ columnMallocFailure(pStmt);
return val;
}
-int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
int val = sqlite3_value_bytes( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
-int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
-double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
+SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
double val = sqlite3_value_double( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
-int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
+SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
int val = sqlite3_value_int( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
-sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
+SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
-const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
-sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
- return columnMem(pStmt, i);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
+ Mem *pOut = columnMem(pStmt, i);
+ if( pOut->flags&MEM_Static ){
+ pOut->flags &= ~MEM_Static;
+ pOut->flags |= MEM_Ephem;
+ }
+ columnMallocFailure(pStmt);
+ return (sqlite3_value *)pOut;
}
#ifndef SQLITE_OMIT_UTF16
-const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
#endif /* SQLITE_OMIT_UTF16 */
-int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
- return sqlite3_value_type( columnMem(pStmt,i) );
+SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
+ int iType = sqlite3_value_type( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return iType;
}
/* The following function is experimental and subject to change or
@@ -31471,20 +50841,27 @@ static const void *columnName(
const void *(*xFunc)(Mem*),
int useType
){
- const void *ret;
+ const void *ret = 0;
Vdbe *p = (Vdbe *)pStmt;
- int n = sqlite3_column_count(pStmt);
+ int n;
+ sqlite3 *db = p->db;
- if( p==0 || N>=n || N<0 ){
- return 0;
+ assert( db!=0 );
+ n = sqlite3_column_count(pStmt);
+ if( N<n && N>=0 ){
+ N += useType*n;
+ sqlite3_mutex_enter(db->mutex);
+ assert( db->mallocFailed==0 );
+ ret = xFunc(&p->aColName[N]);
+ /* A malloc may have failed inside of the xFunc() call. If this
+ ** is the case, clear the mallocFailed flag and return NULL.
+ */
+ if( db->mallocFailed ){
+ db->mallocFailed = 0;
+ ret = 0;
+ }
+ sqlite3_mutex_leave(db->mutex);
}
- N += useType*n;
- ret = xFunc(&p->aColName[N]);
-
- /* A malloc may have failed inside of the xFunc() call. If this is the case,
- ** clear the mallocFailed flag and return NULL.
- */
- sqlite3ApiExit(0, 0);
return ret;
}
@@ -31492,31 +50869,42 @@ static const void *columnName(
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
-const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
}
#ifndef SQLITE_OMIT_UTF16
-const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
}
#endif
/*
+** Constraint: If you have ENABLE_COLUMN_METADATA then you must
+** not define OMIT_DECLTYPE.
+*/
+#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
+# error "Must not define both SQLITE_OMIT_DECLTYPE \
+ and SQLITE_ENABLE_COLUMN_METADATA"
+#endif
+
+#ifndef SQLITE_OMIT_DECLTYPE
+/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt.
*/
-const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
}
#ifndef SQLITE_OMIT_UTF16
-const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
}
#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_OMIT_DECLTYPE */
#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
@@ -31524,12 +50912,12 @@ const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
-const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
}
#ifndef SQLITE_OMIT_UTF16
-const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
}
@@ -31540,12 +50928,12 @@ const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
-const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
}
#ifndef SQLITE_OMIT_UTF16
-const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
}
@@ -31556,12 +50944,12 @@ const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
-const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
}
#ifndef SQLITE_OMIT_UTF16
-const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
return columnName(
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
}
@@ -31578,17 +50966,24 @@ const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
** the same as binding a NULL value to the column. If the "i" parameter is
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
**
+** A successful evaluation of this routine acquires the mutex on p.
+** the mutex is released if any kind of error occurs.
+**
** The error code stored in database p->db is overwritten with the return
** value in any case.
*/
static int vdbeUnbind(Vdbe *p, int i){
Mem *pVar;
- if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
- if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
+ if( p==0 ) return SQLITE_MISUSE;
+ sqlite3_mutex_enter(p->db->mutex);
+ if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
+ sqlite3Error(p->db, SQLITE_MISUSE, 0);
+ sqlite3_mutex_leave(p->db->mutex);
return SQLITE_MISUSE;
}
if( i<1 || i>p->nVar ){
sqlite3Error(p->db, SQLITE_RANGE, 0);
+ sqlite3_mutex_leave(p->db->mutex);
return SQLITE_RANGE;
}
i--;
@@ -31603,36 +50998,38 @@ static int vdbeUnbind(Vdbe *p, int i){
** Bind a text or BLOB value.
*/
static int bindText(
- sqlite3_stmt *pStmt,
- int i,
- const void *zData,
- int nData,
- void (*xDel)(void*),
- int encoding
+ sqlite3_stmt *pStmt, /* The statement to bind against */
+ int i, /* Index of the parameter to bind */
+ const void *zData, /* Pointer to the data to be bound */
+ int nData, /* Number of bytes of data to be bound */
+ void (*xDel)(void*), /* Destructor for the data */
+ u8 encoding /* Encoding for the data */
){
Vdbe *p = (Vdbe *)pStmt;
Mem *pVar;
int rc;
rc = vdbeUnbind(p, i);
- if( rc || zData==0 ){
- return rc;
- }
- pVar = &p->aVar[i-1];
- rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
- if( rc==SQLITE_OK && encoding!=0 ){
- rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
+ if( rc==SQLITE_OK ){
+ if( zData!=0 ){
+ pVar = &p->aVar[i-1];
+ rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
+ if( rc==SQLITE_OK && encoding!=0 ){
+ rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
+ }
+ sqlite3Error(p->db, rc, 0);
+ rc = sqlite3ApiExit(p->db, rc);
+ }
+ sqlite3_mutex_leave(p->db->mutex);
}
-
- sqlite3Error(((Vdbe *)pStmt)->db, rc, 0);
- return sqlite3ApiExit(((Vdbe *)pStmt)->db, rc);
+ return rc;
}
/*
** Bind a blob value to an SQL statement variable.
*/
-int sqlite3_bind_blob(
+SQLITE_API int sqlite3_bind_blob(
sqlite3_stmt *pStmt,
int i,
const void *zData,
@@ -31641,31 +51038,39 @@ int sqlite3_bind_blob(
){
return bindText(pStmt, i, zData, nData, xDel, 0);
}
-int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
int rc;
Vdbe *p = (Vdbe *)pStmt;
rc = vdbeUnbind(p, i);
if( rc==SQLITE_OK ){
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
+ sqlite3_mutex_leave(p->db->mutex);
}
return rc;
}
-int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
return sqlite3_bind_int64(p, i, (i64)iValue);
}
-int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
int rc;
Vdbe *p = (Vdbe *)pStmt;
rc = vdbeUnbind(p, i);
if( rc==SQLITE_OK ){
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
+ sqlite3_mutex_leave(p->db->mutex);
}
return rc;
}
-int sqlite3_bind_null(sqlite3_stmt* p, int i){
- return vdbeUnbind((Vdbe *)p, i);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
+ int rc;
+ Vdbe *p = (Vdbe*)pStmt;
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
}
-int sqlite3_bind_text(
+SQLITE_API int sqlite3_bind_text(
sqlite3_stmt *pStmt,
int i,
const char *zData,
@@ -31675,7 +51080,7 @@ int sqlite3_bind_text(
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
-int sqlite3_bind_text16(
+SQLITE_API int sqlite3_bind_text16(
sqlite3_stmt *pStmt,
int i,
const void *zData,
@@ -31685,12 +51090,44 @@ int sqlite3_bind_text16(
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
}
#endif /* SQLITE_OMIT_UTF16 */
-int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
+ int rc;
+ switch( pValue->type ){
+ case SQLITE_INTEGER: {
+ rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
+ break;
+ }
+ case SQLITE_FLOAT: {
+ rc = sqlite3_bind_double(pStmt, i, pValue->r);
+ break;
+ }
+ case SQLITE_BLOB: {
+ if( pValue->flags & MEM_Zero ){
+ rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
+ }else{
+ rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
+ }
+ break;
+ }
+ case SQLITE_TEXT: {
+ rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
+ pValue->enc);
+ break;
+ }
+ default: {
+ rc = sqlite3_bind_null(pStmt, i);
+ break;
+ }
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
int rc;
Vdbe *p = (Vdbe *)pStmt;
rc = vdbeUnbind(p, i);
if( rc==SQLITE_OK ){
- sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
+ sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
+ sqlite3_mutex_leave(p->db->mutex);
}
return rc;
}
@@ -31699,7 +51136,7 @@ int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
** Return the number of wildcards that can be potentially bound to.
** This routine is added to support DBD::SQLite.
*/
-int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
Vdbe *p = (Vdbe*)pStmt;
return p ? p->nVar : 0;
}
@@ -31713,13 +51150,20 @@ static void createVarMap(Vdbe *p){
if( !p->okVar ){
int j;
Op *pOp;
+ sqlite3_mutex_enter(p->db->mutex);
+ /* The race condition here is harmless. If two threads call this
+ ** routine on the same Vdbe at the same time, they both might end
+ ** up initializing the Vdbe.azVar[] array. That is a little extra
+ ** work but it results in the same answer.
+ */
for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
if( pOp->opcode==OP_Variable ){
assert( pOp->p1>0 && pOp->p1<=p->nVar );
- p->azVar[pOp->p1-1] = pOp->p3;
+ p->azVar[pOp->p1-1] = pOp->p4.z;
}
}
p->okVar = 1;
+ sqlite3_mutex_leave(p->db->mutex);
}
}
@@ -31729,7 +51173,7 @@ static void createVarMap(Vdbe *p){
**
** The result is always UTF-8.
*/
-const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
Vdbe *p = (Vdbe*)pStmt;
if( p==0 || i<1 || i>p->nVar ){
return 0;
@@ -31743,7 +51187,7 @@ const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
** with that name. If there is no variable with the given name,
** return 0.
*/
-int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
Vdbe *p = (Vdbe*)pStmt;
int i;
if( p==0 ){
@@ -31763,28 +51207,43 @@ int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
/*
** Transfer all bindings from the first statement over to the second.
-** If the two statements contain a different number of bindings, then
-** an SQLITE_ERROR is returned.
*/
-int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
+SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
Vdbe *pFrom = (Vdbe*)pFromStmt;
Vdbe *pTo = (Vdbe*)pToStmt;
- int i, rc = SQLITE_OK;
- if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
- || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) ){
- return SQLITE_MISUSE;
+ int i;
+ assert( pTo->db==pFrom->db );
+ assert( pTo->nVar==pFrom->nVar );
+ sqlite3_mutex_enter(pTo->db->mutex);
+ for(i=0; i<pFrom->nVar; i++){
+ sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
}
+ sqlite3_mutex_leave(pTo->db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Deprecated external interface. Internal/core SQLite code
+** should call sqlite3TransferBindings.
+**
+** Is is misuse to call this routine with statements from different
+** database connections. But as this is a deprecated interface, we
+** will not bother to check for that condition.
+**
+** If the two statements contain a different number of bindings, then
+** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
+** SQLITE_OK is returned.
+*/
+SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
+ Vdbe *pFrom = (Vdbe*)pFromStmt;
+ Vdbe *pTo = (Vdbe*)pToStmt;
if( pFrom->nVar!=pTo->nVar ){
return SQLITE_ERROR;
}
- for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
- sqlite3MallocDisallow();
- rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
- sqlite3MallocAllow();
- }
- assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
- return rc;
+ return sqlite3TransferBindings(pFromStmt, pToStmt);
}
+#endif
/*
** Return the sqlite3* database handle to which the prepared statement given
@@ -31792,10 +51251,38 @@ int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
** the first argument to the sqlite3_prepare() that was used to create
** the statement in the first place.
*/
-sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
return pStmt ? ((Vdbe*)pStmt)->db : 0;
}
+/*
+** Return a pointer to the next prepared statement after pStmt associated
+** with database connection pDb. If pStmt is NULL, return the first
+** prepared statement for the database connection. Return NULL if there
+** are no more.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
+ sqlite3_stmt *pNext;
+ sqlite3_mutex_enter(pDb->mutex);
+ if( pStmt==0 ){
+ pNext = (sqlite3_stmt*)pDb->pVdbe;
+ }else{
+ pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
+ }
+ sqlite3_mutex_leave(pDb->mutex);
+ return pNext;
+}
+
+/*
+** Return the value of a status counter for a prepared statement
+*/
+SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
+ Vdbe *pVdbe = (Vdbe*)pStmt;
+ int v = pVdbe->aCounter[op-1];
+ if( resetFlag ) pVdbe->aCounter[op-1] = 0;
+ return v;
+}
+
/************** End of vdbeapi.c *********************************************/
/************** Begin file vdbe.c ********************************************/
/*
@@ -31822,14 +51309,14 @@ sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
** the VDBE to do the work of the SQL statement. VDBE programs are
** similar in form to assembly language. The program consists of
** a linear sequence of operations. Each operation has an opcode
-** and 3 operands. Operands P1 and P2 are integers. Operand P3
-** is a null-terminated string. The P2 operand must be non-negative.
-** Opcodes will typically ignore one or more operands. Many opcodes
-** ignore all three operands.
-**
-** Computation results are stored on a stack. Each entry on the
-** stack is either an integer, a null-terminated string, a floating point
-** number, or the SQL "NULL" value. An inplicit conversion from one
+** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
+** is a null-terminated string. Operand P5 is an unsigned character.
+** Few opcodes use all 5 operands.
+**
+** Computation results are stored on a set of registers numbered beginning
+** with 1 and going up to Vdbe.nMem. Each register can store
+** either an integer, a null-terminated string, a floating point
+** number, or the SQL "NULL" value. An implicit conversion from one
** type to the other occurs as necessary.
**
** Most of the code in this file is taken up by the sqlite3VdbeExec()
@@ -31843,18 +51330,18 @@ sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
-** $Id: vdbe.c,v 1.600 2007/04/17 08:32:34 danielk1977 Exp $
+** $Id: vdbe.c,v 1.874 2009/07/24 17:58:53 danielk1977 Exp $
*/
/*
** The following global variable is incremented every time a cursor
-** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
+** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
** procedures use this information to make sure that indices are
** working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
-int sqlite3_search_count = 0;
+SQLITE_API int sqlite3_search_count = 0;
#endif
/*
@@ -31866,28 +51353,48 @@ int sqlite3_search_count = 0;
** in an ordinary build.
*/
#ifdef SQLITE_TEST
-int sqlite3_interrupt_count = 0;
+SQLITE_API int sqlite3_interrupt_count = 0;
#endif
/*
** The next global variable is incremented each type the OP_Sort opcode
** is executed. The test procedures use this information to make sure that
-** sorting is occurring or not occuring at appropriate times. This variable
+** sorting is occurring or not occurring at appropriate times. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
-int sqlite3_sort_count = 0;
+SQLITE_API int sqlite3_sort_count = 0;
+#endif
+
+/*
+** The next global variable records the size of the largest MEM_Blob
+** or MEM_Str that has been used by a VDBE opcode. The test procedures
+** use this information to make sure that the zero-blob functionality
+** is working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_max_blobsize = 0;
+static void updateMaxBlobsize(Mem *p){
+ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
+ sqlite3_max_blobsize = p->n;
+ }
+}
#endif
/*
-** Release the memory associated with the given stack level. This
-** leaves the Mem.flags field in an inconsistent state.
+** Test a register to see if it exceeds the current maximum blob size.
+** If it does, record the new maximum blob size.
*/
-#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
+#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
+# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
+#else
+# define UPDATE_MAX_BLOBSIZE(P)
+#endif
/*
-** Convert the given stack entity into a string if it isn't one
+** Convert the given register into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
@@ -31895,40 +51402,14 @@ int sqlite3_sort_count = 0;
{ goto no_mem; }
/*
-** Convert the given stack entity into a string that has been obtained
-** from sqliteMalloc(). This is different from Stringify() above in that
-** Stringify() will use the NBFS bytes of static string space if the string
-** will fit but this routine always mallocs for space.
-** Return non-zero if we run out of memory.
-*/
-#define Dynamicify(P,enc) sqlite3VdbeMemDynamicify(P)
-
-/*
-** The header of a record consists of a sequence variable-length integers.
-** These integers are almost always small and are encoded as a single byte.
-** The following macro takes advantage this fact to provide a fast decode
-** of the integers in a record header. It is faster for the common case
-** where the integer is a single byte. It is a little slower when the
-** integer is two or more bytes. But overall it is faster.
-**
-** The following expressions are equivalent:
-**
-** x = sqlite3GetVarint32( A, &B );
-**
-** x = GetVarint( A, B );
-**
-*/
-#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
-
-/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
-** is responsible for deallocating that string. Because the stack entry
-** does not control the string, it might be deleted without the stack
-** entry knowing it.
+** is responsible for deallocating that string. Because the register
+** does not control the string, it might be deleted without the register
+** knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
-** string that the stack entry itself controls. In other words, it
+** string that the register itself controls. In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
@@ -31936,10 +51417,16 @@ int sqlite3_sort_count = 0;
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
/*
-** Argument pMem points at a memory cell that will be passed to a
+** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
+** P if required.
+*/
+#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
+
+/*
+** Argument pMem points at a register that will be passed to a
** user-defined function or returned to the user as the result of a query.
** The second argument, 'db_enc' is the text encoding used by the vdbe for
-** stack variables. This routine sets the pMem->enc and pMem->type
+** register variables. This routine sets the pMem->enc and pMem->type
** variables used by the sqlite3_value_*() routines.
*/
#define storeTypeInfo(A,B) _storeTypeInfo(A)
@@ -31962,31 +51449,77 @@ static void _storeTypeInfo(Mem *pMem){
}
/*
-** Pop the stack N times.
+** Properties of opcodes. The OPFLG_INITIALIZER macro is
+** created by mkopcodeh.awk during compilation. Data is obtained
+** from the comments following the "case OP_xxxx:" statements in
+** this file.
*/
-static void popStack(Mem **ppTos, int N){
- Mem *pTos = *ppTos;
- while( N>0 ){
- N--;
- Release(pTos);
- pTos--;
- }
- *ppTos = pTos;
+static const unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
+
+/*
+** Return true if an opcode has any of the OPFLG_xxx properties
+** specified by mask.
+*/
+SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
+ assert( opcode>0 && opcode<(int)sizeof(opcodeProperty) );
+ return (opcodeProperty[opcode]&mask)!=0;
}
/*
-** Allocate cursor number iCur. Return a pointer to it. Return NULL
+** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
** if we run out of memory.
*/
-static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
- Cursor *pCx;
+static VdbeCursor *allocateCursor(
+ Vdbe *p, /* The virtual machine */
+ int iCur, /* Index of the new VdbeCursor */
+ int nField, /* Number of fields in the table or index */
+ int iDb, /* When database the cursor belongs to, or -1 */
+ int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
+){
+ /* Find the memory cell that will be used to store the blob of memory
+ ** required for this VdbeCursor structure. It is convenient to use a
+ ** vdbe memory cell to manage the memory allocation required for a
+ ** VdbeCursor structure for the following reasons:
+ **
+ ** * Sometimes cursor numbers are used for a couple of different
+ ** purposes in a vdbe program. The different uses might require
+ ** different sized allocations. Memory cells provide growable
+ ** allocations.
+ **
+ ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
+ ** be freed lazily via the sqlite3_release_memory() API. This
+ ** minimizes the number of malloc calls made by the system.
+ **
+ ** Memory cells for cursors are allocated at the top of the address
+ ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
+ ** cursor 1 is managed by memory cell (p->nMem-1), etc.
+ */
+ Mem *pMem = &p->aMem[p->nMem-iCur];
+
+ int nByte;
+ VdbeCursor *pCx = 0;
+ nByte =
+ sizeof(VdbeCursor) +
+ (isBtreeCursor?sqlite3BtreeCursorSize():0) +
+ 2*nField*sizeof(u32);
+
assert( iCur<p->nCursor );
if( p->apCsr[iCur] ){
sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
+ p->apCsr[iCur] = 0;
}
- p->apCsr[iCur] = pCx = sqliteMalloc( sizeof(Cursor) );
- if( pCx ){
+ if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
+ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
+ memset(pMem->z, 0, nByte);
pCx->iDb = iDb;
+ pCx->nField = nField;
+ if( nField ){
+ pCx->aType = (u32 *)&pMem->z[sizeof(VdbeCursor)];
+ }
+ if( isBtreeCursor ){
+ pCx->pCursor = (BtCursor*)
+ &pMem->z[sizeof(VdbeCursor)+2*nField*sizeof(u32)];
+ }
}
return pCx;
}
@@ -32005,10 +51538,9 @@ static void applyNumericAffinity(Mem *pRec){
&& sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
i64 value;
sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
- if( !realnum && sqlite3atoi64(pRec->z, &value) ){
- sqlite3VdbeMemRelease(pRec);
+ if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
pRec->u.i = value;
- pRec->flags = MEM_Int;
+ MemSetTypeFlag(pRec, MEM_Int);
}else{
sqlite3VdbeMemRealify(pRec);
}
@@ -32034,7 +51566,11 @@ static void applyNumericAffinity(Mem *pRec){
** SQLITE_AFF_NONE:
** No-op. pRec is unchanged.
*/
-static void applyAffinity(Mem *pRec, char affinity, u8 enc){
+static void applyAffinity(
+ Mem *pRec, /* The value to apply affinity to */
+ char affinity, /* The affinity to be applied */
+ u8 enc /* Use this text encoding */
+){
if( affinity==SQLITE_AFF_TEXT ){
/* Only attempt the conversion to TEXT if there is an integer or real
** representation (blob and NULL do not get converted) but no string
@@ -32062,7 +51598,7 @@ static void applyAffinity(Mem *pRec, char affinity, u8 enc){
**
** This is an EXPERIMENTAL api and is subject to change or removal.
*/
-int sqlite3_value_numeric_type(sqlite3_value *pVal){
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
Mem *pMem = (Mem*)pVal;
applyNumericAffinity(pMem);
storeTypeInfo(pMem, 0);
@@ -32073,7 +51609,11 @@ int sqlite3_value_numeric_type(sqlite3_value *pVal){
** Exported version of applyAffinity(). This one works on sqlite3_value*,
** not the internal Mem* type.
*/
-void sqlite3ValueApplyAffinity(sqlite3_value *pVal, u8 affinity, u8 enc){
+SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
+ sqlite3_value *pVal,
+ u8 affinity,
+ u8 enc
+){
applyAffinity((Mem *)pVal, affinity, enc);
}
@@ -32082,7 +51622,7 @@ void sqlite3ValueApplyAffinity(sqlite3_value *pVal, u8 affinity, u8 enc){
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
-void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
char *zCsr = zBuf;
int f = pMem->flags;
@@ -32104,10 +51644,13 @@ void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
c = 's';
}
- zCsr += sprintf(zCsr, "%c", c);
- zCsr += sprintf(zCsr, "%d[", pMem->n);
+ sqlite3_snprintf(100, zCsr, "%c", c);
+ zCsr += sqlite3Strlen30(zCsr);
+ sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
+ zCsr += sqlite3Strlen30(zCsr);
for(i=0; i<16 && i<pMem->n; i++){
- zCsr += sprintf(zCsr, "%02X ", ((int)pMem->z[i] & 0xFF));
+ sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
+ zCsr += sqlite3Strlen30(zCsr);
}
for(i=0; i<16 && i<pMem->n; i++){
char z = pMem->z[i];
@@ -32115,7 +51658,12 @@ void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
else *zCsr++ = z;
}
- zCsr += sprintf(zCsr, "]");
+ sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
+ zCsr += sqlite3Strlen30(zCsr);
+ if( f & MEM_Zero ){
+ sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
+ zCsr += sqlite3Strlen30(zCsr);
+ }
*zCsr = '\0';
}else if( f & MEM_Str ){
int j, k;
@@ -32133,7 +51681,8 @@ void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
zBuf[1] = 's';
}
k = 2;
- k += sprintf(&zBuf[k], "%d", pMem->n);
+ sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
+ k += sqlite3Strlen30(&zBuf[k]);
zBuf[k++] = '[';
for(j=0; j<15 && j<pMem->n; j++){
u8 c = pMem->z[j];
@@ -32144,27 +51693,150 @@ void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
}
}
zBuf[k++] = ']';
- k += sprintf(&zBuf[k], encnames[pMem->enc]);
+ sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
+ k += sqlite3Strlen30(&zBuf[k]);
zBuf[k++] = 0;
}
}
#endif
+#ifdef SQLITE_DEBUG
+/*
+** Print the value of a register for tracing purposes:
+*/
+static void memTracePrint(FILE *out, Mem *p){
+ if( p->flags & MEM_Null ){
+ fprintf(out, " NULL");
+ }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
+ fprintf(out, " si:%lld", p->u.i);
+ }else if( p->flags & MEM_Int ){
+ fprintf(out, " i:%lld", p->u.i);
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( p->flags & MEM_Real ){
+ fprintf(out, " r:%g", p->r);
+#endif
+ }else if( p->flags & MEM_RowSet ){
+ fprintf(out, " (rowset)");
+ }else{
+ char zBuf[200];
+ sqlite3VdbeMemPrettyPrint(p, zBuf);
+ fprintf(out, " ");
+ fprintf(out, "%s", zBuf);
+ }
+}
+static void registerTrace(FILE *out, int iReg, Mem *p){
+ fprintf(out, "REG[%d] = ", iReg);
+ memTracePrint(out, p);
+ fprintf(out, "\n");
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
+#else
+# define REGISTER_TRACE(R,M)
+#endif
+
#ifdef VDBE_PROFILE
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of vdbe.c *********************/
+/************** Begin file hwtime.h ******************************************/
/*
-** The following routine only works on pentium-class processors.
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 class CPUs.
+**
+** $Id: hwtime.h,v 1.3 2008/08/01 14:33:15 shane Exp $
+*/
+#ifndef _HWTIME_H_
+#define _HWTIME_H_
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
** It uses the RDTSC opcode to read the cycle count value out of the
** processor and returns that value. This can be used for high-res
** profiling.
*/
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
+#if (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ #error Need implementation of sqlite3Hwtime() for your platform.
+
+ /*
+ ** To compile without implementing sqlite3Hwtime() for your platform,
+ ** you can remove the above #error and use the following
+ ** stub function. You will lose timing support for many
+ ** of the debugging and testing utilities, but it should at
+ ** least compile and run.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(_HWTIME_H_) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in vdbe.c ***********************/
+
#endif
/*
@@ -32180,6 +51852,42 @@ __inline__ unsigned long long int hwtime(void){
#define CHECK_FOR_INTERRUPT \
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
+#ifdef SQLITE_DEBUG
+static int fileExists(sqlite3 *db, const char *zFile){
+ int res = 0;
+ int rc = SQLITE_OK;
+#ifdef SQLITE_TEST
+ /* If we are currently testing IO errors, then do not call OsAccess() to
+ ** test for the presence of zFile. This is because any IO error that
+ ** occurs here will not be reported, causing the test to fail.
+ */
+ extern int sqlite3_io_error_pending;
+ if( sqlite3_io_error_pending<=0 )
+#endif
+ rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
+ return (res && rc==SQLITE_OK);
+}
+#endif
+
+#ifndef NDEBUG
+/*
+** This function is only called from within an assert() expression. It
+** checks that the sqlite3.nTransaction variable is correctly set to
+** the number of non-transaction savepoints currently in the
+** linked list starting at sqlite3.pSavepoint.
+**
+** Usage:
+**
+** assert( checkSavepointCount(db) );
+*/
+static int checkSavepointCount(sqlite3 *db){
+ int n = 0;
+ Savepoint *p;
+ for(p=db->pSavepoint; p; p=p->pNext) n++;
+ assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
+ return 1;
+}
+#endif
/*
** Execute as much of a VDBE program as we can then return.
@@ -32197,7 +51905,7 @@ __inline__ unsigned long long int hwtime(void){
** return SQLITE_BUSY.
**
** If an error occurs, an error message is written to memory obtained
-** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
+** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
**
** If the callback ever returns non-zero, then the program exits
@@ -32212,7 +51920,7 @@ __inline__ unsigned long long int hwtime(void){
** After this routine has finished, sqlite3VdbeFinalize() should be
** used to clean up the mess that was left behind.
*/
-int sqlite3VdbeExec(
+SQLITE_PRIVATE int sqlite3VdbeExec(
Vdbe *p /* The VDBE */
){
int pc; /* The program counter */
@@ -32220,21 +51928,430 @@ int sqlite3VdbeExec(
int rc = SQLITE_OK; /* Value to return */
sqlite3 *db = p->db; /* The database */
u8 encoding = ENC(db); /* The database encoding */
- Mem *pTos; /* Top entry in the operand stack */
+ Mem *pIn1 = 0; /* 1st input operand */
+ Mem *pIn2 = 0; /* 2nd input operand */
+ Mem *pIn3 = 0; /* 3rd input operand */
+ Mem *pOut = 0; /* Output operand */
+ u8 opProperty;
+ int iCompare = 0; /* Result of last OP_Compare operation */
+ int *aPermute = 0; /* Permutation of columns for OP_Compare */
#ifdef VDBE_PROFILE
- unsigned long long start; /* CPU clock count at start of opcode */
+ u64 start; /* CPU clock count at start of opcode */
int origPc; /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
int nProgressOps = 0; /* Opcodes executed since progress callback. */
#endif
-#ifndef NDEBUG
- Mem *pStackLimit;
-#endif
+ /********************************************************************
+ ** Automatically generated code
+ **
+ ** The following union is automatically generated by the
+ ** vdbe-compress.tcl script. The purpose of this union is to
+ ** reduce the amount of stack space required by this function.
+ ** See comments in the vdbe-compress.tcl script for details.
+ */
+ union vdbeExecUnion {
+ struct OP_Yield_stack_vars {
+ int pcDest;
+ } aa;
+ struct OP_Variable_stack_vars {
+ int p1; /* Variable to copy from */
+ int p2; /* Register to copy to */
+ int n; /* Number of values left to copy */
+ Mem *pVar; /* Value being transferred */
+ } ab;
+ struct OP_Move_stack_vars {
+ char *zMalloc; /* Holding variable for allocated memory */
+ int n; /* Number of registers left to copy */
+ int p1; /* Register to copy from */
+ int p2; /* Register to copy to */
+ } ac;
+ struct OP_ResultRow_stack_vars {
+ Mem *pMem;
+ int i;
+ } ad;
+ struct OP_Concat_stack_vars {
+ i64 nByte;
+ } ae;
+ struct OP_Remainder_stack_vars {
+ int flags; /* Combined MEM_* flags from both inputs */
+ i64 iA; /* Integer value of left operand */
+ i64 iB; /* Integer value of right operand */
+ double rA; /* Real value of left operand */
+ double rB; /* Real value of right operand */
+ } af;
+ struct OP_Function_stack_vars {
+ int i;
+ Mem *pArg;
+ sqlite3_context ctx;
+ sqlite3_value **apVal;
+ int n;
+ } ag;
+ struct OP_ShiftRight_stack_vars {
+ i64 a;
+ i64 b;
+ } ah;
+ struct OP_Ge_stack_vars {
+ int flags;
+ int res;
+ char affinity;
+ } ai;
+ struct OP_Compare_stack_vars {
+ int n;
+ int i;
+ int p1;
+ int p2;
+ const KeyInfo *pKeyInfo;
+ int idx;
+ CollSeq *pColl; /* Collating sequence to use on this term */
+ int bRev; /* True for DESCENDING sort order */
+ } aj;
+ struct OP_Or_stack_vars {
+ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+ } ak;
+ struct OP_IfNot_stack_vars {
+ int c;
+ } al;
+ struct OP_Column_stack_vars {
+ u32 payloadSize; /* Number of bytes in the record */
+ i64 payloadSize64; /* Number of bytes in the record */
+ int p1; /* P1 value of the opcode */
+ int p2; /* column number to retrieve */
+ VdbeCursor *pC; /* The VDBE cursor */
+ char *zRec; /* Pointer to complete record-data */
+ BtCursor *pCrsr; /* The BTree cursor */
+ u32 *aType; /* aType[i] holds the numeric type of the i-th column */
+ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
+ int nField; /* number of fields in the record */
+ int len; /* The length of the serialized data for the column */
+ int i; /* Loop counter */
+ char *zData; /* Part of the record being decoded */
+ Mem *pDest; /* Where to write the extracted value */
+ Mem sMem; /* For storing the record being decoded */
+ u8 *zIdx; /* Index into header */
+ u8 *zEndHdr; /* Pointer to first byte after the header */
+ u32 offset; /* Offset into the data */
+ u64 offset64; /* 64-bit offset. 64 bits needed to catch overflow */
+ int szHdr; /* Size of the header size field at start of record */
+ int avail; /* Number of bytes of available data */
+ Mem *pReg; /* PseudoTable input register */
+ } am;
+ struct OP_Affinity_stack_vars {
+ char *zAffinity; /* The affinity to be applied */
+ Mem *pData0; /* First register to which to apply affinity */
+ Mem *pLast; /* Last register to which to apply affinity */
+ Mem *pRec; /* Current register */
+ } an;
+ struct OP_MakeRecord_stack_vars {
+ u8 *zNewRecord; /* A buffer to hold the data for the new record */
+ Mem *pRec; /* The new record */
+ u64 nData; /* Number of bytes of data space */
+ int nHdr; /* Number of bytes of header space */
+ i64 nByte; /* Data space required for this record */
+ int nZero; /* Number of zero bytes at the end of the record */
+ int nVarint; /* Number of bytes in a varint */
+ u32 serial_type; /* Type field */
+ Mem *pData0; /* First field to be combined into the record */
+ Mem *pLast; /* Last field of the record */
+ int nField; /* Number of fields in the record */
+ char *zAffinity; /* The affinity string for the record */
+ int file_format; /* File format to use for encoding */
+ int i; /* Space used in zNewRecord[] */
+ int len; /* Length of a field */
+ } ao;
+ struct OP_Count_stack_vars {
+ i64 nEntry;
+ BtCursor *pCrsr;
+ } ap;
+ struct OP_Savepoint_stack_vars {
+ int p1; /* Value of P1 operand */
+ char *zName; /* Name of savepoint */
+ int nName;
+ Savepoint *pNew;
+ Savepoint *pSavepoint;
+ Savepoint *pTmp;
+ int iSavepoint;
+ int ii;
+ } aq;
+ struct OP_AutoCommit_stack_vars {
+ int desiredAutoCommit;
+ int iRollback;
+ int turnOnAC;
+ } ar;
+ struct OP_Transaction_stack_vars {
+ Btree *pBt;
+ } as;
+ struct OP_ReadCookie_stack_vars {
+ int iMeta;
+ int iDb;
+ int iCookie;
+ } at;
+ struct OP_SetCookie_stack_vars {
+ Db *pDb;
+ } au;
+ struct OP_VerifyCookie_stack_vars {
+ int iMeta;
+ Btree *pBt;
+ } av;
+ struct OP_OpenWrite_stack_vars {
+ int nField;
+ KeyInfo *pKeyInfo;
+ int p2;
+ int iDb;
+ int wrFlag;
+ Btree *pX;
+ VdbeCursor *pCur;
+ Db *pDb;
+ } aw;
+ struct OP_OpenEphemeral_stack_vars {
+ VdbeCursor *pCx;
+ } ax;
+ struct OP_OpenPseudo_stack_vars {
+ VdbeCursor *pCx;
+ } ay;
+ struct OP_SeekGt_stack_vars {
+ int res;
+ int oc;
+ VdbeCursor *pC;
+ UnpackedRecord r;
+ int nField;
+ i64 iKey; /* The rowid we are to seek to */
+ } az;
+ struct OP_Seek_stack_vars {
+ VdbeCursor *pC;
+ } ba;
+ struct OP_Found_stack_vars {
+ int alreadyExists;
+ VdbeCursor *pC;
+ int res;
+ UnpackedRecord *pIdxKey;
+ char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
+ } bb;
+ struct OP_IsUnique_stack_vars {
+ u16 ii;
+ VdbeCursor *pCx;
+ BtCursor *pCrsr;
+ u16 nField;
+ Mem *aMem;
+ UnpackedRecord r; /* B-Tree index search key */
+ i64 R; /* Rowid stored in register P3 */
+ } bc;
+ struct OP_NotExists_stack_vars {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ u64 iKey;
+ } bd;
+ struct OP_NewRowid_stack_vars {
+ i64 v; /* The new rowid */
+ VdbeCursor *pC; /* Cursor of table to get the new rowid */
+ int res; /* Result of an sqlite3BtreeLast() */
+ int cnt; /* Counter to limit the number of searches */
+ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
+ VdbeFrame *pFrame; /* Root frame of VDBE */
+ } be;
+ struct OP_Insert_stack_vars {
+ Mem *pData; /* MEM cell holding data for the record to be inserted */
+ Mem *pKey; /* MEM cell holding key for the record */
+ i64 iKey; /* The integer ROWID or key for the record to be inserted */
+ VdbeCursor *pC; /* Cursor to table into which insert is written */
+ int nZero; /* Number of zero-bytes to append */
+ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
+ const char *zDb; /* database name - used by the update hook */
+ const char *zTbl; /* Table name - used by the opdate hook */
+ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
+ } bf;
+ struct OP_Delete_stack_vars {
+ i64 iKey;
+ VdbeCursor *pC;
+ } bg;
+ struct OP_RowData_stack_vars {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ u32 n;
+ i64 n64;
+ } bh;
+ struct OP_Rowid_stack_vars {
+ VdbeCursor *pC;
+ i64 v;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ } bi;
+ struct OP_NullRow_stack_vars {
+ VdbeCursor *pC;
+ } bj;
+ struct OP_Last_stack_vars {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ } bk;
+ struct OP_Rewind_stack_vars {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ } bl;
+ struct OP_Next_stack_vars {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ } bm;
+ struct OP_IdxInsert_stack_vars {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int nKey;
+ const char *zKey;
+ } bn;
+ struct OP_IdxDelete_stack_vars {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ UnpackedRecord r;
+ } bo;
+ struct OP_IdxRowid_stack_vars {
+ BtCursor *pCrsr;
+ VdbeCursor *pC;
+ i64 rowid;
+ } bp;
+ struct OP_IdxGE_stack_vars {
+ VdbeCursor *pC;
+ int res;
+ UnpackedRecord r;
+ } bq;
+ struct OP_Destroy_stack_vars {
+ int iMoved;
+ int iCnt;
+ Vdbe *pVdbe;
+ int iDb;
+ } br;
+ struct OP_Clear_stack_vars {
+ int nChange;
+ } bs;
+ struct OP_CreateTable_stack_vars {
+ int pgno;
+ int flags;
+ Db *pDb;
+ } bt;
+ struct OP_ParseSchema_stack_vars {
+ int iDb;
+ const char *zMaster;
+ char *zSql;
+ InitData initData;
+ } bu;
+ struct OP_IntegrityCk_stack_vars {
+ int nRoot; /* Number of tables to check. (Number of root pages.) */
+ int *aRoot; /* Array of rootpage numbers for tables to be checked */
+ int j; /* Loop counter */
+ int nErr; /* Number of errors reported */
+ char *z; /* Text of the error report */
+ Mem *pnErr; /* Register keeping track of errors remaining */
+ } bv;
+ struct OP_RowSetAdd_stack_vars {
+ Mem *pIdx;
+ Mem *pVal;
+ } bw;
+ struct OP_RowSetRead_stack_vars {
+ Mem *pIdx;
+ i64 val;
+ } bx;
+ struct OP_RowSetTest_stack_vars {
+ int iSet;
+ int exists;
+ } by;
+ struct OP_Program_stack_vars {
+ int nMem; /* Number of memory registers for sub-program */
+ int nByte; /* Bytes of runtime space required for sub-program */
+ Mem *pRt; /* Register to allocate runtime space */
+ Mem *pMem; /* Used to iterate through memory cells */
+ Mem *pEnd; /* Last memory cell in new array */
+ VdbeFrame *pFrame; /* New vdbe frame to execute in */
+ SubProgram *pProgram; /* Sub-program to execute */
+ void *t; /* Token identifying trigger */
+ } bz;
+ struct OP_Param_stack_vars {
+ VdbeFrame *pFrame;
+ Mem *pIn;
+ } ca;
+ struct OP_MemMax_stack_vars {
+ Mem *pIn1;
+ VdbeFrame *pFrame;
+ } cb;
+ struct OP_AggStep_stack_vars {
+ int n;
+ int i;
+ Mem *pMem;
+ Mem *pRec;
+ sqlite3_context ctx;
+ sqlite3_value **apVal;
+ } cc;
+ struct OP_AggFinal_stack_vars {
+ Mem *pMem;
+ } cd;
+ struct OP_IncrVacuum_stack_vars {
+ Btree *pBt;
+ } ce;
+ struct OP_VBegin_stack_vars {
+ VTable *pVTab;
+ } cf;
+ struct OP_VOpen_stack_vars {
+ VdbeCursor *pCur;
+ sqlite3_vtab_cursor *pVtabCursor;
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pModule;
+ } cg;
+ struct OP_VFilter_stack_vars {
+ int nArg;
+ int iQuery;
+ const sqlite3_module *pModule;
+ Mem *pQuery;
+ Mem *pArgc;
+ sqlite3_vtab_cursor *pVtabCursor;
+ sqlite3_vtab *pVtab;
+ VdbeCursor *pCur;
+ int res;
+ int i;
+ Mem **apArg;
+ } ch;
+ struct OP_VColumn_stack_vars {
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ Mem *pDest;
+ sqlite3_context sContext;
+ } ci;
+ struct OP_VNext_stack_vars {
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ int res;
+ VdbeCursor *pCur;
+ } cj;
+ struct OP_VRename_stack_vars {
+ sqlite3_vtab *pVtab;
+ Mem *pName;
+ } ck;
+ struct OP_VUpdate_stack_vars {
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pModule;
+ int nArg;
+ int i;
+ sqlite_int64 rowid;
+ Mem **apArg;
+ Mem *pX;
+ } cl;
+ struct OP_Pagecount_stack_vars {
+ int p1;
+ int nPage;
+ Pager *pPager;
+ } cm;
+ struct OP_Trace_stack_vars {
+ char *zTrace;
+ } cn;
+ } u;
+ /* End automatically generated code
+ ********************************************************************/
- if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
assert( db->magic==SQLITE_MAGIC_BUSY );
- pTos = p->pTos;
+ sqlite3VdbeMutexArrayEnter(p);
if( p->rc==SQLITE_NOMEM ){
/* This happens if a malloc() inside a call to sqlite3_column_text() or
** sqlite3_column_text16() failed. */
@@ -32243,17 +52360,14 @@ int sqlite3VdbeExec(
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
p->rc = SQLITE_OK;
assert( p->explain==0 );
- if( p->popStack ){
- popStack(&pTos, p->popStack);
- p->popStack = 0;
- }
- p->resOnStack = 0;
+ p->pResultSet = 0;
db->busyHandler.nBusy = 0;
CHECK_FOR_INTERRUPT;
sqlite3VdbeIOTraceSql(p);
#ifdef SQLITE_DEBUG
- if( (p->db->flags & SQLITE_VdbeListing)!=0
- || sqlite3OsFileExists("vdbe_explain")
+ sqlite3BeginBenignMalloc();
+ if( p->pc==0
+ && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
){
int i;
printf("VDBE Program Listing:\n");
@@ -32262,17 +52376,17 @@ int sqlite3VdbeExec(
sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
}
}
- if( sqlite3OsFileExists("vdbe_trace") ){
+ if( fileExists(db, "vdbe_trace") ){
p->trace = stdout;
}
+ sqlite3EndBenignMalloc();
#endif
for(pc=p->pc; rc==SQLITE_OK; pc++){
assert( pc>=0 && pc<p->nOp );
- assert( pTos<=&p->aStack[pc] );
- if( sqlite3MallocFailed() ) goto no_mem;
+ if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
origPc = pc;
- start = hwtime();
+ start = sqlite3Hwtime();
#endif
pOp = &p->aOp[pc];
@@ -32286,8 +52400,12 @@ int sqlite3VdbeExec(
}
sqlite3VdbePrintOp(p->trace, pc, pOp);
}
- if( p->trace==0 && pc==0 && sqlite3OsFileExists("vdbe_sqltrace") ){
- sqlite3VdbePrintSql(p);
+ if( p->trace==0 && pc==0 ){
+ sqlite3BeginBenignMalloc();
+ if( fileExists(db, "vdbe_sqltrace") ){
+ sqlite3VdbePrintSql(p);
+ }
+ sqlite3EndBenignMalloc();
}
#endif
@@ -32313,35 +52431,79 @@ int sqlite3VdbeExec(
*/
if( db->xProgress ){
if( db->nProgressOps==nProgressOps ){
+ int prc;
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- if( db->xProgress(db->pProgressArg)!=0 ){
- sqlite3SafetyOn(db);
- rc = SQLITE_ABORT;
- continue; /* skip to the next iteration of the for loop */
+ prc =db->xProgress(db->pProgressArg);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ if( prc!=0 ){
+ rc = SQLITE_INTERRUPT;
+ goto vdbe_error_halt;
}
nProgressOps = 0;
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
}
nProgressOps++;
}
#endif
-#ifndef NDEBUG
- /* This is to check that the return value of static function
- ** opcodeNoPush() (see vdbeaux.c) returns values that match the
- ** implementation of the virtual machine in this file. If
- ** opcodeNoPush() returns non-zero, then the stack is guarenteed
- ** not to grow when the opcode is executed. If it returns zero, then
- ** the stack may grow by at most 1.
+ /* Do common setup processing for any opcode that is marked
+ ** with the "out2-prerelease" tag. Such opcodes have a single
+ ** output which is specified by the P2 parameter. The P2 register
+ ** is initialized to a NULL.
+ */
+ opProperty = opcodeProperty[pOp->opcode];
+ if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pOut = &p->aMem[pOp->p2];
+ sqlite3VdbeMemReleaseExternal(pOut);
+ pOut->flags = MEM_Null;
+ pOut->n = 0;
+ }else
+
+ /* Do common setup for opcodes marked with one of the following
+ ** combinations of properties.
+ **
+ ** in1
+ ** in1 in2
+ ** in1 in2 out3
+ ** in1 in3
**
- ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not
- ** available if NDEBUG is defined at build time.
- */
- pStackLimit = pTos;
- if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){
- pStackLimit++;
+ ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
+ ** registers for inputs. Variable pOut points to the output register.
+ */
+ if( (opProperty & OPFLG_IN1)!=0 ){
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ pIn1 = &p->aMem[pOp->p1];
+ REGISTER_TRACE(pOp->p1, pIn1);
+ if( (opProperty & OPFLG_IN2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pIn2 = &p->aMem[pOp->p2];
+ REGISTER_TRACE(pOp->p2, pIn2);
+ /* As currently implemented, in2 implies out3. There is no reason
+ ** why this has to be, it just worked out that way. */
+ assert( (opProperty & OPFLG_OUT3)!=0 );
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=p->nMem );
+ pOut = &p->aMem[pOp->p3];
+ }else if( (opProperty & OPFLG_IN3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=p->nMem );
+ pIn3 = &p->aMem[pOp->p3];
+ REGISTER_TRACE(pOp->p3, pIn3);
+ }
+ }else if( (opProperty & OPFLG_IN2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pIn2 = &p->aMem[pOp->p2];
+ REGISTER_TRACE(pOp->p2, pIn2);
+ }else if( (opProperty & OPFLG_IN3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=p->nMem );
+ pIn3 = &p->aMem[pOp->p3];
+ REGISTER_TRACE(pOp->p3, pIn3);
}
-#endif
switch( pOp->opcode ){
@@ -32363,10 +52525,10 @@ int sqlite3VdbeExec(
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
-** If a comment on the same line as the "case OP_" construction contains
-** the word "no-push", then the opcode is guarenteed not to grow the
-** vdbe stack when it is executed. See function opcode() in
-** vdbeaux.c for details.
+** Other keywords in the comment that follows each case are used to
+** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
+** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
+** the mkopcodeh.awk script for additional information.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:". That line and all subsequent
@@ -32380,52 +52542,77 @@ int sqlite3VdbeExec(
**
*****************************************************************************/
-/* Opcode: Goto * P2 *
+/* Opcode: Goto * P2 * * *
**
** An unconditional jump to address P2.
** The next instruction executed will be
** the one at index P2 from the beginning of
** the program.
*/
-case OP_Goto: { /* no-push */
+case OP_Goto: { /* jump */
CHECK_FOR_INTERRUPT;
pc = pOp->p2 - 1;
break;
}
-/* Opcode: Gosub * P2 *
+/* Opcode: Gosub P1 P2 * * *
**
-** Push the current address plus 1 onto the return address stack
+** Write the current address onto register P1
** and then jump to address P2.
-**
-** The return address stack is of limited depth. If too many
-** OP_Gosub operations occur without intervening OP_Returns, then
-** the return address stack will fill up and processing will abort
-** with a fatal error.
*/
-case OP_Gosub: { /* no-push */
- assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
- p->returnStack[p->returnDepth++] = pc+1;
+case OP_Gosub: { /* jump */
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ pIn1 = &p->aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Dyn)==0 );
+ pIn1->flags = MEM_Int;
+ pIn1->u.i = pc;
+ REGISTER_TRACE(pOp->p1, pIn1);
pc = pOp->p2 - 1;
break;
}
-/* Opcode: Return * * *
+/* Opcode: Return P1 * * * *
**
-** Jump immediately to the next instruction after the last unreturned
-** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
-** processing aborts with a fatal error.
+** Jump to the next instruction after the address in register P1.
*/
-case OP_Return: { /* no-push */
- assert( p->returnDepth>0 );
- p->returnDepth--;
- pc = p->returnStack[p->returnDepth] - 1;
+case OP_Return: { /* in1 */
+ assert( pIn1->flags & MEM_Int );
+ pc = (int)pIn1->u.i;
break;
}
-/* Opcode: Halt P1 P2 P3
+/* Opcode: Yield P1 * * * *
**
-** Exit immediately. All open cursors, Fifos, etc are closed
+** Swap the program counter with the value in register P1.
+*/
+case OP_Yield: { /* in1 */
+#if 0 /* local variables moved into u.aa */
+ int pcDest;
+#endif /* local variables moved into u.aa */
+ assert( (pIn1->flags & MEM_Dyn)==0 );
+ pIn1->flags = MEM_Int;
+ u.aa.pcDest = (int)pIn1->u.i;
+ pIn1->u.i = pc;
+ REGISTER_TRACE(pOp->p1, pIn1);
+ pc = u.aa.pcDest;
+ break;
+}
+
+/* Opcode: HaltIfNull P1 P2 P3 P4 *
+**
+** Check the value in register P3. If is is NULL then Halt using
+** parameter P1, P2, and P4 as if this were a Halt instruction. If the
+** value in register P3 is not NULL, then this routine is a no-op.
+*/
+case OP_HaltIfNull: { /* in3 */
+ if( (pIn3->flags & MEM_Null)==0 ) break;
+ /* Fall through into OP_Halt */
+}
+
+/* Opcode: Halt P1 P2 * P4 *
+**
+** Exit immediately. All open cursors, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
@@ -32436,530 +52623,496 @@ case OP_Return: { /* no-push */
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction.
**
-** If P3 is not null then it is an error message string.
+** If P4 is not null then it is an error message string.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program. So a jump past the last instruction of the program
** is the same as executing Halt.
*/
-case OP_Halt: { /* no-push */
- p->pTos = pTos;
+case OP_Halt: {
+ if( pOp->p1==SQLITE_OK && p->pFrame ){
+ /* Halt the sub-program. Return control to the parent frame. */
+ VdbeFrame *pFrame = p->pFrame;
+ p->pFrame = pFrame->pParent;
+ p->nFrame--;
+ sqlite3VdbeSetChanges(db, p->nChange);
+ pc = sqlite3VdbeFrameRestore(pFrame);
+ if( pOp->p2==OE_Ignore ){
+ /* Instruction pc is the OP_Program that invoked the sub-program
+ ** currently being halted. If the p2 instruction of this OP_Halt
+ ** instruction is set to OE_Ignore, then the sub-program is throwing
+ ** an IGNORE exception. In this case jump to the address specified
+ ** as the p2 of the calling OP_Program. */
+ pc = p->aOp[pc].p2-1;
+ }
+ break;
+ }
+
p->rc = pOp->p1;
+ p->errorAction = (u8)pOp->p2;
p->pc = pc;
- p->errorAction = pOp->p2;
- if( pOp->p3 ){
- sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
+ if( pOp->p4.z ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
}
rc = sqlite3VdbeHalt(p);
assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
if( rc==SQLITE_BUSY ){
- p->rc = SQLITE_BUSY;
- return SQLITE_BUSY;
+ p->rc = rc = SQLITE_BUSY;
+ }else{
+ rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
}
- return p->rc ? SQLITE_ERROR : SQLITE_DONE;
+ goto vdbe_return;
}
-/* Opcode: Integer P1 * *
+/* Opcode: Integer P1 P2 * * *
**
-** The 32-bit integer value P1 is pushed onto the stack.
+** The 32-bit integer value P1 is written into register P2.
*/
-case OP_Integer: {
- pTos++;
- pTos->flags = MEM_Int;
- pTos->u.i = pOp->p1;
+case OP_Integer: { /* out2-prerelease */
+ pOut->flags = MEM_Int;
+ pOut->u.i = pOp->p1;
break;
}
-/* Opcode: Int64 * * P3
+/* Opcode: Int64 * P2 * P4 *
**
-** P3 is a string representation of an integer. Convert that integer
-** to a 64-bit value and push it onto the stack.
+** P4 is a pointer to a 64-bit integer value.
+** Write that value into register P2.
*/
-case OP_Int64: {
- pTos++;
- assert( pOp->p3!=0 );
- pTos->flags = MEM_Str|MEM_Static|MEM_Term;
- pTos->z = pOp->p3;
- pTos->n = strlen(pTos->z);
- pTos->enc = SQLITE_UTF8;
- pTos->u.i = sqlite3VdbeIntValue(pTos);
- pTos->flags |= MEM_Int;
+case OP_Int64: { /* out2-prerelease */
+ assert( pOp->p4.pI64!=0 );
+ pOut->flags = MEM_Int;
+ pOut->u.i = *pOp->p4.pI64;
break;
}
-/* Opcode: Real * * P3
+/* Opcode: Real * P2 * P4 *
**
-** The string value P3 is converted to a real and pushed on to the stack.
+** P4 is a pointer to a 64-bit floating point value.
+** Write that value into register P2.
*/
-case OP_Real: { /* same as TK_FLOAT, */
- pTos++;
- pTos->flags = MEM_Str|MEM_Static|MEM_Term;
- pTos->z = pOp->p3;
- pTos->n = strlen(pTos->z);
- pTos->enc = SQLITE_UTF8;
- pTos->r = sqlite3VdbeRealValue(pTos);
- pTos->flags |= MEM_Real;
- sqlite3VdbeChangeEncoding(pTos, encoding);
+case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
+ pOut->flags = MEM_Real;
+ assert( !sqlite3IsNaN(*pOp->p4.pReal) );
+ pOut->r = *pOp->p4.pReal;
break;
}
-/* Opcode: String8 * * P3
+/* Opcode: String8 * P2 * P4 *
**
-** P3 points to a nul terminated UTF-8 string. This opcode is transformed
+** P4 points to a nul terminated UTF-8 string. This opcode is transformed
** into an OP_String before it is executed for the first time.
*/
-case OP_String8: { /* same as TK_STRING */
- assert( pOp->p3!=0 );
+case OP_String8: { /* same as TK_STRING, out2-prerelease */
+ assert( pOp->p4.z!=0 );
pOp->opcode = OP_String;
- pOp->p1 = strlen(pOp->p3);
+ pOp->p1 = sqlite3Strlen30(pOp->p4.z);
#ifndef SQLITE_OMIT_UTF16
if( encoding!=SQLITE_UTF8 ){
- pTos++;
- sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
- if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
- if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
- pTos->flags &= ~(MEM_Dyn);
- pTos->flags |= MEM_Static;
- if( pOp->p3type==P3_DYNAMIC ){
- sqliteFree(pOp->p3);
- }
- pOp->p3type = P3_DYNAMIC;
- pOp->p3 = pTos->z;
- pOp->p1 = pTos->n;
- break;
+ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
+ if( rc==SQLITE_TOOBIG ) goto too_big;
+ if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
+ assert( pOut->zMalloc==pOut->z );
+ assert( pOut->flags & MEM_Dyn );
+ pOut->zMalloc = 0;
+ pOut->flags |= MEM_Static;
+ pOut->flags &= ~MEM_Dyn;
+ if( pOp->p4type==P4_DYNAMIC ){
+ sqlite3DbFree(db, pOp->p4.z);
+ }
+ pOp->p4type = P4_DYNAMIC;
+ pOp->p4.z = pOut->z;
+ pOp->p1 = pOut->n;
}
#endif
- /* Otherwise fall through to the next case, OP_String */
+ if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ /* Fall through to the next case, OP_String */
}
-/* Opcode: String P1 * P3
+/* Opcode: String P1 P2 * P4 *
**
-** The string value P3 of length P1 (bytes) is pushed onto the stack.
+** The string value P4 of length P1 (bytes) is stored in register P2.
*/
-case OP_String: {
- pTos++;
- assert( pOp->p3!=0 );
- pTos->flags = MEM_Str|MEM_Static|MEM_Term;
- pTos->z = pOp->p3;
- pTos->n = pOp->p1;
- pTos->enc = encoding;
+case OP_String: { /* out2-prerelease */
+ assert( pOp->p4.z!=0 );
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = pOp->p4.z;
+ pOut->n = pOp->p1;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
break;
}
-/* Opcode: Null * * *
+/* Opcode: Null * P2 * * *
**
-** Push a NULL onto the stack.
+** Write a NULL into register P2.
*/
-case OP_Null: {
- pTos++;
- pTos->flags = MEM_Null;
- pTos->n = 0;
+case OP_Null: { /* out2-prerelease */
break;
}
-#ifndef SQLITE_OMIT_BLOB_LITERAL
-/* Opcode: HexBlob * * P3
+/* Opcode: Blob P1 P2 * P4
**
-** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
-** vdbe stack.
-**
-** The first time this instruction executes, in transforms itself into a
-** 'Blob' opcode with a binary blob as P3.
-*/
-case OP_HexBlob: { /* same as TK_BLOB */
- pOp->opcode = OP_Blob;
- pOp->p1 = strlen(pOp->p3)/2;
- if( pOp->p1 ){
- char *zBlob = sqlite3HexToBlob(pOp->p3);
- if( !zBlob ) goto no_mem;
- if( pOp->p3type==P3_DYNAMIC ){
- sqliteFree(pOp->p3);
- }
- pOp->p3 = zBlob;
- pOp->p3type = P3_DYNAMIC;
- }else{
- if( pOp->p3type==P3_DYNAMIC ){
- sqliteFree(pOp->p3);
- }
- pOp->p3type = P3_STATIC;
- pOp->p3 = "";
- }
-
- /* Fall through to the next case, OP_Blob. */
-}
-
-/* Opcode: Blob P1 * P3
-**
-** P3 points to a blob of data P1 bytes long. Push this
-** value onto the stack. This instruction is not coded directly
+** P4 points to a blob of data P1 bytes long. Store this
+** blob in register P2. This instruction is not coded directly
** by the compiler. Instead, the compiler layer specifies
** an OP_HexBlob opcode, with the hex string representation of
-** the blob as P3. This opcode is transformed to an OP_Blob
+** the blob as P4. This opcode is transformed to an OP_Blob
** the first time it is executed.
*/
-case OP_Blob: {
- pTos++;
- sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
+case OP_Blob: { /* out2-prerelease */
+ assert( pOp->p1 <= SQLITE_MAX_LENGTH );
+ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
break;
}
-#endif /* SQLITE_OMIT_BLOB_LITERAL */
-/* Opcode: Variable P1 * *
+/* Opcode: Variable P1 P2 P3 P4 *
**
-** Push the value of variable P1 onto the stack. A variable is
-** an unknown in the original SQL string as handed to sqlite3_compile().
-** Any occurance of the '?' character in the original SQL is considered
-** a variable. Variables in the SQL string are number from left to
-** right beginning with 1. The values of variables are set using the
-** sqlite3_bind() API.
-*/
-case OP_Variable: {
- int j = pOp->p1 - 1;
- assert( j>=0 && j<p->nVar );
-
- pTos++;
- sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
- break;
-}
-
-/* Opcode: Pop P1 * *
+** Transfer the values of bound parameters P1..P1+P3-1 into registers
+** P2..P2+P3-1.
**
-** P1 elements are popped off of the top of stack and discarded.
+** If the parameter is named, then its name appears in P4 and P3==1.
+** The P4 value is used by sqlite3_bind_parameter_name().
*/
-case OP_Pop: { /* no-push */
- assert( pOp->p1>=0 );
- popStack(&pTos, pOp->p1);
- assert( pTos>=&p->aStack[-1] );
+case OP_Variable: {
+#if 0 /* local variables moved into u.ab */
+ int p1; /* Variable to copy from */
+ int p2; /* Register to copy to */
+ int n; /* Number of values left to copy */
+ Mem *pVar; /* Value being transferred */
+#endif /* local variables moved into u.ab */
+
+ u.ab.p1 = pOp->p1 - 1;
+ u.ab.p2 = pOp->p2;
+ u.ab.n = pOp->p3;
+ assert( u.ab.p1>=0 && u.ab.p1+u.ab.n<=p->nVar );
+ assert( u.ab.p2>=1 && u.ab.p2+u.ab.n-1<=p->nMem );
+ assert( pOp->p4.z==0 || pOp->p3==1 );
+
+ while( u.ab.n-- > 0 ){
+ u.ab.pVar = &p->aVar[u.ab.p1++];
+ if( sqlite3VdbeMemTooBig(u.ab.pVar) ){
+ goto too_big;
+ }
+ pOut = &p->aMem[u.ab.p2++];
+ sqlite3VdbeMemReleaseExternal(pOut);
+ pOut->flags = MEM_Null;
+ sqlite3VdbeMemShallowCopy(pOut, u.ab.pVar, MEM_Static);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ }
break;
}
-/* Opcode: Dup P1 P2 *
-**
-** A copy of the P1-th element of the stack
-** is made and pushed onto the top of the stack.
-** The top of the stack is element 0. So the
-** instruction "Dup 0 0 0" will make a copy of the
-** top of the stack.
-**
-** If the content of the P1-th element is a dynamically
-** allocated string, then a new copy of that string
-** is made if P2==0. If P2!=0, then just a pointer
-** to the string is copied.
-**
-** Also see the Pull instruction.
-*/
-case OP_Dup: {
- Mem *pFrom = &pTos[-pOp->p1];
- assert( pFrom<=pTos && pFrom>=p->aStack );
- pTos++;
- sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
- if( pOp->p2 ){
- Deephemeralize(pTos);
+/* Opcode: Move P1 P2 P3 * *
+**
+** Move the values in register P1..P1+P3-1 over into
+** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
+** left holding a NULL. It is an error for register ranges
+** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
+*/
+case OP_Move: {
+#if 0 /* local variables moved into u.ac */
+ char *zMalloc; /* Holding variable for allocated memory */
+ int n; /* Number of registers left to copy */
+ int p1; /* Register to copy from */
+ int p2; /* Register to copy to */
+#endif /* local variables moved into u.ac */
+
+ u.ac.n = pOp->p3;
+ u.ac.p1 = pOp->p1;
+ u.ac.p2 = pOp->p2;
+ assert( u.ac.n>0 && u.ac.p1>0 && u.ac.p2>0 );
+ assert( u.ac.p1+u.ac.n<=u.ac.p2 || u.ac.p2+u.ac.n<=u.ac.p1 );
+
+ pIn1 = &p->aMem[u.ac.p1];
+ pOut = &p->aMem[u.ac.p2];
+ while( u.ac.n-- ){
+ assert( pOut<=&p->aMem[p->nMem] );
+ assert( pIn1<=&p->aMem[p->nMem] );
+ u.ac.zMalloc = pOut->zMalloc;
+ pOut->zMalloc = 0;
+ sqlite3VdbeMemMove(pOut, pIn1);
+ pIn1->zMalloc = u.ac.zMalloc;
+ REGISTER_TRACE(u.ac.p2++, pOut);
+ pIn1++;
+ pOut++;
}
break;
}
-/* Opcode: Pull P1 * *
+/* Opcode: Copy P1 P2 * * *
**
-** The P1-th element is removed from its current location on
-** the stack and pushed back on top of the stack. The
-** top of the stack is element 0, so "Pull 0 0 0" is
-** a no-op. "Pull 1 0 0" swaps the top two elements of
-** the stack.
+** Make a copy of register P1 into register P2.
**
-** See also the Dup instruction.
+** This instruction makes a deep copy of the value. A duplicate
+** is made of any string or blob constant. See also OP_SCopy.
*/
-case OP_Pull: { /* no-push */
- Mem *pFrom = &pTos[-pOp->p1];
- int i;
- Mem ts;
-
- ts = *pFrom;
- Deephemeralize(pTos);
- for(i=0; i<pOp->p1; i++, pFrom++){
- Deephemeralize(&pFrom[1]);
- assert( (pFrom->flags & MEM_Ephem)==0 );
- *pFrom = pFrom[1];
- if( pFrom->flags & MEM_Short ){
- assert( pFrom->flags & (MEM_Str|MEM_Blob) );
- assert( pFrom->z==pFrom[1].zShort );
- pFrom->z = pFrom->zShort;
- }
- }
- *pTos = ts;
- if( pTos->flags & MEM_Short ){
- assert( pTos->flags & (MEM_Str|MEM_Blob) );
- assert( pTos->z==pTos[-pOp->p1].zShort );
- pTos->z = pTos->zShort;
- }
+case OP_Copy: { /* in1 */
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pOut = &p->aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+ Deephemeralize(pOut);
+ REGISTER_TRACE(pOp->p2, pOut);
break;
}
-/* Opcode: Push P1 * *
+/* Opcode: SCopy P1 P2 * * *
**
-** Overwrite the value of the P1-th element down on the
-** stack (P1==0 is the top of the stack) with the value
-** of the top of the stack. Then pop the top of the stack.
+** Make a shallow copy of register P1 into register P2.
+**
+** This instruction makes a shallow copy of the value. If the value
+** is a string or blob, then the copy is only a pointer to the
+** original and hence if the original changes so will the copy.
+** Worse, if the original is deallocated, the copy becomes invalid.
+** Thus the program must guarantee that the original will not change
+** during the lifetime of the copy. Use OP_Copy to make a complete
+** copy.
*/
-case OP_Push: { /* no-push */
- Mem *pTo = &pTos[-pOp->p1];
-
- assert( pTo>=p->aStack );
- sqlite3VdbeMemMove(pTo, pTos);
- pTos--;
+case OP_SCopy: { /* in1 */
+ REGISTER_TRACE(pOp->p1, pIn1);
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pOut = &p->aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+ REGISTER_TRACE(pOp->p2, pOut);
break;
}
-/* Opcode: Callback P1 * *
+/* Opcode: ResultRow P1 P2 * * *
**
-** The top P1 values on the stack represent a single result row from
-** a query. This opcode causes the sqlite3_step() call to terminate
+** The registers P1 through P1+P2-1 contain a single row of
+** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the top P1 values as the result
-** row. When the sqlite3_step() function is run again, the top P1
-** values will be automatically popped from the stack before the next
-** instruction executes.
+** row.
*/
-case OP_Callback: { /* no-push */
+case OP_ResultRow: {
+#if 0 /* local variables moved into u.ad */
Mem *pMem;
- Mem *pFirstColumn;
- assert( p->nResColumn==pOp->p1 );
-
- /* Data in the pager might be moved or changed out from under us
- ** in between the return from this sqlite3_step() call and the
- ** next call to sqlite3_step(). So deephermeralize everything on
- ** the stack. Note that ephemeral data is never stored in memory
- ** cells so we do not have to worry about them.
+ int i;
+#endif /* local variables moved into u.ad */
+ assert( p->nResColumn==pOp->p2 );
+ assert( pOp->p1>0 );
+ assert( pOp->p1+pOp->p2<=p->nMem+1 );
+
+ /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
+ ** DML statements invoke this opcode to return the number of rows
+ ** modified to the user. This is the only way that a VM that
+ ** opens a statement transaction may invoke this opcode.
+ **
+ ** In case this is such a statement, close any statement transaction
+ ** opened by this VM before returning control to the user. This is to
+ ** ensure that statement-transactions are always nested, not overlapping.
+ ** If the open statement-transaction is not closed here, then the user
+ ** may step another VM that opens its own statement transaction. This
+ ** may lead to overlapping statement transactions.
+ **
+ ** The statement transaction is never a top-level transaction. Hence
+ ** the RELEASE call below can never fail.
*/
- pFirstColumn = &pTos[0-pOp->p1];
- for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
- Deephemeralize(pMem);
+ assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
+ rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
+ if( NEVER(rc!=SQLITE_OK) ){
+ break;
}
/* Invalidate all ephemeral cursor row caches */
p->cacheCtr = (p->cacheCtr + 2)|1;
/* Make sure the results of the current row are \000 terminated
- ** and have an assigned type. The results are deephemeralized as
+ ** and have an assigned type. The results are de-ephemeralized as
** as side effect.
*/
- for(; pMem<=pTos; pMem++ ){
- sqlite3VdbeMemNulTerminate(pMem);
- storeTypeInfo(pMem, encoding);
+ u.ad.pMem = p->pResultSet = &p->aMem[pOp->p1];
+ for(u.ad.i=0; u.ad.i<pOp->p2; u.ad.i++){
+ sqlite3VdbeMemNulTerminate(&u.ad.pMem[u.ad.i]);
+ storeTypeInfo(&u.ad.pMem[u.ad.i], encoding);
+ REGISTER_TRACE(pOp->p1+u.ad.i, &u.ad.pMem[u.ad.i]);
}
+ if( db->mallocFailed ) goto no_mem;
- /* Set up the statement structure so that it will pop the current
- ** results from the stack when the statement returns.
+ /* Return SQLITE_ROW
*/
- p->resOnStack = 1;
- p->nCallback++;
- p->popStack = pOp->p1;
p->pc = pc + 1;
- p->pTos = pTos;
- return SQLITE_ROW;
+ rc = SQLITE_ROW;
+ goto vdbe_return;
}
-/* Opcode: Concat P1 P2 *
+/* Opcode: Concat P1 P2 P3 * *
+**
+** Add the text in register P1 onto the end of the text in
+** register P2 and store the result in register P3.
+** If either the P1 or P2 text are NULL then store NULL in P3.
**
-** Look at the first P1+2 elements of the stack. Append them all
-** together with the lowest element first. The original P1+2 elements
-** are popped from the stack if P2==0 and retained if P2==1. If
-** any element of the stack is NULL, then the result is NULL.
+** P3 = P2 || P1
**
-** When P1==1, this routine makes a copy of the top stack element
-** into memory obtained from sqliteMalloc().
+** It is illegal for P1 and P3 to be the same register. Sometimes,
+** if P3 is the same register as P2, the implementation is able
+** to avoid a memcpy().
*/
-case OP_Concat: { /* same as TK_CONCAT */
- char *zNew;
- int nByte;
- int nField;
- int i, j;
- Mem *pTerm;
-
- /* Loop through the stack elements to see how long the result will be. */
- nField = pOp->p1 + 2;
- pTerm = &pTos[1-nField];
- nByte = 0;
- for(i=0; i<nField; i++, pTerm++){
- assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
- if( pTerm->flags&MEM_Null ){
- nByte = -1;
- break;
- }
- Stringify(pTerm, encoding);
- nByte += pTerm->n;
- }
+case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
+#if 0 /* local variables moved into u.ae */
+ i64 nByte;
+#endif /* local variables moved into u.ae */
- if( nByte<0 ){
- /* If nByte is less than zero, then there is a NULL value on the stack.
- ** In this case just pop the values off the stack (if required) and
- ** push on a NULL.
- */
- if( pOp->p2==0 ){
- popStack(&pTos, nField);
- }
- pTos++;
- pTos->flags = MEM_Null;
- }else{
- /* Otherwise malloc() space for the result and concatenate all the
- ** stack values.
- */
- zNew = sqliteMallocRaw( nByte+2 );
- if( zNew==0 ) goto no_mem;
- j = 0;
- pTerm = &pTos[1-nField];
- for(i=j=0; i<nField; i++, pTerm++){
- int n = pTerm->n;
- assert( pTerm->flags & (MEM_Str|MEM_Blob) );
- memcpy(&zNew[j], pTerm->z, n);
- j += n;
- }
- zNew[j] = 0;
- zNew[j+1] = 0;
- assert( j==nByte );
-
- if( pOp->p2==0 ){
- popStack(&pTos, nField);
- }
- pTos++;
- pTos->n = j;
- pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
- pTos->xDel = 0;
- pTos->enc = encoding;
- pTos->z = zNew;
+ assert( pIn1!=pOut );
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
+ Stringify(pIn1, encoding);
+ Stringify(pIn2, encoding);
+ u.ae.nByte = pIn1->n + pIn2->n;
+ if( u.ae.nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ MemSetTypeFlag(pOut, MEM_Str);
+ if( sqlite3VdbeMemGrow(pOut, (int)u.ae.nByte+2, pOut==pIn2) ){
+ goto no_mem;
}
+ if( pOut!=pIn2 ){
+ memcpy(pOut->z, pIn2->z, pIn2->n);
+ }
+ memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
+ pOut->z[u.ae.nByte] = 0;
+ pOut->z[u.ae.nByte+1] = 0;
+ pOut->flags |= MEM_Term;
+ pOut->n = (int)u.ae.nByte;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
break;
}
-/* Opcode: Add * * *
+/* Opcode: Add P1 P2 P3 * *
**
-** Pop the top two elements from the stack, add them together,
-** and push the result back onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the addition.
-** If either operand is NULL, the result is NULL.
+** Add the value in register P1 to the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
*/
-/* Opcode: Multiply * * *
+/* Opcode: Multiply P1 P2 P3 * *
**
-** Pop the top two elements from the stack, multiply them together,
-** and push the result back onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the multiplication.
-** If either operand is NULL, the result is NULL.
+**
+** Multiply the value in register P1 by the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
*/
-/* Opcode: Subtract * * *
+/* Opcode: Subtract P1 P2 P3 * *
**
-** Pop the top two elements from the stack, subtract the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the result back onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the subtraction.
-** If either operand is NULL, the result is NULL.
+** Subtract the value in register P1 from the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
*/
-/* Opcode: Divide * * *
+/* Opcode: Divide P1 P2 P3 * *
**
-** Pop the top two elements from the stack, divide the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the result back onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the division. Division by zero returns NULL.
-** If either operand is NULL, the result is NULL.
+** Divide the value in register P1 by the value in register P2
+** and store the result in register P3 (P3=P2/P1). If the value in
+** register P1 is zero, then the result is NULL. If either input is
+** NULL, the result is NULL.
*/
-/* Opcode: Remainder * * *
+/* Opcode: Remainder P1 P2 P3 * *
**
-** Pop the top two elements from the stack, divide the
-** first (what was on top of the stack) from the second (the
-** next on stack)
-** and push the remainder after division onto the stack. If either element
-** is a string then it is converted to a double using the atof()
-** function before the division. Division by zero returns NULL.
+** Compute the remainder after integer division of the value in
+** register P1 by the value in register P2 and store the result in P3.
+** If the value in register P2 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
-case OP_Add: /* same as TK_PLUS, no-push */
-case OP_Subtract: /* same as TK_MINUS, no-push */
-case OP_Multiply: /* same as TK_STAR, no-push */
-case OP_Divide: /* same as TK_SLASH, no-push */
-case OP_Remainder: { /* same as TK_REM, no-push */
- Mem *pNos = &pTos[-1];
- int flags;
- assert( pNos>=p->aStack );
- flags = pTos->flags | pNos->flags;
- if( (flags & MEM_Null)!=0 ){
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->flags = MEM_Null;
- }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
- i64 a, b;
- a = pTos->u.i;
- b = pNos->u.i;
+case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
+case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
+case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
+case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
+case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
+#if 0 /* local variables moved into u.af */
+ int flags; /* Combined MEM_* flags from both inputs */
+ i64 iA; /* Integer value of left operand */
+ i64 iB; /* Integer value of right operand */
+ double rA; /* Real value of left operand */
+ double rB; /* Real value of right operand */
+#endif /* local variables moved into u.af */
+
+ applyNumericAffinity(pIn1);
+ applyNumericAffinity(pIn2);
+ u.af.flags = pIn1->flags | pIn2->flags;
+ if( (u.af.flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
+ if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
+ u.af.iA = pIn1->u.i;
+ u.af.iB = pIn2->u.i;
switch( pOp->opcode ){
- case OP_Add: b += a; break;
- case OP_Subtract: b -= a; break;
- case OP_Multiply: b *= a; break;
+ case OP_Add: u.af.iB += u.af.iA; break;
+ case OP_Subtract: u.af.iB -= u.af.iA; break;
+ case OP_Multiply: u.af.iB *= u.af.iA; break;
case OP_Divide: {
- if( a==0 ) goto divide_by_zero;
- b /= a;
+ if( u.af.iA==0 ) goto arithmetic_result_is_null;
+ /* Dividing the largest possible negative 64-bit integer (1<<63) by
+ ** -1 returns an integer too large to store in a 64-bit data-type. On
+ ** some architectures, the value overflows to (1<<63). On others,
+ ** a SIGFPE is issued. The following statement normalizes this
+ ** behavior so that all architectures behave as if integer
+ ** overflow occurred.
+ */
+ if( u.af.iA==-1 && u.af.iB==SMALLEST_INT64 ) u.af.iA = 1;
+ u.af.iB /= u.af.iA;
break;
}
default: {
- if( a==0 ) goto divide_by_zero;
- b %= a;
+ if( u.af.iA==0 ) goto arithmetic_result_is_null;
+ if( u.af.iA==-1 ) u.af.iA = 1;
+ u.af.iB %= u.af.iA;
break;
}
}
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->u.i = b;
- pTos->flags = MEM_Int;
+ pOut->u.i = u.af.iB;
+ MemSetTypeFlag(pOut, MEM_Int);
}else{
- double a, b;
- a = sqlite3VdbeRealValue(pTos);
- b = sqlite3VdbeRealValue(pNos);
+ u.af.rA = sqlite3VdbeRealValue(pIn1);
+ u.af.rB = sqlite3VdbeRealValue(pIn2);
switch( pOp->opcode ){
- case OP_Add: b += a; break;
- case OP_Subtract: b -= a; break;
- case OP_Multiply: b *= a; break;
+ case OP_Add: u.af.rB += u.af.rA; break;
+ case OP_Subtract: u.af.rB -= u.af.rA; break;
+ case OP_Multiply: u.af.rB *= u.af.rA; break;
case OP_Divide: {
- if( a==0.0 ) goto divide_by_zero;
- b /= a;
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ if( u.af.rA==(double)0 ) goto arithmetic_result_is_null;
+ u.af.rB /= u.af.rA;
break;
}
default: {
- int ia = (int)a;
- int ib = (int)b;
- if( ia==0.0 ) goto divide_by_zero;
- b = ib % ia;
+ u.af.iA = (i64)u.af.rA;
+ u.af.iB = (i64)u.af.rB;
+ if( u.af.iA==0 ) goto arithmetic_result_is_null;
+ if( u.af.iA==-1 ) u.af.iA = 1;
+ u.af.rB = (double)(u.af.iB % u.af.iA);
break;
}
}
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->r = b;
- pTos->flags = MEM_Real;
- if( (flags & MEM_Real)==0 ){
- sqlite3VdbeIntegerAffinity(pTos);
+ if( sqlite3IsNaN(u.af.rB) ){
+ goto arithmetic_result_is_null;
+ }
+ pOut->r = u.af.rB;
+ MemSetTypeFlag(pOut, MEM_Real);
+ if( (u.af.flags & MEM_Real)==0 ){
+ sqlite3VdbeIntegerAffinity(pOut);
}
}
break;
-divide_by_zero:
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->flags = MEM_Null;
+arithmetic_result_is_null:
+ sqlite3VdbeMemSetNull(pOut);
break;
}
-/* Opcode: CollSeq * * P3
+/* Opcode: CollSeq * * P4
**
-** P3 is a pointer to a CollSeq struct. If the next call to a user function
+** P4 is a pointer to a CollSeq struct. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
@@ -32968,16 +53121,17 @@ divide_by_zero:
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
-case OP_CollSeq: { /* no-push */
- assert( pOp->p3type==P3_COLLSEQ );
+case OP_CollSeq: {
+ assert( pOp->p4type==P4_COLLSEQ );
break;
}
-/* Opcode: Function P1 P2 P3
+/* Opcode: Function P1 P2 P3 P4 P5
**
-** Invoke a user function (P3 is a pointer to a Function structure that
-** defines the function) with P2 arguments taken from the stack. Pop all
-** arguments from the stack and push back the result.
+** Invoke a user function (P4 is a pointer to a Function structure that
+** defines the function) with P5 arguments taken from register P2 and
+** successors. The result of the function is stored in register P3.
+** Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the
** function was determined to be constant at compile time. If the first
@@ -32989,268 +53143,254 @@ case OP_CollSeq: { /* no-push */
** See also: AggStep and AggFinal
*/
case OP_Function: {
+#if 0 /* local variables moved into u.ag */
int i;
Mem *pArg;
sqlite3_context ctx;
sqlite3_value **apVal;
- int n = pOp->p2;
+ int n;
+#endif /* local variables moved into u.ag */
- apVal = p->apArg;
- assert( apVal || n==0 );
+ u.ag.n = pOp->p5;
+ u.ag.apVal = p->apArg;
+ assert( u.ag.apVal || u.ag.n==0 );
- pArg = &pTos[1-n];
- for(i=0; i<n; i++, pArg++){
- apVal[i] = pArg;
- storeTypeInfo(pArg, encoding);
+ assert( u.ag.n==0 || (pOp->p2>0 && pOp->p2+u.ag.n<=p->nMem+1) );
+ assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+u.ag.n );
+ u.ag.pArg = &p->aMem[pOp->p2];
+ for(u.ag.i=0; u.ag.i<u.ag.n; u.ag.i++, u.ag.pArg++){
+ u.ag.apVal[u.ag.i] = u.ag.pArg;
+ storeTypeInfo(u.ag.pArg, encoding);
+ REGISTER_TRACE(pOp->p2, u.ag.pArg);
}
- assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
- if( pOp->p3type==P3_FUNCDEF ){
- ctx.pFunc = (FuncDef*)pOp->p3;
- ctx.pVdbeFunc = 0;
+ assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
+ if( pOp->p4type==P4_FUNCDEF ){
+ u.ag.ctx.pFunc = pOp->p4.pFunc;
+ u.ag.ctx.pVdbeFunc = 0;
}else{
- ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
- ctx.pFunc = ctx.pVdbeFunc->pFunc;
+ u.ag.ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
+ u.ag.ctx.pFunc = u.ag.ctx.pVdbeFunc->pFunc;
}
- ctx.s.flags = MEM_Null;
- ctx.s.z = 0;
- ctx.s.xDel = 0;
- ctx.isError = 0;
- if( ctx.pFunc->needCollSeq ){
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pOut = &p->aMem[pOp->p3];
+ u.ag.ctx.s.flags = MEM_Null;
+ u.ag.ctx.s.db = db;
+ u.ag.ctx.s.xDel = 0;
+ u.ag.ctx.s.zMalloc = 0;
+
+ /* The output cell may already have a buffer allocated. Move
+ ** the pointer to u.ag.ctx.s so in case the user-function can use
+ ** the already allocated buffer instead of allocating a new one.
+ */
+ sqlite3VdbeMemMove(&u.ag.ctx.s, pOut);
+ MemSetTypeFlag(&u.ag.ctx.s, MEM_Null);
+
+ u.ag.ctx.isError = 0;
+ if( u.ag.ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
assert( pOp>p->aOp );
- assert( pOp[-1].p3type==P3_COLLSEQ );
+ assert( pOp[-1].p4type==P4_COLLSEQ );
assert( pOp[-1].opcode==OP_CollSeq );
- ctx.pColl = (CollSeq *)pOp[-1].p3;
+ u.ag.ctx.pColl = pOp[-1].p4.pColl;
}
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- (*ctx.pFunc->xFunc)(&ctx, n, apVal);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( sqlite3MallocFailed() ) goto no_mem;
- popStack(&pTos, n);
+ (*u.ag.ctx.pFunc->xFunc)(&u.ag.ctx, u.ag.n, u.ag.apVal);
+ if( sqlite3SafetyOn(db) ){
+ sqlite3VdbeMemRelease(&u.ag.ctx.s);
+ goto abort_due_to_misuse;
+ }
+ if( db->mallocFailed ){
+ /* Even though a malloc() has failed, the implementation of the
+ ** user function may have called an sqlite3_result_XXX() function
+ ** to return a value. The following call releases any resources
+ ** associated with such a value.
+ **
+ ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
+ ** fails also (the if(...) statement above). But if people are
+ ** misusing sqlite, they have bigger problems than a leaked value.
+ */
+ sqlite3VdbeMemRelease(&u.ag.ctx.s);
+ goto no_mem;
+ }
- /* If any auxilary data functions have been called by this user function,
+ /* If any auxiliary data functions have been called by this user function,
** immediately call the destructor for any non-static values.
*/
- if( ctx.pVdbeFunc ){
- sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
- pOp->p3 = (char *)ctx.pVdbeFunc;
- pOp->p3type = P3_VDBEFUNC;
+ if( u.ag.ctx.pVdbeFunc ){
+ sqlite3VdbeDeleteAuxData(u.ag.ctx.pVdbeFunc, pOp->p1);
+ pOp->p4.pVdbeFunc = u.ag.ctx.pVdbeFunc;
+ pOp->p4type = P4_VDBEFUNC;
}
/* If the function returned an error, throw an exception */
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
- rc = SQLITE_ERROR;
+ if( u.ag.ctx.isError ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.ag.ctx.s));
+ rc = u.ag.ctx.isError;
}
- /* Copy the result of the function to the top of the stack */
- sqlite3VdbeChangeEncoding(&ctx.s, encoding);
- pTos++;
- pTos->flags = 0;
- sqlite3VdbeMemMove(pTos, &ctx.s);
+ /* Copy the result of the function into register P3 */
+ sqlite3VdbeChangeEncoding(&u.ag.ctx.s, encoding);
+ sqlite3VdbeMemMove(pOut, &u.ag.ctx.s);
+ if( sqlite3VdbeMemTooBig(pOut) ){
+ goto too_big;
+ }
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
break;
}
-/* Opcode: BitAnd * * *
+/* Opcode: BitAnd P1 P2 P3 * *
**
-** Pop the top two elements from the stack. Convert both elements
-** to integers. Push back onto the stack the bit-wise AND of the
-** two elements.
-** If either operand is NULL, the result is NULL.
+** Take the bit-wise AND of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
*/
-/* Opcode: BitOr * * *
+/* Opcode: BitOr P1 P2 P3 * *
**
-** Pop the top two elements from the stack. Convert both elements
-** to integers. Push back onto the stack the bit-wise OR of the
-** two elements.
-** If either operand is NULL, the result is NULL.
+** Take the bit-wise OR of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
*/
-/* Opcode: ShiftLeft * * *
+/* Opcode: ShiftLeft P1 P2 P3 * *
**
-** Pop the top two elements from the stack. Convert both elements
-** to integers. Push back onto the stack the second element shifted
-** left by N bits where N is the top element on the stack.
-** If either operand is NULL, the result is NULL.
+** Shift the integer value in register P2 to the left by the
+** number of bits specified by the integer in regiser P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
*/
-/* Opcode: ShiftRight * * *
+/* Opcode: ShiftRight P1 P2 P3 * *
**
-** Pop the top two elements from the stack. Convert both elements
-** to integers. Push back onto the stack the second element shifted
-** right by N bits where N is the top element on the stack.
-** If either operand is NULL, the result is NULL.
+** Shift the integer value in register P2 to the right by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
*/
-case OP_BitAnd: /* same as TK_BITAND, no-push */
-case OP_BitOr: /* same as TK_BITOR, no-push */
-case OP_ShiftLeft: /* same as TK_LSHIFT, no-push */
-case OP_ShiftRight: { /* same as TK_RSHIFT, no-push */
- Mem *pNos = &pTos[-1];
- i64 a, b;
-
- assert( pNos>=p->aStack );
- if( (pTos->flags | pNos->flags) & MEM_Null ){
- popStack(&pTos, 2);
- pTos++;
- pTos->flags = MEM_Null;
+case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
+case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
+case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
+case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
+#if 0 /* local variables moved into u.ah */
+ i64 a;
+ i64 b;
+#endif /* local variables moved into u.ah */
+
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
break;
}
- a = sqlite3VdbeIntValue(pNos);
- b = sqlite3VdbeIntValue(pTos);
+ u.ah.a = sqlite3VdbeIntValue(pIn2);
+ u.ah.b = sqlite3VdbeIntValue(pIn1);
switch( pOp->opcode ){
- case OP_BitAnd: a &= b; break;
- case OP_BitOr: a |= b; break;
- case OP_ShiftLeft: a <<= b; break;
- case OP_ShiftRight: a >>= b; break;
- default: /* CANT HAPPEN */ break;
- }
- Release(pTos);
- pTos--;
- Release(pTos);
- pTos->u.i = a;
- pTos->flags = MEM_Int;
+ case OP_BitAnd: u.ah.a &= u.ah.b; break;
+ case OP_BitOr: u.ah.a |= u.ah.b; break;
+ case OP_ShiftLeft: u.ah.a <<= u.ah.b; break;
+ default: assert( pOp->opcode==OP_ShiftRight );
+ u.ah.a >>= u.ah.b; break;
+ }
+ pOut->u.i = u.ah.a;
+ MemSetTypeFlag(pOut, MEM_Int);
break;
}
-/* Opcode: AddImm P1 * *
+/* Opcode: AddImm P1 P2 * * *
**
-** Add the value P1 to whatever is on top of the stack. The result
-** is always an integer.
+** Add the constant P2 to the value in register P1.
+** The result is always an integer.
**
-** To force the top of the stack to be an integer, just add 0.
+** To force any register to be an integer, just add 0.
*/
-case OP_AddImm: { /* no-push */
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- pTos->u.i += pOp->p1;
+case OP_AddImm: { /* in1 */
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn1->u.i += pOp->p2;
break;
}
-/* Opcode: ForceInt P1 P2 *
-**
-** Convert the top of the stack into an integer. If the current top of
-** the stack is not numeric (meaning that is is a NULL or a string that
-** does not look like an integer or floating point number) then pop the
-** stack and jump to P2. If the top of the stack is numeric then
-** convert it into the least integer that is greater than or equal to its
-** current value if P1==0, or to the least integer that is strictly
-** greater than its current value if P1==1.
-*/
-case OP_ForceInt: { /* no-push */
- i64 v;
- assert( pTos>=p->aStack );
- applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
- if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
- Release(pTos);
- pTos--;
- pc = pOp->p2 - 1;
- break;
- }
- if( pTos->flags & MEM_Int ){
- v = pTos->u.i + (pOp->p1!=0);
- }else{
- /* FIX ME: should this not be assert( pTos->flags & MEM_Real ) ??? */
- sqlite3VdbeMemRealify(pTos);
- v = (int)pTos->r;
- if( pTos->r>(double)v ) v++;
- if( pOp->p1 && pTos->r==(double)v ) v++;
- }
- Release(pTos);
- pTos->u.i = v;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: MustBeInt P1 P2 *
+/* Opcode: MustBeInt P1 P2 * * *
**
-** Force the top of the stack to be an integer. If the top of the
-** stack is not an integer and cannot be converted into an integer
-** with out data loss, then jump immediately to P2, or if P2==0
+** Force the value in register P1 to be an integer. If the value
+** in P1 is not an integer and cannot be converted into an integer
+** without data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
-**
-** If the top of the stack is not an integer and P2 is not zero and
-** P1 is 1, then the stack is popped. In all other cases, the depth
-** of the stack is unchanged.
*/
-case OP_MustBeInt: { /* no-push */
- assert( pTos>=p->aStack );
- applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
- if( (pTos->flags & MEM_Int)==0 ){
+case OP_MustBeInt: { /* jump, in1 */
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
+ if( (pIn1->flags & MEM_Int)==0 ){
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
- if( pOp->p1 ) popStack(&pTos, 1);
pc = pOp->p2 - 1;
}
}else{
- Release(pTos);
- pTos->flags = MEM_Int;
+ MemSetTypeFlag(pIn1, MEM_Int);
}
break;
}
-/* Opcode: RealAffinity * * *
+/* Opcode: RealAffinity P1 * * * *
**
-** If the top of the stack is an integer, convert it to a real value.
+** If register P1 holds an integer convert it to a real value.
**
** This opcode is used when extracting information from a column that
** has REAL affinity. Such column values may still be stored as
** integers, for space efficiency, but after extraction we want them
** to have only a real value.
*/
-case OP_RealAffinity: { /* no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Int ){
- sqlite3VdbeMemRealify(pTos);
+case OP_RealAffinity: { /* in1 */
+ if( pIn1->flags & MEM_Int ){
+ sqlite3VdbeMemRealify(pIn1);
}
break;
}
#ifndef SQLITE_OMIT_CAST
-/* Opcode: ToText * * *
+/* Opcode: ToText P1 * * * *
**
-** Force the value on the top of the stack to be text.
+** Force the value in register P1 to be text.
** If the value is numeric, convert it to a string using the
** equivalent of printf(). Blob values are unchanged and
** are afterwards simply interpreted as text.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
-case OP_ToText: { /* same as TK_TO_TEXT, no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break;
+case OP_ToText: { /* same as TK_TO_TEXT, in1 */
+ if( pIn1->flags & MEM_Null ) break;
assert( MEM_Str==(MEM_Blob>>3) );
- pTos->flags |= (pTos->flags&MEM_Blob)>>3;
- applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
- assert( pTos->flags & MEM_Str );
- pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
+ pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
+ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
+ rc = ExpandBlob(pIn1);
+ assert( pIn1->flags & MEM_Str || db->mallocFailed );
+ pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
+ UPDATE_MAX_BLOBSIZE(pIn1);
break;
}
-/* Opcode: ToBlob * * *
+/* Opcode: ToBlob P1 * * * *
**
-** Force the value on the top of the stack to be a BLOB.
+** Force the value in register P1 to be a BLOB.
** If the value is numeric, convert it to a string first.
** Strings are simply reinterpreted as blobs with no change
** to the underlying data.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
-case OP_ToBlob: { /* same as TK_TO_BLOB, no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break;
- if( (pTos->flags & MEM_Blob)==0 ){
- applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
- assert( pTos->flags & MEM_Str );
- pTos->flags |= MEM_Blob;
+case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
+ if( pIn1->flags & MEM_Null ) break;
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
+ assert( pIn1->flags & MEM_Str || db->mallocFailed );
+ MemSetTypeFlag(pIn1, MEM_Blob);
+ }else{
+ pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
}
- pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
+ UPDATE_MAX_BLOBSIZE(pIn1);
break;
}
-/* Opcode: ToNumeric * * *
+/* Opcode: ToNumeric P1 * * * *
**
-** Force the value on the top of the stack to be numeric (either an
+** Force the value in register P1 to be numeric (either an
** integer or a floating-point number.)
** If the value is text or blob, try to convert it to an using the
** equivalent of atoi() or atof() and store 0 if no such conversion
@@ -33258,576 +53398,580 @@ case OP_ToBlob: { /* same as TK_TO_BLOB, no-push */
**
** A NULL value is not changed by this routine. It remains NULL.
*/
-case OP_ToNumeric: { /* same as TK_TO_NUMERIC, no-push */
- assert( pTos>=p->aStack );
- if( (pTos->flags & MEM_Null)==0 ){
- sqlite3VdbeMemNumerify(pTos);
+case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
+ if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
+ sqlite3VdbeMemNumerify(pIn1);
}
break;
}
#endif /* SQLITE_OMIT_CAST */
-/* Opcode: ToInt * * *
+/* Opcode: ToInt P1 * * * *
**
-** Force the value on the top of the stack to be an integer. If
+** Force the value in register P1 be an integer. If
** The value is currently a real number, drop its fractional part.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0 if no such conversion is possible.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
-case OP_ToInt: { /* same as TK_TO_INT, no-push */
- assert( pTos>=p->aStack );
- if( (pTos->flags & MEM_Null)==0 ){
- sqlite3VdbeMemIntegerify(pTos);
+case OP_ToInt: { /* same as TK_TO_INT, in1 */
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemIntegerify(pIn1);
}
break;
}
#ifndef SQLITE_OMIT_CAST
-/* Opcode: ToReal * * *
+/* Opcode: ToReal P1 * * * *
**
-** Force the value on the top of the stack to be a floating point number.
+** Force the value in register P1 to be a floating point number.
** If The value is currently an integer, convert it.
** If the value is text or blob, try to convert it to an integer using the
-** equivalent of atoi() and store 0 if no such conversion is possible.
+** equivalent of atoi() and store 0.0 if no such conversion is possible.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
-case OP_ToReal: { /* same as TK_TO_REAL, no-push */
- assert( pTos>=p->aStack );
- if( (pTos->flags & MEM_Null)==0 ){
- sqlite3VdbeMemRealify(pTos);
+case OP_ToReal: { /* same as TK_TO_REAL, in1 */
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemRealify(pIn1);
}
break;
}
#endif /* SQLITE_OMIT_CAST */
-/* Opcode: Eq P1 P2 P3
+/* Opcode: Lt P1 P2 P3 P4 P5
**
-** Pop the top two elements from the stack. If they are equal, then
-** jump to instruction P2. Otherwise, continue to the next instruction.
+** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
+** jump to address P2.
**
-** If the 0x100 bit of P1 is true and either operand is NULL then take the
-** jump. If the 0x100 bit of P1 is clear then fall thru if either operand
-** is NULL.
+** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
+** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
+** bit is clear then fall thru if either operand is NULL.
**
-** If the 0x200 bit of P1 is set and either operand is NULL then
-** both operands are converted to integers prior to comparison.
-** NULL operands are converted to zero and non-NULL operands are
-** converted to 1. Thus, for example, with 0x200 set, NULL==NULL is true
-** whereas it would normally be NULL. Similarly, NULL==123 is false when
-** 0x200 is set but is NULL when the 0x200 bit of P1 is clear.
-**
-** The least significant byte of P1 (mask 0xff) must be an affinity character -
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
-** to coerce both values
-** according to the affinity before the comparison is made. If the byte is
-** 0x00, then numeric affinity is used.
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL,
-** the values are compared. If both values are blobs, or both are text,
-** then memcmp() is used to determine the results of the comparison. If
-** both values are numeric, then a numeric comparison is used. If the
-** two values are of different types, then they are inequal.
-**
-** If P2 is zero, do not jump. Instead, push an integer 1 onto the
-** stack if the jump would have been taken, or a 0 if not. Push a
-** NULL if either operand was NULL.
-**
-** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
-** structure) that defines how to compare text.
-*/
-/* Opcode: Ne P1 P2 P3
-**
-** This works just like the Eq opcode except that the jump is taken if
-** the operands from the stack are not equal. See the Eq opcode for
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
+** store a boolean result (either 0, or 1, or NULL) in register P2.
+*/
+/* Opcode: Ne P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the operands in registers P1 and P3 are not equal. See the Lt opcode for
** additional information.
*/
-/* Opcode: Lt P1 P2 P3
+/* Opcode: Eq P1 P2 P3 P4 P5
**
-** This works just like the Eq opcode except that the jump is taken if
-** the 2nd element down on the stack is less than the top of the stack.
-** See the Eq opcode for additional information.
+** This works just like the Lt opcode except that the jump is taken if
+** the operands in registers P1 and P3 are equal.
+** See the Lt opcode for additional information.
*/
-/* Opcode: Le P1 P2 P3
+/* Opcode: Le P1 P2 P3 P4 P5
**
-** This works just like the Eq opcode except that the jump is taken if
-** the 2nd element down on the stack is less than or equal to the
-** top of the stack. See the Eq opcode for additional information.
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is less than or equal to the content of
+** register P1. See the Lt opcode for additional information.
*/
-/* Opcode: Gt P1 P2 P3
+/* Opcode: Gt P1 P2 P3 P4 P5
**
-** This works just like the Eq opcode except that the jump is taken if
-** the 2nd element down on the stack is greater than the top of the stack.
-** See the Eq opcode for additional information.
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than the content of
+** register P1. See the Lt opcode for additional information.
*/
-/* Opcode: Ge P1 P2 P3
+/* Opcode: Ge P1 P2 P3 P4 P5
**
-** This works just like the Eq opcode except that the jump is taken if
-** the 2nd element down on the stack is greater than or equal to the
-** top of the stack. See the Eq opcode for additional information.
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than or equal to the content of
+** register P1. See the Lt opcode for additional information.
*/
-case OP_Eq: /* same as TK_EQ, no-push */
-case OP_Ne: /* same as TK_NE, no-push */
-case OP_Lt: /* same as TK_LT, no-push */
-case OP_Le: /* same as TK_LE, no-push */
-case OP_Gt: /* same as TK_GT, no-push */
-case OP_Ge: { /* same as TK_GE, no-push */
- Mem *pNos;
+case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
+case OP_Ne: /* same as TK_NE, jump, in1, in3 */
+case OP_Lt: /* same as TK_LT, jump, in1, in3 */
+case OP_Le: /* same as TK_LE, jump, in1, in3 */
+case OP_Gt: /* same as TK_GT, jump, in1, in3 */
+case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
+#if 0 /* local variables moved into u.ai */
int flags;
int res;
char affinity;
+#endif /* local variables moved into u.ai */
- pNos = &pTos[-1];
- flags = pTos->flags|pNos->flags;
+ u.ai.flags = pIn1->flags|pIn3->flags;
- /* If either value is a NULL P2 is not zero, take the jump if the least
- ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
- ** the stack.
- */
- if( flags&MEM_Null ){
- if( (pOp->p1 & 0x200)!=0 ){
- /* The 0x200 bit of P1 means, roughly "do not treat NULL as the
- ** magic SQL value it normally is - treat it as if it were another
- ** integer".
- **
- ** With 0x200 set, if either operand is NULL then both operands
- ** are converted to integers prior to being passed down into the
- ** normal comparison logic below. NULL operands are converted to
- ** zero and non-NULL operands are converted to 1. Thus, for example,
- ** with 0x200 set, NULL==NULL is true whereas it would normally
- ** be NULL. Similarly, NULL!=123 is true.
- */
- sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0);
- sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0);
- }else{
- /* If the 0x200 bit of P1 is clear and either operand is NULL then
- ** the result is always NULL. The jump is taken if the 0x100 bit
- ** of P1 is set.
- */
- popStack(&pTos, 2);
- if( pOp->p2 ){
- if( pOp->p1 & 0x100 ){
- pc = pOp->p2-1;
- }
- }else{
- pTos++;
- pTos->flags = MEM_Null;
- }
- break;
+ if( u.ai.flags&MEM_Null ){
+ /* If either operand is NULL then the result is always NULL.
+ ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
+ */
+ if( pOp->p5 & SQLITE_STOREP2 ){
+ pOut = &p->aMem[pOp->p2];
+ MemSetTypeFlag(pOut, MEM_Null);
+ REGISTER_TRACE(pOp->p2, pOut);
+ }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
+ pc = pOp->p2-1;
}
+ break;
}
- affinity = pOp->p1 & 0xFF;
- if( affinity ){
- applyAffinity(pNos, affinity, encoding);
- applyAffinity(pTos, affinity, encoding);
+ u.ai.affinity = pOp->p5 & SQLITE_AFF_MASK;
+ if( u.ai.affinity ){
+ applyAffinity(pIn1, u.ai.affinity, encoding);
+ applyAffinity(pIn3, u.ai.affinity, encoding);
+ if( db->mallocFailed ) goto no_mem;
}
- assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
- res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
+ assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
+ ExpandBlob(pIn1);
+ ExpandBlob(pIn3);
+ u.ai.res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
switch( pOp->opcode ){
- case OP_Eq: res = res==0; break;
- case OP_Ne: res = res!=0; break;
- case OP_Lt: res = res<0; break;
- case OP_Le: res = res<=0; break;
- case OP_Gt: res = res>0; break;
- default: res = res>=0; break;
+ case OP_Eq: u.ai.res = u.ai.res==0; break;
+ case OP_Ne: u.ai.res = u.ai.res!=0; break;
+ case OP_Lt: u.ai.res = u.ai.res<0; break;
+ case OP_Le: u.ai.res = u.ai.res<=0; break;
+ case OP_Gt: u.ai.res = u.ai.res>0; break;
+ default: u.ai.res = u.ai.res>=0; break;
+ }
+
+ if( pOp->p5 & SQLITE_STOREP2 ){
+ pOut = &p->aMem[pOp->p2];
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = u.ai.res;
+ REGISTER_TRACE(pOp->p2, pOut);
+ }else if( u.ai.res ){
+ pc = pOp->p2-1;
}
+ break;
+}
- popStack(&pTos, 2);
- if( pOp->p2 ){
- if( res ){
- pc = pOp->p2-1;
+/* Opcode: Permutation * * * P4 *
+**
+** Set the permutation used by the OP_Compare operator to be the array
+** of integers in P4.
+**
+** The permutation is only valid until the next OP_Permutation, OP_Compare,
+** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
+** immediately prior to the OP_Compare.
+*/
+case OP_Permutation: {
+ assert( pOp->p4type==P4_INTARRAY );
+ assert( pOp->p4.ai );
+ aPermute = pOp->p4.ai;
+ break;
+}
+
+/* Opcode: Compare P1 P2 P3 P4 *
+**
+** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
+** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
+** the comparison for use by the next OP_Jump instruct.
+**
+** P4 is a KeyInfo structure that defines collating sequences and sort
+** orders for the comparison. The permutation applies to registers
+** only. The KeyInfo elements are used sequentially.
+**
+** The comparison is a sort comparison, so NULLs compare equal,
+** NULLs are less than numbers, numbers are less than strings,
+** and strings are less than blobs.
+*/
+case OP_Compare: {
+#if 0 /* local variables moved into u.aj */
+ int n;
+ int i;
+ int p1;
+ int p2;
+ const KeyInfo *pKeyInfo;
+ int idx;
+ CollSeq *pColl; /* Collating sequence to use on this term */
+ int bRev; /* True for DESCENDING sort order */
+#endif /* local variables moved into u.aj */
+
+ u.aj.n = pOp->p3;
+ u.aj.pKeyInfo = pOp->p4.pKeyInfo;
+ assert( u.aj.n>0 );
+ assert( u.aj.pKeyInfo!=0 );
+ u.aj.p1 = pOp->p1;
+ assert( u.aj.p1>0 && u.aj.p1+u.aj.n<=p->nMem+1 );
+ u.aj.p2 = pOp->p2;
+ assert( u.aj.p2>0 && u.aj.p2+u.aj.n<=p->nMem+1 );
+ for(u.aj.i=0; u.aj.i<u.aj.n; u.aj.i++){
+ u.aj.idx = aPermute ? aPermute[u.aj.i] : u.aj.i;
+ REGISTER_TRACE(u.aj.p1+u.aj.idx, &p->aMem[u.aj.p1+u.aj.idx]);
+ REGISTER_TRACE(u.aj.p2+u.aj.idx, &p->aMem[u.aj.p2+u.aj.idx]);
+ assert( u.aj.i<u.aj.pKeyInfo->nField );
+ u.aj.pColl = u.aj.pKeyInfo->aColl[u.aj.i];
+ u.aj.bRev = u.aj.pKeyInfo->aSortOrder[u.aj.i];
+ iCompare = sqlite3MemCompare(&p->aMem[u.aj.p1+u.aj.idx], &p->aMem[u.aj.p2+u.aj.idx], u.aj.pColl);
+ if( iCompare ){
+ if( u.aj.bRev ) iCompare = -iCompare;
+ break;
}
+ }
+ aPermute = 0;
+ break;
+}
+
+/* Opcode: Jump P1 P2 P3 * *
+**
+** Jump to the instruction at address P1, P2, or P3 depending on whether
+** in the most recent OP_Compare instruction the P1 vector was less than
+** equal to, or greater than the P2 vector, respectively.
+*/
+case OP_Jump: { /* jump */
+ if( iCompare<0 ){
+ pc = pOp->p1 - 1;
+ }else if( iCompare==0 ){
+ pc = pOp->p2 - 1;
}else{
- pTos++;
- pTos->flags = MEM_Int;
- pTos->u.i = res;
+ pc = pOp->p3 - 1;
}
break;
}
-/* Opcode: And * * *
+/* Opcode: And P1 P2 P3 * *
**
-** Pop two values off the stack. Take the logical AND of the
-** two values and push the resulting boolean value back onto the
-** stack.
+** Take the logical AND of the values in registers P1 and P2 and
+** write the result into register P3.
+**
+** If either P1 or P2 is 0 (false) then the result is 0 even if
+** the other input is NULL. A NULL and true or two NULLs give
+** a NULL output.
*/
-/* Opcode: Or * * *
+/* Opcode: Or P1 P2 P3 * *
+**
+** Take the logical OR of the values in register P1 and P2 and
+** store the answer in register P3.
**
-** Pop two values off the stack. Take the logical OR of the
-** two values and push the resulting boolean value back onto the
-** stack.
+** If either P1 or P2 is nonzero (true) then the result is 1 (true)
+** even if the other input is NULL. A NULL and false or two NULLs
+** give a NULL output.
*/
-case OP_And: /* same as TK_AND, no-push */
-case OP_Or: { /* same as TK_OR, no-push */
- Mem *pNos = &pTos[-1];
- int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
+case OP_And: /* same as TK_AND, in1, in2, out3 */
+case OP_Or: { /* same as TK_OR, in1, in2, out3 */
+#if 0 /* local variables moved into u.ak */
+ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+#endif /* local variables moved into u.ak */
- assert( pNos>=p->aStack );
- if( pTos->flags & MEM_Null ){
- v1 = 2;
+ if( pIn1->flags & MEM_Null ){
+ u.ak.v1 = 2;
}else{
- sqlite3VdbeMemIntegerify(pTos);
- v1 = pTos->u.i==0;
+ u.ak.v1 = sqlite3VdbeIntValue(pIn1)!=0;
}
- if( pNos->flags & MEM_Null ){
- v2 = 2;
+ if( pIn2->flags & MEM_Null ){
+ u.ak.v2 = 2;
}else{
- sqlite3VdbeMemIntegerify(pNos);
- v2 = pNos->u.i==0;
+ u.ak.v2 = sqlite3VdbeIntValue(pIn2)!=0;
}
if( pOp->opcode==OP_And ){
- static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
- v1 = and_logic[v1*3+v2];
+ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ u.ak.v1 = and_logic[u.ak.v1*3+u.ak.v2];
}else{
- static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
- v1 = or_logic[v1*3+v2];
+ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ u.ak.v1 = or_logic[u.ak.v1*3+u.ak.v2];
}
- popStack(&pTos, 2);
- pTos++;
- if( v1==2 ){
- pTos->flags = MEM_Null;
+ if( u.ak.v1==2 ){
+ MemSetTypeFlag(pOut, MEM_Null);
}else{
- pTos->u.i = v1==0;
- pTos->flags = MEM_Int;
+ pOut->u.i = u.ak.v1;
+ MemSetTypeFlag(pOut, MEM_Int);
}
break;
}
-/* Opcode: Negative * * *
-**
-** Treat the top of the stack as a numeric quantity. Replace it
-** with its additive inverse. If the top of the stack is NULL
-** its value is unchanged.
-*/
-/* Opcode: AbsValue * * *
+/* Opcode: Not P1 P2 * * *
**
-** Treat the top of the stack as a numeric quantity. Replace it
-** with its absolute value. If the top of the stack is NULL
-** its value is unchanged.
+** Interpret the value in register P1 as a boolean value. Store the
+** boolean complement in register P2. If the value in register P1 is
+** NULL, then a NULL is stored in P2.
*/
-case OP_Negative: /* same as TK_UMINUS, no-push */
-case OP_AbsValue: {
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Real ){
- neg_abs_real_case:
- Release(pTos);
- if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
- pTos->r = -pTos->r;
- }
- pTos->flags = MEM_Real;
- }else if( pTos->flags & MEM_Int ){
- Release(pTos);
- if( pOp->opcode==OP_Negative || pTos->u.i<0 ){
- pTos->u.i = -pTos->u.i;
- }
- pTos->flags = MEM_Int;
- }else if( pTos->flags & MEM_Null ){
- /* Do nothing */
+case OP_Not: { /* same as TK_NOT, in1 */
+ pOut = &p->aMem[pOp->p2];
+ if( pIn1->flags & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
}else{
- sqlite3VdbeMemNumerify(pTos);
- goto neg_abs_real_case;
+ sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
}
break;
}
-/* Opcode: Not * * *
-**
-** Interpret the top of the stack as a boolean value. Replace it
-** with its complement. If the top of the stack is NULL its value
-** is unchanged.
-*/
-case OP_Not: { /* same as TK_NOT, no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
- sqlite3VdbeMemIntegerify(pTos);
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos->u.i = !pTos->u.i;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: BitNot * * *
+/* Opcode: BitNot P1 P2 * * *
**
-** Interpret the top of the stack as an value. Replace it
-** with its ones-complement. If the top of the stack is NULL its
-** value is unchanged.
+** Interpret the content of register P1 as an integer. Store the
+** ones-complement of the P1 value into register P2. If P1 holds
+** a NULL then store a NULL in P2.
*/
-case OP_BitNot: { /* same as TK_BITNOT, no-push */
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
- sqlite3VdbeMemIntegerify(pTos);
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos->u.i = ~pTos->u.i;
- pTos->flags = MEM_Int;
- break;
-}
-
-/* Opcode: Noop * * *
-**
-** Do nothing. This instruction is often useful as a jump
-** destination.
-*/
-/*
-** The magic Explain opcode are only inserted when explain==2 (which
-** is to say when the EXPLAIN QUERY PLAN syntax is used.)
-** This opcode records information from the optimizer. It is the
-** the same as a no-op. This opcodesnever appears in a real VM program.
-*/
-case OP_Explain:
-case OP_Noop: { /* no-push */
+case OP_BitNot: { /* same as TK_BITNOT, in1 */
+ pOut = &p->aMem[pOp->p2];
+ if( pIn1->flags & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
+ }
break;
}
-/* Opcode: If P1 P2 *
-**
-** Pop a single boolean from the stack. If the boolean popped is
-** true, then jump to p2. Otherwise continue to the next instruction.
-** An integer is false if zero and true otherwise. A string is
-** false if it has zero length and true otherwise.
+/* Opcode: If P1 P2 P3 * *
**
-** If the value popped of the stack is NULL, then take the jump if P1
-** is true and fall through if P1 is false.
+** Jump to P2 if the value in register P1 is true. The value is
+** is considered true if it is numeric and non-zero. If the value
+** in P1 is NULL then take the jump if P3 is true.
*/
-/* Opcode: IfNot P1 P2 *
-**
-** Pop a single boolean from the stack. If the boolean popped is
-** false, then jump to p2. Otherwise continue to the next instruction.
-** An integer is false if zero and true otherwise. A string is
-** false if it has zero length and true otherwise.
+/* Opcode: IfNot P1 P2 P3 * *
**
-** If the value popped of the stack is NULL, then take the jump if P1
-** is true and fall through if P1 is false.
+** Jump to P2 if the value in register P1 is False. The value is
+** is considered true if it has a numeric value of zero. If the value
+** in P1 is NULL then take the jump if P3 is true.
*/
-case OP_If: /* no-push */
-case OP_IfNot: { /* no-push */
+case OP_If: /* jump, in1 */
+case OP_IfNot: { /* jump, in1 */
+#if 0 /* local variables moved into u.al */
int c;
- assert( pTos>=p->aStack );
- if( pTos->flags & MEM_Null ){
- c = pOp->p1;
+#endif /* local variables moved into u.al */
+ if( pIn1->flags & MEM_Null ){
+ u.al.c = pOp->p3;
}else{
#ifdef SQLITE_OMIT_FLOATING_POINT
- c = sqlite3VdbeIntValue(pTos);
+ u.al.c = sqlite3VdbeIntValue(pIn1)!=0;
#else
- c = sqlite3VdbeRealValue(pTos)!=0.0;
+ u.al.c = sqlite3VdbeRealValue(pIn1)!=0.0;
#endif
- if( pOp->opcode==OP_IfNot ) c = !c;
+ if( pOp->opcode==OP_IfNot ) u.al.c = !u.al.c;
}
- Release(pTos);
- pTos--;
- if( c ) pc = pOp->p2-1;
- break;
-}
-
-/* Opcode: IsNull P1 P2 *
-**
-** Check the top of the stack and jump to P2 if the top of the stack
-** is NULL. If P1 is positive, then pop P1 elements from the stack
-** regardless of whether or not the jump is taken. If P1 is negative,
-** pop -P1 elements from the stack only if the jump is taken and leave
-** the stack unchanged if the jump is not taken.
-*/
-case OP_IsNull: { /* same as TK_ISNULL, no-push */
- if( pTos->flags & MEM_Null ){
+ if( u.al.c ){
pc = pOp->p2-1;
- if( pOp->p1<0 ){
- popStack(&pTos, -pOp->p1);
- }
- }
- if( pOp->p1>0 ){
- popStack(&pTos, pOp->p1);
}
break;
}
-/* Opcode: NotNull P1 P2 *
+/* Opcode: IsNull P1 P2 * * *
**
-** Jump to P2 if the top abs(P1) values on the stack are all not NULL.
-** Regardless of whether or not the jump is taken, pop the stack
-** P1 times if P1 is greater than zero. But if P1 is negative,
-** leave the stack unchanged.
+** Jump to P2 if the value in register P1 is NULL.
*/
-case OP_NotNull: { /* same as TK_NOTNULL, no-push */
- int i, cnt;
- cnt = pOp->p1;
- if( cnt<0 ) cnt = -cnt;
- assert( &pTos[1-cnt] >= p->aStack );
- for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
- if( i>=cnt ) pc = pOp->p2-1;
- if( pOp->p1>0 ) popStack(&pTos, cnt);
+case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
+ if( (pIn1->flags & MEM_Null)!=0 ){
+ pc = pOp->p2 - 1;
+ }
break;
}
-/* Opcode: SetNumColumns P1 P2 *
-**
-** Before the OP_Column opcode can be executed on a cursor, this
-** opcode must be called to set the number of fields in the table.
+/* Opcode: NotNull P1 P2 * * *
**
-** This opcode sets the number of columns for cursor P1 to P2.
-**
-** If OP_KeyAsData is to be applied to cursor P1, it must be executed
-** before this op-code.
+** Jump to P2 if the value in register P1 is not NULL.
*/
-case OP_SetNumColumns: { /* no-push */
- Cursor *pC;
- assert( (pOp->p1)<p->nCursor );
- assert( p->apCsr[pOp->p1]!=0 );
- pC = p->apCsr[pOp->p1];
- pC->nField = pOp->p2;
+case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
+ if( (pIn1->flags & MEM_Null)==0 ){
+ pc = pOp->p2 - 1;
+ }
break;
}
-/* Opcode: Column P1 P2 P3
+/* Opcode: Column P1 P2 P3 P4 P5
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction. (See the MakeRecord opcode for additional
-** information about the format of the data.) Push onto the stack the value
-** of the P2-th column contained in the data. If there are less that (P2+1)
-** values in the record, push a NULL onto the stack.
+** information about the format of the data.) Extract the P2-th column
+** from this record. If there are less that (P2+1)
+** values in the record, extract a NULL.
+**
+** The value extracted is stored in register P3.
**
-** If the KeyAsData opcode has previously executed on this cursor, then the
-** field might be extracted from the key rather than the data.
+** If the column contains fewer than P2 fields, then extract a NULL. Or,
+** if the P4 argument is a P4_MEM use the value of the P4 argument as
+** the result.
**
-** If the column contains fewer than P2 fields, then push a NULL. Or
-** if P3 is of type P3_MEM, then push the P3 value. The P3 value will
-** be default value for a column that has been added using the ALTER TABLE
-** ADD COLUMN command. If P3 is an ordinary string, just push a NULL.
-** When P3 is a string it is really just a comment describing the value
-** to be pushed, not a default value.
+** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
+** then the cache of the cursor is reset prior to extracting the column.
+** The first OP_Column against a pseudo-table after the value of the content
+** register has changed should have this bit set.
*/
case OP_Column: {
+#if 0 /* local variables moved into u.am */
u32 payloadSize; /* Number of bytes in the record */
- int p1 = pOp->p1; /* P1 value of the opcode */
- int p2 = pOp->p2; /* column number to retrieve */
- Cursor *pC = 0; /* The VDBE cursor */
+ i64 payloadSize64; /* Number of bytes in the record */
+ int p1; /* P1 value of the opcode */
+ int p2; /* column number to retrieve */
+ VdbeCursor *pC; /* The VDBE cursor */
char *zRec; /* Pointer to complete record-data */
BtCursor *pCrsr; /* The BTree cursor */
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
- u32 nField; /* number of fields in the record */
+ int nField; /* number of fields in the record */
int len; /* The length of the serialized data for the column */
int i; /* Loop counter */
char *zData; /* Part of the record being decoded */
+ Mem *pDest; /* Where to write the extracted value */
Mem sMem; /* For storing the record being decoded */
-
- sMem.flags = 0;
- assert( p1<p->nCursor );
- pTos++;
- pTos->flags = MEM_Null;
-
- /* This block sets the variable payloadSize to be the total number of
+ u8 *zIdx; /* Index into header */
+ u8 *zEndHdr; /* Pointer to first byte after the header */
+ u32 offset; /* Offset into the data */
+ u64 offset64; /* 64-bit offset. 64 bits needed to catch overflow */
+ int szHdr; /* Size of the header size field at start of record */
+ int avail; /* Number of bytes of available data */
+ Mem *pReg; /* PseudoTable input register */
+#endif /* local variables moved into u.am */
+
+
+ u.am.p1 = pOp->p1;
+ u.am.p2 = pOp->p2;
+ u.am.pC = 0;
+ memset(&u.am.sMem, 0, sizeof(u.am.sMem));
+ assert( u.am.p1<p->nCursor );
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ u.am.pDest = &p->aMem[pOp->p3];
+ MemSetTypeFlag(u.am.pDest, MEM_Null);
+ u.am.zRec = 0;
+
+ /* This block sets the variable u.am.payloadSize to be the total number of
** bytes in the record.
**
- ** zRec is set to be the complete text of the record if it is available.
+ ** u.am.zRec is set to be the complete text of the record if it is available.
** The complete record text is always available for pseudo-tables
** If the record is stored in a cursor, the complete record text
- ** might be available in the pC->aRow cache. Or it might not be.
- ** If the data is unavailable, zRec is set to NULL.
+ ** might be available in the u.am.pC->aRow cache. Or it might not be.
+ ** If the data is unavailable, u.am.zRec is set to NULL.
**
** We also compute the number of columns in the record. For cursors,
- ** the number of columns is stored in the Cursor.nField element. For
- ** records on the stack, the next entry down on the stack is an integer
- ** which is the number of records.
+ ** the number of columns is stored in the VdbeCursor.nField element.
*/
- pC = p->apCsr[p1];
+ u.am.pC = p->apCsr[u.am.p1];
+ assert( u.am.pC!=0 );
#ifndef SQLITE_OMIT_VIRTUALTABLE
- assert( pC->pVtabCursor==0 );
+ assert( u.am.pC->pVtabCursor==0 );
#endif
- assert( pC!=0 );
- if( pC->pCursor!=0 ){
+ u.am.pCrsr = u.am.pC->pCursor;
+ if( u.am.pCrsr!=0 ){
/* The record is stored in a B-Tree */
- rc = sqlite3VdbeCursorMoveto(pC);
+ rc = sqlite3VdbeCursorMoveto(u.am.pC);
if( rc ) goto abort_due_to_error;
- zRec = 0;
- pCrsr = pC->pCursor;
- if( pC->nullRow ){
- payloadSize = 0;
- }else if( pC->cacheStatus==p->cacheCtr ){
- payloadSize = pC->payloadSize;
- zRec = (char*)pC->aRow;
- }else if( pC->isIndex ){
- i64 payloadSize64;
- sqlite3BtreeKeySize(pCrsr, &payloadSize64);
- payloadSize = payloadSize64;
- }else{
- sqlite3BtreeDataSize(pCrsr, &payloadSize);
- }
- nField = pC->nField;
- }else if( pC->pseudoTable ){
- /* The record is the sole entry of a pseudo-table */
- payloadSize = pC->nData;
- zRec = pC->pData;
- pC->cacheStatus = CACHE_STALE;
- assert( payloadSize==0 || zRec!=0 );
- nField = pC->nField;
- pCrsr = 0;
- }else{
- zRec = 0;
- payloadSize = 0;
- pCrsr = 0;
- nField = 0;
- }
-
- /* If payloadSize is 0, then just push a NULL onto the stack. */
- if( payloadSize==0 ){
- assert( pTos->flags==MEM_Null );
- break;
+ if( u.am.pC->nullRow ){
+ u.am.payloadSize = 0;
+ }else if( u.am.pC->cacheStatus==p->cacheCtr ){
+ u.am.payloadSize = u.am.pC->payloadSize;
+ u.am.zRec = (char*)u.am.pC->aRow;
+ }else if( u.am.pC->isIndex ){
+ assert( sqlite3BtreeCursorIsValid(u.am.pCrsr) );
+ rc = sqlite3BtreeKeySize(u.am.pCrsr, &u.am.payloadSize64);
+ assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
+ /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
+ ** payload size, so it is impossible for u.am.payloadSize64 to be
+ ** larger than 32 bits. */
+ assert( (u.am.payloadSize64 & SQLITE_MAX_U32)==(u64)u.am.payloadSize64 );
+ u.am.payloadSize = (u32)u.am.payloadSize64;
+ }else{
+ assert( sqlite3BtreeCursorIsValid(u.am.pCrsr) );
+ rc = sqlite3BtreeDataSize(u.am.pCrsr, &u.am.payloadSize);
+ assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
+ }
+ }else if( u.am.pC->pseudoTableReg>0 ){
+ u.am.pReg = &p->aMem[u.am.pC->pseudoTableReg];
+ assert( u.am.pReg->flags & MEM_Blob );
+ u.am.payloadSize = u.am.pReg->n;
+ u.am.zRec = u.am.pReg->z;
+ u.am.pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
+ assert( u.am.payloadSize==0 || u.am.zRec!=0 );
+ }else{
+ /* Consider the row to be NULL */
+ u.am.payloadSize = 0;
}
- assert( p2<nField );
+ /* If u.am.payloadSize is 0, then just store a NULL */
+ if( u.am.payloadSize==0 ){
+ assert( u.am.pDest->flags&MEM_Null );
+ goto op_column_out;
+ }
+ assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
+ if( u.am.payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+
+ u.am.nField = u.am.pC->nField;
+ assert( u.am.p2<u.am.nField );
/* Read and parse the table header. Store the results of the parse
** into the record header cache fields of the cursor.
*/
- if( pC && pC->cacheStatus==p->cacheCtr ){
- aType = pC->aType;
- aOffset = pC->aOffset;
+ u.am.aType = u.am.pC->aType;
+ if( u.am.pC->cacheStatus==p->cacheCtr ){
+ u.am.aOffset = u.am.pC->aOffset;
}else{
- u8 *zIdx; /* Index into header */
- u8 *zEndHdr; /* Pointer to first byte after the header */
- u32 offset; /* Offset into the data */
- int szHdrSz; /* Size of the header size field at start of record */
- int avail; /* Number of bytes of available data */
-
- aType = pC->aType;
- if( aType==0 ){
- pC->aType = aType = sqliteMallocRaw( 2*nField*sizeof(aType) );
- }
- if( aType==0 ){
- goto no_mem;
- }
- pC->aOffset = aOffset = &aType[nField];
- pC->payloadSize = payloadSize;
- pC->cacheStatus = p->cacheCtr;
+ assert(u.am.aType);
+ u.am.avail = 0;
+ u.am.pC->aOffset = u.am.aOffset = &u.am.aType[u.am.nField];
+ u.am.pC->payloadSize = u.am.payloadSize;
+ u.am.pC->cacheStatus = p->cacheCtr;
/* Figure out how many bytes are in the header */
- if( zRec ){
- zData = zRec;
+ if( u.am.zRec ){
+ u.am.zData = u.am.zRec;
}else{
- if( pC->isIndex ){
- zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
+ if( u.am.pC->isIndex ){
+ u.am.zData = (char*)sqlite3BtreeKeyFetch(u.am.pCrsr, &u.am.avail);
}else{
- zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
+ u.am.zData = (char*)sqlite3BtreeDataFetch(u.am.pCrsr, &u.am.avail);
}
/* If KeyFetch()/DataFetch() managed to get the entire payload,
- ** save the payload in the pC->aRow cache. That will save us from
+ ** save the payload in the u.am.pC->aRow cache. That will save us from
** having to make additional calls to fetch the content portion of
** the record.
*/
- if( avail>=payloadSize ){
- zRec = zData;
- pC->aRow = (u8*)zData;
+ assert( u.am.avail>=0 );
+ if( u.am.payloadSize <= (u32)u.am.avail ){
+ u.am.zRec = u.am.zData;
+ u.am.pC->aRow = (u8*)u.am.zData;
}else{
- pC->aRow = 0;
+ u.am.pC->aRow = 0;
}
}
/* The following assert is true in all cases accept when
** the database file has been corrupted externally.
- ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
- szHdrSz = GetVarint((u8*)zData, offset);
+ ** assert( u.am.zRec!=0 || u.am.avail>=u.am.payloadSize || u.am.avail>=9 ); */
+ u.am.szHdr = getVarint32((u8*)u.am.zData, u.am.offset);
+
+ /* Make sure a corrupt database has not given us an oversize header.
+ ** Do this now to avoid an oversize memory allocation.
+ **
+ ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
+ ** types use so much data space that there can only be 4096 and 32 of
+ ** them, respectively. So the maximum header length results from a
+ ** 3-byte type for each of the maximum of 32768 columns plus three
+ ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
+ */
+ if( u.am.offset > 98307 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto op_column_out;
+ }
+
+ /* Compute in u.am.len the number of bytes of data we need to read in order
+ ** to get u.am.nField type values. u.am.offset is an upper bound on this. But
+ ** u.am.nField might be significantly less than the true number of columns
+ ** in the table, and in that case, 5*u.am.nField+3 might be smaller than u.am.offset.
+ ** We want to minimize u.am.len in order to limit the size of the memory
+ ** allocation, especially if a corrupt database file has caused u.am.offset
+ ** to be oversized. Offset is limited to 98307 above. But 98307 might
+ ** still exceed Robson memory allocation limits on some configurations.
+ ** On systems that cannot tolerate large memory allocations, u.am.nField*5+3
+ ** will likely be much smaller since u.am.nField will likely be less than
+ ** 20 or so. This insures that Robson memory allocation limits are
+ ** not exceeded even for corrupt database files.
+ */
+ u.am.len = u.am.nField*5 + 3;
+ if( u.am.len > (int)u.am.offset ) u.am.len = (int)u.am.offset;
/* The KeyFetch() or DataFetch() above are fast and will get the entire
** record header in most cases. But they will fail to get the complete
@@ -33835,349 +53979,506 @@ case OP_Column: {
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
** acquire the complete header text.
*/
- if( !zRec && avail<offset ){
- rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
+ if( !u.am.zRec && u.am.avail<u.am.len ){
+ u.am.sMem.flags = 0;
+ u.am.sMem.db = 0;
+ rc = sqlite3VdbeMemFromBtree(u.am.pCrsr, 0, u.am.len, u.am.pC->isIndex, &u.am.sMem);
if( rc!=SQLITE_OK ){
goto op_column_out;
}
- zData = sMem.z;
+ u.am.zData = u.am.sMem.z;
}
- zEndHdr = (u8 *)&zData[offset];
- zIdx = (u8 *)&zData[szHdrSz];
+ u.am.zEndHdr = (u8 *)&u.am.zData[u.am.len];
+ u.am.zIdx = (u8 *)&u.am.zData[u.am.szHdr];
- /* Scan the header and use it to fill in the aType[] and aOffset[]
- ** arrays. aType[i] will contain the type integer for the i-th
- ** column and aOffset[i] will contain the offset from the beginning
- ** of the record to the start of the data for the i-th column
+ /* Scan the header and use it to fill in the u.am.aType[] and u.am.aOffset[]
+ ** arrays. u.am.aType[u.am.i] will contain the type integer for the u.am.i-th
+ ** column and u.am.aOffset[u.am.i] will contain the u.am.offset from the beginning
+ ** of the record to the start of the data for the u.am.i-th column
*/
- for(i=0; i<nField; i++){
- if( zIdx<zEndHdr ){
- aOffset[i] = offset;
- zIdx += GetVarint(zIdx, aType[i]);
- offset += sqlite3VdbeSerialTypeLen(aType[i]);
+ u.am.offset64 = u.am.offset;
+ for(u.am.i=0; u.am.i<u.am.nField; u.am.i++){
+ if( u.am.zIdx<u.am.zEndHdr ){
+ u.am.aOffset[u.am.i] = (u32)u.am.offset64;
+ u.am.zIdx += getVarint32(u.am.zIdx, u.am.aType[u.am.i]);
+ u.am.offset64 += sqlite3VdbeSerialTypeLen(u.am.aType[u.am.i]);
}else{
- /* If i is less that nField, then there are less fields in this
+ /* If u.am.i is less that u.am.nField, then there are less fields in this
** record than SetNumColumns indicated there are columns in the
- ** table. Set the offset for any extra columns not present in
- ** the record to 0. This tells code below to push a NULL onto the
- ** stack instead of deserializing a value from the record.
+ ** table. Set the u.am.offset for any extra columns not present in
+ ** the record to 0. This tells code below to store a NULL
+ ** instead of deserializing a value from the record.
*/
- aOffset[i] = 0;
+ u.am.aOffset[u.am.i] = 0;
}
}
- Release(&sMem);
- sMem.flags = MEM_Null;
+ sqlite3VdbeMemRelease(&u.am.sMem);
+ u.am.sMem.flags = MEM_Null;
/* If we have read more header data than was contained in the header,
** or if the end of the last field appears to be past the end of the
- ** record, then we must be dealing with a corrupt database.
+ ** record, or if the end of the last field appears to be before the end
+ ** of the record (when all fields present), then we must be dealing
+ ** with a corrupt database.
*/
- if( zIdx>zEndHdr || offset>payloadSize ){
+ if( (u.am.zIdx > u.am.zEndHdr)|| (u.am.offset64 > u.am.payloadSize)
+ || (u.am.zIdx==u.am.zEndHdr && u.am.offset64!=(u64)u.am.payloadSize) ){
rc = SQLITE_CORRUPT_BKPT;
goto op_column_out;
}
}
- /* Get the column information. If aOffset[p2] is non-zero, then
- ** deserialize the value from the record. If aOffset[p2] is zero,
+ /* Get the column information. If u.am.aOffset[u.am.p2] is non-zero, then
+ ** deserialize the value from the record. If u.am.aOffset[u.am.p2] is zero,
** then there are not enough fields in the record to satisfy the
- ** request. In this case, set the value NULL or to P3 if P3 is
+ ** request. In this case, set the value NULL or to P4 if P4 is
** a pointer to a Mem object.
*/
- if( aOffset[p2] ){
+ if( u.am.aOffset[u.am.p2] ){
assert( rc==SQLITE_OK );
- if( zRec ){
- zData = &zRec[aOffset[p2]];
+ if( u.am.zRec ){
+ sqlite3VdbeMemReleaseExternal(u.am.pDest);
+ sqlite3VdbeSerialGet((u8 *)&u.am.zRec[u.am.aOffset[u.am.p2]], u.am.aType[u.am.p2], u.am.pDest);
}else{
- len = sqlite3VdbeSerialTypeLen(aType[p2]);
- rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,&sMem);
+ u.am.len = sqlite3VdbeSerialTypeLen(u.am.aType[u.am.p2]);
+ sqlite3VdbeMemMove(&u.am.sMem, u.am.pDest);
+ rc = sqlite3VdbeMemFromBtree(u.am.pCrsr, u.am.aOffset[u.am.p2], u.am.len, u.am.pC->isIndex, &u.am.sMem);
if( rc!=SQLITE_OK ){
goto op_column_out;
}
- zData = sMem.z;
+ u.am.zData = u.am.sMem.z;
+ sqlite3VdbeSerialGet((u8*)u.am.zData, u.am.aType[u.am.p2], u.am.pDest);
}
- sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
- pTos->enc = encoding;
+ u.am.pDest->enc = encoding;
}else{
- if( pOp->p3type==P3_MEM ){
- sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static);
+ if( pOp->p4type==P4_MEM ){
+ sqlite3VdbeMemShallowCopy(u.am.pDest, pOp->p4.pMem, MEM_Static);
}else{
- pTos->flags = MEM_Null;
+ assert( u.am.pDest->flags&MEM_Null );
}
}
/* If we dynamically allocated space to hold the data (in the
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
- ** dynamically allocated space over to the pTos structure.
+ ** dynamically allocated space over to the u.am.pDest structure.
** This prevents a memory copy.
*/
- if( (sMem.flags & MEM_Dyn)!=0 ){
- assert( pTos->flags & MEM_Ephem );
- assert( pTos->flags & (MEM_Str|MEM_Blob) );
- assert( pTos->z==sMem.z );
- assert( sMem.flags & MEM_Term );
- pTos->flags &= ~MEM_Ephem;
- pTos->flags |= MEM_Dyn|MEM_Term;
+ if( u.am.sMem.zMalloc ){
+ assert( u.am.sMem.z==u.am.sMem.zMalloc );
+ assert( !(u.am.pDest->flags & MEM_Dyn) );
+ assert( !(u.am.pDest->flags & (MEM_Blob|MEM_Str)) || u.am.pDest->z==u.am.sMem.z );
+ u.am.pDest->flags &= ~(MEM_Ephem|MEM_Static);
+ u.am.pDest->flags |= MEM_Term;
+ u.am.pDest->z = u.am.sMem.z;
+ u.am.pDest->zMalloc = u.am.sMem.zMalloc;
}
- /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we
- ** can abandon sMem */
- rc = sqlite3VdbeMemMakeWriteable(pTos);
+ rc = sqlite3VdbeMemMakeWriteable(u.am.pDest);
op_column_out:
+ UPDATE_MAX_BLOBSIZE(u.am.pDest);
+ REGISTER_TRACE(pOp->p3, u.am.pDest);
break;
}
-/* Opcode: MakeRecord P1 P2 P3
+/* Opcode: Affinity P1 P2 * P4 *
**
-** Convert the top abs(P1) entries of the stack into a single entry
-** suitable for use as a data record in a database table or as a key
-** in an index. The details of the format are irrelavant as long as
-** the OP_Column opcode can decode the record later and as long as the
-** sqlite3VdbeRecordCompare function will correctly compare two encoded
-** records. Refer to source code comments for the details of the record
-** format.
+** Apply affinities to a range of P2 registers starting with P1.
**
-** The original stack entries are popped from the stack if P1>0 but
-** remain on the stack if P1<0.
+** P4 is a string that is P2 characters long. The nth character of the
+** string indicates the column affinity that should be used for the nth
+** memory cell in the range.
+*/
+case OP_Affinity: {
+#if 0 /* local variables moved into u.an */
+ char *zAffinity; /* The affinity to be applied */
+ Mem *pData0; /* First register to which to apply affinity */
+ Mem *pLast; /* Last register to which to apply affinity */
+ Mem *pRec; /* Current register */
+#endif /* local variables moved into u.an */
+
+ u.an.zAffinity = pOp->p4.z;
+ u.an.pData0 = &p->aMem[pOp->p1];
+ u.an.pLast = &u.an.pData0[pOp->p2-1];
+ for(u.an.pRec=u.an.pData0; u.an.pRec<=u.an.pLast; u.an.pRec++){
+ ExpandBlob(u.an.pRec);
+ applyAffinity(u.an.pRec, u.an.zAffinity[u.an.pRec-u.an.pData0], encoding);
+ }
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 P3 P4 *
**
-** If P2 is not zero and one or more of the entries are NULL, then jump
-** to the address given by P2. This feature can be used to skip a
-** uniqueness test on indices.
+** Convert P2 registers beginning with P1 into a single entry
+** suitable for use as a data record in a database table or as a key
+** in an index. The details of the format are irrelevant as long as
+** the OP_Column opcode can decode the record later.
+** Refer to source code comments for the details of the record
+** format.
**
-** P3 may be a string that is P1 characters long. The nth character of the
+** P4 may be a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
-** field of the index key (i.e. the first character of P3 corresponds to the
-** lowest element on the stack).
+** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
-** If P3 is NULL then all index fields have the affinity NONE.
-**
-** See also OP_MakeIdxRec
-*/
-/* Opcode: MakeIdxRec P1 P2 P3
-**
-** This opcode works just OP_MakeRecord except that it reads an extra
-** integer from the stack (thus reading a total of abs(P1+1) entries)
-** and appends that extra integer to the end of the record as a varint.
-** This results in an index key.
+** If P4 is NULL then all index fields have the affinity NONE.
*/
-case OP_MakeIdxRec:
case OP_MakeRecord: {
+#if 0 /* local variables moved into u.ao */
+ u8 *zNewRecord; /* A buffer to hold the data for the new record */
+ Mem *pRec; /* The new record */
+ u64 nData; /* Number of bytes of data space */
+ int nHdr; /* Number of bytes of header space */
+ i64 nByte; /* Data space required for this record */
+ int nZero; /* Number of zero bytes at the end of the record */
+ int nVarint; /* Number of bytes in a varint */
+ u32 serial_type; /* Type field */
+ Mem *pData0; /* First field to be combined into the record */
+ Mem *pLast; /* Last field of the record */
+ int nField; /* Number of fields in the record */
+ char *zAffinity; /* The affinity string for the record */
+ int file_format; /* File format to use for encoding */
+ int i; /* Space used in zNewRecord[] */
+ int len; /* Length of a field */
+#endif /* local variables moved into u.ao */
+
/* Assuming the record contains N fields, the record format looks
** like this:
**
** ------------------------------------------------------------------------
- ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
+ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
** ------------------------------------------------------------------------
**
- ** Data(0) is taken from the lowest element of the stack and data(N-1) is
- ** the top of the stack.
+ ** Data(0) is taken from register P1. Data(1) comes from register P1+1
+ ** and so froth.
**
- ** Each type field is a varint representing the serial type of the
+ ** Each type field is a varint representing the serial type of the
** corresponding data element (see sqlite3VdbeSerialType()). The
** hdr-size field is also a varint which is the offset from the beginning
** of the record to data0.
*/
- unsigned char *zNewRecord;
- unsigned char *zCsr;
- Mem *pRec;
- Mem *pRowid = 0;
- int nData = 0; /* Number of bytes of data space */
- int nHdr = 0; /* Number of bytes of header space */
- int nByte = 0; /* Space required for this record */
- int nVarint; /* Number of bytes in a varint */
- u32 serial_type; /* Type field */
- int containsNull = 0; /* True if any of the data fields are NULL */
- char zTemp[NBFS]; /* Space to hold small records */
- Mem *pData0;
-
- int leaveOnStack; /* If true, leave the entries on the stack */
- int nField; /* Number of fields in the record */
- int jumpIfNull; /* Jump here if non-zero and any entries are NULL. */
- int addRowid; /* True to append a rowid column at the end */
- char *zAffinity; /* The affinity string for the record */
- int file_format; /* File format to use for encoding */
-
- leaveOnStack = ((pOp->p1<0)?1:0);
- nField = pOp->p1 * (leaveOnStack?-1:1);
- jumpIfNull = pOp->p2;
- addRowid = pOp->opcode==OP_MakeIdxRec;
- zAffinity = pOp->p3;
-
- pData0 = &pTos[1-nField];
- assert( pData0>=p->aStack );
- containsNull = 0;
- file_format = p->minWriteFileFormat;
+ u.ao.nData = 0; /* Number of bytes of data space */
+ u.ao.nHdr = 0; /* Number of bytes of header space */
+ u.ao.nByte = 0; /* Data space required for this record */
+ u.ao.nZero = 0; /* Number of zero bytes at the end of the record */
+ u.ao.nField = pOp->p1;
+ u.ao.zAffinity = pOp->p4.z;
+ assert( u.ao.nField>0 && pOp->p2>0 && pOp->p2+u.ao.nField<=p->nMem+1 );
+ u.ao.pData0 = &p->aMem[u.ao.nField];
+ u.ao.nField = pOp->p2;
+ u.ao.pLast = &u.ao.pData0[u.ao.nField-1];
+ u.ao.file_format = p->minWriteFileFormat;
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record.
*/
- for(pRec=pData0; pRec<=pTos; pRec++){
- if( zAffinity ){
- applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
+ for(u.ao.pRec=u.ao.pData0; u.ao.pRec<=u.ao.pLast; u.ao.pRec++){
+ if( u.ao.zAffinity ){
+ applyAffinity(u.ao.pRec, u.ao.zAffinity[u.ao.pRec-u.ao.pData0], encoding);
}
- if( pRec->flags&MEM_Null ){
- containsNull = 1;
+ if( u.ao.pRec->flags&MEM_Zero && u.ao.pRec->n>0 ){
+ sqlite3VdbeMemExpandBlob(u.ao.pRec);
+ }
+ u.ao.serial_type = sqlite3VdbeSerialType(u.ao.pRec, u.ao.file_format);
+ u.ao.len = sqlite3VdbeSerialTypeLen(u.ao.serial_type);
+ u.ao.nData += u.ao.len;
+ u.ao.nHdr += sqlite3VarintLen(u.ao.serial_type);
+ if( u.ao.pRec->flags & MEM_Zero ){
+ /* Only pure zero-filled BLOBs can be input to this Opcode.
+ ** We do not allow blobs with a prefix and a zero-filled tail. */
+ u.ao.nZero += u.ao.pRec->u.nZero;
+ }else if( u.ao.len ){
+ u.ao.nZero = 0;
}
- serial_type = sqlite3VdbeSerialType(pRec, file_format);
- nData += sqlite3VdbeSerialTypeLen(serial_type);
- nHdr += sqlite3VarintLen(serial_type);
- }
-
- /* If we have to append a varint rowid to this record, set 'rowid'
- ** to the value of the rowid and increase nByte by the amount of space
- ** required to store it and the 0x00 seperator byte.
- */
- if( addRowid ){
- pRowid = &pTos[0-nField];
- assert( pRowid>=p->aStack );
- sqlite3VdbeMemIntegerify(pRowid);
- serial_type = sqlite3VdbeSerialType(pRowid, 0);
- nData += sqlite3VdbeSerialTypeLen(serial_type);
- nHdr += sqlite3VarintLen(serial_type);
}
/* Add the initial header varint and total the size */
- nHdr += nVarint = sqlite3VarintLen(nHdr);
- if( nVarint<sqlite3VarintLen(nHdr) ){
- nHdr++;
+ u.ao.nHdr += u.ao.nVarint = sqlite3VarintLen(u.ao.nHdr);
+ if( u.ao.nVarint<sqlite3VarintLen(u.ao.nHdr) ){
+ u.ao.nHdr++;
+ }
+ u.ao.nByte = u.ao.nHdr+u.ao.nData-u.ao.nZero;
+ if( u.ao.nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
}
- nByte = nHdr+nData;
- /* Allocate space for the new record. */
- if( nByte>sizeof(zTemp) ){
- zNewRecord = sqliteMallocRaw(nByte);
- if( !zNewRecord ){
- goto no_mem;
- }
- }else{
- zNewRecord = (u8*)zTemp;
+ /* Make sure the output register has a buffer large enough to store
+ ** the new record. The output register (pOp->p3) is not allowed to
+ ** be one of the input registers (because the following call to
+ ** sqlite3VdbeMemGrow() could clobber the value before it is used).
+ */
+ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
+ pOut = &p->aMem[pOp->p3];
+ if( sqlite3VdbeMemGrow(pOut, (int)u.ao.nByte, 0) ){
+ goto no_mem;
}
+ u.ao.zNewRecord = (u8 *)pOut->z;
/* Write the record */
- zCsr = zNewRecord;
- zCsr += sqlite3PutVarint(zCsr, nHdr);
- for(pRec=pData0; pRec<=pTos; pRec++){
- serial_type = sqlite3VdbeSerialType(pRec, file_format);
- zCsr += sqlite3PutVarint(zCsr, serial_type); /* serial type */
- }
- if( addRowid ){
- zCsr += sqlite3PutVarint(zCsr, sqlite3VdbeSerialType(pRowid, 0));
- }
- for(pRec=pData0; pRec<=pTos; pRec++){
- zCsr += sqlite3VdbeSerialPut(zCsr, pRec, file_format); /* serial data */
- }
- if( addRowid ){
- zCsr += sqlite3VdbeSerialPut(zCsr, pRowid, 0);
- }
- assert( zCsr==(zNewRecord+nByte) );
+ u.ao.i = putVarint32(u.ao.zNewRecord, u.ao.nHdr);
+ for(u.ao.pRec=u.ao.pData0; u.ao.pRec<=u.ao.pLast; u.ao.pRec++){
+ u.ao.serial_type = sqlite3VdbeSerialType(u.ao.pRec, u.ao.file_format);
+ u.ao.i += putVarint32(&u.ao.zNewRecord[u.ao.i], u.ao.serial_type); /* serial type */
+ }
+ for(u.ao.pRec=u.ao.pData0; u.ao.pRec<=u.ao.pLast; u.ao.pRec++){ /* serial data */
+ u.ao.i += sqlite3VdbeSerialPut(&u.ao.zNewRecord[u.ao.i], (int)(u.ao.nByte-u.ao.i), u.ao.pRec,u.ao.file_format);
+ }
+ assert( u.ao.i==u.ao.nByte );
+
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pOut->n = (int)u.ao.nByte;
+ pOut->flags = MEM_Blob | MEM_Dyn;
+ pOut->xDel = 0;
+ if( u.ao.nZero ){
+ pOut->u.nZero = u.ao.nZero;
+ pOut->flags |= MEM_Zero;
+ }
+ pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
- /* Pop entries off the stack if required. Push the new record on. */
- if( !leaveOnStack ){
- popStack(&pTos, nField+addRowid);
- }
- pTos++;
- pTos->n = nByte;
- if( nByte<=sizeof(zTemp) ){
- assert( zNewRecord==(unsigned char *)zTemp );
- pTos->z = pTos->zShort;
- memcpy(pTos->zShort, zTemp, nByte);
- pTos->flags = MEM_Blob | MEM_Short;
- }else{
- assert( zNewRecord!=(unsigned char *)zTemp );
- pTos->z = (char*)zNewRecord;
- pTos->flags = MEM_Blob | MEM_Dyn;
- pTos->xDel = 0;
- }
- pTos->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
+/* Opcode: Count P1 P2 * * *
+**
+** Store the number of entries (an integer value) in the table or index
+** opened by cursor P1 in register P2
+*/
+#ifndef SQLITE_OMIT_BTREECOUNT
+case OP_Count: { /* out2-prerelease */
+#if 0 /* local variables moved into u.ap */
+ i64 nEntry;
+ BtCursor *pCrsr;
+#endif /* local variables moved into u.ap */
- /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
- if( jumpIfNull && containsNull ){
- pc = jumpIfNull - 1;
+ u.ap.pCrsr = p->apCsr[pOp->p1]->pCursor;
+ if( u.ap.pCrsr ){
+ rc = sqlite3BtreeCount(u.ap.pCrsr, &u.ap.nEntry);
+ }else{
+ u.ap.nEntry = 0;
}
+ pOut->flags = MEM_Int;
+ pOut->u.i = u.ap.nEntry;
break;
}
+#endif
-/* Opcode: Statement P1 * *
-**
-** Begin an individual statement transaction which is part of a larger
-** BEGIN..COMMIT transaction. This is needed so that the statement
-** can be rolled back after an error without having to roll back the
-** entire transaction. The statement transaction will automatically
-** commit when the VDBE halts.
+/* Opcode: Savepoint P1 * * P4 *
**
-** The statement is begun on the database file with index P1. The main
-** database file has an index of 0 and the file used for temporary tables
-** has an index of 1.
+** Open, release or rollback the savepoint named by parameter P4, depending
+** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
+** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
-case OP_Statement: { /* no-push */
- int i = pOp->p1;
- Btree *pBt;
- if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt)!=0 && !(db->autoCommit) ){
- assert( sqlite3BtreeIsInTrans(pBt) );
- if( !sqlite3BtreeIsInStmt(pBt) ){
- rc = sqlite3BtreeBeginStmt(pBt);
+case OP_Savepoint: {
+#if 0 /* local variables moved into u.aq */
+ int p1; /* Value of P1 operand */
+ char *zName; /* Name of savepoint */
+ int nName;
+ Savepoint *pNew;
+ Savepoint *pSavepoint;
+ Savepoint *pTmp;
+ int iSavepoint;
+ int ii;
+#endif /* local variables moved into u.aq */
+
+ u.aq.p1 = pOp->p1;
+ u.aq.zName = pOp->p4.z;
+
+ /* Assert that the u.aq.p1 parameter is valid. Also that if there is no open
+ ** transaction, then there cannot be any savepoints.
+ */
+ assert( db->pSavepoint==0 || db->autoCommit==0 );
+ assert( u.aq.p1==SAVEPOINT_BEGIN||u.aq.p1==SAVEPOINT_RELEASE||u.aq.p1==SAVEPOINT_ROLLBACK );
+ assert( db->pSavepoint || db->isTransactionSavepoint==0 );
+ assert( checkSavepointCount(db) );
+
+ if( u.aq.p1==SAVEPOINT_BEGIN ){
+ if( db->writeVdbeCnt>0 ){
+ /* A new savepoint cannot be created if there are active write
+ ** statements (i.e. open read/write incremental blob handles).
+ */
+ sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else{
+ u.aq.nName = sqlite3Strlen30(u.aq.zName);
+
+ /* Create a new savepoint structure. */
+ u.aq.pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+u.aq.nName+1);
+ if( u.aq.pNew ){
+ u.aq.pNew->zName = (char *)&u.aq.pNew[1];
+ memcpy(u.aq.pNew->zName, u.aq.zName, u.aq.nName+1);
+
+ /* If there is no open transaction, then mark this as a special
+ ** "transaction savepoint". */
+ if( db->autoCommit ){
+ db->autoCommit = 0;
+ db->isTransactionSavepoint = 1;
+ }else{
+ db->nSavepoint++;
+ }
+
+ /* Link the new savepoint into the database handle's list. */
+ u.aq.pNew->pNext = db->pSavepoint;
+ db->pSavepoint = u.aq.pNew;
+ }
+ }
+ }else{
+ u.aq.iSavepoint = 0;
+
+ /* Find the named savepoint. If there is no such savepoint, then an
+ ** an error is returned to the user. */
+ for(
+ u.aq.pSavepoint = db->pSavepoint;
+ u.aq.pSavepoint && sqlite3StrICmp(u.aq.pSavepoint->zName, u.aq.zName);
+ u.aq.pSavepoint = u.aq.pSavepoint->pNext
+ ){
+ u.aq.iSavepoint++;
+ }
+ if( !u.aq.pSavepoint ){
+ sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", u.aq.zName);
+ rc = SQLITE_ERROR;
+ }else if(
+ db->writeVdbeCnt>0 || (u.aq.p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
+ ){
+ /* It is not possible to release (commit) a savepoint if there are
+ ** active write statements. It is not possible to rollback a savepoint
+ ** if there are any active statements at all.
+ */
+ sqlite3SetString(&p->zErrMsg, db,
+ "cannot %s savepoint - SQL statements in progress",
+ (u.aq.p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
+ );
+ rc = SQLITE_BUSY;
+ }else{
+
+ /* Determine whether or not this is a transaction savepoint. If so,
+ ** and this is a RELEASE command, then the current transaction
+ ** is committed.
+ */
+ int isTransaction = u.aq.pSavepoint->pNext==0 && db->isTransactionSavepoint;
+ if( isTransaction && u.aq.p1==SAVEPOINT_RELEASE ){
+ db->autoCommit = 1;
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = pc;
+ db->autoCommit = 0;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ db->isTransactionSavepoint = 0;
+ rc = p->rc;
+ }else{
+ u.aq.iSavepoint = db->nSavepoint - u.aq.iSavepoint - 1;
+ for(u.aq.ii=0; u.aq.ii<db->nDb; u.aq.ii++){
+ rc = sqlite3BtreeSavepoint(db->aDb[u.aq.ii].pBt, u.aq.p1, u.aq.iSavepoint);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ }
+ if( u.aq.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
+ sqlite3ExpirePreparedStatements(db);
+ sqlite3ResetInternalSchema(db, 0);
+ }
+ }
+
+ /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
+ ** savepoints nested inside of the savepoint being operated on. */
+ while( db->pSavepoint!=u.aq.pSavepoint ){
+ u.aq.pTmp = db->pSavepoint;
+ db->pSavepoint = u.aq.pTmp->pNext;
+ sqlite3DbFree(db, u.aq.pTmp);
+ db->nSavepoint--;
+ }
+
+ /* If it is a RELEASE, then destroy the savepoint being operated on too */
+ if( u.aq.p1==SAVEPOINT_RELEASE ){
+ assert( u.aq.pSavepoint==db->pSavepoint );
+ db->pSavepoint = u.aq.pSavepoint->pNext;
+ sqlite3DbFree(db, u.aq.pSavepoint);
+ if( !isTransaction ){
+ db->nSavepoint--;
+ }
+ }
}
}
+
break;
}
-/* Opcode: AutoCommit P1 P2 *
+/* Opcode: AutoCommit P1 P2 * * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
-** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
+** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
+** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
-case OP_AutoCommit: { /* no-push */
- u8 i = pOp->p1;
- u8 rollback = pOp->p2;
-
- assert( i==1 || i==0 );
- assert( i==1 || rollback==0 );
-
+case OP_AutoCommit: {
+#if 0 /* local variables moved into u.ar */
+ int desiredAutoCommit;
+ int iRollback;
+ int turnOnAC;
+#endif /* local variables moved into u.ar */
+
+ u.ar.desiredAutoCommit = pOp->p1;
+ u.ar.iRollback = pOp->p2;
+ u.ar.turnOnAC = u.ar.desiredAutoCommit && !db->autoCommit;
+ assert( u.ar.desiredAutoCommit==1 || u.ar.desiredAutoCommit==0 );
+ assert( u.ar.desiredAutoCommit==1 || u.ar.iRollback==0 );
assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
- if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
- /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
+ if( u.ar.turnOnAC && u.ar.iRollback && db->activeVdbeCnt>1 ){
+ /* If this instruction implements a ROLLBACK and other VMs are
** still running, and a transaction is active, return an error indicating
- ** that the other VMs must complete first.
+ ** that the other VMs must complete first.
*/
- sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
- " transaction - SQL statements in progress", (char*)0);
- rc = SQLITE_ERROR;
- }else if( i!=db->autoCommit ){
- if( pOp->p2 ){
- assert( i==1 );
+ sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else if( u.ar.turnOnAC && !u.ar.iRollback && db->writeVdbeCnt>0 ){
+ /* If this instruction implements a COMMIT and other VMs are writing
+ ** return an error indicating that the other VMs must complete first.
+ */
+ sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else if( u.ar.desiredAutoCommit!=db->autoCommit ){
+ if( u.ar.iRollback ){
+ assert( u.ar.desiredAutoCommit==1 );
sqlite3RollbackAll(db);
db->autoCommit = 1;
}else{
- db->autoCommit = i;
+ db->autoCommit = (u8)u.ar.desiredAutoCommit;
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
- p->pTos = pTos;
p->pc = pc;
- db->autoCommit = 1-i;
- p->rc = SQLITE_BUSY;
- return SQLITE_BUSY;
+ db->autoCommit = (u8)(1-u.ar.desiredAutoCommit);
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
}
}
- return SQLITE_DONE;
+ assert( db->nStatement==0 );
+ sqlite3CloseSavepoints(db);
+ if( p->rc==SQLITE_OK ){
+ rc = SQLITE_DONE;
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ goto vdbe_return;
}else{
- sqlite3SetString(&p->zErrMsg,
- (!i)?"cannot start a transaction within a transaction":(
- (rollback)?"cannot rollback - no transaction is active":
- "cannot commit - no transaction is active"), (char*)0);
-
+ sqlite3SetString(&p->zErrMsg, db,
+ (!u.ar.desiredAutoCommit)?"cannot start a transaction within a transaction":(
+ (u.ar.iRollback)?"cannot rollback - no transaction is active":
+ "cannot commit - no transaction is active"));
+
rc = SQLITE_ERROR;
}
break;
}
-/* Opcode: Transaction P1 P2 *
+/* Opcode: Transaction P1 P2 * * *
**
** Begin a transaction. The transaction ends when a Commit or Rollback
** opcode is encountered. Depending on the ON CONFLICT setting, the
@@ -34185,7 +54486,8 @@ case OP_AutoCommit: { /* no-push */
**
** P1 is the index of the database file on which the transaction is
** started. Index 0 is the main database file and index 1 is the
-** file used for temporary tables.
+** file used for temporary tables. Indices of 2 or more are used for
+** attached databases.
**
** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
** obtained on the database file when a write-transaction is started. No
@@ -34195,35 +54497,58 @@ case OP_AutoCommit: { /* no-push */
** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
+** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
+** true (this flag is set if the Vdbe may modify more than one row and may
+** throw an ABORT exception), a statement transaction may also be opened.
+** More specifically, a statement transaction is opened iff the database
+** connection is currently not in autocommit mode, or if there are other
+** active statements. A statement transaction allows the affects of this
+** VDBE to be rolled back after an error without having to roll back the
+** entire transaction. If no error is encountered, the statement transaction
+** will automatically commit when the VDBE halts.
+**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
-case OP_Transaction: { /* no-push */
- int i = pOp->p1;
+case OP_Transaction: {
+#if 0 /* local variables moved into u.as */
Btree *pBt;
+#endif /* local variables moved into u.as */
- assert( i>=0 && i<db->nDb );
- pBt = db->aDb[i].pBt;
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ u.as.pBt = db->aDb[pOp->p1].pBt;
- if( pBt ){
- rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
+ if( u.as.pBt ){
+ rc = sqlite3BtreeBeginTrans(u.as.pBt, pOp->p2);
if( rc==SQLITE_BUSY ){
p->pc = pc;
- p->rc = SQLITE_BUSY;
- p->pTos = pTos;
- return SQLITE_BUSY;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
}
if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
goto abort_due_to_error;
}
+
+ if( pOp->p2 && p->usesStmtJournal
+ && (db->autoCommit==0 || db->activeVdbeCnt>1)
+ ){
+ assert( sqlite3BtreeIsInTrans(u.as.pBt) );
+ if( p->iStatement==0 ){
+ assert( db->nStatement>=0 && db->nSavepoint>=0 );
+ db->nStatement++;
+ p->iStatement = db->nSavepoint + db->nStatement;
+ }
+ rc = sqlite3BtreeBeginStmt(u.as.pBt, p->iStatement);
+ }
}
break;
}
-/* Opcode: ReadCookie P1 P2 *
+/* Opcode: ReadCookie P1 P2 P3 * *
**
-** Read cookie number P2 from database P1 and push it onto the stack.
-** P2==0 is the schema version. P2==1 is the database format.
-** P2==2 is the recommended pager cache size, and so forth. P1==0 is
+** Read cookie number P3 from database P1 and write it into register P2.
+** P3==1 is the schema version. P3==2 is the database format.
+** P3==3 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
@@ -34231,55 +54556,56 @@ case OP_Transaction: { /* no-push */
** must be started or there must be an open cursor) before
** executing this instruction.
*/
-case OP_ReadCookie: {
+case OP_ReadCookie: { /* out2-prerelease */
+#if 0 /* local variables moved into u.at */
int iMeta;
- assert( pOp->p2<SQLITE_N_BTREE_META );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( db->aDb[pOp->p1].pBt!=0 );
- /* The indexing of meta values at the schema layer is off by one from
- ** the indexing in the btree layer. The btree considers meta[0] to
- ** be the number of free pages in the database (a read-only value)
- ** and meta[1] to be the schema cookie. The schema layer considers
- ** meta[1] to be the schema cookie. So we have to shift the index
- ** by one in the following statement.
- */
- rc = sqlite3BtreeGetMeta(db->aDb[pOp->p1].pBt, 1 + pOp->p2, (u32 *)&iMeta);
- pTos++;
- pTos->u.i = iMeta;
- pTos->flags = MEM_Int;
+ int iDb;
+ int iCookie;
+#endif /* local variables moved into u.at */
+
+ u.at.iDb = pOp->p1;
+ u.at.iCookie = pOp->p3;
+ assert( pOp->p3<SQLITE_N_BTREE_META );
+ assert( u.at.iDb>=0 && u.at.iDb<db->nDb );
+ assert( db->aDb[u.at.iDb].pBt!=0 );
+ assert( (p->btreeMask & (1<<u.at.iDb))!=0 );
+
+ sqlite3BtreeGetMeta(db->aDb[u.at.iDb].pBt, u.at.iCookie, (u32 *)&u.at.iMeta);
+ pOut->u.i = u.at.iMeta;
+ MemSetTypeFlag(pOut, MEM_Int);
break;
}
-/* Opcode: SetCookie P1 P2 *
+/* Opcode: SetCookie P1 P2 P3 * *
**
-** Write the top of the stack into cookie number P2 of database P1.
-** P2==0 is the schema version. P2==1 is the database format.
-** P2==2 is the recommended pager cache size, and so forth. P1==0 is
-** the main database file and P1==1 is the database file used to store
-** temporary tables.
+** Write the content of register P3 (interpreted as an integer)
+** into cookie number P2 of database P1. P2==1 is the schema version.
+** P2==2 is the database format. P2==3 is the recommended pager cache
+** size, and so forth. P1==0 is the main database file and P1==1 is the
+** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
-case OP_SetCookie: { /* no-push */
+case OP_SetCookie: { /* in3 */
+#if 0 /* local variables moved into u.au */
Db *pDb;
+#endif /* local variables moved into u.au */
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ u.au.pDb = &db->aDb[pOp->p1];
+ assert( u.au.pDb->pBt!=0 );
+ sqlite3VdbeMemIntegerify(pIn3);
/* See note about index shifting on OP_ReadCookie */
- rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->u.i);
- if( pOp->p2==0 ){
+ rc = sqlite3BtreeUpdateMeta(u.au.pDb->pBt, pOp->p2, (int)pIn3->u.i);
+ if( pOp->p2==BTREE_SCHEMA_VERSION ){
/* When the schema cookie changes, record the new cookie internally */
- pDb->pSchema->schema_cookie = pTos->u.i;
+ u.au.pDb->pSchema->schema_cookie = (int)pIn3->u.i;
db->flags |= SQLITE_InternChanges;
- }else if( pOp->p2==1 ){
+ }else if( pOp->p2==BTREE_FILE_FORMAT ){
/* Record changes in the file format */
- pDb->pSchema->file_format = pTos->u.i;
+ u.au.pDb->pSchema->file_format = (u8)pIn3->u.i;
}
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
if( pOp->p1==1 ){
/* Invalidate all prepared statements whenever the TEMP database
** schema is changed. Ticket #1644 */
@@ -34304,33 +54630,36 @@ case OP_SetCookie: { /* no-push */
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
-case OP_VerifyCookie: { /* no-push */
+case OP_VerifyCookie: {
+#if 0 /* local variables moved into u.av */
int iMeta;
Btree *pBt;
+#endif /* local variables moved into u.av */
assert( pOp->p1>=0 && pOp->p1<db->nDb );
- pBt = db->aDb[pOp->p1].pBt;
- if( pBt ){
- rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ u.av.pBt = db->aDb[pOp->p1].pBt;
+ if( u.av.pBt ){
+ sqlite3BtreeGetMeta(u.av.pBt, BTREE_SCHEMA_VERSION, (u32 *)&u.av.iMeta);
}else{
- rc = SQLITE_OK;
- iMeta = 0;
+ u.av.iMeta = 0;
}
- if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
- sqlite3SetString(&p->zErrMsg, "database schema has changed", (char*)0);
- /* If the schema-cookie from the database file matches the cookie
+ if( u.av.iMeta!=pOp->p2 ){
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
+ /* If the schema-cookie from the database file matches the cookie
** stored with the in-memory representation of the schema, do
** not reload the schema from the database file.
**
- ** If virtual-tables are in use, this is not just an optimisation.
+ ** If virtual-tables are in use, this is not just an optimization.
** Often, v-tables store their data in other SQLite tables, which
** are queried from within xNext() and other v-table methods using
** prepared queries. If such a query is out-of-date, we do not want to
** discard the database schema, as the user code implementing the
** v-table would have to be ready for the sqlite3_vtab structure itself
- ** to be invalidated whenever sqlite3_step() is called from within
+ ** to be invalidated whenever sqlite3_step() is called from within
** a v-table method.
*/
- if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
+ if( db->aDb[pOp->p1].pSchema->schema_cookie!=u.av.iMeta ){
sqlite3ResetInternalSchema(db, pOp->p1);
}
@@ -34340,17 +54669,18 @@ case OP_VerifyCookie: { /* no-push */
break;
}
-/* Opcode: OpenRead P1 P2 P3
+/* Opcode: OpenRead P1 P2 P3 P4 P5
**
** Open a read-only cursor for the database table whose root page is
-** P2 in a database file. The database file is determined by an
-** integer from the top of the stack. 0 means the main database and
-** 1 means the database used for temporary tables. Give the new
-** cursor an identifier of P1. The P1 values need not be contiguous
-** but all P1 values should be small integers. It is an error for
-** P1 to be negative.
+** P2 in a database file. The database file is determined by P3.
+** P3==0 means the main database, P3==1 means the database used for
+** temporary tables, and P3>1 means used the corresponding attached
+** database. Give the new cursor an identifier of P1. The P1
+** values need not be contiguous but all P1 values should be small integers.
+** It is an error for P1 to be negative.
**
-** If P2==0 then take the root page number from the next of the stack.
+** If P5!=0 then use the content of register P2 as the root page, not
+** the value of P2 itself.
**
** There will be a read lock on the database whenever there is an
** open cursor. If the database was unlocked prior to this instruction
@@ -34361,20 +54691,26 @@ case OP_VerifyCookie: { /* no-push */
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
-** The P3 value is a pointer to a KeyInfo structure that defines the
-** content and collating sequence of indices. P3 is NULL for cursors
-** that are not pointing to indices.
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** structure, then said structure defines the content and collating
+** sequence of the index being opened. Otherwise, if P4 is an integer
+** value, it is set to the number of columns in the table.
**
** See also OpenWrite.
*/
-/* Opcode: OpenWrite P1 P2 P3
+/* Opcode: OpenWrite P1 P2 P3 P4 P5
**
** Open a read/write cursor named P1 on the table or index whose root
-** page is P2. If P2==0 then take the root page number from the stack.
+** page is P2. Or if P5!=0 use the content of register P2 to find the
+** root page.
**
-** The P3 value is a pointer to a KeyInfo structure that defines the
-** content and collating sequence of indices. P3 is NULL for cursors
-** that are not pointing to indices.
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** structure, then said structure defines the content and collating
+** sequence of the index being opened. Otherwise, if P4 is an integer
+** value, it is set to the number of columns in the table, or to the
+** largest index of any column of the table that is actually used.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode. For a given table, there can be one or more read-only
@@ -34382,105 +54718,85 @@ case OP_VerifyCookie: { /* no-push */
**
** See also OpenRead.
*/
-case OP_OpenRead: /* no-push */
-case OP_OpenWrite: { /* no-push */
- int i = pOp->p1;
- int p2 = pOp->p2;
+case OP_OpenRead:
+case OP_OpenWrite: {
+#if 0 /* local variables moved into u.aw */
+ int nField;
+ KeyInfo *pKeyInfo;
+ int p2;
+ int iDb;
int wrFlag;
Btree *pX;
- int iDb;
- Cursor *pCur;
+ VdbeCursor *pCur;
Db *pDb;
-
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- iDb = pTos->u.i;
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- assert( iDb>=0 && iDb<db->nDb );
- pDb = &db->aDb[iDb];
- pX = pDb->pBt;
- assert( pX!=0 );
+#endif /* local variables moved into u.aw */
+
+ u.aw.nField = 0;
+ u.aw.pKeyInfo = 0;
+ u.aw.p2 = pOp->p2;
+ u.aw.iDb = pOp->p3;
+ assert( u.aw.iDb>=0 && u.aw.iDb<db->nDb );
+ assert( (p->btreeMask & (1<<u.aw.iDb))!=0 );
+ u.aw.pDb = &db->aDb[u.aw.iDb];
+ u.aw.pX = u.aw.pDb->pBt;
+ assert( u.aw.pX!=0 );
if( pOp->opcode==OP_OpenWrite ){
- wrFlag = 1;
- if( pDb->pSchema->file_format < p->minWriteFileFormat ){
- p->minWriteFileFormat = pDb->pSchema->file_format;
- }
- }else{
- wrFlag = 0;
- }
- if( p2<=0 ){
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- p2 = pTos->u.i;
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- assert( p2>=2 );
- }
- assert( i>=0 );
- pCur = allocateCursor(p, i, iDb);
- if( pCur==0 ) goto no_mem;
- pCur->nullRow = 1;
- if( pX==0 ) break;
- /* We always provide a key comparison function. If the table being
- ** opened is of type INTKEY, the comparision function will be ignored. */
- rc = sqlite3BtreeCursor(pX, p2, wrFlag,
- sqlite3VdbeRecordCompare, pOp->p3,
- &pCur->pCursor);
- if( pOp->p3type==P3_KEYINFO ){
- pCur->pKeyInfo = (KeyInfo*)pOp->p3;
- pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
- pCur->pKeyInfo->enc = ENC(p->db);
- }else{
- pCur->pKeyInfo = 0;
- pCur->pIncrKey = &pCur->bogusIncrKey;
- }
- switch( rc ){
- case SQLITE_BUSY: {
- p->pc = pc;
- p->rc = SQLITE_BUSY;
- p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
- return SQLITE_BUSY;
+ u.aw.wrFlag = 1;
+ if( u.aw.pDb->pSchema->file_format < p->minWriteFileFormat ){
+ p->minWriteFileFormat = u.aw.pDb->pSchema->file_format;
}
- case SQLITE_OK: {
- int flags = sqlite3BtreeFlags(pCur->pCursor);
- /* Sanity checking. Only the lower four bits of the flags byte should
- ** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits
- ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
- ** 2 (zerodata for indices). If these conditions are not met it can
- ** only mean that we are dealing with a corrupt database file
- */
- if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- pCur->isTable = (flags & BTREE_INTKEY)!=0;
- pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
- /* If P3==0 it means we are expected to open a table. If P3!=0 then
- ** we expect to be opening an index. If this is not what happened,
- ** then the database is corrupt
- */
- if( (pCur->isTable && pOp->p3type==P3_KEYINFO)
- || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- break;
- }
- case SQLITE_EMPTY: {
- pCur->isTable = pOp->p3type!=P3_KEYINFO;
- pCur->isIndex = !pCur->isTable;
- rc = SQLITE_OK;
- break;
- }
- default: {
+ }else{
+ u.aw.wrFlag = 0;
+ }
+ if( pOp->p5 ){
+ assert( u.aw.p2>0 );
+ assert( u.aw.p2<=p->nMem );
+ pIn2 = &p->aMem[u.aw.p2];
+ sqlite3VdbeMemIntegerify(pIn2);
+ u.aw.p2 = (int)pIn2->u.i;
+ /* The u.aw.p2 value always comes from a prior OP_CreateTable opcode and
+ ** that opcode will always set the u.aw.p2 value to 2 or more or else fail.
+ ** If there were a failure, the prepared statement would have halted
+ ** before reaching this instruction. */
+ if( NEVER(u.aw.p2<2) ) {
+ rc = SQLITE_CORRUPT_BKPT;
goto abort_due_to_error;
}
}
+ if( pOp->p4type==P4_KEYINFO ){
+ u.aw.pKeyInfo = pOp->p4.pKeyInfo;
+ u.aw.pKeyInfo->enc = ENC(p->db);
+ u.aw.nField = u.aw.pKeyInfo->nField+1;
+ }else if( pOp->p4type==P4_INT32 ){
+ u.aw.nField = pOp->p4.i;
+ }
+ assert( pOp->p1>=0 );
+ u.aw.pCur = allocateCursor(p, pOp->p1, u.aw.nField, u.aw.iDb, 1);
+ if( u.aw.pCur==0 ) goto no_mem;
+ u.aw.pCur->nullRow = 1;
+ rc = sqlite3BtreeCursor(u.aw.pX, u.aw.p2, u.aw.wrFlag, u.aw.pKeyInfo, u.aw.pCur->pCursor);
+ u.aw.pCur->pKeyInfo = u.aw.pKeyInfo;
+
+ /* Since it performs no memory allocation or IO, the only values that
+ ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
+ ** SQLITE_EMPTY is only returned when attempting to open the table
+ ** rooted at page 1 of a zero-byte database. */
+ assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
+ if( rc==SQLITE_EMPTY ){
+ u.aw.pCur->pCursor = 0;
+ rc = SQLITE_OK;
+ }
+
+ /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
+ ** SQLite used to check if the root-page flags were sane at this point
+ ** and report database corruption if they were not, but this check has
+ ** since moved into the btree layer. */
+ u.aw.pCur->isTable = pOp->p4type!=P4_KEYINFO;
+ u.aw.pCur->isIndex = !u.aw.pCur->isTable;
break;
}
-/* Opcode: OpenEphemeral P1 P2 P3
+/* Opcode: OpenEphemeral P1 P2 * P4 *
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if
@@ -34488,8 +54804,8 @@ case OP_OpenWrite: { /* no-push */
** table is deleted automatically when the cursor is closed.
**
** P2 is the number of columns in the virtual table.
-** The cursor points to a BTree table if P3==0 and to a BTree index
-** if P3 is not 0. If P3 is not NULL, it points to a KeyInfo structure
+** The cursor points to a BTree table if P4==0 and to a BTree index
+** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** This opcode was once called OpenTemp. But that created
@@ -34498,16 +54814,25 @@ case OP_OpenWrite: { /* no-push */
** this opcode. Then this opcode was call OpenVirtual. But
** that created confusion with the whole virtual-table idea.
*/
-case OP_OpenEphemeral: { /* no-push */
- int i = pOp->p1;
- Cursor *pCx;
- assert( i>=0 );
- pCx = allocateCursor(p, i, -1);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- rc = sqlite3BtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
+case OP_OpenEphemeral: {
+#if 0 /* local variables moved into u.ax */
+ VdbeCursor *pCx;
+#endif /* local variables moved into u.ax */
+ static const int openFlags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TRANSIENT_DB;
+
+ assert( pOp->p1>=0 );
+ u.ax.pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
+ if( u.ax.pCx==0 ) goto no_mem;
+ u.ax.pCx->nullRow = 1;
+ rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
+ &u.ax.pCx->pBt);
if( rc==SQLITE_OK ){
- rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
+ rc = sqlite3BtreeBeginTrans(u.ax.pCx->pBt, 1);
}
if( rc==SQLITE_OK ){
/* If a transient index is required, create it by calling
@@ -34515,460 +54840,543 @@ case OP_OpenEphemeral: { /* no-push */
** opening it. If a transient table is required, just use the
** automatically created table with root-page 1 (an INTKEY table).
*/
- if( pOp->p3 ){
+ if( pOp->p4.pKeyInfo ){
int pgno;
- assert( pOp->p3type==P3_KEYINFO );
- rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
+ assert( pOp->p4type==P4_KEYINFO );
+ rc = sqlite3BtreeCreateTable(u.ax.pCx->pBt, &pgno, BTREE_ZERODATA);
if( rc==SQLITE_OK ){
assert( pgno==MASTER_ROOT+1 );
- rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
- pOp->p3, &pCx->pCursor);
- pCx->pKeyInfo = (KeyInfo*)pOp->p3;
- pCx->pKeyInfo->enc = ENC(p->db);
- pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
+ rc = sqlite3BtreeCursor(u.ax.pCx->pBt, pgno, 1,
+ (KeyInfo*)pOp->p4.z, u.ax.pCx->pCursor);
+ u.ax.pCx->pKeyInfo = pOp->p4.pKeyInfo;
+ u.ax.pCx->pKeyInfo->enc = ENC(p->db);
}
- pCx->isTable = 0;
+ u.ax.pCx->isTable = 0;
}else{
- rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
- pCx->isTable = 1;
- pCx->pIncrKey = &pCx->bogusIncrKey;
+ rc = sqlite3BtreeCursor(u.ax.pCx->pBt, MASTER_ROOT, 1, 0, u.ax.pCx->pCursor);
+ u.ax.pCx->isTable = 1;
}
}
- pCx->nField = pOp->p2;
- pCx->isIndex = !pCx->isTable;
+ u.ax.pCx->isIndex = !u.ax.pCx->isTable;
break;
}
-/* Opcode: OpenPseudo P1 * *
+/* Opcode: OpenPseudo P1 P2 P3 * *
**
** Open a new cursor that points to a fake table that contains a single
-** row of data. Any attempt to write a second row of data causes the
-** first row to be deleted. All data is deleted when the cursor is
-** closed.
+** row of data. The content of that one row in the content of memory
+** register P2. In other words, cursor P1 becomes an alias for the
+** MEM_Blob content contained in register P2.
**
-** A pseudo-table created by this opcode is useful for holding the
-** NEW or OLD tables in a trigger. Also used to hold the a single
+** A pseudo-table created by this opcode is used to hold the a single
** row output from the sorter so that the row can be decomposed into
-** individual columns using the OP_Column opcode.
-*/
-case OP_OpenPseudo: { /* no-push */
- int i = pOp->p1;
- Cursor *pCx;
- assert( i>=0 );
- pCx = allocateCursor(p, i, -1);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- pCx->pseudoTable = 1;
- pCx->pIncrKey = &pCx->bogusIncrKey;
- pCx->isTable = 1;
- pCx->isIndex = 0;
+** individual columns using the OP_Column opcode. The OP_Column opcode
+** is the only cursor opcode that works with a pseudo-table.
+**
+** P3 is the number of fields in the records that will be stored by
+** the pseudo-table.
+*/
+case OP_OpenPseudo: {
+#if 0 /* local variables moved into u.ay */
+ VdbeCursor *pCx;
+#endif /* local variables moved into u.ay */
+
+ assert( pOp->p1>=0 );
+ u.ay.pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
+ if( u.ay.pCx==0 ) goto no_mem;
+ u.ay.pCx->nullRow = 1;
+ u.ay.pCx->pseudoTableReg = pOp->p2;
+ u.ay.pCx->isTable = 1;
+ u.ay.pCx->isIndex = 0;
break;
}
-/* Opcode: Close P1 * *
+/* Opcode: Close P1 * * * *
**
** Close a cursor previously opened as P1. If P1 is not
** currently open, this instruction is a no-op.
*/
-case OP_Close: { /* no-push */
- int i = pOp->p1;
- if( i>=0 && i<p->nCursor ){
- sqlite3VdbeFreeCursor(p, p->apCsr[i]);
- p->apCsr[i] = 0;
- }
+case OP_Close: {
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
+ p->apCsr[pOp->p1] = 0;
break;
}
-/* Opcode: MoveGe P1 P2 *
+/* Opcode: SeekGe P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as the key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
**
-** Pop the top of the stack and use its value as a key. Reposition
-** cursor P1 so that it points to the smallest entry that is greater
-** than or equal to the key that was popped ffrom the stack.
-** If there are no records greater than or equal to the key and P2
-** is not zero, then jump to P2.
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than or equal to the key value. If there are no records
+** greater than or equal to the key and P2 is not zero, then jump to P2.
**
-** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
+** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
*/
-/* Opcode: MoveGt P1 P2 *
+/* Opcode: SeekGt P1 P2 P3 P4 *
**
-** Pop the top of the stack and use its value as a key. Reposition
-** cursor P1 so that it points to the smallest entry that is greater
-** than the key from the stack.
-** If there are no records greater than the key and P2 is not zero,
-** then jump to P2.
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
**
-** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than the key value. If there are no records greater than
+** the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
*/
-/* Opcode: MoveLt P1 P2 *
+/* Opcode: SeekLt P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
**
-** Pop the top of the stack and use its value as a key. Reposition
-** cursor P1 so that it points to the largest entry that is less
-** than the key from the stack.
-** If there are no records less than the key and P2 is not zero,
-** then jump to P2.
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than the key value. If there are no records less than
+** the key and P2 is not zero, then jump to P2.
**
-** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
+** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
*/
-/* Opcode: MoveLe P1 P2 *
+/* Opcode: SeekLe P1 P2 P3 P4 *
**
-** Pop the top of the stack and use its value as a key. Reposition
-** cursor P1 so that it points to the largest entry that is less than
-** or equal to the key that was popped from the stack.
-** If there are no records less than or eqal to the key and P2 is not zero,
-** then jump to P2.
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
**
-** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than or equal to the key value. If there are no records
+** less than or equal to the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
-case OP_MoveLt: /* no-push */
-case OP_MoveLe: /* no-push */
-case OP_MoveGe: /* no-push */
-case OP_MoveGt: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
+case OP_SeekLt: /* jump, in3 */
+case OP_SeekLe: /* jump, in3 */
+case OP_SeekGe: /* jump, in3 */
+case OP_SeekGt: { /* jump, in3 */
+#if 0 /* local variables moved into u.az */
+ int res;
+ int oc;
+ VdbeCursor *pC;
+ UnpackedRecord r;
+ int nField;
+ i64 iKey; /* The rowid we are to seek to */
+#endif /* local variables moved into u.az */
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( pC->pCursor!=0 ){
- int res, oc;
- oc = pOp->opcode;
- pC->nullRow = 0;
- *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
- if( pC->isTable ){
- i64 iKey;
- sqlite3VdbeMemIntegerify(pTos);
- iKey = intToKey(pTos->u.i);
- if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
- pC->movetoTarget = iKey;
- pC->deferredMoveto = 1;
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- break;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p2!=0 );
+ u.az.pC = p->apCsr[pOp->p1];
+ assert( u.az.pC!=0 );
+ assert( u.az.pC->pseudoTableReg==0 );
+ if( u.az.pC->pCursor!=0 ){
+ u.az.oc = pOp->opcode;
+ u.az.pC->nullRow = 0;
+ if( u.az.pC->isTable ){
+ /* The input value in P3 might be of any type: integer, real, string,
+ ** blob, or NULL. But it needs to be an integer before we can do
+ ** the seek, so covert it. */
+ applyNumericAffinity(pIn3);
+ u.az.iKey = sqlite3VdbeIntValue(pIn3);
+ u.az.pC->rowidIsValid = 0;
+
+ /* If the P3 value could not be converted into an integer without
+ ** loss of information, then special processing is required... */
+ if( (pIn3->flags & MEM_Int)==0 ){
+ if( (pIn3->flags & MEM_Real)==0 ){
+ /* If the P3 value cannot be converted into any kind of a number,
+ ** then the seek is not possible, so jump to P2 */
+ pc = pOp->p2 - 1;
+ break;
+ }
+ /* If we reach this point, then the P3 value must be a floating
+ ** point number. */
+ assert( (pIn3->flags & MEM_Real)!=0 );
+
+ if( u.az.iKey==SMALLEST_INT64 && (pIn3->r<(double)u.az.iKey || pIn3->r>0) ){
+ /* The P3 value is too large in magnitude to be expressed as an
+ ** integer. */
+ u.az.res = 1;
+ if( pIn3->r<0 ){
+ if( u.az.oc==OP_SeekGt || u.az.oc==OP_SeekGe ){
+ rc = sqlite3BtreeFirst(u.az.pC->pCursor, &u.az.res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }else{
+ if( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekLe ){
+ rc = sqlite3BtreeLast(u.az.pC->pCursor, &u.az.res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }
+ if( u.az.res ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+ }else if( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekGe ){
+ /* Use the ceiling() function to convert real->int */
+ if( pIn3->r > (double)u.az.iKey ) u.az.iKey++;
+ }else{
+ /* Use the floor() function to convert real->int */
+ assert( u.az.oc==OP_SeekLe || u.az.oc==OP_SeekGt );
+ if( pIn3->r < (double)u.az.iKey ) u.az.iKey--;
+ }
}
- rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
+ rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, 0, (u64)u.az.iKey, 0, &u.az.res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
- pC->lastRowid = pTos->u.i;
- pC->rowidIsValid = res==0;
+ if( u.az.res==0 ){
+ u.az.pC->rowidIsValid = 1;
+ u.az.pC->lastRowid = u.az.iKey;
+ }
}else{
- assert( pTos->flags & MEM_Blob );
- /* Stringify(pTos, encoding); */
- rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
+ u.az.nField = pOp->p4.i;
+ assert( pOp->p4type==P4_INT32 );
+ assert( u.az.nField>0 );
+ u.az.r.pKeyInfo = u.az.pC->pKeyInfo;
+ u.az.r.nField = (u16)u.az.nField;
+ if( u.az.oc==OP_SeekGt || u.az.oc==OP_SeekLe ){
+ u.az.r.flags = UNPACKED_INCRKEY;
+ }else{
+ u.az.r.flags = 0;
+ }
+ u.az.r.aMem = &p->aMem[pOp->p3];
+ rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, &u.az.r, 0, 0, &u.az.res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
- pC->rowidIsValid = 0;
+ u.az.pC->rowidIsValid = 0;
}
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- *pC->pIncrKey = 0;
+ u.az.pC->deferredMoveto = 0;
+ u.az.pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
- if( oc==OP_MoveGe || oc==OP_MoveGt ){
- if( res<0 ){
- rc = sqlite3BtreeNext(pC->pCursor, &res);
+ if( u.az.oc==OP_SeekGe || u.az.oc==OP_SeekGt ){
+ if( u.az.res<0 || (u.az.res==0 && u.az.oc==OP_SeekGt) ){
+ rc = sqlite3BtreeNext(u.az.pC->pCursor, &u.az.res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
+ u.az.pC->rowidIsValid = 0;
}else{
- res = 0;
+ u.az.res = 0;
}
}else{
- assert( oc==OP_MoveLt || oc==OP_MoveLe );
- if( res>=0 ){
- rc = sqlite3BtreePrevious(pC->pCursor, &res);
+ assert( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekLe );
+ if( u.az.res>0 || (u.az.res==0 && u.az.oc==OP_SeekLt) ){
+ rc = sqlite3BtreePrevious(u.az.pC->pCursor, &u.az.res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
+ u.az.pC->rowidIsValid = 0;
}else{
- /* res might be negative because the table is empty. Check to
+ /* u.az.res might be negative because the table is empty. Check to
** see if this is the case.
*/
- res = sqlite3BtreeEof(pC->pCursor);
+ u.az.res = sqlite3BtreeEof(u.az.pC->pCursor);
}
}
- if( res ){
- if( pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }else{
- pC->nullRow = 1;
- }
+ assert( pOp->p2>0 );
+ if( u.az.res ){
+ pc = pOp->p2 - 1;
}
+ }else{
+ /* This happens when attempting to open the sqlite3_master table
+ ** for read access returns SQLITE_EMPTY. In this case always
+ ** take the jump (since there are no records in the table).
+ */
+ pc = pOp->p2 - 1;
}
- Release(pTos);
- pTos--;
break;
}
-/* Opcode: Distinct P1 P2 *
+/* Opcode: Seek P1 P2 * * *
**
-** Use the top of the stack as a record created using MakeRecord. P1 is a
-** cursor on a table that declared as an index. If that table contains an
-** entry that matches the top of the stack fall thru. If the top of the stack
-** matches no entry in P1 then jump to P2.
+** P1 is an open table cursor and P2 is a rowid integer. Arrange
+** for P1 to move so that it points to the rowid given by P2.
**
-** The cursor is left pointing at the matching entry if it exists. The
-** record on the top of the stack is not popped.
-**
-** This instruction is similar to NotFound except that this operation
-** does not pop the key from the stack.
-**
-** The instruction is used to implement the DISTINCT operator on SELECT
-** statements. The P1 table is not a true index but rather a record of
-** all results that have produced so far.
-**
-** See also: Found, NotFound, MoveTo, IsUnique, NotExists
+** This is actually a deferred seek. Nothing actually happens until
+** the cursor is used to read a record. That way, if no reads
+** occur, no unnecessary I/O happens.
*/
-/* Opcode: Found P1 P2 *
+case OP_Seek: { /* in2 */
+#if 0 /* local variables moved into u.ba */
+ VdbeCursor *pC;
+#endif /* local variables moved into u.ba */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.ba.pC = p->apCsr[pOp->p1];
+ assert( u.ba.pC!=0 );
+ if( ALWAYS(u.ba.pC->pCursor!=0) ){
+ assert( u.ba.pC->isTable );
+ u.ba.pC->nullRow = 0;
+ u.ba.pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
+ u.ba.pC->rowidIsValid = 0;
+ u.ba.pC->deferredMoveto = 1;
+ }
+ break;
+}
+
+
+/* Opcode: Found P1 P2 P3 * *
**
-** Top of the stack holds a blob constructed by MakeRecord. P1 is an index.
-** If an entry that matches the top of the stack exists in P1 then
-** jump to P2. If the top of the stack does not match any entry in P1
+** Register P3 holds a blob constructed by MakeRecord. P1 is an index.
+** If an entry that matches the value in register p3 exists in P1 then
+** jump to P2. If the P3 value does not match any entry in P1
** then fall thru. The P1 cursor is left pointing at the matching entry
-** if it exists. The blob is popped off the top of the stack.
+** if it exists.
**
** This instruction is used to implement the IN operator where the
-** left-hand side is a SELECT statement. P1 is not a true index but
-** is instead a temporary index that holds the results of the SELECT
-** statement. This instruction just checks to see if the left-hand side
-** of the IN operator (stored on the top of the stack) exists in the
-** result of the SELECT statement.
+** left-hand side is a SELECT statement. P1 may be a true index, or it
+** may be a temporary index that holds the results of the SELECT
+** statement. This instruction is also used to implement the
+** DISTINCT keyword in SELECT statements.
**
-** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
+** This instruction checks if index P1 contains a record for which
+** the first N serialized values exactly match the N serialized values
+** in the record in register P3, where N is the total number of values in
+** the P3 record (the P3 record is a prefix of the P1 record).
+**
+** See also: NotFound, IsUnique, NotExists
*/
-/* Opcode: NotFound P1 P2 *
+/* Opcode: NotFound P1 P2 P3 * *
**
-** The top of the stack holds a blob constructed by MakeRecord. P1 is
+** Register P3 holds a blob constructed by MakeRecord. P1 is
** an index. If no entry exists in P1 that matches the blob then jump
** to P2. If an entry does existing, fall through. The cursor is left
-** pointing to the entry that matches. The blob is popped from the stack.
-**
-** The difference between this operation and Distinct is that
-** Distinct does not pop the key from the stack.
-**
-** See also: Distinct, Found, MoveTo, NotExists, IsUnique
-*/
-case OP_Distinct: /* no-push */
-case OP_NotFound: /* no-push */
-case OP_Found: { /* no-push */
- int i = pOp->p1;
- int alreadyExists = 0;
- Cursor *pC;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pC = p->apCsr[i])->pCursor!=0 ){
- int res, rx;
- assert( pC->isTable==0 );
- Stringify(pTos, encoding);
- rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
- alreadyExists = rx==SQLITE_OK && res==0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
+** pointing to the entry that matches.
+**
+** See also: Found, NotExists, IsUnique
+*/
+case OP_NotFound: /* jump, in3 */
+case OP_Found: { /* jump, in3 */
+#if 0 /* local variables moved into u.bb */
+ int alreadyExists;
+ VdbeCursor *pC;
+ int res;
+ UnpackedRecord *pIdxKey;
+ char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
+#endif /* local variables moved into u.bb */
+
+ u.bb.alreadyExists = 0;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bb.pC = p->apCsr[pOp->p1];
+ assert( u.bb.pC!=0 );
+ if( ALWAYS(u.bb.pC->pCursor!=0) ){
+
+ assert( u.bb.pC->isTable==0 );
+ assert( pIn3->flags & MEM_Blob );
+ ExpandBlob(pIn3);
+ u.bb.pIdxKey = sqlite3VdbeRecordUnpack(u.bb.pC->pKeyInfo, pIn3->n, pIn3->z,
+ u.bb.aTempRec, sizeof(u.bb.aTempRec));
+ if( u.bb.pIdxKey==0 ){
+ goto no_mem;
+ }
+ if( pOp->opcode==OP_Found ){
+ u.bb.pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
+ }
+ rc = sqlite3BtreeMovetoUnpacked(u.bb.pC->pCursor, u.bb.pIdxKey, 0, 0, &u.bb.res);
+ sqlite3VdbeDeleteUnpackedRecord(u.bb.pIdxKey);
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ u.bb.alreadyExists = (u.bb.res==0);
+ u.bb.pC->deferredMoveto = 0;
+ u.bb.pC->cacheStatus = CACHE_STALE;
}
if( pOp->opcode==OP_Found ){
- if( alreadyExists ) pc = pOp->p2 - 1;
+ if( u.bb.alreadyExists ) pc = pOp->p2 - 1;
}else{
- if( !alreadyExists ) pc = pOp->p2 - 1;
- }
- if( pOp->opcode!=OP_Distinct ){
- Release(pTos);
- pTos--;
+ if( !u.bb.alreadyExists ) pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: IsUnique P1 P2 *
-**
-** The top of the stack is an integer record number. Call this
-** record number R. The next on the stack is an index key created
-** using MakeIdxRec. Call it K. This instruction pops R from the
-** stack but it leaves K unchanged.
+/* Opcode: IsUnique P1 P2 P3 P4 *
**
-** P1 is an index. So it has no data and its key consists of a
-** record generated by OP_MakeRecord where the last field is the
+** Cursor P1 is open on an index. So it has no data and its key consists
+** of a record generated by OP_MakeRecord where the last field is the
** rowid of the entry that the index refers to.
-**
-** This instruction asks if there is an entry in P1 where the
-** fields matches K but the rowid is different from R.
-** If there is no such entry, then there is an immediate
-** jump to P2. If any entry does exist where the index string
-** matches K but the record number is not R, then the record
-** number for that entry is pushed onto the stack and control
-** falls through to the next instruction.
-**
-** See also: Distinct, NotFound, NotExists, Found
-*/
-case OP_IsUnique: { /* no-push */
- int i = pOp->p1;
- Mem *pNos = &pTos[-1];
- Cursor *pCx;
+**
+** The P3 register contains an integer record number. Call this record
+** number R. Register P4 is the first in a set of N contiguous registers
+** that make up an unpacked index key that can be used with cursor P1.
+** The value of N can be inferred from the cursor. N includes the rowid
+** value appended to the end of the index record. This rowid value may
+** or may not be the same as R.
+**
+** If any of the N registers beginning with register P4 contains a NULL
+** value, jump immediately to P2.
+**
+** Otherwise, this instruction checks if cursor P1 contains an entry
+** where the first (N-1) fields match but the rowid value at the end
+** of the index entry is not R. If there is no such entry, control jumps
+** to instruction P2. Otherwise, the rowid of the conflicting index
+** entry is copied to register P3 and control falls through to the next
+** instruction.
+**
+** See also: NotFound, NotExists, Found
+*/
+case OP_IsUnique: { /* jump, in3 */
+#if 0 /* local variables moved into u.bc */
+ u16 ii;
+ VdbeCursor *pCx;
BtCursor *pCrsr;
- i64 R;
-
- /* Pop the value R off the top of the stack
- */
- assert( pNos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- R = pTos->u.i;
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
- assert( i>=0 && i<p->nCursor );
- pCx = p->apCsr[i];
- assert( pCx!=0 );
- pCrsr = pCx->pCursor;
- if( pCrsr!=0 ){
- int res;
- i64 v; /* The record number on the P1 entry that matches K */
- char *zKey; /* The value of K */
- int nKey; /* Number of bytes in K */
- int len; /* Number of bytes in K without the rowid at the end */
- int szRowid; /* Size of the rowid column at the end of zKey */
-
- /* Make sure K is a string and make zKey point to K
- */
- Stringify(pNos, encoding);
- zKey = pNos->z;
- nKey = pNos->n;
-
- szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
- len = nKey-szRowid;
+ u16 nField;
+ Mem *aMem;
+ UnpackedRecord r; /* B-Tree index search key */
+ i64 R; /* Rowid stored in register P3 */
+#endif /* local variables moved into u.bc */
+
+ u.bc.aMem = &p->aMem[pOp->p4.i];
+ /* Assert that the values of parameters P1 and P4 are in range. */
+ assert( pOp->p4type==P4_INT32 );
+ assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- /* Search for an entry in P1 where all but the last four bytes match K.
- ** If there is no such entry, jump immediately to P2.
- */
- assert( pCx->deferredMoveto==0 );
- pCx->cacheStatus = CACHE_STALE;
- rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res<0 ){
- rc = sqlite3BtreeNext(pCrsr, &res);
- if( res ){
- pc = pOp->p2 - 1;
- break;
- }
- }
- rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- if( res>0 ){
+ /* Find the index cursor. */
+ u.bc.pCx = p->apCsr[pOp->p1];
+ assert( u.bc.pCx->deferredMoveto==0 );
+ u.bc.pCx->seekResult = 0;
+ u.bc.pCx->cacheStatus = CACHE_STALE;
+ u.bc.pCrsr = u.bc.pCx->pCursor;
+
+ /* If any of the values are NULL, take the jump. */
+ u.bc.nField = u.bc.pCx->pKeyInfo->nField;
+ for(u.bc.ii=0; u.bc.ii<u.bc.nField; u.bc.ii++){
+ if( u.bc.aMem[u.bc.ii].flags & MEM_Null ){
pc = pOp->p2 - 1;
+ u.bc.pCrsr = 0;
break;
}
+ }
+ assert( (u.bc.aMem[u.bc.nField].flags & MEM_Null)==0 );
- /* At this point, pCrsr is pointing to an entry in P1 where all but
- ** the final entry (the rowid) matches K. Check to see if the
- ** final rowid column is different from R. If it equals R then jump
- ** immediately to P2.
- */
- rc = sqlite3VdbeIdxRowid(pCrsr, &v);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( v==R ){
+ if( u.bc.pCrsr!=0 ){
+ /* Populate the index search key. */
+ u.bc.r.pKeyInfo = u.bc.pCx->pKeyInfo;
+ u.bc.r.nField = u.bc.nField + 1;
+ u.bc.r.flags = UNPACKED_PREFIX_SEARCH;
+ u.bc.r.aMem = u.bc.aMem;
+
+ /* Extract the value of u.bc.R from register P3. */
+ sqlite3VdbeMemIntegerify(pIn3);
+ u.bc.R = pIn3->u.i;
+
+ /* Search the B-Tree index. If no conflicting record is found, jump
+ ** to P2. Otherwise, copy the rowid of the conflicting record to
+ ** register P3 and fall through to the next instruction. */
+ rc = sqlite3BtreeMovetoUnpacked(u.bc.pCrsr, &u.bc.r, 0, 0, &u.bc.pCx->seekResult);
+ if( (u.bc.r.flags & UNPACKED_PREFIX_SEARCH) || u.bc.r.rowid==u.bc.R ){
pc = pOp->p2 - 1;
- break;
+ }else{
+ pIn3->u.i = u.bc.r.rowid;
}
-
- /* The final varint of the key is different from R. Push it onto
- ** the stack. (The record number of an entry that violates a UNIQUE
- ** constraint.)
- */
- pTos++;
- pTos->u.i = v;
- pTos->flags = MEM_Int;
}
break;
}
-/* Opcode: NotExists P1 P2 *
+/* Opcode: NotExists P1 P2 P3 * *
**
-** Use the top of the stack as a integer key. If a record with that key
-** does not exist in table of P1, then jump to P2. If the record
-** does exist, then fall thru. The cursor is left pointing to the
-** record if it exists. The integer key is popped from the stack.
+** Use the content of register P3 as a integer key. If a record
+** with that key does not exist in table of P1, then jump to P2.
+** If the record does exist, then fall thru. The cursor is left
+** pointing to the record if it exists.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
-** See also: Distinct, Found, MoveTo, NotFound, IsUnique
+** See also: Found, NotFound, IsUnique
*/
-case OP_NotExists: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
+case OP_NotExists: { /* jump, in3 */
+#if 0 /* local variables moved into u.bd */
+ VdbeCursor *pC;
BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- int res;
- u64 iKey;
- assert( pTos->flags & MEM_Int );
- assert( p->apCsr[i]->isTable );
- iKey = intToKey(pTos->u.i);
- rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
- pC->lastRowid = pTos->u.i;
- pC->rowidIsValid = res==0;
- pC->nullRow = 0;
- pC->cacheStatus = CACHE_STALE;
- /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
- ** processing is about to abort so we really do not care whether or not
- ** the following jump is taken. (In other words, do not stress over
- ** the error that valgrind sometimes shows on the next statement when
- ** running ioerr.test and similar failure-recovery test scripts.) */
- if( res!=0 ){
+ int res;
+ u64 iKey;
+#endif /* local variables moved into u.bd */
+
+ assert( pIn3->flags & MEM_Int );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bd.pC = p->apCsr[pOp->p1];
+ assert( u.bd.pC!=0 );
+ assert( u.bd.pC->isTable );
+ assert( u.bd.pC->pseudoTableReg==0 );
+ u.bd.pCrsr = u.bd.pC->pCursor;
+ if( u.bd.pCrsr!=0 ){
+ u.bd.res = 0;
+ u.bd.iKey = pIn3->u.i;
+ rc = sqlite3BtreeMovetoUnpacked(u.bd.pCrsr, 0, u.bd.iKey, 0, &u.bd.res);
+ u.bd.pC->lastRowid = pIn3->u.i;
+ u.bd.pC->rowidIsValid = u.bd.res==0 ?1:0;
+ u.bd.pC->nullRow = 0;
+ u.bd.pC->cacheStatus = CACHE_STALE;
+ u.bd.pC->deferredMoveto = 0;
+ if( u.bd.res!=0 ){
pc = pOp->p2 - 1;
- pC->rowidIsValid = 0;
+ assert( u.bd.pC->rowidIsValid==0 );
}
+ u.bd.pC->seekResult = u.bd.res;
+ }else{
+ /* This happens when an attempt to open a read cursor on the
+ ** sqlite_master table returns SQLITE_EMPTY.
+ */
+ pc = pOp->p2 - 1;
+ assert( u.bd.pC->rowidIsValid==0 );
+ u.bd.pC->seekResult = 0;
}
- Release(pTos);
- pTos--;
break;
}
-/* Opcode: Sequence P1 * *
+/* Opcode: Sequence P1 P2 * * *
**
-** Push an integer onto the stack which is the next available
-** sequence number for cursor P1. The sequence number on the
-** cursor is incremented after the push.
+** Find the next available sequence number for cursor P1.
+** Write the sequence number into register P2.
+** The sequence number on the cursor is incremented after this
+** instruction.
*/
-case OP_Sequence: {
- int i = pOp->p1;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- pTos++;
- pTos->u.i = p->apCsr[i]->seqCount++;
- pTos->flags = MEM_Int;
+case OP_Sequence: { /* out2-prerelease */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( p->apCsr[pOp->p1]!=0 );
+ pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
+ MemSetTypeFlag(pOut, MEM_Int);
break;
}
-/* Opcode: NewRowid P1 P2 *
+/* Opcode: NewRowid P1 P2 P3 * *
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
-** table that cursor P1 points to. The new record number is pushed
-** onto the stack.
-**
-** If P2>0 then P2 is a memory cell that holds the largest previously
-** generated record number. No new record numbers are allowed to be less
-** than this value. When this value reaches its maximum, a SQLITE_FULL
-** error is generated. The P2 memory cell is updated with the generated
-** record number. This P2 mechanism is used to help implement the
+** table that cursor P1 points to. The new record number is written
+** written to register P2.
+**
+** If P3>0 then P3 is a register in the root frame of this VDBE that holds
+** the largest previously generated record number. No new record numbers are
+** allowed to be less than this value. When this value reaches its maximum,
+** a SQLITE_FULL error is generated. The P3 register is updated with the '
+** generated record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
-case OP_NewRowid: {
- int i = pOp->p1;
- i64 v = 0;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pC = p->apCsr[i])->pCursor==0 ){
+case OP_NewRowid: { /* out2-prerelease */
+#if 0 /* local variables moved into u.be */
+ i64 v; /* The new rowid */
+ VdbeCursor *pC; /* Cursor of table to get the new rowid */
+ int res; /* Result of an sqlite3BtreeLast() */
+ int cnt; /* Counter to limit the number of searches */
+ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
+ VdbeFrame *pFrame; /* Root frame of VDBE */
+#endif /* local variables moved into u.be */
+
+ u.be.v = 0;
+ u.be.res = 0;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.be.pC = p->apCsr[pOp->p1];
+ assert( u.be.pC!=0 );
+ if( NEVER(u.be.pC->pCursor==0) ){
/* The zero initialization above is all that is needed */
}else{
/* The next rowid or record number (different terms for the same
@@ -34982,36 +55390,10 @@ case OP_NewRowid: {
** The second algorithm is to select a rowid at random and see if
** it already exists in the table. If it does not exist, we have
** succeeded. If the random rowid does exist, we select a new one
- ** and try again, up to 1000 times.
- **
- ** For a table with less than 2 billion entries, the probability
- ** of not finding a unused rowid is about 1.0e-300. This is a
- ** non-zero probability, but it is still vanishingly small and should
- ** never cause a problem. You are much, much more likely to have a
- ** hardware failure than for this algorithm to fail.
- **
- ** The analysis in the previous paragraph assumes that you have a good
- ** source of random numbers. Is a library function like lrand48()
- ** good enough? Maybe. Maybe not. It's hard to know whether there
- ** might be subtle bugs is some implementations of lrand48() that
- ** could cause problems. To avoid uncertainty, SQLite uses its own
- ** random number generator based on the RC4 algorithm.
- **
- ** To promote locality of reference for repetitive inserts, the
- ** first few attempts at chosing a random rowid pick values just a little
- ** larger than the previous rowid. This has been shown experimentally
- ** to double the speed of the COPY operation.
+ ** and try again, up to 100 times.
*/
- int res, rx=SQLITE_OK, cnt;
- i64 x;
- cnt = 0;
- if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
- BTREE_INTKEY ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
- assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
+ assert( u.be.pC->isTable );
+ u.be.cnt = 0;
#ifdef SQLITE_32BIT_ROWID
# define MAX_ROWID 0x7fffffff
@@ -35020,175 +55402,191 @@ case OP_NewRowid: {
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
** to provide the constant while making all compilers happy.
*/
-# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
+# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif
- if( !pC->useRandomRowid ){
- if( pC->nextRowidValid ){
- v = pC->nextRowid;
- }else{
- rc = sqlite3BtreeLast(pC->pCursor, &res);
+ if( !u.be.pC->useRandomRowid ){
+ u.be.v = sqlite3BtreeGetCachedRowid(u.be.pC->pCursor);
+ if( u.be.v==0 ){
+ rc = sqlite3BtreeLast(u.be.pC->pCursor, &u.be.res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
- if( res ){
- v = 1;
+ if( u.be.res ){
+ u.be.v = 1;
}else{
- sqlite3BtreeKeySize(pC->pCursor, &v);
- v = keyToInt(v);
- if( v==MAX_ROWID ){
- pC->useRandomRowid = 1;
+ assert( sqlite3BtreeCursorIsValid(u.be.pC->pCursor) );
+ rc = sqlite3BtreeKeySize(u.be.pC->pCursor, &u.be.v);
+ assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
+ if( u.be.v==MAX_ROWID ){
+ u.be.pC->useRandomRowid = 1;
}else{
- v++;
+ u.be.v++;
}
}
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
- if( pOp->p2 ){
- Mem *pMem;
- assert( pOp->p2>0 && pOp->p2<p->nMem ); /* P2 is a valid memory cell */
- pMem = &p->aMem[pOp->p2];
- sqlite3VdbeMemIntegerify(pMem);
- assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P2) holds an integer */
- if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
+ if( pOp->p3 ){
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3>0 );
+ if( p->pFrame ){
+ for(u.be.pFrame=p->pFrame; u.be.pFrame->pParent; u.be.pFrame=u.be.pFrame->pParent);
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=u.be.pFrame->nMem );
+ u.be.pMem = &u.be.pFrame->aMem[pOp->p3];
+ }else{
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=p->nMem );
+ u.be.pMem = &p->aMem[pOp->p3];
+ }
+
+ REGISTER_TRACE(pOp->p3, u.be.pMem);
+ sqlite3VdbeMemIntegerify(u.be.pMem);
+ assert( (u.be.pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
+ if( u.be.pMem->u.i==MAX_ROWID || u.be.pC->useRandomRowid ){
rc = SQLITE_FULL;
goto abort_due_to_error;
}
- if( v<pMem->u.i+1 ){
- v = pMem->u.i + 1;
+ if( u.be.v<u.be.pMem->u.i+1 ){
+ u.be.v = u.be.pMem->u.i + 1;
}
- pMem->u.i = v;
+ u.be.pMem->u.i = u.be.v;
}
#endif
- if( v<MAX_ROWID ){
- pC->nextRowidValid = 1;
- pC->nextRowid = v+1;
- }else{
- pC->nextRowidValid = 0;
- }
+ sqlite3BtreeSetCachedRowid(u.be.pC->pCursor, u.be.v<MAX_ROWID ? u.be.v+1 : 0);
}
- if( pC->useRandomRowid ){
- assert( pOp->p2==0 ); /* SQLITE_FULL must have occurred prior to this */
- v = db->priorNewRowid;
- cnt = 0;
+ if( u.be.pC->useRandomRowid ){
+ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
+ ** an AUTOINCREMENT table. */
+ u.be.v = db->lastRowid;
+ u.be.cnt = 0;
do{
- if( v==0 || cnt>2 ){
- sqlite3Randomness(sizeof(v), &v);
- if( cnt<5 ) v &= 0xffffff;
+ if( u.be.cnt==0 && (u.be.v&0xffffff)==u.be.v ){
+ u.be.v++;
}else{
- unsigned char r;
- sqlite3Randomness(1, &r);
- v += r + 1;
+ sqlite3_randomness(sizeof(u.be.v), &u.be.v);
+ if( u.be.cnt<5 ) u.be.v &= 0xffffff;
}
- if( v==0 ) continue;
- x = intToKey(v);
- rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
- cnt++;
- }while( cnt<1000 && rx==SQLITE_OK && res==0 );
- db->priorNewRowid = v;
- if( rx==SQLITE_OK && res==0 ){
+ rc = sqlite3BtreeMovetoUnpacked(u.be.pC->pCursor, 0, (u64)u.be.v, 0, &u.be.res);
+ u.be.cnt++;
+ }while( u.be.cnt<100 && rc==SQLITE_OK && u.be.res==0 );
+ if( rc==SQLITE_OK && u.be.res==0 ){
rc = SQLITE_FULL;
goto abort_due_to_error;
}
}
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
+ u.be.pC->rowidIsValid = 0;
+ u.be.pC->deferredMoveto = 0;
+ u.be.pC->cacheStatus = CACHE_STALE;
}
- pTos++;
- pTos->u.i = v;
- pTos->flags = MEM_Int;
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = u.be.v;
break;
}
-/* Opcode: Insert P1 P2 P3
+/* Opcode: Insert P1 P2 P3 P4 P5
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
-** entry is overwritten. The data is the value on the top of the
-** stack. The key is the next value down on the stack. The key must
-** be an integer. The stack is popped twice by this instruction.
+** entry is overwritten. The data is the value MEM_Blob stored in register
+** number P2. The key is stored in register P3. The key must
+** be a MEM_Int.
**
-** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
-** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P2 is set,
+** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
+** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
** then rowid is stored for subsequent return by the
-** sqlite3_last_insert_rowid() function (otherwise it's unmodified).
-**
-** Parameter P3 may point to a string containing the table-name, or
+** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
+**
+** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
+** the last seek operation (OP_NotExists) was a success, then this
+** operation will not attempt to find the appropriate row before doing
+** the insert but will instead overwrite the row that the cursor is
+** currently pointing to. Presumably, the prior OP_NotExists opcode
+** has already positioned the cursor correctly. This is an optimization
+** that boosts performance by avoiding redundant seeks.
+**
+** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
+** UPDATE operation. Otherwise (if the flag is clear) then this opcode
+** is part of an INSERT operation. The difference is only important to
+** the update hook.
+**
+** Parameter P4 may point to a string containing the table-name, or
** may be NULL. If it is not NULL, then the update-hook
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
**
+** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
+** allocated, then ownership of P2 is transferred to the pseudo-cursor
+** and register P2 becomes ephemeral. If the cursor is changed, the
+** value of register P2 will then change. Make sure this does not
+** cause any problems.)
+**
** This instruction only works on tables. The equivalent instruction
** for indices is OP_IdxInsert.
*/
-case OP_Insert: { /* no-push */
- Mem *pNos = &pTos[-1];
- int i = pOp->p1;
- Cursor *pC;
- assert( pNos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
- i64 iKey; /* The integer ROWID or key for the record to be inserted */
-
- assert( pNos->flags & MEM_Int );
- assert( pC->isTable );
- iKey = intToKey(pNos->u.i);
-
- if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
- if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->u.i;
- if( pC->nextRowidValid && pNos->u.i>=pC->nextRowid ){
- pC->nextRowidValid = 0;
- }
- if( pTos->flags & MEM_Null ){
- pTos->z = 0;
- pTos->n = 0;
- }else{
- assert( pTos->flags & (MEM_Blob|MEM_Str) );
- }
- if( pC->pseudoTable ){
- sqliteFree(pC->pData);
- pC->iKey = iKey;
- pC->nData = pTos->n;
- if( pTos->flags & MEM_Dyn ){
- pC->pData = pTos->z;
- pTos->flags = MEM_Null;
- }else{
- pC->pData = sqliteMallocRaw( pC->nData+2 );
- if( !pC->pData ) goto no_mem;
- memcpy(pC->pData, pTos->z, pC->nData);
- pC->pData[pC->nData] = 0;
- pC->pData[pC->nData+1] = 0;
- }
- pC->nullRow = 0;
- }else{
- rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
- pTos->z, pTos->n,
- pOp->p2 & OPFLAG_APPEND);
- }
-
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
-
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
- const char *zDb = db->aDb[pC->iDb].zName;
- const char *zTbl = pOp->p3;
- int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
- assert( pC->isTable );
- db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
+case OP_Insert: {
+#if 0 /* local variables moved into u.bf */
+ Mem *pData; /* MEM cell holding data for the record to be inserted */
+ Mem *pKey; /* MEM cell holding key for the record */
+ i64 iKey; /* The integer ROWID or key for the record to be inserted */
+ VdbeCursor *pC; /* Cursor to table into which insert is written */
+ int nZero; /* Number of zero-bytes to append */
+ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
+ const char *zDb; /* database name - used by the update hook */
+ const char *zTbl; /* Table name - used by the opdate hook */
+ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
+#endif /* local variables moved into u.bf */
+
+ u.bf.pData = &p->aMem[pOp->p2];
+ u.bf.pKey = &p->aMem[pOp->p3];
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bf.pC = p->apCsr[pOp->p1];
+ assert( u.bf.pC!=0 );
+ assert( u.bf.pC->pCursor!=0 );
+ assert( u.bf.pC->pseudoTableReg==0 );
+ assert( u.bf.pKey->flags & MEM_Int );
+ assert( u.bf.pC->isTable );
+ REGISTER_TRACE(pOp->p2, u.bf.pData);
+ REGISTER_TRACE(pOp->p3, u.bf.pKey);
+
+ u.bf.iKey = u.bf.pKey->u.i;
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
+ if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = u.bf.pKey->u.i;
+ if( u.bf.pData->flags & MEM_Null ){
+ u.bf.pData->z = 0;
+ u.bf.pData->n = 0;
+ }else{
+ assert( u.bf.pData->flags & (MEM_Blob|MEM_Str) );
+ }
+ u.bf.seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bf.pC->seekResult : 0);
+ if( u.bf.pData->flags & MEM_Zero ){
+ u.bf.nZero = u.bf.pData->u.nZero;
+ }else{
+ u.bf.nZero = 0;
+ }
+ sqlite3BtreeSetCachedRowid(u.bf.pC->pCursor, 0);
+ rc = sqlite3BtreeInsert(u.bf.pC->pCursor, 0, u.bf.iKey,
+ u.bf.pData->z, u.bf.pData->n, u.bf.nZero,
+ pOp->p5 & OPFLAG_APPEND, u.bf.seekResult
+ );
+ u.bf.pC->rowidIsValid = 0;
+ u.bf.pC->deferredMoveto = 0;
+ u.bf.pC->cacheStatus = CACHE_STALE;
+
+ /* Invoke the update-hook if required. */
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
+ u.bf.zDb = db->aDb[u.bf.pC->iDb].zName;
+ u.bf.zTbl = pOp->p4.z;
+ u.bf.op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
+ assert( u.bf.pC->isTable );
+ db->xUpdateCallback(db->pUpdateArg, u.bf.op, u.bf.zDb, u.bf.zTbl, u.bf.iKey);
+ assert( u.bf.pC->iDb>=0 );
}
- popStack(&pTos, 2);
-
break;
}
-/* Opcode: Delete P1 P2 P3
+/* Opcode: Delete P1 P2 * P4 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
@@ -35200,193 +55598,232 @@ case OP_Insert: { /* no-push */
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
-** If P1 is a pseudo-table, then this instruction is a no-op.
+** P1 must not be pseudo-table. It has to be a real table with
+** multiple rows.
+**
+** If P4 is not NULL, then it is the name of the table that P1 is
+** pointing to. The update hook will be invoked, if it exists.
+** If P4 is not NULL then the P1 cursor must have been positioned
+** using OP_NotFound prior to invoking this opcode.
*/
-case OP_Delete: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( pC->pCursor!=0 ){
- i64 iKey;
+case OP_Delete: {
+#if 0 /* local variables moved into u.bg */
+ i64 iKey;
+ VdbeCursor *pC;
+#endif /* local variables moved into u.bg */
- /* If the update-hook will be invoked, set iKey to the rowid of the
- ** row being deleted.
- */
- if( db->xUpdateCallback && pOp->p3 ){
- assert( pC->isTable );
- if( pC->rowidIsValid ){
- iKey = pC->lastRowid;
- }else{
- rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
- if( rc ){
- goto abort_due_to_error;
- }
- iKey = keyToInt(iKey);
- }
- }
+ u.bg.iKey = 0;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bg.pC = p->apCsr[pOp->p1];
+ assert( u.bg.pC!=0 );
+ assert( u.bg.pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- rc = sqlite3BtreeDelete(pC->pCursor);
- pC->nextRowidValid = 0;
- pC->cacheStatus = CACHE_STALE;
+ /* If the update-hook will be invoked, set u.bg.iKey to the rowid of the
+ ** row being deleted.
+ */
+ if( db->xUpdateCallback && pOp->p4.z ){
+ assert( u.bg.pC->isTable );
+ assert( u.bg.pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
+ u.bg.iKey = u.bg.pC->lastRowid;
+ }
+
+ /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
+ ** OP_Column on the same table without any intervening operations that
+ ** might move or invalidate the cursor. Hence cursor u.bg.pC is always pointing
+ ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
+ ** below is always a no-op and cannot fail. We will run it anyhow, though,
+ ** to guard against future changes to the code generator.
+ **/
+ assert( u.bg.pC->deferredMoveto==0 );
+ rc = sqlite3VdbeCursorMoveto(u.bg.pC);
+ if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
- const char *zDb = db->aDb[pC->iDb].zName;
- const char *zTbl = pOp->p3;
- db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
+ sqlite3BtreeSetCachedRowid(u.bg.pC->pCursor, 0);
+ rc = sqlite3BtreeDelete(u.bg.pC->pCursor);
+ u.bg.pC->cacheStatus = CACHE_STALE;
+
+ /* Invoke the update-hook if required. */
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
+ const char *zDb = db->aDb[u.bg.pC->iDb].zName;
+ const char *zTbl = pOp->p4.z;
+ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, u.bg.iKey);
+ assert( u.bg.pC->iDb>=0 );
}
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
break;
}
-
-/* Opcode: ResetCount P1 * *
+/* Opcode: ResetCount * * * * *
**
-** This opcode resets the VMs internal change counter to 0. If P1 is true,
-** then the value of the change counter is copied to the database handle
-** change counter (returned by subsequent calls to sqlite3_changes())
-** before it is reset. This is used by trigger programs.
+** The value of the change counter is copied to the database handle
+** change counter (returned by subsequent calls to sqlite3_changes()).
+** Then the VMs internal change counter resets to 0.
+** This is used by trigger programs.
*/
-case OP_ResetCount: { /* no-push */
- if( pOp->p1 ){
- sqlite3VdbeSetChanges(db, p->nChange);
- }
+case OP_ResetCount: {
+ sqlite3VdbeSetChanges(db, p->nChange);
p->nChange = 0;
break;
}
-/* Opcode: RowData P1 * *
+/* Opcode: RowData P1 P2 * * *
**
-** Push onto the stack the complete row data for cursor P1.
-** There is no interpretation of the data. It is just copied
-** onto the stack exactly as it is found in the database file.
+** Write into register P2 the complete row data for cursor P1.
+** There is no interpretation of the data.
+** It is just copied onto the P2 register exactly as
+** it is found in the database file.
**
-** If the cursor is not pointing to a valid row, a NULL is pushed
-** onto the stack.
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
*/
-/* Opcode: RowKey P1 * *
+/* Opcode: RowKey P1 P2 * * *
**
-** Push onto the stack the complete row key for cursor P1.
-** There is no interpretation of the key. It is just copied
-** onto the stack exactly as it is found in the database file.
+** Write into register P2 the complete row key for cursor P1.
+** There is no interpretation of the data.
+** The key is copied onto the P3 register exactly as
+** it is found in the database file.
**
-** If the cursor is not pointing to a valid row, a NULL is pushed
-** onto the stack.
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
- int i = pOp->p1;
- Cursor *pC;
+#if 0 /* local variables moved into u.bh */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
u32 n;
+ i64 n64;
+#endif /* local variables moved into u.bh */
+
+ pOut = &p->aMem[pOp->p2];
/* Note that RowKey and RowData are really exactly the same instruction */
- pTos++;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC->isTable || pOp->opcode==OP_RowKey );
- assert( pC->isIndex || pOp->opcode==OP_RowData );
- assert( pC!=0 );
- if( pC->nullRow ){
- pTos->flags = MEM_Null;
- }else if( pC->pCursor!=0 ){
- BtCursor *pCrsr = pC->pCursor;
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->nullRow ){
- pTos->flags = MEM_Null;
- break;
- }else if( pC->isIndex ){
- i64 n64;
- assert( !pC->isTable );
- sqlite3BtreeKeySize(pCrsr, &n64);
- n = n64;
- }else{
- sqlite3BtreeDataSize(pCrsr, &n);
- }
- pTos->n = n;
- if( n<=NBFS ){
- pTos->flags = MEM_Blob | MEM_Short;
- pTos->z = pTos->zShort;
- }else{
- char *z = sqliteMallocRaw( n );
- if( z==0 ) goto no_mem;
- pTos->flags = MEM_Blob | MEM_Dyn;
- pTos->xDel = 0;
- pTos->z = z;
- }
- if( pC->isIndex ){
- rc = sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
- }else{
- rc = sqlite3BtreeData(pCrsr, 0, n, pTos->z);
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bh.pC = p->apCsr[pOp->p1];
+ assert( u.bh.pC->isTable || pOp->opcode==OP_RowKey );
+ assert( u.bh.pC->isIndex || pOp->opcode==OP_RowData );
+ assert( u.bh.pC!=0 );
+ assert( u.bh.pC->nullRow==0 );
+ assert( u.bh.pC->pseudoTableReg==0 );
+ assert( u.bh.pC->pCursor!=0 );
+ u.bh.pCrsr = u.bh.pC->pCursor;
+ assert( sqlite3BtreeCursorIsValid(u.bh.pCrsr) );
+
+ /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
+ ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
+ ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
+ ** a no-op and can never fail. But we leave it in place as a safety.
+ */
+ assert( u.bh.pC->deferredMoveto==0 );
+ rc = sqlite3VdbeCursorMoveto(u.bh.pC);
+ if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
+
+ if( u.bh.pC->isIndex ){
+ assert( !u.bh.pC->isTable );
+ rc = sqlite3BtreeKeySize(u.bh.pCrsr, &u.bh.n64);
+ assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
+ if( u.bh.n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ u.bh.n = (u32)u.bh.n64;
+ }else{
+ rc = sqlite3BtreeDataSize(u.bh.pCrsr, &u.bh.n);
+ assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
+ if( u.bh.n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
}
- }else if( pC->pseudoTable ){
- pTos->n = pC->nData;
- pTos->z = pC->pData;
- pTos->flags = MEM_Blob|MEM_Ephem;
+ }
+ if( sqlite3VdbeMemGrow(pOut, u.bh.n, 0) ){
+ goto no_mem;
+ }
+ pOut->n = u.bh.n;
+ MemSetTypeFlag(pOut, MEM_Blob);
+ if( u.bh.pC->isIndex ){
+ rc = sqlite3BtreeKey(u.bh.pCrsr, 0, u.bh.n, pOut->z);
}else{
- pTos->flags = MEM_Null;
+ rc = sqlite3BtreeData(u.bh.pCrsr, 0, u.bh.n, pOut->z);
}
- pTos->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
+ pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
+ UPDATE_MAX_BLOBSIZE(pOut);
break;
}
-/* Opcode: Rowid P1 * *
+/* Opcode: Rowid P1 P2 * * *
**
-** Push onto the stack an integer which is the key of the table entry that
+** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
+**
+** P1 can be either an ordinary table or a virtual table. There used to
+** be a separate OP_VRowid opcode for use with virtual tables, but this
+** one opcode now works for both table types.
*/
-case OP_Rowid: {
- int i = pOp->p1;
- Cursor *pC;
+case OP_Rowid: { /* out2-prerelease */
+#if 0 /* local variables moved into u.bi */
+ VdbeCursor *pC;
i64 v;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+#endif /* local variables moved into u.bi */
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- pTos++;
- if( pC->rowidIsValid ){
- v = pC->lastRowid;
- }else if( pC->pseudoTable ){
- v = keyToInt(pC->iKey);
- }else if( pC->nullRow || pC->pCursor==0 ){
- pTos->flags = MEM_Null;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bi.pC = p->apCsr[pOp->p1];
+ assert( u.bi.pC!=0 );
+ assert( u.bi.pC->pseudoTableReg==0 );
+ if( u.bi.pC->nullRow ){
+ /* Do nothing so that reg[P2] remains NULL */
break;
+ }else if( u.bi.pC->deferredMoveto ){
+ u.bi.v = u.bi.pC->movetoTarget;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( u.bi.pC->pVtabCursor ){
+ u.bi.pVtab = u.bi.pC->pVtabCursor->pVtab;
+ u.bi.pModule = u.bi.pVtab->pModule;
+ assert( u.bi.pModule->xRowid );
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ rc = u.bi.pModule->xRowid(u.bi.pC->pVtabCursor, &u.bi.v);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = u.bi.pVtab->zErrMsg;
+ u.bi.pVtab->zErrMsg = 0;
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
}else{
- assert( pC->pCursor!=0 );
- sqlite3BtreeKeySize(pC->pCursor, &v);
- v = keyToInt(v);
+ assert( u.bi.pC->pCursor!=0 );
+ rc = sqlite3VdbeCursorMoveto(u.bi.pC);
+ if( rc ) goto abort_due_to_error;
+ if( u.bi.pC->rowidIsValid ){
+ u.bi.v = u.bi.pC->lastRowid;
+ }else{
+ rc = sqlite3BtreeKeySize(u.bi.pC->pCursor, &u.bi.v);
+ assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
+ }
}
- pTos->u.i = v;
- pTos->flags = MEM_Int;
+ pOut->u.i = u.bi.v;
+ MemSetTypeFlag(pOut, MEM_Int);
break;
}
-/* Opcode: NullRow P1 * *
+/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row. Any OP_Column operations
-** that occur while the cursor is on the null row will always push
-** a NULL onto the stack.
-*/
-case OP_NullRow: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
-
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- pC->nullRow = 1;
- pC->rowidIsValid = 0;
+** that occur while the cursor is on the null row will always
+** write a NULL.
+*/
+case OP_NullRow: {
+#if 0 /* local variables moved into u.bj */
+ VdbeCursor *pC;
+#endif /* local variables moved into u.bj */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bj.pC = p->apCsr[pOp->p1];
+ assert( u.bj.pC!=0 );
+ u.bj.pC->nullRow = 1;
+ u.bj.pC->rowidIsValid = 0;
+ if( u.bj.pC->pCursor ){
+ sqlite3BtreeClearCursor(u.bj.pC->pCursor);
+ }
break;
}
-/* Opcode: Last P1 P2 *
+/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1
** will refer to the last entry in the database table or index.
@@ -35394,31 +55831,34 @@ case OP_NullRow: { /* no-push */
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
-case OP_Last: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
+case OP_Last: { /* jump */
+#if 0 /* local variables moved into u.bk */
+ VdbeCursor *pC;
BtCursor *pCrsr;
+ int res;
+#endif /* local variables moved into u.bk */
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( (pCrsr = pC->pCursor)!=0 ){
- int res;
- rc = sqlite3BtreeLast(pCrsr, &res);
- pC->nullRow = res;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- if( res && pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bk.pC = p->apCsr[pOp->p1];
+ assert( u.bk.pC!=0 );
+ u.bk.pCrsr = u.bk.pC->pCursor;
+ if( u.bk.pCrsr==0 ){
+ u.bk.res = 1;
}else{
- pC->nullRow = 0;
+ rc = sqlite3BtreeLast(u.bk.pCrsr, &u.bk.res);
+ }
+ u.bk.pC->nullRow = (u8)u.bk.res;
+ u.bk.pC->deferredMoveto = 0;
+ u.bk.pC->rowidIsValid = 0;
+ u.bk.pC->cacheStatus = CACHE_STALE;
+ if( pOp->p2>0 && u.bk.res ){
+ pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: Sort P1 P2 *
+/* Opcode: Sort P1 P2 * * *
**
** This opcode does exactly the same thing as OP_Rewind except that
** it increments an undocumented global variable used for testing.
@@ -35430,14 +55870,15 @@ case OP_Last: { /* no-push */
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
-case OP_Sort: { /* no-push */
+case OP_Sort: { /* jump */
#ifdef SQLITE_TEST
sqlite3_sort_count++;
sqlite3_search_count--;
#endif
+ p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
/* Fall through into OP_Rewind */
}
-/* Opcode: Rewind P1 P2 *
+/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1
** will refer to the first entry in the database table or index.
@@ -35445,310 +55886,321 @@ case OP_Sort: { /* no-push */
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
-case OP_Rewind: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
+case OP_Rewind: { /* jump */
+#if 0 /* local variables moved into u.bl */
+ VdbeCursor *pC;
BtCursor *pCrsr;
int res;
+#endif /* local variables moved into u.bl */
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( (pCrsr = pC->pCursor)!=0 ){
- rc = sqlite3BtreeFirst(pCrsr, &res);
- pC->atFirst = res==0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bl.pC = p->apCsr[pOp->p1];
+ assert( u.bl.pC!=0 );
+ if( (u.bl.pCrsr = u.bl.pC->pCursor)!=0 ){
+ rc = sqlite3BtreeFirst(u.bl.pCrsr, &u.bl.res);
+ u.bl.pC->atFirst = u.bl.res==0 ?1:0;
+ u.bl.pC->deferredMoveto = 0;
+ u.bl.pC->cacheStatus = CACHE_STALE;
+ u.bl.pC->rowidIsValid = 0;
}else{
- res = 1;
+ u.bl.res = 1;
}
- pC->nullRow = res;
- if( res && pOp->p2>0 ){
+ u.bl.pC->nullRow = (u8)u.bl.res;
+ assert( pOp->p2>0 && pOp->p2<p->nOp );
+ if( u.bl.res ){
pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: Next P1 P2 *
+/* Opcode: Next P1 P2 * * *
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
+** The P1 cursor must be for a real table, not a pseudo-table.
+**
** See also: Prev
*/
-/* Opcode: Prev P1 P2 *
+/* Opcode: Prev P1 P2 * * *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index. If there is no previous key/value pairs then fall through
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
+**
+** The P1 cursor must be for a real table, not a pseudo-table.
*/
-case OP_Prev: /* no-push */
-case OP_Next: { /* no-push */
- Cursor *pC;
+case OP_Prev: /* jump */
+case OP_Next: { /* jump */
+#if 0 /* local variables moved into u.bm */
+ VdbeCursor *pC;
BtCursor *pCrsr;
+ int res;
+#endif /* local variables moved into u.bm */
CHECK_FOR_INTERRUPT;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- if( pC==0 ){
+ u.bm.pC = p->apCsr[pOp->p1];
+ if( u.bm.pC==0 ){
break; /* See ticket #2273 */
}
- if( (pCrsr = pC->pCursor)!=0 ){
- int res;
- if( pC->nullRow ){
- res = 1;
- }else{
- assert( pC->deferredMoveto==0 );
- rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
- sqlite3BtreePrevious(pCrsr, &res);
- pC->nullRow = res;
- pC->cacheStatus = CACHE_STALE;
- }
- if( res==0 ){
- pc = pOp->p2 - 1;
+ u.bm.pCrsr = u.bm.pC->pCursor;
+ if( u.bm.pCrsr==0 ){
+ u.bm.pC->nullRow = 1;
+ break;
+ }
+ u.bm.res = 1;
+ assert( u.bm.pC->deferredMoveto==0 );
+ rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(u.bm.pCrsr, &u.bm.res) :
+ sqlite3BtreePrevious(u.bm.pCrsr, &u.bm.res);
+ u.bm.pC->nullRow = (u8)u.bm.res;
+ u.bm.pC->cacheStatus = CACHE_STALE;
+ if( u.bm.res==0 ){
+ pc = pOp->p2 - 1;
+ if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST
- sqlite3_search_count++;
+ sqlite3_search_count++;
#endif
- }
- }else{
- pC->nullRow = 1;
}
- pC->rowidIsValid = 0;
+ u.bm.pC->rowidIsValid = 0;
break;
}
-/* Opcode: IdxInsert P1 P2 *
+/* Opcode: IdxInsert P1 P2 P3 * P5
**
-** The top of the stack holds a SQL index key made using either the
-** MakeIdxRec or MakeRecord instructions. This opcode writes that key
+** Register P2 holds a SQL index key made using the
+** MakeRecord instructions. This opcode writes that key
** into the index P1. Data for the entry is nil.
**
-** P2 is a flag that provides a hint to the b-tree layer that this
+** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices. The equivalent instruction
** for tables is OP_Insert.
*/
-case OP_IdxInsert: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
+case OP_IdxInsert: { /* in2 */
+#if 0 /* local variables moved into u.bn */
+ VdbeCursor *pC;
BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- assert( pTos->flags & MEM_Blob );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- int nKey = pTos->n;
- const char *zKey = pTos->z;
- assert( pC->isTable==0 );
- rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, pOp->p2);
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
- Release(pTos);
- pTos--;
+ int nKey;
+ const char *zKey;
+#endif /* local variables moved into u.bn */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bn.pC = p->apCsr[pOp->p1];
+ assert( u.bn.pC!=0 );
+ assert( pIn2->flags & MEM_Blob );
+ u.bn.pCrsr = u.bn.pC->pCursor;
+ if( ALWAYS(u.bn.pCrsr!=0) ){
+ assert( u.bn.pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc==SQLITE_OK ){
+ u.bn.nKey = pIn2->n;
+ u.bn.zKey = pIn2->z;
+ rc = sqlite3BtreeInsert(u.bn.pCrsr, u.bn.zKey, u.bn.nKey, "", 0, 0, pOp->p3,
+ ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bn.pC->seekResult : 0)
+ );
+ assert( u.bn.pC->deferredMoveto==0 );
+ u.bn.pC->cacheStatus = CACHE_STALE;
+ }
+ }
break;
}
-/* Opcode: IdxDelete P1 * *
+/* Opcode: IdxDelete P1 P2 P3 * *
**
-** The top of the stack is an index key built using the either the
-** MakeIdxRec or MakeRecord opcodes.
-** This opcode removes that entry from the index.
+** The content of P3 registers starting at register P2 form
+** an unpacked index key. This opcode removes that entry from the
+** index opened by cursor P1.
*/
-case OP_IdxDelete: { /* no-push */
- int i = pOp->p1;
- Cursor *pC;
+case OP_IdxDelete: {
+#if 0 /* local variables moved into u.bo */
+ VdbeCursor *pC;
BtCursor *pCrsr;
- assert( pTos>=p->aStack );
- assert( pTos->flags & MEM_Blob );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- int res;
- rc = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, 0, &res);
- if( rc==SQLITE_OK && res==0 ){
- rc = sqlite3BtreeDelete(pCrsr);
- }
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
+ int res;
+ UnpackedRecord r;
+#endif /* local variables moved into u.bo */
+
+ assert( pOp->p3>0 );
+ assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bo.pC = p->apCsr[pOp->p1];
+ assert( u.bo.pC!=0 );
+ u.bo.pCrsr = u.bo.pC->pCursor;
+ if( ALWAYS(u.bo.pCrsr!=0) ){
+ u.bo.r.pKeyInfo = u.bo.pC->pKeyInfo;
+ u.bo.r.nField = (u16)pOp->p3;
+ u.bo.r.flags = 0;
+ u.bo.r.aMem = &p->aMem[pOp->p2];
+ rc = sqlite3BtreeMovetoUnpacked(u.bo.pCrsr, &u.bo.r, 0, 0, &u.bo.res);
+ if( rc==SQLITE_OK && u.bo.res==0 ){
+ rc = sqlite3BtreeDelete(u.bo.pCrsr);
+ }
+ assert( u.bo.pC->deferredMoveto==0 );
+ u.bo.pC->cacheStatus = CACHE_STALE;
}
- Release(pTos);
- pTos--;
break;
}
-/* Opcode: IdxRowid P1 * *
+/* Opcode: IdxRowid P1 P2 * * *
**
-** Push onto the stack an integer which is the last entry in the record at
+** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1. This integer should be
** the rowid of the table entry to which this index entry points.
**
-** See also: Rowid, MakeIdxRec.
+** See also: Rowid, MakeRecord.
*/
-case OP_IdxRowid: {
- int i = pOp->p1;
+case OP_IdxRowid: { /* out2-prerelease */
+#if 0 /* local variables moved into u.bp */
BtCursor *pCrsr;
- Cursor *pC;
-
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- pTos++;
- pTos->flags = MEM_Null;
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- i64 rowid;
+ VdbeCursor *pC;
+ i64 rowid;
+#endif /* local variables moved into u.bp */
- assert( pC->deferredMoveto==0 );
- assert( pC->isTable==0 );
- if( pC->nullRow ){
- pTos->flags = MEM_Null;
- }else{
- rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bp.pC = p->apCsr[pOp->p1];
+ assert( u.bp.pC!=0 );
+ u.bp.pCrsr = u.bp.pC->pCursor;
+ if( ALWAYS(u.bp.pCrsr!=0) ){
+ rc = sqlite3VdbeCursorMoveto(u.bp.pC);
+ if( NEVER(rc) ) goto abort_due_to_error;
+ assert( u.bp.pC->deferredMoveto==0 );
+ assert( u.bp.pC->isTable==0 );
+ if( !u.bp.pC->nullRow ){
+ rc = sqlite3VdbeIdxRowid(db, u.bp.pCrsr, &u.bp.rowid);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
- pTos->flags = MEM_Int;
- pTos->u.i = rowid;
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = u.bp.rowid;
}
}
break;
}
-/* Opcode: IdxGT P1 P2 *
-**
-** The top of the stack is an index entry that omits the ROWID. Compare
-** the top of stack against the index that P1 is currently pointing to.
-** Ignore the ROWID on the P1 index.
+/* Opcode: IdxGE P1 P2 P3 P4 P5
**
-** The top of the stack might have fewer columns that P1.
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the ROWID. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
-** If the P1 index entry is greater than the top of the stack
+** If the P1 index entry is greater than or equal to the key value
** then jump to P2. Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
+**
+** If P5 is non-zero then the key value is increased by an epsilon
+** prior to the comparison. This make the opcode work like IdxGT except
+** that if the key from register P3 is a prefix of the key in the cursor,
+** the result is false whereas it would be true with IdxGT.
*/
-/* Opcode: IdxGE P1 P2 P3
+/* Opcode: IdxLT P1 P2 P3 * P5
**
-** The top of the stack is an index entry that omits the ROWID. Compare
-** the top of stack against the index that P1 is currently pointing to.
-** Ignore the ROWID on the P1 index.
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the ROWID. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
-** If the P1 index entry is greater than or equal to the top of the stack
-** then jump to P2. Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
+** If the P1 index entry is less than the key value then jump to P2.
+** Otherwise fall through to the next instruction.
**
-** If P3 is the "+" string (or any other non-NULL string) then the
-** index taken from the top of the stack is temporarily increased by
-** an epsilon prior to the comparison. This make the opcode work
-** like IdxGT except that if the key from the stack is a prefix of
-** the key in the cursor, the result is false whereas it would be
-** true with IdxGT.
+** If P5 is non-zero then the key value is increased by an epsilon prior
+** to the comparison. This makes the opcode work like IdxLE.
*/
-/* Opcode: IdxLT P1 P2 P3
-**
-** The top of the stack is an index entry that omits the ROWID. Compare
-** the top of stack against the index that P1 is currently pointing to.
-** Ignore the ROWID on the P1 index.
-**
-** If the P1 index entry is less than the top of the stack
-** then jump to P2. Otherwise fall through to the next instruction.
-** In either case, the stack is popped once.
-**
-** If P3 is the "+" string (or any other non-NULL string) then the
-** index taken from the top of the stack is temporarily increased by
-** an epsilon prior to the comparison. This makes the opcode work
-** like IdxLE.
-*/
-case OP_IdxLT: /* no-push */
-case OP_IdxGT: /* no-push */
-case OP_IdxGE: { /* no-push */
- int i= pOp->p1;
- Cursor *pC;
-
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- assert( pTos>=p->aStack );
- if( (pC = p->apCsr[i])->pCursor!=0 ){
- int res;
-
- assert( pTos->flags & MEM_Blob ); /* Created using OP_Make*Key */
- Stringify(pTos, encoding);
- assert( pC->deferredMoveto==0 );
- *pC->pIncrKey = pOp->p3!=0;
- assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
- rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
- *pC->pIncrKey = 0;
- if( rc!=SQLITE_OK ){
- break;
+case OP_IdxLT: /* jump, in3 */
+case OP_IdxGE: { /* jump, in3 */
+#if 0 /* local variables moved into u.bq */
+ VdbeCursor *pC;
+ int res;
+ UnpackedRecord r;
+#endif /* local variables moved into u.bq */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ u.bq.pC = p->apCsr[pOp->p1];
+ assert( u.bq.pC!=0 );
+ if( ALWAYS(u.bq.pC->pCursor!=0) ){
+ assert( u.bq.pC->deferredMoveto==0 );
+ assert( pOp->p5==0 || pOp->p5==1 );
+ assert( pOp->p4type==P4_INT32 );
+ u.bq.r.pKeyInfo = u.bq.pC->pKeyInfo;
+ u.bq.r.nField = (u16)pOp->p4.i;
+ if( pOp->p5 ){
+ u.bq.r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
+ }else{
+ u.bq.r.flags = UNPACKED_IGNORE_ROWID;
}
+ u.bq.r.aMem = &p->aMem[pOp->p3];
+ rc = sqlite3VdbeIdxKeyCompare(u.bq.pC, &u.bq.r, &u.bq.res);
if( pOp->opcode==OP_IdxLT ){
- res = -res;
- }else if( pOp->opcode==OP_IdxGE ){
- res++;
+ u.bq.res = -u.bq.res;
+ }else{
+ assert( pOp->opcode==OP_IdxGE );
+ u.bq.res++;
}
- if( res>0 ){
+ if( u.bq.res>0 ){
pc = pOp->p2 - 1 ;
}
}
- Release(pTos);
- pTos--;
break;
}
-/* Opcode: Destroy P1 P2 *
+/* Opcode: Destroy P1 P2 P3 * *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
-** The table being destroyed is in the main database file if P2==0. If
-** P2==1 then the table to be clear is in the auxiliary database file
+** The table being destroyed is in the main database file if P3==0. If
+** P3==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If AUTOVACUUM is enabled then it is possible that another root page
** might be moved into the newly deleted root page in order to keep all
** root pages contiguous at the beginning of the database. The former
** value of the root page that moved - its value before the move occurred -
-** is pushed onto the stack. If no page movement was required (because
-** the table being dropped was already the last one in the database) then
-** a zero is pushed onto the stack. If AUTOVACUUM is disabled
-** then a zero is pushed onto the stack.
+** is stored in register P2. If no page
+** movement was required (because the table being dropped was already
+** the last one in the database) then a zero is stored in register P2.
+** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
-case OP_Destroy: {
+case OP_Destroy: { /* out2-prerelease */
+#if 0 /* local variables moved into u.br */
int iMoved;
int iCnt;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
Vdbe *pVdbe;
- iCnt = 0;
- for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
- if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
- iCnt++;
+ int iDb;
+#endif /* local variables moved into u.br */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ u.br.iCnt = 0;
+ for(u.br.pVdbe=db->pVdbe; u.br.pVdbe; u.br.pVdbe = u.br.pVdbe->pNext){
+ if( u.br.pVdbe->magic==VDBE_MAGIC_RUN && u.br.pVdbe->inVtabMethod<2 && u.br.pVdbe->pc>=0 ){
+ u.br.iCnt++;
}
}
#else
- iCnt = db->activeVdbeCnt;
+ u.br.iCnt = db->activeVdbeCnt;
#endif
- if( iCnt>1 ){
+ if( u.br.iCnt>1 ){
rc = SQLITE_LOCKED;
+ p->errorAction = OE_Abort;
}else{
- assert( iCnt==1 );
- rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved);
- pTos++;
- pTos->flags = MEM_Int;
- pTos->u.i = iMoved;
+ u.br.iDb = pOp->p3;
+ assert( u.br.iCnt==1 );
+ assert( (p->btreeMask & (1<<u.br.iDb))!=0 );
+ rc = sqlite3BtreeDropTable(db->aDb[u.br.iDb].pBt, pOp->p1, &u.br.iMoved);
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = u.br.iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
- if( rc==SQLITE_OK && iMoved!=0 ){
- sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1);
+ if( rc==SQLITE_OK && u.br.iMoved!=0 ){
+ sqlite3RootPageMoved(&db->aDb[u.br.iDb], u.br.iMoved, pOp->p1);
}
#endif
}
break;
}
-/* Opcode: Clear P1 P2 *
+/* Opcode: Clear P1 P2 P3
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1. But, unlike Destroy, do not
@@ -35758,53 +56210,39 @@ case OP_Destroy: {
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
+** If the P3 value is non-zero, then the table referred to must be an
+** intkey table (an SQL table, not an index). In this case the row change
+** count is incremented by the number of rows in the table being cleared.
+** If P3 is greater than zero, then the value stored in register P3 is
+** also incremented by the number of rows in the table being cleared.
+**
** See also: Destroy
*/
-case OP_Clear: { /* no-push */
+case OP_Clear: {
+#if 0 /* local variables moved into u.bs */
+ int nChange;
+#endif /* local variables moved into u.bs */
- /* For consistency with the way other features of SQLite operate
- ** with a truncate, we will also skip the update callback.
- */
-#if 0
- Btree *pBt = db->aDb[pOp->p2].pBt;
- if( db->xUpdateCallback && pOp->p3 ){
- const char *zDb = db->aDb[pOp->p2].zName;
- const char *zTbl = pOp->p3;
- BtCursor *pCur = 0;
- int fin = 0;
-
- rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- for(
- rc=sqlite3BtreeFirst(pCur, &fin);
- rc==SQLITE_OK && !fin;
- rc=sqlite3BtreeNext(pCur, &fin)
- ){
- i64 iKey;
- rc = sqlite3BtreeKeySize(pCur, &iKey);
- if( rc ){
- break;
- }
- iKey = keyToInt(iKey);
- db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
- }
- sqlite3BtreeCloseCursor(pCur);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
+ u.bs.nChange = 0;
+ assert( (p->btreeMask & (1<<pOp->p2))!=0 );
+ rc = sqlite3BtreeClearTable(
+ db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &u.bs.nChange : 0)
+ );
+ if( pOp->p3 ){
+ p->nChange += u.bs.nChange;
+ if( pOp->p3>0 ){
+ p->aMem[pOp->p3].u.i += u.bs.nChange;
}
}
-#endif
- rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
break;
}
-/* Opcode: CreateTable P1 * *
+/* Opcode: CreateTable P1 P2 * * *
**
-** Allocate a new table in the main database file if P2==0 or in the
-** auxiliary database file if P2==1. Push the page number
-** for the root page of the new table onto the stack.
+** Allocate a new table in the main database file if P1==0 or in the
+** auxiliary database file if P1==1 or in an attached database if
+** P1>1. Write the root page number of the new table into
+** register P2
**
** The difference between a table and an index is this: A table must
** have a 4-byte integer key and can have arbitrary data. An index
@@ -35812,533 +56250,656 @@ case OP_Clear: { /* no-push */
**
** See also: CreateIndex
*/
-/* Opcode: CreateIndex P1 * *
+/* Opcode: CreateIndex P1 P2 * * *
**
-** Allocate a new index in the main database file if P2==0 or in the
-** auxiliary database file if P2==1. Push the page number of the
-** root page of the new index onto the stack.
+** Allocate a new index in the main database file if P1==0 or in the
+** auxiliary database file if P1==1 or in an attached database if
+** P1>1. Write the root page number of the new table into
+** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
-case OP_CreateIndex:
-case OP_CreateTable: {
+case OP_CreateIndex: /* out2-prerelease */
+case OP_CreateTable: { /* out2-prerelease */
+#if 0 /* local variables moved into u.bt */
int pgno;
int flags;
Db *pDb;
+#endif /* local variables moved into u.bt */
+
+ u.bt.pgno = 0;
assert( pOp->p1>=0 && pOp->p1<db->nDb );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ u.bt.pDb = &db->aDb[pOp->p1];
+ assert( u.bt.pDb->pBt!=0 );
if( pOp->opcode==OP_CreateTable ){
- /* flags = BTREE_INTKEY; */
- flags = BTREE_LEAFDATA|BTREE_INTKEY;
- }else{
- flags = BTREE_ZERODATA;
- }
- rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
- pTos++;
- if( rc==SQLITE_OK ){
- pTos->u.i = pgno;
- pTos->flags = MEM_Int;
+ /* u.bt.flags = BTREE_INTKEY; */
+ u.bt.flags = BTREE_LEAFDATA|BTREE_INTKEY;
}else{
- pTos->flags = MEM_Null;
+ u.bt.flags = BTREE_ZERODATA;
}
+ rc = sqlite3BtreeCreateTable(u.bt.pDb->pBt, &u.bt.pgno, u.bt.flags);
+ pOut->u.i = u.bt.pgno;
+ MemSetTypeFlag(pOut, MEM_Int);
break;
}
-/* Opcode: ParseSchema P1 P2 P3
+/* Opcode: ParseSchema P1 P2 * P4 *
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
-** that match the WHERE clause P3. P2 is the "force" flag. Always do
+** that match the WHERE clause P4. P2 is the "force" flag. Always do
** the parsing if P2 is true. If P2 is false, then this routine is a
** no-op if the schema is not currently loaded. In other words, if P2
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
-** then runs the new virtual machine. It is thus a reentrant opcode.
+** then runs the new virtual machine. It is thus a re-entrant opcode.
*/
-case OP_ParseSchema: { /* no-push */
- char *zSql;
- int iDb = pOp->p1;
+case OP_ParseSchema: {
+#if 0 /* local variables moved into u.bu */
+ int iDb;
const char *zMaster;
+ char *zSql;
InitData initData;
+#endif /* local variables moved into u.bu */
- assert( iDb>=0 && iDb<db->nDb );
- if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
- break;
- }
- zMaster = SCHEMA_TABLE(iDb);
- initData.db = db;
- initData.iDb = pOp->p1;
- initData.pzErrMsg = &p->zErrMsg;
- zSql = sqlite3MPrintf(
- "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
- db->aDb[iDb].zName, zMaster, pOp->p3);
- if( zSql==0 ) goto no_mem;
- sqlite3SafetyOff(db);
- assert( db->init.busy==0 );
- db->init.busy = 1;
- assert( !sqlite3MallocFailed() );
- rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
- if( rc==SQLITE_ABORT ) rc = initData.rc;
- sqliteFree(zSql);
- db->init.busy = 0;
- sqlite3SafetyOn(db);
+ u.bu.iDb = pOp->p1;
+ assert( u.bu.iDb>=0 && u.bu.iDb<db->nDb );
+
+ /* If pOp->p2 is 0, then this opcode is being executed to read a
+ ** single row, for example the row corresponding to a new index
+ ** created by this VDBE, from the sqlite_master table. It only
+ ** does this if the corresponding in-memory schema is currently
+ ** loaded. Otherwise, the new index definition can be loaded along
+ ** with the rest of the schema when it is required.
+ **
+ ** Although the mutex on the BtShared object that corresponds to
+ ** database u.bu.iDb (the database containing the sqlite_master table
+ ** read by this instruction) is currently held, it is necessary to
+ ** obtain the mutexes on all attached databases before checking if
+ ** the schema of u.bu.iDb is loaded. This is because, at the start of
+ ** the sqlite3_exec() call below, SQLite will invoke
+ ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the
+ ** u.bu.iDb mutex may be temporarily released to avoid deadlock. If
+ ** this happens, then some other thread may delete the in-memory
+ ** schema of database u.bu.iDb before the SQL statement runs. The schema
+ ** will not be reloaded becuase the db->init.busy flag is set. This
+ ** can result in a "no such table: sqlite_master" or "malformed
+ ** database schema" error being returned to the user.
+ */
+ assert( sqlite3BtreeHoldsMutex(db->aDb[u.bu.iDb].pBt) );
+ sqlite3BtreeEnterAll(db);
+ if( pOp->p2 || DbHasProperty(db, u.bu.iDb, DB_SchemaLoaded) ){
+ u.bu.zMaster = SCHEMA_TABLE(u.bu.iDb);
+ u.bu.initData.db = db;
+ u.bu.initData.iDb = pOp->p1;
+ u.bu.initData.pzErrMsg = &p->zErrMsg;
+ u.bu.zSql = sqlite3MPrintf(db,
+ "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
+ db->aDb[u.bu.iDb].zName, u.bu.zMaster, pOp->p4.z);
+ if( u.bu.zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ (void)sqlite3SafetyOff(db);
+ assert( db->init.busy==0 );
+ db->init.busy = 1;
+ u.bu.initData.rc = SQLITE_OK;
+ assert( !db->mallocFailed );
+ rc = sqlite3_exec(db, u.bu.zSql, sqlite3InitCallback, &u.bu.initData, 0);
+ if( rc==SQLITE_OK ) rc = u.bu.initData.rc;
+ sqlite3DbFree(db, u.bu.zSql);
+ db->init.busy = 0;
+ (void)sqlite3SafetyOn(db);
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
if( rc==SQLITE_NOMEM ){
- sqlite3FailedMalloc();
goto no_mem;
}
- break;
+ break;
}
-#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
-/* Opcode: LoadAnalysis P1 * *
+#if !defined(SQLITE_OMIT_ANALYZE)
+/* Opcode: LoadAnalysis P1 * * * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table. This will cause
** the analysis to be used when preparing all subsequent queries.
*/
-case OP_LoadAnalysis: { /* no-push */
- int iDb = pOp->p1;
- assert( iDb>=0 && iDb<db->nDb );
- sqlite3AnalysisLoad(db, iDb);
+case OP_LoadAnalysis: {
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ rc = sqlite3AnalysisLoad(db, pOp->p1);
break;
}
-#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
+#endif /* !defined(SQLITE_OMIT_ANALYZE) */
-/* Opcode: DropTable P1 * P3
+/* Opcode: DropTable P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
-** the table named P3 in database P1. This is called after a table
+** the table named P4 in database P1. This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
-case OP_DropTable: { /* no-push */
- sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
+case OP_DropTable: {
+ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
break;
}
-/* Opcode: DropIndex P1 * P3
+/* Opcode: DropIndex P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
-** the index named P3 in database P1. This is called after an index
+** the index named P4 in database P1. This is called after an index
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
-case OP_DropIndex: { /* no-push */
- sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
+case OP_DropIndex: {
+ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
break;
}
-/* Opcode: DropTrigger P1 * P3
+/* Opcode: DropTrigger P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
-** the trigger named P3 in database P1. This is called after a trigger
+** the trigger named P4 in database P1. This is called after a trigger
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
-case OP_DropTrigger: { /* no-push */
- sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
+case OP_DropTrigger: {
+ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
break;
}
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/* Opcode: IntegrityCk P1 P2 *
+/* Opcode: IntegrityCk P1 P2 P3 * P5
**
-** Do an analysis of the currently open database. Push onto the
-** stack the text of an error message describing any problems.
-** If no problems are found, push a NULL onto the stack.
+** Do an analysis of the currently open database. Store in
+** register P1 the text of an error message describing any problems.
+** If no problems are found, store a NULL in register P1.
**
-** P1 is the address of a memory cell that contains the maximum
-** number of allowed errors. At most mem[P1] errors will be reported.
-** In other words, the analysis stops as soon as mem[P1] errors are
-** seen. Mem[P1] is updated with the number of errors remaining.
+** The register P3 contains the maximum number of allowed errors.
+** At most reg(P3) errors will be reported.
+** In other words, the analysis stops as soon as reg(P1) errors are
+** seen. Reg(P1) is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integer
-** values on the stack. This opcode pulls as many integers as it
-** can off of the stack and uses those numbers as the root pages.
+** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
+** total.
**
-** If P2 is not zero, the check is done on the auxiliary database
+** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
- int nRoot;
- int *aRoot;
- int j;
- int nErr;
- char *z;
- Mem *pnErr;
-
- for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
- if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
- }
- assert( nRoot>0 );
- aRoot = sqliteMallocRaw( sizeof(int*)*(nRoot+1) );
- if( aRoot==0 ) goto no_mem;
- j = pOp->p1;
- assert( j>=0 && j<p->nMem );
- pnErr = &p->aMem[j];
- assert( (pnErr->flags & MEM_Int)!=0 );
- for(j=0; j<nRoot; j++){
- Mem *pMem = &pTos[-j];
- aRoot[j] = pMem->u.i;
- }
- aRoot[j] = 0;
- popStack(&pTos, nRoot);
- pTos++;
- z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot,
- pnErr->u.i, &nErr);
- pnErr->u.i -= nErr;
- if( nErr==0 ){
- assert( z==0 );
- pTos->flags = MEM_Null;
- }else{
- pTos->z = z;
- pTos->n = strlen(z);
- pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
- pTos->xDel = 0;
- }
- pTos->enc = SQLITE_UTF8;
- sqlite3VdbeChangeEncoding(pTos, encoding);
- sqliteFree(aRoot);
+#if 0 /* local variables moved into u.bv */
+ int nRoot; /* Number of tables to check. (Number of root pages.) */
+ int *aRoot; /* Array of rootpage numbers for tables to be checked */
+ int j; /* Loop counter */
+ int nErr; /* Number of errors reported */
+ char *z; /* Text of the error report */
+ Mem *pnErr; /* Register keeping track of errors remaining */
+#endif /* local variables moved into u.bv */
+
+ u.bv.nRoot = pOp->p2;
+ assert( u.bv.nRoot>0 );
+ u.bv.aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(u.bv.nRoot+1) );
+ if( u.bv.aRoot==0 ) goto no_mem;
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ u.bv.pnErr = &p->aMem[pOp->p3];
+ assert( (u.bv.pnErr->flags & MEM_Int)!=0 );
+ assert( (u.bv.pnErr->flags & (MEM_Str|MEM_Blob))==0 );
+ pIn1 = &p->aMem[pOp->p1];
+ for(u.bv.j=0; u.bv.j<u.bv.nRoot; u.bv.j++){
+ u.bv.aRoot[u.bv.j] = (int)sqlite3VdbeIntValue(&pIn1[u.bv.j]);
+ }
+ u.bv.aRoot[u.bv.j] = 0;
+ assert( pOp->p5<db->nDb );
+ assert( (p->btreeMask & (1<<pOp->p5))!=0 );
+ u.bv.z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, u.bv.aRoot, u.bv.nRoot,
+ (int)u.bv.pnErr->u.i, &u.bv.nErr);
+ sqlite3DbFree(db, u.bv.aRoot);
+ u.bv.pnErr->u.i -= u.bv.nErr;
+ sqlite3VdbeMemSetNull(pIn1);
+ if( u.bv.nErr==0 ){
+ assert( u.bv.z==0 );
+ }else if( u.bv.z==0 ){
+ goto no_mem;
+ }else{
+ sqlite3VdbeMemSetStr(pIn1, u.bv.z, -1, SQLITE_UTF8, sqlite3_free);
+ }
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ sqlite3VdbeChangeEncoding(pIn1, encoding);
break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-/* Opcode: FifoWrite * * *
+/* Opcode: RowSetAdd P1 P2 * * *
**
-** Write the integer on the top of the stack
-** into the Fifo.
+** Insert the integer value held by register P2 into a boolean index
+** held in register P1.
+**
+** An assertion fails if P2 is not an integer.
*/
-case OP_FifoWrite: { /* no-push */
- assert( pTos>=p->aStack );
- sqlite3VdbeMemIntegerify(pTos);
- sqlite3VdbeFifoPush(&p->sFifo, pTos->u.i);
- assert( (pTos->flags & MEM_Dyn)==0 );
- pTos--;
+case OP_RowSetAdd: { /* in2 */
+#if 0 /* local variables moved into u.bw */
+ Mem *pIdx;
+ Mem *pVal;
+#endif /* local variables moved into u.bw */
+ assert( pOp->p1>0 && pOp->p1<=p->nMem );
+ u.bw.pIdx = &p->aMem[pOp->p1];
+ assert( pOp->p2>0 && pOp->p2<=p->nMem );
+ u.bw.pVal = &p->aMem[pOp->p2];
+ assert( (u.bw.pVal->flags & MEM_Int)!=0 );
+ if( (u.bw.pIdx->flags & MEM_RowSet)==0 ){
+ sqlite3VdbeMemSetRowSet(u.bw.pIdx);
+ if( (u.bw.pIdx->flags & MEM_RowSet)==0 ) goto no_mem;
+ }
+ sqlite3RowSetInsert(u.bw.pIdx->u.pRowSet, u.bw.pVal->u.i);
break;
}
-/* Opcode: FifoRead * P2 *
+/* Opcode: RowSetRead P1 P2 P3 * *
**
-** Attempt to read a single integer from the Fifo
-** and push it onto the stack. If the Fifo is empty
-** push nothing but instead jump to P2.
+** Extract the smallest value from boolean index P1 and put that value into
+** register P3. Or, if boolean index P1 is initially empty, leave P3
+** unchanged and jump to instruction P2.
*/
-case OP_FifoRead: {
- i64 v;
+case OP_RowSetRead: { /* jump, out3 */
+#if 0 /* local variables moved into u.bx */
+ Mem *pIdx;
+ i64 val;
+#endif /* local variables moved into u.bx */
+ assert( pOp->p1>0 && pOp->p1<=p->nMem );
CHECK_FOR_INTERRUPT;
- if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){
+ u.bx.pIdx = &p->aMem[pOp->p1];
+ pOut = &p->aMem[pOp->p3];
+ if( (u.bx.pIdx->flags & MEM_RowSet)==0
+ || sqlite3RowSetNext(u.bx.pIdx->u.pRowSet, &u.bx.val)==0
+ ){
+ /* The boolean index is empty */
+ sqlite3VdbeMemSetNull(u.bx.pIdx);
pc = pOp->p2 - 1;
}else{
- pTos++;
- pTos->u.i = v;
- pTos->flags = MEM_Int;
+ /* A value was pulled from the index */
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ sqlite3VdbeMemSetInt64(pOut, u.bx.val);
}
break;
}
-#ifndef SQLITE_OMIT_TRIGGER
-/* Opcode: ContextPush * * *
-**
-** Save the current Vdbe context such that it can be restored by a ContextPop
-** opcode. The context stores the last insert row id, the last statement change
-** count, and the current statement change count.
-*/
-case OP_ContextPush: { /* no-push */
- int i = p->contextStackTop++;
- Context *pContext;
-
- assert( i>=0 );
- /* FIX ME: This should be allocated as part of the vdbe at compile-time */
- if( i>=p->contextStackDepth ){
- p->contextStackDepth = i+1;
- p->contextStack = sqliteReallocOrFree(p->contextStack,
- sizeof(Context)*(i+1));
- if( p->contextStack==0 ) goto no_mem;
- }
- pContext = &p->contextStack[i];
- pContext->lastRowid = db->lastRowid;
- pContext->nChange = p->nChange;
- pContext->sFifo = p->sFifo;
- sqlite3VdbeFifoInit(&p->sFifo);
+/* Opcode: RowSetTest P1 P2 P3 P4
+**
+** Register P3 is assumed to hold a 64-bit integer value. If register P1
+** contains a RowSet object and that RowSet object contains
+** the value held in P3, jump to register P2. Otherwise, insert the
+** integer in P3 into the RowSet and continue on to the
+** next opcode.
+**
+** The RowSet object is optimized for the case where successive sets
+** of integers, where each set contains no duplicates. Each set
+** of values is identified by a unique P4 value. The first set
+** must have P4==0, the final set P4=-1. P4 must be either -1 or
+** non-negative. For non-negative values of P4 only the lower 4
+** bits are significant.
+**
+** This allows optimizations: (a) when P4==0 there is no need to test
+** the rowset object for P3, as it is guaranteed not to contain it,
+** (b) when P4==-1 there is no need to insert the value, as it will
+** never be tested for, and (c) when a value that is part of set X is
+** inserted, there is no need to search to see if the same value was
+** previously inserted as part of set X (only if it was previously
+** inserted as part of some other set).
+*/
+case OP_RowSetTest: { /* jump, in1, in3 */
+#if 0 /* local variables moved into u.by */
+ int iSet;
+ int exists;
+#endif /* local variables moved into u.by */
+
+ u.by.iSet = pOp->p4.i;
+ assert( pIn3->flags&MEM_Int );
+
+ /* If there is anything other than a rowset object in memory cell P1,
+ ** delete it now and initialize P1 with an empty rowset
+ */
+ if( (pIn1->flags & MEM_RowSet)==0 ){
+ sqlite3VdbeMemSetRowSet(pIn1);
+ if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
+ }
+
+ assert( pOp->p4type==P4_INT32 );
+ assert( u.by.iSet==-1 || u.by.iSet>=0 );
+ if( u.by.iSet ){
+ u.by.exists = sqlite3RowSetTest(pIn1->u.pRowSet,
+ (u8)(u.by.iSet>=0 ? u.by.iSet & 0xf : 0xff),
+ pIn3->u.i);
+ if( u.by.exists ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }
+ if( u.by.iSet>=0 ){
+ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
+ }
break;
}
-/* Opcode: ContextPop * * *
-**
-** Restore the Vdbe context to the state it was in when contextPush was last
-** executed. The context stores the last insert row id, the last statement
-** change count, and the current statement change count.
-*/
-case OP_ContextPop: { /* no-push */
- Context *pContext = &p->contextStack[--p->contextStackTop];
- assert( p->contextStackTop>=0 );
- db->lastRowid = pContext->lastRowid;
- p->nChange = pContext->nChange;
- sqlite3VdbeFifoClear(&p->sFifo);
- p->sFifo = pContext->sFifo;
- break;
-}
-#endif /* #ifndef SQLITE_OMIT_TRIGGER */
-/* Opcode: MemStore P1 P2 *
-**
-** Write the top of the stack into memory location P1.
-** P1 should be a small integer since space is allocated
-** for all memory locations between 0 and P1 inclusive.
-**
-** After the data is stored in the memory location, the
-** stack is popped once if P2 is 1. If P2 is zero, then
-** the original data remains on the stack.
-*/
-case OP_MemStore: { /* no-push */
- assert( pTos>=p->aStack );
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
- pTos--;
+#ifndef SQLITE_OMIT_TRIGGER
- /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
- ** restore the top of the stack to its original value.
+/* Opcode: Program P1 P2 P3 P4 *
+**
+** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
+**
+** P1 contains the address of the memory cell that contains the first memory
+** cell in an array of values used as arguments to the sub-program. P2
+** contains the address to jump to if the sub-program throws an IGNORE
+** exception using the RAISE() function. Register P3 contains the address
+** of a memory cell in this (the parent) VM that is used to allocate the
+** memory required by the sub-vdbe at runtime.
+**
+** P4 is a pointer to the VM containing the trigger program.
+*/
+case OP_Program: { /* jump */
+#if 0 /* local variables moved into u.bz */
+ int nMem; /* Number of memory registers for sub-program */
+ int nByte; /* Bytes of runtime space required for sub-program */
+ Mem *pRt; /* Register to allocate runtime space */
+ Mem *pMem; /* Used to iterate through memory cells */
+ Mem *pEnd; /* Last memory cell in new array */
+ VdbeFrame *pFrame; /* New vdbe frame to execute in */
+ SubProgram *pProgram; /* Sub-program to execute */
+ void *t; /* Token identifying trigger */
+#endif /* local variables moved into u.bz */
+
+ u.bz.pProgram = pOp->p4.pProgram;
+ u.bz.pRt = &p->aMem[pOp->p3];
+ assert( u.bz.pProgram->nOp>0 );
+
+ /* If the SQLITE_RecTriggers flag is clear, then recursive invocation of
+ ** triggers is disabled for backwards compatibility (flag set/cleared by
+ ** the "PRAGMA recursive_triggers" command).
+ **
+ ** It is recursive invocation of triggers, at the SQL level, that is
+ ** disabled. In some cases a single trigger may generate more than one
+ ** SubProgram (if the trigger may be executed with more than one different
+ ** ON CONFLICT algorithm). SubProgram structures associated with a
+ ** single trigger all have the same value for the SubProgram.token
+ ** variable.
*/
- if( pOp->p2 ){
+ if( 0==(db->flags&SQLITE_RecTriggers) ){
+ u.bz.t = u.bz.pProgram->token;
+ for(u.bz.pFrame=p->pFrame; u.bz.pFrame && u.bz.pFrame->token!=u.bz.t; u.bz.pFrame=u.bz.pFrame->pParent);
+ if( u.bz.pFrame ) break;
+ }
+
+ if( p->nFrame>db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
+ rc = SQLITE_ERROR;
+ sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
break;
}
+
+ /* Register u.bz.pRt is used to store the memory required to save the state
+ ** of the current program, and the memory required at runtime to execute
+ ** the trigger program. If this trigger has been fired before, then u.bz.pRt
+ ** is already allocated. Otherwise, it must be initialized. */
+ if( (u.bz.pRt->flags&MEM_Frame)==0 ){
+ /* SubProgram.nMem is set to the number of memory cells used by the
+ ** program stored in SubProgram.aOp. As well as these, one memory
+ ** cell is required for each cursor used by the program. Set local
+ ** variable u.bz.nMem (and later, VdbeFrame.nChildMem) to this value.
+ */
+ u.bz.nMem = u.bz.pProgram->nMem + u.bz.pProgram->nCsr;
+ u.bz.nByte = ROUND8(sizeof(VdbeFrame))
+ + u.bz.nMem * sizeof(Mem)
+ + u.bz.pProgram->nCsr * sizeof(VdbeCursor *);
+ u.bz.pFrame = sqlite3DbMallocZero(db, u.bz.nByte);
+ if( !u.bz.pFrame ){
+ goto no_mem;
+ }
+ sqlite3VdbeMemRelease(u.bz.pRt);
+ u.bz.pRt->flags = MEM_Frame;
+ u.bz.pRt->u.pFrame = u.bz.pFrame;
+
+ u.bz.pFrame->v = p;
+ u.bz.pFrame->nChildMem = u.bz.nMem;
+ u.bz.pFrame->nChildCsr = u.bz.pProgram->nCsr;
+ u.bz.pFrame->pc = pc;
+ u.bz.pFrame->aMem = p->aMem;
+ u.bz.pFrame->nMem = p->nMem;
+ u.bz.pFrame->apCsr = p->apCsr;
+ u.bz.pFrame->nCursor = p->nCursor;
+ u.bz.pFrame->aOp = p->aOp;
+ u.bz.pFrame->nOp = p->nOp;
+ u.bz.pFrame->token = u.bz.pProgram->token;
+
+ u.bz.pEnd = &VdbeFrameMem(u.bz.pFrame)[u.bz.pFrame->nChildMem];
+ for(u.bz.pMem=VdbeFrameMem(u.bz.pFrame); u.bz.pMem!=u.bz.pEnd; u.bz.pMem++){
+ u.bz.pMem->flags = MEM_Null;
+ u.bz.pMem->db = db;
+ }
+ }else{
+ u.bz.pFrame = u.bz.pRt->u.pFrame;
+ assert( u.bz.pProgram->nMem+u.bz.pProgram->nCsr==u.bz.pFrame->nChildMem );
+ assert( u.bz.pProgram->nCsr==u.bz.pFrame->nChildCsr );
+ assert( pc==u.bz.pFrame->pc );
+ }
+
+ p->nFrame++;
+ u.bz.pFrame->pParent = p->pFrame;
+ u.bz.pFrame->lastRowid = db->lastRowid;
+ u.bz.pFrame->nChange = p->nChange;
+ p->nChange = 0;
+ p->pFrame = u.bz.pFrame;
+ p->aMem = &VdbeFrameMem(u.bz.pFrame)[-1];
+ p->nMem = u.bz.pFrame->nChildMem;
+ p->nCursor = (u16)u.bz.pFrame->nChildCsr;
+ p->apCsr = (VdbeCursor **)&p->aMem[p->nMem+1];
+ p->aOp = u.bz.pProgram->aOp;
+ p->nOp = u.bz.pProgram->nOp;
+ pc = -1;
+
+ break;
}
-/* Opcode: MemLoad P1 * *
+
+/* Opcode: Param P1 P2 * * *
**
-** Push a copy of the value in memory location P1 onto the stack.
+** This opcode is only ever present in sub-programs called via the
+** OP_Program instruction. Copy a value currently stored in a memory
+** cell of the calling (parent) frame to cell P2 in the current frames
+** address space. This is used by trigger programs to access the new.*
+** and old.* values.
**
-** If the value is a string, then the value pushed is a pointer to
-** the string that is stored in the memory location. If the memory
-** location is subsequently changed (using OP_MemStore) then the
-** value pushed onto the stack will change too.
+** The address of the cell in the parent frame is determined by adding
+** the value of the P1 argument to the value of the P1 argument to the
+** calling OP_Program instruction.
*/
-case OP_MemLoad: {
- int i = pOp->p1;
- assert( i>=0 && i<p->nMem );
- pTos++;
- sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
+case OP_Param: { /* out2-prerelease */
+#if 0 /* local variables moved into u.ca */
+ VdbeFrame *pFrame;
+ Mem *pIn;
+#endif /* local variables moved into u.ca */
+ u.ca.pFrame = p->pFrame;
+ u.ca.pIn = &u.ca.pFrame->aMem[pOp->p1 + u.ca.pFrame->aOp[u.ca.pFrame->pc].p1];
+ sqlite3VdbeMemShallowCopy(pOut, u.ca.pIn, MEM_Ephem);
break;
}
+#endif /* #ifndef SQLITE_OMIT_TRIGGER */
+
#ifndef SQLITE_OMIT_AUTOINCREMENT
-/* Opcode: MemMax P1 * *
+/* Opcode: MemMax P1 P2 * * *
**
-** Set the value of memory cell P1 to the maximum of its current value
-** and the value on the top of the stack. The stack is unchanged.
+** P1 is a register in the root frame of this VM (the root frame is
+** different from the current frame if this instruction is being executed
+** within a sub-program). Set the value of register P1 to the maximum of
+** its current value and the value in register P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
-case OP_MemMax: { /* no-push */
- int i = pOp->p1;
- Mem *pMem;
- assert( pTos>=p->aStack );
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- sqlite3VdbeMemIntegerify(pMem);
- sqlite3VdbeMemIntegerify(pTos);
- if( pMem->u.i<pTos->u.i){
- pMem->u.i = pTos->u.i;
+case OP_MemMax: { /* in2 */
+#if 0 /* local variables moved into u.cb */
+ Mem *pIn1;
+ VdbeFrame *pFrame;
+#endif /* local variables moved into u.cb */
+ if( p->pFrame ){
+ for(u.cb.pFrame=p->pFrame; u.cb.pFrame->pParent; u.cb.pFrame=u.cb.pFrame->pParent);
+ u.cb.pIn1 = &u.cb.pFrame->aMem[pOp->p1];
+ }else{
+ u.cb.pIn1 = &p->aMem[pOp->p1];
+ }
+ sqlite3VdbeMemIntegerify(u.cb.pIn1);
+ sqlite3VdbeMemIntegerify(pIn2);
+ if( u.cb.pIn1->u.i<pIn2->u.i){
+ u.cb.pIn1->u.i = pIn2->u.i;
}
break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */
-/* Opcode: MemIncr P1 P2 *
+/* Opcode: IfPos P1 P2 * * *
**
-** Increment the integer valued memory cell P2 by the value in P1.
+** If the value of register P1 is 1 or greater, jump to P2.
**
-** It is illegal to use this instruction on a memory cell that does
+** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
-case OP_MemIncr: { /* no-push */
- int i = pOp->p2;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- pMem->u.i += pOp->p1;
- break;
-}
-
-/* Opcode: IfMemPos P1 P2 *
-**
-** If the value of memory cell P1 is 1 or greater, jump to P2.
-**
-** It is illegal to use this instruction on a memory cell that does
-** not contain an integer. An assertion fault will result if you try.
-*/
-case OP_IfMemPos: { /* no-push */
- int i = pOp->p1;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- if( pMem->u.i>0 ){
+case OP_IfPos: { /* jump, in1 */
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i>0 ){
pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: IfMemNeg P1 P2 *
+/* Opcode: IfNeg P1 P2 * * *
**
-** If the value of memory cell P1 is less than zero, jump to P2.
+** If the value of register P1 is less than zero, jump to P2.
**
-** It is illegal to use this instruction on a memory cell that does
+** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
-case OP_IfMemNeg: { /* no-push */
- int i = pOp->p1;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- if( pMem->u.i<0 ){
+case OP_IfNeg: { /* jump, in1 */
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i<0 ){
pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: IfMemZero P1 P2 *
+/* Opcode: IfZero P1 P2 * * *
**
-** If the value of memory cell P1 is exactly 0, jump to P2.
+** If the value of register P1 is exactly 0, jump to P2.
**
-** It is illegal to use this instruction on a memory cell that does
+** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
-case OP_IfMemZero: { /* no-push */
- int i = pOp->p1;
- Mem *pMem;
- assert( i>=0 && i<p->nMem );
- pMem = &p->aMem[i];
- assert( pMem->flags==MEM_Int );
- if( pMem->u.i==0 ){
+case OP_IfZero: { /* jump, in1 */
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i==0 ){
pc = pOp->p2 - 1;
}
break;
}
-/* Opcode: MemNull P1 * *
-**
-** Store a NULL in memory cell P1
-*/
-case OP_MemNull: {
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]);
- break;
-}
-
-/* Opcode: MemInt P1 P2 *
-**
-** Store the integer value P1 in memory cell P2.
-*/
-case OP_MemInt: {
- assert( pOp->p2>=0 && pOp->p2<p->nMem );
- sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1);
- break;
-}
-
-/* Opcode: MemMove P1 P2 *
-**
-** Move the content of memory cell P2 over to memory cell P1.
-** Any prior content of P1 is erased. Memory cell P2 is left
-** containing a NULL.
-*/
-case OP_MemMove: {
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- assert( pOp->p2>=0 && pOp->p2<p->nMem );
- rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
- break;
-}
-
-/* Opcode: AggStep P1 P2 P3
+/* Opcode: AggStep * P2 P3 P4 P5
**
** Execute the step function for an aggregate. The
-** function has P2 arguments. P3 is a pointer to the FuncDef
-** structure that specifies the function. Use memory location
-** P1 as the accumulator.
+** function has P5 arguments. P4 is a pointer to the FuncDef
+** structure that specifies the function. Use register
+** P3 as the accumulator.
**
-** The P2 arguments are popped from the stack.
+** The P5 arguments are taken from register P2 and its
+** successors.
*/
-case OP_AggStep: { /* no-push */
- int n = pOp->p2;
+case OP_AggStep: {
+#if 0 /* local variables moved into u.cc */
+ int n;
int i;
- Mem *pMem, *pRec;
+ Mem *pMem;
+ Mem *pRec;
sqlite3_context ctx;
sqlite3_value **apVal;
-
- assert( n>=0 );
- pRec = &pTos[1-n];
- assert( pRec>=p->aStack );
- apVal = p->apArg;
- assert( apVal || n==0 );
- for(i=0; i<n; i++, pRec++){
- apVal[i] = pRec;
- storeTypeInfo(pRec, encoding);
- }
- ctx.pFunc = (FuncDef*)pOp->p3;
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- ctx.pMem = pMem = &p->aMem[pOp->p1];
- pMem->n++;
- ctx.s.flags = MEM_Null;
- ctx.s.z = 0;
- ctx.s.xDel = 0;
- ctx.isError = 0;
- ctx.pColl = 0;
- if( ctx.pFunc->needCollSeq ){
+#endif /* local variables moved into u.cc */
+
+ u.cc.n = pOp->p5;
+ assert( u.cc.n>=0 );
+ u.cc.pRec = &p->aMem[pOp->p2];
+ u.cc.apVal = p->apArg;
+ assert( u.cc.apVal || u.cc.n==0 );
+ for(u.cc.i=0; u.cc.i<u.cc.n; u.cc.i++, u.cc.pRec++){
+ u.cc.apVal[u.cc.i] = u.cc.pRec;
+ storeTypeInfo(u.cc.pRec, encoding);
+ }
+ u.cc.ctx.pFunc = pOp->p4.pFunc;
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ u.cc.ctx.pMem = u.cc.pMem = &p->aMem[pOp->p3];
+ u.cc.pMem->n++;
+ u.cc.ctx.s.flags = MEM_Null;
+ u.cc.ctx.s.z = 0;
+ u.cc.ctx.s.zMalloc = 0;
+ u.cc.ctx.s.xDel = 0;
+ u.cc.ctx.s.db = db;
+ u.cc.ctx.isError = 0;
+ u.cc.ctx.pColl = 0;
+ if( u.cc.ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
assert( pOp>p->aOp );
- assert( pOp[-1].p3type==P3_COLLSEQ );
+ assert( pOp[-1].p4type==P4_COLLSEQ );
assert( pOp[-1].opcode==OP_CollSeq );
- ctx.pColl = (CollSeq *)pOp[-1].p3;
+ u.cc.ctx.pColl = pOp[-1].p4.pColl;
}
- (ctx.pFunc->xStep)(&ctx, n, apVal);
- popStack(&pTos, n);
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
- rc = SQLITE_ERROR;
+ (u.cc.ctx.pFunc->xStep)(&u.cc.ctx, u.cc.n, u.cc.apVal);
+ if( u.cc.ctx.isError ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.cc.ctx.s));
+ rc = u.cc.ctx.isError;
}
- sqlite3VdbeMemRelease(&ctx.s);
+ sqlite3VdbeMemRelease(&u.cc.ctx.s);
break;
}
-/* Opcode: AggFinal P1 P2 P3
+/* Opcode: AggFinal P1 P2 * P4 *
**
** Execute the finalizer function for an aggregate. P1 is
** the memory location that is the accumulator for the aggregate.
**
** P2 is the number of arguments that the step function takes and
-** P3 is a pointer to the FuncDef for this function. The P2
+** P4 is a pointer to the FuncDef for this function. The P2
** argument is not used by this opcode. It is only there to disambiguate
** functions that can take varying numbers of arguments. The
-** P3 argument is only needed for the degenerate case where
+** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
-case OP_AggFinal: { /* no-push */
+case OP_AggFinal: {
+#if 0 /* local variables moved into u.cd */
Mem *pMem;
- assert( pOp->p1>=0 && pOp->p1<p->nMem );
- pMem = &p->aMem[pOp->p1];
- assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
- rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3);
- if( rc==SQLITE_ERROR ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
+#endif /* local variables moved into u.cd */
+ assert( pOp->p1>0 && pOp->p1<=p->nMem );
+ u.cd.pMem = &p->aMem[pOp->p1];
+ assert( (u.cd.pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
+ rc = sqlite3VdbeMemFinalize(u.cd.pMem, pOp->p4.pFunc);
+ if( rc ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(u.cd.pMem));
+ }
+ sqlite3VdbeChangeEncoding(u.cd.pMem, encoding);
+ UPDATE_MAX_BLOBSIZE(u.cd.pMem);
+ if( sqlite3VdbeMemTooBig(u.cd.pMem) ){
+ goto too_big;
}
break;
}
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
-/* Opcode: Vacuum * * *
+/* Opcode: Vacuum * * * * *
**
** Vacuum the entire database. This opcode will cause other virtual
** machines to be created and run. It may not be called from within
** a transaction.
*/
-case OP_Vacuum: { /* no-push */
+case OP_Vacuum: {
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
rc = sqlite3RunVacuum(&p->zErrMsg, db);
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
@@ -36346,7 +56907,31 @@ case OP_Vacuum: { /* no-push */
}
#endif
-/* Opcode: Expire P1 * *
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+/* Opcode: IncrVacuum P1 P2 * * *
+**
+** Perform a single step of the incremental vacuum procedure on
+** the P1 database. If the vacuum has finished, jump to instruction
+** P2. Otherwise, fall through to the next instruction.
+*/
+case OP_IncrVacuum: { /* jump */
+#if 0 /* local variables moved into u.ce */
+ Btree *pBt;
+#endif /* local variables moved into u.ce */
+
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ u.ce.pBt = db->aDb[pOp->p1].pBt;
+ rc = sqlite3BtreeIncrVacuum(u.ce.pBt);
+ if( rc==SQLITE_DONE ){
+ pc = pOp->p2 - 1;
+ rc = SQLITE_OK;
+ }
+ break;
+}
+#endif
+
+/* Opcode: Expire P1 * * * *
**
** Cause precompiled statements to become expired. An expired statement
** fails with an error code of SQLITE_SCHEMA if it is ever executed
@@ -36355,7 +56940,7 @@ case OP_Vacuum: { /* no-push */
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is affected.
*/
-case OP_Expire: { /* no-push */
+case OP_Expire: {
if( !pOp->p1 ){
sqlite3ExpirePreparedStatements(db);
}else{
@@ -36365,104 +56950,126 @@ case OP_Expire: { /* no-push */
}
#ifndef SQLITE_OMIT_SHARED_CACHE
-/* Opcode: TableLock P1 P2 P3
+/* Opcode: TableLock P1 P2 P3 P4 *
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled.
**
-** If P1 is not negative, then it is the index of the database
-** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a
-** write-lock is required. In this case the index of the database is the
-** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
-** required.
+** P1 is the index of the database in sqlite3.aDb[] of the database
+** on which the lock is acquired. A readlock is obtained if P3==0 or
+** a write lock if P3==1.
**
** P2 contains the root-page of the table to lock.
**
-** P3 contains a pointer to the name of the table being locked. This is only
+** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
-case OP_TableLock: { /* no-push */
- int p1 = pOp->p1;
- u8 isWriteLock = (p1<0);
- if( isWriteLock ){
- p1 = (-1*p1)-1;
- }
- rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
- if( rc==SQLITE_LOCKED ){
- const char *z = (const char *)pOp->p3;
- sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
+case OP_TableLock: {
+ u8 isWriteLock = (u8)pOp->p3;
+ if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
+ int p1 = pOp->p1;
+ assert( p1>=0 && p1<db->nDb );
+ assert( (p->btreeMask & (1<<p1))!=0 );
+ assert( isWriteLock==0 || isWriteLock==1 );
+ rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
+ if( (rc&0xFF)==SQLITE_LOCKED ){
+ const char *z = pOp->p4.z;
+ sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
+ }
}
break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VBegin * * P3
-**
-** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method
-** for that table.
-*/
-case OP_VBegin: { /* no-push */
- rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3);
+/* Opcode: VBegin * * * P4 *
+**
+** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
+** xBegin method for that table.
+**
+** Also, whether or not P4 is set, check that this is not being called from
+** within a callback to a virtual table xSync() method. If it is, the error
+** code will be set to SQLITE_LOCKED.
+*/
+case OP_VBegin: {
+#if 0 /* local variables moved into u.cf */
+ VTable *pVTab;
+#endif /* local variables moved into u.cf */
+ u.cf.pVTab = pOp->p4.pVtab;
+ rc = sqlite3VtabBegin(db, u.cf.pVTab);
+ if( u.cf.pVTab ){
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = u.cf.pVTab->pVtab->zErrMsg;
+ u.cf.pVTab->pVtab->zErrMsg = 0;
+ }
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VCreate P1 * P3
+/* Opcode: VCreate P1 * * P4 *
**
-** P3 is the name of a virtual table in database P1. Call the xCreate method
+** P4 is the name of a virtual table in database P1. Call the xCreate method
** for that table.
*/
-case OP_VCreate: { /* no-push */
- rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3, &p->zErrMsg);
+case OP_VCreate: {
+ rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VDestroy P1 * P3
+/* Opcode: VDestroy P1 * * P4 *
**
-** P3 is the name of a virtual table in database P1. Call the xDestroy method
+** P4 is the name of a virtual table in database P1. Call the xDestroy method
** of that table.
*/
-case OP_VDestroy: { /* no-push */
+case OP_VDestroy: {
p->inVtabMethod = 2;
- rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3);
+ rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
p->inVtabMethod = 0;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VOpen P1 * P3
+/* Opcode: VOpen P1 * * P4 *
**
-** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number. This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
-case OP_VOpen: { /* no-push */
- Cursor *pCur = 0;
- sqlite3_vtab_cursor *pVtabCursor = 0;
-
- sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
- sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
-
- assert(pVtab && pModule);
+case OP_VOpen: {
+#if 0 /* local variables moved into u.cg */
+ VdbeCursor *pCur;
+ sqlite3_vtab_cursor *pVtabCursor;
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pModule;
+#endif /* local variables moved into u.cg */
+
+ u.cg.pCur = 0;
+ u.cg.pVtabCursor = 0;
+ u.cg.pVtab = pOp->p4.pVtab->pVtab;
+ u.cg.pModule = (sqlite3_module *)u.cg.pVtab->pModule;
+ assert(u.cg.pVtab && u.cg.pModule);
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xOpen(pVtab, &pVtabCursor);
+ rc = u.cg.pModule->xOpen(u.cg.pVtab, &u.cg.pVtabCursor);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = u.cg.pVtab->zErrMsg;
+ u.cg.pVtab->zErrMsg = 0;
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
if( SQLITE_OK==rc ){
- /* Initialise sqlite3_vtab_cursor base class */
- pVtabCursor->pVtab = pVtab;
+ /* Initialize sqlite3_vtab_cursor base class */
+ u.cg.pVtabCursor->pVtab = u.cg.pVtab;
/* Initialise vdbe cursor object */
- pCur = allocateCursor(p, pOp->p1, -1);
- if( pCur ){
- pCur->pVtabCursor = pVtabCursor;
- pCur->pModule = pVtabCursor->pVtab->pModule;
+ u.cg.pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
+ if( u.cg.pCur ){
+ u.cg.pCur->pVtabCursor = u.cg.pVtabCursor;
+ u.cg.pCur->pModule = u.cg.pVtabCursor->pVtab->pModule;
}else{
- pModule->xClose(pVtabCursor);
+ db->mallocFailed = 1;
+ u.cg.pModule->xClose(u.cg.pVtabCursor);
}
}
break;
@@ -36470,201 +57077,244 @@ case OP_VOpen: { /* no-push */
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VFilter P1 P2 P3
+/* Opcode: VFilter P1 P2 P3 P4 *
**
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
** the filtered result set is empty.
**
-** P3 is either NULL or a string that was generated by the xBestIndex
-** method of the module. The interpretation of the P3 string is left
+** P4 is either NULL or a string that was generated by the xBestIndex
+** method of the module. The interpretation of the P4 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
-** by P1. The integer query plan parameter to xFilter is the top of the
-** stack. Next down on the stack is the argc parameter. Beneath the
-** next of stack are argc additional parameters which are passed to
-** xFilter as argv. The topmost parameter (i.e. 3rd element popped from
-** the stack) becomes argv[argc-1] when passed to xFilter.
+** by P1. The integer query plan parameter to xFilter is stored in register
+** P3. Register P3+1 stores the argc parameter to be passed to the
+** xFilter method. Registers P3+2..P3+1+argc are the argc
+** additional parameters which are passed to
+** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
**
-** The integer query plan parameter, argc, and all argv stack values
-** are popped from the stack before this instruction completes.
-**
-** A jump is made to P2 if the result set after filtering would be
-** empty.
+** A jump is made to P2 if the result set after filtering would be empty.
*/
-case OP_VFilter: { /* no-push */
+case OP_VFilter: { /* jump */
+#if 0 /* local variables moved into u.ch */
int nArg;
-
+ int iQuery;
const sqlite3_module *pModule;
-
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
-
- /* Grab the index number and argc parameters off the top of the stack. */
- assert( (&pTos[-1])>=p->aStack );
- assert( (pTos[0].flags&MEM_Int)!=0 && pTos[-1].flags==MEM_Int );
- nArg = pTos[-1].u.i;
+ Mem *pQuery;
+ Mem *pArgc;
+ sqlite3_vtab_cursor *pVtabCursor;
+ sqlite3_vtab *pVtab;
+ VdbeCursor *pCur;
+ int res;
+ int i;
+ Mem **apArg;
+#endif /* local variables moved into u.ch */
+
+ u.ch.pQuery = &p->aMem[pOp->p3];
+ u.ch.pArgc = &u.ch.pQuery[1];
+ u.ch.pCur = p->apCsr[pOp->p1];
+ REGISTER_TRACE(pOp->p3, u.ch.pQuery);
+ assert( u.ch.pCur->pVtabCursor );
+ u.ch.pVtabCursor = u.ch.pCur->pVtabCursor;
+ u.ch.pVtab = u.ch.pVtabCursor->pVtab;
+ u.ch.pModule = u.ch.pVtab->pModule;
+
+ /* Grab the index number and argc parameters */
+ assert( (u.ch.pQuery->flags&MEM_Int)!=0 && u.ch.pArgc->flags==MEM_Int );
+ u.ch.nArg = (int)u.ch.pArgc->u.i;
+ u.ch.iQuery = (int)u.ch.pQuery->u.i;
/* Invoke the xFilter method */
{
- int res = 0;
- int i;
- Mem **apArg = p->apArg;
- for(i = 0; i<nArg; i++){
- apArg[i] = &pTos[i+1-2-nArg];
- storeTypeInfo(apArg[i], 0);
+ u.ch.res = 0;
+ u.ch.apArg = p->apArg;
+ for(u.ch.i = 0; u.ch.i<u.ch.nArg; u.ch.i++){
+ u.ch.apArg[u.ch.i] = &u.ch.pArgc[u.ch.i+1];
+ storeTypeInfo(u.ch.apArg[u.ch.i], 0);
}
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
p->inVtabMethod = 1;
- rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3, nArg, apArg);
+ rc = u.ch.pModule->xFilter(u.ch.pVtabCursor, u.ch.iQuery, pOp->p4.z, u.ch.nArg, u.ch.apArg);
p->inVtabMethod = 0;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = u.ch.pVtab->zErrMsg;
+ u.ch.pVtab->zErrMsg = 0;
if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
+ u.ch.res = u.ch.pModule->xEof(u.ch.pVtabCursor);
}
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( res ){
+ if( u.ch.res ){
pc = pOp->p2 - 1;
}
}
+ u.ch.pCur->nullRow = 0;
- /* Pop the index number, argc value and parameters off the stack */
- popStack(&pTos, 2+nArg);
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VRowid P1 * *
+/* Opcode: VColumn P1 P2 P3 * *
**
-** Push an integer onto the stack which is the rowid of
-** the virtual-table that the P1 cursor is pointing to.
+** Store the value of the P2-th column of
+** the row of the virtual-table that the
+** P1 cursor is pointing to into register P3.
*/
-case OP_VRowid: {
+case OP_VColumn: {
+#if 0 /* local variables moved into u.ci */
+ sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
+ Mem *pDest;
+ sqlite3_context sContext;
+#endif /* local variables moved into u.ci */
- Cursor *pCur = p->apCsr[pOp->p1];
+ VdbeCursor *pCur = p->apCsr[pOp->p1];
assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
- if( pModule->xRowid==0 ){
- sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xRowid", 0);
- rc = SQLITE_ERROR;
- } else {
- sqlite_int64 iRow;
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ u.ci.pDest = &p->aMem[pOp->p3];
+ if( pCur->nullRow ){
+ sqlite3VdbeMemSetNull(u.ci.pDest);
+ break;
+ }
+ u.ci.pVtab = pCur->pVtabCursor->pVtab;
+ u.ci.pModule = u.ci.pVtab->pModule;
+ assert( u.ci.pModule->xColumn );
+ memset(&u.ci.sContext, 0, sizeof(u.ci.sContext));
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ /* The output cell may already have a buffer allocated. Move
+ ** the current contents to u.ci.sContext.s so in case the user-function
+ ** can use the already allocated buffer instead of allocating a
+ ** new one.
+ */
+ sqlite3VdbeMemMove(&u.ci.sContext.s, u.ci.pDest);
+ MemSetTypeFlag(&u.ci.sContext.s, MEM_Null);
- pTos++;
- pTos->flags = MEM_Int;
- pTos->u.i = iRow;
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ rc = u.ci.pModule->xColumn(pCur->pVtabCursor, &u.ci.sContext, pOp->p2);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = u.ci.pVtab->zErrMsg;
+ u.ci.pVtab->zErrMsg = 0;
+ if( u.ci.sContext.isError ){
+ rc = u.ci.sContext.isError;
}
+ /* Copy the result of the function to the P3 register. We
+ ** do this regardless of whether or not an error occurred to ensure any
+ ** dynamic allocation in u.ci.sContext.s (a Mem struct) is released.
+ */
+ sqlite3VdbeChangeEncoding(&u.ci.sContext.s, encoding);
+ REGISTER_TRACE(pOp->p3, u.ci.pDest);
+ sqlite3VdbeMemMove(u.ci.pDest, &u.ci.sContext.s);
+ UPDATE_MAX_BLOBSIZE(u.ci.pDest);
+
+ if( sqlite3SafetyOn(db) ){
+ goto abort_due_to_misuse;
+ }
+ if( sqlite3VdbeMemTooBig(u.ci.pDest) ){
+ goto too_big;
+ }
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VColumn P1 P2 *
+/* Opcode: VNext P1 P2 * * *
**
-** Push onto the stack the value of the P2-th column of
-** the row of the virtual-table that the P1 cursor is pointing to.
+** Advance virtual table P1 to the next row in its result set and
+** jump to instruction P2. Or, if the virtual table has reached
+** the end of its result set, then fall through to the next instruction.
*/
-case OP_VColumn: {
+case OP_VNext: { /* jump */
+#if 0 /* local variables moved into u.cj */
+ sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
+ int res;
+ VdbeCursor *pCur;
+#endif /* local variables moved into u.cj */
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
- if( pModule->xColumn==0 ){
- sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
- rc = SQLITE_ERROR;
- } else {
- sqlite3_context sContext;
- memset(&sContext, 0, sizeof(sContext));
- sContext.s.flags = MEM_Null;
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
+ u.cj.res = 0;
+ u.cj.pCur = p->apCsr[pOp->p1];
+ assert( u.cj.pCur->pVtabCursor );
+ if( u.cj.pCur->nullRow ){
+ break;
+ }
+ u.cj.pVtab = u.cj.pCur->pVtabCursor->pVtab;
+ u.cj.pModule = u.cj.pVtab->pModule;
+ assert( u.cj.pModule->xNext );
- /* Copy the result of the function to the top of the stack. We
- ** do this regardless of whether or not an error occured to ensure any
- ** dynamic allocation in sContext.s (a Mem struct) is released.
- */
- sqlite3VdbeChangeEncoding(&sContext.s, encoding);
- pTos++;
- pTos->flags = 0;
- sqlite3VdbeMemMove(pTos, &sContext.s);
+ /* Invoke the xNext() method of the module. There is no way for the
+ ** underlying implementation to return an error if one occurs during
+ ** xNext(). Instead, if an error occurs, true is returned (indicating that
+ ** data is available) and the error code returned when xColumn or
+ ** some other method is next invoked on the save virtual table cursor.
+ */
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ p->inVtabMethod = 1;
+ rc = u.cj.pModule->xNext(u.cj.pCur->pVtabCursor);
+ p->inVtabMethod = 0;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = u.cj.pVtab->zErrMsg;
+ u.cj.pVtab->zErrMsg = 0;
+ if( rc==SQLITE_OK ){
+ u.cj.res = u.cj.pModule->xEof(u.cj.pCur->pVtabCursor);
+ }
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ if( !u.cj.res ){
+ /* If there is data, jump to P2 */
+ pc = pOp->p2 - 1;
}
-
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VNext P1 P2 *
+/* Opcode: VRename P1 * * P4 *
**
-** Advance virtual table P1 to the next row in its result set and
-** jump to instruction P2. Or, if the virtual table has reached
-** the end of its result set, then fall through to the next instruction.
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xRename method. The value
+** in register P1 is passed as the zName argument to the xRename method.
*/
-case OP_VNext: { /* no-push */
- const sqlite3_module *pModule;
- int res = 0;
-
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
- if( pModule->xNext==0 ){
- sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xNext", 0);
- rc = SQLITE_ERROR;
- } else {
- /* Invoke the xNext() method of the module. There is no way for the
- ** underlying implementation to return an error if one occurs during
- ** xNext(). Instead, if an error occurs, true is returned (indicating that
- ** data is available) and the error code returned when xColumn or
- ** some other method is next invoked on the save virtual table cursor.
- */
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- p->inVtabMethod = 1;
- rc = pModule->xNext(pCur->pVtabCursor);
- p->inVtabMethod = 0;
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
- }
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-
- if( !res ){
- /* If there is data, jump to P2 */
- pc = pOp->p2 - 1;
- }
- }
+case OP_VRename: {
+#if 0 /* local variables moved into u.ck */
+ sqlite3_vtab *pVtab;
+ Mem *pName;
+#endif /* local variables moved into u.ck */
+
+ u.ck.pVtab = pOp->p4.pVtab->pVtab;
+ u.ck.pName = &p->aMem[pOp->p1];
+ assert( u.ck.pVtab->pModule->xRename );
+ REGISTER_TRACE(pOp->p1, u.ck.pName);
+ assert( u.ck.pName->flags & MEM_Str );
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ rc = u.ck.pVtab->pModule->xRename(u.ck.pVtab, u.ck.pName->z);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = u.ck.pVtab->zErrMsg;
+ u.ck.pVtab->zErrMsg = 0;
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
break;
}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
+#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VUpdate P1 P2 P3
+/* Opcode: VUpdate P1 P2 P3 P4 *
**
-** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
-** are taken from the stack to pass to the xUpdate invocation. The
-** value on the top of the stack corresponds to the p2th element
-** of the argv array passed to xUpdate.
+** are contiguous memory cells starting at P3 to pass to the xUpdate
+** invocation. The value in register (P3+P2-1) corresponds to the
+** p2th element of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
-** The argv[0] element (which corresponds to the P2-th element down
-** on the stack) is the rowid of a row to delete. If argv[0] is
-** NULL then no deletion occurs. The argv[1] element is the rowid
-** of the new row. This can be NULL to have the virtual table
-** select the new rowid for itself. The higher elements in the
-** stack are the values of columns in the new row.
+** The argv[0] element (which corresponds to memory cell P3)
+** is the rowid of a row to delete. If argv[0] is NULL then no
+** deletion occurs. The argv[1] element is the rowid of the new
+** row. This can be NULL to have the virtual table select the new
+** rowid for itself. The subsequent elements in the array are
+** the values of columns in the new row.
**
** If P2==1 then no insert is performed. argv[0] is the rowid of
** a row to delete.
@@ -36673,42 +57323,110 @@ case OP_VNext: { /* no-push */
** is successful, then the value returned by sqlite3_last_insert_rowid()
** is set to the value of the rowid for the row just inserted.
*/
-case OP_VUpdate: { /* no-push */
- sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
- sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
- int nArg = pOp->p2;
- assert( pOp->p3type==P3_VTAB );
- if( pModule->xUpdate==0 ){
- sqlite3SetString(&p->zErrMsg, "read-only table", 0);
- rc = SQLITE_ERROR;
- }else{
- int i;
- sqlite_int64 rowid;
- Mem **apArg = p->apArg;
- Mem *pX = &pTos[1-nArg];
- for(i = 0; i<nArg; i++, pX++){
- storeTypeInfo(pX, 0);
- apArg[i] = pX;
+case OP_VUpdate: {
+#if 0 /* local variables moved into u.cl */
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pModule;
+ int nArg;
+ int i;
+ sqlite_int64 rowid;
+ Mem **apArg;
+ Mem *pX;
+#endif /* local variables moved into u.cl */
+
+ u.cl.pVtab = pOp->p4.pVtab->pVtab;
+ u.cl.pModule = (sqlite3_module *)u.cl.pVtab->pModule;
+ u.cl.nArg = pOp->p2;
+ assert( pOp->p4type==P4_VTAB );
+ if( ALWAYS(u.cl.pModule->xUpdate) ){
+ u.cl.apArg = p->apArg;
+ u.cl.pX = &p->aMem[pOp->p3];
+ for(u.cl.i=0; u.cl.i<u.cl.nArg; u.cl.i++){
+ storeTypeInfo(u.cl.pX, 0);
+ u.cl.apArg[u.cl.i] = u.cl.pX;
+ u.cl.pX++;
}
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- sqlite3VtabLock(pVtab);
- rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
- sqlite3VtabUnlock(db, pVtab);
+ rc = u.cl.pModule->xUpdate(u.cl.pVtab, u.cl.nArg, u.cl.apArg, &u.cl.rowid);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = u.cl.pVtab->zErrMsg;
+ u.cl.pVtab->zErrMsg = 0;
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( pOp->p1 && rc==SQLITE_OK ){
- assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
- db->lastRowid = rowid;
+ if( rc==SQLITE_OK && pOp->p1 ){
+ assert( u.cl.nArg>1 && u.cl.apArg[0] && (u.cl.apArg[0]->flags&MEM_Null) );
+ db->lastRowid = u.cl.rowid;
}
+ p->nChange++;
}
- popStack(&pTos, nArg);
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
-/* An other opcode is illegal...
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: Pagecount P1 P2 * * *
+**
+** Write the current number of pages in database P1 to memory cell P2.
*/
-default: {
- assert( 0 );
+case OP_Pagecount: { /* out2-prerelease */
+#if 0 /* local variables moved into u.cm */
+ int p1;
+ int nPage;
+ Pager *pPager;
+#endif /* local variables moved into u.cm */
+
+ u.cm.p1 = pOp->p1;
+ u.cm.pPager = sqlite3BtreePager(db->aDb[u.cm.p1].pBt);
+ rc = sqlite3PagerPagecount(u.cm.pPager, &u.cm.nPage);
+ /* OP_Pagecount is always called from within a read transaction. The
+ ** page count has already been successfully read and cached. So the
+ ** sqlite3PagerPagecount() call above cannot fail. */
+ if( ALWAYS(rc==SQLITE_OK) ){
+ pOut->flags = MEM_Int;
+ pOut->u.i = u.cm.nPage;
+ }
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_TRACE
+/* Opcode: Trace * * * P4 *
+**
+** If tracing is enabled (by the sqlite3_trace()) interface, then
+** the UTF-8 string contained in P4 is emitted on the trace callback.
+*/
+case OP_Trace: {
+#if 0 /* local variables moved into u.cn */
+ char *zTrace;
+#endif /* local variables moved into u.cn */
+
+ u.cn.zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
+ if( u.cn.zTrace ){
+ if( db->xTrace ){
+ db->xTrace(db->pTraceArg, u.cn.zTrace);
+ }
+#ifdef SQLITE_DEBUG
+ if( (db->flags & SQLITE_SqlTrace)!=0 ){
+ sqlite3DebugPrintf("SQL-trace: %s\n", u.cn.zTrace);
+ }
+#endif /* SQLITE_DEBUG */
+ }
+ break;
+}
+#endif
+
+
+/* Opcode: Noop * * * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+/*
+** The magic Explain opcode are only inserted when explain==2 (which
+** is to say when the EXPLAIN QUERY PLAN syntax is used.)
+** This opcode records information from the optimizer. It is the
+** the same as a no-op. This opcodesnever appears in a real VM program.
+*/
+default: { /* This is really OP_Noop and OP_Explain */
break;
}
@@ -36720,16 +57438,13 @@ default: {
*****************************************************************************/
}
- /* Make sure the stack limit was not exceeded */
- assert( pTos<=pStackLimit );
-
#ifdef VDBE_PROFILE
{
- long long elapse = hwtime() - start;
- pOp->cycles += elapse;
+ u64 elapsed = sqlite3Hwtime() - start;
+ pOp->cycles += elapsed;
pOp->cnt++;
#if 0
- fprintf(stdout, "%10lld ", elapse);
+ fprintf(stdout, "%10llu ", elapsed);
sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
#endif
}
@@ -36741,63 +57456,54 @@ default: {
** the evaluator loop. So we can leave it out when NDEBUG is defined.
*/
#ifndef NDEBUG
- /* Sanity checking on the top element of the stack. If the previous
- ** instruction was VNoChange, then the flags field of the top
- ** of the stack is set to 0. This is technically invalid for a memory
- ** cell, so avoid calling MemSanity() in this case.
- */
- if( pTos>=p->aStack && pTos->flags ){
- sqlite3VdbeMemSanity(pTos);
- }
assert( pc>=-1 && pc<p->nOp );
+
#ifdef SQLITE_DEBUG
- /* Code for tracing the vdbe stack. */
- if( p->trace && pTos>=p->aStack ){
- int i;
- fprintf(p->trace, "Stack:");
- for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
- if( pTos[i].flags & MEM_Null ){
- fprintf(p->trace, " NULL");
- }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
- fprintf(p->trace, " si:%lld", pTos[i].u.i);
- }else if( pTos[i].flags & MEM_Int ){
- fprintf(p->trace, " i:%lld", pTos[i].u.i);
- }else if( pTos[i].flags & MEM_Real ){
- fprintf(p->trace, " r:%g", pTos[i].r);
- }else{
- char zBuf[100];
- sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf);
- fprintf(p->trace, " ");
- fprintf(p->trace, "%s", zBuf);
- }
+ if( p->trace ){
+ if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
+ if( opProperty & OPFLG_OUT2_PRERELEASE ){
+ registerTrace(p->trace, pOp->p2, pOut);
+ }
+ if( opProperty & OPFLG_OUT3 ){
+ registerTrace(p->trace, pOp->p3, pOut);
}
- if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
- fprintf(p->trace,"\n");
}
#endif /* SQLITE_DEBUG */
#endif /* NDEBUG */
} /* The end of the for(;;) loop the loops through opcodes */
- /* If we reach this point, it means that execution is finished.
+ /* If we reach this point, it means that execution is finished with
+ ** an error of some kind.
*/
-vdbe_halt:
- if( rc ){
- p->rc = rc;
- rc = SQLITE_ERROR;
- }else{
- rc = SQLITE_DONE;
- }
+vdbe_error_halt:
+ assert( rc );
+ p->rc = rc;
sqlite3VdbeHalt(p);
- p->pTos = pTos;
+ if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
+ rc = SQLITE_ERROR;
+
+ /* This is the only way out of this procedure. We have to
+ ** release the mutexes on btrees that were acquired at the
+ ** top. */
+vdbe_return:
+ sqlite3BtreeMutexArrayLeave(&p->aMutex);
return rc;
- /* Jump to here if a malloc() fails. It's hard to get a malloc()
- ** to fail on a modern VM computer, so this code is untested.
+ /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
+ ** is encountered.
+ */
+too_big:
+ sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
+ rc = SQLITE_TOOBIG;
+ goto vdbe_error_halt;
+
+ /* Jump to here if a malloc() fails.
*/
no_mem:
- sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
+ db->mallocFailed = 1;
+ sqlite3SetString(&p->zErrMsg, db, "out of memory");
rc = SQLITE_NOMEM;
- goto vdbe_halt;
+ goto vdbe_error_halt;
/* Jump to here for an SQLITE_MISUSE error.
*/
@@ -36809,31 +57515,28 @@ abort_due_to_misuse:
** should hold the error number.
*/
abort_due_to_error:
- if( p->zErrMsg==0 ){
- if( sqlite3MallocFailed() ) rc = SQLITE_NOMEM;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
+ assert( p->zErrMsg==0 );
+ if( db->mallocFailed ) rc = SQLITE_NOMEM;
+ if( rc!=SQLITE_IOERR_NOMEM ){
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
}
- goto vdbe_halt;
+ goto vdbe_error_halt;
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
** flag.
*/
abort_due_to_interrupt:
assert( db->u1.isInterrupted );
- if( db->magic!=SQLITE_MAGIC_BUSY ){
- rc = SQLITE_MISUSE;
- }else{
- rc = SQLITE_INTERRUPT;
- }
+ rc = SQLITE_INTERRUPT;
p->rc = rc;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
- goto vdbe_halt;
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
+ goto vdbe_error_halt;
}
/************** End of vdbe.c ************************************************/
-/************** Begin file expr.c ********************************************/
+/************** Begin file vdbeblob.c ****************************************/
/*
-** 2001 September 15
+** 2007 May 1
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
@@ -36843,827 +57546,1102 @@ abort_due_to_interrupt:
** May you share freely, never taking more than you give.
**
*************************************************************************
-** This file contains routines used for analyzing expressions and
-** for generating VDBE code that evaluates expressions in SQLite.
**
-** $Id: expr.c,v 1.284 2007/04/13 16:06:33 drh Exp $
+** This file contains code used to implement incremental BLOB I/O.
+**
+** $Id: vdbeblob.c,v 1.35 2009/07/02 07:47:33 danielk1977 Exp $
*/
+
+#ifndef SQLITE_OMIT_INCRBLOB
+
/*
-** Return the 'affinity' of the expression pExpr if any.
-**
-** If pExpr is a column, a reference to a column via an 'AS' alias,
-** or a sub-select with a column as the return value, then the
-** affinity of that column is returned. Otherwise, 0x00 is returned,
-** indicating no affinity for the expression.
-**
-** i.e. the WHERE clause expresssions in the following statements all
-** have an affinity:
-**
-** CREATE TABLE t1(a);
-** SELECT * FROM t1 WHERE a;
-** SELECT a AS b FROM t1 WHERE b;
-** SELECT * FROM t1 WHERE (select a from t1);
+** Valid sqlite3_blob* handles point to Incrblob structures.
*/
-char sqlite3ExprAffinity(Expr *pExpr){
- int op = pExpr->op;
- if( op==TK_AS ){
- return sqlite3ExprAffinity(pExpr->pLeft);
- }
- if( op==TK_SELECT ){
- return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
- }
-#ifndef SQLITE_OMIT_CAST
- if( op==TK_CAST ){
- return sqlite3AffinityType(&pExpr->token);
- }
-#endif
- return pExpr->affinity;
-}
+typedef struct Incrblob Incrblob;
+struct Incrblob {
+ int flags; /* Copy of "flags" passed to sqlite3_blob_open() */
+ int nByte; /* Size of open blob, in bytes */
+ int iOffset; /* Byte offset of blob in cursor data */
+ BtCursor *pCsr; /* Cursor pointing at blob row */
+ sqlite3_stmt *pStmt; /* Statement holding cursor open */
+ sqlite3 *db; /* The associated database */
+};
/*
-** Set the collating sequence for expression pExpr to be the collating
-** sequence named by pToken. Return a pointer to the revised expression.
-** The collating sequence is marked as "explicit" using the EP_ExpCollate
-** flag. An explicit collating sequence will override implicit
-** collating sequences.
+** Open a blob handle.
*/
-Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
- CollSeq *pColl;
- if( pExpr==0 ) return 0;
- pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n);
- if( pColl ){
- pExpr->pColl = pColl;
- pExpr->flags |= EP_ExpCollate;
+SQLITE_API int sqlite3_blob_open(
+ sqlite3* db, /* The database connection */
+ const char *zDb, /* The attached database containing the blob */
+ const char *zTable, /* The table containing the blob */
+ const char *zColumn, /* The column containing the blob */
+ sqlite_int64 iRow, /* The row containing the glob */
+ int flags, /* True -> read/write access, false -> read-only */
+ sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */
+){
+ int nAttempt = 0;
+ int iCol; /* Index of zColumn in row-record */
+
+ /* This VDBE program seeks a btree cursor to the identified
+ ** db/table/row entry. The reason for using a vdbe program instead
+ ** of writing code to use the b-tree layer directly is that the
+ ** vdbe program will take advantage of the various transaction,
+ ** locking and error handling infrastructure built into the vdbe.
+ **
+ ** After seeking the cursor, the vdbe executes an OP_ResultRow.
+ ** Code external to the Vdbe then "borrows" the b-tree cursor and
+ ** uses it to implement the blob_read(), blob_write() and
+ ** blob_bytes() functions.
+ **
+ ** The sqlite3_blob_close() function finalizes the vdbe program,
+ ** which closes the b-tree cursor and (possibly) commits the
+ ** transaction.
+ */
+ static const VdbeOpList openBlob[] = {
+ {OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
+ {OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
+ {OP_TableLock, 0, 0, 0}, /* 2: Acquire a read or write lock */
+
+ /* One of the following two instructions is replaced by an OP_Noop. */
+ {OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */
+ {OP_OpenWrite, 0, 0, 0}, /* 4: Open cursor 0 for read/write */
+
+ {OP_Variable, 1, 1, 1}, /* 5: Push the rowid to the stack */
+ {OP_NotExists, 0, 9, 1}, /* 6: Seek the cursor */
+ {OP_Column, 0, 0, 1}, /* 7 */
+ {OP_ResultRow, 1, 0, 0}, /* 8 */
+ {OP_Close, 0, 0, 0}, /* 9 */
+ {OP_Halt, 0, 0, 0}, /* 10 */
+ };
+
+ Vdbe *v = 0;
+ int rc = SQLITE_OK;
+ char *zErr = 0;
+ Table *pTab;
+ Parse *pParse;
+
+ *ppBlob = 0;
+ sqlite3_mutex_enter(db->mutex);
+ pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
+ if( pParse==0 ){
+ rc = SQLITE_NOMEM;
+ goto blob_open_out;
}
- return pExpr;
+ do {
+ memset(pParse, 0, sizeof(Parse));
+ pParse->db = db;
+
+ if( sqlite3SafetyOn(db) ){
+ sqlite3DbFree(db, zErr);
+ sqlite3StackFree(db, pParse);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_MISUSE;
+ }
+
+ sqlite3BtreeEnterAll(db);
+ pTab = sqlite3LocateTable(pParse, 0, zTable, zDb);
+ if( pTab && IsVirtual(pTab) ){
+ pTab = 0;
+ sqlite3ErrorMsg(pParse, "cannot open virtual table: %s", zTable);
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( pTab && pTab->pSelect ){
+ pTab = 0;
+ sqlite3ErrorMsg(pParse, "cannot open view: %s", zTable);
+ }
+#endif
+ if( !pTab ){
+ if( pParse->zErrMsg ){
+ sqlite3DbFree(db, zErr);
+ zErr = pParse->zErrMsg;
+ pParse->zErrMsg = 0;
+ }
+ rc = SQLITE_ERROR;
+ (void)sqlite3SafetyOff(db);
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+
+ /* Now search pTab for the exact column. */
+ for(iCol=0; iCol < pTab->nCol; iCol++) {
+ if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
+ break;
+ }
+ }
+ if( iCol==pTab->nCol ){
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db, "no such column: \"%s\"", zColumn);
+ rc = SQLITE_ERROR;
+ (void)sqlite3SafetyOff(db);
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+
+ /* If the value is being opened for writing, check that the
+ ** column is not indexed. It is against the rules to open an
+ ** indexed column for writing.
+ */
+ if( flags ){
+ Index *pIdx;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int j;
+ for(j=0; j<pIdx->nColumn; j++){
+ if( pIdx->aiColumn[j]==iCol ){
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db,
+ "cannot open indexed column for writing");
+ rc = SQLITE_ERROR;
+ (void)sqlite3SafetyOff(db);
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+ }
+ }
+ }
+
+ v = sqlite3VdbeCreate(db);
+ if( v ){
+ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
+ flags = !!flags; /* flags = (flags ? 1 : 0); */
+
+ /* Configure the OP_Transaction */
+ sqlite3VdbeChangeP1(v, 0, iDb);
+ sqlite3VdbeChangeP2(v, 0, flags);
+
+ /* Configure the OP_VerifyCookie */
+ sqlite3VdbeChangeP1(v, 1, iDb);
+ sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
+
+ /* Make sure a mutex is held on the table to be accessed */
+ sqlite3VdbeUsesBtree(v, iDb);
+
+ /* Configure the OP_TableLock instruction */
+ sqlite3VdbeChangeP1(v, 2, iDb);
+ sqlite3VdbeChangeP2(v, 2, pTab->tnum);
+ sqlite3VdbeChangeP3(v, 2, flags);
+ sqlite3VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT);
+
+ /* Remove either the OP_OpenWrite or OpenRead. Set the P2
+ ** parameter of the other to pTab->tnum. */
+ sqlite3VdbeChangeToNoop(v, 4 - flags, 1);
+ sqlite3VdbeChangeP2(v, 3 + flags, pTab->tnum);
+ sqlite3VdbeChangeP3(v, 3 + flags, iDb);
+
+ /* Configure the number of columns. Configure the cursor to
+ ** think that the table has one more column than it really
+ ** does. An OP_Column to retrieve this imaginary column will
+ ** always return an SQL NULL. This is useful because it means
+ ** we can invoke OP_Column to fill in the vdbe cursors type
+ ** and offset cache without causing any IO.
+ */
+ sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
+ sqlite3VdbeChangeP2(v, 7, pTab->nCol);
+ if( !db->mallocFailed ){
+ sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0);
+ }
+ }
+
+ sqlite3BtreeLeaveAll(db);
+ rc = sqlite3SafetyOff(db);
+ if( NEVER(rc!=SQLITE_OK) || db->mallocFailed ){
+ goto blob_open_out;
+ }
+
+ sqlite3_bind_int64((sqlite3_stmt *)v, 1, iRow);
+ rc = sqlite3_step((sqlite3_stmt *)v);
+ if( rc!=SQLITE_ROW ){
+ nAttempt++;
+ rc = sqlite3_finalize((sqlite3_stmt *)v);
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db, sqlite3_errmsg(db));
+ v = 0;
+ }
+ } while( nAttempt<5 && rc==SQLITE_SCHEMA );
+
+ if( rc==SQLITE_ROW ){
+ /* The row-record has been opened successfully. Check that the
+ ** column in question contains text or a blob. If it contains
+ ** text, it is up to the caller to get the encoding right.
+ */
+ Incrblob *pBlob;
+ u32 type = v->apCsr[0]->aType[iCol];
+
+ if( type<12 ){
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db, "cannot open value of type %s",
+ type==0?"null": type==7?"real": "integer"
+ );
+ rc = SQLITE_ERROR;
+ goto blob_open_out;
+ }
+ pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
+ if( db->mallocFailed ){
+ sqlite3DbFree(db, pBlob);
+ goto blob_open_out;
+ }
+ pBlob->flags = flags;
+ pBlob->pCsr = v->apCsr[0]->pCursor;
+ sqlite3BtreeEnterCursor(pBlob->pCsr);
+ sqlite3BtreeCacheOverflow(pBlob->pCsr);
+ sqlite3BtreeLeaveCursor(pBlob->pCsr);
+ pBlob->pStmt = (sqlite3_stmt *)v;
+ pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
+ pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
+ pBlob->db = db;
+ *ppBlob = (sqlite3_blob *)pBlob;
+ rc = SQLITE_OK;
+ }else if( rc==SQLITE_OK ){
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db, "no such rowid: %lld", iRow);
+ rc = SQLITE_ERROR;
+ }
+
+blob_open_out:
+ if( v && (rc!=SQLITE_OK || db->mallocFailed) ){
+ sqlite3VdbeFinalize(v);
+ }
+ sqlite3Error(db, rc, zErr);
+ sqlite3DbFree(db, zErr);
+ sqlite3StackFree(db, pParse);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
/*
-** Return the default collation sequence for the expression pExpr. If
-** there is no default collation type, return 0.
+** Close a blob handle that was previously created using
+** sqlite3_blob_open().
*/
-CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
- CollSeq *pColl = 0;
- if( pExpr ){
- pColl = pExpr->pColl;
- if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){
- return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
- }
- }
- if( sqlite3CheckCollSeq(pParse, pColl) ){
- pColl = 0;
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
+ Incrblob *p = (Incrblob *)pBlob;
+ int rc;
+ sqlite3 *db;
+
+ if( p ){
+ db = p->db;
+ sqlite3_mutex_enter(db->mutex);
+ rc = sqlite3_finalize(p->pStmt);
+ sqlite3DbFree(db, p);
+ sqlite3_mutex_leave(db->mutex);
+ }else{
+ rc = SQLITE_OK;
}
- return pColl;
+ return rc;
}
/*
-** pExpr is an operand of a comparison operator. aff2 is the
-** type affinity of the other operand. This routine returns the
-** type affinity that should be used for the comparison operator.
+** Perform a read or write operation on a blob
*/
-char sqlite3CompareAffinity(Expr *pExpr, char aff2){
- char aff1 = sqlite3ExprAffinity(pExpr);
- if( aff1 && aff2 ){
- /* Both sides of the comparison are columns. If one has numeric
- ** affinity, use that. Otherwise use no affinity.
+static int blobReadWrite(
+ sqlite3_blob *pBlob,
+ void *z,
+ int n,
+ int iOffset,
+ int (*xCall)(BtCursor*, u32, u32, void*)
+){
+ int rc;
+ Incrblob *p = (Incrblob *)pBlob;
+ Vdbe *v;
+ sqlite3 *db;
+
+ if( p==0 ) return SQLITE_MISUSE;
+ db = p->db;
+ sqlite3_mutex_enter(db->mutex);
+ v = (Vdbe*)p->pStmt;
+
+ if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
+ /* Request is out of range. Return a transient error. */
+ rc = SQLITE_ERROR;
+ sqlite3Error(db, SQLITE_ERROR, 0);
+ } else if( v==0 ){
+ /* If there is no statement handle, then the blob-handle has
+ ** already been invalidated. Return SQLITE_ABORT in this case.
*/
- if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
- return SQLITE_AFF_NUMERIC;
+ rc = SQLITE_ABORT;
+ }else{
+ /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
+ ** returned, clean-up the statement handle.
+ */
+ assert( db == v->db );
+ sqlite3BtreeEnterCursor(p->pCsr);
+ rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
+ sqlite3BtreeLeaveCursor(p->pCsr);
+ if( rc==SQLITE_ABORT ){
+ sqlite3VdbeFinalize(v);
+ p->pStmt = 0;
}else{
- return SQLITE_AFF_NONE;
+ db->errCode = rc;
+ v->rc = rc;
}
- }else if( !aff1 && !aff2 ){
- /* Neither side of the comparison is a column. Compare the
- ** results directly.
- */
- return SQLITE_AFF_NONE;
- }else{
- /* One side is a column, the other is not. Use the columns affinity. */
- assert( aff1==0 || aff2==0 );
- return (aff1 + aff2);
}
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
/*
-** pExpr is a comparison operator. Return the type affinity that should
-** be applied to both operands prior to doing the comparison.
+** Read data from a blob handle.
*/
-static char comparisonAffinity(Expr *pExpr){
- char aff;
- assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
- pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
- pExpr->op==TK_NE );
- assert( pExpr->pLeft );
- aff = sqlite3ExprAffinity(pExpr->pLeft);
- if( pExpr->pRight ){
- aff = sqlite3CompareAffinity(pExpr->pRight, aff);
- }
- else if( pExpr->pSelect ){
- aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
- }
- else if( !aff ){
- aff = SQLITE_AFF_NONE;
- }
- return aff;
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
+ return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
}
/*
-** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
-** idx_affinity is the affinity of an indexed column. Return true
-** if the index with affinity idx_affinity may be used to implement
-** the comparison in pExpr.
+** Write data to a blob handle.
*/
-int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
- char aff = comparisonAffinity(pExpr);
- switch( aff ){
- case SQLITE_AFF_NONE:
- return 1;
- case SQLITE_AFF_TEXT:
- return idx_affinity==SQLITE_AFF_TEXT;
- default:
- return sqlite3IsNumericAffinity(idx_affinity);
- }
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
+ return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
}
/*
-** Return the P1 value that should be used for a binary comparison
-** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
-** If jumpIfNull is true, then set the low byte of the returned
-** P1 value to tell the opcode to jump if either expression
-** evaluates to NULL.
+** Query a blob handle for the size of the data.
+**
+** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
+** so no mutex is required for access.
*/
-static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
- char aff = sqlite3ExprAffinity(pExpr2);
- return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
+ Incrblob *p = (Incrblob *)pBlob;
+ return p ? p->nByte : 0;
}
+#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
+
+/************** End of vdbeblob.c ********************************************/
+/************** Begin file journal.c *****************************************/
/*
-** Return a pointer to the collation sequence that should be used by
-** a binary comparison operator comparing pLeft and pRight.
+** 2007 August 22
**
-** If the left hand expression has a collating sequence type, then it is
-** used. Otherwise the collation sequence for the right hand expression
-** is used, or the default (BINARY) if neither expression has a collating
-** type.
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** @(#) $Id: journal.c,v 1.9 2009/01/20 17:06:27 danielk1977 Exp $
*/
-static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){
- CollSeq *pColl;
- assert( pLeft );
- assert( pRight );
- if( pLeft->flags & EP_ExpCollate ){
- assert( pLeft->pColl );
- pColl = pLeft->pColl;
- }else if( pRight->flags & EP_ExpCollate ){
- assert( pRight->pColl );
- pColl = pRight->pColl;
- }else{
- pColl = sqlite3ExprCollSeq(pParse, pLeft);
- if( !pColl ){
- pColl = sqlite3ExprCollSeq(pParse, pRight);
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+
+/*
+** This file implements a special kind of sqlite3_file object used
+** by SQLite to create journal files if the atomic-write optimization
+** is enabled.
+**
+** The distinctive characteristic of this sqlite3_file is that the
+** actual on disk file is created lazily. When the file is created,
+** the caller specifies a buffer size for an in-memory buffer to
+** be used to service read() and write() requests. The actual file
+** on disk is not created or populated until either:
+**
+** 1) The in-memory representation grows too large for the allocated
+** buffer, or
+** 2) The sqlite3JournalCreate() function is called.
+*/
+
+
+
+/*
+** A JournalFile object is a subclass of sqlite3_file used by
+** as an open file handle for journal files.
+*/
+struct JournalFile {
+ sqlite3_io_methods *pMethod; /* I/O methods on journal files */
+ int nBuf; /* Size of zBuf[] in bytes */
+ char *zBuf; /* Space to buffer journal writes */
+ int iSize; /* Amount of zBuf[] currently used */
+ int flags; /* xOpen flags */
+ sqlite3_vfs *pVfs; /* The "real" underlying VFS */
+ sqlite3_file *pReal; /* The "real" underlying file descriptor */
+ const char *zJournal; /* Name of the journal file */
+};
+typedef struct JournalFile JournalFile;
+
+/*
+** If it does not already exists, create and populate the on-disk file
+** for JournalFile p.
+*/
+static int createFile(JournalFile *p){
+ int rc = SQLITE_OK;
+ if( !p->pReal ){
+ sqlite3_file *pReal = (sqlite3_file *)&p[1];
+ rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
+ if( rc==SQLITE_OK ){
+ p->pReal = pReal;
+ if( p->iSize>0 ){
+ assert(p->iSize<=p->nBuf);
+ rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
+ }
}
}
- return pColl;
+ return rc;
}
/*
-** Generate code for a comparison operator.
+** Close the file.
*/
-static int codeCompare(
- Parse *pParse, /* The parsing (and code generating) context */
- Expr *pLeft, /* The left operand */
- Expr *pRight, /* The right operand */
- int opcode, /* The comparison opcode */
- int dest, /* Jump here if true. */
- int jumpIfNull /* If true, jump if either operand is NULL */
+static int jrnlClose(sqlite3_file *pJfd){
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ sqlite3OsClose(p->pReal);
+ }
+ sqlite3_free(p->zBuf);
+ return SQLITE_OK;
+}
+
+/*
+** Read data from the file.
+*/
+static int jrnlRead(
+ sqlite3_file *pJfd, /* The journal file from which to read */
+ void *zBuf, /* Put the results here */
+ int iAmt, /* Number of bytes to read */
+ sqlite_int64 iOfst /* Begin reading at this offset */
){
- int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
- CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight);
- return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
+ int rc = SQLITE_OK;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
+ }else if( (iAmt+iOfst)>p->iSize ){
+ rc = SQLITE_IOERR_SHORT_READ;
+ }else{
+ memcpy(zBuf, &p->zBuf[iOfst], iAmt);
+ }
+ return rc;
}
/*
-** Construct a new expression node and return a pointer to it. Memory
-** for this node is obtained from sqliteMalloc(). The calling function
-** is responsible for making sure the node eventually gets freed.
+** Write data to the file.
*/
-Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
- Expr *pNew;
- pNew = sqliteMalloc( sizeof(Expr) );
- if( pNew==0 ){
- /* When malloc fails, delete pLeft and pRight. Expressions passed to
- ** this function must always be allocated with sqlite3Expr() for this
- ** reason.
- */
- sqlite3ExprDelete(pLeft);
- sqlite3ExprDelete(pRight);
- return 0;
+static int jrnlWrite(
+ sqlite3_file *pJfd, /* The journal file into which to write */
+ const void *zBuf, /* Take data to be written from here */
+ int iAmt, /* Number of bytes to write */
+ sqlite_int64 iOfst /* Begin writing at this offset into the file */
+){
+ int rc = SQLITE_OK;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
+ rc = createFile(p);
}
- pNew->op = op;
- pNew->pLeft = pLeft;
- pNew->pRight = pRight;
- pNew->iAgg = -1;
- if( pToken ){
- assert( pToken->dyn==0 );
- pNew->span = pNew->token = *pToken;
- }else if( pLeft ){
- if( pRight ){
- sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
- if( pRight->flags && EP_ExpCollate ){
- pNew->flags |= EP_ExpCollate;
- pNew->pColl = pRight->pColl;
+ if( rc==SQLITE_OK ){
+ if( p->pReal ){
+ rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
+ }else{
+ memcpy(&p->zBuf[iOfst], zBuf, iAmt);
+ if( p->iSize<(iOfst+iAmt) ){
+ p->iSize = (iOfst+iAmt);
}
}
- if( pLeft->flags && EP_ExpCollate ){
- pNew->flags |= EP_ExpCollate;
- pNew->pColl = pLeft->pColl;
- }
}
- return pNew;
+ return rc;
}
/*
-** Works like sqlite3Expr() but frees its pLeft and pRight arguments
-** if it fails due to a malloc problem.
+** Truncate the file.
*/
-Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
- Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken);
- if( pNew==0 ){
- sqlite3ExprDelete(pLeft);
- sqlite3ExprDelete(pRight);
+static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
+ int rc = SQLITE_OK;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ rc = sqlite3OsTruncate(p->pReal, size);
+ }else if( size<p->iSize ){
+ p->iSize = size;
}
- return pNew;
+ return rc;
}
/*
-** When doing a nested parse, you can include terms in an expression
-** that look like this: #0 #1 #2 ... These terms refer to elements
-** on the stack. "#0" means the top of the stack.
-** "#1" means the next down on the stack. And so forth.
-**
-** This routine is called by the parser to deal with on of those terms.
-** It immediately generates code to store the value in a memory location.
-** The returns an expression that will code to extract the value from
-** that memory location as needed.
+** Sync the file.
*/
-Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
- Vdbe *v = pParse->pVdbe;
- Expr *p;
- int depth;
- if( pParse->nested==0 ){
- sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
- return 0;
- }
- if( v==0 ) return 0;
- p = sqlite3Expr(TK_REGISTER, 0, 0, pToken);
- if( p==0 ){
- return 0; /* Malloc failed */
+static int jrnlSync(sqlite3_file *pJfd, int flags){
+ int rc;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ rc = sqlite3OsSync(p->pReal, flags);
+ }else{
+ rc = SQLITE_OK;
}
- depth = atoi((char*)&pToken->z[1]);
- p->iTable = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
- sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
- return p;
+ return rc;
}
/*
-** Join two expressions using an AND operator. If either expression is
-** NULL, then just return the other expression.
+** Query the size of the file in bytes.
*/
-Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){
- if( pLeft==0 ){
- return pRight;
- }else if( pRight==0 ){
- return pLeft;
+static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
+ int rc = SQLITE_OK;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ rc = sqlite3OsFileSize(p->pReal, pSize);
}else{
- return sqlite3Expr(TK_AND, pLeft, pRight, 0);
+ *pSize = (sqlite_int64) p->iSize;
}
+ return rc;
}
/*
-** Set the Expr.span field of the given expression to span all
-** text between the two given tokens.
+** Table of methods for JournalFile sqlite3_file object.
*/
-void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
- assert( pRight!=0 );
- assert( pLeft!=0 );
- if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){
- assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
- if( pLeft->dyn==0 && pRight->dyn==0 ){
- pExpr->span.z = pLeft->z;
- pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
- }else{
- pExpr->span.z = 0;
+static struct sqlite3_io_methods JournalFileMethods = {
+ 1, /* iVersion */
+ jrnlClose, /* xClose */
+ jrnlRead, /* xRead */
+ jrnlWrite, /* xWrite */
+ jrnlTruncate, /* xTruncate */
+ jrnlSync, /* xSync */
+ jrnlFileSize, /* xFileSize */
+ 0, /* xLock */
+ 0, /* xUnlock */
+ 0, /* xCheckReservedLock */
+ 0, /* xFileControl */
+ 0, /* xSectorSize */
+ 0 /* xDeviceCharacteristics */
+};
+
+/*
+** Open a journal file.
+*/
+SQLITE_PRIVATE int sqlite3JournalOpen(
+ sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
+ const char *zName, /* Name of the journal file */
+ sqlite3_file *pJfd, /* Preallocated, blank file handle */
+ int flags, /* Opening flags */
+ int nBuf /* Bytes buffered before opening the file */
+){
+ JournalFile *p = (JournalFile *)pJfd;
+ memset(p, 0, sqlite3JournalSize(pVfs));
+ if( nBuf>0 ){
+ p->zBuf = sqlite3MallocZero(nBuf);
+ if( !p->zBuf ){
+ return SQLITE_NOMEM;
}
+ }else{
+ return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
}
+ p->pMethod = &JournalFileMethods;
+ p->nBuf = nBuf;
+ p->flags = flags;
+ p->zJournal = zName;
+ p->pVfs = pVfs;
+ return SQLITE_OK;
}
/*
-** Construct a new expression node for a function with multiple
-** arguments.
+** If the argument p points to a JournalFile structure, and the underlying
+** file has not yet been created, create it now.
*/
-Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){
- Expr *pNew;
- assert( pToken );
- pNew = sqliteMalloc( sizeof(Expr) );
- if( pNew==0 ){
- sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
- return 0;
+SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){
+ if( p->pMethods!=&JournalFileMethods ){
+ return SQLITE_OK;
}
- pNew->op = TK_FUNCTION;
- pNew->pList = pList;
- assert( pToken->dyn==0 );
- pNew->token = *pToken;
- pNew->span = pNew->token;
- return pNew;
+ return createFile((JournalFile *)p);
}
/*
-** Assign a variable number to an expression that encodes a wildcard
-** in the original SQL statement.
+** Return the number of bytes required to store a JournalFile that uses vfs
+** pVfs to create the underlying on-disk files.
+*/
+SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
+ return (pVfs->szOsFile+sizeof(JournalFile));
+}
+#endif
+
+/************** End of journal.c *********************************************/
+/************** Begin file memjournal.c **************************************/
+/*
+** 2008 October 7
**
-** Wildcards consisting of a single "?" are assigned the next sequential
-** variable number.
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
**
-** Wildcards of the form "?nnn" are assigned the number "nnn". We make
-** sure "nnn" is not too be to avoid a denial of service attack when
-** the SQL statement comes from an external source.
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
**
-** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
-** as the previous instance of the same wildcard. Or if this is the first
-** instance of the wildcard, the next sequenial variable number is
-** assigned.
+*************************************************************************
+**
+** This file contains code use to implement an in-memory rollback journal.
+** The in-memory rollback journal is used to journal transactions for
+** ":memory:" databases and when the journal_mode=MEMORY pragma is used.
+**
+** @(#) $Id: memjournal.c,v 1.12 2009/05/04 11:42:30 danielk1977 Exp $
*/
-void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
- Token *pToken;
- if( pExpr==0 ) return;
- pToken = &pExpr->token;
- assert( pToken->n>=1 );
- assert( pToken->z!=0 );
- assert( pToken->z[0]!=0 );
- if( pToken->n==1 ){
- /* Wildcard of the form "?". Assign the next variable number */
- pExpr->iTable = ++pParse->nVar;
- }else if( pToken->z[0]=='?' ){
- /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
- ** use it as the variable number */
- int i;
- pExpr->iTable = i = atoi((char*)&pToken->z[1]);
- if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
- sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
- SQLITE_MAX_VARIABLE_NUMBER);
- }
- if( i>pParse->nVar ){
- pParse->nVar = i;
- }
- }else{
- /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
- ** number as the prior appearance of the same name, or if the name
- ** has never appeared before, reuse the same variable number
- */
- int i, n;
- n = pToken->n;
- for(i=0; i<pParse->nVarExpr; i++){
- Expr *pE;
- if( (pE = pParse->apVarExpr[i])!=0
- && pE->token.n==n
- && memcmp(pE->token.z, pToken->z, n)==0 ){
- pExpr->iTable = pE->iTable;
- break;
- }
- }
- if( i>=pParse->nVarExpr ){
- pExpr->iTable = ++pParse->nVar;
- if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
- pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
- pParse->apVarExpr = sqliteReallocOrFree(pParse->apVarExpr,
- pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) );
- }
- if( !sqlite3MallocFailed() ){
- assert( pParse->apVarExpr!=0 );
- pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
- }
- }
- }
-}
+
+/* Forward references to internal structures */
+typedef struct MemJournal MemJournal;
+typedef struct FilePoint FilePoint;
+typedef struct FileChunk FileChunk;
+
+/* Space to hold the rollback journal is allocated in increments of
+** this many bytes.
+**
+** The size chosen is a little less than a power of two. That way,
+** the FileChunk object will have a size that almost exactly fills
+** a power-of-two allocation. This mimimizes wasted space in power-of-two
+** memory allocators.
+*/
+#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))
+
+/* Macro to find the minimum of two numeric values.
+*/
+#ifndef MIN
+# define MIN(x,y) ((x)<(y)?(x):(y))
+#endif
/*
-** Recursively delete an expression tree.
+** The rollback journal is composed of a linked list of these structures.
*/
-void sqlite3ExprDelete(Expr *p){
- if( p==0 ) return;
- if( p->span.dyn ) sqliteFree((char*)p->span.z);
- if( p->token.dyn ) sqliteFree((char*)p->token.z);
- sqlite3ExprDelete(p->pLeft);
- sqlite3ExprDelete(p->pRight);
- sqlite3ExprListDelete(p->pList);
- sqlite3SelectDelete(p->pSelect);
- sqliteFree(p);
-}
+struct FileChunk {
+ FileChunk *pNext; /* Next chunk in the journal */
+ u8 zChunk[JOURNAL_CHUNKSIZE]; /* Content of this chunk */
+};
/*
-** The Expr.token field might be a string literal that is quoted.
-** If so, remove the quotation marks.
+** An instance of this object serves as a cursor into the rollback journal.
+** The cursor can be either for reading or writing.
*/
-void sqlite3DequoteExpr(Expr *p){
- if( ExprHasAnyProperty(p, EP_Dequoted) ){
- return;
- }
- ExprSetProperty(p, EP_Dequoted);
- if( p->token.dyn==0 ){
- sqlite3TokenCopy(&p->token, &p->token);
- }
- sqlite3Dequote((char*)p->token.z);
-}
+struct FilePoint {
+ sqlite3_int64 iOffset; /* Offset from the beginning of the file */
+ FileChunk *pChunk; /* Specific chunk into which cursor points */
+};
+/*
+** This subclass is a subclass of sqlite3_file. Each open memory-journal
+** is an instance of this class.
+*/
+struct MemJournal {
+ sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */
+ FileChunk *pFirst; /* Head of in-memory chunk-list */
+ FilePoint endpoint; /* Pointer to the end of the file */
+ FilePoint readpoint; /* Pointer to the end of the last xRead() */
+};
/*
-** The following group of routines make deep copies of expressions,
-** expression lists, ID lists, and select statements. The copies can
-** be deleted (by being passed to their respective ...Delete() routines)
-** without effecting the originals.
-**
-** The expression list, ID, and source lists return by sqlite3ExprListDup(),
-** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
-** by subsequent calls to sqlite*ListAppend() routines.
-**
-** Any tables that the SrcList might point to are not duplicated.
+** Read data from the in-memory journal file. This is the implementation
+** of the sqlite3_vfs.xRead method.
*/
-Expr *sqlite3ExprDup(Expr *p){
- Expr *pNew;
- if( p==0 ) return 0;
- pNew = sqliteMallocRaw( sizeof(*p) );
- if( pNew==0 ) return 0;
- memcpy(pNew, p, sizeof(*pNew));
- if( p->token.z!=0 ){
- pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n);
- pNew->token.dyn = 1;
- }else{
- assert( pNew->token.z==0 );
- }
- pNew->span.z = 0;
- pNew->pLeft = sqlite3ExprDup(p->pLeft);
- pNew->pRight = sqlite3ExprDup(p->pRight);
- pNew->pList = sqlite3ExprListDup(p->pList);
- pNew->pSelect = sqlite3SelectDup(p->pSelect);
- pNew->pTab = p->pTab;
- return pNew;
-}
-void sqlite3TokenCopy(Token *pTo, Token *pFrom){
- if( pTo->dyn ) sqliteFree((char*)pTo->z);
- if( pFrom->z ){
- pTo->n = pFrom->n;
- pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n);
- pTo->dyn = 1;
+static int memjrnlRead(
+ sqlite3_file *pJfd, /* The journal file from which to read */
+ void *zBuf, /* Put the results here */
+ int iAmt, /* Number of bytes to read */
+ sqlite_int64 iOfst /* Begin reading at this offset */
+){
+ MemJournal *p = (MemJournal *)pJfd;
+ u8 *zOut = zBuf;
+ int nRead = iAmt;
+ int iChunkOffset;
+ FileChunk *pChunk;
+
+ /* SQLite never tries to read past the end of a rollback journal file */
+ assert( iOfst+iAmt<=p->endpoint.iOffset );
+
+ if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
+ sqlite3_int64 iOff = 0;
+ for(pChunk=p->pFirst;
+ ALWAYS(pChunk) && (iOff+JOURNAL_CHUNKSIZE)<=iOfst;
+ pChunk=pChunk->pNext
+ ){
+ iOff += JOURNAL_CHUNKSIZE;
+ }
}else{
- pTo->z = 0;
+ pChunk = p->readpoint.pChunk;
}
-}
-ExprList *sqlite3ExprListDup(ExprList *p){
- ExprList *pNew;
- struct ExprList_item *pItem, *pOldItem;
- int i;
- if( p==0 ) return 0;
- pNew = sqliteMalloc( sizeof(*pNew) );
- if( pNew==0 ) return 0;
- pNew->nExpr = pNew->nAlloc = p->nExpr;
- pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
- if( pItem==0 ){
- sqliteFree(pNew);
- return 0;
- }
- pOldItem = p->a;
- for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
- Expr *pNewExpr, *pOldExpr;
- pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr);
- if( pOldExpr->span.z!=0 && pNewExpr ){
- /* Always make a copy of the span for top-level expressions in the
- ** expression list. The logic in SELECT processing that determines
- ** the names of columns in the result set needs this information */
- sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span);
- }
- assert( pNewExpr==0 || pNewExpr->span.z!=0
- || pOldExpr->span.z==0
- || sqlite3MallocFailed() );
- pItem->zName = sqliteStrDup(pOldItem->zName);
- pItem->sortOrder = pOldItem->sortOrder;
- pItem->isAgg = pOldItem->isAgg;
- pItem->done = 0;
- }
- return pNew;
+
+ iChunkOffset = (int)(iOfst%JOURNAL_CHUNKSIZE);
+ do {
+ int iSpace = JOURNAL_CHUNKSIZE - iChunkOffset;
+ int nCopy = MIN(nRead, (JOURNAL_CHUNKSIZE - iChunkOffset));
+ memcpy(zOut, &pChunk->zChunk[iChunkOffset], nCopy);
+ zOut += nCopy;
+ nRead -= iSpace;
+ iChunkOffset = 0;
+ } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
+ p->readpoint.iOffset = iOfst+iAmt;
+ p->readpoint.pChunk = pChunk;
+
+ return SQLITE_OK;
}
/*
-** If cursors, triggers, views and subqueries are all omitted from
-** the build, then none of the following routines, except for
-** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
-** called with a NULL argument.
+** Write data to the file.
*/
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
- || !defined(SQLITE_OMIT_SUBQUERY)
-SrcList *sqlite3SrcListDup(SrcList *p){
- SrcList *pNew;
- int i;
- int nByte;
- if( p==0 ) return 0;
- nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
- pNew = sqliteMallocRaw( nByte );
- if( pNew==0 ) return 0;
- pNew->nSrc = pNew->nAlloc = p->nSrc;
- for(i=0; i<p->nSrc; i++){
- struct SrcList_item *pNewItem = &pNew->a[i];
- struct SrcList_item *pOldItem = &p->a[i];
- Table *pTab;
- pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
- pNewItem->zName = sqliteStrDup(pOldItem->zName);
- pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
- pNewItem->jointype = pOldItem->jointype;
- pNewItem->iCursor = pOldItem->iCursor;
- pNewItem->isPopulated = pOldItem->isPopulated;
- pTab = pNewItem->pTab = pOldItem->pTab;
- if( pTab ){
- pTab->nRef++;
+static int memjrnlWrite(
+ sqlite3_file *pJfd, /* The journal file into which to write */
+ const void *zBuf, /* Take data to be written from here */
+ int iAmt, /* Number of bytes to write */
+ sqlite_int64 iOfst /* Begin writing at this offset into the file */
+){
+ MemJournal *p = (MemJournal *)pJfd;
+ int nWrite = iAmt;
+ u8 *zWrite = (u8 *)zBuf;
+
+ /* An in-memory journal file should only ever be appended to. Random
+ ** access writes are not required by sqlite.
+ */
+ assert( iOfst==p->endpoint.iOffset );
+ UNUSED_PARAMETER(iOfst);
+
+ while( nWrite>0 ){
+ FileChunk *pChunk = p->endpoint.pChunk;
+ int iChunkOffset = (int)(p->endpoint.iOffset%JOURNAL_CHUNKSIZE);
+ int iSpace = MIN(nWrite, JOURNAL_CHUNKSIZE - iChunkOffset);
+
+ if( iChunkOffset==0 ){
+ /* New chunk is required to extend the file. */
+ FileChunk *pNew = sqlite3_malloc(sizeof(FileChunk));
+ if( !pNew ){
+ return SQLITE_IOERR_NOMEM;
+ }
+ pNew->pNext = 0;
+ if( pChunk ){
+ assert( p->pFirst );
+ pChunk->pNext = pNew;
+ }else{
+ assert( !p->pFirst );
+ p->pFirst = pNew;
+ }
+ p->endpoint.pChunk = pNew;
}
- pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect);
- pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn);
- pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing);
- pNewItem->colUsed = pOldItem->colUsed;
+
+ memcpy(&p->endpoint.pChunk->zChunk[iChunkOffset], zWrite, iSpace);
+ zWrite += iSpace;
+ nWrite -= iSpace;
+ p->endpoint.iOffset += iSpace;
}
- return pNew;
+
+ return SQLITE_OK;
}
-IdList *sqlite3IdListDup(IdList *p){
- IdList *pNew;
- int i;
- if( p==0 ) return 0;
- pNew = sqliteMallocRaw( sizeof(*pNew) );
- if( pNew==0 ) return 0;
- pNew->nId = pNew->nAlloc = p->nId;
- pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
- if( pNew->a==0 ){
- sqliteFree(pNew);
- return 0;
- }
- for(i=0; i<p->nId; i++){
- struct IdList_item *pNewItem = &pNew->a[i];
- struct IdList_item *pOldItem = &p->a[i];
- pNewItem->zName = sqliteStrDup(pOldItem->zName);
- pNewItem->idx = pOldItem->idx;
+
+/*
+** Truncate the file.
+*/
+static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
+ MemJournal *p = (MemJournal *)pJfd;
+ FileChunk *pChunk;
+ assert(size==0);
+ UNUSED_PARAMETER(size);
+ pChunk = p->pFirst;
+ while( pChunk ){
+ FileChunk *pTmp = pChunk;
+ pChunk = pChunk->pNext;
+ sqlite3_free(pTmp);
}
- return pNew;
+ sqlite3MemJournalOpen(pJfd);
+ return SQLITE_OK;
}
-Select *sqlite3SelectDup(Select *p){
- Select *pNew;
- if( p==0 ) return 0;
- pNew = sqliteMallocRaw( sizeof(*p) );
- if( pNew==0 ) return 0;
- pNew->isDistinct = p->isDistinct;
- pNew->pEList = sqlite3ExprListDup(p->pEList);
- pNew->pSrc = sqlite3SrcListDup(p->pSrc);
- pNew->pWhere = sqlite3ExprDup(p->pWhere);
- pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy);
- pNew->pHaving = sqlite3ExprDup(p->pHaving);
- pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy);
- pNew->op = p->op;
- pNew->pPrior = sqlite3SelectDup(p->pPrior);
- pNew->pLimit = sqlite3ExprDup(p->pLimit);
- pNew->pOffset = sqlite3ExprDup(p->pOffset);
- pNew->iLimit = -1;
- pNew->iOffset = -1;
- pNew->isResolved = p->isResolved;
- pNew->isAgg = p->isAgg;
- pNew->usesEphm = 0;
- pNew->disallowOrderBy = 0;
- pNew->pRightmost = 0;
- pNew->addrOpenEphm[0] = -1;
- pNew->addrOpenEphm[1] = -1;
- pNew->addrOpenEphm[2] = -1;
- return pNew;
+
+/*
+** Close the file.
+*/
+static int memjrnlClose(sqlite3_file *pJfd){
+ memjrnlTruncate(pJfd, 0);
+ return SQLITE_OK;
}
-#else
-Select *sqlite3SelectDup(Select *p){
- assert( p==0 );
- return 0;
+
+
+/*
+** Sync the file.
+**
+** Syncing an in-memory journal is a no-op. And, in fact, this routine
+** is never called in a working implementation. This implementation
+** exists purely as a contingency, in case some malfunction in some other
+** part of SQLite causes Sync to be called by mistake.
+*/
+static int memjrnlSync(sqlite3_file *NotUsed, int NotUsed2){ /*NO_TEST*/
+ UNUSED_PARAMETER2(NotUsed, NotUsed2); /*NO_TEST*/
+ assert( 0 ); /*NO_TEST*/
+ return SQLITE_OK; /*NO_TEST*/
+} /*NO_TEST*/
+
+/*
+** Query the size of the file in bytes.
+*/
+static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
+ MemJournal *p = (MemJournal *)pJfd;
+ *pSize = (sqlite_int64) p->endpoint.iOffset;
+ return SQLITE_OK;
}
-#endif
+/*
+** Table of methods for MemJournal sqlite3_file object.
+*/
+static struct sqlite3_io_methods MemJournalMethods = {
+ 1, /* iVersion */
+ memjrnlClose, /* xClose */
+ memjrnlRead, /* xRead */
+ memjrnlWrite, /* xWrite */
+ memjrnlTruncate, /* xTruncate */
+ memjrnlSync, /* xSync */
+ memjrnlFileSize, /* xFileSize */
+ 0, /* xLock */
+ 0, /* xUnlock */
+ 0, /* xCheckReservedLock */
+ 0, /* xFileControl */
+ 0, /* xSectorSize */
+ 0 /* xDeviceCharacteristics */
+};
/*
-** Add a new element to the end of an expression list. If pList is
-** initially NULL, then create a new expression list.
+** Open a journal file.
*/
-ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
- if( pList==0 ){
- pList = sqliteMalloc( sizeof(ExprList) );
- if( pList==0 ){
- goto no_mem;
- }
- assert( pList->nAlloc==0 );
- }
- if( pList->nAlloc<=pList->nExpr ){
- struct ExprList_item *a;
- int n = pList->nAlloc*2 + 4;
- a = sqliteRealloc(pList->a, n*sizeof(pList->a[0]));
- if( a==0 ){
- goto no_mem;
- }
- pList->a = a;
- pList->nAlloc = n;
- }
- assert( pList->a!=0 );
- if( pExpr || pName ){
- struct ExprList_item *pItem = &pList->a[pList->nExpr++];
- memset(pItem, 0, sizeof(*pItem));
- pItem->zName = sqlite3NameFromToken(pName);
- pItem->pExpr = pExpr;
- }
- return pList;
+SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *pJfd){
+ MemJournal *p = (MemJournal *)pJfd;
+ assert( EIGHT_BYTE_ALIGNMENT(p) );
+ memset(p, 0, sqlite3MemJournalSize());
+ p->pMethod = &MemJournalMethods;
+}
-no_mem:
- /* Avoid leaking memory if malloc has failed. */
- sqlite3ExprDelete(pExpr);
- sqlite3ExprListDelete(pList);
- return 0;
+/*
+** Return true if the file-handle passed as an argument is
+** an in-memory journal
+*/
+SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *pJfd){
+ return pJfd->pMethods==&MemJournalMethods;
}
/*
-** Delete an entire expression list.
+** Return the number of bytes required to store a MemJournal that uses vfs
+** pVfs to create the underlying on-disk files.
*/
-void sqlite3ExprListDelete(ExprList *pList){
- int i;
- struct ExprList_item *pItem;
- if( pList==0 ) return;
- assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
- assert( pList->nExpr<=pList->nAlloc );
- for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
- sqlite3ExprDelete(pItem->pExpr);
- sqliteFree(pItem->zName);
- }
- sqliteFree(pList->a);
- sqliteFree(pList);
+SQLITE_PRIVATE int sqlite3MemJournalSize(void){
+ return sizeof(MemJournal);
}
+/************** End of memjournal.c ******************************************/
+/************** Begin file walker.c ******************************************/
/*
-** Walk an expression tree. Call xFunc for each node visited.
+** 2008 August 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
**
-** The return value from xFunc determines whether the tree walk continues.
-** 0 means continue walking the tree. 1 means do not walk children
-** of the current node but continue with siblings. 2 means abandon
-** the tree walk completely.
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
**
-** The return value from this routine is 1 to abandon the tree walk
-** and 0 to continue.
+*************************************************************************
+** This file contains routines used for walking the parser tree for
+** an SQL statement.
**
-** NOTICE: This routine does *not* descend into subqueries.
+** $Id: walker.c,v 1.7 2009/06/15 23:15:59 drh Exp $
*/
-static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
-static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
+
+
+/*
+** Walk an expression tree. Invoke the callback once for each node
+** of the expression, while decending. (In other words, the callback
+** is invoked before visiting children.)
+**
+** The return value from the callback should be one of the WRC_*
+** constants to specify how to proceed with the walk.
+**
+** WRC_Continue Continue descending down the tree.
+**
+** WRC_Prune Do not descend into child nodes. But allow
+** the walk to continue with sibling nodes.
+**
+** WRC_Abort Do no more callbacks. Unwind the stack and
+** return the top-level walk call.
+**
+** The return value from this routine is WRC_Abort to abandon the tree walk
+** and WRC_Continue to continue.
+*/
+SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
int rc;
- if( pExpr==0 ) return 0;
- rc = (*xFunc)(pArg, pExpr);
- if( rc==0 ){
- if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
- if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
- if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
+ if( pExpr==0 ) return WRC_Continue;
+ testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
+ testcase( ExprHasProperty(pExpr, EP_Reduced) );
+ rc = pWalker->xExprCallback(pWalker, pExpr);
+ if( rc==WRC_Continue
+ && !ExprHasAnyProperty(pExpr,EP_TokenOnly) ){
+ if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
+ }else{
+ if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
+ }
}
- return rc>1;
+ return rc & WRC_Abort;
}
/*
-** Call walkExprTree() for every expression in list p.
+** Call sqlite3WalkExpr() for every expression in list p or until
+** an abort request is seen.
*/
-static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
+SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){
int i;
struct ExprList_item *pItem;
- if( !p ) return 0;
- for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
- if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
+ if( p ){
+ for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
+ if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort;
+ }
}
- return 0;
+ return WRC_Continue;
}
/*
-** Call walkExprTree() for every expression in Select p, not including
-** expressions that are part of sub-selects in any FROM clause or the LIMIT
-** or OFFSET expressions..
+** Walk all expressions associated with SELECT statement p. Do
+** not invoke the SELECT callback on p, but do (of course) invoke
+** any expr callbacks and SELECT callbacks that come from subqueries.
+** Return WRC_Abort or WRC_Continue.
*/
-static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
- walkExprList(p->pEList, xFunc, pArg);
- walkExprTree(p->pWhere, xFunc, pArg);
- walkExprList(p->pGroupBy, xFunc, pArg);
- walkExprTree(p->pHaving, xFunc, pArg);
- walkExprList(p->pOrderBy, xFunc, pArg);
- return 0;
+SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){
+ if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort;
+ if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort;
+ if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pOffset) ) return WRC_Abort;
+ return WRC_Continue;
}
-
/*
-** This routine is designed as an xFunc for walkExprTree().
-**
-** pArg is really a pointer to an integer. If we can tell by looking
-** at pExpr that the expression that contains pExpr is not a constant
-** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
-** If pExpr does does not disqualify the expression from being a constant
-** then do nothing.
-**
-** After walking the whole tree, if no nodes are found that disqualify
-** the expression as constant, then we assume the whole expression
-** is constant. See sqlite3ExprIsConstant() for additional information.
+** Walk the parse trees associated with all subqueries in the
+** FROM clause of SELECT statement p. Do not invoke the select
+** callback on p, but do invoke it on each FROM clause subquery
+** and on any subqueries further down in the tree. Return
+** WRC_Abort or WRC_Continue;
*/
-static int exprNodeIsConstant(void *pArg, Expr *pExpr){
- switch( pExpr->op ){
- /* Consider functions to be constant if all their arguments are constant
- ** and *pArg==2 */
- case TK_FUNCTION:
- if( *((int*)pArg)==2 ) return 0;
- /* Fall through */
- case TK_ID:
- case TK_COLUMN:
- case TK_DOT:
- case TK_AGG_FUNCTION:
- case TK_AGG_COLUMN:
-#ifndef SQLITE_OMIT_SUBQUERY
- case TK_SELECT:
- case TK_EXISTS:
-#endif
- *((int*)pArg) = 0;
- return 2;
- case TK_IN:
- if( pExpr->pSelect ){
- *((int*)pArg) = 0;
- return 2;
+SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){
+ SrcList *pSrc;
+ int i;
+ struct SrcList_item *pItem;
+
+ pSrc = p->pSrc;
+ if( ALWAYS(pSrc) ){
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+ if( sqlite3WalkSelect(pWalker, pItem->pSelect) ){
+ return WRC_Abort;
}
- default:
- return 0;
+ }
}
+ return WRC_Continue;
}
/*
-** Walk an expression tree. Return 1 if the expression is constant
-** and 0 if it involves variables or function calls.
+** Call sqlite3WalkExpr() for every expression in Select statement p.
+** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and
+** on the compound select chain, p->pPrior.
**
-** For the purposes of this function, a double-quoted string (ex: "abc")
-** is considered a variable but a single-quoted string (ex: 'abc') is
-** a constant.
+** Return WRC_Continue under normal conditions. Return WRC_Abort if
+** there is an abort request.
+**
+** If the Walker does not have an xSelectCallback() then this routine
+** is a no-op returning WRC_Continue.
*/
-int sqlite3ExprIsConstant(Expr *p){
- int isConst = 1;
- walkExprTree(p, exprNodeIsConstant, &isConst);
- return isConst;
+SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){
+ int rc;
+ if( p==0 || pWalker->xSelectCallback==0 ) return WRC_Continue;
+ rc = WRC_Continue;
+ while( p ){
+ rc = pWalker->xSelectCallback(pWalker, p);
+ if( rc ) break;
+ if( sqlite3WalkSelectExpr(pWalker, p) ) return WRC_Abort;
+ if( sqlite3WalkSelectFrom(pWalker, p) ) return WRC_Abort;
+ p = p->pPrior;
+ }
+ return rc & WRC_Abort;
}
+/************** End of walker.c **********************************************/
+/************** Begin file resolve.c *****************************************/
/*
-** Walk an expression tree. Return 1 if the expression is constant
-** or a function call with constant arguments. Return and 0 if there
-** are any variables.
+** 2008 August 18
**
-** For the purposes of this function, a double-quoted string (ex: "abc")
-** is considered a variable but a single-quoted string (ex: 'abc') is
-** a constant.
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains routines used for walking the parser tree and
+** resolve all identifiers by associating them with a particular
+** table and column.
+**
+** $Id: resolve.c,v 1.30 2009/06/15 23:15:59 drh Exp $
*/
-int sqlite3ExprIsConstantOrFunction(Expr *p){
- int isConst = 2;
- walkExprTree(p, exprNodeIsConstant, &isConst);
- return isConst!=0;
-}
/*
-** If the expression p codes a constant integer that is small enough
-** to fit in a 32-bit integer, return 1 and put the value of the integer
-** in *pValue. If the expression is not an integer or if it is too big
-** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
+** Turn the pExpr expression into an alias for the iCol-th column of the
+** result set in pEList.
+**
+** If the result set column is a simple column reference, then this routine
+** makes an exact copy. But for any other kind of expression, this
+** routine make a copy of the result set column as the argument to the
+** TK_AS operator. The TK_AS operator causes the expression to be
+** evaluated just once and then reused for each alias.
+**
+** The reason for suppressing the TK_AS term when the expression is a simple
+** column reference is so that the column reference will be recognized as
+** usable by indices within the WHERE clause processing logic.
+**
+** Hack: The TK_AS operator is inhibited if zType[0]=='G'. This means
+** that in a GROUP BY clause, the expression is evaluated twice. Hence:
+**
+** SELECT random()%5 AS x, count(*) FROM tab GROUP BY x
+**
+** Is equivalent to:
+**
+** SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
+**
+** The result of random()%5 in the GROUP BY clause is probably different
+** from the result in the result-set. We might fix this someday. Or
+** then again, we might not...
*/
-int sqlite3ExprIsInteger(Expr *p, int *pValue){
- switch( p->op ){
- case TK_INTEGER: {
- if( sqlite3GetInt32((char*)p->token.z, pValue) ){
- return 1;
- }
- break;
- }
- case TK_UPLUS: {
- return sqlite3ExprIsInteger(p->pLeft, pValue);
- }
- case TK_UMINUS: {
- int v;
- if( sqlite3ExprIsInteger(p->pLeft, &v) ){
- *pValue = -v;
- return 1;
- }
- break;
- }
- default: break;
+static void resolveAlias(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* A result set */
+ int iCol, /* A column in the result set. 0..pEList->nExpr-1 */
+ Expr *pExpr, /* Transform this into an alias to the result set */
+ const char *zType /* "GROUP" or "ORDER" or "" */
+){
+ Expr *pOrig; /* The iCol-th column of the result set */
+ Expr *pDup; /* Copy of pOrig */
+ sqlite3 *db; /* The database connection */
+
+ assert( iCol>=0 && iCol<pEList->nExpr );
+ pOrig = pEList->a[iCol].pExpr;
+ assert( pOrig!=0 );
+ assert( pOrig->flags & EP_Resolved );
+ db = pParse->db;
+ if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){
+ pDup = sqlite3ExprDup(db, pOrig, 0);
+ pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0);
+ if( pDup==0 ) return;
+ if( pEList->a[iCol].iAlias==0 ){
+ pEList->a[iCol].iAlias = (u16)(++pParse->nAlias);
+ }
+ pDup->iTable = pEList->a[iCol].iAlias;
+ }else if( ExprHasProperty(pOrig, EP_IntValue) || pOrig->u.zToken==0 ){
+ pDup = sqlite3ExprDup(db, pOrig, 0);
+ if( pDup==0 ) return;
+ }else{
+ char *zToken = pOrig->u.zToken;
+ assert( zToken!=0 );
+ pOrig->u.zToken = 0;
+ pDup = sqlite3ExprDup(db, pOrig, 0);
+ pOrig->u.zToken = zToken;
+ if( pDup==0 ) return;
+ assert( (pDup->flags & (EP_Reduced|EP_TokenOnly))==0 );
+ pDup->flags2 |= EP2_MallocedToken;
+ pDup->u.zToken = sqlite3DbStrDup(db, zToken);
}
- return 0;
-}
-
-/*
-** Return TRUE if the given string is a row-id column name.
-*/
-int sqlite3IsRowid(const char *z){
- if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
- if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
- if( sqlite3StrICmp(z, "OID")==0 ) return 1;
- return 0;
+ if( pExpr->flags & EP_ExpCollate ){
+ pDup->pColl = pExpr->pColl;
+ pDup->flags |= EP_ExpCollate;
+ }
+ sqlite3ExprClear(db, pExpr);
+ memcpy(pExpr, pDup, sizeof(*pExpr));
+ sqlite3DbFree(db, pDup);
}
/*
@@ -37672,53 +58650,55 @@ int sqlite3IsRowid(const char *z){
** expression node refer back to that source column. The following changes
** are made to pExpr:
**
-** pExpr->iDb Set the index in db->aDb[] of the database holding
-** the table.
+** pExpr->iDb Set the index in db->aDb[] of the database X
+** (even if X is implied).
** pExpr->iTable Set to the cursor number for the table obtained
** from pSrcList.
+** pExpr->pTab Points to the Table structure of X.Y (even if
+** X and/or Y are implied.)
** pExpr->iColumn Set to the column number within the table.
** pExpr->op Set to TK_COLUMN.
** pExpr->pLeft Any expression this points to is deleted
** pExpr->pRight Any expression this points to is deleted.
**
-** The pDbToken is the name of the database (the "X"). This value may be
+** The zDb variable is the name of the database (the "X"). This value may be
** NULL meaning that name is of the form Y.Z or Z. Any available database
-** can be used. The pTableToken is the name of the table (the "Y"). This
-** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
+** can be used. The zTable variable is the name of the table (the "Y"). This
+** value can be NULL if zDb is also NULL. If zTable is NULL it
** means that the form of the name is Z and that columns from any table
** can be used.
**
** If the name cannot be resolved unambiguously, leave an error message
-** in pParse and return non-zero. Return zero on success.
+** in pParse and return WRC_Abort. Return WRC_Prune on success.
*/
static int lookupName(
Parse *pParse, /* The parsing context */
- Token *pDbToken, /* Name of the database containing table, or NULL */
- Token *pTableToken, /* Name of table containing column, or NULL */
- Token *pColumnToken, /* Name of the column. */
+ const char *zDb, /* Name of the database containing table, or NULL */
+ const char *zTab, /* Name of table containing column, or NULL */
+ const char *zCol, /* Name of the column. */
NameContext *pNC, /* The name context used to resolve the name */
Expr *pExpr /* Make this EXPR node point to the selected column */
){
- char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
- char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
- char *zCol = 0; /* Name of the column. The "Z" */
int i, j; /* Loop counters */
- int cnt = 0; /* Number of matching column names */
- int cntTab = 0; /* Number of matching table names */
- sqlite3 *db = pParse->db; /* The database */
+ int cnt = 0; /* Number of matching column names */
+ int cntTab = 0; /* Number of matching table names */
+ sqlite3 *db = pParse->db; /* The database connection */
struct SrcList_item *pItem; /* Use for looping over pSrcList items */
struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
NameContext *pTopNC = pNC; /* First namecontext in the list */
+ Schema *pSchema = 0; /* Schema of the expression */
+ int isTrigger = 0;
- assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
- zDb = sqlite3NameFromToken(pDbToken);
- zTab = sqlite3NameFromToken(pTableToken);
- zCol = sqlite3NameFromToken(pColumnToken);
- if( sqlite3MallocFailed() ){
- goto lookupname_end;
- }
+ assert( pNC ); /* the name context cannot be NULL. */
+ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */
+ assert( ~ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+ /* Initialize the node to no-match */
pExpr->iTable = -1;
+ pExpr->pTab = 0;
+ ExprSetIrreducible(pExpr);
+
+ /* Start at the inner-most context and move outward until a match is found */
while( pNC && cnt==0 ){
ExprList *pEList;
SrcList *pSrcList = pNC->pSrcList;
@@ -37730,7 +58710,7 @@ static int lookupName(
Column *pCol;
pTab = pItem->pTab;
- assert( pTab!=0 );
+ assert( pTab!=0 && pTab->zName!=0 );
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert( pTab->nCol>0 );
if( zTab ){
@@ -37739,7 +58719,9 @@ static int lookupName(
if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
}else{
char *zTabName = pTab->zName;
- if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
+ if( NEVER(zTabName==0) || sqlite3StrICmp(zTabName, zTab)!=0 ){
+ continue;
+ }
if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
continue;
}
@@ -37747,23 +58729,20 @@ static int lookupName(
}
if( 0==(cntTab++) ){
pExpr->iTable = pItem->iCursor;
- pExpr->pSchema = pTab->pSchema;
+ pExpr->pTab = pTab;
+ pSchema = pTab->pSchema;
pMatch = pItem;
}
for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
- const char *zColl = pTab->aCol[j].zColl;
IdList *pUsing;
cnt++;
pExpr->iTable = pItem->iCursor;
+ pExpr->pTab = pTab;
pMatch = pItem;
- pExpr->pSchema = pTab->pSchema;
+ pSchema = pTab->pSchema;
/* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
- pExpr->iColumn = j==pTab->iPKey ? -1 : j;
- pExpr->affinity = pTab->aCol[j].affinity;
- if( (pExpr->flags & EP_ExpCollate)==0 ){
- pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
- }
+ pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
if( i<pSrcList->nSrc-1 ){
if( pItem[1].jointype & JT_NATURAL ){
/* If this match occurred in the left table of a natural join,
@@ -37794,38 +58773,48 @@ static int lookupName(
/* If we have not already resolved the name, then maybe
** it is a new.* or old.* trigger argument reference
*/
- if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
- TriggerStack *pTriggerStack = pParse->trigStack;
+ if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){
+ int op = pParse->eTriggerOp;
Table *pTab = 0;
- if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
- pExpr->iTable = pTriggerStack->newIdx;
- assert( pTriggerStack->pTab );
- pTab = pTriggerStack->pTab;
- }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
- pExpr->iTable = pTriggerStack->oldIdx;
- assert( pTriggerStack->pTab );
- pTab = pTriggerStack->pTab;
+ assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
+ if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
+ pExpr->iTable = 1;
+ pTab = pParse->pTriggerTab;
+ }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
+ pExpr->iTable = 0;
+ pTab = pParse->pTriggerTab;
}
if( pTab ){
int iCol;
- Column *pCol = pTab->aCol;
-
- pExpr->pSchema = pTab->pSchema;
+ pSchema = pTab->pSchema;
cntTab++;
- for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
- if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
- const char *zColl = pTab->aCol[iCol].zColl;
- cnt++;
- pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
- pExpr->affinity = pTab->aCol[iCol].affinity;
- if( (pExpr->flags & EP_ExpCollate)==0 ){
- pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
+ if( sqlite3IsRowid(zCol) ){
+ iCol = -1;
+ }else{
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ Column *pCol = &pTab->aCol[iCol];
+ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
+ if( iCol==pTab->iPKey ){
+ iCol = -1;
+ }
+ break;
}
- pExpr->pTab = pTab;
- break;
}
}
+ if( iCol<pTab->nCol ){
+ cnt++;
+ if( iCol<0 ){
+ pExpr->affinity = SQLITE_AFF_INTEGER;
+ }else if( pExpr->iTable==0 ){
+ testcase( iCol==31 );
+ testcase( iCol==32 );
+ pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
+ }
+ pExpr->iColumn = (i16)iCol;
+ pExpr->pTab = pTab;
+ isTrigger = 1;
+ }
}
}
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
@@ -37855,13 +58844,20 @@ static int lookupName(
for(j=0; j<pEList->nExpr; j++){
char *zAs = pEList->a[j].zName;
if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
+ Expr *pOrig;
assert( pExpr->pLeft==0 && pExpr->pRight==0 );
- pExpr->op = TK_AS;
- pExpr->iColumn = j;
- pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr);
+ assert( pExpr->x.pList==0 );
+ assert( pExpr->x.pSelect==0 );
+ pOrig = pEList->a[j].pExpr;
+ if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
+ sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
+ return WRC_Abort;
+ }
+ resolveAlias(pParse, pEList, j, pExpr, "");
cnt = 1;
+ pMatch = 0;
assert( zTab==0 && zDb==0 );
- goto lookupname_end_2;
+ goto lookupname_end;
}
}
}
@@ -37884,9 +58880,10 @@ static int lookupName(
** Because no reference was made to outer contexts, the pNC->nRef
** fields are not changed in any context.
*/
- if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
- sqliteFree(zCol);
- return 0;
+ if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){
+ pExpr->op = TK_STRING;
+ pExpr->pTab = 0;
+ return WRC_Prune;
}
/*
@@ -37894,18 +58891,15 @@ static int lookupName(
** more matches. Either way, we have an error.
*/
if( cnt!=1 ){
- char *z = 0;
- char *zErr;
- zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
+ const char *zErr;
+ zErr = cnt==0 ? "no such column" : "ambiguous column name";
if( zDb ){
- sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
+ sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
}else if( zTab ){
- sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
}else{
- z = sqliteStrDup(zCol);
+ sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
}
- sqlite3ErrorMsg(pParse, zErr, z);
- sqliteFree(z);
pTopNC->nErr++;
}
@@ -37917,31 +58911,25 @@ static int lookupName(
*/
if( pExpr->iColumn>=0 && pMatch!=0 ){
int n = pExpr->iColumn;
- if( n>=sizeof(Bitmask)*8 ){
- n = sizeof(Bitmask)*8-1;
+ testcase( n==BMS-1 );
+ if( n>=BMS ){
+ n = BMS-1;
}
assert( pMatch->iCursor==pExpr->iTable );
pMatch->colUsed |= ((Bitmask)1)<<n;
}
-lookupname_end:
/* Clean up and return
*/
- sqliteFree(zDb);
- sqliteFree(zTab);
- sqlite3ExprDelete(pExpr->pLeft);
+ sqlite3ExprDelete(db, pExpr->pLeft);
pExpr->pLeft = 0;
- sqlite3ExprDelete(pExpr->pRight);
+ sqlite3ExprDelete(db, pExpr->pRight);
pExpr->pRight = 0;
- pExpr->op = TK_COLUMN;
-lookupname_end_2:
- sqliteFree(zCol);
+ pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
+lookupname_end:
if( cnt==1 ){
assert( pNC!=0 );
- sqlite3AuthRead(pParse, pExpr, pNC->pSrcList);
- if( pMatch && !pMatch->pSelect ){
- pExpr->pTab = pMatch->pTab;
- }
+ sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
/* Increment the nRef value on all name contexts from TopNC up to
** the point where the name matched. */
for(;;){
@@ -37950,14 +58938,14 @@ lookupname_end_2:
if( pTopNC==pNC ) break;
pTopNC = pTopNC->pNext;
}
- return 0;
+ return WRC_Prune;
} else {
- return 1;
+ return WRC_Abort;
}
}
/*
-** This routine is designed as an xFunc for walkExprTree().
+** This routine is callback for sqlite3WalkExpr().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree. Return 0 to continue the search down
@@ -37967,15 +58955,16 @@ lookupname_end_2:
** function names. The operator for aggregate functions is changed
** to TK_AGG_FUNCTION.
*/
-static int nameResolverStep(void *pArg, Expr *pExpr){
- NameContext *pNC = (NameContext*)pArg;
+static int resolveExprStep(Walker *pWalker, Expr *pExpr){
+ NameContext *pNC;
Parse *pParse;
- if( pExpr==0 ) return 1;
+ pNC = pWalker->u.pNC;
assert( pNC!=0 );
pParse = pNC->pParse;
+ assert( pParse==pWalker->pParse );
- if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
+ if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return WRC_Prune;
ExprSetProperty(pExpr, EP_Resolved);
#ifndef NDEBUG
if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
@@ -37987,64 +58976,75 @@ static int nameResolverStep(void *pArg, Expr *pExpr){
}
#endif
switch( pExpr->op ){
- /* Double-quoted strings (ex: "abc") are used as identifiers if
- ** possible. Otherwise they remain as strings. Single-quoted
- ** strings (ex: 'abc') are always string literals.
+
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
+ /* The special operator TK_ROW means use the rowid for the first
+ ** column in the FROM clause. This is used by the LIMIT and ORDER BY
+ ** clause processing on UPDATE and DELETE statements.
*/
- case TK_STRING: {
- if( pExpr->token.z[0]=='\'' ) break;
- /* Fall thru into the TK_ID case if this is a double-quoted string */
+ case TK_ROW: {
+ SrcList *pSrcList = pNC->pSrcList;
+ struct SrcList_item *pItem;
+ assert( pSrcList && pSrcList->nSrc==1 );
+ pItem = pSrcList->a;
+ pExpr->op = TK_COLUMN;
+ pExpr->pTab = pItem->pTab;
+ pExpr->iTable = pItem->iCursor;
+ pExpr->iColumn = -1;
+ pExpr->affinity = SQLITE_AFF_INTEGER;
+ break;
}
+#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */
+
/* A lone identifier is the name of a column.
*/
case TK_ID: {
- lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
- return 1;
+ return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr);
}
/* A table name and column name: ID.ID
** Or a database, table and column: ID.ID.ID
*/
case TK_DOT: {
- Token *pColumn;
- Token *pTable;
- Token *pDb;
+ const char *zColumn;
+ const char *zTable;
+ const char *zDb;
Expr *pRight;
/* if( pSrcList==0 ) break; */
pRight = pExpr->pRight;
if( pRight->op==TK_ID ){
- pDb = 0;
- pTable = &pExpr->pLeft->token;
- pColumn = &pRight->token;
+ zDb = 0;
+ zTable = pExpr->pLeft->u.zToken;
+ zColumn = pRight->u.zToken;
}else{
assert( pRight->op==TK_DOT );
- pDb = &pExpr->pLeft->token;
- pTable = &pRight->pLeft->token;
- pColumn = &pRight->pRight->token;
+ zDb = pExpr->pLeft->u.zToken;
+ zTable = pRight->pLeft->u.zToken;
+ zColumn = pRight->pRight->u.zToken;
}
- lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
- return 1;
+ return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
}
/* Resolve function names
*/
case TK_CONST_FUNC:
case TK_FUNCTION: {
- ExprList *pList = pExpr->pList; /* The argument list */
- int n = pList ? pList->nExpr : 0; /* Number of arguments */
+ ExprList *pList = pExpr->x.pList; /* The argument list */
+ int n = pList ? pList->nExpr : 0; /* Number of arguments */
int no_such_func = 0; /* True if no such function exists */
int wrong_num_args = 0; /* True if wrong number of arguments */
int is_agg = 0; /* True if is an aggregate function */
- int i;
int auth; /* Authorization to use the function */
int nId; /* Number of characters in function name */
const char *zId; /* The function name. */
FuncDef *pDef; /* Information about the function */
- int enc = ENC(pParse->db); /* The database encoding */
+ u8 enc = ENC(pParse->db); /* The database encoding */
- zId = (char*)pExpr->token.z;
- nId = pExpr->token.n;
+ testcase( pExpr->op==TK_CONST_FUNC );
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
+ zId = pExpr->u.zToken;
+ nId = sqlite3Strlen30(zId);
pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
if( pDef==0 ){
pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
@@ -38066,7 +59066,7 @@ static int nameResolverStep(void *pArg, Expr *pExpr){
pNC->nErr++;
}
pExpr->op = TK_NULL;
- return 1;
+ return WRC_Prune;
}
}
#endif
@@ -38087,28 +59087,27 @@ static int nameResolverStep(void *pArg, Expr *pExpr){
pNC->hasAgg = 1;
}
if( is_agg ) pNC->allowAgg = 0;
- for(i=0; pNC->nErr==0 && i<n; i++){
- walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
- }
+ sqlite3WalkExprList(pWalker, pList);
if( is_agg ) pNC->allowAgg = 1;
/* FIX ME: Compute pExpr->affinity based on the expected return
** type of the function
*/
- return is_agg;
+ return WRC_Prune;
}
#ifndef SQLITE_OMIT_SUBQUERY
case TK_SELECT:
- case TK_EXISTS:
+ case TK_EXISTS: testcase( pExpr->op==TK_EXISTS );
#endif
case TK_IN: {
- if( pExpr->pSelect ){
+ testcase( pExpr->op==TK_IN );
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
int nRef = pNC->nRef;
#ifndef SQLITE_OMIT_CHECK
if( pNC->isCheck ){
sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
}
#endif
- sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
+ sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
assert( pNC->nRef>=nRef );
if( nRef!=pNC->nRef ){
ExprSetProperty(pExpr, EP_VarSelect);
@@ -38125,40 +59124,561 @@ static int nameResolverStep(void *pArg, Expr *pExpr){
}
#endif
}
+ return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
+}
+
+/*
+** pEList is a list of expressions which are really the result set of the
+** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause.
+** This routine checks to see if pE is a simple identifier which corresponds
+** to the AS-name of one of the terms of the expression list. If it is,
+** this routine return an integer between 1 and N where N is the number of
+** elements in pEList, corresponding to the matching entry. If there is
+** no match, or if pE is not a simple identifier, then this routine
+** return 0.
+**
+** pEList has been resolved. pE has not.
+*/
+static int resolveAsName(
+ Parse *pParse, /* Parsing context for error messages */
+ ExprList *pEList, /* List of expressions to scan */
+ Expr *pE /* Expression we are trying to match */
+){
+ int i; /* Loop counter */
+
+ UNUSED_PARAMETER(pParse);
+
+ if( pE->op==TK_ID ){
+ char *zCol = pE->u.zToken;
+ for(i=0; i<pEList->nExpr; i++){
+ char *zAs = pEList->a[i].zName;
+ if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
+ return i+1;
+ }
+ }
+ }
return 0;
}
/*
+** pE is a pointer to an expression which is a single term in the
+** ORDER BY of a compound SELECT. The expression has not been
+** name resolved.
+**
+** At the point this routine is called, we already know that the
+** ORDER BY term is not an integer index into the result set. That
+** case is handled by the calling routine.
+**
+** Attempt to match pE against result set columns in the left-most
+** SELECT statement. Return the index i of the matching column,
+** as an indication to the caller that it should sort by the i-th column.
+** The left-most column is 1. In other words, the value returned is the
+** same integer value that would be used in the SQL statement to indicate
+** the column.
+**
+** If there is no match, return 0. Return -1 if an error occurs.
+*/
+static int resolveOrderByTermToExprList(
+ Parse *pParse, /* Parsing context for error messages */
+ Select *pSelect, /* The SELECT statement with the ORDER BY clause */
+ Expr *pE /* The specific ORDER BY term */
+){
+ int i; /* Loop counter */
+ ExprList *pEList; /* The columns of the result set */
+ NameContext nc; /* Name context for resolving pE */
+
+ assert( sqlite3ExprIsInteger(pE, &i)==0 );
+ pEList = pSelect->pEList;
+
+ /* Resolve all names in the ORDER BY term expression
+ */
+ memset(&nc, 0, sizeof(nc));
+ nc.pParse = pParse;
+ nc.pSrcList = pSelect->pSrc;
+ nc.pEList = pEList;
+ nc.allowAgg = 1;
+ nc.nErr = 0;
+ if( sqlite3ResolveExprNames(&nc, pE) ){
+ sqlite3ErrorClear(pParse);
+ return 0;
+ }
+
+ /* Try to match the ORDER BY expression against an expression
+ ** in the result set. Return an 1-based index of the matching
+ ** result-set entry.
+ */
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
+ return i+1;
+ }
+ }
+
+ /* If no match, return 0. */
+ return 0;
+}
+
+/*
+** Generate an ORDER BY or GROUP BY term out-of-range error.
+*/
+static void resolveOutOfRangeError(
+ Parse *pParse, /* The error context into which to write the error */
+ const char *zType, /* "ORDER" or "GROUP" */
+ int i, /* The index (1-based) of the term out of range */
+ int mx /* Largest permissible value of i */
+){
+ sqlite3ErrorMsg(pParse,
+ "%r %s BY term out of range - should be "
+ "between 1 and %d", i, zType, mx);
+}
+
+/*
+** Analyze the ORDER BY clause in a compound SELECT statement. Modify
+** each term of the ORDER BY clause is a constant integer between 1
+** and N where N is the number of columns in the compound SELECT.
+**
+** ORDER BY terms that are already an integer between 1 and N are
+** unmodified. ORDER BY terms that are integers outside the range of
+** 1 through N generate an error. ORDER BY terms that are expressions
+** are matched against result set expressions of compound SELECT
+** beginning with the left-most SELECT and working toward the right.
+** At the first match, the ORDER BY expression is transformed into
+** the integer column number.
+**
+** Return the number of errors seen.
+*/
+static int resolveCompoundOrderBy(
+ Parse *pParse, /* Parsing context. Leave error messages here */
+ Select *pSelect /* The SELECT statement containing the ORDER BY */
+){
+ int i;
+ ExprList *pOrderBy;
+ ExprList *pEList;
+ sqlite3 *db;
+ int moreToDo = 1;
+
+ pOrderBy = pSelect->pOrderBy;
+ if( pOrderBy==0 ) return 0;
+ db = pParse->db;
+#if SQLITE_MAX_COLUMN
+ if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
+ return 1;
+ }
+#endif
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].done = 0;
+ }
+ pSelect->pNext = 0;
+ while( pSelect->pPrior ){
+ pSelect->pPrior->pNext = pSelect;
+ pSelect = pSelect->pPrior;
+ }
+ while( pSelect && moreToDo ){
+ struct ExprList_item *pItem;
+ moreToDo = 0;
+ pEList = pSelect->pEList;
+ assert( pEList!=0 );
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ int iCol = -1;
+ Expr *pE, *pDup;
+ if( pItem->done ) continue;
+ pE = pItem->pExpr;
+ if( sqlite3ExprIsInteger(pE, &iCol) ){
+ if( iCol<=0 || iCol>pEList->nExpr ){
+ resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr);
+ return 1;
+ }
+ }else{
+ iCol = resolveAsName(pParse, pEList, pE);
+ if( iCol==0 ){
+ pDup = sqlite3ExprDup(db, pE, 0);
+ if( !db->mallocFailed ){
+ assert(pDup);
+ iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup);
+ }
+ sqlite3ExprDelete(db, pDup);
+ }
+ }
+ if( iCol>0 ){
+ CollSeq *pColl = pE->pColl;
+ int flags = pE->flags & EP_ExpCollate;
+ sqlite3ExprDelete(db, pE);
+ pItem->pExpr = pE = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pE==0 ) return 1;
+ pE->pColl = pColl;
+ pE->flags |= EP_IntValue | flags;
+ pE->u.iValue = iCol;
+ pItem->iCol = (u16)iCol;
+ pItem->done = 1;
+ }else{
+ moreToDo = 1;
+ }
+ }
+ pSelect = pSelect->pNext;
+ }
+ for(i=0; i<pOrderBy->nExpr; i++){
+ if( pOrderBy->a[i].done==0 ){
+ sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
+ "column in the result set", i+1);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Check every term in the ORDER BY or GROUP BY clause pOrderBy of
+** the SELECT statement pSelect. If any term is reference to a
+** result set expression (as determined by the ExprList.a.iCol field)
+** then convert that term into a copy of the corresponding result set
+** column.
+**
+** If any errors are detected, add an error message to pParse and
+** return non-zero. Return zero if no errors are seen.
+*/
+SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(
+ Parse *pParse, /* Parsing context. Leave error messages here */
+ Select *pSelect, /* The SELECT statement containing the clause */
+ ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
+ const char *zType /* "ORDER" or "GROUP" */
+){
+ int i;
+ sqlite3 *db = pParse->db;
+ ExprList *pEList;
+ struct ExprList_item *pItem;
+
+ if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
+#if SQLITE_MAX_COLUMN
+ if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
+ return 1;
+ }
+#endif
+ pEList = pSelect->pEList;
+ assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ if( pItem->iCol ){
+ if( pItem->iCol>pEList->nExpr ){
+ resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr);
+ return 1;
+ }
+ resolveAlias(pParse, pEList, pItem->iCol-1, pItem->pExpr, zType);
+ }
+ }
+ return 0;
+}
+
+/*
+** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.
+** The Name context of the SELECT statement is pNC. zType is either
+** "ORDER" or "GROUP" depending on which type of clause pOrderBy is.
+**
+** This routine resolves each term of the clause into an expression.
+** If the order-by term is an integer I between 1 and N (where N is the
+** number of columns in the result set of the SELECT) then the expression
+** in the resolution is a copy of the I-th result-set expression. If
+** the order-by term is an identify that corresponds to the AS-name of
+** a result-set expression, then the term resolves to a copy of the
+** result-set expression. Otherwise, the expression is resolved in
+** the usual way - using sqlite3ResolveExprNames().
+**
+** This routine returns the number of errors. If errors occur, then
+** an appropriate error message might be left in pParse. (OOM errors
+** excepted.)
+*/
+static int resolveOrderGroupBy(
+ NameContext *pNC, /* The name context of the SELECT statement */
+ Select *pSelect, /* The SELECT statement holding pOrderBy */
+ ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */
+ const char *zType /* Either "ORDER" or "GROUP", as appropriate */
+){
+ int i; /* Loop counter */
+ int iCol; /* Column number */
+ struct ExprList_item *pItem; /* A term of the ORDER BY clause */
+ Parse *pParse; /* Parsing context */
+ int nResult; /* Number of terms in the result set */
+
+ if( pOrderBy==0 ) return 0;
+ nResult = pSelect->pEList->nExpr;
+ pParse = pNC->pParse;
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ Expr *pE = pItem->pExpr;
+ iCol = resolveAsName(pParse, pSelect->pEList, pE);
+ if( iCol>0 ){
+ /* If an AS-name match is found, mark this ORDER BY column as being
+ ** a copy of the iCol-th result-set column. The subsequent call to
+ ** sqlite3ResolveOrderGroupBy() will convert the expression to a
+ ** copy of the iCol-th result-set expression. */
+ pItem->iCol = (u16)iCol;
+ continue;
+ }
+ if( sqlite3ExprIsInteger(pE, &iCol) ){
+ /* The ORDER BY term is an integer constant. Again, set the column
+ ** number so that sqlite3ResolveOrderGroupBy() will convert the
+ ** order-by term to a copy of the result-set expression */
+ if( iCol<1 ){
+ resolveOutOfRangeError(pParse, zType, i+1, nResult);
+ return 1;
+ }
+ pItem->iCol = (u16)iCol;
+ continue;
+ }
+
+ /* Otherwise, treat the ORDER BY term as an ordinary expression */
+ pItem->iCol = 0;
+ if( sqlite3ResolveExprNames(pNC, pE) ){
+ return 1;
+ }
+ }
+ return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
+}
+
+/*
+** Resolve names in the SELECT statement p and all of its descendents.
+*/
+static int resolveSelectStep(Walker *pWalker, Select *p){
+ NameContext *pOuterNC; /* Context that contains this SELECT */
+ NameContext sNC; /* Name context of this SELECT */
+ int isCompound; /* True if p is a compound select */
+ int nCompound; /* Number of compound terms processed so far */
+ Parse *pParse; /* Parsing context */
+ ExprList *pEList; /* Result set expression list */
+ int i; /* Loop counter */
+ ExprList *pGroupBy; /* The GROUP BY clause */
+ Select *pLeftmost; /* Left-most of SELECT of a compound */
+ sqlite3 *db; /* Database connection */
+
+
+ assert( p!=0 );
+ if( p->selFlags & SF_Resolved ){
+ return WRC_Prune;
+ }
+ pOuterNC = pWalker->u.pNC;
+ pParse = pWalker->pParse;
+ db = pParse->db;
+
+ /* Normally sqlite3SelectExpand() will be called first and will have
+ ** already expanded this SELECT. However, if this is a subquery within
+ ** an expression, sqlite3ResolveExprNames() will be called without a
+ ** prior call to sqlite3SelectExpand(). When that happens, let
+ ** sqlite3SelectPrep() do all of the processing for this SELECT.
+ ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and
+ ** this routine in the correct order.
+ */
+ if( (p->selFlags & SF_Expanded)==0 ){
+ sqlite3SelectPrep(pParse, p, pOuterNC);
+ return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune;
+ }
+
+ isCompound = p->pPrior!=0;
+ nCompound = 0;
+ pLeftmost = p;
+ while( p ){
+ assert( (p->selFlags & SF_Expanded)!=0 );
+ assert( (p->selFlags & SF_Resolved)==0 );
+ p->selFlags |= SF_Resolved;
+
+ /* Resolve the expressions in the LIMIT and OFFSET clauses. These
+ ** are not allowed to refer to any names, so pass an empty NameContext.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
+ sqlite3ResolveExprNames(&sNC, p->pOffset) ){
+ return WRC_Abort;
+ }
+
+ /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
+ ** resolve the result-set expression list.
+ */
+ sNC.allowAgg = 1;
+ sNC.pSrcList = p->pSrc;
+ sNC.pNext = pOuterNC;
+
+ /* Resolve names in the result set. */
+ pEList = p->pEList;
+ assert( pEList!=0 );
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *pX = pEList->a[i].pExpr;
+ if( sqlite3ResolveExprNames(&sNC, pX) ){
+ return WRC_Abort;
+ }
+ }
+
+ /* Recursively resolve names in all subqueries
+ */
+ for(i=0; i<p->pSrc->nSrc; i++){
+ struct SrcList_item *pItem = &p->pSrc->a[i];
+ if( pItem->pSelect ){
+ const char *zSavedContext = pParse->zAuthContext;
+ if( pItem->zName ) pParse->zAuthContext = pItem->zName;
+ sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC);
+ pParse->zAuthContext = zSavedContext;
+ if( pParse->nErr || db->mallocFailed ) return WRC_Abort;
+ }
+ }
+
+ /* If there are no aggregate functions in the result-set, and no GROUP BY
+ ** expression, do not allow aggregates in any of the other expressions.
+ */
+ assert( (p->selFlags & SF_Aggregate)==0 );
+ pGroupBy = p->pGroupBy;
+ if( pGroupBy || sNC.hasAgg ){
+ p->selFlags |= SF_Aggregate;
+ }else{
+ sNC.allowAgg = 0;
+ }
+
+ /* If a HAVING clause is present, then there must be a GROUP BY clause.
+ */
+ if( p->pHaving && !pGroupBy ){
+ sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
+ return WRC_Abort;
+ }
+
+ /* Add the expression list to the name-context before parsing the
+ ** other expressions in the SELECT statement. This is so that
+ ** expressions in the WHERE clause (etc.) can refer to expressions by
+ ** aliases in the result set.
+ **
+ ** Minor point: If this is the case, then the expression will be
+ ** re-evaluated for each reference to it.
+ */
+ sNC.pEList = p->pEList;
+ if( sqlite3ResolveExprNames(&sNC, p->pWhere) ||
+ sqlite3ResolveExprNames(&sNC, p->pHaving)
+ ){
+ return WRC_Abort;
+ }
+
+ /* The ORDER BY and GROUP BY clauses may not refer to terms in
+ ** outer queries
+ */
+ sNC.pNext = 0;
+ sNC.allowAgg = 1;
+
+ /* Process the ORDER BY clause for singleton SELECT statements.
+ ** The ORDER BY clause for compounds SELECT statements is handled
+ ** below, after all of the result-sets for all of the elements of
+ ** the compound have been resolved.
+ */
+ if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){
+ return WRC_Abort;
+ }
+ if( db->mallocFailed ){
+ return WRC_Abort;
+ }
+
+ /* Resolve the GROUP BY clause. At the same time, make sure
+ ** the GROUP BY clause does not contain aggregate functions.
+ */
+ if( pGroupBy ){
+ struct ExprList_item *pItem;
+
+ if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){
+ return WRC_Abort;
+ }
+ for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
+ if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
+ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
+ "the GROUP BY clause");
+ return WRC_Abort;
+ }
+ }
+ }
+
+ /* Advance to the next term of the compound
+ */
+ p = p->pPrior;
+ nCompound++;
+ }
+
+ /* Resolve the ORDER BY on a compound SELECT after all terms of
+ ** the compound have been resolved.
+ */
+ if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){
+ return WRC_Abort;
+ }
+
+ return WRC_Prune;
+}
+
+/*
** This routine walks an expression tree and resolves references to
-** table columns. Nodes of the form ID.ID or ID resolve into an
-** index to the table in the table list and a column offset. The
-** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
-** value is changed to the index of the referenced table in pTabList
-** plus the "base" value. The base value will ultimately become the
-** VDBE cursor number for a cursor that is pointing into the referenced
-** table. The Expr.iColumn value is changed to the index of the column
-** of the referenced table. The Expr.iColumn value for the special
-** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
-** alias for ROWID.
-**
-** Also resolve function names and check the functions for proper
-** usage. Make sure all function names are recognized and all functions
-** have the correct number of arguments. Leave an error message
-** in pParse->zErrMsg if anything is amiss. Return the number of errors.
-**
-** If the expression contains aggregate functions then set the EP_Agg
-** property on the expression.
-*/
-int sqlite3ExprResolveNames(
+** table columns and result-set columns. At the same time, do error
+** checking on function usage and set a flag if any aggregate functions
+** are seen.
+**
+** To resolve table columns references we look for nodes (or subtrees) of the
+** form X.Y.Z or Y.Z or just Z where
+**
+** X: The name of a database. Ex: "main" or "temp" or
+** the symbolic name assigned to an ATTACH-ed database.
+**
+** Y: The name of a table in a FROM clause. Or in a trigger
+** one of the special names "old" or "new".
+**
+** Z: The name of a column in table Y.
+**
+** The node at the root of the subtree is modified as follows:
+**
+** Expr.op Changed to TK_COLUMN
+** Expr.pTab Points to the Table object for X.Y
+** Expr.iColumn The column index in X.Y. -1 for the rowid.
+** Expr.iTable The VDBE cursor number for X.Y
+**
+**
+** To resolve result-set references, look for expression nodes of the
+** form Z (with no X and Y prefix) where the Z matches the right-hand
+** size of an AS clause in the result-set of a SELECT. The Z expression
+** is replaced by a copy of the left-hand side of the result-set expression.
+** Table-name and function resolution occurs on the substituted expression
+** tree. For example, in:
+**
+** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x;
+**
+** The "x" term of the order by is replaced by "a+b" to render:
+**
+** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b;
+**
+** Function calls are checked to make sure that the function is
+** defined and that the correct number of arguments are specified.
+** If the function is an aggregate function, then the pNC->hasAgg is
+** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION.
+** If an expression contains aggregate functions then the EP_Agg
+** property on the expression is set.
+**
+** An error message is left in pParse if anything is amiss. The number
+** if errors is returned.
+*/
+SQLITE_PRIVATE int sqlite3ResolveExprNames(
NameContext *pNC, /* Namespace to resolve expressions in. */
Expr *pExpr /* The expression to be analyzed. */
){
int savedHasAgg;
+ Walker w;
+
if( pExpr==0 ) return 0;
+#if SQLITE_MAX_EXPR_DEPTH>0
+ {
+ Parse *pParse = pNC->pParse;
+ if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){
+ return 1;
+ }
+ pParse->nHeight += pExpr->nHeight;
+ }
+#endif
savedHasAgg = pNC->hasAgg;
pNC->hasAgg = 0;
- walkExprTree(pExpr, nameResolverStep, pNC);
- if( pNC->nErr>0 ){
+ w.xExprCallback = resolveExprStep;
+ w.xSelectCallback = resolveSelectStep;
+ w.pParse = pNC->pParse;
+ w.u.pNC = pNC;
+ sqlite3WalkExpr(&w, pExpr);
+#if SQLITE_MAX_EXPR_DEPTH>0
+ pNC->pParse->nHeight -= pExpr->nHeight;
+#endif
+ if( pNC->nErr>0 || w.pParse->nErr>0 ){
ExprSetProperty(pExpr, EP_Error);
}
if( pNC->hasAgg ){
@@ -38169,16 +59689,1503 @@ int sqlite3ExprResolveNames(
return ExprHasProperty(pExpr, EP_Error);
}
+
/*
-** A pointer instance of this structure is used to pass information
-** through walkExprTree into codeSubqueryStep().
+** Resolve all names in all expressions of a SELECT and in all
+** decendents of the SELECT, including compounds off of p->pPrior,
+** subqueries in expressions, and subqueries used as FROM clause
+** terms.
+**
+** See sqlite3ResolveExprNames() for a description of the kinds of
+** transformations that occur.
+**
+** All SELECT statements should have been expanded using
+** sqlite3SelectExpand() prior to invoking this routine.
*/
-typedef struct QueryCoder QueryCoder;
-struct QueryCoder {
- Parse *pParse; /* The parsing context */
- NameContext *pNC; /* Namespace of first enclosing query */
-};
+SQLITE_PRIVATE void sqlite3ResolveSelectNames(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* Name context for parent SELECT statement */
+){
+ Walker w;
+
+ assert( p!=0 );
+ w.xExprCallback = resolveExprStep;
+ w.xSelectCallback = resolveSelectStep;
+ w.pParse = pParse;
+ w.u.pNC = pOuterNC;
+ sqlite3WalkSelect(&w, p);
+}
+
+/************** End of resolve.c *********************************************/
+/************** Begin file expr.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used for analyzing expressions and
+** for generating VDBE code that evaluates expressions in SQLite.
+*/
+
+/*
+** Return the 'affinity' of the expression pExpr if any.
+**
+** If pExpr is a column, a reference to a column via an 'AS' alias,
+** or a sub-select with a column as the return value, then the
+** affinity of that column is returned. Otherwise, 0x00 is returned,
+** indicating no affinity for the expression.
+**
+** i.e. the WHERE clause expresssions in the following statements all
+** have an affinity:
+**
+** CREATE TABLE t1(a);
+** SELECT * FROM t1 WHERE a;
+** SELECT a AS b FROM t1 WHERE b;
+** SELECT * FROM t1 WHERE (select a from t1);
+*/
+SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){
+ int op = pExpr->op;
+ if( op==TK_SELECT ){
+ assert( pExpr->flags&EP_xIsSelect );
+ return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
+ }
+#ifndef SQLITE_OMIT_CAST
+ if( op==TK_CAST ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ return sqlite3AffinityType(pExpr->u.zToken);
+ }
+#endif
+ if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
+ && pExpr->pTab!=0
+ ){
+ /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
+ ** a TK_COLUMN but was previously evaluated and cached in a register */
+ int j = pExpr->iColumn;
+ if( j<0 ) return SQLITE_AFF_INTEGER;
+ assert( pExpr->pTab && j<pExpr->pTab->nCol );
+ return pExpr->pTab->aCol[j].affinity;
+ }
+ return pExpr->affinity;
+}
+
+/*
+** Set the collating sequence for expression pExpr to be the collating
+** sequence named by pToken. Return a pointer to the revised expression.
+** The collating sequence is marked as "explicit" using the EP_ExpCollate
+** flag. An explicit collating sequence will override implicit
+** collating sequences.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
+ char *zColl = 0; /* Dequoted name of collation sequence */
+ CollSeq *pColl;
+ sqlite3 *db = pParse->db;
+ zColl = sqlite3NameFromToken(db, pCollName);
+ if( pExpr && zColl ){
+ pColl = sqlite3LocateCollSeq(pParse, zColl);
+ if( pColl ){
+ pExpr->pColl = pColl;
+ pExpr->flags |= EP_ExpCollate;
+ }
+ }
+ sqlite3DbFree(db, zColl);
+ return pExpr;
+}
+
+/*
+** Return the default collation sequence for the expression pExpr. If
+** there is no default collation type, return 0.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
+ CollSeq *pColl = 0;
+ Expr *p = pExpr;
+ while( ALWAYS(p) ){
+ int op;
+ pColl = p->pColl;
+ if( pColl ) break;
+ op = p->op;
+ if( p->pTab!=0 && (
+ op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
+ )){
+ /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
+ ** a TK_COLUMN but was previously evaluated and cached in a register */
+ const char *zColl;
+ int j = p->iColumn;
+ if( j>=0 ){
+ sqlite3 *db = pParse->db;
+ zColl = p->pTab->aCol[j].zColl;
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
+ pExpr->pColl = pColl;
+ }
+ break;
+ }
+ if( op!=TK_CAST && op!=TK_UPLUS ){
+ break;
+ }
+ p = p->pLeft;
+ }
+ if( sqlite3CheckCollSeq(pParse, pColl) ){
+ pColl = 0;
+ }
+ return pColl;
+}
+
+/*
+** pExpr is an operand of a comparison operator. aff2 is the
+** type affinity of the other operand. This routine returns the
+** type affinity that should be used for the comparison operator.
+*/
+SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){
+ char aff1 = sqlite3ExprAffinity(pExpr);
+ if( aff1 && aff2 ){
+ /* Both sides of the comparison are columns. If one has numeric
+ ** affinity, use that. Otherwise use no affinity.
+ */
+ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
+ return SQLITE_AFF_NUMERIC;
+ }else{
+ return SQLITE_AFF_NONE;
+ }
+ }else if( !aff1 && !aff2 ){
+ /* Neither side of the comparison is a column. Compare the
+ ** results directly.
+ */
+ return SQLITE_AFF_NONE;
+ }else{
+ /* One side is a column, the other is not. Use the columns affinity. */
+ assert( aff1==0 || aff2==0 );
+ return (aff1 + aff2);
+ }
+}
+
+/*
+** pExpr is a comparison operator. Return the type affinity that should
+** be applied to both operands prior to doing the comparison.
+*/
+static char comparisonAffinity(Expr *pExpr){
+ char aff;
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
+ pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
+ pExpr->op==TK_NE );
+ assert( pExpr->pLeft );
+ aff = sqlite3ExprAffinity(pExpr->pLeft);
+ if( pExpr->pRight ){
+ aff = sqlite3CompareAffinity(pExpr->pRight, aff);
+ }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
+ }else if( !aff ){
+ aff = SQLITE_AFF_NONE;
+ }
+ return aff;
+}
+
+/*
+** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
+** idx_affinity is the affinity of an indexed column. Return true
+** if the index with affinity idx_affinity may be used to implement
+** the comparison in pExpr.
+*/
+SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
+ char aff = comparisonAffinity(pExpr);
+ switch( aff ){
+ case SQLITE_AFF_NONE:
+ return 1;
+ case SQLITE_AFF_TEXT:
+ return idx_affinity==SQLITE_AFF_TEXT;
+ default:
+ return sqlite3IsNumericAffinity(idx_affinity);
+ }
+}
+/*
+** Return the P5 value that should be used for a binary comparison
+** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
+*/
+static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
+ u8 aff = (char)sqlite3ExprAffinity(pExpr2);
+ aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
+ return aff;
+}
+
+/*
+** Return a pointer to the collation sequence that should be used by
+** a binary comparison operator comparing pLeft and pRight.
+**
+** If the left hand expression has a collating sequence type, then it is
+** used. Otherwise the collation sequence for the right hand expression
+** is used, or the default (BINARY) if neither expression has a collating
+** type.
+**
+** Argument pRight (but not pLeft) may be a null pointer. In this case,
+** it is not considered.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
+ Parse *pParse,
+ Expr *pLeft,
+ Expr *pRight
+){
+ CollSeq *pColl;
+ assert( pLeft );
+ if( pLeft->flags & EP_ExpCollate ){
+ assert( pLeft->pColl );
+ pColl = pLeft->pColl;
+ }else if( pRight && pRight->flags & EP_ExpCollate ){
+ assert( pRight->pColl );
+ pColl = pRight->pColl;
+ }else{
+ pColl = sqlite3ExprCollSeq(pParse, pLeft);
+ if( !pColl ){
+ pColl = sqlite3ExprCollSeq(pParse, pRight);
+ }
+ }
+ return pColl;
+}
+
+/*
+** Generate the operands for a comparison operation. Before
+** generating the code for each operand, set the EP_AnyAff
+** flag on the expression so that it will be able to used a
+** cached column value that has previously undergone an
+** affinity change.
+*/
+static void codeCompareOperands(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pLeft, /* The left operand */
+ int *pRegLeft, /* Register where left operand is stored */
+ int *pFreeLeft, /* Free this register when done */
+ Expr *pRight, /* The right operand */
+ int *pRegRight, /* Register where right operand is stored */
+ int *pFreeRight /* Write temp register for right operand there */
+){
+ while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
+ pLeft->flags |= EP_AnyAff;
+ *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
+ while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
+ pRight->flags |= EP_AnyAff;
+ *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
+}
+
+/*
+** Generate code for a comparison operator.
+*/
+static int codeCompare(
+ Parse *pParse, /* The parsing (and code generating) context */
+ Expr *pLeft, /* The left operand */
+ Expr *pRight, /* The right operand */
+ int opcode, /* The comparison opcode */
+ int in1, int in2, /* Register holding operands */
+ int dest, /* Jump here if true. */
+ int jumpIfNull /* If true, jump if either operand is NULL */
+){
+ int p5;
+ int addr;
+ CollSeq *p4;
+
+ p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
+ p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
+ addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
+ (void*)p4, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
+ if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
+ sqlite3ExprCacheAffinityChange(pParse, in1, 1);
+ sqlite3ExprCacheAffinityChange(pParse, in2, 1);
+ }
+ return addr;
+}
+
+#if SQLITE_MAX_EXPR_DEPTH>0
+/*
+** Check that argument nHeight is less than or equal to the maximum
+** expression depth allowed. If it is not, leave an error message in
+** pParse.
+*/
+SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
+ int rc = SQLITE_OK;
+ int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
+ if( nHeight>mxHeight ){
+ sqlite3ErrorMsg(pParse,
+ "Expression tree is too large (maximum depth %d)", mxHeight
+ );
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/* The following three functions, heightOfExpr(), heightOfExprList()
+** and heightOfSelect(), are used to determine the maximum height
+** of any expression tree referenced by the structure passed as the
+** first argument.
+**
+** If this maximum height is greater than the current value pointed
+** to by pnHeight, the second parameter, then set *pnHeight to that
+** value.
+*/
+static void heightOfExpr(Expr *p, int *pnHeight){
+ if( p ){
+ if( p->nHeight>*pnHeight ){
+ *pnHeight = p->nHeight;
+ }
+ }
+}
+static void heightOfExprList(ExprList *p, int *pnHeight){
+ if( p ){
+ int i;
+ for(i=0; i<p->nExpr; i++){
+ heightOfExpr(p->a[i].pExpr, pnHeight);
+ }
+ }
+}
+static void heightOfSelect(Select *p, int *pnHeight){
+ if( p ){
+ heightOfExpr(p->pWhere, pnHeight);
+ heightOfExpr(p->pHaving, pnHeight);
+ heightOfExpr(p->pLimit, pnHeight);
+ heightOfExpr(p->pOffset, pnHeight);
+ heightOfExprList(p->pEList, pnHeight);
+ heightOfExprList(p->pGroupBy, pnHeight);
+ heightOfExprList(p->pOrderBy, pnHeight);
+ heightOfSelect(p->pPrior, pnHeight);
+ }
+}
+
+/*
+** Set the Expr.nHeight variable in the structure passed as an
+** argument. An expression with no children, Expr.pList or
+** Expr.pSelect member has a height of 1. Any other expression
+** has a height equal to the maximum height of any other
+** referenced Expr plus one.
+*/
+static void exprSetHeight(Expr *p){
+ int nHeight = 0;
+ heightOfExpr(p->pLeft, &nHeight);
+ heightOfExpr(p->pRight, &nHeight);
+ if( ExprHasProperty(p, EP_xIsSelect) ){
+ heightOfSelect(p->x.pSelect, &nHeight);
+ }else{
+ heightOfExprList(p->x.pList, &nHeight);
+ }
+ p->nHeight = nHeight + 1;
+}
+
+/*
+** Set the Expr.nHeight variable using the exprSetHeight() function. If
+** the height is greater than the maximum allowed expression depth,
+** leave an error in pParse.
+*/
+SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
+ exprSetHeight(p);
+ sqlite3ExprCheckHeight(pParse, p->nHeight);
+}
+
+/*
+** Return the maximum height of any expression tree referenced
+** by the select statement passed as an argument.
+*/
+SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
+ int nHeight = 0;
+ heightOfSelect(p, &nHeight);
+ return nHeight;
+}
+#else
+ #define exprSetHeight(y)
+#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
+
+/*
+** This routine is the core allocator for Expr nodes.
+**
+** Construct a new expression node and return a pointer to it. Memory
+** for this node and for the pToken argument is a single allocation
+** obtained from sqlite3DbMalloc(). The calling function
+** is responsible for making sure the node eventually gets freed.
+**
+** If dequote is true, then the token (if it exists) is dequoted.
+** If dequote is false, no dequoting is performance. The deQuote
+** parameter is ignored if pToken is NULL or if the token does not
+** appear to be quoted. If the quotes were of the form "..." (double-quotes)
+** then the EP_DblQuoted flag is set on the expression node.
+**
+** Special case: If op==TK_INTEGER and pToken points to a string that
+** can be translated into a 32-bit integer, then the token is not
+** stored in u.zToken. Instead, the integer values is written
+** into u.iValue and the EP_IntValue flag is set. No extra storage
+** is allocated to hold the integer text and the dequote flag is ignored.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAlloc(
+ sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
+ int op, /* Expression opcode */
+ const Token *pToken, /* Token argument. Might be NULL */
+ int dequote /* True to dequote */
+){
+ Expr *pNew;
+ int nExtra = 0;
+ int iValue = 0;
+
+ if( pToken ){
+ if( op!=TK_INTEGER || pToken->z==0
+ || sqlite3GetInt32(pToken->z, &iValue)==0 ){
+ nExtra = pToken->n+1;
+ }
+ }
+ pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
+ if( pNew ){
+ pNew->op = (u8)op;
+ pNew->iAgg = -1;
+ if( pToken ){
+ if( nExtra==0 ){
+ pNew->flags |= EP_IntValue;
+ pNew->u.iValue = iValue;
+ }else{
+ int c;
+ pNew->u.zToken = (char*)&pNew[1];
+ memcpy(pNew->u.zToken, pToken->z, pToken->n);
+ pNew->u.zToken[pToken->n] = 0;
+ if( dequote && nExtra>=3
+ && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
+ sqlite3Dequote(pNew->u.zToken);
+ if( c=='"' ) pNew->flags |= EP_DblQuoted;
+ }
+ }
+ }
+#if SQLITE_MAX_EXPR_DEPTH>0
+ pNew->nHeight = 1;
+#endif
+ }
+ return pNew;
+}
+
+/*
+** Allocate a new expression node from a zero-terminated token that has
+** already been dequoted.
+*/
+SQLITE_PRIVATE Expr *sqlite3Expr(
+ sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
+ int op, /* Expression opcode */
+ const char *zToken /* Token argument. Might be NULL */
+){
+ Token x;
+ x.z = zToken;
+ x.n = zToken ? sqlite3Strlen30(zToken) : 0;
+ return sqlite3ExprAlloc(db, op, &x, 0);
+}
+
+/*
+** Attach subtrees pLeft and pRight to the Expr node pRoot.
+**
+** If pRoot==NULL that means that a memory allocation error has occurred.
+** In that case, delete the subtrees pLeft and pRight.
+*/
+SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(
+ sqlite3 *db,
+ Expr *pRoot,
+ Expr *pLeft,
+ Expr *pRight
+){
+ if( pRoot==0 ){
+ assert( db->mallocFailed );
+ sqlite3ExprDelete(db, pLeft);
+ sqlite3ExprDelete(db, pRight);
+ }else{
+ if( pRight ){
+ pRoot->pRight = pRight;
+ if( pRight->flags & EP_ExpCollate ){
+ pRoot->flags |= EP_ExpCollate;
+ pRoot->pColl = pRight->pColl;
+ }
+ }
+ if( pLeft ){
+ pRoot->pLeft = pLeft;
+ if( pLeft->flags & EP_ExpCollate ){
+ pRoot->flags |= EP_ExpCollate;
+ pRoot->pColl = pLeft->pColl;
+ }
+ }
+ exprSetHeight(pRoot);
+ }
+}
+
+/*
+** Allocate a Expr node which joins as many as two subtrees.
+**
+** One or both of the subtrees can be NULL. Return a pointer to the new
+** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
+** free the subtrees and return NULL.
+*/
+SQLITE_PRIVATE Expr *sqlite3PExpr(
+ Parse *pParse, /* Parsing context */
+ int op, /* Expression opcode */
+ Expr *pLeft, /* Left operand */
+ Expr *pRight, /* Right operand */
+ const Token *pToken /* Argument token */
+){
+ Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
+ sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
+ return p;
+}
+
+/*
+** Join two expressions using an AND operator. If either expression is
+** NULL, then just return the other expression.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
+ if( pLeft==0 ){
+ return pRight;
+ }else if( pRight==0 ){
+ return pLeft;
+ }else{
+ Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
+ sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
+ return pNew;
+ }
+}
+
+/*
+** Construct a new expression node for a function with multiple
+** arguments.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
+ Expr *pNew;
+ sqlite3 *db = pParse->db;
+ assert( pToken );
+ pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
+ if( pNew==0 ){
+ sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
+ return 0;
+ }
+ pNew->x.pList = pList;
+ assert( !ExprHasProperty(pNew, EP_xIsSelect) );
+ sqlite3ExprSetHeight(pParse, pNew);
+ return pNew;
+}
+
+/*
+** Assign a variable number to an expression that encodes a wildcard
+** in the original SQL statement.
+**
+** Wildcards consisting of a single "?" are assigned the next sequential
+** variable number.
+**
+** Wildcards of the form "?nnn" are assigned the number "nnn". We make
+** sure "nnn" is not too be to avoid a denial of service attack when
+** the SQL statement comes from an external source.
+**
+** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
+** as the previous instance of the same wildcard. Or if this is the first
+** instance of the wildcard, the next sequenial variable number is
+** assigned.
+*/
+SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
+ sqlite3 *db = pParse->db;
+ const char *z;
+
+ if( pExpr==0 ) return;
+ assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
+ z = pExpr->u.zToken;
+ assert( z!=0 );
+ assert( z[0]!=0 );
+ if( z[1]==0 ){
+ /* Wildcard of the form "?". Assign the next variable number */
+ assert( z[0]=='?' );
+ pExpr->iTable = ++pParse->nVar;
+ }else if( z[0]=='?' ){
+ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
+ ** use it as the variable number */
+ int i;
+ pExpr->iTable = i = atoi((char*)&z[1]);
+ testcase( i==0 );
+ testcase( i==1 );
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
+ if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
+ db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
+ }
+ if( i>pParse->nVar ){
+ pParse->nVar = i;
+ }
+ }else{
+ /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
+ ** number as the prior appearance of the same name, or if the name
+ ** has never appeared before, reuse the same variable number
+ */
+ int i;
+ u32 n;
+ n = sqlite3Strlen30(z);
+ for(i=0; i<pParse->nVarExpr; i++){
+ Expr *pE = pParse->apVarExpr[i];
+ assert( pE!=0 );
+ if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
+ pExpr->iTable = pE->iTable;
+ break;
+ }
+ }
+ if( i>=pParse->nVarExpr ){
+ pExpr->iTable = ++pParse->nVar;
+ if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
+ pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
+ pParse->apVarExpr =
+ sqlite3DbReallocOrFree(
+ db,
+ pParse->apVarExpr,
+ pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
+ );
+ }
+ if( !db->mallocFailed ){
+ assert( pParse->apVarExpr!=0 );
+ pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
+ }
+ }
+ }
+ if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ sqlite3ErrorMsg(pParse, "too many SQL variables");
+ }
+}
+
+/*
+** Clear an expression structure without deleting the structure itself.
+** Substructure is deleted.
+*/
+SQLITE_PRIVATE void sqlite3ExprClear(sqlite3 *db, Expr *p){
+ assert( p!=0 );
+ if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
+ sqlite3ExprDelete(db, p->pLeft);
+ sqlite3ExprDelete(db, p->pRight);
+ if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
+ sqlite3DbFree(db, p->u.zToken);
+ }
+ if( ExprHasProperty(p, EP_xIsSelect) ){
+ sqlite3SelectDelete(db, p->x.pSelect);
+ }else{
+ sqlite3ExprListDelete(db, p->x.pList);
+ }
+ }
+}
+
+/*
+** Recursively delete an expression tree.
+*/
+SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){
+ if( p==0 ) return;
+ sqlite3ExprClear(db, p);
+ if( !ExprHasProperty(p, EP_Static) ){
+ sqlite3DbFree(db, p);
+ }
+}
+
+/*
+** Return the number of bytes allocated for the expression structure
+** passed as the first argument. This is always one of EXPR_FULLSIZE,
+** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
+*/
+static int exprStructSize(Expr *p){
+ if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
+ if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
+ return EXPR_FULLSIZE;
+}
+
+/*
+** The dupedExpr*Size() routines each return the number of bytes required
+** to store a copy of an expression or expression tree. They differ in
+** how much of the tree is measured.
+**
+** dupedExprStructSize() Size of only the Expr structure
+** dupedExprNodeSize() Size of Expr + space for token
+** dupedExprSize() Expr + token + subtree components
+**
+***************************************************************************
+**
+** The dupedExprStructSize() function returns two values OR-ed together:
+** (1) the space required for a copy of the Expr structure only and
+** (2) the EP_xxx flags that indicate what the structure size should be.
+** The return values is always one of:
+**
+** EXPR_FULLSIZE
+** EXPR_REDUCEDSIZE | EP_Reduced
+** EXPR_TOKENONLYSIZE | EP_TokenOnly
+**
+** The size of the structure can be found by masking the return value
+** of this routine with 0xfff. The flags can be found by masking the
+** return value with EP_Reduced|EP_TokenOnly.
+**
+** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
+** (unreduced) Expr objects as they or originally constructed by the parser.
+** During expression analysis, extra information is computed and moved into
+** later parts of teh Expr object and that extra information might get chopped
+** off if the expression is reduced. Note also that it does not work to
+** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
+** to reduce a pristine expression tree from the parser. The implementation
+** of dupedExprStructSize() contain multiple assert() statements that attempt
+** to enforce this constraint.
+*/
+static int dupedExprStructSize(Expr *p, int flags){
+ int nSize;
+ assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
+ if( 0==(flags&EXPRDUP_REDUCE) ){
+ nSize = EXPR_FULLSIZE;
+ }else{
+ assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
+ assert( !ExprHasProperty(p, EP_FromJoin) );
+ assert( (p->flags2 & EP2_MallocedToken)==0 );
+ assert( (p->flags2 & EP2_Irreducible)==0 );
+ if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
+ nSize = EXPR_REDUCEDSIZE | EP_Reduced;
+ }else{
+ nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
+ }
+ }
+ return nSize;
+}
+
+/*
+** This function returns the space in bytes required to store the copy
+** of the Expr structure and a copy of the Expr.u.zToken string (if that
+** string is defined.)
+*/
+static int dupedExprNodeSize(Expr *p, int flags){
+ int nByte = dupedExprStructSize(p, flags) & 0xfff;
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ nByte += sqlite3Strlen30(p->u.zToken)+1;
+ }
+ return ROUND8(nByte);
+}
+
+/*
+** Return the number of bytes required to create a duplicate of the
+** expression passed as the first argument. The second argument is a
+** mask containing EXPRDUP_XXX flags.
+**
+** The value returned includes space to create a copy of the Expr struct
+** itself and the buffer referred to by Expr.u.zToken, if any.
+**
+** If the EXPRDUP_REDUCE flag is set, then the return value includes
+** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
+** and Expr.pRight variables (but not for any structures pointed to or
+** descended from the Expr.x.pList or Expr.x.pSelect variables).
+*/
+static int dupedExprSize(Expr *p, int flags){
+ int nByte = 0;
+ if( p ){
+ nByte = dupedExprNodeSize(p, flags);
+ if( flags&EXPRDUP_REDUCE ){
+ nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
+ }
+ }
+ return nByte;
+}
+
+/*
+** This function is similar to sqlite3ExprDup(), except that if pzBuffer
+** is not NULL then *pzBuffer is assumed to point to a buffer large enough
+** to store the copy of expression p, the copies of p->u.zToken
+** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
+** if any. Before returning, *pzBuffer is set to the first byte passed the
+** portion of the buffer copied into by this function.
+*/
+static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
+ Expr *pNew = 0; /* Value to return */
+ if( p ){
+ const int isReduced = (flags&EXPRDUP_REDUCE);
+ u8 *zAlloc;
+ u32 staticFlag = 0;
+
+ assert( pzBuffer==0 || isReduced );
+
+ /* Figure out where to write the new Expr structure. */
+ if( pzBuffer ){
+ zAlloc = *pzBuffer;
+ staticFlag = EP_Static;
+ }else{
+ zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
+ }
+ pNew = (Expr *)zAlloc;
+
+ if( pNew ){
+ /* Set nNewSize to the size allocated for the structure pointed to
+ ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
+ ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
+ ** by the copy of the p->u.zToken string (if any).
+ */
+ const unsigned nStructSize = dupedExprStructSize(p, flags);
+ const int nNewSize = nStructSize & 0xfff;
+ int nToken;
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ nToken = sqlite3Strlen30(p->u.zToken) + 1;
+ }else{
+ nToken = 0;
+ }
+ if( isReduced ){
+ assert( ExprHasProperty(p, EP_Reduced)==0 );
+ memcpy(zAlloc, p, nNewSize);
+ }else{
+ int nSize = exprStructSize(p);
+ memcpy(zAlloc, p, nSize);
+ memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
+ }
+
+ /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
+ pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
+ pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
+ pNew->flags |= staticFlag;
+
+ /* Copy the p->u.zToken string, if any. */
+ if( nToken ){
+ char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
+ memcpy(zToken, p->u.zToken, nToken);
+ }
+
+ if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
+ /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
+ if( ExprHasProperty(p, EP_xIsSelect) ){
+ pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
+ }else{
+ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
+ }
+ }
+
+ /* Fill in pNew->pLeft and pNew->pRight. */
+ if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
+ zAlloc += dupedExprNodeSize(p, flags);
+ if( ExprHasProperty(pNew, EP_Reduced) ){
+ pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
+ pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
+ }
+ if( pzBuffer ){
+ *pzBuffer = zAlloc;
+ }
+ }else{
+ pNew->flags2 = 0;
+ if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
+ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
+ pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
+ }
+ }
+
+ }
+ }
+ return pNew;
+}
+
+/*
+** The following group of routines make deep copies of expressions,
+** expression lists, ID lists, and select statements. The copies can
+** be deleted (by being passed to their respective ...Delete() routines)
+** without effecting the originals.
+**
+** The expression list, ID, and source lists return by sqlite3ExprListDup(),
+** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
+** by subsequent calls to sqlite*ListAppend() routines.
+**
+** Any tables that the SrcList might point to are not duplicated.
+**
+** The flags parameter contains a combination of the EXPRDUP_XXX flags.
+** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
+** truncated version of the usual Expr structure that will be stored as
+** part of the in-memory representation of the database schema.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
+ return exprDup(db, p, flags, 0);
+}
+SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
+ ExprList *pNew;
+ struct ExprList_item *pItem, *pOldItem;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->iECursor = 0;
+ pNew->nExpr = pNew->nAlloc = p->nExpr;
+ pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
+ if( pItem==0 ){
+ sqlite3DbFree(db, pNew);
+ return 0;
+ }
+ pOldItem = p->a;
+ for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
+ Expr *pOldExpr = pOldItem->pExpr;
+ pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
+ pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
+ pItem->sortOrder = pOldItem->sortOrder;
+ pItem->done = 0;
+ pItem->iCol = pOldItem->iCol;
+ pItem->iAlias = pOldItem->iAlias;
+ }
+ return pNew;
+}
+
+/*
+** If cursors, triggers, views and subqueries are all omitted from
+** the build, then none of the following routines, except for
+** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
+** called with a NULL argument.
+*/
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
+ || !defined(SQLITE_OMIT_SUBQUERY)
+SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
+ SrcList *pNew;
+ int i;
+ int nByte;
+ if( p==0 ) return 0;
+ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
+ pNew = sqlite3DbMallocRaw(db, nByte );
+ if( pNew==0 ) return 0;
+ pNew->nSrc = pNew->nAlloc = p->nSrc;
+ for(i=0; i<p->nSrc; i++){
+ struct SrcList_item *pNewItem = &pNew->a[i];
+ struct SrcList_item *pOldItem = &p->a[i];
+ Table *pTab;
+ pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
+ pNewItem->jointype = pOldItem->jointype;
+ pNewItem->iCursor = pOldItem->iCursor;
+ pNewItem->isPopulated = pOldItem->isPopulated;
+ pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
+ pNewItem->notIndexed = pOldItem->notIndexed;
+ pNewItem->pIndex = pOldItem->pIndex;
+ pTab = pNewItem->pTab = pOldItem->pTab;
+ if( pTab ){
+ pTab->nRef++;
+ }
+ pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
+ pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
+ pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
+ pNewItem->colUsed = pOldItem->colUsed;
+ }
+ return pNew;
+}
+SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
+ IdList *pNew;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->nId = pNew->nAlloc = p->nId;
+ pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
+ if( pNew->a==0 ){
+ sqlite3DbFree(db, pNew);
+ return 0;
+ }
+ for(i=0; i<p->nId; i++){
+ struct IdList_item *pNewItem = &pNew->a[i];
+ struct IdList_item *pOldItem = &p->a[i];
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pNewItem->idx = pOldItem->idx;
+ }
+ return pNew;
+}
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
+ Select *pNew;
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
+ if( pNew==0 ) return 0;
+ pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
+ pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
+ pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
+ pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
+ pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
+ pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
+ pNew->op = p->op;
+ pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
+ pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
+ pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
+ pNew->iLimit = 0;
+ pNew->iOffset = 0;
+ pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
+ pNew->pRightmost = 0;
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->addrOpenEphm[2] = -1;
+ return pNew;
+}
+#else
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
+ assert( p==0 );
+ return 0;
+}
+#endif
+
+
+/*
+** Add a new element to the end of an expression list. If pList is
+** initially NULL, then create a new expression list.
+**
+** If a memory allocation error occurs, the entire list is freed and
+** NULL is returned. If non-NULL is returned, then it is guaranteed
+** that the new entry was successfully appended.
+*/
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ Expr *pExpr /* Expression to be appended. Might be NULL */
+){
+ sqlite3 *db = pParse->db;
+ if( pList==0 ){
+ pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
+ if( pList==0 ){
+ goto no_mem;
+ }
+ assert( pList->nAlloc==0 );
+ }
+ if( pList->nAlloc<=pList->nExpr ){
+ struct ExprList_item *a;
+ int n = pList->nAlloc*2 + 4;
+ a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
+ if( a==0 ){
+ goto no_mem;
+ }
+ pList->a = a;
+ pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
+ }
+ assert( pList->a!=0 );
+ if( 1 ){
+ struct ExprList_item *pItem = &pList->a[pList->nExpr++];
+ memset(pItem, 0, sizeof(*pItem));
+ pItem->pExpr = pExpr;
+ }
+ return pList;
+
+no_mem:
+ /* Avoid leaking memory if malloc has failed. */
+ sqlite3ExprDelete(db, pExpr);
+ sqlite3ExprListDelete(db, pList);
+ return 0;
+}
+
+/*
+** Set the ExprList.a[].zName element of the most recently added item
+** on the expression list.
+**
+** pList might be NULL following an OOM error. But pName should never be
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
+** is set.
+*/
+SQLITE_PRIVATE void sqlite3ExprListSetName(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to add the span. */
+ Token *pName, /* Name to be added */
+ int dequote /* True to cause the name to be dequoted */
+){
+ assert( pList!=0 || pParse->db->mallocFailed!=0 );
+ if( pList ){
+ struct ExprList_item *pItem;
+ assert( pList->nExpr>0 );
+ pItem = &pList->a[pList->nExpr-1];
+ assert( pItem->zName==0 );
+ pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
+ if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
+ }
+}
+
+/*
+** Set the ExprList.a[].zSpan element of the most recently added item
+** on the expression list.
+**
+** pList might be NULL following an OOM error. But pSpan should never be
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
+** is set.
+*/
+SQLITE_PRIVATE void sqlite3ExprListSetSpan(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to add the span. */
+ ExprSpan *pSpan /* The span to be added */
+){
+ sqlite3 *db = pParse->db;
+ assert( pList!=0 || db->mallocFailed!=0 );
+ if( pList ){
+ struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
+ assert( pList->nExpr>0 );
+ assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
+ sqlite3DbFree(db, pItem->zSpan);
+ pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
+ (int)(pSpan->zEnd - pSpan->zStart));
+ }
+}
+
+/*
+** If the expression list pEList contains more than iLimit elements,
+** leave an error message in pParse.
+*/
+SQLITE_PRIVATE void sqlite3ExprListCheckLength(
+ Parse *pParse,
+ ExprList *pEList,
+ const char *zObject
+){
+ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
+ testcase( pEList && pEList->nExpr==mx );
+ testcase( pEList && pEList->nExpr==mx+1 );
+ if( pEList && pEList->nExpr>mx ){
+ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
+ }
+}
+
+/*
+** Delete an entire expression list.
+*/
+SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
+ int i;
+ struct ExprList_item *pItem;
+ if( pList==0 ) return;
+ assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
+ assert( pList->nExpr<=pList->nAlloc );
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
+ sqlite3ExprDelete(db, pItem->pExpr);
+ sqlite3DbFree(db, pItem->zName);
+ sqlite3DbFree(db, pItem->zSpan);
+ }
+ sqlite3DbFree(db, pList->a);
+ sqlite3DbFree(db, pList);
+}
+
+/*
+** These routines are Walker callbacks. Walker.u.pi is a pointer
+** to an integer. These routines are checking an expression to see
+** if it is a constant. Set *Walker.u.pi to 0 if the expression is
+** not constant.
+**
+** These callback routines are used to implement the following:
+**
+** sqlite3ExprIsConstant()
+** sqlite3ExprIsConstantNotJoin()
+** sqlite3ExprIsConstantOrFunction()
+**
+*/
+static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
+
+ /* If pWalker->u.i is 3 then any term of the expression that comes from
+ ** the ON or USING clauses of a join disqualifies the expression
+ ** from being considered constant. */
+ if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
+ pWalker->u.i = 0;
+ return WRC_Abort;
+ }
+
+ switch( pExpr->op ){
+ /* Consider functions to be constant if all their arguments are constant
+ ** and pWalker->u.i==2 */
+ case TK_FUNCTION:
+ if( pWalker->u.i==2 ) return 0;
+ /* Fall through */
+ case TK_ID:
+ case TK_COLUMN:
+ case TK_AGG_FUNCTION:
+ case TK_AGG_COLUMN:
+ testcase( pExpr->op==TK_ID );
+ testcase( pExpr->op==TK_COLUMN );
+ testcase( pExpr->op==TK_AGG_FUNCTION );
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ pWalker->u.i = 0;
+ return WRC_Abort;
+ default:
+ testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
+ testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
+ return WRC_Continue;
+ }
+}
+static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ pWalker->u.i = 0;
+ return WRC_Abort;
+}
+static int exprIsConst(Expr *p, int initFlag){
+ Walker w;
+ w.u.i = initFlag;
+ w.xExprCallback = exprNodeIsConstant;
+ w.xSelectCallback = selectNodeIsConstant;
+ sqlite3WalkExpr(&w, p);
+ return w.u.i;
+}
+
+/*
+** Walk an expression tree. Return 1 if the expression is constant
+** and 0 if it involves variables or function calls.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
+ return exprIsConst(p, 1);
+}
+
+/*
+** Walk an expression tree. Return 1 if the expression is constant
+** that does no originate from the ON or USING clauses of a join.
+** Return 0 if it involves variables or function calls or terms from
+** an ON or USING clause.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
+ return exprIsConst(p, 3);
+}
+
+/*
+** Walk an expression tree. Return 1 if the expression is constant
+** or a function call with constant arguments. Return and 0 if there
+** are any variables.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){
+ return exprIsConst(p, 2);
+}
+
+/*
+** If the expression p codes a constant integer that is small enough
+** to fit in a 32-bit integer, return 1 and put the value of the integer
+** in *pValue. If the expression is not an integer or if it is too big
+** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){
+ int rc = 0;
+ if( p->flags & EP_IntValue ){
+ *pValue = p->u.iValue;
+ return 1;
+ }
+ switch( p->op ){
+ case TK_INTEGER: {
+ rc = sqlite3GetInt32(p->u.zToken, pValue);
+ assert( rc==0 );
+ break;
+ }
+ case TK_UPLUS: {
+ rc = sqlite3ExprIsInteger(p->pLeft, pValue);
+ break;
+ }
+ case TK_UMINUS: {
+ int v;
+ if( sqlite3ExprIsInteger(p->pLeft, &v) ){
+ *pValue = -v;
+ rc = 1;
+ }
+ break;
+ }
+ default: break;
+ }
+ if( rc ){
+ assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly)
+ || (p->flags2 & EP2_MallocedToken)==0 );
+ p->op = TK_INTEGER;
+ p->flags |= EP_IntValue;
+ p->u.iValue = *pValue;
+ }
+ return rc;
+}
+
+/*
+** Return TRUE if the given string is a row-id column name.
+*/
+SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
+ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
+ if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
+ if( sqlite3StrICmp(z, "OID")==0 ) return 1;
+ return 0;
+}
+
+/*
+** Return true if we are able to the IN operator optimization on a
+** query of the form
+**
+** x IN (SELECT ...)
+**
+** Where the SELECT... clause is as specified by the parameter to this
+** routine.
+**
+** The Select object passed in has already been preprocessed and no
+** errors have been found.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+static int isCandidateForInOpt(Select *p){
+ SrcList *pSrc;
+ ExprList *pEList;
+ Table *pTab;
+ if( p==0 ) return 0; /* right-hand side of IN is SELECT */
+ if( p->pPrior ) return 0; /* Not a compound SELECT */
+ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
+ return 0; /* No DISTINCT keyword and no aggregate functions */
+ }
+ assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
+ if( p->pLimit ) return 0; /* Has no LIMIT clause */
+ assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
+ if( p->pWhere ) return 0; /* Has no WHERE clause */
+ pSrc = p->pSrc;
+ assert( pSrc!=0 );
+ if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
+ if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
+ pTab = pSrc->a[0].pTab;
+ if( NEVER(pTab==0) ) return 0;
+ assert( pTab->pSelect==0 ); /* FROM clause is not a view */
+ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
+ pEList = p->pEList;
+ if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
+ if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
+ return 1;
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+/*
+** This function is used by the implementation of the IN (...) operator.
+** It's job is to find or create a b-tree structure that may be used
+** either to test for membership of the (...) set or to iterate through
+** its members, skipping duplicates.
+**
+** The index of the cursor opened on the b-tree (database table, database index
+** or ephermal table) is stored in pX->iTable before this function returns.
+** The returned value of this function indicates the b-tree type, as follows:
+**
+** IN_INDEX_ROWID - The cursor was opened on a database table.
+** IN_INDEX_INDEX - The cursor was opened on a database index.
+** IN_INDEX_EPH - The cursor was opened on a specially created and
+** populated epheremal table.
+**
+** An existing b-tree may only be used if the SELECT is of the simple
+** form:
+**
+** SELECT <column> FROM <table>
+**
+** If the prNotFound parameter is 0, then the b-tree will be used to iterate
+** through the set members, skipping any duplicates. In this case an
+** epheremal table must be used unless the selected <column> is guaranteed
+** to be unique - either because it is an INTEGER PRIMARY KEY or it
+** has a UNIQUE constraint or UNIQUE index.
+**
+** If the prNotFound parameter is not 0, then the b-tree will be used
+** for fast set membership tests. In this case an epheremal table must
+** be used unless <column> is an INTEGER PRIMARY KEY or an index can
+** be found with <column> as its left-most column.
+**
+** When the b-tree is being used for membership tests, the calling function
+** needs to know whether or not the structure contains an SQL NULL
+** value in order to correctly evaluate expressions like "X IN (Y, Z)".
+** If there is a chance that the b-tree might contain a NULL value at
+** runtime, then a register is allocated and the register number written
+** to *prNotFound. If there is no chance that the b-tree contains a
+** NULL value, then *prNotFound is left unchanged.
+**
+** If a register is allocated and its location stored in *prNotFound, then
+** its initial value is NULL. If the b-tree does not remain constant
+** for the duration of the query (i.e. the SELECT that generates the b-tree
+** is a correlated subquery) then the value of the allocated register is
+** reset to NULL each time the b-tree is repopulated. This allows the
+** caller to use vdbe code equivalent to the following:
+**
+** if( register==NULL ){
+** has_null = <test if data structure contains null>
+** register = 1
+** }
+**
+** in order to avoid running the <test if data structure contains null>
+** test more often than is necessary.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
+ Select *p; /* SELECT to the right of IN operator */
+ int eType = 0; /* Type of RHS table. IN_INDEX_* */
+ int iTab = pParse->nTab++; /* Cursor of the RHS table */
+ int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
+
+ /* Check to see if an existing table or index can be used to
+ ** satisfy the query. This is preferable to generating a new
+ ** ephemeral table.
+ */
+ p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
+ if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
+ sqlite3 *db = pParse->db; /* Database connection */
+ Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */
+ int iCol = pExpr->iColumn; /* Index of column <column> */
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
+ Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */
+ int iDb; /* Database idx for pTab */
+
+ /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ /* This function is only called from two places. In both cases the vdbe
+ ** has already been allocated. So assume sqlite3GetVdbe() is always
+ ** successful here.
+ */
+ assert(v);
+ if( iCol<0 ){
+ int iMem = ++pParse->nMem;
+ int iAddr;
+
+ iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
+
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
+ eType = IN_INDEX_ROWID;
+
+ sqlite3VdbeJumpHere(v, iAddr);
+ }else{
+ Index *pIdx; /* Iterator variable */
+
+ /* The collation sequence used by the comparison. If an index is to
+ ** be used in place of a temp-table, it must be ordered according
+ ** to this collation sequence. */
+ CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
+
+ /* Check that the affinity that will be used to perform the
+ ** comparison is the same as the affinity of the column. If
+ ** it is not, it is not possible to use any index.
+ */
+ char aff = comparisonAffinity(pX);
+ int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
+
+ for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
+ if( (pIdx->aiColumn[0]==iCol)
+ && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
+ && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
+ ){
+ int iMem = ++pParse->nMem;
+ int iAddr;
+ char *pKey;
+
+ pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
+ iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
+
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
+ pKey,P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIdx->zName));
+ eType = IN_INDEX_INDEX;
+
+ sqlite3VdbeJumpHere(v, iAddr);
+ if( prNotFound && !pTab->aCol[iCol].notNull ){
+ *prNotFound = ++pParse->nMem;
+ }
+ }
+ }
+ }
+ }
+
+ if( eType==0 ){
+ /* Could not found an existing able or index to use as the RHS b-tree.
+ ** We will have to generate an ephemeral table to do the job.
+ */
+ int rMayHaveNull = 0;
+ eType = IN_INDEX_EPH;
+ if( prNotFound ){
+ *prNotFound = rMayHaveNull = ++pParse->nMem;
+ }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
+ eType = IN_INDEX_ROWID;
+ }
+ sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
+ }else{
+ pX->iTable = iTab;
+ }
+ return eType;
+}
+#endif
/*
** Generate code for scalar subqueries used as an expression
@@ -38191,12 +61198,36 @@ struct QueryCoder {
**
** The pExpr parameter describes the expression that contains the IN
** operator or subquery.
+**
+** If parameter isRowid is non-zero, then expression pExpr is guaranteed
+** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
+** to some integer key column of a table B-Tree. In this case, use an
+** intkey B-Tree to store the set of IN(...) values instead of the usual
+** (slower) variable length keys B-Tree.
+**
+** If rMayHaveNull is non-zero, that means that the operation is an IN
+** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
+** Furthermore, the IN is in a WHERE clause and that we really want
+** to iterate over the RHS of the IN operator in order to quickly locate
+** all corresponding LHS elements. All this routine does is initialize
+** the register given by rMayHaveNull to NULL. Calling routines will take
+** care of changing this register value to non-NULL if the RHS is NULL-free.
+**
+** If rMayHaveNull is zero, that means that the subquery is being used
+** for membership testing only. There is no need to initialize any
+** registers to indicate the presense or absence of NULLs on the RHS.
*/
#ifndef SQLITE_OMIT_SUBQUERY
-void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
+SQLITE_PRIVATE void sqlite3CodeSubselect(
+ Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
+ int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
+ int isRowid /* If true, LHS of IN operator is a rowid */
+){
int testAddr = 0; /* One-time test address */
Vdbe *v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
+ if( NEVER(v==0) ) return;
+ sqlite3ExprCachePush(pParse);
/* This code must be run in its entirety every time it is encountered
** if any of the following is true:
@@ -38208,12 +61239,11 @@ void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
** If all of the above are false, then we can run this code just once
** save the results, and reuse the same result on subsequent invocations.
*/
- if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
- int mem = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
- testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
- assert( testAddr>0 || sqlite3MallocFailed() );
- sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
+ if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
+ int mem = ++pParse->nMem;
+ sqlite3VdbeAddOp1(v, OP_If, mem);
+ testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
+ assert( testAddr>0 || pParse->db->mallocFailed );
}
switch( pExpr->op ){
@@ -38221,8 +61251,13 @@ void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
char affinity;
KeyInfo keyInfo;
int addr; /* Address of OP_OpenEphemeral instruction */
+ Expr *pLeft = pExpr->pLeft;
+
+ if( rMayHaveNull ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
+ }
- affinity = sqlite3ExprAffinity(pExpr->pLeft);
+ affinity = sqlite3ExprAffinity(pLeft);
/* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
** expression it is handled the same way. A virtual table is
@@ -38238,46 +61273,53 @@ void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
** is used.
*/
pExpr->iTable = pParse->nTab++;
- addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
memset(&keyInfo, 0, sizeof(keyInfo));
keyInfo.nField = 1;
- sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
- if( pExpr->pSelect ){
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
/* Case 1: expr IN (SELECT ...)
**
** Generate code to write the results of the select into the temporary
** table allocated and opened above.
*/
- int iParm = pExpr->iTable + (((int)affinity)<<16);
+ SelectDest dest;
ExprList *pEList;
+
+ assert( !isRowid );
+ sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
+ dest.affinity = (u8)affinity;
assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
- if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
+ if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
return;
}
- pEList = pExpr->pSelect->pEList;
- if( pEList && pEList->nExpr>0 ){
- keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft,
+ pEList = pExpr->x.pSelect->pEList;
+ if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
+ keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
pEList->a[0].pExpr);
}
- }else if( pExpr->pList ){
+ }else if( pExpr->x.pList!=0 ){
/* Case 2: expr IN (exprlist)
**
- ** For each expression, build an index key from the evaluation and
+ ** For each expression, build an index key from the evaluation and
** store it in the temporary table. If <expr> is a column, then use
** that columns affinity when building index keys. If <expr> is not
** a column, use numeric affinity.
*/
int i;
- ExprList *pList = pExpr->pList;
+ ExprList *pList = pExpr->x.pList;
struct ExprList_item *pItem;
+ int r1, r2, r3;
if( !affinity ){
affinity = SQLITE_AFF_NONE;
}
- keyInfo.aColl[0] = pExpr->pLeft->pColl;
+ keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
/* Loop through each expression in <exprlist>. */
+ r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
Expr *pE2 = pItem->pExpr;
@@ -38286,130 +61328,504 @@ void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
** this code only executes once. Because for a non-constant
** expression we need to rerun this code each time.
*/
- if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
- sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
+ if( testAddr && !sqlite3ExprIsConstant(pE2) ){
+ sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
testAddr = 0;
}
/* Evaluate the expression and insert it into the temp table */
- sqlite3ExprCode(pParse, pE2);
- sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
- sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
+ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
+ if( isRowid ){
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
+ sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
+ }else{
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, r3, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
+ }
}
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ if( !isRowid ){
+ sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
}
- sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
break;
}
case TK_EXISTS:
- case TK_SELECT: {
- /* This has to be a scalar SELECT. Generate code to put the
+ case TK_SELECT:
+ default: {
+ /* If this has to be a scalar SELECT. Generate code to put the
** value of this select in a memory cell and record the number
- ** of the memory cell in iColumn.
+ ** of the memory cell in iColumn. If this is an EXISTS, write
+ ** an integer 0 (not exists) or 1 (exists) into a memory cell
+ ** and record that memory cell in iColumn.
*/
- static const Token one = { (u8*)"1", 0, 1 };
- Select *pSel;
- int iMem;
- int sop;
+ static const Token one = { "1", 1 }; /* Token for literal value 1 */
+ Select *pSel; /* SELECT statement to encode */
+ SelectDest dest; /* How to deal with SELECt result */
+
+ testcase( pExpr->op==TK_EXISTS );
+ testcase( pExpr->op==TK_SELECT );
+ assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
- pExpr->iColumn = iMem = pParse->nMem++;
- pSel = pExpr->pSelect;
+ assert( ExprHasProperty(pExpr, EP_xIsSelect) );
+ pSel = pExpr->x.pSelect;
+ sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
if( pExpr->op==TK_SELECT ){
- sop = SRT_Mem;
- sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
- VdbeComment((v, "# Init subquery result"));
+ dest.eDest = SRT_Mem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
+ VdbeComment((v, "Init subquery result"));
}else{
- sop = SRT_Exists;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
- VdbeComment((v, "# Init EXISTS result"));
+ dest.eDest = SRT_Exists;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
+ VdbeComment((v, "Init EXISTS result"));
}
- sqlite3ExprDelete(pSel->pLimit);
- pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one);
- if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
+ sqlite3ExprDelete(pParse->db, pSel->pLimit);
+ pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
+ if( sqlite3Select(pParse, pSel, &dest) ){
return;
}
+ pExpr->iColumn = (i16)dest.iParm;
+ ExprSetIrreducible(pExpr);
break;
}
}
if( testAddr ){
- sqlite3VdbeJumpHere(v, testAddr);
+ sqlite3VdbeJumpHere(v, testAddr-1);
}
+ sqlite3ExprCachePop(pParse, 1);
+
return;
}
#endif /* SQLITE_OMIT_SUBQUERY */
/*
+** Duplicate an 8-byte value
+*/
+static char *dup8bytes(Vdbe *v, const char *in){
+ char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
+ if( out ){
+ memcpy(out, in, 8);
+ }
+ return out;
+}
+
+/*
+** Generate an instruction that will put the floating point
+** value described by z[0..n-1] into register iMem.
+**
+** The z[] string will probably not be zero-terminated. But the
+** z[n] character is guaranteed to be something that does not look
+** like the continuation of the number.
+*/
+static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
+ if( ALWAYS(z!=0) ){
+ double value;
+ char *zV;
+ sqlite3AtoF(z, &value);
+ assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
+ if( negateFlag ) value = -value;
+ zV = dup8bytes(v, (char*)&value);
+ sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
+ }
+}
+
+
+/*
** Generate an instruction that will put the integer describe by
-** text z[0..n-1] on the stack.
+** text z[0..n-1] into register iMem.
+**
+** The z[] string will probably not be zero-terminated. But the
+** z[n] character is guaranteed to be something that does not look
+** like the continuation of the number.
*/
-static void codeInteger(Vdbe *v, const char *z, int n){
- int i;
- if( sqlite3GetInt32(z, &i) ){
- sqlite3VdbeAddOp(v, OP_Integer, i, 0);
- }else if( sqlite3FitsIn64Bits(z) ){
- sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n);
+static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
+ if( pExpr->flags & EP_IntValue ){
+ int i = pExpr->u.iValue;
+ if( negFlag ) i = -i;
+ sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
}else{
- sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n);
+ const char *z = pExpr->u.zToken;
+ assert( z!=0 );
+ if( sqlite3FitsIn64Bits(z, negFlag) ){
+ i64 value;
+ char *zV;
+ sqlite3Atoi64(z, &value);
+ if( negFlag ) value = -value;
+ zV = dup8bytes(v, (char*)&value);
+ sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
+ }else{
+ codeReal(v, z, negFlag, iMem);
+ }
+ }
+}
+
+/*
+** Clear a cache entry.
+*/
+static void cacheEntryClear(Parse *pParse, struct yColCache *p){
+ if( p->tempReg ){
+ if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
+ pParse->aTempReg[pParse->nTempReg++] = p->iReg;
+ }
+ p->tempReg = 0;
}
}
/*
-** Generate code that will extract the iColumn-th column from
-** table pTab and push that column value on the stack. There
-** is an open cursor to pTab in iTable. If iColumn<0 then
-** code is generated that extracts the rowid.
+** Record in the column cache that a particular column from a
+** particular table is stored in a particular register.
*/
-void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
+SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
+ int i;
+ int minLru;
+ int idxLru;
+ struct yColCache *p;
+
+ assert( iReg>0 ); /* Register numbers are always positive */
+ assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
+
+ /* First replace any existing entry */
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
+ cacheEntryClear(pParse, p);
+ p->iLevel = pParse->iCacheLevel;
+ p->iReg = iReg;
+ p->affChange = 0;
+ p->lru = pParse->iCacheCnt++;
+ return;
+ }
+ }
+
+ /* Find an empty slot and replace it */
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->iReg==0 ){
+ p->iLevel = pParse->iCacheLevel;
+ p->iTable = iTab;
+ p->iColumn = iCol;
+ p->iReg = iReg;
+ p->affChange = 0;
+ p->tempReg = 0;
+ p->lru = pParse->iCacheCnt++;
+ return;
+ }
+ }
+
+ /* Replace the last recently used */
+ minLru = 0x7fffffff;
+ idxLru = -1;
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->lru<minLru ){
+ idxLru = i;
+ minLru = p->lru;
+ }
+ }
+ if( ALWAYS(idxLru>=0) ){
+ p = &pParse->aColCache[idxLru];
+ p->iLevel = pParse->iCacheLevel;
+ p->iTable = iTab;
+ p->iColumn = iCol;
+ p->iReg = iReg;
+ p->affChange = 0;
+ p->tempReg = 0;
+ p->lru = pParse->iCacheCnt++;
+ return;
+ }
+}
+
+/*
+** Indicate that a register is being overwritten. Purge the register
+** from the column cache.
+*/
+SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse *pParse, int iReg){
+ int i;
+ struct yColCache *p;
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->iReg==iReg ){
+ cacheEntryClear(pParse, p);
+ p->iReg = 0;
+ }
+ }
+}
+
+/*
+** Remember the current column cache context. Any new entries added
+** added to the column cache after this call are removed when the
+** corresponding pop occurs.
+*/
+SQLITE_PRIVATE void sqlite3ExprCachePush(Parse *pParse){
+ pParse->iCacheLevel++;
+}
+
+/*
+** Remove from the column cache any entries that were added since the
+** the previous N Push operations. In other words, restore the cache
+** to the state it was in N Pushes ago.
+*/
+SQLITE_PRIVATE void sqlite3ExprCachePop(Parse *pParse, int N){
+ int i;
+ struct yColCache *p;
+ assert( N>0 );
+ assert( pParse->iCacheLevel>=N );
+ pParse->iCacheLevel -= N;
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->iReg && p->iLevel>pParse->iCacheLevel ){
+ cacheEntryClear(pParse, p);
+ p->iReg = 0;
+ }
+ }
+}
+
+/*
+** When a cached column is reused, make sure that its register is
+** no longer available as a temp register. ticket #3879: that same
+** register might be in the cache in multiple places, so be sure to
+** get them all.
+*/
+static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
+ int i;
+ struct yColCache *p;
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->iReg==iReg ){
+ p->tempReg = 0;
+ }
+ }
+}
+
+/*
+** Generate code that will extract the iColumn-th column from
+** table pTab and store the column value in a register. An effort
+** is made to store the column value in register iReg, but this is
+** not guaranteed. The location of the column value is returned.
+**
+** There must be an open cursor to pTab in iTable when this routine
+** is called. If iColumn<0 then code is generated that extracts the rowid.
+**
+** This routine might attempt to reuse the value of the column that
+** has already been loaded into a register. The value will always
+** be used if it has not undergone any affinity changes. But if
+** an affinity change has occurred, then the cached value will only be
+** used if allowAffChng is true.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* Description of the table we are reading from */
+ int iColumn, /* Index of the table column */
+ int iTable, /* The cursor pointing to the table */
+ int iReg, /* Store results here */
+ int allowAffChng /* True if prior affinity changes are OK */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct yColCache *p;
+
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn
+ && (!p->affChange || allowAffChng) ){
+ p->lru = pParse->iCacheCnt++;
+ sqlite3ExprCachePinRegister(pParse, p->iReg);
+ return p->iReg;
+ }
+ }
+ assert( v!=0 );
if( iColumn<0 ){
- int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
- sqlite3VdbeAddOp(v, op, iTable, 0);
- }else if( pTab==0 ){
- sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
- }else{
+ sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg);
+ }else if( ALWAYS(pTab!=0) ){
int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
- sqlite3VdbeAddOp(v, op, iTable, iColumn);
- sqlite3ColumnDefault(v, pTab, iColumn);
-#ifndef SQLITE_OMIT_FLOATING_POINT
- if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
- sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
+ sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
+ sqlite3ColumnDefault(v, pTab, iColumn, iReg);
+ }
+ sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
+ return iReg;
+}
+
+/*
+** Clear all column cache entries.
+*/
+SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse *pParse){
+ int i;
+ struct yColCache *p;
+
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->iReg ){
+ cacheEntryClear(pParse, p);
+ p->iReg = 0;
}
-#endif
}
}
/*
-** Generate code into the current Vdbe to evaluate the given
-** expression and leave the result on the top of stack.
+** Record the fact that an affinity change has occurred on iCount
+** registers starting with iStart.
+*/
+SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
+ int iEnd = iStart + iCount - 1;
+ int i;
+ struct yColCache *p;
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ int r = p->iReg;
+ if( r>=iStart && r<=iEnd ){
+ p->affChange = 1;
+ }
+ }
+}
+
+/*
+** Generate code to move content from registers iFrom...iFrom+nReg-1
+** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
+ int i;
+ struct yColCache *p;
+ if( NEVER(iFrom==iTo) ) return;
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ int x = p->iReg;
+ if( x>=iFrom && x<iFrom+nReg ){
+ p->iReg += iTo-iFrom;
+ }
+ }
+}
+
+/*
+** Generate code to copy content from registers iFrom...iFrom+nReg-1
+** over to iTo..iTo+nReg-1.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
+ int i;
+ if( NEVER(iFrom==iTo) ) return;
+ for(i=0; i<nReg; i++){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
+ }
+}
+
+/*
+** Return true if any register in the range iFrom..iTo (inclusive)
+** is used as part of the column cache.
+*/
+static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
+ int i;
+ struct yColCache *p;
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ int r = p->iReg;
+ if( r>=iFrom && r<=iTo ) return 1;
+ }
+ return 0;
+}
+
+/*
+** If the last instruction coded is an ephemeral copy of any of
+** the registers in the nReg registers beginning with iReg, then
+** convert the last instruction from OP_SCopy to OP_Copy.
+*/
+SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
+ VdbeOp *pOp;
+ Vdbe *v;
+
+ assert( pParse->db->mallocFailed==0 );
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ pOp = sqlite3VdbeGetOp(v, -1);
+ assert( pOp!=0 );
+ if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
+ pOp->opcode = OP_Copy;
+ }
+}
+
+/*
+** Generate code to store the value of the iAlias-th alias in register
+** target. The first time this is called, pExpr is evaluated to compute
+** the value of the alias. The value is stored in an auxiliary register
+** and the number of that register is returned. On subsequent calls,
+** the register number is returned without generating any code.
**
-** This code depends on the fact that certain token values (ex: TK_EQ)
-** are the same as opcode values (ex: OP_Eq) that implement the corresponding
-** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
-** the make process cause these values to align. Assert()s in the code
-** below verify that the numbers are aligned correctly.
+** Note that in order for this to work, code must be generated in the
+** same order that it is executed.
+**
+** Aliases are numbered starting with 1. So iAlias is in the range
+** of 1 to pParse->nAlias inclusive.
+**
+** pParse->aAlias[iAlias-1] records the register number where the value
+** of the iAlias-th alias is stored. If zero, that means that the
+** alias has not yet been computed.
*/
-void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
- Vdbe *v = pParse->pVdbe;
- int op;
- int stackChng = 1; /* Amount of change to stack depth */
+static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
+#if 0
+ sqlite3 *db = pParse->db;
+ int iReg;
+ if( pParse->nAliasAlloc<pParse->nAlias ){
+ pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
+ sizeof(pParse->aAlias[0])*pParse->nAlias );
+ testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
+ if( db->mallocFailed ) return 0;
+ memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
+ (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
+ pParse->nAliasAlloc = pParse->nAlias;
+ }
+ assert( iAlias>0 && iAlias<=pParse->nAlias );
+ iReg = pParse->aAlias[iAlias-1];
+ if( iReg==0 ){
+ if( pParse->iCacheLevel>0 ){
+ iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
+ }else{
+ iReg = ++pParse->nMem;
+ sqlite3ExprCode(pParse, pExpr, iReg);
+ pParse->aAlias[iAlias-1] = iReg;
+ }
+ }
+ return iReg;
+#else
+ UNUSED_PARAMETER(iAlias);
+ return sqlite3ExprCodeTarget(pParse, pExpr, target);
+#endif
+}
+
+/*
+** Generate code into the current Vdbe to evaluate the given
+** expression. Attempt to store the results in register "target".
+** Return the register where results are stored.
+**
+** With this routine, there is no guarantee that results will
+** be stored in target. The result might be stored in some other
+** register if it is convenient to do so. The calling function
+** must check the return code and move the results to the desired
+** register.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
+ Vdbe *v = pParse->pVdbe; /* The VM under construction */
+ int op; /* The opcode being coded */
+ int inReg = target; /* Results stored in register inReg */
+ int regFree1 = 0; /* If non-zero free this temporary register */
+ int regFree2 = 0; /* If non-zero free this temporary register */
+ int r1, r2, r3, r4; /* Various register numbers */
+ sqlite3 *db = pParse->db; /* The database connection */
+
+ assert( target>0 && target<=pParse->nMem );
+ if( v==0 ){
+ assert( pParse->db->mallocFailed );
+ return 0;
+ }
- if( v==0 ) return;
if( pExpr==0 ){
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- return;
+ op = TK_NULL;
+ }else{
+ op = pExpr->op;
}
- op = pExpr->op;
switch( op ){
case TK_AGG_COLUMN: {
AggInfo *pAggInfo = pExpr->pAggInfo;
struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
if( !pAggInfo->directMode ){
- sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
+ assert( pCol->iMem>0 );
+ inReg = pCol->iMem;
break;
}else if( pAggInfo->useSortingIdx ){
- sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
- pCol->iSorterColumn);
+ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
+ pCol->iSorterColumn, target);
break;
}
/* Otherwise, fall thru into the TK_COLUMN case */
@@ -38417,69 +61833,108 @@ void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
case TK_COLUMN: {
if( pExpr->iTable<0 ){
/* This only happens when coding check constraints */
- assert( pParse->ckOffset>0 );
- sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
+ assert( pParse->ckBase>0 );
+ inReg = pExpr->iColumn + pParse->ckBase;
}else{
- sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
+ testcase( (pExpr->flags & EP_AnyAff)!=0 );
+ inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
+ pExpr->iColumn, pExpr->iTable, target,
+ pExpr->flags & EP_AnyAff);
}
break;
}
case TK_INTEGER: {
- codeInteger(v, (char*)pExpr->token.z, pExpr->token.n);
+ codeInteger(v, pExpr, 0, target);
+ break;
+ }
+ case TK_FLOAT: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ codeReal(v, pExpr->u.zToken, 0, target);
break;
}
- case TK_FLOAT:
case TK_STRING: {
- assert( TK_FLOAT==OP_Real );
- assert( TK_STRING==OP_String8 );
- sqlite3DequoteExpr(pExpr);
- sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
break;
}
case TK_NULL: {
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
break;
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
case TK_BLOB: {
int n;
const char *z;
- assert( TK_BLOB==OP_HexBlob );
- n = pExpr->token.n - 3;
- z = (char*)pExpr->token.z + 2;
- assert( n>=0 );
- if( n==0 ){
- z = "";
- }
- sqlite3VdbeOp3(v, op, 0, 0, z, n);
+ char *zBlob;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
+ assert( pExpr->u.zToken[1]=='\'' );
+ z = &pExpr->u.zToken[2];
+ n = sqlite3Strlen30(z) - 1;
+ assert( z[n]=='\'' );
+ zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
+ sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
break;
}
#endif
case TK_VARIABLE: {
- sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
- if( pExpr->token.n>1 ){
- sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
+ VdbeOp *pOp;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken!=0 );
+ assert( pExpr->u.zToken[0]!=0 );
+ if( pExpr->u.zToken[1]==0
+ && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable
+ && pOp->p1+pOp->p3==pExpr->iTable
+ && pOp->p2+pOp->p3==target
+ && pOp->p4.z==0
+ ){
+ /* If the previous instruction was a copy of the previous unnamed
+ ** parameter into the previous register, then simply increment the
+ ** repeat count on the prior instruction rather than making a new
+ ** instruction.
+ */
+ pOp->p3++;
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1);
+ if( pExpr->u.zToken[1]!=0 ){
+ sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0);
+ }
}
break;
}
case TK_REGISTER: {
- sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
+ inReg = pExpr->iTable;
+ break;
+ }
+ case TK_AS: {
+ inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
break;
}
#ifndef SQLITE_OMIT_CAST
case TK_CAST: {
/* Expressions of the form: CAST(pLeft AS token) */
int aff, to_op;
- sqlite3ExprCode(pParse, pExpr->pLeft);
- aff = sqlite3AffinityType(&pExpr->token);
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ aff = sqlite3AffinityType(pExpr->u.zToken);
to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
- sqlite3VdbeAddOp(v, to_op, 0, 0);
- stackChng = 0;
+ testcase( to_op==OP_ToText );
+ testcase( to_op==OP_ToBlob );
+ testcase( to_op==OP_ToNumeric );
+ testcase( to_op==OP_ToInt );
+ testcase( to_op==OP_ToReal );
+ if( inReg!=target ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
+ inReg = target;
+ }
+ sqlite3VdbeAddOp1(v, to_op, inReg);
+ testcase( usedAsColumnCache(pParse, inReg, inReg) );
+ sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
break;
}
#endif /* SQLITE_OMIT_CAST */
@@ -38495,10 +61950,18 @@ void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
assert( TK_GE==OP_Ge );
assert( TK_EQ==OP_Eq );
assert( TK_NE==OP_Ne );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3ExprCode(pParse, pExpr->pRight);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
- stackChng = -1;
+ testcase( op==TK_LT );
+ testcase( op==TK_LE );
+ testcase( op==TK_GT );
+ testcase( op==TK_GE );
+ testcase( op==TK_EQ );
+ testcase( op==TK_NE );
+ codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
+ pExpr->pRight, &r2, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, inReg, SQLITE_STOREP2);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
break;
}
case TK_AND:
@@ -38524,76 +61987,116 @@ void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
assert( TK_LSHIFT==OP_ShiftLeft );
assert( TK_RSHIFT==OP_ShiftRight );
assert( TK_CONCAT==OP_Concat );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3ExprCode(pParse, pExpr->pRight);
- sqlite3VdbeAddOp(v, op, 0, 0);
- stackChng = -1;
+ testcase( op==TK_AND );
+ testcase( op==TK_OR );
+ testcase( op==TK_PLUS );
+ testcase( op==TK_MINUS );
+ testcase( op==TK_REM );
+ testcase( op==TK_BITAND );
+ testcase( op==TK_BITOR );
+ testcase( op==TK_SLASH );
+ testcase( op==TK_LSHIFT );
+ testcase( op==TK_RSHIFT );
+ testcase( op==TK_CONCAT );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ sqlite3VdbeAddOp3(v, op, r2, r1, target);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
break;
}
case TK_UMINUS: {
Expr *pLeft = pExpr->pLeft;
assert( pLeft );
- if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
- Token *p = &pLeft->token;
- char *z = sqlite3MPrintf("-%.*s", p->n, p->z);
- if( pLeft->op==TK_FLOAT ){
- sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1);
- }else{
- codeInteger(v, z, p->n+1);
- }
- sqliteFree(z);
- break;
+ if( pLeft->op==TK_FLOAT ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ codeReal(v, pLeft->u.zToken, 1, target);
+ }else if( pLeft->op==TK_INTEGER ){
+ codeInteger(v, pLeft, 1, target);
+ }else{
+ regFree1 = r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
+ sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
+ testcase( regFree2==0 );
}
- /* Fall through into TK_NOT */
+ inReg = target;
+ break;
}
case TK_BITNOT:
case TK_NOT: {
assert( TK_BITNOT==OP_BitNot );
assert( TK_NOT==OP_Not );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3VdbeAddOp(v, op, 0, 0);
- stackChng = 0;
+ testcase( op==TK_BITNOT );
+ testcase( op==TK_NOT );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ inReg = target;
+ sqlite3VdbeAddOp2(v, op, r1, inReg);
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
- int dest;
+ int addr;
assert( TK_ISNULL==OP_IsNull );
assert( TK_NOTNULL==OP_NotNull );
- sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
- sqlite3ExprCode(pParse, pExpr->pLeft);
- dest = sqlite3VdbeCurrentAddr(v) + 2;
- sqlite3VdbeAddOp(v, op, 1, dest);
- sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
- stackChng = 0;
+ testcase( op==TK_ISNULL );
+ testcase( op==TK_NOTNULL );
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ addr = sqlite3VdbeAddOp1(v, op, r1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
+ sqlite3VdbeJumpHere(v, addr);
break;
}
case TK_AGG_FUNCTION: {
AggInfo *pInfo = pExpr->pAggInfo;
if( pInfo==0 ){
- sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
- &pExpr->span);
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
}else{
- sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
+ inReg = pInfo->aFunc[pExpr->iAgg].iMem;
}
break;
}
case TK_CONST_FUNC:
case TK_FUNCTION: {
- ExprList *pList = pExpr->pList;
- int nExpr = pList ? pList->nExpr : 0;
- FuncDef *pDef;
- int nId;
- const char *zId;
- int constMask = 0;
- int i;
- u8 enc = ENC(pParse->db);
- CollSeq *pColl = 0;
- zId = (char*)pExpr->token.z;
- nId = pExpr->token.n;
- pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
- assert( pDef!=0 );
- nExpr = sqlite3ExprCodeExprList(pParse, pList);
+ ExprList *pFarg; /* List of function arguments */
+ int nFarg; /* Number of function arguments */
+ FuncDef *pDef; /* The function definition object */
+ int nId; /* Length of the function name in bytes */
+ const char *zId; /* The function name */
+ int constMask = 0; /* Mask of function arguments that are constant */
+ int i; /* Loop counter */
+ u8 enc = ENC(db); /* The text encoding used by this database */
+ CollSeq *pColl = 0; /* A collating sequence */
+
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
+ testcase( op==TK_CONST_FUNC );
+ testcase( op==TK_FUNCTION );
+ if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
+ pFarg = 0;
+ }else{
+ pFarg = pExpr->x.pList;
+ }
+ nFarg = pFarg ? pFarg->nExpr : 0;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ zId = pExpr->u.zToken;
+ nId = sqlite3Strlen30(zId);
+ pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
+ if( pDef==0 ){
+ sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
+ break;
+ }
+ if( pFarg ){
+ r1 = sqlite3GetTempRange(pParse, nFarg);
+ sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
+ sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
+ sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
+ }else{
+ r1 = 0;
+ }
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Possibly overload the function if the first argument is
** a virtual table column.
@@ -38607,209 +62110,556 @@ void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
** "glob(B,A). We want to use the A in "A glob B" to test
** for function overloading. But we use the B term in "glob(B,A)".
*/
- if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
- pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr);
- }else if( nExpr>0 ){
- pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr);
+ if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
+ }else if( nFarg>0 ){
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
}
#endif
- for(i=0; i<nExpr && i<32; i++){
- if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
+ for(i=0; i<nFarg; i++){
+ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
constMask |= (1<<i);
}
- if( pDef->needCollSeq && !pColl ){
- pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
+ if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
+ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
}
}
- if( pDef->needCollSeq ){
- if( !pColl ) pColl = pParse->db->pDfltColl;
- sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
+ if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
+ if( !pColl ) pColl = db->pDfltColl;
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
}
- sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
- stackChng = 1-nExpr;
+ sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
+ (char*)pDef, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nFarg);
+ if( nFarg ){
+ sqlite3ReleaseTempRange(pParse, r1, nFarg);
+ }
+ sqlite3ExprCacheAffinityChange(pParse, r1, nFarg);
break;
}
#ifndef SQLITE_OMIT_SUBQUERY
case TK_EXISTS:
case TK_SELECT: {
- if( pExpr->iColumn==0 ){
- sqlite3CodeSubselect(pParse, pExpr);
- }
- sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
- VdbeComment((v, "# load subquery result"));
+ testcase( op==TK_EXISTS );
+ testcase( op==TK_SELECT );
+ sqlite3CodeSubselect(pParse, pExpr, 0, 0);
+ inReg = pExpr->iColumn;
break;
}
case TK_IN: {
- int addr;
+ int rNotFound = 0;
+ int rMayHaveNull = 0;
+ int j2, j3, j4, j5;
char affinity;
- int ckOffset = pParse->ckOffset;
- sqlite3CodeSubselect(pParse, pExpr);
+ int eType;
+
+ VdbeNoopComment((v, "begin IN expr r%d", target));
+ eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
+ if( rMayHaveNull ){
+ rNotFound = ++pParse->nMem;
+ }
/* Figure out the affinity to use to create a key from the results
** of the expression. affinityStr stores a static string suitable for
- ** P3 of OP_MakeRecord.
+ ** P4 of OP_MakeRecord.
*/
affinity = comparisonAffinity(pExpr);
- sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
- pParse->ckOffset = ckOffset+1;
/* Code the <expr> from "<expr> IN (...)". The temporary table
** pExpr->iTable contains the values that make up the (...) set.
*/
- sqlite3ExprCode(pParse, pExpr->pLeft);
- addr = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */
- sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7);
- sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */
- sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7);
- sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */
+ sqlite3ExprCachePush(pParse);
+ sqlite3ExprCode(pParse, pExpr->pLeft, target);
+ j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
+ if( eType==IN_INDEX_ROWID ){
+ j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
+ j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+ j5 = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, j3);
+ sqlite3VdbeJumpHere(v, j4);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
+ }else{
+ r2 = regFree2 = sqlite3GetTempReg(pParse);
+ /* Create a record and test for set membership. If the set contains
+ ** the value, then jump to the end of the test code. The target
+ ** register still contains the true (1) value written to it earlier.
+ */
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+ j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
+
+ /* If the set membership test fails, then the result of the
+ ** "x IN (...)" expression must be either 0 or NULL. If the set
+ ** contains no NULL values, then the result is 0. If the set
+ ** contains one or more NULL values, then the result of the
+ ** expression is also NULL.
+ */
+ if( rNotFound==0 ){
+ /* This branch runs if it is known at compile time (now) that
+ ** the set contains no NULL values. This happens as the result
+ ** of a "NOT NULL" constraint in the database schema. No need
+ ** to test the data structure at runtime in this case.
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
+ }else{
+ /* This block populates the rNotFound register with either NULL
+ ** or 0 (an integer value). If the data structure contains one
+ ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
+ ** to 0. If register rMayHaveNull is already set to some value
+ ** other than NULL, then the test has already been run and
+ ** rNotFound is already populated.
+ */
+ static const char nullRecord[] = { 0x02, 0x00 };
+ j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
+ sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
+ nullRecord, P4_STATIC);
+ j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
+ sqlite3VdbeJumpHere(v, j4);
+ sqlite3VdbeJumpHere(v, j3);
+
+ /* Copy the value of register rNotFound (which is either NULL or 0)
+ ** into the target register. This will be the result of the
+ ** expression.
+ */
+ sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
+ }
+ }
+ sqlite3VdbeJumpHere(v, j2);
+ sqlite3VdbeJumpHere(v, j5);
+ sqlite3ExprCachePop(pParse, 1);
+ VdbeComment((v, "end IN expr r%d", target));
break;
}
#endif
+ /*
+ ** x BETWEEN y AND z
+ **
+ ** This is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** X is stored in pExpr->pLeft.
+ ** Y is stored in pExpr->pList->a[0].pExpr.
+ ** Z is stored in pExpr->pList->a[1].pExpr.
+ */
case TK_BETWEEN: {
Expr *pLeft = pExpr->pLeft;
- struct ExprList_item *pLItem = pExpr->pList->a;
+ struct ExprList_item *pLItem = pExpr->x.pList->a;
Expr *pRight = pLItem->pExpr;
- sqlite3ExprCode(pParse, pLeft);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3ExprCode(pParse, pRight);
- codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
+
+ codeCompareOperands(pParse, pLeft, &r1, &regFree1,
+ pRight, &r2, &regFree2);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ r3 = sqlite3GetTempReg(pParse);
+ r4 = sqlite3GetTempReg(pParse);
+ codeCompare(pParse, pLeft, pRight, OP_Ge,
+ r1, r2, r3, SQLITE_STOREP2);
pLItem++;
pRight = pLItem->pExpr;
- sqlite3ExprCode(pParse, pRight);
- codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
- sqlite3VdbeAddOp(v, OP_And, 0, 0);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+ r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
+ testcase( regFree2==0 );
+ codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
+ sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
+ sqlite3ReleaseTempReg(pParse, r3);
+ sqlite3ReleaseTempReg(pParse, r4);
break;
}
- case TK_UPLUS:
- case TK_AS: {
- sqlite3ExprCode(pParse, pExpr->pLeft);
- stackChng = 0;
+ case TK_UPLUS: {
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
break;
}
- case TK_CASE: {
- int expr_end_label;
- int jumpInst;
- int nExpr;
- int i;
- ExprList *pEList;
- struct ExprList_item *aListelem;
- assert(pExpr->pList);
- assert((pExpr->pList->nExpr % 2) == 0);
- assert(pExpr->pList->nExpr > 0);
- pEList = pExpr->pList;
+ case TK_TRIGGER: {
+ /* If the opcode is TK_TRIGGER, then the expression is a reference
+ ** to a column in the new.* or old.* pseudo-tables available to
+ ** trigger programs. In this case Expr.iTable is set to 1 for the
+ ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
+ ** is set to the column of the pseudo-table to read, or to -1 to
+ ** read the rowid field.
+ **
+ ** The expression is implemented using an OP_Param opcode. The p1
+ ** parameter is set to 0 for an old.rowid reference, or to (i+1)
+ ** to reference another column of the old.* pseudo-table, where
+ ** i is the index of the column. For a new.rowid reference, p1 is
+ ** set to (n+1), where n is the number of columns in each pseudo-table.
+ ** For a reference to any other column in the new.* pseudo-table, p1
+ ** is set to (n+2+i), where n and i are as defined previously. For
+ ** example, if the table on which triggers are being fired is
+ ** declared as:
+ **
+ ** CREATE TABLE t1(a, b);
+ **
+ ** Then p1 is interpreted as follows:
+ **
+ ** p1==0 -> old.rowid p1==3 -> new.rowid
+ ** p1==1 -> old.a p1==4 -> new.a
+ ** p1==2 -> old.b p1==5 -> new.b
+ */
+ Table *pTab = pExpr->pTab;
+ int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
+
+ assert( pExpr->iTable==0 || pExpr->iTable==1 );
+ assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
+ assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
+ assert( p1>=0 && p1<(pTab->nCol*2+2) );
+
+ sqlite3VdbeAddOp2(v, OP_Param, p1, target);
+ VdbeComment((v, "%s.%s -> $%d",
+ (pExpr->iTable ? "new" : "old"),
+ (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
+ target
+ ));
+
+ /* If the column has REAL affinity, it may currently be stored as an
+ ** integer. Use OP_RealAffinity to make sure it is really real. */
+ if( pExpr->iColumn>=0
+ && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
+ ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
+ }
+ break;
+ }
+
+
+ /*
+ ** Form A:
+ ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
+ **
+ ** Form B:
+ ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
+ **
+ ** Form A is can be transformed into the equivalent form B as follows:
+ ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
+ ** WHEN x=eN THEN rN ELSE y END
+ **
+ ** X (if it exists) is in pExpr->pLeft.
+ ** Y is in pExpr->pRight. The Y is also optional. If there is no
+ ** ELSE clause and no other term matches, then the result of the
+ ** exprssion is NULL.
+ ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
+ **
+ ** The result of the expression is the Ri for the first matching Ei,
+ ** or if there is no matching Ei, the ELSE term Y, or if there is
+ ** no ELSE term, NULL.
+ */
+ default: assert( op==TK_CASE ); {
+ int endLabel; /* GOTO label for end of CASE stmt */
+ int nextCase; /* GOTO label for next WHEN clause */
+ int nExpr; /* 2x number of WHEN terms */
+ int i; /* Loop counter */
+ ExprList *pEList; /* List of WHEN terms */
+ struct ExprList_item *aListelem; /* Array of WHEN terms */
+ Expr opCompare; /* The X==Ei expression */
+ Expr cacheX; /* Cached expression X */
+ Expr *pX; /* The X expression */
+ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
+ VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
+
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
+ assert((pExpr->x.pList->nExpr % 2) == 0);
+ assert(pExpr->x.pList->nExpr > 0);
+ pEList = pExpr->x.pList;
aListelem = pEList->a;
nExpr = pEList->nExpr;
- expr_end_label = sqlite3VdbeMakeLabel(v);
- if( pExpr->pLeft ){
- sqlite3ExprCode(pParse, pExpr->pLeft);
+ endLabel = sqlite3VdbeMakeLabel(v);
+ if( (pX = pExpr->pLeft)!=0 ){
+ cacheX = *pX;
+ testcase( pX->op==TK_COLUMN );
+ testcase( pX->op==TK_REGISTER );
+ cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
+ testcase( regFree1==0 );
+ cacheX.op = TK_REGISTER;
+ opCompare.op = TK_EQ;
+ opCompare.pLeft = &cacheX;
+ pTest = &opCompare;
}
for(i=0; i<nExpr; i=i+2){
- sqlite3ExprCode(pParse, aListelem[i].pExpr);
- if( pExpr->pLeft ){
- sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
- jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
- OP_Ne, 0, 1);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
+ sqlite3ExprCachePush(pParse);
+ if( pX ){
+ assert( pTest!=0 );
+ opCompare.pRight = aListelem[i].pExpr;
}else{
- jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
+ pTest = aListelem[i].pExpr;
}
- sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
- sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
- sqlite3VdbeJumpHere(v, jumpInst);
- }
- if( pExpr->pLeft ){
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
+ nextCase = sqlite3VdbeMakeLabel(v);
+ testcase( pTest->op==TK_COLUMN );
+ sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
+ testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
+ testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
+ sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
+ sqlite3ExprCachePop(pParse, 1);
+ sqlite3VdbeResolveLabel(v, nextCase);
}
if( pExpr->pRight ){
- sqlite3ExprCode(pParse, pExpr->pRight);
+ sqlite3ExprCachePush(pParse);
+ sqlite3ExprCode(pParse, pExpr->pRight, target);
+ sqlite3ExprCachePop(pParse, 1);
}else{
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
}
- sqlite3VdbeResolveLabel(v, expr_end_label);
+ assert( db->mallocFailed || pParse->nErr>0
+ || pParse->iCacheLevel==iCacheLevel );
+ sqlite3VdbeResolveLabel(v, endLabel);
break;
}
#ifndef SQLITE_OMIT_TRIGGER
case TK_RAISE: {
- if( !pParse->trigStack ){
+ assert( pExpr->affinity==OE_Rollback
+ || pExpr->affinity==OE_Abort
+ || pExpr->affinity==OE_Fail
+ || pExpr->affinity==OE_Ignore
+ );
+ if( !pParse->pTriggerTab ){
sqlite3ErrorMsg(pParse,
"RAISE() may only be used within a trigger-program");
- return;
- }
- if( pExpr->iColumn!=OE_Ignore ){
- assert( pExpr->iColumn==OE_Rollback ||
- pExpr->iColumn == OE_Abort ||
- pExpr->iColumn == OE_Fail );
- sqlite3DequoteExpr(pExpr);
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
- (char*)pExpr->token.z, pExpr->token.n);
- } else {
- assert( pExpr->iColumn == OE_Ignore );
- sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
- VdbeComment((v, "# raise(IGNORE)"));
+ return 0;
+ }
+ if( pExpr->affinity==OE_Abort ){
+ sqlite3MayAbort(pParse);
}
- stackChng = 0;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( pExpr->affinity==OE_Ignore ){
+ sqlite3VdbeAddOp4(
+ v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
+ }else{
+ sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
+ }
+
break;
}
#endif
}
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+ return inReg;
+}
+
+/*
+** Generate code to evaluate an expression and store the results
+** into a register. Return the register number where the results
+** are stored.
+**
+** If the register is a temporary register that can be deallocated,
+** then write its number into *pReg. If the result register is not
+** a temporary, then set *pReg to zero.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
+ if( r2==r1 ){
+ *pReg = r1;
+ }else{
+ sqlite3ReleaseTempReg(pParse, r1);
+ *pReg = 0;
+ }
+ return r2;
+}
+
+/*
+** Generate code that will evaluate expression pExpr and store the
+** results in register target. The results are guaranteed to appear
+** in register target.
+*/
+SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
+ int inReg;
- if( pParse->ckOffset ){
- pParse->ckOffset += stackChng;
- assert( pParse->ckOffset );
+ assert( target>0 && target<=pParse->nMem );
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
+ assert( pParse->pVdbe || pParse->db->mallocFailed );
+ if( inReg!=target && pParse->pVdbe ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
}
+ return target;
}
-#ifndef SQLITE_OMIT_TRIGGER
/*
-** Generate code that evalutes the given expression and leaves the result
-** on the stack. See also sqlite3ExprCode().
+** Generate code that evalutes the given expression and puts the result
+** in register target.
+**
+** Also make a copy of the expression results into another "cache" register
+** and modify the expression so that the next time it is evaluated,
+** the result is a copy of the cache register.
**
-** This routine might also cache the result and modify the pExpr tree
-** so that it will make use of the cached result on subsequent evaluations
-** rather than evaluate the whole expression again. Trivial expressions are
-** not cached. If the expression is cached, its result is stored in a
-** memory location.
+** This routine is used for expressions that are used multiple
+** times. They are evaluated once and the results of the expression
+** are reused.
*/
-void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
+SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
Vdbe *v = pParse->pVdbe;
- int iMem;
- int addr1, addr2;
- if( v==0 ) return;
- addr1 = sqlite3VdbeCurrentAddr(v);
- sqlite3ExprCode(pParse, pExpr);
- addr2 = sqlite3VdbeCurrentAddr(v);
- if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
- iMem = pExpr->iTable = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
+ int inReg;
+ inReg = sqlite3ExprCode(pParse, pExpr, target);
+ assert( target>0 );
+ /* This routine is called for terms to INSERT or UPDATE. And the only
+ ** other place where expressions can be converted into TK_REGISTER is
+ ** in WHERE clause processing. So as currently implemented, there is
+ ** no way for a TK_REGISTER to exist here. But it seems prudent to
+ ** keep the ALWAYS() in case the conditions above change with future
+ ** modifications or enhancements. */
+ if( ALWAYS(pExpr->op!=TK_REGISTER) ){
+ int iMem;
+ iMem = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
+ pExpr->iTable = iMem;
pExpr->op = TK_REGISTER;
}
+ return inReg;
}
+
+/*
+** Return TRUE if pExpr is an constant expression that is appropriate
+** for factoring out of a loop. Appropriate expressions are:
+**
+** * Any expression that evaluates to two or more opcodes.
+**
+** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
+** or OP_Variable that does not need to be placed in a
+** specific register.
+**
+** There is no point in factoring out single-instruction constant
+** expressions that need to be placed in a particular register.
+** We could factor them out, but then we would end up adding an
+** OP_SCopy instruction to move the value into the correct register
+** later. We might as well just use the original instruction and
+** avoid the OP_SCopy.
+*/
+static int isAppropriateForFactoring(Expr *p){
+ if( !sqlite3ExprIsConstantNotJoin(p) ){
+ return 0; /* Only constant expressions are appropriate for factoring */
+ }
+ if( (p->flags & EP_FixedDest)==0 ){
+ return 1; /* Any constant without a fixed destination is appropriate */
+ }
+ while( p->op==TK_UPLUS ) p = p->pLeft;
+ switch( p->op ){
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ case TK_BLOB:
#endif
+ case TK_VARIABLE:
+ case TK_INTEGER:
+ case TK_FLOAT:
+ case TK_NULL:
+ case TK_STRING: {
+ testcase( p->op==TK_BLOB );
+ testcase( p->op==TK_VARIABLE );
+ testcase( p->op==TK_INTEGER );
+ testcase( p->op==TK_FLOAT );
+ testcase( p->op==TK_NULL );
+ testcase( p->op==TK_STRING );
+ /* Single-instruction constants with a fixed destination are
+ ** better done in-line. If we factor them, they will just end
+ ** up generating an OP_SCopy to move the value to the destination
+ ** register. */
+ return 0;
+ }
+ case TK_UMINUS: {
+ if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
+ return 0;
+ }
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return 1;
+}
+
+/*
+** If pExpr is a constant expression that is appropriate for
+** factoring out of a loop, then evaluate the expression
+** into a register and convert the expression into a TK_REGISTER
+** expression.
+*/
+static int evalConstExpr(Walker *pWalker, Expr *pExpr){
+ Parse *pParse = pWalker->pParse;
+ switch( pExpr->op ){
+ case TK_REGISTER: {
+ return WRC_Prune;
+ }
+ case TK_FUNCTION:
+ case TK_AGG_FUNCTION:
+ case TK_CONST_FUNC: {
+ /* The arguments to a function have a fixed destination.
+ ** Mark them this way to avoid generated unneeded OP_SCopy
+ ** instructions.
+ */
+ ExprList *pList = pExpr->x.pList;
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
+ if( pList ){
+ int i = pList->nExpr;
+ struct ExprList_item *pItem = pList->a;
+ for(; i>0; i--, pItem++){
+ if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
+ }
+ }
+ break;
+ }
+ }
+ if( isAppropriateForFactoring(pExpr) ){
+ int r1 = ++pParse->nMem;
+ int r2;
+ r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
+ if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
+ pExpr->op2 = pExpr->op;
+ pExpr->op = TK_REGISTER;
+ pExpr->iTable = r2;
+ return WRC_Prune;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Preevaluate constant subexpressions within pExpr and store the
+** results in registers. Modify pExpr so that the constant subexpresions
+** are TK_REGISTER opcodes that refer to the precomputed values.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
+ Walker w;
+ w.xExprCallback = evalConstExpr;
+ w.xSelectCallback = 0;
+ w.pParse = pParse;
+ sqlite3WalkExpr(&w, pExpr);
+}
+
/*
** Generate code that pushes the value of every element of the given
-** expression list onto the stack.
+** expression list into a sequence of registers beginning at target.
**
-** Return the number of elements pushed onto the stack.
+** Return the number of elements evaluated.
*/
-int sqlite3ExprCodeExprList(
+SQLITE_PRIVATE int sqlite3ExprCodeExprList(
Parse *pParse, /* Parsing context */
- ExprList *pList /* The expression list to be coded */
+ ExprList *pList, /* The expression list to be coded */
+ int target, /* Where to write results */
+ int doHardCopy /* Make a hard copy of every element */
){
struct ExprList_item *pItem;
int i, n;
- if( pList==0 ) return 0;
+ assert( pList!=0 );
+ assert( target>0 );
n = pList->nExpr;
- for(pItem=pList->a, i=n; i>0; i--, pItem++){
- sqlite3ExprCode(pParse, pItem->pExpr);
+ for(pItem=pList->a, i=0; i<n; i++, pItem++){
+ if( pItem->iAlias ){
+ int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( iReg!=target+i ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
+ }
+ }else{
+ sqlite3ExprCode(pParse, pItem->pExpr, target+i);
+ }
+ if( doHardCopy && !pParse->db->mallocFailed ){
+ sqlite3ExprHardCopy(pParse, target, n);
+ }
}
return n;
}
@@ -38820,7 +62670,7 @@ int sqlite3ExprCodeExprList(
** continues straight thru if the expression is false.
**
** If the expression evaluates to NULL (neither true nor false), then
-** take the jump if the jumpIfNull flag is true.
+** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
**
** This code depends on the fact that certain token values (ex: TK_EQ)
** are the same as opcode values (ex: OP_Eq) that implement the corresponding
@@ -38828,26 +62678,36 @@ int sqlite3ExprCodeExprList(
** the make process cause these values to align. Assert()s in the code
** below verify that the numbers are aligned correctly.
*/
-void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
Vdbe *v = pParse->pVdbe;
int op = 0;
- int ckOffset = pParse->ckOffset;
- if( v==0 || pExpr==0 ) return;
+ int regFree1 = 0;
+ int regFree2 = 0;
+ int r1, r2;
+
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
+ if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
+ if( NEVER(pExpr==0) ) return; /* No way this can happen */
op = pExpr->op;
switch( op ){
case TK_AND: {
int d2 = sqlite3VdbeMakeLabel(v);
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
+ testcase( jumpIfNull==0 );
+ sqlite3ExprCachePush(pParse);
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
sqlite3VdbeResolveLabel(v, d2);
+ sqlite3ExprCachePop(pParse, 1);
break;
}
case TK_OR: {
+ testcase( jumpIfNull==0 );
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
break;
}
case TK_NOT: {
+ testcase( jumpIfNull==0 );
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
break;
}
@@ -38863,50 +62723,75 @@ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
assert( TK_GE==OP_Ge );
assert( TK_EQ==OP_Eq );
assert( TK_NE==OP_Ne );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3ExprCode(pParse, pExpr->pRight);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
+ testcase( op==TK_LT );
+ testcase( op==TK_LE );
+ testcase( op==TK_GT );
+ testcase( op==TK_GE );
+ testcase( op==TK_EQ );
+ testcase( op==TK_NE );
+ testcase( jumpIfNull==0 );
+ codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
+ pExpr->pRight, &r2, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, dest, jumpIfNull);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
assert( TK_ISNULL==OP_IsNull );
assert( TK_NOTNULL==OP_NotNull );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3VdbeAddOp(v, op, 1, dest);
+ testcase( op==TK_ISNULL );
+ testcase( op==TK_NOTNULL );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ sqlite3VdbeAddOp2(v, op, r1, dest);
+ testcase( regFree1==0 );
break;
}
case TK_BETWEEN: {
- /* The expression "x BETWEEN y AND z" is implemented as:
+ /* x BETWEEN y AND z
**
- ** 1 IF (x < y) GOTO 3
- ** 2 IF (x <= z) GOTO <dest>
- ** 3 ...
+ ** Is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** Code it as such, taking care to do the common subexpression
+ ** elementation of x.
*/
- int addr;
- Expr *pLeft = pExpr->pLeft;
- Expr *pRight = pExpr->pList->a[0].pExpr;
- sqlite3ExprCode(pParse, pLeft);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3ExprCode(pParse, pRight);
- addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
-
- pRight = pExpr->pList->a[1].pExpr;
- sqlite3ExprCode(pParse, pRight);
- codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
-
- sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
- sqlite3VdbeJumpHere(v, addr);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
+ Expr exprAnd;
+ Expr compLeft;
+ Expr compRight;
+ Expr exprX;
+
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
+ exprX = *pExpr->pLeft;
+ exprAnd.op = TK_AND;
+ exprAnd.pLeft = &compLeft;
+ exprAnd.pRight = &compRight;
+ compLeft.op = TK_GE;
+ compLeft.pLeft = &exprX;
+ compLeft.pRight = pExpr->x.pList->a[0].pExpr;
+ compRight.op = TK_LE;
+ compRight.pLeft = &exprX;
+ compRight.pRight = pExpr->x.pList->a[1].pExpr;
+ exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
+ testcase( regFree1==0 );
+ exprX.op = TK_REGISTER;
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
break;
}
default: {
- sqlite3ExprCode(pParse, pExpr);
- sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
+ testcase( regFree1==0 );
+ testcase( jumpIfNull==0 );
break;
}
}
- pParse->ckOffset = ckOffset;
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
}
/*
@@ -38915,13 +62800,19 @@ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
** continues straight thru if the expression is true.
**
** If the expression evaluates to NULL (neither true nor false) then
-** jump if jumpIfNull is true or fall through if jumpIfNull is false.
+** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
+** is 0.
*/
-void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
Vdbe *v = pParse->pVdbe;
int op = 0;
- int ckOffset = pParse->ckOffset;
- if( v==0 || pExpr==0 ) return;
+ int regFree1 = 0;
+ int regFree2 = 0;
+ int r1, r2;
+
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
+ if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
+ if( pExpr==0 ) return;
/* The value of pExpr->op and op are related as follows:
**
@@ -38956,15 +62847,19 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
switch( pExpr->op ){
case TK_AND: {
+ testcase( jumpIfNull==0 );
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
break;
}
case TK_OR: {
int d2 = sqlite3VdbeMakeLabel(v);
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
+ testcase( jumpIfNull==0 );
+ sqlite3ExprCachePush(pParse);
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
sqlite3VdbeResolveLabel(v, d2);
+ sqlite3ExprCachePop(pParse, 1);
break;
}
case TK_NOT: {
@@ -38977,47 +62872,73 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
case TK_GE:
case TK_NE:
case TK_EQ: {
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3ExprCode(pParse, pExpr->pRight);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
+ testcase( op==TK_LT );
+ testcase( op==TK_LE );
+ testcase( op==TK_GT );
+ testcase( op==TK_GE );
+ testcase( op==TK_EQ );
+ testcase( op==TK_NE );
+ testcase( jumpIfNull==0 );
+ codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
+ pExpr->pRight, &r2, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, dest, jumpIfNull);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3VdbeAddOp(v, op, 1, dest);
+ testcase( op==TK_ISNULL );
+ testcase( op==TK_NOTNULL );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ sqlite3VdbeAddOp2(v, op, r1, dest);
+ testcase( regFree1==0 );
break;
}
case TK_BETWEEN: {
- /* The expression is "x BETWEEN y AND z". It is implemented as:
+ /* x BETWEEN y AND z
+ **
+ ** Is equivalent to
+ **
+ ** x>=y AND x<=z
**
- ** 1 IF (x >= y) GOTO 3
- ** 2 GOTO <dest>
- ** 3 IF (x > z) GOTO <dest>
+ ** Code it as such, taking care to do the common subexpression
+ ** elementation of x.
*/
- int addr;
- Expr *pLeft = pExpr->pLeft;
- Expr *pRight = pExpr->pList->a[0].pExpr;
- sqlite3ExprCode(pParse, pLeft);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3ExprCode(pParse, pRight);
- addr = sqlite3VdbeCurrentAddr(v);
- codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
-
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
- pRight = pExpr->pList->a[1].pExpr;
- sqlite3ExprCode(pParse, pRight);
- codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
+ Expr exprAnd;
+ Expr compLeft;
+ Expr compRight;
+ Expr exprX;
+
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
+ exprX = *pExpr->pLeft;
+ exprAnd.op = TK_AND;
+ exprAnd.pLeft = &compLeft;
+ exprAnd.pRight = &compRight;
+ compLeft.op = TK_GE;
+ compLeft.pLeft = &exprX;
+ compLeft.pRight = pExpr->x.pList->a[0].pExpr;
+ compRight.op = TK_LE;
+ compRight.pLeft = &exprX;
+ compRight.pRight = pExpr->x.pList->a[1].pExpr;
+ exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
+ testcase( regFree1==0 );
+ exprX.op = TK_REGISTER;
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
break;
}
default: {
- sqlite3ExprCode(pParse, pExpr);
- sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
+ testcase( regFree1==0 );
+ testcase( jumpIfNull==0 );
break;
}
}
- pParse->ckOffset = ckOffset;
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
}
/*
@@ -39034,32 +62955,40 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
** just might result in some slightly slower code. But returning
** an incorrect TRUE could lead to a malfunction.
*/
-int sqlite3ExprCompare(Expr *pA, Expr *pB){
+SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){
int i;
if( pA==0||pB==0 ){
return pB==pA;
}
- if( pA->op!=pB->op ) return 0;
+ assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
+ assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
+ if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
+ return 0;
+ }
if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
+ if( pA->op!=pB->op ) return 0;
if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
- if( pA->pList ){
- if( pB->pList==0 ) return 0;
- if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
- for(i=0; i<pA->pList->nExpr; i++){
- if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
- return 0;
- }
+
+ if( pA->x.pList && pB->x.pList ){
+ if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0;
+ for(i=0; i<pA->x.pList->nExpr; i++){
+ Expr *pExprA = pA->x.pList->a[i].pExpr;
+ Expr *pExprB = pB->x.pList->a[i].pExpr;
+ if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0;
}
- }else if( pB->pList ){
+ }else if( pA->x.pList || pB->x.pList ){
return 0;
}
- if( pA->pSelect || pB->pSelect ) return 0;
+
if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
- if( pA->op!=TK_COLUMN && pA->token.z ){
- if( pB->token.z==0 ) return 0;
- if( pB->token.n!=pA->token.n ) return 0;
- if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
+ if( ExprHasProperty(pA, EP_IntValue) ){
+ if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
+ return 0;
+ }
+ }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
+ if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0;
+ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
return 0;
}
}
@@ -39071,9 +63000,10 @@ int sqlite3ExprCompare(Expr *pA, Expr *pB){
** Add a new element to the pAggInfo->aCol[] array. Return the index of
** the new element. Return a negative number if malloc fails.
*/
-static int addAggInfoColumn(AggInfo *pInfo){
+static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
int i;
pInfo->aCol = sqlite3ArrayAllocate(
+ db,
pInfo->aCol,
sizeof(pInfo->aCol[0]),
3,
@@ -39088,9 +63018,10 @@ static int addAggInfoColumn(AggInfo *pInfo){
** Add a new element to the pAggInfo->aFunc[] array. Return the index of
** the new element. Return a negative number if malloc fails.
*/
-static int addAggInfoFunc(AggInfo *pInfo){
+static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
int i;
pInfo->aFunc = sqlite3ArrayAllocate(
+ db,
pInfo->aFunc,
sizeof(pInfo->aFunc[0]),
3,
@@ -39102,29 +63033,29 @@ static int addAggInfoFunc(AggInfo *pInfo){
}
/*
-** This is an xFunc for walkExprTree() used to implement
-** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
+** This is the xExprCallback for a tree walker. It is used to
+** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
** for additional information.
-**
-** This routine analyzes the aggregate function at pExpr.
*/
-static int analyzeAggregate(void *pArg, Expr *pExpr){
+static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
int i;
- NameContext *pNC = (NameContext *)pArg;
+ NameContext *pNC = pWalker->u.pNC;
Parse *pParse = pNC->pParse;
SrcList *pSrcList = pNC->pSrcList;
AggInfo *pAggInfo = pNC->pAggInfo;
-
switch( pExpr->op ){
case TK_AGG_COLUMN:
case TK_COLUMN: {
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ testcase( pExpr->op==TK_COLUMN );
/* Check to see if the column is in one of the tables in the FROM
** clause of the aggregate query */
- if( pSrcList ){
+ if( ALWAYS(pSrcList!=0) ){
struct SrcList_item *pItem = pSrcList->a;
for(i=0; i<pSrcList->nSrc; i++, pItem++){
struct AggInfo_col *pCol;
+ assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
if( pExpr->iTable==pItem->iCursor ){
/* If we reach this point, it means that pExpr refers to a table
** that is in the FROM clause of the aggregate query.
@@ -39140,12 +63071,14 @@ static int analyzeAggregate(void *pArg, Expr *pExpr){
break;
}
}
- if( k>=pAggInfo->nColumn && (k = addAggInfoColumn(pAggInfo))>=0 ){
+ if( (k>=pAggInfo->nColumn)
+ && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
+ ){
pCol = &pAggInfo->aCol[k];
pCol->pTab = pExpr->pTab;
pCol->iTable = pExpr->iTable;
pCol->iColumn = pExpr->iColumn;
- pCol->iMem = pParse->nMem++;
+ pCol->iMem = ++pParse->nMem;
pCol->iSorterColumn = -1;
pCol->pExpr = pExpr;
if( pAggInfo->pGroupBy ){
@@ -39171,14 +63104,15 @@ static int analyzeAggregate(void *pArg, Expr *pExpr){
** Convert the pExpr to be a TK_AGG_COLUMN referring to that
** pAggInfo->aCol[] entry.
*/
+ ExprSetIrreducible(pExpr);
pExpr->pAggInfo = pAggInfo;
pExpr->op = TK_AGG_COLUMN;
- pExpr->iAgg = k;
+ pExpr->iAgg = (i16)k;
break;
} /* endif pExpr->iTable==pItem->iCursor */
} /* end loop over pSrcList */
}
- return 1;
+ return WRC_Prune;
}
case TK_AGG_FUNCTION: {
/* The pNC->nDepth==0 test causes aggregate functions in subqueries
@@ -39197,14 +63131,16 @@ static int analyzeAggregate(void *pArg, Expr *pExpr){
/* pExpr is original. Make a new entry in pAggInfo->aFunc[]
*/
u8 enc = ENC(pParse->db);
- i = addAggInfoFunc(pAggInfo);
+ i = addAggInfoFunc(pParse->db, pAggInfo);
if( i>=0 ){
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
pItem = &pAggInfo->aFunc[i];
pItem->pExpr = pExpr;
- pItem->iMem = pParse->nMem++;
+ pItem->iMem = ++pParse->nMem;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
pItem->pFunc = sqlite3FindFunction(pParse->db,
- (char*)pExpr->token.z, pExpr->token.n,
- pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
+ pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
+ pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
if( pExpr->flags & EP_Distinct ){
pItem->iDistinct = pParse->nTab++;
}else{
@@ -39214,23 +63150,26 @@ static int analyzeAggregate(void *pArg, Expr *pExpr){
}
/* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
*/
- pExpr->iAgg = i;
+ assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+ ExprSetIrreducible(pExpr);
+ pExpr->iAgg = (i16)i;
pExpr->pAggInfo = pAggInfo;
- return 1;
+ return WRC_Prune;
}
}
}
-
- /* Recursively walk subqueries looking for TK_COLUMN nodes that need
- ** to be changed to TK_AGG_COLUMN. But increment nDepth so that
- ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
- */
- if( pExpr->pSelect ){
+ return WRC_Continue;
+}
+static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
+ NameContext *pNC = pWalker->u.pNC;
+ if( pNC->nDepth==0 ){
pNC->nDepth++;
- walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
+ sqlite3WalkSelect(pWalker, pSelect);
pNC->nDepth--;
+ return WRC_Prune;
+ }else{
+ return WRC_Continue;
}
- return 0;
}
/*
@@ -39239,15 +63178,15 @@ static int analyzeAggregate(void *pArg, Expr *pExpr){
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
-** analyzed by sqlite3ExprResolveNames().
-**
-** If errors are seen, leave an error message in zErrMsg and return
-** the number of errors.
+** analyzed by sqlite3ResolveExprNames().
*/
-int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
- int nErr = pNC->pParse->nErr;
- walkExprTree(pExpr, analyzeAggregate, pNC);
- return pNC->pParse->nErr - nErr;
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
+ Walker w;
+ w.xExprCallback = analyzeAggregate;
+ w.xSelectCallback = analyzeAggregatesInSelect;
+ w.u.pNC = pNC;
+ assert( pNC->pSrcList!=0 );
+ sqlite3WalkExpr(&w, pExpr);
}
/*
@@ -39256,16 +63195,69 @@ int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
**
** If an error is found, the analysis is cut short.
*/
-int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
struct ExprList_item *pItem;
int i;
- int nErr = 0;
if( pList ){
- for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
- nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
+ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
}
}
- return nErr;
+}
+
+/*
+** Allocate a single new register for use to hold some intermediate result.
+*/
+SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
+ if( pParse->nTempReg==0 ){
+ return ++pParse->nMem;
+ }
+ return pParse->aTempReg[--pParse->nTempReg];
+}
+
+/*
+** Deallocate a register, making available for reuse for some other
+** purpose.
+**
+** If a register is currently being used by the column cache, then
+** the dallocation is deferred until the column cache line that uses
+** the register becomes stale.
+*/
+SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
+ if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
+ int i;
+ struct yColCache *p;
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
+ if( p->iReg==iReg ){
+ p->tempReg = 1;
+ return;
+ }
+ }
+ pParse->aTempReg[pParse->nTempReg++] = iReg;
+ }
+}
+
+/*
+** Allocate or deallocate a block of nReg consecutive registers
+*/
+SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
+ int i, n;
+ i = pParse->iRangeReg;
+ n = pParse->nRangeReg;
+ if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
+ pParse->iRangeReg += nReg;
+ pParse->nRangeReg -= nReg;
+ }else{
+ i = pParse->nMem+1;
+ pParse->nMem += nReg;
+ }
+ return i;
+}
+SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
+ if( nReg>pParse->nRangeReg ){
+ pParse->nRangeReg = nReg;
+ pParse->iRangeReg = iReg;
+ }
}
/************** End of expr.c ************************************************/
@@ -39284,7 +63276,7 @@ int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
** This file contains C code routines that used to generate VDBE code
** that implements the ALTER TABLE command.
**
-** $Id: alter.c,v 1.22 2006/09/08 12:27:37 drh Exp $
+** $Id: alter.c,v 1.62 2009/07/24 17:58:53 danielk1977 Exp $
*/
/*
@@ -39309,7 +63301,7 @@ int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
*/
static void renameTableFunc(
sqlite3_context *context,
- int argc,
+ int NotUsed,
sqlite3_value **argv
){
unsigned char const *zSql = sqlite3_value_text(argv[0]);
@@ -39321,29 +63313,38 @@ static void renameTableFunc(
int len = 0;
char *zRet;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ UNUSED_PARAMETER(NotUsed);
+
/* The principle used to locate the table name in the CREATE TABLE
- ** statement is that the table name is the first token that is immediatedly
- ** followed by a left parenthesis - TK_LP.
+ ** statement is that the table name is the first non-space token that
+ ** is immediately followed by a TK_LP or TK_USING token.
*/
if( zSql ){
do {
+ if( !*zCsr ){
+ /* Ran out of input before finding an opening bracket. Return NULL. */
+ return;
+ }
+
/* Store the token that zCsr points to in tname. */
- tname.z = zCsr;
+ tname.z = (char*)zCsr;
tname.n = len;
/* Advance zCsr to the next token. Store that token type in 'token',
- ** and it's length in 'len' (to be used next iteration of this loop).
+ ** and its length in 'len' (to be used next iteration of this loop).
*/
do {
zCsr += len;
len = sqlite3GetToken(zCsr, &token);
} while( token==TK_SPACE );
assert( len>0 );
- } while( token!=TK_LP );
+ } while( token!=TK_LP && token!=TK_USING );
- zRet = sqlite3MPrintf("%.*s%Q%s", tname.z - zSql, zSql,
+ zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql,
zTableName, tname.z+tname.n);
- sqlite3_result_text(context, zRet, -1, sqlite3FreeX);
+ sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
}
}
@@ -39357,7 +63358,7 @@ static void renameTableFunc(
*/
static void renameTriggerFunc(
sqlite3_context *context,
- int argc,
+ int NotUsed,
sqlite3_value **argv
){
unsigned char const *zSql = sqlite3_value_text(argv[0]);
@@ -39369,6 +63370,9 @@ static void renameTriggerFunc(
unsigned char const *zCsr = zSql;
int len = 0;
char *zRet;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ UNUSED_PARAMETER(NotUsed);
/* The principle used to locate the table name in the CREATE TRIGGER
** statement is that the table name is the first token that is immediatedly
@@ -39377,12 +63381,18 @@ static void renameTriggerFunc(
*/
if( zSql ){
do {
+
+ if( !*zCsr ){
+ /* Ran out of input before finding the table name. Return NULL. */
+ return;
+ }
+
/* Store the token that zCsr points to in tname. */
- tname.z = zCsr;
+ tname.z = (char*)zCsr;
tname.n = len;
/* Advance zCsr to the next token. Store that token type in 'token',
- ** and it's length in 'len' (to be used next iteration of this loop).
+ ** and its length in 'len' (to be used next iteration of this loop).
*/
do {
zCsr += len;
@@ -39408,9 +63418,9 @@ static void renameTriggerFunc(
/* Variable tname now contains the token that is the old table-name
** in the CREATE TRIGGER statement.
*/
- zRet = sqlite3MPrintf("%.*s%Q%s", tname.z - zSql, zSql,
+ zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql,
zTableName, tname.z+tname.n);
- sqlite3_result_text(context, zRet, -1, sqlite3FreeX);
+ sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
}
}
#endif /* !SQLITE_OMIT_TRIGGER */
@@ -39418,23 +63428,13 @@ static void renameTriggerFunc(
/*
** Register built-in functions used to help implement ALTER TABLE
*/
-void sqlite3AlterFunctions(sqlite3 *db){
- static const struct {
- char *zName;
- signed char nArg;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
- } aFuncs[] = {
- { "sqlite_rename_table", 2, renameTableFunc},
+SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3 *db){
+ sqlite3CreateFunc(db, "sqlite_rename_table", 2, SQLITE_UTF8, 0,
+ renameTableFunc, 0, 0);
#ifndef SQLITE_OMIT_TRIGGER
- { "sqlite_rename_trigger", 2, renameTriggerFunc},
+ sqlite3CreateFunc(db, "sqlite_rename_trigger", 2, SQLITE_UTF8, 0,
+ renameTriggerFunc, 0, 0);
#endif
- };
- int i;
-
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
- SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
- }
}
/*
@@ -39455,14 +63455,15 @@ static char *whereTempTriggers(Parse *pParse, Table *pTab){
** expression being built up in zWhere.
*/
if( pTab->pSchema!=pTempSchema ){
- for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
+ sqlite3 *db = pParse->db;
+ for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
if( pTrig->pSchema==pTempSchema ){
if( !zWhere ){
- zWhere = sqlite3MPrintf("name=%Q", pTrig->name);
+ zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->zName);
}else{
tmp = zWhere;
- zWhere = sqlite3MPrintf("%s OR name=%Q", zWhere, pTrig->name);
- sqliteFree(tmp);
+ zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->zName);
+ sqlite3DbFree(db, tmp);
}
}
}
@@ -39487,33 +63488,34 @@ static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
#endif
v = sqlite3GetVdbe(pParse);
- if( !v ) return;
+ if( NEVER(v==0) ) return;
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
assert( iDb>=0 );
#ifndef SQLITE_OMIT_TRIGGER
/* Drop any table triggers from the internal schema. */
- for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
+ for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
assert( iTrigDb==iDb || iTrigDb==1 );
- sqlite3VdbeOp3(v, OP_DropTrigger, iTrigDb, 0, pTrig->name, 0);
+ sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->zName, 0);
}
#endif
/* Drop the table and index from the internal schema */
- sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
+ sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
/* Reload the table, index and permanent trigger schemas. */
- zWhere = sqlite3MPrintf("tbl_name=%Q", zName);
+ zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
if( !zWhere ) return;
- sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, zWhere, P3_DYNAMIC);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
#ifndef SQLITE_OMIT_TRIGGER
/* Now, if the table is not stored in the temp database, reload any temp
** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
*/
if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
- sqlite3VdbeOp3(v, OP_ParseSchema, 1, 0, zWhere, P3_DYNAMIC);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
}
#endif
}
@@ -39522,7 +63524,7 @@ static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
** command.
*/
-void sqlite3AlterRenameTable(
+SQLITE_PRIVATE void sqlite3AlterRenameTable(
Parse *pParse, /* Parser context. */
SrcList *pSrc, /* The table to rename. */
Token *pName /* The new table name. */
@@ -39532,27 +63534,25 @@ void sqlite3AlterRenameTable(
Table *pTab; /* Table being renamed */
char *zName = 0; /* NULL-terminated version of pName */
sqlite3 *db = pParse->db; /* Database connection */
+ int nTabName; /* Number of UTF-8 characters in zTabName */
+ const char *zTabName; /* Original name of the table */
Vdbe *v;
#ifndef SQLITE_OMIT_TRIGGER
char *zWhere = 0; /* Where clause to locate temp triggers */
#endif
+ VTable *pVTab = 0; /* Non-zero if this is a v-tab with an xRename() */
- if( sqlite3MallocFailed() ) goto exit_rename_table;
+ if( NEVER(db->mallocFailed) ) goto exit_rename_table;
assert( pSrc->nSrc==1 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
+ pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
if( !pTab ) goto exit_rename_table;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
- goto exit_rename_table;
- }
-#endif
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
zDb = db->aDb[iDb].zName;
/* Get a NULL terminated version of the new table name. */
- zName = sqlite3NameFromToken(pName);
+ zName = sqlite3NameFromToken(db, pName);
if( !zName ) goto exit_rename_table;
/* Check that a table or index named 'zName' does not already exist
@@ -39567,7 +63567,9 @@ void sqlite3AlterRenameTable(
/* Make sure it is not a system table being altered, or a reserved name
** that the table is being renamed to.
*/
- if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){
+ if( sqlite3Strlen30(pTab->zName)>6
+ && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7)
+ ){
sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
goto exit_rename_table;
}
@@ -39575,6 +63577,13 @@ void sqlite3AlterRenameTable(
goto exit_rename_table;
}
+#ifndef SQLITE_OMIT_VIEW
+ if( pTab->pSelect ){
+ sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
+ goto exit_rename_table;
+ }
+#endif
+
#ifndef SQLITE_OMIT_AUTHORIZATION
/* Invoke the authorization callback. */
if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
@@ -39582,16 +63591,47 @@ void sqlite3AlterRenameTable(
}
#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto exit_rename_table;
+ }
+ if( IsVirtual(pTab) ){
+ pVTab = sqlite3GetVTable(db, pTab);
+ if( pVTab->pVtab->pModule->xRename==0 ){
+ pVTab = 0;
+ }
+ }
+#endif
+
/* Begin a transaction and code the VerifyCookie for database iDb.
** Then modify the schema cookie (since the ALTER TABLE modifies the
- ** schema).
+ ** schema). Open a statement transaction if the table is a virtual
+ ** table.
*/
v = sqlite3GetVdbe(pParse);
if( v==0 ){
goto exit_rename_table;
}
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3ChangeCookie(db, v, iDb);
+ sqlite3BeginWriteOperation(pParse, pVTab!=0, iDb);
+ sqlite3ChangeCookie(pParse, iDb);
+
+ /* If this is a virtual table, invoke the xRename() function if
+ ** one is defined. The xRename() callback will modify the names
+ ** of any resources used by the v-table implementation (including other
+ ** SQLite tables) that are identified by the name of the virtual table.
+ */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pVTab ){
+ int i = ++pParse->nMem;
+ sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
+ sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);
+ sqlite3MayAbort(pParse);
+ }
+#endif
+
+ /* figure out how many UTF-8 characters are in zName */
+ zTabName = pTab->zName;
+ nTabName = sqlite3Utf8CharLen(zTabName, -1);
/* Modify the sqlite_master table to use the new table name. */
sqlite3NestedParse(pParse,
@@ -39607,7 +63647,7 @@ void sqlite3AlterRenameTable(
"name = CASE "
"WHEN type='table' THEN %Q "
"WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
- "'sqlite_autoindex_' || %Q || substr(name, %d+18,10) "
+ "'sqlite_autoindex_' || %Q || substr(name,%d+18) "
"ELSE name END "
"WHERE tbl_name=%Q AND "
"(type='table' OR type='index' OR type='trigger');",
@@ -39615,7 +63655,7 @@ void sqlite3AlterRenameTable(
#ifndef SQLITE_OMIT_TRIGGER
zName,
#endif
- zName, strlen(pTab->zName), pTab->zName
+ zName, nTabName, zTabName
);
#ifndef SQLITE_OMIT_AUTOINCREMENT
@@ -39624,7 +63664,7 @@ void sqlite3AlterRenameTable(
*/
if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
sqlite3NestedParse(pParse,
- "UPDATE %Q.sqlite_sequence set name = %Q WHERE name = %Q",
+ "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
zDb, zName, pTab->zName);
}
#endif
@@ -39640,7 +63680,7 @@ void sqlite3AlterRenameTable(
"sql = sqlite_rename_trigger(sql, %Q), "
"tbl_name = %Q "
"WHERE %s;", zName, zName, zWhere);
- sqliteFree(zWhere);
+ sqlite3DbFree(db, zWhere);
}
#endif
@@ -39648,12 +63688,37 @@ void sqlite3AlterRenameTable(
reloadTableSchema(pParse, pTab, zName);
exit_rename_table:
- sqlite3SrcListDelete(pSrc);
- sqliteFree(zName);
+ sqlite3SrcListDelete(db, pSrc);
+ sqlite3DbFree(db, zName);
}
/*
+** Generate code to make sure the file format number is at least minFormat.
+** The generated code will increase the file format number if necessary.
+*/
+SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
+ Vdbe *v;
+ v = sqlite3GetVdbe(pParse);
+ /* The VDBE should have been allocated before this routine is called.
+ ** If that allocation failed, we would have quit before reaching this
+ ** point */
+ if( ALWAYS(v) ){
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3GetTempReg(pParse);
+ int j1;
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT);
+ sqlite3VdbeUsesBtree(v, iDb);
+ sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
+ j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+}
+
+/*
** This function is called after an "ALTER TABLE ... ADD" statement
** has been parsed. Argument pColDef contains the text of the new
** column definition.
@@ -39661,7 +63726,7 @@ exit_rename_table:
** The Table structure pParse->pNewTable was extended to include
** the new column during parsing.
*/
-void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
+SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
Table *pNew; /* Copy of pParse->pNewTable */
Table *pTab; /* Table being altered */
int iDb; /* Database number */
@@ -39670,17 +63735,20 @@ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
char *zCol; /* Null-terminated column definition */
Column *pCol; /* The new column */
Expr *pDflt; /* Default value for the new column */
+ sqlite3 *db; /* The database connection; */
- if( pParse->nErr ) return;
+ db = pParse->db;
+ if( pParse->nErr || db->mallocFailed ) return;
pNew = pParse->pNewTable;
assert( pNew );
- iDb = sqlite3SchemaToIndex(pParse->db, pNew->pSchema);
- zDb = pParse->db->aDb[iDb].zName;
- zTab = pNew->zName;
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
+ zDb = db->aDb[iDb].zName;
+ zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */
pCol = &pNew->aCol[pNew->nCol-1];
pDflt = pCol->pDflt;
- pTab = sqlite3FindTable(pParse->db, zTab, zDb);
+ pTab = sqlite3FindTable(db, zTab, zDb);
assert( pTab );
#ifndef SQLITE_OMIT_AUTHORIZATION
@@ -39721,8 +63789,8 @@ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
*/
if( pDflt ){
sqlite3_value *pVal;
- if( sqlite3ValueFromExpr(pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
- /* malloc() has failed */
+ if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
+ db->mallocFailed = 1;
return;
}
if( !pVal ){
@@ -39733,20 +63801,20 @@ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
}
/* Modify the CREATE TABLE statement. */
- zCol = sqliteStrNDup((char*)pColDef->z, pColDef->n);
+ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
if( zCol ){
char *zEnd = &zCol[pColDef->n-1];
- while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){
+ while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){
*zEnd-- = '\0';
}
sqlite3NestedParse(pParse,
- "UPDATE %Q.%s SET "
- "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d,length(sql)) "
+ "UPDATE \"%w\".%s SET "
+ "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
"WHERE type = 'table' AND name = %Q",
zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
zTab
);
- sqliteFree(zCol);
+ sqlite3DbFree(db, zCol);
}
/* If the default value of the new column is NULL, then set the file
@@ -39774,18 +63842,20 @@ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
** Routine sqlite3AlterFinishAddColumn() will be called to complete
** coding the "ALTER TABLE ... ADD" statement.
*/
-void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
+SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
Table *pNew;
Table *pTab;
Vdbe *v;
int iDb;
int i;
int nAlloc;
+ sqlite3 *db = pParse->db;
/* Look up the table being altered. */
assert( pParse->pNewTable==0 );
- if( sqlite3MallocFailed() ) goto exit_begin_add_column;
- pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ if( db->mallocFailed ) goto exit_begin_add_column;
+ pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
if( !pTab ) goto exit_begin_add_column;
#ifndef SQLITE_OMIT_VIRTUALTABLE
@@ -39802,33 +63872,40 @@ void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
}
assert( pTab->addColOffset>0 );
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
/* Put a copy of the Table struct in Parse.pNewTable for the
- ** sqlite3AddColumn() function and friends to modify.
+ ** sqlite3AddColumn() function and friends to modify. But modify
+ ** the name by adding an "sqlite_altertab_" prefix. By adding this
+ ** prefix, we insure that the name will not collide with an existing
+ ** table because user table are not allowed to have the "sqlite_"
+ ** prefix on their name.
*/
- pNew = (Table *)sqliteMalloc(sizeof(Table));
+ pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
if( !pNew ) goto exit_begin_add_column;
pParse->pNewTable = pNew;
pNew->nRef = 1;
+ pNew->dbMem = pTab->dbMem;
pNew->nCol = pTab->nCol;
assert( pNew->nCol>0 );
nAlloc = (((pNew->nCol-1)/8)*8)+8;
assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
- pNew->aCol = (Column *)sqliteMalloc(sizeof(Column)*nAlloc);
- pNew->zName = sqliteStrDup(pTab->zName);
+ pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
+ pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName);
if( !pNew->aCol || !pNew->zName ){
+ db->mallocFailed = 1;
goto exit_begin_add_column;
}
memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
for(i=0; i<pNew->nCol; i++){
Column *pCol = &pNew->aCol[i];
- pCol->zName = sqliteStrDup(pCol->zName);
+ pCol->zName = sqlite3DbStrDup(db, pCol->zName);
pCol->zColl = 0;
pCol->zType = 0;
pCol->pDflt = 0;
+ pCol->zDflt = 0;
}
- pNew->pSchema = pParse->db->aDb[iDb].pSchema;
+ pNew->pSchema = db->aDb[iDb].pSchema;
pNew->addColOffset = pTab->addColOffset;
pNew->nRef = 1;
@@ -39836,10 +63913,10 @@ void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
sqlite3BeginWriteOperation(pParse, 0, iDb);
v = sqlite3GetVdbe(pParse);
if( !v ) goto exit_begin_add_column;
- sqlite3ChangeCookie(pParse->db, v, iDb);
+ sqlite3ChangeCookie(pParse, iDb);
exit_begin_add_column:
- sqlite3SrcListDelete(pSrc);
+ sqlite3SrcListDelete(db, pSrc);
return;
}
#endif /* SQLITE_ALTER_TABLE */
@@ -39859,17 +63936,25 @@ exit_begin_add_column:
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
-** @(#) $Id: analyze.c,v 1.17 2007/03/29 05:51:49 drh Exp $
+** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
/*
-** This routine generates code that opens the sqlite_stat1 table on cursor
-** iStatCur.
+** This routine generates code that opens the sqlite_stat1 table for
+** writing with cursor iStatCur. If the library was built with the
+** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is
+** opened for writing using cursor (iStatCur+1)
**
** If the sqlite_stat1 tables does not previously exist, it is created.
-** If it does previously exist, all entires associated with table zWhere
-** are removed. If zWhere==0 then all entries are removed.
+** Similarly, if the sqlite_stat2 table does not exist and the library
+** is compiled with SQLITE_ENABLE_STAT2 defined, it is created.
+**
+** Argument zWhere may be a pointer to a buffer containing a table name,
+** or it may be a NULL pointer. If it is not NULL, then all entries in
+** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated
+** with the named table are deleted. If zWhere==0, then code is generated
+** to delete all stat table entries.
*/
static void openStatTable(
Parse *pParse, /* Parsing context */
@@ -39877,48 +63962,64 @@ static void openStatTable(
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
const char *zWhere /* Delete entries associated with this table */
){
+ static struct {
+ const char *zName;
+ const char *zCols;
+ } aTable[] = {
+ { "sqlite_stat1", "tbl,idx,stat" },
+#ifdef SQLITE_ENABLE_STAT2
+ { "sqlite_stat2", "tbl,idx,sampleno,sample" },
+#endif
+ };
+
+ int aRoot[] = {0, 0};
+ u8 aCreateTbl[] = {0, 0};
+
+ int i;
sqlite3 *db = pParse->db;
Db *pDb;
- int iRootPage;
- Table *pStat;
Vdbe *v = sqlite3GetVdbe(pParse);
-
+ if( v==0 ) return;
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3VdbeDb(v)==db );
pDb = &db->aDb[iDb];
- if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
- /* The sqlite_stat1 tables does not exist. Create it.
- ** Note that a side-effect of the CREATE TABLE statement is to leave
- ** the rootpage of the new table on the top of the stack. This is
- ** important because the OpenWrite opcode below will be needing it. */
- sqlite3NestedParse(pParse,
- "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
- pDb->zName
- );
- iRootPage = 0; /* Cause rootpage to be taken from top of stack */
- }else if( zWhere ){
- /* The sqlite_stat1 table exists. Delete all entries associated with
- ** the table zWhere. */
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
- pDb->zName, zWhere
- );
- iRootPage = pStat->tnum;
- }else{
- /* The sqlite_stat1 table already exists. Delete all rows. */
- iRootPage = pStat->tnum;
- sqlite3VdbeAddOp(v, OP_Clear, pStat->tnum, iDb);
+
+ for(i=0; i<ArraySize(aTable); i++){
+ const char *zTab = aTable[i].zName;
+ Table *pStat;
+ if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
+ /* The sqlite_stat[12] table does not exist. Create it. Note that a
+ ** side-effect of the CREATE TABLE statement is to leave the rootpage
+ ** of the new table in register pParse->regRoot. This is important
+ ** because the OpenWrite opcode below will be needing it. */
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
+ );
+ aRoot[i] = pParse->regRoot;
+ aCreateTbl[i] = 1;
+ }else{
+ /* The table already exists. If zWhere is not NULL, delete all entries
+ ** associated with the table zWhere. If zWhere is NULL, delete the
+ ** entire contents of the table. */
+ aRoot[i] = pStat->tnum;
+ sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
+ if( zWhere ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.%s WHERE tbl=%Q", pDb->zName, zTab, zWhere
+ );
+ }else{
+ /* The sqlite_stat[12] table already exists. Delete all rows. */
+ sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
+ }
+ }
}
- /* Open the sqlite_stat1 table for writing. Unless it was created
- ** by this vdbe program, lock it for writing at the shared-cache level.
- ** If this vdbe did create the sqlite_stat1 table, then it must have
- ** already obtained a schema-lock, making the write-lock redundant.
- */
- if( iRootPage>0 ){
- sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
+ /* Open the sqlite_stat[12] tables for writing. */
+ for(i=0; i<ArraySize(aTable); i++){
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
+ sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
+ sqlite3VdbeChangeP5(v, aCreateTbl[i]);
}
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- sqlite3VdbeAddOp(v, OP_OpenWrite, iStatCur, iRootPage);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, iStatCur, 3);
}
/*
@@ -39928,30 +64029,45 @@ static void openStatTable(
static void analyzeOneTable(
Parse *pParse, /* Parser context */
Table *pTab, /* Table whose indices are to be analyzed */
- int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
+ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
int iMem /* Available memory locations begin here */
){
- Index *pIdx; /* An index to being analyzed */
- int iIdxCur; /* Cursor number for index being analyzed */
- int nCol; /* Number of columns in the index */
- Vdbe *v; /* The virtual machine being built up */
- int i; /* Loop counter */
- int topOfLoop; /* The top of the loop */
- int endOfLoop; /* The end of the loop */
- int addr; /* The address of an instruction */
- int iDb; /* Index of database containing pTab */
+ sqlite3 *db = pParse->db; /* Database handle */
+ Index *pIdx; /* An index to being analyzed */
+ int iIdxCur; /* Cursor open on index being analyzed */
+ Vdbe *v; /* The virtual machine being built up */
+ int i; /* Loop counter */
+ int topOfLoop; /* The top of the loop */
+ int endOfLoop; /* The end of the loop */
+ int addr; /* The address of an instruction */
+ int iDb; /* Index of database containing pTab */
+ int regTabname = iMem++; /* Register containing table name */
+ int regIdxname = iMem++; /* Register containing index name */
+ int regSampleno = iMem++; /* Register containing next sample number */
+ int regCol = iMem++; /* Content of a column analyzed table */
+ int regRec = iMem++; /* Register holding completed record */
+ int regTemp = iMem++; /* Temporary use register */
+ int regRowid = iMem++; /* Rowid for the inserted record */
+
+#ifdef SQLITE_ENABLE_STAT2
+ int regTemp2 = iMem++; /* Temporary use register */
+ int regSamplerecno = iMem++; /* Index of next sample to record */
+ int regRecno = iMem++; /* Current sample index */
+ int regLast = iMem++; /* Index of last sample to record */
+ int regFirst = iMem++; /* Index of first sample to record */
+#endif
v = sqlite3GetVdbe(pParse);
- if( pTab==0 || pTab->pIndex==0 ){
+ if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){
/* Do no analysis for tables that have no indices */
return;
}
-
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert( iDb>=0 );
#ifndef SQLITE_OMIT_AUTHORIZATION
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
- pParse->db->aDb[iDb].zName ) ){
+ db->aDb[iDb].zName ) ){
return;
}
#endif
@@ -39959,71 +64075,147 @@ static void analyzeOneTable(
/* Establish a read-lock on the table at the shared-cache level. */
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
- iIdxCur = pParse->nTab;
+ iIdxCur = pParse->nTab++;
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int nCol = pIdx->nColumn;
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
- /* Open a cursor to the index to be analyzed
- */
- assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- VdbeComment((v, "# %s", pIdx->zName));
- sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
- (char *)pKey, P3_KEYINFO_HANDOFF);
- nCol = pIdx->nColumn;
- if( iMem+nCol*2>=pParse->nMem ){
- pParse->nMem = iMem+nCol*2+1;
+ if( iMem+1+(nCol*2)>pParse->nMem ){
+ pParse->nMem = iMem+1+(nCol*2);
}
- sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, nCol+1);
- /* Memory cells are used as follows:
+ /* Open a cursor to the index to be analyzed. */
+ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
+ (char *)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIdx->zName));
+
+ /* Populate the registers containing the table and index names. */
+ if( pTab->pIndex==pIdx ){
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
+ }
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
+
+#ifdef SQLITE_ENABLE_STAT2
+
+ /* If this iteration of the loop is generating code to analyze the
+ ** first index in the pTab->pIndex list, then register regLast has
+ ** not been populated. In this case populate it now. */
+ if( pTab->pIndex==pIdx ){
+ sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
+ sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp);
+ sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2);
+
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst);
+ addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast);
+ sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst);
+ sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast);
+ sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2);
+ sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regLast);
+ sqlite3VdbeJumpHere(v, addr);
+ }
+
+ /* Zero the regSampleno and regRecno registers. */
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);
+ sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno);
+#endif
+
+ /* The block of memory cells initialized here is used as follows.
+ **
+ ** iMem:
+ ** The total number of rows in the table.
**
- ** mem[iMem]: The total number of rows in the table.
- ** mem[iMem+1]: Number of distinct values in column 1
- ** ...
- ** mem[iMem+nCol]: Number of distinct values in column N
- ** mem[iMem+nCol+1] Last observed value of column 1
- ** ...
- ** mem[iMem+nCol+nCol]: Last observed value of column N
+ ** iMem+1 .. iMem+nCol:
+ ** Number of distinct entries in index considering the
+ ** left-most N columns only, where N is between 1 and nCol,
+ ** inclusive.
**
- ** Cells iMem through iMem+nCol are initialized to 0. The others
- ** are initialized to NULL.
+ ** iMem+nCol+1 .. Mem+2*nCol:
+ ** Previous value of indexed columns, from left to right.
+ **
+ ** Cells iMem through iMem+nCol are initialized to 0. The others are
+ ** initialized to contain an SQL NULL.
*/
for(i=0; i<=nCol; i++){
- sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem+i);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
}
for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp(v, OP_MemNull, iMem+nCol+i+1, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
}
- /* Do the analysis.
- */
+ /* Start the analysis loop. This loop runs through all the entries in
+ ** the index b-tree. */
endOfLoop = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, endOfLoop);
+ sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
topOfLoop = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem);
+ sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
+
for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
- sqlite3VdbeAddOp(v, OP_MemLoad, iMem+nCol+i+1, 0);
- sqlite3VdbeAddOp(v, OP_Ne, 0x100, 0);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
+#ifdef SQLITE_ENABLE_STAT2
+ if( i==0 ){
+ /* Check if the record that cursor iIdxCur points to contains a
+ ** value that should be stored in the sqlite_stat2 table. If so,
+ ** store it. */
+ int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
+ assert( regTabname+1==regIdxname
+ && regTabname+2==regSampleno
+ && regTabname+3==regCol
+ );
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);
+
+ /* Calculate new values for regSamplerecno and regSampleno.
+ **
+ ** sampleno = sampleno + 1
+ ** samplerecno = samplerecno+(remaining records)/(remaining samples)
+ */
+ sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
+ sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp);
+ sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
+ sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
+ sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
+ sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
+ sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);
+
+ sqlite3VdbeJumpHere(v, ne);
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
+ }
+#endif
+
+ sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
+ /**** TODO: add collating sequence *****/
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
+ }
+ if( db->mallocFailed ){
+ /* If a malloc failure has occurred, then the result of the expression
+ ** passed as the second argument to the call to sqlite3VdbeJumpHere()
+ ** below may be negative. Which causes an assert() to fail (or an
+ ** out-of-bounds write if SQLITE_DEBUG is not defined). */
+ return;
}
- sqlite3VdbeAddOp(v, OP_Goto, 0, endOfLoop);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
for(i=0; i<nCol; i++){
- addr = sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem+i+1);
- sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
- sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
- sqlite3VdbeAddOp(v, OP_MemStore, iMem+nCol+i+1, 1);
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-(nCol*2));
+ sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
}
+
+ /* End of the analysis loop. */
sqlite3VdbeResolveLabel(v, endOfLoop);
- sqlite3VdbeAddOp(v, OP_Next, iIdxCur, topOfLoop);
- sqlite3VdbeAddOp(v, OP_Close, iIdxCur, 0);
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
+ sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
- /* Store the results.
+ /* Store the results in sqlite_stat1.
**
- ** The result is a single row of the sqlite_stmt1 table. The first
+ ** The result is a single row of the sqlite_stat1 table. The first
** two columns are the names of the table and index. The third column
** is a string composed of a list of integer statistics about the
- ** index. The first integer in the list is the total number of entires
+ ** index. The first integer in the list is the total number of entries
** in the index. There is one additional integer in the list for each
** column of the table. This additional integer is a guess of how many
** rows of the table the index will select. If D is the count of distinct
@@ -40036,29 +64228,21 @@ static void analyzeOneTable(
** If K>0 then it is always the case the D>0 so division by zero
** is never possible.
*/
- sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
- addr = sqlite3VdbeAddOp(v, OP_IfNot, 0, 0);
- sqlite3VdbeAddOp(v, OP_NewRowid, iStatCur, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
- sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, " ", 0);
+ addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
+ sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
- sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
- sqlite3VdbeAddOp(v, OP_Add, 0, 0);
- sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
- sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
- sqlite3VdbeAddOp(v, OP_Divide, 0, 0);
- sqlite3VdbeAddOp(v, OP_ToInt, 0, 0);
- if( i==nCol-1 ){
- sqlite3VdbeAddOp(v, OP_Concat, nCol*2-1, 0);
- }else{
- sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
- }
- }
- sqlite3VdbeOp3(v, OP_MakeRecord, 3, 0, "aaa", 0);
- sqlite3VdbeAddOp(v, OP_Insert, iStatCur, OPFLAG_APPEND);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
+ sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
+ sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
+ sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
+ sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
+ sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
+ sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
+ }
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3VdbeJumpHere(v, addr);
}
}
@@ -40069,7 +64253,9 @@ static void analyzeOneTable(
*/
static void loadAnalysis(Parse *pParse, int iDb){
Vdbe *v = sqlite3GetVdbe(pParse);
- sqlite3VdbeAddOp(v, OP_LoadAnalysis, iDb, 0);
+ if( v ){
+ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
+ }
}
/*
@@ -40083,9 +64269,10 @@ static void analyzeDatabase(Parse *pParse, int iDb){
int iMem;
sqlite3BeginWriteOperation(pParse, 0, iDb);
- iStatCur = pParse->nTab++;
+ iStatCur = pParse->nTab;
+ pParse->nTab += 2;
openStatTable(pParse, iDb, iStatCur, 0);
- iMem = pParse->nMem;
+ iMem = pParse->nMem+1;
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
Table *pTab = (Table*)sqliteHashData(k);
analyzeOneTable(pParse, pTab, iStatCur, iMem);
@@ -40102,11 +64289,13 @@ static void analyzeTable(Parse *pParse, Table *pTab){
int iStatCur;
assert( pTab!=0 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
sqlite3BeginWriteOperation(pParse, 0, iDb);
- iStatCur = pParse->nTab++;
+ iStatCur = pParse->nTab;
+ pParse->nTab += 2;
openStatTable(pParse, iDb, iStatCur, pTab->zName);
- analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem);
+ analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
loadAnalysis(pParse, iDb);
}
@@ -40122,7 +64311,7 @@ static void analyzeTable(Parse *pParse, Table *pTab){
** Form 2 analyzes all indices the single database named.
** Form 3 analyzes all indices associated with the named table.
*/
-void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
+SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
sqlite3 *db = pParse->db;
int iDb;
int i;
@@ -40132,27 +64321,31 @@ void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
/* Read the database schema. If an error occurs, leave an error message
** and code in pParse and return NULL. */
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
return;
}
+ assert( pName2!=0 || pName1==0 );
if( pName1==0 ){
/* Form 1: Analyze everything */
for(i=0; i<db->nDb; i++){
if( i==1 ) continue; /* Do not analyze the TEMP database */
analyzeDatabase(pParse, i);
}
- }else if( pName2==0 || pName2->n==0 ){
+ }else if( pName2->n==0 ){
/* Form 2: Analyze the database or table named */
iDb = sqlite3FindDb(db, pName1);
if( iDb>=0 ){
analyzeDatabase(pParse, iDb);
}else{
- z = sqlite3NameFromToken(pName1);
- pTab = sqlite3LocateTable(pParse, z, 0);
- sqliteFree(z);
- if( pTab ){
- analyzeTable(pParse, pTab);
+ z = sqlite3NameFromToken(db, pName1);
+ if( z ){
+ pTab = sqlite3LocateTable(pParse, 0, z, 0);
+ sqlite3DbFree(db, z);
+ if( pTab ){
+ analyzeTable(pParse, pTab);
+ }
}
}
}else{
@@ -40160,11 +64353,13 @@ void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
if( iDb>=0 ){
zDb = db->aDb[iDb].zName;
- z = sqlite3NameFromToken(pTableName);
- pTab = sqlite3LocateTable(pParse, z, zDb);
- sqliteFree(z);
- if( pTab ){
- analyzeTable(pParse, pTab);
+ z = sqlite3NameFromToken(db, pTableName);
+ if( z ){
+ pTab = sqlite3LocateTable(pParse, 0, z, zDb);
+ sqlite3DbFree(db, z);
+ if( pTab ){
+ analyzeTable(pParse, pTab);
+ }
}
}
}
@@ -40187,7 +64382,7 @@ struct analysisInfo {
** argv[0] = name of the index
** argv[1] = results of analysis - on integer for each column
*/
-static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
+static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
analysisInfo *pInfo = (analysisInfo*)pData;
Index *pIndex;
int i, c;
@@ -40195,6 +64390,8 @@ static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
const char *z;
assert( argc==2 );
+ UNUSED_PARAMETER2(NotUsed, argc);
+
if( argv==0 || argv[0]==0 || argv[1]==0 ){
return 0;
}
@@ -40216,34 +64413,164 @@ static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
}
/*
-** Load the content of the sqlite_stat1 table into the index hash tables.
+** If the Index.aSample variable is not NULL, delete the aSample[] array
+** and its contents.
*/
-void sqlite3AnalysisLoad(sqlite3 *db, int iDb){
+SQLITE_PRIVATE void sqlite3DeleteIndexSamples(Index *pIdx){
+#ifdef SQLITE_ENABLE_STAT2
+ if( pIdx->aSample ){
+ int j;
+ sqlite3 *dbMem = pIdx->pTable->dbMem;
+ for(j=0; j<SQLITE_INDEX_SAMPLES; j++){
+ IndexSample *p = &pIdx->aSample[j];
+ if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
+ sqlite3DbFree(pIdx->pTable->dbMem, p->u.z);
+ }
+ }
+ sqlite3DbFree(dbMem, pIdx->aSample);
+ pIdx->aSample = 0;
+ }
+#else
+ UNUSED_PARAMETER(pIdx);
+#endif
+}
+
+/*
+** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The
+** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
+** arrays. The contents of sqlite_stat2 are used to populate the
+** Index.aSample[] arrays.
+**
+** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
+** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined
+** during compilation and the sqlite_stat2 table is present, no data is
+** read from it.
+**
+** If SQLITE_ENABLE_STAT2 was defined during compilation and the
+** sqlite_stat2 table is not present in the database, SQLITE_ERROR is
+** returned. However, in this case, data is read from the sqlite_stat1
+** table (if it is present) before returning.
+**
+** If an OOM error occurs, this function always sets db->mallocFailed.
+** This means if the caller does not care about other errors, the return
+** code may be ignored.
+*/
+SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
analysisInfo sInfo;
HashElem *i;
char *zSql;
+ int rc;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+ assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
/* Clear any prior statistics */
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
Index *pIdx = sqliteHashData(i);
sqlite3DefaultRowEst(pIdx);
+ sqlite3DeleteIndexSamples(pIdx);
}
- /* Check to make sure the sqlite_stat1 table existss */
+ /* Check to make sure the sqlite_stat1 table exists */
sInfo.db = db;
sInfo.zDatabase = db->aDb[iDb].zName;
if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
- return;
+ return SQLITE_ERROR;
}
-
/* Load new statistics out of the sqlite_stat1 table */
- zSql = sqlite3MPrintf("SELECT idx, stat FROM %Q.sqlite_stat1",
- sInfo.zDatabase);
- sqlite3SafetyOff(db);
- sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
- sqlite3SafetyOn(db);
- sqliteFree(zSql);
+ zSql = sqlite3MPrintf(db,
+ "SELECT idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ (void)sqlite3SafetyOff(db);
+ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
+ (void)sqlite3SafetyOn(db);
+ sqlite3DbFree(db, zSql);
+ }
+
+
+ /* Load the statistics from the sqlite_stat2 table. */
+#ifdef SQLITE_ENABLE_STAT2
+ if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){
+ rc = SQLITE_ERROR;
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_stmt *pStmt = 0;
+
+ zSql = sqlite3MPrintf(db,
+ "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ (void)sqlite3SafetyOff(db);
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ (void)sqlite3SafetyOn(db);
+ sqlite3DbFree(db, zSql);
+ }
+
+ if( rc==SQLITE_OK ){
+ (void)sqlite3SafetyOff(db);
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ char *zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase);
+ if( pIdx ){
+ int iSample = sqlite3_column_int(pStmt, 1);
+ sqlite3 *dbMem = pIdx->pTable->dbMem;
+ assert( dbMem==db || dbMem==0 );
+ if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
+ int eType = sqlite3_column_type(pStmt, 2);
+
+ if( pIdx->aSample==0 ){
+ static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
+ pIdx->aSample = (IndexSample *)sqlite3DbMallocZero(dbMem, sz);
+ if( pIdx->aSample==0 ){
+ db->mallocFailed = 1;
+ break;
+ }
+ }
+
+ assert( pIdx->aSample );
+ {
+ IndexSample *pSample = &pIdx->aSample[iSample];
+ pSample->eType = (u8)eType;
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ pSample->u.r = sqlite3_column_double(pStmt, 2);
+ }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ const char *z = (const char *)(
+ (eType==SQLITE_BLOB) ?
+ sqlite3_column_blob(pStmt, 2):
+ sqlite3_column_text(pStmt, 2)
+ );
+ int n = sqlite3_column_bytes(pStmt, 2);
+ if( n>24 ){
+ n = 24;
+ }
+ pSample->nByte = (u8)n;
+ pSample->u.z = sqlite3DbMallocRaw(dbMem, n);
+ if( pSample->u.z ){
+ memcpy(pSample->u.z, z, n);
+ }else{
+ db->mallocFailed = 1;
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ rc = sqlite3_finalize(pStmt);
+ (void)sqlite3SafetyOn(db);
+ }
+ }
+#endif
+
+ if( rc==SQLITE_NOMEM ){
+ db->mallocFailed = 1;
+ }
+ return rc;
}
@@ -40264,7 +64591,7 @@ void sqlite3AnalysisLoad(sqlite3 *db, int iDb){
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
-** $Id: attach.c,v 1.57 2007/03/27 21:47:07 drh Exp $
+** $Id: attach.c,v 1.93 2009/05/31 21:21:41 drh Exp $
*/
#ifndef SQLITE_OMIT_ATTACH
@@ -40291,7 +64618,11 @@ static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
int rc = SQLITE_OK;
if( pExpr ){
if( pExpr->op!=TK_ID ){
- rc = sqlite3ExprResolveNames(pName, pExpr);
+ rc = sqlite3ResolveExprNames(pName, pExpr);
+ if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
+ sqlite3ErrorMsg(pName->pParse, "invalid name: \"%s\"", pExpr->u.zToken);
+ return SQLITE_ERROR;
+ }
}else{
pExpr->op = TK_STRING;
}
@@ -40312,18 +64643,19 @@ static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
*/
static void attachFunc(
sqlite3_context *context,
- int argc,
+ int NotUsed,
sqlite3_value **argv
){
int i;
int rc = 0;
- sqlite3 *db = sqlite3_user_data(context);
+ sqlite3 *db = sqlite3_context_db_handle(context);
const char *zName;
const char *zFile;
Db *aNew;
- char zErr[128];
char *zErrDyn = 0;
+ UNUSED_PARAMETER(NotUsed);
+
zFile = (const char *)sqlite3_value_text(argv[0]);
zName = (const char *)sqlite3_value_text(argv[1]);
if( zFile==0 ) zFile = "";
@@ -40335,20 +64667,21 @@ static void attachFunc(
** * Transaction currently open
** * Specified database name already being used.
*/
- if( db->nDb>=MAX_ATTACHED+2 ){
- sqlite3_snprintf(
- sizeof(zErr), zErr, "too many attached databases - max %d", MAX_ATTACHED
+ if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
+ zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d",
+ db->aLimit[SQLITE_LIMIT_ATTACHED]
);
goto attach_error;
}
if( !db->autoCommit ){
- strcpy(zErr, "cannot ATTACH database within transaction");
+ zErrDyn = sqlite3MPrintf(db, "cannot ATTACH database within transaction");
goto attach_error;
}
for(i=0; i<db->nDb; i++){
char *z = db->aDb[i].zName;
- if( z && zName && sqlite3StrICmp(z, zName)==0 ){
- sqlite3_snprintf(sizeof(zErr), zErr, "database %s is already in use", zName);
+ assert( z && zName );
+ if( sqlite3StrICmp(z, zName)==0 ){
+ zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName);
goto attach_error;
}
}
@@ -40357,38 +64690,43 @@ static void attachFunc(
** hash tables.
*/
if( db->aDb==db->aDbStatic ){
- aNew = sqliteMalloc( sizeof(db->aDb[0])*3 );
- if( aNew==0 ){
- return;
- }
+ aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 );
+ if( aNew==0 ) return;
memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
}else{
- aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
- if( aNew==0 ){
- return;
- }
+ aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
+ if( aNew==0 ) return;
}
db->aDb = aNew;
- aNew = &db->aDb[db->nDb++];
+ aNew = &db->aDb[db->nDb];
memset(aNew, 0, sizeof(*aNew));
/* Open the database file. If the btree is successfully opened, use
** it to obtain the database schema. At this point the schema may
** or may not be initialised.
*/
- rc = sqlite3BtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt);
- if( rc==SQLITE_OK ){
- aNew->pSchema = sqlite3SchemaGet(aNew->pBt);
+ rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
+ db->openFlags | SQLITE_OPEN_MAIN_DB,
+ &aNew->pBt);
+ db->nDb++;
+ if( rc==SQLITE_CONSTRAINT ){
+ rc = SQLITE_ERROR;
+ zErrDyn = sqlite3MPrintf(db, "database is already attached");
+ }else if( rc==SQLITE_OK ){
+ Pager *pPager;
+ aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
if( !aNew->pSchema ){
rc = SQLITE_NOMEM;
}else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
- strcpy(zErr,
+ zErrDyn = sqlite3MPrintf(db,
"attached databases must use the same text encoding as main database");
- goto attach_error;
+ rc = SQLITE_ERROR;
}
- sqlite3PagerLockingMode(sqlite3BtreePager(aNew->pBt), db->dfltLockMode);
+ pPager = sqlite3BtreePager(aNew->pBt);
+ sqlite3PagerLockingMode(pPager, db->dfltLockMode);
+ sqlite3PagerJournalMode(pPager, db->dfltJournalMode);
}
- aNew->zName = sqliteStrDup(zName);
+ aNew->zName = sqlite3DbStrDup(db, zName);
aNew->safety_level = 3;
#if SQLITE_HAS_CODEC
@@ -40401,7 +64739,7 @@ static void attachFunc(
switch( t ){
case SQLITE_INTEGER:
case SQLITE_FLOAT:
- zErrDyn = sqliteStrDup("Invalid key value");
+ zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
rc = SQLITE_ERROR;
break;
@@ -40427,9 +64765,11 @@ static void attachFunc(
** we found it.
*/
if( rc==SQLITE_OK ){
- sqlite3SafetyOn(db);
+ (void)sqlite3SafetyOn(db);
+ sqlite3BtreeEnterAll(db);
rc = sqlite3Init(db, &zErrDyn);
- sqlite3SafetyOff(db);
+ sqlite3BtreeLeaveAll(db);
+ (void)sqlite3SafetyOff(db);
}
if( rc ){
int iDb = db->nDb - 1;
@@ -40441,11 +64781,12 @@ static void attachFunc(
}
sqlite3ResetInternalSchema(db, 0);
db->nDb = iDb;
- if( rc==SQLITE_NOMEM ){
- sqlite3FailedMalloc();
- sqlite3_snprintf(sizeof(zErr),zErr, "out of memory");
- }else{
- sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile);
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ db->mallocFailed = 1;
+ sqlite3DbFree(db, zErrDyn);
+ zErrDyn = sqlite3MPrintf(db, "out of memory");
+ }else if( zErrDyn==0 ){
+ zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile);
}
goto attach_error;
}
@@ -40456,11 +64797,9 @@ attach_error:
/* Return an error if we get here */
if( zErrDyn ){
sqlite3_result_error(context, zErrDyn, -1);
- sqliteFree(zErrDyn);
- }else{
- zErr[sizeof(zErr)-1] = 0;
- sqlite3_result_error(context, zErr, -1);
+ sqlite3DbFree(db, zErrDyn);
}
+ if( rc ) sqlite3_result_error_code(context, rc);
}
/*
@@ -40473,15 +64812,17 @@ attach_error:
*/
static void detachFunc(
sqlite3_context *context,
- int argc,
+ int NotUsed,
sqlite3_value **argv
){
const char *zName = (const char *)sqlite3_value_text(argv[0]);
- sqlite3 *db = sqlite3_user_data(context);
+ sqlite3 *db = sqlite3_context_db_handle(context);
int i;
Db *pDb = 0;
char zErr[128];
+ UNUSED_PARAMETER(NotUsed);
+
if( zName==0 ) zName = "";
for(i=0; i<db->nDb; i++){
pDb = &db->aDb[i];
@@ -40498,10 +64839,11 @@ static void detachFunc(
goto detach_error;
}
if( !db->autoCommit ){
- strcpy(zErr, "cannot DETACH database within transaction");
+ sqlite3_snprintf(sizeof(zErr), zErr,
+ "cannot DETACH database within transaction");
goto detach_error;
}
- if( sqlite3BtreeIsInReadTrans(pDb->pBt) ){
+ if( sqlite3BtreeIsInReadTrans(pDb->pBt) || sqlite3BtreeIsInBackup(pDb->pBt) ){
sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
goto detach_error;
}
@@ -40523,8 +64865,7 @@ detach_error:
static void codeAttach(
Parse *pParse, /* The parser context */
int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
- const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */
- int nFunc, /* Number of args to pass to zFunc */
+ FuncDef *pFunc, /* FuncDef wrapper for detachFunc() or attachFunc() */
Expr *pAuthArg, /* Expression to pass to authorization callback */
Expr *pFilename, /* Name of database file */
Expr *pDbname, /* Name of the database to use internally */
@@ -40533,23 +64874,8 @@ static void codeAttach(
int rc;
NameContext sName;
Vdbe *v;
- FuncDef *pFunc;
sqlite3* db = pParse->db;
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- assert( sqlite3MallocFailed() || pAuthArg );
- if( pAuthArg ){
- char *zAuthArg = sqlite3NameFromToken(&pAuthArg->span);
- if( !zAuthArg ){
- goto attach_end;
- }
- rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
- sqliteFree(zAuthArg);
- if(rc!=SQLITE_OK ){
- goto attach_end;
- }
- }
-#endif /* SQLITE_OMIT_AUTHORIZATION */
+ int regArgs;
memset(&sName, 0, sizeof(NameContext));
sName.pParse = pParse;
@@ -40563,28 +64889,44 @@ static void codeAttach(
goto attach_end;
}
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( pAuthArg ){
+ char *zAuthArg = pAuthArg->u.zToken;
+ if( NEVER(zAuthArg==0) ){
+ goto attach_end;
+ }
+ rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
+ if(rc!=SQLITE_OK ){
+ goto attach_end;
+ }
+ }
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+
+
v = sqlite3GetVdbe(pParse);
- sqlite3ExprCode(pParse, pFilename);
- sqlite3ExprCode(pParse, pDbname);
- sqlite3ExprCode(pParse, pKey);
+ regArgs = sqlite3GetTempRange(pParse, 4);
+ sqlite3ExprCode(pParse, pFilename, regArgs);
+ sqlite3ExprCode(pParse, pDbname, regArgs+1);
+ sqlite3ExprCode(pParse, pKey, regArgs+2);
- assert( v || sqlite3MallocFailed() );
+ assert( v || db->mallocFailed );
if( v ){
- sqlite3VdbeAddOp(v, OP_Function, 0, nFunc);
- pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
- sqlite3VdbeChangeP3(v, -1, (char *)pFunc, P3_FUNCDEF);
+ sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-pFunc->nArg, regArgs+3);
+ assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
+ sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));
+ sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
/* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
** statement only). For DETACH, set it to false (expire all existing
** statements).
*/
- sqlite3VdbeAddOp(v, OP_Expire, (type==SQLITE_ATTACH), 0);
+ sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
}
attach_end:
- sqlite3ExprDelete(pFilename);
- sqlite3ExprDelete(pDbname);
- sqlite3ExprDelete(pKey);
+ sqlite3ExprDelete(db, pFilename);
+ sqlite3ExprDelete(db, pDbname);
+ sqlite3ExprDelete(db, pKey);
}
/*
@@ -40592,8 +64934,20 @@ attach_end:
**
** DETACH pDbname
*/
-void sqlite3Detach(Parse *pParse, Expr *pDbname){
- codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
+SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
+ static FuncDef detach_func = {
+ 1, /* nArg */
+ SQLITE_UTF8, /* iPrefEnc */
+ 0, /* flags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ detachFunc, /* xFunc */
+ 0, /* xStep */
+ 0, /* xFinalize */
+ "sqlite_detach", /* zName */
+ 0 /* pHash */
+ };
+ codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
}
/*
@@ -40601,30 +64955,31 @@ void sqlite3Detach(Parse *pParse, Expr *pDbname){
**
** ATTACH p AS pDbname KEY pKey
*/
-void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
- codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
+SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
+ static FuncDef attach_func = {
+ 3, /* nArg */
+ SQLITE_UTF8, /* iPrefEnc */
+ 0, /* flags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ attachFunc, /* xFunc */
+ 0, /* xStep */
+ 0, /* xFinalize */
+ "sqlite_attach", /* zName */
+ 0 /* pHash */
+ };
+ codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
}
#endif /* SQLITE_OMIT_ATTACH */
/*
-** Register the functions sqlite_attach and sqlite_detach.
-*/
-void sqlite3AttachFunctions(sqlite3 *db){
-#ifndef SQLITE_OMIT_ATTACH
- static const int enc = SQLITE_UTF8;
- sqlite3CreateFunc(db, "sqlite_attach", 3, enc, db, attachFunc, 0, 0);
- sqlite3CreateFunc(db, "sqlite_detach", 1, enc, db, detachFunc, 0, 0);
-#endif
-}
-
-/*
** Initialize a DbFixer structure. This routine must be called prior
** to passing the structure to one of the sqliteFixAAAA() routines below.
**
** The return value indicates whether or not fixation is required. TRUE
** means we do need to fix the database references, FALSE means we do not.
*/
-int sqlite3FixInit(
+SQLITE_PRIVATE int sqlite3FixInit(
DbFixer *pFix, /* The fixer to be initialized */
Parse *pParse, /* Error messages will be written here */
int iDb, /* This is the database that must be used */
@@ -40633,7 +64988,7 @@ int sqlite3FixInit(
){
sqlite3 *db;
- if( iDb<0 || iDb==1 ) return 0;
+ if( NEVER(iDb<0) || iDb==1 ) return 0;
db = pParse->db;
assert( db->nDb>iDb );
pFix->pParse = pParse;
@@ -40657,7 +65012,7 @@ int sqlite3FixInit(
** pParse->zErrMsg and these routines return non-zero. If everything
** checks out, these routines return 0.
*/
-int sqlite3FixSrcList(
+SQLITE_PRIVATE int sqlite3FixSrcList(
DbFixer *pFix, /* Context of the fixation */
SrcList *pList /* The Source list to check and modify */
){
@@ -40665,11 +65020,11 @@ int sqlite3FixSrcList(
const char *zDb;
struct SrcList_item *pItem;
- if( pList==0 ) return 0;
+ if( NEVER(pList==0) ) return 0;
zDb = pFix->zDb;
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
if( pItem->zDatabase==0 ){
- pItem->zDatabase = sqliteStrDup(zDb);
+ pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
}else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
sqlite3ErrorMsg(pFix->pParse,
"%s %T cannot reference objects in database %s",
@@ -40684,7 +65039,7 @@ int sqlite3FixSrcList(
return 0;
}
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
-int sqlite3FixSelect(
+SQLITE_PRIVATE int sqlite3FixSelect(
DbFixer *pFix, /* Context of the fixation */
Select *pSelect /* The SELECT statement to be fixed to one database */
){
@@ -40705,16 +65060,16 @@ int sqlite3FixSelect(
}
return 0;
}
-int sqlite3FixExpr(
+SQLITE_PRIVATE int sqlite3FixExpr(
DbFixer *pFix, /* Context of the fixation */
Expr *pExpr /* The expression to be fixed to one database */
){
while( pExpr ){
- if( sqlite3FixSelect(pFix, pExpr->pSelect) ){
- return 1;
- }
- if( sqlite3FixExprList(pFix, pExpr->pList) ){
- return 1;
+ if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ) break;
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ if( sqlite3FixSelect(pFix, pExpr->x.pSelect) ) return 1;
+ }else{
+ if( sqlite3FixExprList(pFix, pExpr->x.pList) ) return 1;
}
if( sqlite3FixExpr(pFix, pExpr->pRight) ){
return 1;
@@ -40723,7 +65078,7 @@ int sqlite3FixExpr(
}
return 0;
}
-int sqlite3FixExprList(
+SQLITE_PRIVATE int sqlite3FixExprList(
DbFixer *pFix, /* Context of the fixation */
ExprList *pList /* The expression to be fixed to one database */
){
@@ -40740,7 +65095,7 @@ int sqlite3FixExprList(
#endif
#ifndef SQLITE_OMIT_TRIGGER
-int sqlite3FixTriggerStep(
+SQLITE_PRIVATE int sqlite3FixTriggerStep(
DbFixer *pFix, /* Context of the fixation */
TriggerStep *pStep /* The trigger step be fixed to one database */
){
@@ -40778,7 +65133,7 @@ int sqlite3FixTriggerStep(
** systems that do not need this facility may omit it by recompiling
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
**
-** $Id: auth.c,v 1.25 2006/06/16 08:01:03 danielk1977 Exp $
+** $Id: auth.c,v 1.32 2009/07/02 18:40:35 danielk1977 Exp $
*/
/*
@@ -40832,14 +65187,16 @@ int sqlite3FixTriggerStep(
** Setting the auth function to NULL disables this hook. The default
** setting of the auth function is NULL.
*/
-int sqlite3_set_authorizer(
+SQLITE_API int sqlite3_set_authorizer(
sqlite3 *db,
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
void *pArg
){
+ sqlite3_mutex_enter(db->mutex);
db->xAuth = xAuth;
db->pAuthArg = pArg;
sqlite3ExpirePreparedStatements(db);
+ sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
@@ -40847,10 +65204,8 @@ int sqlite3_set_authorizer(
** Write an error message into pParse->zErrMsg that explains that the
** user-supplied authorization function returned an illegal value.
*/
-static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
- sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
- "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
- "or SQLITE_DENY", rc);
+static void sqliteAuthBadReturnCode(Parse *pParse){
+ sqlite3ErrorMsg(pParse, "authorizer malfunction");
pParse->rc = SQLITE_ERROR;
}
@@ -40863,47 +65218,47 @@ static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
** then generate an error.
*/
-void sqlite3AuthRead(
+SQLITE_PRIVATE void sqlite3AuthRead(
Parse *pParse, /* The parser context */
Expr *pExpr, /* The expression to check authorization on */
+ Schema *pSchema, /* The schema of the expression */
SrcList *pTabList /* All table that pExpr might refer to */
){
sqlite3 *db = pParse->db;
int rc;
- Table *pTab; /* The table being read */
+ Table *pTab = 0; /* The table being read */
const char *zCol; /* Name of the column of the table */
int iSrc; /* Index in pTabList->a[] of table being read */
const char *zDBase; /* Name of database being accessed */
- TriggerStack *pStack; /* The stack of current triggers */
int iDb; /* The index of the database the expression refers to */
+ int iCol; /* Index of column in table */
if( db->xAuth==0 ) return;
- if( pExpr->op==TK_AS ) return;
- assert( pExpr->op==TK_COLUMN );
- iDb = sqlite3SchemaToIndex(pParse->db, pExpr->pSchema);
+ iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
if( iDb<0 ){
/* An attempt to read a column out of a subquery or other
** temporary table. */
return;
}
- for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
- if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
- }
- if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
- pTab = pTabList->a[iSrc].pTab;
- }else if( (pStack = pParse->trigStack)!=0 ){
- /* This must be an attempt to read the NEW or OLD pseudo-tables
- ** of a trigger.
- */
- assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
- pTab = pStack->pTab;
+
+ assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
+ if( pExpr->op==TK_TRIGGER ){
+ pTab = pParse->pTriggerTab;
}else{
- return;
+ assert( pTabList );
+ for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){
+ if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
+ pTab = pTabList->a[iSrc].pTab;
+ break;
+ }
+ }
}
- if( pTab==0 ) return;
- if( pExpr->iColumn>=0 ){
- assert( pExpr->iColumn<pTab->nCol );
- zCol = pTab->aCol[pExpr->iColumn].zName;
+ iCol = pExpr->iColumn;
+ if( NEVER(pTab==0) ) return;
+
+ if( iCol>=0 ){
+ assert( iCol<pTab->nCol );
+ zCol = pTab->aCol[iCol].zName;
}else if( pTab->iPKey>=0 ){
assert( pTab->iPKey<pTab->nCol );
zCol = pTab->aCol[pTab->iPKey].zName;
@@ -40925,7 +65280,7 @@ void sqlite3AuthRead(
}
pParse->rc = SQLITE_AUTH;
}else if( rc!=SQLITE_OK ){
- sqliteAuthBadReturnCode(pParse, rc);
+ sqliteAuthBadReturnCode(pParse);
}
}
@@ -40935,7 +65290,7 @@ void sqlite3AuthRead(
** is returned, then the error count and error message in pParse are
** modified appropriately.
*/
-int sqlite3AuthCheck(
+SQLITE_PRIVATE int sqlite3AuthCheck(
Parse *pParse,
int code,
const char *zArg1,
@@ -40961,7 +65316,7 @@ int sqlite3AuthCheck(
pParse->rc = SQLITE_AUTH;
}else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
rc = SQLITE_DENY;
- sqliteAuthBadReturnCode(pParse, rc);
+ sqliteAuthBadReturnCode(pParse);
}
return rc;
}
@@ -40971,23 +65326,22 @@ int sqlite3AuthCheck(
** zArg3 argument to authorization callbacks will be zContext until
** popped. Or if pParse==0, this routine is a no-op.
*/
-void sqlite3AuthContextPush(
+SQLITE_PRIVATE void sqlite3AuthContextPush(
Parse *pParse,
AuthContext *pContext,
const char *zContext
){
+ assert( pParse );
pContext->pParse = pParse;
- if( pParse ){
- pContext->zAuthContext = pParse->zAuthContext;
- pParse->zAuthContext = zContext;
- }
+ pContext->zAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = zContext;
}
/*
** Pop an authorization context that was previously pushed
** by sqlite3AuthContextPush
*/
-void sqlite3AuthContextPop(AuthContext *pContext){
+SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
if( pContext->pParse ){
pContext->pParse->zAuthContext = pContext->zAuthContext;
pContext->pParse = 0;
@@ -41022,15 +65376,15 @@ void sqlite3AuthContextPop(AuthContext *pContext){
** COMMIT
** ROLLBACK
**
-** $Id: build.c,v 1.421 2007/04/18 14:47:24 danielk1977 Exp $
+** $Id: build.c,v 1.557 2009/07/24 17:58:53 danielk1977 Exp $
*/
/*
** This routine is called when a new SQL statement is beginning to
** be parsed. Initialize the pParse structure as needed.
*/
-void sqlite3BeginParse(Parse *pParse, int explainFlag){
- pParse->explain = explainFlag;
+SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){
+ pParse->explain = (u8)explainFlag;
pParse->nVar = 0;
}
@@ -41056,37 +65410,39 @@ struct TableLock {
** code to make the lock occur is generated by a later call to
** codeTableLocks() which occurs during sqlite3FinishCoding().
*/
-void sqlite3TableLock(
+SQLITE_PRIVATE void sqlite3TableLock(
Parse *pParse, /* Parsing context */
int iDb, /* Index of the database containing the table to lock */
int iTab, /* Root page number of the table to be locked */
u8 isWriteLock, /* True for a write lock */
const char *zName /* Name of the table to be locked */
){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
int i;
int nBytes;
TableLock *p;
+ assert( iDb>=0 );
- if( 0==sqlite3ThreadDataReadOnly()->useSharedData || iDb<0 ){
- return;
- }
-
- for(i=0; i<pParse->nTableLock; i++){
- p = &pParse->aTableLock[i];
+ for(i=0; i<pToplevel->nTableLock; i++){
+ p = &pToplevel->aTableLock[i];
if( p->iDb==iDb && p->iTab==iTab ){
p->isWriteLock = (p->isWriteLock || isWriteLock);
return;
}
}
- nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
- pParse->aTableLock = sqliteReallocOrFree(pParse->aTableLock, nBytes);
- if( pParse->aTableLock ){
- p = &pParse->aTableLock[pParse->nTableLock++];
+ nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
+ pToplevel->aTableLock =
+ sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
+ if( pToplevel->aTableLock ){
+ p = &pToplevel->aTableLock[pToplevel->nTableLock++];
p->iDb = iDb;
p->iTab = iTab;
p->isWriteLock = isWriteLock;
p->zName = zName;
+ }else{
+ pToplevel->nTableLock = 0;
+ pToplevel->db->mallocFailed = 1;
}
}
@@ -41097,19 +65453,15 @@ void sqlite3TableLock(
static void codeTableLocks(Parse *pParse){
int i;
Vdbe *pVdbe;
- assert( sqlite3ThreadDataReadOnly()->useSharedData || pParse->nTableLock==0 );
- if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
- return;
- }
+ pVdbe = sqlite3GetVdbe(pParse);
+ assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
for(i=0; i<pParse->nTableLock; i++){
TableLock *p = &pParse->aTableLock[i];
int p1 = p->iDb;
- if( p->isWriteLock ){
- p1 = -1*(p1+1);
- }
- sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC);
+ sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
+ p->zName, P4_STATIC);
}
}
#else
@@ -41126,26 +65478,23 @@ static void codeTableLocks(Parse *pParse){
** Note that if an error occurred, it might be the case that
** no VDBE code was generated.
*/
-void sqlite3FinishCoding(Parse *pParse){
+SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
sqlite3 *db;
Vdbe *v;
- if( sqlite3MallocFailed() ) return;
+ db = pParse->db;
+ if( db->mallocFailed ) return;
if( pParse->nested ) return;
- if( !pParse->pVdbe ){
- if( pParse->rc==SQLITE_OK && pParse->nErr ){
- pParse->rc = SQLITE_ERROR;
- return;
- }
- }
+ if( pParse->nErr ) return;
/* Begin by generating some termination code at the end of the
** vdbe program
*/
- db = pParse->db;
v = sqlite3GetVdbe(pParse);
+ assert( !pParse->isMultiWrite
+ || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
if( v ){
- sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
+ sqlite3VdbeAddOp0(v, OP_Halt);
/* The cookie mask contains one bit for each database file open.
** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
@@ -41159,13 +65508,20 @@ void sqlite3FinishCoding(Parse *pParse){
sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
if( (mask & pParse->cookieMask)==0 ) continue;
- sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
- sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
+ sqlite3VdbeUsesBtree(v, iDb);
+ sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
+ if( db->init.busy==0 ){
+ sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
+ }
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pParse->pVirtualLock ){
- char *vtab = (char *)pParse->pVirtualLock->pVtab;
- sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);
+ {
+ int i;
+ for(i=0; i<pParse->nVtabLock; i++){
+ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
+ sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
+ }
+ pParse->nVtabLock = 0;
}
#endif
@@ -41174,28 +65530,28 @@ void sqlite3FinishCoding(Parse *pParse){
** shared-cache feature is enabled.
*/
codeTableLocks(pParse);
- sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
- }
-#ifndef SQLITE_OMIT_TRACE
- /* Add a No-op that contains the complete text of the compiled SQL
- ** statement as its P3 argument. This does not change the functionality
- ** of the program.
- **
- ** This is used to implement sqlite3_trace().
- */
- sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
-#endif /* SQLITE_OMIT_TRACE */
+ /* Initialize any AUTOINCREMENT data structures required.
+ */
+ sqlite3AutoincrementBegin(pParse);
+
+ /* Finally, jump back to the beginning of the executable code. */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
+ }
}
/* Get the VDBE program ready for execution
*/
- if( v && pParse->nErr==0 && !sqlite3MallocFailed() ){
+ if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
+#ifdef SQLITE_DEBUG
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
sqlite3VdbeTrace(v, trace);
- sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
- pParse->nTab+3, pParse->explain);
+#endif
+ assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
+ sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
+ pParse->nTab, pParse->nMaxArg, pParse->explain,
+ pParse->isMultiWrite && pParse->mayAbort);
pParse->rc = SQLITE_DONE;
pParse->colNamesSet = 0;
}else if( pParse->rc==SQLITE_OK ){
@@ -41221,16 +65577,18 @@ void sqlite3FinishCoding(Parse *pParse){
** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
** care if you decide to try to use this routine for some other purposes.
*/
-void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
+SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
va_list ap;
char *zSql;
+ char *zErrMsg = 0;
+ sqlite3 *db = pParse->db;
# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
char saveBuf[SAVE_SZ];
if( pParse->nErr ) return;
assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
va_start(ap, zFormat);
- zSql = sqlite3VMPrintf(zFormat, ap);
+ zSql = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
if( zSql==0 ){
return; /* A malloc must have failed */
@@ -41238,8 +65596,9 @@ void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
pParse->nested++;
memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
memset(&pParse->nVar, 0, SAVE_SZ);
- sqlite3RunParser(pParse, zSql, 0);
- sqliteFree(zSql);
+ sqlite3RunParser(pParse, zSql, &zErrMsg);
+ sqlite3DbFree(db, zErrMsg);
+ sqlite3DbFree(db, zSql);
memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
pParse->nested--;
}
@@ -41256,14 +65615,16 @@ void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
**
** See also sqlite3LocateTable().
*/
-Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
+SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
Table *p = 0;
int i;
+ int nName;
assert( zName!=0 );
+ nName = sqlite3Strlen30(zName);
for(i=OMIT_TEMPDB; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
- p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
+ p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
if( p ) break;
}
return p;
@@ -41279,7 +65640,12 @@ Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
** routine leaves an error message in pParse->zErrMsg where
** sqlite3FindTable() does not.
*/
-Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
+SQLITE_PRIVATE Table *sqlite3LocateTable(
+ Parse *pParse, /* context in which to report errors */
+ int isView, /* True if looking for a VIEW rather than a TABLE */
+ const char *zName, /* Name of the table we are looking for */
+ const char *zDbase /* Name of the database. Might be NULL */
+){
Table *p;
/* Read the database schema. If an error occurs, leave an error message
@@ -41290,10 +65656,11 @@ Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
p = sqlite3FindTable(pParse->db, zName, zDbase);
if( p==0 ){
+ const char *zMsg = isView ? "no such view" : "no such table";
if( zDbase ){
- sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
}else{
- sqlite3ErrorMsg(pParse, "no such table: %s", zName);
+ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
}
pParse->checkSchema = 1;
}
@@ -41312,17 +65679,16 @@ Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
** TEMP first, then MAIN, then any auxiliary databases added
** using the ATTACH command.
*/
-Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
+SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
Index *p = 0;
int i;
+ int nName = sqlite3Strlen30(zName);
for(i=OMIT_TEMPDB; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
Schema *pSchema = db->aDb[j].pSchema;
+ assert( pSchema );
if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
- assert( pSchema || (j==1 && !db->aDb[1].pBt) );
- if( pSchema ){
- p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
- }
+ p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
if( p ) break;
}
return p;
@@ -41332,8 +65698,12 @@ Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
** Reclaim the memory used by an index
*/
static void freeIndex(Index *p){
- sqliteFree(p->zColAff);
- sqliteFree(p);
+ sqlite3 *db = p->pTable->dbMem;
+#ifndef SQLITE_OMIT_ANALYZE
+ sqlite3DeleteIndexSamples(p);
+#endif
+ sqlite3DbFree(db, p->zColAff);
+ sqlite3DbFree(db, p);
}
/*
@@ -41344,11 +65714,12 @@ static void freeIndex(Index *p){
** it is not unlinked from the Table that it indexes.
** Unlinking from the Table must be done by the calling function.
*/
-static void sqliteDeleteIndex(Index *p){
+static void sqlite3DeleteIndex(Index *p){
Index *pOld;
const char *zName = p->zName;
- pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
+ pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName,
+ sqlite3Strlen30(zName), 0);
assert( pOld==0 || pOld==p );
freeIndex(p);
}
@@ -41359,20 +65730,23 @@ static void sqliteDeleteIndex(Index *p){
** the index hash table and free all memory structures associated
** with the index.
*/
-void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
Index *pIndex;
int len;
Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
- len = strlen(zIdxName);
- pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
+ len = sqlite3Strlen30(zIdxName);
+ pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
if( pIndex ){
if( pIndex->pTable->pIndex==pIndex ){
pIndex->pTable->pIndex = pIndex->pNext;
}else{
Index *p;
- for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
- if( p && p->pNext==pIndex ){
+ /* Justification of ALWAYS(); The index must be on the list of
+ ** indices. */
+ p = pIndex->pTable->pIndex;
+ while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
+ if( ALWAYS(p && p->pNext==pIndex) ){
p->pNext = pIndex->pNext;
}
}
@@ -41388,23 +65762,29 @@ void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
** if there were schema changes during the transaction or if a
** schema-cookie mismatch occurs.
**
-** If iDb<=0 then reset the internal schema tables for all database
-** files. If iDb>=2 then reset the internal schema for only the
+** If iDb==0 then reset the internal schema tables for all database
+** files. If iDb>=1 then reset the internal schema for only the
** single file indicated.
*/
-void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
+SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
int i, j;
-
assert( iDb>=0 && iDb<db->nDb );
+
+ if( iDb==0 ){
+ sqlite3BtreeEnterAll(db);
+ }
for(i=iDb; i<db->nDb; i++){
Db *pDb = &db->aDb[i];
if( pDb->pSchema ){
+ assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
sqlite3SchemaFree(pDb->pSchema);
}
if( iDb>0 ) return;
}
assert( iDb==0 );
db->flags &= ~SQLITE_InternChanges;
+ sqlite3VtabUnlockList(db);
+ sqlite3BtreeLeaveAll(db);
/* If one or more of the auxiliary database files has been closed,
** then remove them from the auxiliary database list. We take the
@@ -41412,17 +65792,10 @@ void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
** schema hash tables and therefore do not have to make any changes
** to any of those tables.
*/
- for(i=0; i<db->nDb; i++){
- struct Db *pDb = &db->aDb[i];
- if( pDb->pBt==0 ){
- if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
- pDb->pAux = 0;
- }
- }
for(i=j=2; i<db->nDb; i++){
struct Db *pDb = &db->aDb[i];
if( pDb->pBt==0 ){
- sqliteFree(pDb->zName);
+ sqlite3DbFree(db, pDb->zName);
pDb->zName = 0;
continue;
}
@@ -41435,7 +65808,7 @@ void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
db->nDb = j;
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
- sqliteFree(db->aDb);
+ sqlite3DbFree(db, db->aDb);
db->aDb = db->aDbStatic;
}
}
@@ -41443,7 +65816,7 @@ void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
/*
** This routine is called when a commit occurs.
*/
-void sqlite3CommitInternalChanges(sqlite3 *db){
+SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
db->flags &= ~SQLITE_InternChanges;
}
@@ -41453,15 +65826,18 @@ void sqlite3CommitInternalChanges(sqlite3 *db){
static void sqliteResetColumnNames(Table *pTable){
int i;
Column *pCol;
+ sqlite3 *db = pTable->dbMem;
+ testcase( db==0 );
assert( pTable!=0 );
if( (pCol = pTable->aCol)!=0 ){
for(i=0; i<pTable->nCol; i++, pCol++){
- sqliteFree(pCol->zName);
- sqlite3ExprDelete(pCol->pDflt);
- sqliteFree(pCol->zType);
- sqliteFree(pCol->zColl);
+ sqlite3DbFree(db, pCol->zName);
+ sqlite3ExprDelete(db, pCol->pDflt);
+ sqlite3DbFree(db, pCol->zDflt);
+ sqlite3DbFree(db, pCol->zType);
+ sqlite3DbFree(db, pCol->zColl);
}
- sqliteFree(pTable->aCol);
+ sqlite3DbFree(db, pTable->aCol);
}
pTable->aCol = 0;
pTable->nCol = 0;
@@ -41472,16 +65848,18 @@ static void sqliteResetColumnNames(Table *pTable){
** Table. No changes are made to disk by this routine.
**
** This routine just deletes the data structure. It does not unlink
-** the table data structure from the hash table. Nor does it remove
-** foreign keys from the sqlite.aFKey hash table. But it does destroy
+** the table data structure from the hash table. But it does destroy
** memory structures of the indices and foreign keys associated with
** the table.
*/
-void sqlite3DeleteTable(Table *pTable){
+SQLITE_PRIVATE void sqlite3DeleteTable(Table *pTable){
Index *pIndex, *pNext;
FKey *pFKey, *pNextFKey;
+ sqlite3 *db;
if( pTable==0 ) return;
+ db = pTable->dbMem;
+ testcase( db==0 );
/* Do not delete the table until the reference count reaches zero. */
pTable->nRef--;
@@ -41495,82 +65873,65 @@ void sqlite3DeleteTable(Table *pTable){
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
pNext = pIndex->pNext;
assert( pIndex->pSchema==pTable->pSchema );
- sqliteDeleteIndex(pIndex);
+ sqlite3DeleteIndex(pIndex);
}
#ifndef SQLITE_OMIT_FOREIGN_KEY
- /* Delete all foreign keys associated with this table. The keys
- ** should have already been unlinked from the pSchema->aFKey hash table
- */
+ /* Delete all foreign keys associated with this table. */
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
pNextFKey = pFKey->pNextFrom;
- assert( sqlite3HashFind(&pTable->pSchema->aFKey,
- pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
- sqliteFree(pFKey);
+ sqlite3DbFree(db, pFKey);
}
#endif
/* Delete the Table structure itself.
*/
sqliteResetColumnNames(pTable);
- sqliteFree(pTable->zName);
- sqliteFree(pTable->zColAff);
- sqlite3SelectDelete(pTable->pSelect);
+ sqlite3DbFree(db, pTable->zName);
+ sqlite3DbFree(db, pTable->zColAff);
+ sqlite3SelectDelete(db, pTable->pSelect);
#ifndef SQLITE_OMIT_CHECK
- sqlite3ExprDelete(pTable->pCheck);
+ sqlite3ExprDelete(db, pTable->pCheck);
#endif
sqlite3VtabClear(pTable);
- sqliteFree(pTable);
+ sqlite3DbFree(db, pTable);
}
/*
** Unlink the given table from the hash tables and the delete the
** table structure with all its indices and foreign keys.
*/
-void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
Table *p;
- FKey *pF1, *pF2;
Db *pDb;
assert( db!=0 );
assert( iDb>=0 && iDb<db->nDb );
assert( zTabName && zTabName[0] );
pDb = &db->aDb[iDb];
- p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
- if( p ){
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
- int nTo = strlen(pF1->zTo) + 1;
- pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
- if( pF2==pF1 ){
- sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
- }else{
- while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
- if( pF2 ){
- pF2->pNextTo = pF1->pNextTo;
- }
- }
- }
-#endif
- sqlite3DeleteTable(p);
- }
+ p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
+ sqlite3Strlen30(zTabName),0);
+ sqlite3DeleteTable(p);
db->flags |= SQLITE_InternChanges;
}
/*
** Given a token, return a string that consists of the text of that
-** token with any quotations removed. Space to hold the returned string
+** token. Space to hold the returned string
** is obtained from sqliteMalloc() and must be freed by the calling
** function.
**
+** Any quotation marks (ex: "name", 'name', [name], or `name`) that
+** surround the body of the token are removed.
+**
** Tokens are often just pointers into the original SQL text and so
** are not \000 terminated and are not persistent. The returned string
** is \000 terminated and is persistent.
*/
-char *sqlite3NameFromToken(Token *pName){
+SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
char *zName;
if( pName ){
- zName = sqliteStrNDup((char*)pName->z, pName->n);
+ zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
sqlite3Dequote(zName);
}else{
zName = 0;
@@ -41582,40 +65943,52 @@ char *sqlite3NameFromToken(Token *pName){
** Open the sqlite_master table stored in database number iDb for
** writing. The table is opened using cursor 0.
*/
-void sqlite3OpenMasterTable(Parse *p, int iDb){
+SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){
Vdbe *v = sqlite3GetVdbe(p);
sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
+ sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */
+ if( p->nTab==0 ){
+ p->nTab = 1;
+ }
}
/*
-** The token *pName contains the name of a database (either "main" or
-** "temp" or the name of an attached db). This routine returns the
-** index of the named database in db->aDb[], or -1 if the named db
-** does not exist.
+** Parameter zName points to a nul-terminated buffer containing the name
+** of a database ("main", "temp" or the name of an attached db). This
+** function returns the index of the named database in db->aDb[], or
+** -1 if the named db cannot be found.
*/
-int sqlite3FindDb(sqlite3 *db, Token *pName){
- int i = -1; /* Database number */
- int n; /* Number of characters in the name */
- Db *pDb; /* A database whose name space is being searched */
- char *zName; /* Name we are searching for */
-
- zName = sqlite3NameFromToken(pName);
+SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *db, const char *zName){
+ int i = -1; /* Database number */
if( zName ){
- n = strlen(zName);
+ Db *pDb;
+ int n = sqlite3Strlen30(zName);
for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
- if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
+ if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
0==sqlite3StrICmp(pDb->zName, zName) ){
break;
}
}
- sqliteFree(zName);
}
return i;
}
+/*
+** The token *pName contains the name of a database (either "main" or
+** "temp" or the name of an attached db). This routine returns the
+** index of the named database in db->aDb[], or -1 if the named db
+** does not exist.
+*/
+SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
+ int i; /* Database number */
+ char *zName; /* Name we are searching for */
+ zName = sqlite3NameFromToken(db, pName);
+ i = sqlite3FindDbName(db, zName);
+ sqlite3DbFree(db, zName);
+ return i;
+}
+
/* The table or view or trigger name is passed to this routine via tokens
** pName1 and pName2. If the table name was fully qualified, for example:
**
@@ -41632,7 +66005,7 @@ int sqlite3FindDb(sqlite3 *db, Token *pName){
** pName2) that stores the unqualified table name. The index of the
** database "xxx" is returned.
*/
-int sqlite3TwoPartName(
+SQLITE_PRIVATE int sqlite3TwoPartName(
Parse *pParse, /* Parsing and code generating context */
Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
Token *pName2, /* The "yyy" in the name "xxx.yyy" */
@@ -41641,8 +66014,12 @@ int sqlite3TwoPartName(
int iDb; /* Database holding the object */
sqlite3 *db = pParse->db;
- if( pName2 && pName2->n>0 ){
- assert( !db->init.busy );
+ if( ALWAYS(pName2!=0) && pName2->n>0 ){
+ if( db->init.busy ) {
+ sqlite3ErrorMsg(pParse, "corrupt database");
+ pParse->nErr++;
+ return -1;
+ }
*pUnqual = pName2;
iDb = sqlite3FindDb(db, pName1);
if( iDb<0 ){
@@ -41665,7 +66042,7 @@ int sqlite3TwoPartName(
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
** is reserved for internal use.
*/
-int sqlite3CheckObjectName(Parse *pParse, const char *zName){
+SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
if( !pParse->db->init.busy && pParse->nested==0
&& (pParse->db->flags & SQLITE_WriteSchema)==0
&& 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
@@ -41691,7 +66068,7 @@ int sqlite3CheckObjectName(Parse *pParse, const char *zName){
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
** is called to complete the construction of the new table record.
*/
-void sqlite3StartTable(
+SQLITE_PRIVATE void sqlite3StartTable(
Parse *pParse, /* Parser context */
Token *pName1, /* First part of the name of the table or view */
Token *pName2, /* Second part of the name of the table or view */
@@ -41734,7 +66111,7 @@ void sqlite3StartTable(
if( !OMIT_TEMPDB && isTemp ) iDb = 1;
pParse->sNameToken = *pName;
- zName = sqlite3NameFromToken(pName);
+ zName = sqlite3NameFromToken(db, pName);
if( zName==0 ) return;
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
goto begin_table_error;
@@ -41791,8 +66168,9 @@ void sqlite3StartTable(
}
}
- pTable = sqliteMalloc( sizeof(Table) );
+ pTable = sqlite3DbMallocZero(db, sizeof(Table));
if( pTable==0 ){
+ db->mallocFailed = 1;
pParse->rc = SQLITE_NOMEM;
pParse->nErr++;
goto begin_table_error;
@@ -41801,7 +66179,8 @@ void sqlite3StartTable(
pTable->iPKey = -1;
pTable->pSchema = db->aDb[iDb].pSchema;
pTable->nRef = 1;
- if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
+ pTable->dbMem = 0;
+ assert( pParse->pNewTable==0 );
pParse->pNewTable = pTable;
/* If this is the magic sqlite_sequence table used by autoincrement,
@@ -41823,53 +66202,57 @@ void sqlite3StartTable(
** now.
*/
if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
- int lbl;
+ int j1;
int fileFormat;
+ int reg1, reg2, reg3;
sqlite3BeginWriteOperation(pParse, 0, iDb);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( isVirtual ){
- sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
+ sqlite3VdbeAddOp0(v, OP_VBegin);
}
#endif
/* If the file format and encoding in the database have not been set,
** set them now.
*/
- sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */
- lbl = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp(v, OP_If, 0, lbl);
+ reg1 = pParse->regRowid = ++pParse->nMem;
+ reg2 = pParse->regRoot = ++pParse->nMem;
+ reg3 = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
+ sqlite3VdbeUsesBtree(v, iDb);
+ j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1 : SQLITE_MAX_FILE_FORMAT;
- sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
- sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
- sqlite3VdbeResolveLabel(v, lbl);
+ sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
+ sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
+ sqlite3VdbeJumpHere(v, j1);
/* This just creates a place-holder record in the sqlite_master table.
** The record created does not contain anything yet. It will be replaced
** by the real entry in code generated at sqlite3EndTable().
**
- ** The rowid for the new entry is left on the top of the stack.
- ** The rowid value is needed by the code that sqlite3EndTable will
- ** generate.
+ ** The rowid for the new entry is left in register pParse->regRowid.
+ ** The root page number of the new table is left in reg pParse->regRoot.
+ ** The rowid and root page number values are needed by the code that
+ ** sqlite3EndTable will generate.
*/
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
if( isView || isVirtual ){
- sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
}else
#endif
{
- sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
+ sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
}
sqlite3OpenMasterTable(pParse, iDb);
- sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- sqlite3VdbeAddOp(v, OP_Insert, 0, OPFLAG_APPEND);
- sqlite3VdbeAddOp(v, OP_Close, 0, 0);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
+ sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3VdbeAddOp0(v, OP_Close);
}
/* Normal (non-error) return. */
@@ -41877,7 +66260,7 @@ void sqlite3StartTable(
/* If an error occurs, we jump here */
begin_table_error:
- sqliteFree(zName);
+ sqlite3DbFree(db, zName);
return;
}
@@ -41902,26 +66285,33 @@ sqlite3UpperToLower[*(unsigned char *)(y)] \
** first to get things going. Then this routine is called for each
** column.
*/
-void sqlite3AddColumn(Parse *pParse, Token *pName){
+SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){
Table *p;
int i;
char *z;
Column *pCol;
+ sqlite3 *db = pParse->db;
if( (p = pParse->pNewTable)==0 ) return;
- z = sqlite3NameFromToken(pName);
+#if SQLITE_MAX_COLUMN
+ if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
+ return;
+ }
+#endif
+ z = sqlite3NameFromToken(db, pName);
if( z==0 ) return;
for(i=0; i<p->nCol; i++){
if( STRICMP(z, p->aCol[i].zName) ){
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
- sqliteFree(z);
+ sqlite3DbFree(db, z);
return;
}
}
if( (p->nCol & 0x7)==0 ){
Column *aNew;
- aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
+ aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
if( aNew==0 ){
- sqliteFree(z);
+ sqlite3DbFree(db, z);
return;
}
p->aCol = aNew;
@@ -41944,12 +66334,11 @@ void sqlite3AddColumn(Parse *pParse, Token *pName){
** been seen on a column. This routine sets the notNull flag on
** the column currently under construction.
*/
-void sqlite3AddNotNull(Parse *pParse, int onError){
+SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
Table *p;
- int i;
- if( (p = pParse->pNewTable)==0 ) return;
- i = p->nCol-1;
- if( i>=0 ) p->aCol[i].notNull = onError;
+ p = pParse->pNewTable;
+ if( p==0 || NEVER(p->nCol<1) ) return;
+ p->aCol[p->nCol-1].notNull = (u8)onError;
}
/*
@@ -41977,14 +66366,12 @@ void sqlite3AddNotNull(Parse *pParse, int onError){
** If none of the substrings in the above table are found,
** SQLITE_AFF_NUMERIC is returned.
*/
-char sqlite3AffinityType(const Token *pType){
+SQLITE_PRIVATE char sqlite3AffinityType(const char *zIn){
u32 h = 0;
char aff = SQLITE_AFF_NUMERIC;
- const unsigned char *zIn = pType->z;
- const unsigned char *zEnd = &pType->z[pType->n];
- while( zIn!=zEnd ){
- h = (h<<8) + sqlite3UpperToLower[*zIn];
+ if( zIn ) while( zIn[0] ){
+ h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
zIn++;
if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
aff = SQLITE_AFF_TEXT;
@@ -42024,18 +66411,16 @@ char sqlite3AffinityType(const Token *pType){
** that contains the typename of the column and store that string
** in zType.
*/
-void sqlite3AddColumnType(Parse *pParse, Token *pType){
+SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){
Table *p;
- int i;
Column *pCol;
- if( (p = pParse->pNewTable)==0 ) return;
- i = p->nCol-1;
- if( i<0 ) return;
- pCol = &p->aCol[i];
- sqliteFree(pCol->zType);
- pCol->zType = sqlite3NameFromToken(pType);
- pCol->affinity = sqlite3AffinityType(pType);
+ p = pParse->pNewTable;
+ if( p==0 || NEVER(p->nCol<1) ) return;
+ pCol = &p->aCol[p->nCol-1];
+ assert( pCol->zType==0 );
+ pCol->zType = sqlite3NameFromToken(pParse->db, pType);
+ pCol->affinity = sqlite3AffinityType(pCol->zType);
}
/*
@@ -42048,24 +66433,29 @@ void sqlite3AddColumnType(Parse *pParse, Token *pType){
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.
*/
-void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
+SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
Table *p;
Column *pCol;
- if( (p = pParse->pNewTable)!=0 ){
+ sqlite3 *db = pParse->db;
+ p = pParse->pNewTable;
+ if( p!=0 ){
pCol = &(p->aCol[p->nCol-1]);
- if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
+ if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
pCol->zName);
}else{
- Expr *pCopy;
- sqlite3ExprDelete(pCol->pDflt);
- pCol->pDflt = pCopy = sqlite3ExprDup(pExpr);
- if( pCopy ){
- sqlite3TokenCopy(&pCopy->span, &pExpr->span);
- }
+ /* A copy of pExpr is used instead of the original, as pExpr contains
+ ** tokens that point to volatile memory. The 'span' of the expression
+ ** is required by pragma table_info.
+ */
+ sqlite3ExprDelete(db, pCol->pDflt);
+ pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
+ sqlite3DbFree(db, pCol->zDflt);
+ pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
+ (int)(pSpan->zEnd - pSpan->zStart));
}
}
- sqlite3ExprDelete(pExpr);
+ sqlite3ExprDelete(db, pSpan->pExpr);
}
/*
@@ -42086,7 +66476,7 @@ void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
** If the key is not an INTEGER PRIMARY KEY, then create a unique
** index for the key. No index is created for INTEGER PRIMARY KEYs.
*/
-void sqlite3AddPrimaryKey(
+SQLITE_PRIVATE void sqlite3AddPrimaryKey(
Parse *pParse, /* Parsing context */
ExprList *pList, /* List of field names to be indexed */
int onError, /* What to do with a uniqueness conflict */
@@ -42097,12 +66487,12 @@ void sqlite3AddPrimaryKey(
char *zType = 0;
int iCol = -1, i;
if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
- if( pTab->hasPrimKey ){
+ if( pTab->tabFlags & TF_HasPrimaryKey ){
sqlite3ErrorMsg(pParse,
"table \"%s\" has more than one primary key", pTab->zName);
goto primary_key_exit;
}
- pTab->hasPrimKey = 1;
+ pTab->tabFlags |= TF_HasPrimaryKey;
if( pList==0 ){
iCol = pTab->nCol - 1;
pTab->aCol[iCol].isPrimKey = 1;
@@ -42125,8 +66515,9 @@ void sqlite3AddPrimaryKey(
if( zType && sqlite3StrICmp(zType, "INTEGER")==0
&& sortOrder==SQLITE_SO_ASC ){
pTab->iPKey = iCol;
- pTab->keyConf = onError;
- pTab->autoInc = autoInc;
+ pTab->keyConf = (u8)onError;
+ assert( autoInc==0 || autoInc==1 );
+ pTab->tabFlags |= autoInc*TF_Autoincrement;
}else if( autoInc ){
#ifndef SQLITE_OMIT_AUTOINCREMENT
sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
@@ -42138,43 +66529,48 @@ void sqlite3AddPrimaryKey(
}
primary_key_exit:
- sqlite3ExprListDelete(pList);
+ sqlite3ExprListDelete(pParse->db, pList);
return;
}
/*
** Add a new CHECK constraint to the table currently under construction.
*/
-void sqlite3AddCheckConstraint(
+SQLITE_PRIVATE void sqlite3AddCheckConstraint(
Parse *pParse, /* Parsing context */
Expr *pCheckExpr /* The check expression */
){
+ sqlite3 *db = pParse->db;
#ifndef SQLITE_OMIT_CHECK
Table *pTab = pParse->pNewTable;
if( pTab && !IN_DECLARE_VTAB ){
- /* The CHECK expression must be duplicated so that tokens refer
- ** to malloced space and not the (ephemeral) text of the CREATE TABLE
- ** statement */
- pTab->pCheck = sqlite3ExprAnd(pTab->pCheck, sqlite3ExprDup(pCheckExpr));
- }
+ pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
+ }else
#endif
- sqlite3ExprDelete(pCheckExpr);
+ {
+ sqlite3ExprDelete(db, pCheckExpr);
+ }
}
/*
** Set the collation function of the most recently parsed table column
** to the CollSeq given.
*/
-void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
+SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
Table *p;
int i;
+ char *zColl; /* Dequoted name of collation sequence */
+ sqlite3 *db;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
+ db = pParse->db;
+ zColl = sqlite3NameFromToken(db, pToken);
+ if( !zColl ) return;
- if( sqlite3LocateCollSeq(pParse, zType, nType) ){
+ if( sqlite3LocateCollSeq(pParse, zColl) ){
Index *pIdx;
- p->aCol[i].zColl = sqliteStrNDup(zType, nType);
+ p->aCol[i].zColl = zColl;
/* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
** then an index may have been created on this column before the
@@ -42186,6 +66582,8 @@ void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
pIdx->azColl[0] = p->aCol[i].zColl;
}
}
+ }else{
+ sqlite3DbFree(db, zColl);
}
}
@@ -42206,22 +66604,20 @@ void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
** This routine is a wrapper around sqlite3FindCollSeq(). This routine
** invokes the collation factory if the named collation cannot be found
** and generates an error message.
+**
+** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
*/
-CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
+SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
sqlite3 *db = pParse->db;
u8 enc = ENC(db);
u8 initbusy = db->init.busy;
CollSeq *pColl;
- pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
+ pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
if( !initbusy && (!pColl || !pColl->xCmp) ){
- pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
+ pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
if( !pColl ){
- if( nName<0 ){
- nName = strlen(zName);
- }
- sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
- pColl = 0;
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
}
}
@@ -42245,9 +66641,13 @@ CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32. So we're safe enough.
*/
-void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
- sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
+SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3 *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+ sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
}
/*
@@ -42267,18 +66667,31 @@ static int identLength(const char *z){
}
/*
-** Write an identifier onto the end of the given string. Add
-** quote characters as needed.
+** The first parameter is a pointer to an output buffer. The second
+** parameter is a pointer to an integer that contains the offset at
+** which to write into the output buffer. This function copies the
+** nul-terminated string pointed to by the third parameter, zSignedIdent,
+** to the specified offset in the buffer and updates *pIdx to refer
+** to the first byte after the last byte written before returning.
+**
+** If the string zSignedIdent consists entirely of alpha-numeric
+** characters, does not begin with a digit and is not an SQL keyword,
+** then it is copied to the output buffer exactly as it is. Otherwise,
+** it is quoted using double-quotes.
*/
static void identPut(char *z, int *pIdx, char *zSignedIdent){
unsigned char *zIdent = (unsigned char*)zSignedIdent;
int i, j, needQuote;
i = *pIdx;
+
for(j=0; zIdent[j]; j++){
- if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
+ if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
+ }
+ needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
+ if( !needQuote ){
+ needQuote = zIdent[j];
}
- needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
- || sqlite3KeywordCode(zIdent, j)!=TK_ID;
+
if( needQuote ) z[i++] = '"';
for(j=0; zIdent[j]; j++){
z[i++] = zIdent[j];
@@ -42294,18 +66707,14 @@ static void identPut(char *z, int *pIdx, char *zSignedIdent){
** table. Memory to hold the text of the statement is obtained
** from sqliteMalloc() and must be freed by the calling function.
*/
-static char *createTableStmt(Table *p, int isTemp){
+static char *createTableStmt(sqlite3 *db, Table *p){
int i, k, n;
char *zStmt;
- char *zSep, *zSep2, *zEnd, *z;
+ char *zSep, *zSep2, *zEnd;
Column *pCol;
n = 0;
for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
- n += identLength(pCol->zName);
- z = pCol->zType;
- if( z ){
- n += (strlen(z) + 1);
- }
+ n += identLength(pCol->zName) + 5;
}
n += identLength(p->zName);
if( n<50 ){
@@ -42318,24 +66727,47 @@ static char *createTableStmt(Table *p, int isTemp){
zEnd = "\n)";
}
n += 35 + 6*p->nCol;
- zStmt = sqliteMallocRaw( n );
- if( zStmt==0 ) return 0;
- strcpy(zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
- k = strlen(zStmt);
+ zStmt = sqlite3Malloc( n );
+ if( zStmt==0 ){
+ db->mallocFailed = 1;
+ return 0;
+ }
+ sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
+ k = sqlite3Strlen30(zStmt);
identPut(zStmt, &k, p->zName);
zStmt[k++] = '(';
for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
- strcpy(&zStmt[k], zSep);
- k += strlen(&zStmt[k]);
+ static const char * const azType[] = {
+ /* SQLITE_AFF_TEXT */ " TEXT",
+ /* SQLITE_AFF_NONE */ "",
+ /* SQLITE_AFF_NUMERIC */ " NUM",
+ /* SQLITE_AFF_INTEGER */ " INT",
+ /* SQLITE_AFF_REAL */ " REAL"
+ };
+ int len;
+ const char *zType;
+
+ sqlite3_snprintf(n-k, &zStmt[k], zSep);
+ k += sqlite3Strlen30(&zStmt[k]);
zSep = zSep2;
identPut(zStmt, &k, pCol->zName);
- if( (z = pCol->zType)!=0 ){
- zStmt[k++] = ' ';
- strcpy(&zStmt[k], z);
- k += strlen(z);
- }
- }
- strcpy(&zStmt[k], zEnd);
+ assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
+ assert( pCol->affinity-SQLITE_AFF_TEXT < sizeof(azType)/sizeof(azType[0]) );
+ testcase( pCol->affinity==SQLITE_AFF_TEXT );
+ testcase( pCol->affinity==SQLITE_AFF_NONE );
+ testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
+ testcase( pCol->affinity==SQLITE_AFF_INTEGER );
+ testcase( pCol->affinity==SQLITE_AFF_REAL );
+
+ zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
+ len = sqlite3Strlen30(zType);
+ assert( pCol->affinity==SQLITE_AFF_NONE
+ || pCol->affinity==sqlite3AffinityType(zType) );
+ memcpy(&zStmt[k], zType, len);
+ k += len;
+ assert( k<=n );
+ }
+ sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
return zStmt;
}
@@ -42359,7 +66791,7 @@ static char *createTableStmt(Table *p, int isTemp){
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
** the new table will match the result set of the SELECT.
*/
-void sqlite3EndTable(
+SQLITE_PRIVATE void sqlite3EndTable(
Parse *pParse, /* Parse context */
Token *pCons, /* The ',' token after the last column defn. */
Token *pEnd, /* The final ')' token in the CREATE TABLE */
@@ -42369,7 +66801,7 @@ void sqlite3EndTable(
sqlite3 *db = pParse->db;
int iDb;
- if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3MallocFailed() ) {
+ if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
return;
}
p = pParse->pNewTable;
@@ -42395,7 +66827,7 @@ void sqlite3EndTable(
sNC.pParse = pParse;
sNC.pSrcList = &sSrc;
sNC.isCheck = 1;
- if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
+ if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
return;
}
}
@@ -42412,8 +66844,7 @@ void sqlite3EndTable(
}
/* If not initializing, then create a record for the new table
- ** in the SQLITE_MASTER table of the database. The record number
- ** for the new table entry should already be on the stack.
+ ** in the SQLITE_MASTER table of the database.
**
** If this is a TEMPORARY table, write the entry into the auxiliary
** file instead of into the main database file.
@@ -42426,13 +66857,12 @@ void sqlite3EndTable(
char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
+ if( NEVER(v==0) ) return;
- sqlite3VdbeAddOp(v, OP_Close, 0, 0);
+ sqlite3VdbeAddOp1(v, OP_Close, 0);
- /* Create the rootpage for the new table and push it onto the stack.
- ** A view has no rootpage, so just push a zero onto the stack for
- ** views. Initialize zType at the same time.
+ /*
+ ** Initialize zType for the new view or table.
*/
if( p->pSelect==0 ){
/* A regular table */
@@ -42448,7 +66878,7 @@ void sqlite3EndTable(
/* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
** statement to populate the new table. The root-page number for the
- ** new table is on the top of the vdbe stack.
+ ** new table is in register pParse->regRoot.
**
** Once the SELECT has been coded by sqlite3Select(), it is in a
** suitable state to query for the column names and types to be used
@@ -42460,15 +66890,18 @@ void sqlite3EndTable(
** be redundant.
*/
if( pSelect ){
+ SelectDest dest;
Table *pSelTab;
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
+
+ assert(pParse->nTab==1);
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
+ sqlite3VdbeChangeP5(v, 1);
pParse->nTab = 2;
- sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
- sqlite3VdbeAddOp(v, OP_Close, 1, 0);
+ sqlite3SelectDestInit(&dest, SRT_Table, 1);
+ sqlite3Select(pParse, pSelect, &dest);
+ sqlite3VdbeAddOp1(v, OP_Close, 1);
if( pParse->nErr==0 ){
- pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
if( pSelTab==0 ) return;
assert( p->aCol==0 );
p->nCol = pSelTab->nCol;
@@ -42481,36 +66914,38 @@ void sqlite3EndTable(
/* Compute the complete text of the CREATE statement */
if( pSelect ){
- zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema);
+ zStmt = createTableStmt(db, p);
}else{
- n = pEnd->z - pParse->sNameToken.z + 1;
- zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
+ n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
+ zStmt = sqlite3MPrintf(db,
+ "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
+ );
}
/* A slot for the record has already been allocated in the
** SQLITE_MASTER table. We just need to update that slot with all
- ** the information we've collected. The rowid for the preallocated
- ** slot is the 2nd item on the stack. The top of the stack is the
- ** root page for the new table (or a 0 if this is a view).
+ ** the information we've collected.
*/
sqlite3NestedParse(pParse,
"UPDATE %Q.%s "
- "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
- "WHERE rowid=#1",
+ "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
+ "WHERE rowid=#%d",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
zType,
p->zName,
p->zName,
- zStmt
+ pParse->regRoot,
+ zStmt,
+ pParse->regRowid
);
- sqliteFree(zStmt);
- sqlite3ChangeCookie(db, v, iDb);
+ sqlite3DbFree(db, zStmt);
+ sqlite3ChangeCookie(pParse, iDb);
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Check to see if we need to create an sqlite_sequence table for
** keeping track of autoincrement keys.
*/
- if( p->autoInc ){
+ if( p->tabFlags & TF_Autoincrement ){
Db *pDb = &db->aDb[iDb];
if( pDb->pSchema->pSeqTab==0 ){
sqlite3NestedParse(pParse,
@@ -42522,29 +66957,23 @@ void sqlite3EndTable(
#endif
/* Reparse everything to update our internal data structures */
- sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
- sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
+ sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
}
/* Add the table to the in-memory representation of the database.
*/
- if( db->init.busy && pParse->nErr==0 ){
+ if( db->init.busy ){
Table *pOld;
- FKey *pFKey;
Schema *pSchema = p->pSchema;
- pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
+ pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
+ sqlite3Strlen30(p->zName),p);
if( pOld ){
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
+ db->mallocFailed = 1;
return;
}
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
- int nTo = strlen(pFKey->zTo) + 1;
- pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
- sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
- }
-#endif
pParse->pNewTable = 0;
db->nTable++;
db->flags |= SQLITE_InternChanges;
@@ -42557,8 +66986,8 @@ void sqlite3EndTable(
if( pCons->z==0 ){
pCons = pEnd;
}
- nName = (const char *)pCons->z - zName;
- p->addColOffset = 13 + sqlite3utf8CharLen(zName, nName);
+ nName = (int)((const char *)pCons->z - zName);
+ p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
}
#endif
}
@@ -42568,7 +66997,7 @@ void sqlite3EndTable(
/*
** The parser calls this routine in order to create a new VIEW
*/
-void sqlite3CreateView(
+SQLITE_PRIVATE void sqlite3CreateView(
Parse *pParse, /* The parsing context */
Token *pBegin, /* The CREATE token that begins the statement */
Token *pName1, /* The token that holds the name of the view */
@@ -42579,29 +67008,32 @@ void sqlite3CreateView(
){
Table *p;
int n;
- const unsigned char *z;
+ const char *z;
Token sEnd;
DbFixer sFix;
Token *pName;
int iDb;
+ sqlite3 *db = pParse->db;
if( pParse->nVar>0 ){
sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
return;
}
sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
p = pParse->pNewTable;
- if( p==0 || pParse->nErr ){
- sqlite3SelectDelete(pSelect);
+ if( p==0 ){
+ sqlite3SelectDelete(db, pSelect);
return;
}
+ assert( pParse->nErr==0 ); /* If sqlite3StartTable return non-NULL then
+ ** there could not have been an error */
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
- iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
+ iDb = sqlite3SchemaToIndex(db, p->pSchema);
if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
&& sqlite3FixSelect(&sFix, pSelect)
){
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
return;
}
@@ -42610,12 +67042,12 @@ void sqlite3CreateView(
** allocated rather than point to the input string - which means that
** they will persist after the current sqlite3_exec() call returns.
*/
- p->pSelect = sqlite3SelectDup(pSelect);
- sqlite3SelectDelete(pSelect);
- if( sqlite3MallocFailed() ){
+ p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
+ sqlite3SelectDelete(db, pSelect);
+ if( db->mallocFailed ){
return;
}
- if( !pParse->db->init.busy ){
+ if( !db->init.busy ){
sqlite3ViewGetColumnNames(pParse, p);
}
@@ -42623,13 +67055,13 @@ void sqlite3CreateView(
** the end.
*/
sEnd = pParse->sLastToken;
- if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
+ if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
sEnd.z += sEnd.n;
}
sEnd.n = 0;
- n = sEnd.z - pBegin->z;
- z = (const unsigned char*)pBegin->z;
- while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
+ n = (int)(sEnd.z - pBegin->z);
+ z = pBegin->z;
+ while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
sEnd.z = &z[n-1];
sEnd.n = 1;
@@ -42645,11 +67077,13 @@ void sqlite3CreateView(
** the columns of the view in the pTable structure. Return the number
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
*/
-int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
+SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
Table *pSelTab; /* A fake table from which we get the result set */
Select *pSel; /* Copy of the SELECT that implements the view */
int nErr = 0; /* Number of errors encountered */
int n; /* Temporarily holds the number of cursors assigned */
+ sqlite3 *db = pParse->db; /* Database connection for malloc errors */
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
assert( pTable );
@@ -42673,8 +67107,13 @@ int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
** CREATE VIEW one AS SELECT * FROM two;
** CREATE VIEW two AS SELECT * FROM one;
**
- ** Actually, this error is caught previously and so the following test
- ** should always fail. But we will leave it in place just to be safe.
+ ** Actually, the error above is now caught prior to reaching this point.
+ ** But the following test is still important as it does come up
+ ** in the following:
+ **
+ ** CREATE TABLE main.ex1(a);
+ ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
+ ** SELECT * FROM temp.ex1;
*/
if( pTable->nCol<0 ){
sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
@@ -42690,12 +67129,22 @@ int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
** statement that defines the view.
*/
assert( pTable->pSelect );
- pSel = sqlite3SelectDup(pTable->pSelect);
+ pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
if( pSel ){
+ u8 enableLookaside = db->lookaside.bEnabled;
n = pParse->nTab;
sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
pTable->nCol = -1;
- pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
+ db->lookaside.bEnabled = 0;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ xAuth = db->xAuth;
+ db->xAuth = 0;
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
+ db->xAuth = xAuth;
+#else
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
+#endif
+ db->lookaside.bEnabled = enableLookaside;
pParse->nTab = n;
if( pSelTab ){
assert( pTable->aCol==0 );
@@ -42709,7 +67158,7 @@ int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
pTable->nCol = 0;
nErr++;
}
- sqlite3SelectDelete(pSel);
+ sqlite3SelectDelete(db, pSel);
} else {
nErr++;
}
@@ -42755,7 +67204,7 @@ static void sqliteViewResetAll(sqlite3 *db, int idx){
** in order to be certain that we got the right one.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
-void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
+SQLITE_PRIVATE void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
HashElem *pElem;
Hash *pHash;
@@ -42784,20 +67233,24 @@ void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
*/
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
Vdbe *v = sqlite3GetVdbe(pParse);
- sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
+ sqlite3MayAbort(pParse);
#ifndef SQLITE_OMIT_AUTOVACUUM
- /* OP_Destroy pushes an integer onto the stack. If this integer
+ /* OP_Destroy stores an in integer r1. If this integer
** is non-zero, then it is the root page number of a table moved to
** location iTable. The following code modifies the sqlite_master table to
** reflect this.
**
- ** The "#0" in the SQL is a special constant that means whatever value
- ** is on the top of the stack. See sqlite3RegisterExpr().
+ ** The "#NNN" in the SQL is a special constant that means whatever value
+ ** is in register NNN. See grammar rules associated with the TK_REGISTER
+ ** token for additional information.
*/
sqlite3NestedParse(pParse,
- "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
- pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
+ "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
+ pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
#endif
+ sqlite3ReleaseTempReg(pParse, r1);
}
/*
@@ -42863,17 +67316,19 @@ static void destroyTable(Parse *pParse, Table *pTab){
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
*/
-void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
+SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
Table *pTab;
Vdbe *v;
sqlite3 *db = pParse->db;
int iDb;
- if( pParse->nErr || sqlite3MallocFailed() ){
+ if( db->mallocFailed ){
goto exit_drop_table;
}
+ assert( pParse->nErr==0 );
assert( pName->nSrc==1 );
- pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
+ pTab = sqlite3LocateTable(pParse, isView,
+ pName->a[0].zName, pName->a[0].zDatabase);
if( pTab==0 ){
if( noErr ){
@@ -42883,6 +67338,13 @@ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
}
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert( iDb>=0 && iDb<db->nDb );
+
+ /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
+ ** it is initialized.
+ */
+ if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto exit_drop_table;
+ }
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code;
@@ -42900,11 +67362,8 @@ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
}else if( IsVirtual(pTab) ){
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto exit_drop_table;
- }
code = SQLITE_DROP_VTABLE;
- zArg2 = pTab->pMod->zName;
+ zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
#endif
}else{
if( !OMIT_TEMPDB && iDb==1 ){
@@ -42921,7 +67380,7 @@ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
}
}
#endif
- if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
goto exit_drop_table;
}
@@ -42947,14 +67406,11 @@ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
if( v ){
Trigger *pTrigger;
Db *pDb = &db->aDb[iDb];
- sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pTab) ){
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
- }
+ sqlite3VdbeAddOp0(v, OP_VBegin);
}
#endif
@@ -42962,7 +67418,7 @@ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
** is generated to remove entries from sqlite_master and/or
** sqlite_temp_master if required.
*/
- pTrigger = pTab->pTrigger;
+ pTrigger = sqlite3TriggerList(pParse, pTab);
while( pTrigger ){
assert( pTrigger->pSchema==pTab->pSchema ||
pTrigger->pSchema==db->aDb[1].pSchema );
@@ -42976,7 +67432,7 @@ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
** at the btree level, in case the sqlite_sequence table needs to
** move as a result of the drop (can happen in auto-vacuum mode).
*/
- if( pTab->autoInc ){
+ if( pTab->tabFlags & TF_Autoincrement ){
sqlite3NestedParse(pParse,
"DELETE FROM %s.sqlite_sequence WHERE name=%Q",
pDb->zName, pTab->zName
@@ -42994,6 +67450,14 @@ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
sqlite3NestedParse(pParse,
"DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
+
+ /* Drop any statistics from the sqlite_stat1 table, if it exists */
+ if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
+ );
+ }
+
if( !isView && !IsVirtual(pTab) ){
destroyTable(pParse, pTab);
}
@@ -43002,15 +67466,15 @@ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
** the schema cookie.
*/
if( IsVirtual(pTab) ){
- sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0);
+ sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
}
- sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
- sqlite3ChangeCookie(db, v, iDb);
+ sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
+ sqlite3ChangeCookie(pParse, iDb);
}
sqliteViewResetAll(db, iDb);
exit_drop_table:
- sqlite3SrcListDelete(pName);
+ sqlite3SrcListDelete(db, pName);
}
/*
@@ -43024,20 +67488,19 @@ exit_drop_table:
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
**
** An FKey structure is created and added to the table currently
-** under construction in the pParse->pNewTable field. The new FKey
-** is not linked into db->aFKey at this point - that does not happen
-** until sqlite3EndTable().
+** under construction in the pParse->pNewTable field.
**
** The foreign key is set for IMMEDIATE processing. A subsequent call
** to sqlite3DeferForeignKey() might change this to DEFERRED.
*/
-void sqlite3CreateForeignKey(
+SQLITE_PRIVATE void sqlite3CreateForeignKey(
Parse *pParse, /* Parsing context */
ExprList *pFromCol, /* Columns in this table that point to other table */
Token *pTo, /* Name of the other table */
ExprList *pToCol, /* Columns in the other table */
int flags /* Conflict resolution algorithms. */
){
+ sqlite3 *db = pParse->db;
#ifndef SQLITE_OMIT_FOREIGN_KEY
FKey *pFKey = 0;
Table *p = pParse->pNewTable;
@@ -43047,10 +67510,10 @@ void sqlite3CreateForeignKey(
char *z;
assert( pTo!=0 );
- if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
+ if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
if( pFromCol==0 ){
int iCol = p->nCol-1;
- if( iCol<0 ) goto fk_end;
+ if( NEVER(iCol<0) ) goto fk_end;
if( pToCol && pToCol->nExpr!=1 ){
sqlite3ErrorMsg(pParse, "foreign key on %s"
" should reference only one column of table %T",
@@ -43066,24 +67529,24 @@ void sqlite3CreateForeignKey(
}else{
nCol = pFromCol->nExpr;
}
- nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
+ nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
if( pToCol ){
for(i=0; i<pToCol->nExpr; i++){
- nByte += strlen(pToCol->a[i].zName) + 1;
+ nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
}
}
- pFKey = sqliteMalloc( nByte );
- if( pFKey==0 ) goto fk_end;
+ pFKey = sqlite3DbMallocZero(db, nByte );
+ if( pFKey==0 ){
+ goto fk_end;
+ }
pFKey->pFrom = p;
pFKey->pNextFrom = p->pFKey;
- z = (char*)&pFKey[1];
- pFKey->aCol = (struct sColMap*)z;
- z += sizeof(struct sColMap)*nCol;
+ z = (char*)&pFKey->aCol[nCol];
pFKey->zTo = z;
memcpy(z, pTo->z, pTo->n);
z[pTo->n] = 0;
+ sqlite3Dequote(z);
z += pTo->n+1;
- pFKey->pNextTo = 0;
pFKey->nCol = nCol;
if( pFromCol==0 ){
pFKey->aCol[0].iFrom = p->nCol-1;
@@ -43106,7 +67569,7 @@ void sqlite3CreateForeignKey(
}
if( pToCol ){
for(i=0; i<nCol; i++){
- int n = strlen(pToCol->a[i].zName);
+ int n = sqlite3Strlen30(pToCol->a[i].zName);
pFKey->aCol[i].zCol = z;
memcpy(z, pToCol->a[i].zName, n);
z[n] = 0;
@@ -43114,9 +67577,9 @@ void sqlite3CreateForeignKey(
}
}
pFKey->isDeferred = 0;
- pFKey->deleteConf = flags & 0xff;
- pFKey->updateConf = (flags >> 8 ) & 0xff;
- pFKey->insertConf = (flags >> 16 ) & 0xff;
+ pFKey->deleteConf = (u8)(flags & 0xff);
+ pFKey->updateConf = (u8)((flags >> 8 ) & 0xff);
+ pFKey->insertConf = (u8)((flags >> 16 ) & 0xff);
/* Link the foreign key to the table as the last step.
*/
@@ -43124,10 +67587,10 @@ void sqlite3CreateForeignKey(
pFKey = 0;
fk_end:
- sqliteFree(pFKey);
+ sqlite3DbFree(db, pFKey);
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
- sqlite3ExprListDelete(pFromCol);
- sqlite3ExprListDelete(pToCol);
+ sqlite3ExprListDelete(db, pFromCol);
+ sqlite3ExprListDelete(db, pToCol);
}
/*
@@ -43137,12 +67600,13 @@ fk_end:
** The behavior of the most recently created foreign key is adjusted
** accordingly.
*/
-void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
+SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
#ifndef SQLITE_OMIT_FOREIGN_KEY
Table *pTab;
FKey *pFKey;
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
- pFKey->isDeferred = isDeferred;
+ assert( isDeferred==0 || isDeferred==1 );
+ pFKey->isDeferred = (u8)isDeferred;
#endif
}
@@ -43152,24 +67616,27 @@ void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
** content of an index in response to a REINDEX command.
**
** if memRootPage is not negative, it means that the index is newly
-** created. The memory cell specified by memRootPage contains the
+** created. The register specified by memRootPage contains the
** root page number of the index. If memRootPage is negative, then
** the index already exists and must be cleared before being refilled and
** the root page number of the index is taken from pIndex->tnum.
*/
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
Table *pTab = pIndex->pTable; /* The table that is indexed */
- int iTab = pParse->nTab; /* Btree cursor used for pTab */
- int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
+ int iTab = pParse->nTab++; /* Btree cursor used for pTab */
+ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
int addr1; /* Address of top of loop */
int tnum; /* Root page of index */
Vdbe *v; /* Generate code into this virtual machine */
KeyInfo *pKey; /* KeyInfo for index */
- int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema);
+ int regIdxKey; /* Registers containing the index key */
+ int regRecord; /* Register holding assemblied index record */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
#ifndef SQLITE_OMIT_AUTHORIZATION
if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
- pParse->db->aDb[iDb].zName ) ){
+ db->aDb[iDb].zName ) ){
return;
}
#endif
@@ -43180,34 +67647,46 @@ static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
v = sqlite3GetVdbe(pParse);
if( v==0 ) return;
if( memRootPage>=0 ){
- sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
- tnum = 0;
+ tnum = memRootPage;
}else{
tnum = pIndex->tnum;
- sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
+ sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
}
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
pKey = sqlite3IndexKeyinfo(pParse, pIndex);
- sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF);
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
+ (char *)pKey, P4_KEYINFO_HANDOFF);
+ if( memRootPage>=0 ){
+ sqlite3VdbeChangeP5(v, 1);
+ }
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
- addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
- sqlite3GenerateIndexKey(v, pIndex, iTab);
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
+ regRecord = sqlite3GetTempReg(pParse);
+ regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
if( pIndex->onError!=OE_None ){
- int curaddr = sqlite3VdbeCurrentAddr(v);
- int addr2 = curaddr+4;
- sqlite3VdbeChangeP2(v, curaddr-1, addr2);
- sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
- sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
- sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
- "indexed columns are not unique", P3_STATIC);
- assert( sqlite3MallocFailed() || addr2==sqlite3VdbeCurrentAddr(v) );
- }
- sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
- sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
+ const int regRowid = regIdxKey + pIndex->nColumn;
+ const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
+ void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
+
+ /* The registers accessed by the OP_IsUnique opcode were allocated
+ ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
+ ** call above. Just before that function was freed they were released
+ ** (made available to the compiler for reuse) using
+ ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
+ ** opcode use the values stored within seems dangerous. However, since
+ ** we can be sure that no other temp registers have been allocated
+ ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
+ */
+ sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
+ sqlite3HaltConstraint(
+ pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
+ }
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
sqlite3VdbeJumpHere(v, addr1);
- sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
- sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
+ sqlite3VdbeAddOp1(v, OP_Close, iTab);
+ sqlite3VdbeAddOp1(v, OP_Close, iIdx);
}
/*
@@ -43222,14 +67701,14 @@ static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
** is a primary key or unique-constraint on the most recent column added
** to the table currently under construction.
*/
-void sqlite3CreateIndex(
+SQLITE_PRIVATE void sqlite3CreateIndex(
Parse *pParse, /* All information about this parse */
Token *pName1, /* First part of index name. May be NULL */
Token *pName2, /* Second part of index name. May be NULL */
SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
ExprList *pList, /* A list of columns to be indexed */
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
- Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
+ Token *pStart, /* The CREATE token that begins this statement */
Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
int sortOrder, /* Sort order of primary key when pList==NULL */
int ifNotExist /* Omit error if index already exists */
@@ -43251,7 +67730,12 @@ void sqlite3CreateIndex(
int nExtra = 0;
char *zExtra;
- if( pParse->nErr || sqlite3MallocFailed() || IN_DECLARE_VTAB ){
+ assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
+ assert( pParse->nErr==0 ); /* Never called with prior errors */
+ if( db->mallocFailed || IN_DECLARE_VTAB ){
+ goto exit_create_index;
+ }
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
goto exit_create_index;
}
@@ -43270,11 +67754,14 @@ void sqlite3CreateIndex(
#ifndef SQLITE_OMIT_TEMPDB
/* If the index name was unqualified, check if the the table
- ** is a temp table. If so, set the database to 1.
+ ** is a temp table. If so, set the database to 1. Do not do this
+ ** if initialising a database schema.
*/
- pTab = sqlite3SrcListLookup(pParse, pTblName);
- if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
- iDb = 1;
+ if( !db->init.busy ){
+ pTab = sqlite3SrcListLookup(pParse, pTblName);
+ if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
+ iDb = 1;
+ }
}
#endif
@@ -43285,9 +67772,9 @@ void sqlite3CreateIndex(
** sqlite3FixSrcList can never fail. */
assert(0);
}
- pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName,
+ pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
pTblName->a[0].zDatabase);
- if( !pTab ) goto exit_create_index;
+ if( !pTab || db->mallocFailed ) goto exit_create_index;
assert( db->aDb[iDb].pSchema==pTab->pSchema );
}else{
assert( pName==0 );
@@ -43297,8 +67784,10 @@ void sqlite3CreateIndex(
}
pDb = &db->aDb[iDb];
- if( pTab==0 || pParse->nErr ) goto exit_create_index;
- if( pTab->readOnly ){
+ assert( pTab!=0 );
+ assert( pParse->nErr==0 );
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
+ && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){
sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
goto exit_create_index;
}
@@ -43329,14 +67818,12 @@ void sqlite3CreateIndex(
** own name.
*/
if( pName ){
- zName = sqlite3NameFromToken(pName);
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
+ zName = sqlite3NameFromToken(db, pName);
if( zName==0 ) goto exit_create_index;
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
goto exit_create_index;
}
if( !db->init.busy ){
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
if( sqlite3FindTable(db, zName, 0)!=0 ){
sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
goto exit_create_index;
@@ -43349,14 +67836,13 @@ void sqlite3CreateIndex(
goto exit_create_index;
}
}else{
- char zBuf[30];
int n;
Index *pLoop;
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
- sprintf(zBuf,"_%d",n);
- zName = 0;
- sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
- if( zName==0 ) goto exit_create_index;
+ zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
+ if( zName==0 ){
+ goto exit_create_index;
+ }
}
/* Check for authorization to create an index.
@@ -43380,11 +67866,12 @@ void sqlite3CreateIndex(
** So create a fake list to simulate this.
*/
if( pList==0 ){
- nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
- nullId.n = strlen((char*)nullId.z);
- pList = sqlite3ExprListAppend(0, 0, &nullId);
+ nullId.z = pTab->aCol[pTab->nCol-1].zName;
+ nullId.n = sqlite3Strlen30((char*)nullId.z);
+ pList = sqlite3ExprListAppend(pParse, 0, 0);
if( pList==0 ) goto exit_create_index;
- pList->a[0].sortOrder = sortOrder;
+ sqlite3ExprListSetName(pParse, pList, &nullId, 0);
+ pList->a[0].sortOrder = (u8)sortOrder;
}
/* Figure out how many bytes of space are required to store explicitly
@@ -43393,16 +67880,21 @@ void sqlite3CreateIndex(
for(i=0; i<pList->nExpr; i++){
Expr *pExpr = pList->a[i].pExpr;
if( pExpr ){
- nExtra += (1 + strlen(pExpr->pColl->zName));
+ CollSeq *pColl = pExpr->pColl;
+ /* Either pColl!=0 or there was an OOM failure. But if an OOM
+ ** failure we have quit before reaching this point. */
+ if( ALWAYS(pColl) ){
+ nExtra += (1 + sqlite3Strlen30(pColl->zName));
+ }
}
}
/*
** Allocate the index structure.
*/
- nName = strlen(zName);
+ nName = sqlite3Strlen30(zName);
nCol = pList->nExpr;
- pIndex = sqliteMalloc(
+ pIndex = sqlite3DbMallocZero(db,
sizeof(Index) + /* Index structure */
sizeof(int)*nCol + /* Index.aiColumn */
sizeof(int)*(nCol+1) + /* Index.aiRowEst */
@@ -43411,18 +67903,20 @@ void sqlite3CreateIndex(
nName + 1 + /* Index.zName */
nExtra /* Collation sequence names */
);
- if( sqlite3MallocFailed() ) goto exit_create_index;
+ if( db->mallocFailed ){
+ goto exit_create_index;
+ }
pIndex->azColl = (char**)(&pIndex[1]);
pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
zExtra = (char *)(&pIndex->zName[nName+1]);
- strcpy(pIndex->zName, zName);
+ memcpy(pIndex->zName, zName, nName+1);
pIndex->pTable = pTab;
pIndex->nColumn = pList->nExpr;
- pIndex->onError = onError;
- pIndex->autoIndex = pName==0;
+ pIndex->onError = (u8)onError;
+ pIndex->autoIndex = (u8)(pName==0);
pIndex->pSchema = db->aDb[iDb].pSchema;
/* Check to see if we should honor DESC requests on index columns
@@ -43436,6 +67930,12 @@ void sqlite3CreateIndex(
/* Scan the names of the columns of the table to be indexed and
** load the column indices into the Index structure. Report an error
** if any column is not found.
+ **
+ ** TODO: Add a test to make sure that the same column is not named
+ ** more than once within the same index. Only the first instance of
+ ** the column will ever be used by the optimizer. Note that using the
+ ** same column more than once cannot be an error because that would
+ ** break backwards compatibility - it needs to be a warning.
*/
for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
const char *zColName = pListItem->zName;
@@ -43451,30 +67951,33 @@ void sqlite3CreateIndex(
pTab->zName, zColName);
goto exit_create_index;
}
- /* TODO: Add a test to make sure that the same column is not named
- ** more than once within the same index. Only the first instance of
- ** the column will ever be used by the optimizer. Note that using the
- ** same column more than once cannot be an error because that would
- ** break backwards compatibility - it needs to be a warning.
- */
pIndex->aiColumn[i] = j;
- if( pListItem->pExpr ){
- assert( pListItem->pExpr->pColl );
+ /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of
+ ** the way the "idxlist" non-terminal is constructed by the parser,
+ ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
+ ** must exist or else there must have been an OOM error. But if there
+ ** was an OOM error, we would never reach this point. */
+ if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
+ int nColl;
+ zColl = pListItem->pExpr->pColl->zName;
+ nColl = sqlite3Strlen30(zColl) + 1;
+ assert( nExtra>=nColl );
+ memcpy(zExtra, zColl, nColl);
zColl = zExtra;
- strcpy(zExtra, pListItem->pExpr->pColl->zName);
- zExtra += (strlen(zColl) + 1);
+ zExtra += nColl;
+ nExtra -= nColl;
}else{
zColl = pTab->aCol[j].zColl;
if( !zColl ){
zColl = db->pDfltColl->zName;
}
}
- if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
+ if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
goto exit_create_index;
}
pIndex->azColl[i] = zColl;
requestedSortOrder = pListItem->sortOrder & sortOrderMask;
- pIndex->aSortOrder[i] = requestedSortOrder;
+ pIndex->aSortOrder[i] = (u8)requestedSortOrder;
}
sqlite3DefaultRowEst(pIndex);
@@ -43491,6 +67994,14 @@ void sqlite3CreateIndex(
** so, don't bother creating this one. This only applies to
** automatically created indices. Users can do as they wish with
** explicit indices.
+ **
+ ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
+ ** (and thus suppressing the second one) even if they have different
+ ** sort orders.
+ **
+ ** If there are different collating sequences or if the columns of
+ ** the constraint occur in different orders, then the constraints are
+ ** considered distinct and both result in separate indices.
*/
Index *pIdx;
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
@@ -43501,10 +68012,11 @@ void sqlite3CreateIndex(
if( pIdx->nColumn!=pIndex->nColumn ) continue;
for(k=0; k<pIdx->nColumn; k++){
- const char *z1 = pIdx->azColl[k];
- const char *z2 = pIndex->azColl[k];
+ const char *z1;
+ const char *z2;
if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
- if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
+ z1 = pIdx->azColl[k];
+ z2 = pIndex->azColl[k];
if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
}
if( k==pIdx->nColumn ){
@@ -43535,9 +68047,11 @@ void sqlite3CreateIndex(
if( db->init.busy ){
Index *p;
p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
- pIndex->zName, strlen(pIndex->zName)+1, pIndex);
+ pIndex->zName, sqlite3Strlen30(pIndex->zName),
+ pIndex);
if( p ){
assert( p==pIndex ); /* Malloc must have failed */
+ db->mallocFailed = 1;
goto exit_create_index;
}
db->flags |= SQLITE_InternChanges;
@@ -43561,10 +68075,10 @@ void sqlite3CreateIndex(
** has just been created, it contains no data and the index initialization
** step can be skipped.
*/
- else if( db->init.busy==0 ){
+ else{ /* if( db->init.busy==0 ) */
Vdbe *v;
char *zStmt;
- int iMem = pParse->nMem++;
+ int iMem = ++pParse->nMem;
v = sqlite3GetVdbe(pParse);
if( v==0 ) goto exit_create_index;
@@ -43573,15 +68087,15 @@ void sqlite3CreateIndex(
/* Create the rootpage for the index
*/
sqlite3BeginWriteOperation(pParse, 1, iDb);
- sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
- sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
+ sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
/* Gather the complete text of the CREATE INDEX statement into
** the zStmt variable
*/
- if( pStart && pEnd ){
+ if( pStart ){
+ assert( pEnd!=0 );
/* A named index with an explicit CREATE INDEX statement */
- zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s",
+ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
onError==OE_None ? "" : " UNIQUE",
pEnd->z - pName->z + 1,
pName->z);
@@ -43594,31 +68108,32 @@ void sqlite3CreateIndex(
/* Add an entry in sqlite_master for this index
*/
sqlite3NestedParse(pParse,
- "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
+ "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
pIndex->zName,
pTab->zName,
+ iMem,
zStmt
);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqliteFree(zStmt);
+ sqlite3DbFree(db, zStmt);
/* Fill the index with data and reparse the schema. Code an OP_Expire
** to invalidate all pre-compiled statements.
*/
if( pTblName ){
sqlite3RefillIndex(pParse, pIndex, iMem);
- sqlite3ChangeCookie(db, v, iDb);
- sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
- sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC);
- sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
+ sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
+ sqlite3VdbeAddOp1(v, OP_Expire, 0);
}
}
/* When adding an index to the list of indices for a table, make
** sure all indices labeled OE_Replace come after all those labeled
- ** OE_Ignore. This is necessary for the correct operation of UPDATE
- ** and INSERT.
+ ** OE_Ignore. This is necessary for the correct constraint check
+ ** processing (in sqlite3GenerateConstraintChecks()) as part of
+ ** UPDATE and INSERT statements.
*/
if( db->init.busy || pTblName==0 ){
if( onError!=OE_Replace || pTab->pIndex==0
@@ -43639,31 +68154,16 @@ void sqlite3CreateIndex(
/* Clean up before exiting */
exit_create_index:
if( pIndex ){
- freeIndex(pIndex);
+ sqlite3_free(pIndex->zColAff);
+ sqlite3DbFree(db, pIndex);
}
- sqlite3ExprListDelete(pList);
- sqlite3SrcListDelete(pTblName);
- sqliteFree(zName);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SrcListDelete(db, pTblName);
+ sqlite3DbFree(db, zName);
return;
}
/*
-** Generate code to make sure the file format number is at least minFormat.
-** The generated code will increase the file format number if necessary.
-*/
-void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
- Vdbe *v;
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);
- sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
- sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
- }
-}
-
-/*
** Fill the Index.aiRowEst[] array with default information - information
** to be used when we have not run the ANALYZE command.
**
@@ -43681,7 +68181,7 @@ void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
** how aiRowEst[] should be initialized. The numbers generated here
** are based on typical values found in actual indices.
*/
-void sqlite3DefaultRowEst(Index *pIdx){
+SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
unsigned *a = pIdx->aiRowEst;
int i;
assert( a!=0 );
@@ -43702,13 +68202,14 @@ void sqlite3DefaultRowEst(Index *pIdx){
** This routine will drop an existing named index. This routine
** implements the DROP INDEX statement.
*/
-void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
+SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
Index *pIndex;
Vdbe *v;
sqlite3 *db = pParse->db;
int iDb;
- if( pParse->nErr || sqlite3MallocFailed() ){
+ assert( pParse->nErr==0 ); /* Never called with prior errors */
+ if( db->mallocFailed ){
goto exit_drop_index;
}
assert( pName->nSrc==1 );
@@ -43748,18 +68249,25 @@ void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
/* Generate code to remove the index and from the master table */
v = sqlite3GetVdbe(pParse);
if( v ){
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
sqlite3NestedParse(pParse,
"DELETE FROM %Q.%s WHERE name=%Q",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
pIndex->zName
);
- sqlite3ChangeCookie(db, v, iDb);
+ if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
+ db->aDb[iDb].zName, pIndex->zName
+ );
+ }
+ sqlite3ChangeCookie(pParse, iDb);
destroyRootPage(pParse, pIndex->tnum, iDb);
- sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
+ sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
}
exit_drop_index:
- sqlite3SrcListDelete(pName);
+ sqlite3SrcListDelete(db, pName);
}
/*
@@ -43777,7 +68285,8 @@ exit_drop_index:
** might be the same as the pArray parameter or it might be a different
** pointer if the array was resized.
*/
-void *sqlite3ArrayAllocate(
+SQLITE_PRIVATE void *sqlite3ArrayAllocate(
+ sqlite3 *db, /* Connection to notify of malloc failures */
void *pArray, /* Array of objects. Might be reallocated */
int szEntry, /* Size of each object in the array */
int initSize, /* Suggested initial allocation, in elements */
@@ -43790,12 +68299,12 @@ void *sqlite3ArrayAllocate(
void *pNew;
int newSize;
newSize = (*pnAlloc)*2 + initSize;
- pNew = sqliteRealloc(pArray, newSize*szEntry);
+ pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
if( pNew==0 ){
*pIdx = -1;
return pArray;
}
- *pnAlloc = newSize;
+ *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
pArray = pNew;
}
z = (char*)pArray;
@@ -43811,14 +68320,15 @@ void *sqlite3ArrayAllocate(
**
** A new IdList is returned, or NULL if malloc() fails.
*/
-IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
+SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
int i;
if( pList==0 ){
- pList = sqliteMalloc( sizeof(IdList) );
+ pList = sqlite3DbMallocZero(db, sizeof(IdList) );
if( pList==0 ) return 0;
pList->nAlloc = 0;
}
pList->a = sqlite3ArrayAllocate(
+ db,
pList->a,
sizeof(pList->a[0]),
5,
@@ -43827,31 +68337,31 @@ IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
&i
);
if( i<0 ){
- sqlite3IdListDelete(pList);
+ sqlite3IdListDelete(db, pList);
return 0;
}
- pList->a[i].zName = sqlite3NameFromToken(pToken);
+ pList->a[i].zName = sqlite3NameFromToken(db, pToken);
return pList;
}
/*
** Delete an IdList.
*/
-void sqlite3IdListDelete(IdList *pList){
+SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nId; i++){
- sqliteFree(pList->a[i].zName);
+ sqlite3DbFree(db, pList->a[i].zName);
}
- sqliteFree(pList->a);
- sqliteFree(pList);
+ sqlite3DbFree(db, pList->a);
+ sqlite3DbFree(db, pList);
}
/*
** Return the index in pList of the identifier named zId. Return -1
** if not found.
*/
-int sqlite3IdListIndex(IdList *pList, const char *zName){
+SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
int i;
if( pList==0 ) return -1;
for(i=0; i<pList->nId; i++){
@@ -43861,10 +68371,80 @@ int sqlite3IdListIndex(IdList *pList, const char *zName){
}
/*
+** Expand the space allocated for the given SrcList object by
+** creating nExtra new slots beginning at iStart. iStart is zero based.
+** New slots are zeroed.
+**
+** For example, suppose a SrcList initially contains two entries: A,B.
+** To append 3 new entries onto the end, do this:
+**
+** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
+**
+** After the call above it would contain: A, B, nil, nil, nil.
+** If the iStart argument had been 1 instead of 2, then the result
+** would have been: A, nil, nil, nil, B. To prepend the new slots,
+** the iStart value would be 0. The result then would
+** be: nil, nil, nil, A, B.
+**
+** If a memory allocation fails the SrcList is unchanged. The
+** db->mallocFailed flag will be set to true.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(
+ sqlite3 *db, /* Database connection to notify of OOM errors */
+ SrcList *pSrc, /* The SrcList to be enlarged */
+ int nExtra, /* Number of new slots to add to pSrc->a[] */
+ int iStart /* Index in pSrc->a[] of first new slot */
+){
+ int i;
+
+ /* Sanity checking on calling parameters */
+ assert( iStart>=0 );
+ assert( nExtra>=1 );
+ assert( pSrc!=0 );
+ assert( iStart<=pSrc->nSrc );
+
+ /* Allocate additional space if needed */
+ if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
+ SrcList *pNew;
+ int nAlloc = pSrc->nSrc+nExtra;
+ int nGot;
+ pNew = sqlite3DbRealloc(db, pSrc,
+ sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
+ if( pNew==0 ){
+ assert( db->mallocFailed );
+ return pSrc;
+ }
+ pSrc = pNew;
+ nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
+ pSrc->nAlloc = (u16)nGot;
+ }
+
+ /* Move existing slots that come after the newly inserted slots
+ ** out of the way */
+ for(i=pSrc->nSrc-1; i>=iStart; i--){
+ pSrc->a[i+nExtra] = pSrc->a[i];
+ }
+ pSrc->nSrc += (i16)nExtra;
+
+ /* Zero the newly allocated slots */
+ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
+ for(i=iStart; i<iStart+nExtra; i++){
+ pSrc->a[i].iCursor = -1;
+ }
+
+ /* Return a pointer to the enlarged SrcList */
+ return pSrc;
+}
+
+
+/*
** Append a new table name to the given SrcList. Create a new SrcList if
-** need be. A new entry is created in the SrcList even if pToken is NULL.
+** need be. A new entry is created in the SrcList even if pTable is NULL.
**
-** A new SrcList is returned, or NULL if malloc() fails.
+** A SrcList is returned, or NULL if there is an OOM error. The returned
+** SrcList might be the same as the SrcList that was input or it might be
+** a new one. If an OOM error does occurs, then the prior value of pList
+** that is input to this routine is automatically freed.
**
** If pDatabase is not null, it means that the table has an optional
** database name prefix. Like this: "database.table". The pDatabase
@@ -43876,58 +68456,60 @@ int sqlite3IdListIndex(IdList *pList, const char *zName){
**
** In other words, if call like this:
**
-** sqlite3SrcListAppend(A,B,0);
+** sqlite3SrcListAppend(D,A,B,0);
**
** Then B is a table name and the database name is unspecified. If called
** like this:
**
-** sqlite3SrcListAppend(A,B,C);
+** sqlite3SrcListAppend(D,A,B,C);
+**
+** Then C is the table name and B is the database name. If C is defined
+** then so is B. In other words, we never have a case where:
+**
+** sqlite3SrcListAppend(D,A,0,C);
**
-** Then C is the table name and B is the database name.
+** Both pTable and pDatabase are assumed to be quoted. They are dequoted
+** before being added to the SrcList.
*/
-SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
+ sqlite3 *db, /* Connection to notify of malloc failures */
+ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
+ Token *pTable, /* Table to append */
+ Token *pDatabase /* Database of the table */
+){
struct SrcList_item *pItem;
+ assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
if( pList==0 ){
- pList = sqliteMalloc( sizeof(SrcList) );
+ pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
if( pList==0 ) return 0;
pList->nAlloc = 1;
}
- if( pList->nSrc>=pList->nAlloc ){
- SrcList *pNew;
- pList->nAlloc *= 2;
- pNew = sqliteRealloc(pList,
- sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
- if( pNew==0 ){
- sqlite3SrcListDelete(pList);
- return 0;
- }
- pList = pNew;
+ pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
+ if( db->mallocFailed ){
+ sqlite3SrcListDelete(db, pList);
+ return 0;
}
- pItem = &pList->a[pList->nSrc];
- memset(pItem, 0, sizeof(pList->a[0]));
+ pItem = &pList->a[pList->nSrc-1];
if( pDatabase && pDatabase->z==0 ){
pDatabase = 0;
}
- if( pDatabase && pTable ){
+ if( pDatabase ){
Token *pTemp = pDatabase;
pDatabase = pTable;
pTable = pTemp;
}
- pItem->zName = sqlite3NameFromToken(pTable);
- pItem->zDatabase = sqlite3NameFromToken(pDatabase);
- pItem->iCursor = -1;
- pItem->isPopulated = 0;
- pList->nSrc++;
+ pItem->zName = sqlite3NameFromToken(db, pTable);
+ pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
return pList;
}
/*
-** Assign cursors to all tables in a SrcList
+** Assign VdbeCursor index numbers to all tables in a SrcList
*/
-void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
+SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
int i;
struct SrcList_item *pItem;
- assert(pList || sqlite3MallocFailed() );
+ assert(pList || pParse->db->mallocFailed );
if( pList ){
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
if( pItem->iCursor>=0 ) break;
@@ -43942,20 +68524,21 @@ void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
/*
** Delete an entire SrcList including all its substructure.
*/
-void sqlite3SrcListDelete(SrcList *pList){
+SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
int i;
struct SrcList_item *pItem;
if( pList==0 ) return;
for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
- sqliteFree(pItem->zDatabase);
- sqliteFree(pItem->zName);
- sqliteFree(pItem->zAlias);
+ sqlite3DbFree(db, pItem->zDatabase);
+ sqlite3DbFree(db, pItem->zName);
+ sqlite3DbFree(db, pItem->zAlias);
+ sqlite3DbFree(db, pItem->zIndex);
sqlite3DeleteTable(pItem->pTab);
- sqlite3SelectDelete(pItem->pSelect);
- sqlite3ExprDelete(pItem->pOn);
- sqlite3IdListDelete(pItem->pUsing);
+ sqlite3SelectDelete(db, pItem->pSelect);
+ sqlite3ExprDelete(db, pItem->pOn);
+ sqlite3IdListDelete(db, pItem->pUsing);
}
- sqliteFree(pList);
+ sqlite3DbFree(db, pList);
}
/*
@@ -43974,7 +68557,8 @@ void sqlite3SrcListDelete(SrcList *pList){
** Return a new SrcList which encodes is the FROM with the new
** term added.
*/
-SrcList *sqlite3SrcListAppendFromTerm(
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
+ Parse *pParse, /* Parsing context */
SrcList *p, /* The left part of the FROM clause already seen */
Token *pTable, /* Name of the table to add to the FROM clause */
Token *pDatabase, /* Name of the database containing pTable */
@@ -43984,21 +68568,52 @@ SrcList *sqlite3SrcListAppendFromTerm(
IdList *pUsing /* The USING clause of a join */
){
struct SrcList_item *pItem;
- p = sqlite3SrcListAppend(p, pTable, pDatabase);
- if( p==0 || p->nSrc==0 ){
- sqlite3ExprDelete(pOn);
- sqlite3IdListDelete(pUsing);
- sqlite3SelectDelete(pSubquery);
- return p;
+ sqlite3 *db = pParse->db;
+ if( !p && (pOn || pUsing) ){
+ sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
+ (pOn ? "ON" : "USING")
+ );
+ goto append_from_error;
+ }
+ p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
+ if( p==0 || NEVER(p->nSrc==0) ){
+ goto append_from_error;
}
pItem = &p->a[p->nSrc-1];
- if( pAlias && pAlias->n ){
- pItem->zAlias = sqlite3NameFromToken(pAlias);
+ assert( pAlias!=0 );
+ if( pAlias->n ){
+ pItem->zAlias = sqlite3NameFromToken(db, pAlias);
}
pItem->pSelect = pSubquery;
pItem->pOn = pOn;
pItem->pUsing = pUsing;
return p;
+
+ append_from_error:
+ assert( p==0 );
+ sqlite3ExprDelete(db, pOn);
+ sqlite3IdListDelete(db, pUsing);
+ sqlite3SelectDelete(db, pSubquery);
+ return 0;
+}
+
+/*
+** Add an INDEXED BY or NOT INDEXED clause to the most recently added
+** element of the source-list passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
+ assert( pIndexedBy!=0 );
+ if( p && ALWAYS(p->nSrc>0) ){
+ struct SrcList_item *pItem = &p->a[p->nSrc-1];
+ assert( pItem->notIndexed==0 && pItem->zIndex==0 );
+ if( pIndexedBy->n==1 && !pIndexedBy->z ){
+ /* A "NOT INDEXED" clause was supplied. See parse.y
+ ** construct "indexed_opt" for details. */
+ pItem->notIndexed = 1;
+ }else{
+ pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
+ }
+ }
}
/*
@@ -44016,7 +68631,7 @@ SrcList *sqlite3SrcListAppendFromTerm(
** in p->a[0] and p->a[1], respectively. The parser initially stores the
** operator with A. This routine shifts that operator over to B.
*/
-void sqlite3SrcListShiftJoinType(SrcList *p){
+SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){
if( p && p->a ){
int i;
for(i=p->nSrc-1; i>0; i--){
@@ -44029,56 +68644,86 @@ void sqlite3SrcListShiftJoinType(SrcList *p){
/*
** Begin a transaction
*/
-void sqlite3BeginTransaction(Parse *pParse, int type){
+SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
sqlite3 *db;
Vdbe *v;
int i;
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || sqlite3MallocFailed() ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
-
+ assert( pParse!=0 );
+ db = pParse->db;
+ assert( db!=0 );
+/* if( db->aDb[0].pBt==0 ) return; */
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
+ return;
+ }
v = sqlite3GetVdbe(pParse);
if( !v ) return;
if( type!=TK_DEFERRED ){
for(i=0; i<db->nDb; i++){
- sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
+ sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
+ sqlite3VdbeUsesBtree(v, i);
}
}
- sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
}
/*
** Commit a transaction
*/
-void sqlite3CommitTransaction(Parse *pParse){
+SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
sqlite3 *db;
Vdbe *v;
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || sqlite3MallocFailed() ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
-
+ assert( pParse!=0 );
+ db = pParse->db;
+ assert( db!=0 );
+/* if( db->aDb[0].pBt==0 ) return; */
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
+ return;
+ }
v = sqlite3GetVdbe(pParse);
if( v ){
- sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
}
}
/*
** Rollback a transaction
*/
-void sqlite3RollbackTransaction(Parse *pParse){
+SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
sqlite3 *db;
Vdbe *v;
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || sqlite3MallocFailed() ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
-
+ assert( pParse!=0 );
+ db = pParse->db;
+ assert( db!=0 );
+/* if( db->aDb[0].pBt==0 ) return; */
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
+ return;
+ }
v = sqlite3GetVdbe(pParse);
if( v ){
- sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
+ }
+}
+
+/*
+** This function is called by the parser when it parses a command to create,
+** release or rollback an SQL savepoint.
+*/
+SQLITE_PRIVATE void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
+ char *zName = sqlite3NameFromToken(pParse->db, pName);
+ if( zName ){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ static const char *az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
+ assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
+#endif
+ if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
+ sqlite3DbFree(pParse->db, zName);
+ return;
+ }
+ sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
}
}
@@ -44086,26 +68731,29 @@ void sqlite3RollbackTransaction(Parse *pParse){
** Make sure the TEMP database is open and available for use. Return
** the number of errors. Leave any error messages in the pParse structure.
*/
-int sqlite3OpenTempDatabase(Parse *pParse){
+SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
sqlite3 *db = pParse->db;
if( db->aDb[1].pBt==0 && !pParse->explain ){
- int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
+ int rc;
+ static const int flags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TEMP_DB;
+
+ rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
+ &db->aDb[1].pBt);
if( rc!=SQLITE_OK ){
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
"file for storing temporary tables");
pParse->rc = rc;
return 1;
}
- if( db->flags & !db->autoCommit ){
- rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
- if( rc!=SQLITE_OK ){
- sqlite3ErrorMsg(pParse, "unable to get a write lock on "
- "the temporary database file");
- pParse->rc = rc;
- return 1;
- }
- }
+ assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
assert( db->aDb[1].pSchema );
+ sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
+ db->dfltJournalMode);
}
return 0;
}
@@ -44132,27 +68780,27 @@ int sqlite3OpenTempDatabase(Parse *pParse){
** schema on any databases. This can be used to position the OP_Goto
** early in the code, before we know if any database tables will be used.
*/
-void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
- sqlite3 *db;
- Vdbe *v;
- int mask;
+SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return; /* This only happens if there was a prior error */
- db = pParse->db;
- if( pParse->cookieGoto==0 ){
- pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
+ if( pToplevel->cookieGoto==0 ){
+ Vdbe *v = sqlite3GetVdbe(pToplevel);
+ if( v==0 ) return; /* This only happens if there was a prior error */
+ pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
}
if( iDb>=0 ){
+ sqlite3 *db = pToplevel->db;
+ int mask;
+
assert( iDb<db->nDb );
assert( db->aDb[iDb].pBt!=0 || iDb==1 );
- assert( iDb<MAX_ATTACHED+2 );
+ assert( iDb<SQLITE_MAX_ATTACHED+2 );
mask = 1<<iDb;
- if( (pParse->cookieMask & mask)==0 ){
- pParse->cookieMask |= mask;
- pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
+ if( (pToplevel->cookieMask & mask)==0 ){
+ pToplevel->cookieMask |= mask;
+ pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
if( !OMIT_TEMPDB && iDb==1 ){
- sqlite3OpenTempDatabase(pParse);
+ sqlite3OpenTempDatabase(pToplevel);
}
}
}
@@ -44170,23 +68818,34 @@ void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
** rollback the whole transaction. For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
-**
-** Only database iDb and the temp database are made writable by this call.
-** If iDb==0, then the main and temp databases are made writable. If
-** iDb==1 then only the temp database is made writable. If iDb>1 then the
-** specified auxiliary database and the temp database are made writable.
*/
-void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
+SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
sqlite3CodeVerifySchema(pParse, iDb);
- pParse->writeMask |= 1<<iDb;
- if( setStatement && pParse->nested==0 ){
- sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
- }
- if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
- sqlite3BeginWriteOperation(pParse, setStatement, 1);
+ pToplevel->writeMask |= 1<<iDb;
+ pToplevel->isMultiWrite |= setStatement;
+}
+
+/*
+** Set the "may throw abort exception" flag for the statement currently
+** being coded.
+*/
+SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ pToplevel->mayAbort = 1;
+}
+
+/*
+** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
+** error. The onError parameter determines which (if any) of the statement
+** and/or current transaction is rolled back.
+*/
+SQLITE_PRIVATE void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( onError==OE_Abort ){
+ sqlite3MayAbort(pParse);
}
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
}
/*
@@ -44196,9 +68855,11 @@ void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
#ifndef SQLITE_OMIT_REINDEX
static int collationMatch(const char *zColl, Index *pIndex){
int i;
+ assert( zColl!=0 );
for(i=0; i<pIndex->nColumn; i++){
const char *z = pIndex->azColl[i];
- if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
+ assert( z!=0 );
+ if( 0==sqlite3StrICmp(z, zColl) ){
return 1;
}
}
@@ -44261,7 +68922,7 @@ static void reindexDatabases(Parse *pParse, char const *zColl){
** indices associated with the named table.
*/
#ifndef SQLITE_OMIT_REINDEX
-void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
+SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
char *z; /* Name of a table or index */
const char *zDb; /* Name of the database */
@@ -44277,33 +68938,35 @@ void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
return;
}
- if( pName1==0 || pName1->z==0 ){
+ if( pName1==0 ){
reindexDatabases(pParse, 0);
return;
- }else if( pName2==0 || pName2->z==0 ){
+ }else if( NEVER(pName2==0) || pName2->z==0 ){
+ char *zColl;
assert( pName1->z );
- pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0);
+ zColl = sqlite3NameFromToken(pParse->db, pName1);
+ if( !zColl ) return;
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
if( pColl ){
- char *zColl = sqliteStrNDup((const char *)pName1->z, pName1->n);
- if( zColl ){
- reindexDatabases(pParse, zColl);
- sqliteFree(zColl);
- }
+ reindexDatabases(pParse, zColl);
+ sqlite3DbFree(db, zColl);
return;
}
+ sqlite3DbFree(db, zColl);
}
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
if( iDb<0 ) return;
- z = sqlite3NameFromToken(pObjName);
+ z = sqlite3NameFromToken(db, pObjName);
+ if( z==0 ) return;
zDb = db->aDb[iDb].zName;
pTab = sqlite3FindTable(db, z, zDb);
if( pTab ){
reindexTable(pParse, pTab, 0);
- sqliteFree(z);
+ sqlite3DbFree(db, z);
return;
}
pIndex = sqlite3FindIndex(db, z, zDb);
- sqliteFree(z);
+ sqlite3DbFree(db, z);
if( pIndex ){
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3RefillIndex(pParse, pIndex, -1);
@@ -44318,31 +68981,33 @@ void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
**
** If successful, a pointer to the new structure is returned. In this case
-** the caller is responsible for calling sqliteFree() on the returned
+** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
** pointer. If an error occurs (out of memory or missing collation
** sequence), NULL is returned and the state of pParse updated to reflect
** the error.
*/
-KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
+SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
int i;
int nCol = pIdx->nColumn;
int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
- KeyInfo *pKey = (KeyInfo *)sqliteMalloc(nBytes);
+ sqlite3 *db = pParse->db;
+ KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
if( pKey ){
+ pKey->db = pParse->db;
pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
for(i=0; i<nCol; i++){
char *zColl = pIdx->azColl[i];
assert( zColl );
- pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
+ pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
pKey->aSortOrder[i] = pIdx->aSortOrder[i];
}
- pKey->nField = nCol;
+ pKey->nField = (u16)nCol;
}
if( pParse->nErr ){
- sqliteFree(pKey);
+ sqlite3DbFree(db, pKey);
pKey = 0;
}
return pKey;
@@ -44365,29 +69030,27 @@ KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
** This file contains functions used to access the internal hash tables
** of user defined functions and collation sequences.
**
-** $Id: callback.c,v 1.17 2007/04/16 15:06:25 danielk1977 Exp $
+** $Id: callback.c,v 1.42 2009/06/17 00:35:31 drh Exp $
*/
/*
** Invoke the 'collation needed' callback to request a collation sequence
-** in the database text encoding of name zName, length nName.
-** If the collation sequence
+** in the encoding enc of name zName, length nName.
*/
-static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
+static void callCollNeeded(sqlite3 *db, int enc, const char *zName){
assert( !db->xCollNeeded || !db->xCollNeeded16 );
- if( nName<0 ) nName = strlen(zName);
if( db->xCollNeeded ){
- char *zExternal = sqliteStrNDup(zName, nName);
+ char *zExternal = sqlite3DbStrDup(db, zName);
if( !zExternal ) return;
- db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
- sqliteFree(zExternal);
+ db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal);
+ sqlite3DbFree(db, zExternal);
}
#ifndef SQLITE_OMIT_UTF16
if( db->xCollNeeded16 ){
char const *zExternal;
- sqlite3_value *pTmp = sqlite3ValueNew();
- sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
+ sqlite3_value *pTmp = sqlite3ValueNew(db);
+ sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);
zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
if( zExternal ){
db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
@@ -44407,13 +69070,13 @@ static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
CollSeq *pColl2;
char *z = pColl->zName;
- int n = strlen(z);
int i;
static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
for(i=0; i<3; i++){
- pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
+ pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0);
if( pColl2->xCmp!=0 ){
memcpy(pColl, pColl2, sizeof(CollSeq));
+ pColl->xDel = 0; /* Do not copy the destructor */
return SQLITE_OK;
}
}
@@ -44423,8 +69086,7 @@ static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
/*
** This function is responsible for invoking the collation factory callback
** or substituting a collation sequence of a different encoding when the
-** requested collation sequence is not available in the database native
-** encoding.
+** requested collation sequence is not available in the desired encoding.
**
** If it is not NULL, then pColl must point to the database native encoding
** collation sequence with name zName, length nName.
@@ -44432,25 +69094,27 @@ static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
** The return value is either the collation sequence to be used in database
** db for collation type name zName, length nName, or NULL, if no collation
** sequence can be found.
+**
+** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq()
*/
-CollSeq *sqlite3GetCollSeq(
- sqlite3* db,
- CollSeq *pColl,
- const char *zName,
- int nName
+SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
+ sqlite3* db, /* The database connection */
+ u8 enc, /* The desired encoding for the collating sequence */
+ CollSeq *pColl, /* Collating sequence with native encoding, or NULL */
+ const char *zName /* Collating sequence name */
){
CollSeq *p;
p = pColl;
if( !p ){
- p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
+ p = sqlite3FindCollSeq(db, enc, zName, 0);
}
if( !p || !p->xCmp ){
/* No collation sequence of this type for this encoding is registered.
** Call the collation factory to see if it can supply us with one.
*/
- callCollNeeded(db, zName, nName);
- p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
+ callCollNeeded(db, enc, zName);
+ p = sqlite3FindCollSeq(db, enc, zName, 0);
}
if( p && !p->xCmp && synthCollSeq(db, p) ){
p = 0;
@@ -44470,14 +69134,13 @@ CollSeq *sqlite3GetCollSeq(
** an equivalent collating sequence that uses a text encoding different
** from the main database is substituted, if one is available.
*/
-int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
+SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
if( pColl ){
const char *zName = pColl->zName;
- CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
+ sqlite3 *db = pParse->db;
+ CollSeq *p = sqlite3GetCollSeq(db, ENC(db), pColl, zName);
if( !p ){
- if( pParse->nErr==0 ){
- sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
- }
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
pParse->nErr++;
return SQLITE_ERROR;
}
@@ -44502,17 +69165,16 @@ int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
** each collation sequence structure.
*/
static CollSeq *findCollSeqEntry(
- sqlite3 *db,
- const char *zName,
- int nName,
- int create
+ sqlite3 *db, /* Database connection */
+ const char *zName, /* Name of the collating sequence */
+ int create /* Create a new entry if true */
){
CollSeq *pColl;
- if( nName<0 ) nName = strlen(zName);
+ int nName = sqlite3Strlen30(zName);
pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
if( 0==pColl && create ){
- pColl = sqliteMalloc( 3*sizeof(*pColl) + nName + 1 );
+ pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
if( pColl ){
CollSeq *pDel = 0;
pColl[0].zName = (char*)&pColl[3];
@@ -44525,13 +69187,14 @@ static CollSeq *findCollSeqEntry(
pColl[0].zName[nName] = 0;
pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
- /* If a malloc() failure occured in sqlite3HashInsert(), it will
+ /* If a malloc() failure occurred in sqlite3HashInsert(), it will
** return the pColl pointer to be deleted (because it wasn't added
** to the hash table).
*/
- assert( !pDel || (sqlite3MallocFailed() && pDel==pColl) );
- if( pDel ){
- sqliteFree(pDel);
+ assert( pDel==0 || pDel==pColl );
+ if( pDel!=0 ){
+ db->mallocFailed = 1;
+ sqlite3DbFree(db, pDel);
pColl = 0;
}
}
@@ -44551,17 +69214,18 @@ static CollSeq *findCollSeqEntry(
** this routine. sqlite3LocateCollSeq() invokes the collation factory
** if necessary and generates an error message if the collating sequence
** cannot be found.
+**
+** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq()
*/
-CollSeq *sqlite3FindCollSeq(
+SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
sqlite3 *db,
u8 enc,
const char *zName,
- int nName,
int create
){
CollSeq *pColl;
if( zName ){
- pColl = findCollSeqEntry(db, zName, nName, create);
+ pColl = findCollSeqEntry(db, zName, create);
}else{
pColl = db->pDfltColl;
}
@@ -44571,6 +69235,91 @@ CollSeq *sqlite3FindCollSeq(
return pColl;
}
+/* During the search for the best function definition, this procedure
+** is called to test how well the function passed as the first argument
+** matches the request for a function with nArg arguments in a system
+** that uses encoding enc. The value returned indicates how well the
+** request is matched. A higher value indicates a better match.
+**
+** The returned value is always between 0 and 6, as follows:
+**
+** 0: Not a match, or if nArg<0 and the function is has no implementation.
+** 1: A variable arguments function that prefers UTF-8 when a UTF-16
+** encoding is requested, or vice versa.
+** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
+** requested, or vice versa.
+** 3: A variable arguments function using the same text encoding.
+** 4: A function with the exact number of arguments requested that
+** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
+** 5: A function with the exact number of arguments requested that
+** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
+** 6: An exact match.
+**
+*/
+static int matchQuality(FuncDef *p, int nArg, u8 enc){
+ int match = 0;
+ if( p->nArg==-1 || p->nArg==nArg
+ || (nArg==-1 && (p->xFunc!=0 || p->xStep!=0))
+ ){
+ match = 1;
+ if( p->nArg==nArg || nArg==-1 ){
+ match = 4;
+ }
+ if( enc==p->iPrefEnc ){
+ match += 2;
+ }
+ else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
+ (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
+ match += 1;
+ }
+ }
+ return match;
+}
+
+/*
+** Search a FuncDefHash for a function with the given name. Return
+** a pointer to the matching FuncDef if found, or 0 if there is no match.
+*/
+static FuncDef *functionSearch(
+ FuncDefHash *pHash, /* Hash table to search */
+ int h, /* Hash of the name */
+ const char *zFunc, /* Name of function */
+ int nFunc /* Number of bytes in zFunc */
+){
+ FuncDef *p;
+ for(p=pHash->a[h]; p; p=p->pHash){
+ if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){
+ return p;
+ }
+ }
+ return 0;
+}
+
+/*
+** Insert a new FuncDef into a FuncDefHash hash table.
+*/
+SQLITE_PRIVATE void sqlite3FuncDefInsert(
+ FuncDefHash *pHash, /* The hash table into which to insert */
+ FuncDef *pDef /* The function definition to insert */
+){
+ FuncDef *pOther;
+ int nName = sqlite3Strlen30(pDef->zName);
+ u8 c1 = (u8)pDef->zName[0];
+ int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a);
+ pOther = functionSearch(pHash, h, pDef->zName, nName);
+ if( pOther ){
+ assert( pOther!=pDef && pOther->pNext!=pDef );
+ pDef->pNext = pOther->pNext;
+ pOther->pNext = pDef;
+ }else{
+ pDef->pNext = 0;
+ pDef->pHash = pHash->a[h];
+ pHash->a[h] = pDef;
+ }
+}
+
+
+
/*
** Locate a user function given a name, a number of arguments and a flag
** indicating whether the function prefers UTF-16 over UTF-8. Return a
@@ -44591,7 +69340,7 @@ CollSeq *sqlite3FindCollSeq(
** number of arguments may be returned even if the eTextRep flag does not
** match that requested.
*/
-FuncDef *sqlite3FindFunction(
+SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
sqlite3 *db, /* An open database */
const char *zName, /* Name of the function. Not null-terminated */
int nName, /* Number of characters in the name */
@@ -44600,69 +69349,59 @@ FuncDef *sqlite3FindFunction(
int createFlag /* Create new entry if true and does not otherwise exist */
){
FuncDef *p; /* Iterator variable */
- FuncDef *pFirst; /* First function with this name */
FuncDef *pBest = 0; /* Best match found so far */
- int bestmatch = 0;
+ int bestScore = 0; /* Score of best match */
+ int h; /* Hash value */
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
- if( nArg<-1 ) nArg = -1;
+ h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);
- pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName);
- for(p=pFirst; p; p=p->pNext){
- /* During the search for the best function definition, bestmatch is set
- ** as follows to indicate the quality of the match with the definition
- ** pointed to by pBest:
- **
- ** 0: pBest is NULL. No match has been found.
- ** 1: A variable arguments function that prefers UTF-8 when a UTF-16
- ** encoding is requested, or vice versa.
- ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
- ** requested, or vice versa.
- ** 3: A variable arguments function using the same text encoding.
- ** 4: A function with the exact number of arguments requested that
- ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
- ** 5: A function with the exact number of arguments requested that
- ** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
- ** 6: An exact match.
- **
- ** A larger value of 'matchqual' indicates a more desirable match.
- */
- if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
- int match = 1; /* Quality of this match */
- if( p->nArg==nArg || nArg==-1 ){
- match = 4;
- }
- if( enc==p->iPrefEnc ){
- match += 2;
- }
- else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
- (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
- match += 1;
- }
+ /* First search for a match amongst the application-defined functions.
+ */
+ p = functionSearch(&db->aFunc, h, zName, nName);
+ while( p ){
+ int score = matchQuality(p, nArg, enc);
+ if( score>bestScore ){
+ pBest = p;
+ bestScore = score;
+ }
+ p = p->pNext;
+ }
- if( match>bestmatch ){
+ /* If no match is found, search the built-in functions.
+ **
+ ** Except, if createFlag is true, that means that we are trying to
+ ** install a new function. Whatever FuncDef structure is returned will
+ ** have fields overwritten with new information appropriate for the
+ ** new function. But the FuncDefs for built-in functions are read-only.
+ ** So we must not search for built-ins when creating a new function.
+ */
+ if( !createFlag && !pBest ){
+ FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
+ p = functionSearch(pHash, h, zName, nName);
+ while( p ){
+ int score = matchQuality(p, nArg, enc);
+ if( score>bestScore ){
pBest = p;
- bestmatch = match;
+ bestScore = score;
}
+ p = p->pNext;
}
}
- /* If the createFlag parameter is true, and the seach did not reveal an
+ /* If the createFlag parameter is true and the search did not reveal an
** exact match for the name, number of arguments and encoding, then add a
** new entry to the hash table and return it.
*/
- if( createFlag && bestmatch<6 &&
- (pBest = sqliteMalloc(sizeof(*pBest)+nName))!=0 ){
- pBest->nArg = nArg;
- pBest->pNext = pFirst;
+ if( createFlag && (bestScore<6 || pBest->nArg!=nArg) &&
+ (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
+ pBest->zName = (char *)&pBest[1];
+ pBest->nArg = (u16)nArg;
pBest->iPrefEnc = enc;
memcpy(pBest->zName, zName, nName);
pBest->zName[nName] = 0;
- if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
- sqliteFree(pBest);
- return 0;
- }
+ sqlite3FuncDefInsert(&db->aFunc, pBest);
}
if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
@@ -44673,11 +69412,13 @@ FuncDef *sqlite3FindFunction(
/*
** Free all resources held by the schema structure. The void* argument points
-** at a Schema struct. This function does not call sqliteFree() on the
+** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
** pointer itself, it just cleans up subsiduary resources (i.e. the contents
** of the schema hash tables).
+**
+** The Schema.cache_size variable is not cleared.
*/
-void sqlite3SchemaFree(void *p){
+SQLITE_PRIVATE void sqlite3SchemaFree(void *p){
Hash temp1;
Hash temp2;
HashElem *pElem;
@@ -44685,16 +69426,16 @@ void sqlite3SchemaFree(void *p){
temp1 = pSchema->tblHash;
temp2 = pSchema->trigHash;
- sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
- sqlite3HashClear(&pSchema->aFKey);
+ sqlite3HashInit(&pSchema->trigHash);
sqlite3HashClear(&pSchema->idxHash);
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
- sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
+ sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
}
sqlite3HashClear(&temp2);
- sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
+ sqlite3HashInit(&pSchema->tblHash);
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
Table *pTab = sqliteHashData(pElem);
+ assert( pTab->dbMem==0 );
sqlite3DeleteTable(pTab);
}
sqlite3HashClear(&temp1);
@@ -44706,289 +69447,25 @@ void sqlite3SchemaFree(void *p){
** Find and return the schema associated with a BTree. Create
** a new one if necessary.
*/
-Schema *sqlite3SchemaGet(Btree *pBt){
+SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
Schema * p;
if( pBt ){
- p = (Schema *)sqlite3BtreeSchema(pBt,sizeof(Schema),sqlite3SchemaFree);
+ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
}else{
- p = (Schema *)sqliteMalloc(sizeof(Schema));
+ p = (Schema *)sqlite3MallocZero(sizeof(Schema));
}
- if( p && 0==p->file_format ){
- sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
+ if( !p ){
+ db->mallocFailed = 1;
+ }else if ( 0==p->file_format ){
+ sqlite3HashInit(&p->tblHash);
+ sqlite3HashInit(&p->idxHash);
+ sqlite3HashInit(&p->trigHash);
p->enc = SQLITE_UTF8;
}
return p;
}
/************** End of callback.c ********************************************/
-/************** Begin file complete.c ****************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** An tokenizer for SQL
-**
-** This file contains C code that implements the sqlite3_complete() API.
-** This code used to be part of the tokenizer.c source file. But by
-** separating it out, the code will be automatically omitted from
-** static links that do not use it.
-**
-** $Id: complete.c,v 1.3 2006/01/18 15:25:17 danielk1977 Exp $
-*/
-#ifndef SQLITE_OMIT_COMPLETE
-
-/*
-** This is defined in tokenize.c. We just have to import the definition.
-*/
-extern const char sqlite3IsIdChar[];
-#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsIdChar[c-0x20]))
-
-
-/*
-** Token types used by the sqlite3_complete() routine. See the header
-** comments on that procedure for additional information.
-*/
-#define tkSEMI 0
-#define tkWS 1
-#define tkOTHER 2
-#define tkEXPLAIN 3
-#define tkCREATE 4
-#define tkTEMP 5
-#define tkTRIGGER 6
-#define tkEND 7
-
-/*
-** Return TRUE if the given SQL string ends in a semicolon.
-**
-** Special handling is require for CREATE TRIGGER statements.
-** Whenever the CREATE TRIGGER keywords are seen, the statement
-** must end with ";END;".
-**
-** This implementation uses a state machine with 7 states:
-**
-** (0) START At the beginning or end of an SQL statement. This routine
-** returns 1 if it ends in the START state and 0 if it ends
-** in any other state.
-**
-** (1) NORMAL We are in the middle of statement which ends with a single
-** semicolon.
-**
-** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
-** a statement.
-**
-** (3) CREATE The keyword CREATE has been seen at the beginning of a
-** statement, possibly preceeded by EXPLAIN and/or followed by
-** TEMP or TEMPORARY
-**
-** (4) TRIGGER We are in the middle of a trigger definition that must be
-** ended by a semicolon, the keyword END, and another semicolon.
-**
-** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
-** the end of a trigger definition.
-**
-** (6) END We've seen the ";END" of the ";END;" that occurs at the end
-** of a trigger difinition.
-**
-** Transitions between states above are determined by tokens extracted
-** from the input. The following tokens are significant:
-**
-** (0) tkSEMI A semicolon.
-** (1) tkWS Whitespace
-** (2) tkOTHER Any other SQL token.
-** (3) tkEXPLAIN The "explain" keyword.
-** (4) tkCREATE The "create" keyword.
-** (5) tkTEMP The "temp" or "temporary" keyword.
-** (6) tkTRIGGER The "trigger" keyword.
-** (7) tkEND The "end" keyword.
-**
-** Whitespace never causes a state transition and is always ignored.
-**
-** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
-** to recognize the end of a trigger can be omitted. All we have to do
-** is look for a semicolon that is not part of an string or comment.
-*/
-int sqlite3_complete(const char *zSql){
- u8 state = 0; /* Current state, using numbers defined in header comment */
- u8 token; /* Value of the next token */
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* A complex statement machine used to detect the end of a CREATE TRIGGER
- ** statement. This is the normal case.
- */
- static const u8 trans[7][8] = {
- /* Token: */
- /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
- /* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, },
- /* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, },
- /* 2 EXPLAIN: */ { 0, 2, 1, 1, 3, 1, 1, 1, },
- /* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, },
- /* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, },
- /* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, },
- /* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, },
- };
-#else
- /* If triggers are not suppored by this compile then the statement machine
- ** used to detect the end of a statement is much simplier
- */
- static const u8 trans[2][3] = {
- /* Token: */
- /* State: ** SEMI WS OTHER */
- /* 0 START: */ { 0, 0, 1, },
- /* 1 NORMAL: */ { 0, 1, 1, },
- };
-#endif /* SQLITE_OMIT_TRIGGER */
-
- while( *zSql ){
- switch( *zSql ){
- case ';': { /* A semicolon */
- token = tkSEMI;
- break;
- }
- case ' ':
- case '\r':
- case '\t':
- case '\n':
- case '\f': { /* White space is ignored */
- token = tkWS;
- break;
- }
- case '/': { /* C-style comments */
- if( zSql[1]!='*' ){
- token = tkOTHER;
- break;
- }
- zSql += 2;
- while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
- if( zSql[0]==0 ) return 0;
- zSql++;
- token = tkWS;
- break;
- }
- case '-': { /* SQL-style comments from "--" to end of line */
- if( zSql[1]!='-' ){
- token = tkOTHER;
- break;
- }
- while( *zSql && *zSql!='\n' ){ zSql++; }
- if( *zSql==0 ) return state==0;
- token = tkWS;
- break;
- }
- case '[': { /* Microsoft-style identifiers in [...] */
- zSql++;
- while( *zSql && *zSql!=']' ){ zSql++; }
- if( *zSql==0 ) return 0;
- token = tkOTHER;
- break;
- }
- case '`': /* Grave-accent quoted symbols used by MySQL */
- case '"': /* single- and double-quoted strings */
- case '\'': {
- int c = *zSql;
- zSql++;
- while( *zSql && *zSql!=c ){ zSql++; }
- if( *zSql==0 ) return 0;
- token = tkOTHER;
- break;
- }
- default: {
- int c;
- if( IdChar((u8)*zSql) ){
- /* Keywords and unquoted identifiers */
- int nId;
- for(nId=1; IdChar(zSql[nId]); nId++){}
-#ifdef SQLITE_OMIT_TRIGGER
- token = tkOTHER;
-#else
- switch( *zSql ){
- case 'c': case 'C': {
- if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
- token = tkCREATE;
- }else{
- token = tkOTHER;
- }
- break;
- }
- case 't': case 'T': {
- if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
- token = tkTRIGGER;
- }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
- token = tkTEMP;
- }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
- token = tkTEMP;
- }else{
- token = tkOTHER;
- }
- break;
- }
- case 'e': case 'E': {
- if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
- token = tkEND;
- }else
-#ifndef SQLITE_OMIT_EXPLAIN
- if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
- token = tkEXPLAIN;
- }else
-#endif
- {
- token = tkOTHER;
- }
- break;
- }
- default: {
- token = tkOTHER;
- break;
- }
- }
-#endif /* SQLITE_OMIT_TRIGGER */
- zSql += nId-1;
- }else{
- /* Operators and special symbols */
- token = tkOTHER;
- }
- break;
- }
- }
- state = trans[state][token];
- zSql++;
- }
- return state==0;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** This routine is the same as the sqlite3_complete() routine described
-** above, except that the parameter is required to be UTF-16 encoded, not
-** UTF-8.
-*/
-int sqlite3_complete16(const void *zSql){
- sqlite3_value *pVal;
- char const *zSql8;
- int rc = 0;
-
- pVal = sqlite3ValueNew();
- sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
- zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
- if( zSql8 ){
- rc = sqlite3_complete(zSql8);
- }
- sqlite3ValueFree(pVal);
- return sqlite3ApiExit(0, rc);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-#endif /* SQLITE_OMIT_COMPLETE */
-
-/************** End of complete.c ********************************************/
/************** Begin file delete.c ******************************************/
/*
** 2001 September 15
@@ -45004,7 +69481,7 @@ int sqlite3_complete16(const void *zSql){
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
-** $Id: delete.c,v 1.129 2007/04/16 15:06:25 danielk1977 Exp $
+** $Id: delete.c,v 1.207 2009/08/08 18:01:08 drh Exp $
*/
/*
@@ -45012,17 +69489,18 @@ int sqlite3_complete16(const void *zSql){
** add an error message to pParse->zErrMsg and return NULL. If all tables
** are found, return a pointer to the last table.
*/
-Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
- Table *pTab = 0;
- int i;
- struct SrcList_item *pItem;
- for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
- pTab = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
- sqlite3DeleteTable(pItem->pTab);
- pItem->pTab = pTab;
- if( pTab ){
- pTab->nRef++;
- }
+SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
+ struct SrcList_item *pItem = pSrc->a;
+ Table *pTab;
+ assert( pItem && pSrc->nSrc==1 );
+ pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
+ sqlite3DeleteTable(pItem->pTab);
+ pItem->pTab = pTab;
+ if( pTab ){
+ pTab->nRef++;
+ }
+ if( sqlite3IndexedByLookup(pParse, pItem) ){
+ pTab = 0;
}
return pTab;
}
@@ -45032,16 +69510,27 @@ Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
** writable, generate an error message and return 1. If it is
** writable return 0;
*/
-int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
- if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
- && pParse->nested==0)
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- || (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
-#endif
+SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
+ /* A table is not writable under the following circumstances:
+ **
+ ** 1) It is a virtual table and no implementation of the xUpdate method
+ ** has been provided, or
+ ** 2) It is a system table (i.e. sqlite_master), this call is not
+ ** part of a nested parse and writable_schema pragma has not
+ ** been specified.
+ **
+ ** In either case leave an error message in pParse and return non-zero.
+ */
+ if( ( IsVirtual(pTab)
+ && sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 )
+ || ( (pTab->tabFlags & TF_Readonly)!=0
+ && (pParse->db->flags & SQLITE_WriteSchema)==0
+ && pParse->nested==0 )
){
sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
return 1;
}
+
#ifndef SQLITE_OMIT_VIEW
if( !viewOk && pTab->pSelect ){
sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
@@ -45051,27 +69540,139 @@ int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
return 0;
}
+
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
/*
-** Generate code that will open a table for reading.
+** Evaluate a view and store its result in an ephemeral table. The
+** pWhere argument is an optional WHERE clause that restricts the
+** set of rows in the view that are to be added to the ephemeral table.
*/
-void sqlite3OpenTable(
- Parse *p, /* Generate code into this VDBE */
- int iCur, /* The cursor number of the table */
- int iDb, /* The database index in sqlite3.aDb[] */
- Table *pTab, /* The table to be opened */
- int opcode /* OP_OpenRead or OP_OpenWrite */
+SQLITE_PRIVATE void sqlite3MaterializeView(
+ Parse *pParse, /* Parsing context */
+ Table *pView, /* View definition */
+ Expr *pWhere, /* Optional WHERE clause to be added */
+ int iCur /* Cursor number for ephemerial table */
){
- Vdbe *v;
- if( IsVirtual(pTab) ) return;
- v = sqlite3GetVdbe(p);
- assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
- sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- VdbeComment((v, "# %s", pTab->zName));
- sqlite3VdbeAddOp(v, opcode, iCur, pTab->tnum);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
+ SelectDest dest;
+ Select *pDup;
+ sqlite3 *db = pParse->db;
+
+ pDup = sqlite3SelectDup(db, pView->pSelect, 0);
+ if( pWhere ){
+ SrcList *pFrom;
+
+ pWhere = sqlite3ExprDup(db, pWhere, 0);
+ pFrom = sqlite3SrcListAppend(db, 0, 0, 0);
+ if( pFrom ){
+ assert( pFrom->nSrc==1 );
+ pFrom->a[0].zAlias = sqlite3DbStrDup(db, pView->zName);
+ pFrom->a[0].pSelect = pDup;
+ assert( pFrom->a[0].pOn==0 );
+ assert( pFrom->a[0].pUsing==0 );
+ }else{
+ sqlite3SelectDelete(db, pDup);
+ }
+ pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
+ }
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
+ sqlite3Select(pParse, pDup, &dest);
+ sqlite3SelectDelete(db, pDup);
}
+#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
+/*
+** Generate an expression tree to implement the WHERE, ORDER BY,
+** and LIMIT/OFFSET portion of DELETE and UPDATE statements.
+**
+** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1;
+** \__________________________/
+** pLimitWhere (pInClause)
+*/
+SQLITE_PRIVATE Expr *sqlite3LimitWhere(
+ Parse *pParse, /* The parser context */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ ExprList *pOrderBy, /* The ORDER BY clause. May be null */
+ Expr *pLimit, /* The LIMIT clause. May be null */
+ Expr *pOffset, /* The OFFSET clause. May be null */
+ char *zStmtType /* Either DELETE or UPDATE. For error messages. */
+){
+ Expr *pWhereRowid = NULL; /* WHERE rowid .. */
+ Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */
+ Expr *pSelectRowid = NULL; /* SELECT rowid ... */
+ ExprList *pEList = NULL; /* Expression list contaning only pSelectRowid */
+ SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */
+ Select *pSelect = NULL; /* Complete SELECT tree */
+
+ /* Check that there isn't an ORDER BY without a LIMIT clause.
+ */
+ if( pOrderBy && (pLimit == 0) ) {
+ sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
+ pParse->parseError = 1;
+ goto limit_where_cleanup_2;
+ }
+
+ /* We only need to generate a select expression if there
+ ** is a limit/offset term to enforce.
+ */
+ if( pLimit == 0 ) {
+ /* if pLimit is null, pOffset will always be null as well. */
+ assert( pOffset == 0 );
+ return pWhere;
+ }
+
+ /* Generate a select expression tree to enforce the limit/offset
+ ** term for the DELETE or UPDATE statement. For example:
+ ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
+ ** becomes:
+ ** DELETE FROM table_a WHERE rowid IN (
+ ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
+ ** );
+ */
+
+ pSelectRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
+ if( pSelectRowid == 0 ) goto limit_where_cleanup_2;
+ pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid);
+ if( pEList == 0 ) goto limit_where_cleanup_2;
+
+ /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
+ ** and the SELECT subtree. */
+ pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0);
+ if( pSelectSrc == 0 ) {
+ sqlite3ExprListDelete(pParse->db, pEList);
+ goto limit_where_cleanup_2;
+ }
+
+ /* generate the SELECT expression tree. */
+ pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0,
+ pOrderBy,0,pLimit,pOffset);
+ if( pSelect == 0 ) return 0;
+
+ /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */
+ pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
+ if( pWhereRowid == 0 ) goto limit_where_cleanup_1;
+ pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0);
+ if( pInClause == 0 ) goto limit_where_cleanup_1;
+
+ pInClause->x.pSelect = pSelect;
+ pInClause->flags |= EP_xIsSelect;
+ sqlite3ExprSetHeight(pParse, pInClause);
+ return pInClause;
+
+ /* something went wrong. clean up anything allocated. */
+limit_where_cleanup_1:
+ sqlite3SelectDelete(pParse->db, pSelect);
+ return 0;
+
+limit_where_cleanup_2:
+ sqlite3ExprDelete(pParse->db, pWhere);
+ sqlite3ExprListDelete(pParse->db, pOrderBy);
+ sqlite3ExprDelete(pParse->db, pLimit);
+ sqlite3ExprDelete(pParse->db, pOffset);
+ return 0;
+}
+#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */
/*
** Generate code for a DELETE FROM statement.
@@ -45080,7 +69681,7 @@ void sqlite3OpenTable(
** \________/ \________________/
** pTabList pWhere
*/
-void sqlite3DeleteFrom(
+SQLITE_PRIVATE void sqlite3DeleteFrom(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* The table from which we should delete things */
Expr *pWhere /* The WHERE clause. May be null */
@@ -45095,21 +69696,21 @@ void sqlite3DeleteFrom(
int iCur; /* VDBE Cursor number for pTab */
sqlite3 *db; /* Main database structure */
AuthContext sContext; /* Authorization context */
- int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
NameContext sNC; /* Name context to resolve expressions in */
int iDb; /* Database number */
- int memCnt = 0; /* Memory cell used for change counting */
+ int memCnt = -1; /* Memory cell used for change counting */
+ int rcauth; /* Value returned by authorization callback */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* True if attempting to delete from a view */
- int triggers_exist = 0; /* True if any triggers exist */
+ Trigger *pTrigger; /* List of table triggers, if required */
#endif
- sContext.pParse = 0;
- if( pParse->nErr || sqlite3MallocFailed() ){
+ memset(&sContext, 0, sizeof(sContext));
+ db = pParse->db;
+ if( pParse->nErr || db->mallocFailed ){
goto delete_from_cleanup;
}
- db = pParse->db;
assert( pTabList->nSrc==1 );
/* Locate the table which we want to delete. This table has to be
@@ -45124,10 +69725,10 @@ void sqlite3DeleteFrom(
** deleted from is a view
*/
#ifndef SQLITE_OMIT_TRIGGER
- triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
isView = pTab->pSelect!=0;
#else
-# define triggers_exist 0
+# define pTrigger 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
@@ -45135,37 +69736,31 @@ void sqlite3DeleteFrom(
# define isView 0
#endif
- if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
- goto delete_from_cleanup;
- }
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( iDb<db->nDb );
- zDb = db->aDb[iDb].zName;
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
- goto delete_from_cleanup;
- }
-
/* If pTab is really a view, make sure it has been initialized.
*/
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
goto delete_from_cleanup;
}
- /* Allocate a cursor used to store the old.* data for a trigger.
- */
- if( triggers_exist ){
- oldIdx = pParse->nTab++;
+ if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
+ goto delete_from_cleanup;
}
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb<db->nDb );
+ zDb = db->aDb[iDb].zName;
+ rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb);
+ assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
+ if( rcauth==SQLITE_DENY ){
+ goto delete_from_cleanup;
+ }
+ assert(!isView || pTrigger);
- /* Resolve the column names in the WHERE clause.
+ /* Assign cursor number to the table and all its indices.
*/
assert( pTabList->nSrc==1 );
iCur = pTabList->a[0].iCursor = pParse->nTab++;
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- sNC.pSrcList = pTabList;
- if( sqlite3ExprResolveNames(&sNC, pWhere) ){
- goto delete_from_cleanup;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ pParse->nTab++;
}
/* Start the view context
@@ -45181,182 +69776,133 @@ void sqlite3DeleteFrom(
goto delete_from_cleanup;
}
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
- sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
+ sqlite3BeginWriteOperation(pParse, (pTrigger?1:0), iDb);
/* If we are trying to delete from a view, realize that view into
** a ephemeral table.
*/
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
if( isView ){
- Select *pView = sqlite3SelectDup(pTab->pSelect);
- sqlite3Select(pParse, pView, SRT_EphemTab, iCur, 0, 0, 0, 0);
- sqlite3SelectDelete(pView);
+ sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
+ }
+#endif
+
+ /* Resolve the column names in the WHERE clause.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ if( sqlite3ResolveExprNames(&sNC, pWhere) ){
+ goto delete_from_cleanup;
}
/* Initialize the counter of the number of rows deleted, if
** we are counting rows.
*/
if( db->flags & SQLITE_CountRows ){
- memCnt = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, memCnt);
+ memCnt = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
}
+#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
/* Special case: A DELETE without a WHERE clause deletes everything.
- ** It is easier just to erase the whole table. Note, however, that
- ** this means that the row change count will be incorrect.
- */
- if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
- if( db->flags & SQLITE_CountRows ){
- /* If counting rows deleted, just count the total number of
- ** entries in the table. */
- int endOfLoop = sqlite3VdbeMakeLabel(v);
- int addr2;
- if( !isView ){
- sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
- }
- sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
- addr2 = sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
- sqlite3VdbeAddOp(v, OP_Next, iCur, addr2);
- sqlite3VdbeResolveLabel(v, endOfLoop);
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, iDb);
- if( !pParse->nested ){
- sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
- }
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- assert( pIdx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, iDb);
- }
+ ** It is easier just to erase the whole table. Prior to version 3.6.5,
+ ** this optimization caused the row change count (the value returned by
+ ** API function sqlite3_count_changes) to be set incorrectly. */
+ if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) ){
+ assert( !isView );
+ sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
+ pTab->zName, P4_STATIC);
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->pSchema==pTab->pSchema );
+ sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
}
- }
+ }else
+#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
/* The usual case: There is a WHERE clause so we have to scan through
** the table and pick which records to delete.
*/
- else{
- /* Begin the database scan
- */
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
- if( pWInfo==0 ) goto delete_from_cleanup;
+ {
+ int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */
+ int iRowid = ++pParse->nMem; /* Used for storing rowid values. */
+ int regRowid; /* Actual register containing rowids */
- /* Remember the rowid of every item to be deleted.
+ /* Collect rowids of every row to be deleted.
*/
- sqlite3VdbeAddOp(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,WHERE_DUPLICATES_OK);
+ if( pWInfo==0 ) goto delete_from_cleanup;
+ regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid, 0);
+ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
if( db->flags & SQLITE_CountRows ){
- sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
+ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
}
-
- /* End the database scan loop.
- */
sqlite3WhereEnd(pWInfo);
- /* Open the pseudo-table used to store OLD if there are triggers.
- */
- if( triggers_exist ){
- sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
- }
-
/* Delete every item whose key was written to the list during the
** database scan. We have to delete items after the scan is complete
- ** because deleting an item can change the scan order.
- */
+ ** because deleting an item can change the scan order. */
end = sqlite3VdbeMakeLabel(v);
- /* This is the beginning of the delete loop when there are
- ** row triggers.
- */
- if( triggers_exist ){
- addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
- }
- sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
- sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
-
- (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
- -1, oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
- addr);
- }
-
+ /* Unless this is a view, open cursors for the table we are
+ ** deleting from and all its indices. If this is a view, then the
+ ** only effect this statement has is to fire the INSTEAD OF
+ ** triggers. */
if( !isView ){
- /* Open cursors for the table we are deleting from and all its
- ** indices. If there are row triggers, this happens inside the
- ** OP_FifoRead loop because the cursor have to all be closed
- ** before the trigger fires. If there are no row triggers, the
- ** cursors are opened only once on the outside the loop.
- */
sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
+ }
- /* This is the beginning of the delete loop when there are no
- ** row triggers */
- if( !triggers_exist ){
- addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
- }
+ addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid);
- /* Delete the row */
+ /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- pParse->pVirtualLock = pTab;
- sqlite3VdbeOp3(v, OP_VUpdate, 0, 1, (const char*)pTab->pVtab, P3_VTAB);
- }else
+ if( IsVirtual(pTab) ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB);
+ sqlite3MayAbort(pParse);
+ }else
#endif
- {
- sqlite3GenerateRowDelete(db, v, pTab, iCur, pParse->nested==0);
- }
- }
-
- /* If there are row triggers, close all cursors then invoke
- ** the AFTER triggers
- */
- if( triggers_exist ){
- if( !isView ){
- for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
- sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
- }
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
- (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
- oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
- addr);
+ {
+ int count = (pParse->nested==0); /* True to count changes */
+ sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default);
}
/* End of the delete loop */
- sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
sqlite3VdbeResolveLabel(v, end);
- /* Close the cursors after the loop if there are no row triggers */
- if( !triggers_exist && !IsVirtual(pTab) ){
+ /* Close the cursors open on the table and its indexes. */
+ if( !isView && !IsVirtual(pTab) ){
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
- sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
+ sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
}
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
+ sqlite3VdbeAddOp1(v, OP_Close, iCur);
}
}
- /*
- ** Return the number of rows that were deleted. If this routine is
+ /* Update the sqlite_sequence table by storing the content of the
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
+ */
+ if( pParse->nested==0 && pParse->pTriggerTab==0 ){
+ sqlite3AutoincrementEnd(pParse);
+ }
+
+ /* Return the number of rows that were deleted. If this routine is
** generating code because of a call to sqlite3NestedParse(), do not
** invoke the callback function.
*/
- if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
- sqlite3VdbeAddOp(v, OP_MemLoad, memCnt, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
+ if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P3_STATIC);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
}
delete_from_cleanup:
sqlite3AuthContextPop(&sContext);
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprDelete(pWhere);
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprDelete(db, pWhere);
return;
}
@@ -45373,28 +69919,91 @@ delete_from_cleanup:
** 2. Read/write cursors for all indices of pTab must be open as
** cursor number base+i for the i-th index.
**
-** 3. The record number of the row to be deleted must be on the top
-** of the stack.
+** 3. The record number of the row to be deleted must be stored in
+** memory cell iRowid.
**
-** This routine pops the top of the stack to remove the record number
-** and then generates code to remove both the table record and all index
-** entries that point to that record.
+** This routine generates code to remove both the table record and all
+** index entries that point to that record.
*/
-void sqlite3GenerateRowDelete(
- sqlite3 *db, /* The database containing the index */
- Vdbe *v, /* Generate code into this VDBE */
+SQLITE_PRIVATE void sqlite3GenerateRowDelete(
+ Parse *pParse, /* Parsing context */
Table *pTab, /* Table containing the row to be deleted */
int iCur, /* Cursor number for the table */
- int count /* Increment the row change counter */
+ int iRowid, /* Memory cell that contains the rowid to delete */
+ int count, /* If non-zero, increment the row change counter */
+ Trigger *pTrigger, /* List of triggers to (potentially) fire */
+ int onconf /* Default ON CONFLICT policy for triggers */
){
- int addr;
- addr = sqlite3VdbeAddOp(v, OP_NotExists, iCur, 0);
- sqlite3GenerateRowIndexDelete(v, pTab, iCur, 0);
- sqlite3VdbeAddOp(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
- if( count ){
- sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ Vdbe *v = pParse->pVdbe; /* Vdbe */
+ int iOld = 0; /* First register in OLD.* array */
+ int iLabel; /* Label resolved to end of generated code */
+
+ /* Vdbe is guaranteed to have been allocated by this stage. */
+ assert( v );
+
+ /* Seek cursor iCur to the row to delete. If this row no longer exists
+ ** (this can happen if a trigger program has already deleted it), do
+ ** not attempt to delete it or fire any DELETE triggers. */
+ iLabel = sqlite3VdbeMakeLabel(v);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid);
+
+ /* If there are any triggers to fire, allocate a range of registers to
+ ** use for the old.* references in the triggers. */
+ if( pTrigger ){
+ u32 mask; /* Mask of OLD.* columns in use */
+ int iCol; /* Iterator used while populating OLD.* */
+
+ /* TODO: Could use temporary registers here. Also could attempt to
+ ** avoid copying the contents of the rowid register. */
+ mask = sqlite3TriggerOldmask(pParse, pTrigger, TK_DELETE, 0, pTab, onconf);
+ iOld = pParse->nMem+1;
+ pParse->nMem += (1 + pTab->nCol);
+
+ /* Populate the OLD.* pseudo-table register array. These values will be
+ ** used by any BEFORE and AFTER triggers that exist. */
+ sqlite3VdbeAddOp2(v, OP_Copy, iRowid, iOld);
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( mask==0xffffffff || mask&(1<<iCol) ){
+ int iTarget = iOld + iCol + 1;
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, iCol, iTarget);
+ sqlite3ColumnDefault(v, pTab, iCol, iTarget);
+ }
+ }
+
+ /* Invoke any BEFORE trigger programs */
+ sqlite3CodeRowTrigger(pParse, pTrigger,
+ TK_DELETE, 0, TRIGGER_BEFORE, pTab, -1, iOld, onconf, iLabel
+ );
+
+ /* Seek the cursor to the row to be deleted again. It may be that
+ ** the BEFORE triggers coded above have already removed the row
+ ** being deleted. Do not attempt to delete the row a second time, and
+ ** do not fire AFTER triggers. */
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid);
}
- sqlite3VdbeJumpHere(v, addr);
+
+ /* Delete the index and table entries. Skip this step if pTab is really
+ ** a view (in which case the only effect of the DELETE statement is to
+ ** fire the INSTEAD OF triggers). */
+ if( pTab->pSelect==0 ){
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
+ sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
+ if( count ){
+ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
+ }
+ }
+
+ /* Invoke AFTER triggers. */
+ if( pTrigger ){
+ sqlite3CodeRowTrigger(pParse, pTrigger,
+ TK_DELETE, 0, TRIGGER_AFTER, pTab, -1, iOld, onconf, iLabel
+ );
+ }
+
+ /* Jump here if the row had already been deleted before any BEFORE
+ ** trigger programs were invoked. Or if a trigger program throws a
+ ** RAISE(IGNORE) exception. */
+ sqlite3VdbeResolveLabel(v, iLabel);
}
/*
@@ -45413,50 +70022,73 @@ void sqlite3GenerateRowDelete(
** 3. The "iCur" cursor must be pointing to the row that is to be
** deleted.
*/
-void sqlite3GenerateRowIndexDelete(
- Vdbe *v, /* Generate code into this VDBE */
+SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
+ Parse *pParse, /* Parsing and code generating context */
Table *pTab, /* Table containing the row to be deleted */
int iCur, /* Cursor number for the table */
- char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
+ int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
){
int i;
Index *pIdx;
+ int r1;
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
- if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
- sqlite3GenerateIndexKey(v, pIdx, iCur);
- sqlite3VdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
+ if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
+ r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0);
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1);
}
}
/*
-** Generate code that will assemble an index key and put it on the top
-** of the tack. The key with be for index pIdx which is an index on pTab.
+** Generate code that will assemble an index key and put it in register
+** regOut. The key with be for index pIdx which is an index on pTab.
** iCur is the index of a cursor open on the pTab table and pointing to
** the entry that needs indexing.
+**
+** Return a register number which is the first in a block of
+** registers that holds the elements of the index key. The
+** block of registers has already been deallocated by the time
+** this routine returns.
*/
-void sqlite3GenerateIndexKey(
- Vdbe *v, /* Generate code into this VDBE */
+SQLITE_PRIVATE int sqlite3GenerateIndexKey(
+ Parse *pParse, /* Parsing context */
Index *pIdx, /* The index for which to generate a key */
- int iCur /* Cursor number for the pIdx->pTable table */
+ int iCur, /* Cursor number for the pIdx->pTable table */
+ int regOut, /* Write the new index key to this register */
+ int doMakeRec /* Run the OP_MakeRecord instruction if true */
){
+ Vdbe *v = pParse->pVdbe;
int j;
Table *pTab = pIdx->pTable;
+ int regBase;
+ int nCol;
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- for(j=0; j<pIdx->nColumn; j++){
+ nCol = pIdx->nColumn;
+ regBase = sqlite3GetTempRange(pParse, nCol+1);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
+ for(j=0; j<nCol; j++){
int idx = pIdx->aiColumn[j];
if( idx==pTab->iPKey ){
- sqlite3VdbeAddOp(v, OP_Dup, j, 0);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
}else{
- sqlite3VdbeAddOp(v, OP_Column, iCur, idx);
- sqlite3ColumnDefault(v, pTab, idx);
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
+ sqlite3ColumnDefault(v, pTab, idx, -1);
}
}
- sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
- sqlite3IndexAffinityStr(v, pIdx);
+ if( doMakeRec ){
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
+ sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0);
+ sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1);
+ }
+ sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
+ return regBase;
}
+/* Make sure "isView" gets undefined in case this file becomes part of
+** the amalgamation - so that subsequent files do not see isView as a
+** macro. */
+#undef isView
+
/************** End of delete.c **********************************************/
/************** Begin file func.c ********************************************/
/*
@@ -45476,10 +70108,7 @@ void sqlite3GenerateIndexKey(
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
-**
-** $Id: func.c,v 1.139 2007/04/10 13:51:18 drh Exp $
*/
-/* #include <math.h> */
/*
** Return the collating function associated with a function.
@@ -45501,7 +70130,7 @@ static void minmaxFunc(
int iBest;
CollSeq *pColl;
- if( argc==0 ) return;
+ assert( argc>1 );
mask = sqlite3_user_data(context)==0 ? 0 : -1;
pColl = sqlite3GetFuncCollSeq(context);
assert( pColl );
@@ -45511,6 +70140,7 @@ static void minmaxFunc(
for(i=1; i<argc; i++){
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
+ testcase( mask==0 );
iBest = i;
}
}
@@ -45522,16 +70152,17 @@ static void minmaxFunc(
*/
static void typeofFunc(
sqlite3_context *context,
- int argc,
+ int NotUsed,
sqlite3_value **argv
){
const char *z = 0;
+ UNUSED_PARAMETER(NotUsed);
switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_NULL: z = "null"; break;
case SQLITE_INTEGER: z = "integer"; break;
case SQLITE_TEXT: z = "text"; break;
case SQLITE_FLOAT: z = "real"; break;
case SQLITE_BLOB: z = "blob"; break;
+ default: z = "null"; break;
}
sqlite3_result_text(context, z, -1, SQLITE_STATIC);
}
@@ -45548,6 +70179,7 @@ static void lengthFunc(
int len;
assert( argc==1 );
+ UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_BLOB:
case SQLITE_INTEGER:
@@ -45557,7 +70189,12 @@ static void lengthFunc(
}
case SQLITE_TEXT: {
const unsigned char *z = sqlite3_value_text(argv[0]);
- for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
+ if( z==0 ) return;
+ len = 0;
+ while( *z ){
+ len++;
+ SQLITE_SKIP_UTF8(z);
+ }
sqlite3_result_int(context, len);
break;
}
@@ -45573,6 +70210,7 @@ static void lengthFunc(
*/
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
assert( argc==1 );
+ UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_INTEGER: {
i64 iVal = sqlite3_value_int64(argv[0]);
@@ -45600,7 +70238,14 @@ static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
}
/*
-** Implementation of the substr() function
+** Implementation of the substr() function.
+**
+** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
+** p1 is 1-indexed. So substr(x,1,1) returns the first character
+** of x. If x is text, then we actually count UTF-8 characters.
+** If x is a blob, then we count bytes.
+**
+** If p1 is negative, then we begin abs(p1) from the end of x[].
*/
static void substrFunc(
sqlite3_context *context,
@@ -45609,46 +70254,87 @@ static void substrFunc(
){
const unsigned char *z;
const unsigned char *z2;
- int i;
- int p1, p2, len;
+ int len;
+ int p0type;
+ i64 p1, p2;
+ int negP2 = 0;
- assert( argc==3 );
- z = sqlite3_value_text(argv[0]);
- if( z==0 ) return;
+ assert( argc==3 || argc==2 );
+ if( sqlite3_value_type(argv[1])==SQLITE_NULL
+ || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
+ ){
+ return;
+ }
+ p0type = sqlite3_value_type(argv[0]);
+ if( p0type==SQLITE_BLOB ){
+ len = sqlite3_value_bytes(argv[0]);
+ z = sqlite3_value_blob(argv[0]);
+ if( z==0 ) return;
+ assert( len==sqlite3_value_bytes(argv[0]) );
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( z==0 ) return;
+ len = 0;
+ for(z2=z; *z2; len++){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ }
p1 = sqlite3_value_int(argv[1]);
- p2 = sqlite3_value_int(argv[2]);
- for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; }
+ if( argc==3 ){
+ p2 = sqlite3_value_int(argv[2]);
+ if( p2<0 ){
+ p2 = -p2;
+ negP2 = 1;
+ }
+ }else{
+ p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
+ }
if( p1<0 ){
p1 += len;
if( p1<0 ){
p2 += p1;
+ if( p2<0 ) p2 = 0;
p1 = 0;
}
}else if( p1>0 ){
p1--;
+ }else if( p2>0 ){
+ p2--;
+ }
+ if( negP2 ){
+ p1 -= p2;
+ if( p1<0 ){
+ p2 += p1;
+ p1 = 0;
+ }
}
+ assert( p1>=0 && p2>=0 );
if( p1+p2>len ){
p2 = len-p1;
+ if( p2<0 ) p2 = 0;
}
- for(i=0; i<p1 && z[i]; i++){
- if( (z[i]&0xc0)==0x80 ) p1++;
- }
- while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p1++; }
- for(; i<p1+p2 && z[i]; i++){
- if( (z[i]&0xc0)==0x80 ) p2++;
+ if( p0type!=SQLITE_BLOB ){
+ while( *z && p1 ){
+ SQLITE_SKIP_UTF8(z);
+ p1--;
+ }
+ for(z2=z; *z2 && p2; p2--){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
}
- while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p2++; }
- if( p2<0 ) p2 = 0;
- sqlite3_result_text(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
}
/*
** Implementation of the round() function
*/
+#ifndef SQLITE_OMIT_FLOATING_POINT
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
int n = 0;
double r;
- char zBuf[500]; /* larger than the %f representation of the largest double */
+ char *zBuf;
assert( argc==1 || argc==2 );
if( argc==2 ){
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
@@ -45658,39 +70344,84 @@ static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
}
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
r = sqlite3_value_double(argv[0]);
- sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
- sqlite3AtoF(zBuf, &r);
- sqlite3_result_double(context, r);
+ zBuf = sqlite3_mprintf("%.*f",n,r);
+ if( zBuf==0 ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3AtoF(zBuf, &r);
+ sqlite3_free(zBuf);
+ sqlite3_result_double(context, r);
+ }
+}
+#endif
+
+/*
+** Allocate nByte bytes of space using sqlite3_malloc(). If the
+** allocation fails, call sqlite3_result_error_nomem() to notify
+** the database handle that malloc() has failed and return NULL.
+** If nByte is larger than the maximum string or blob length, then
+** raise an SQLITE_TOOBIG exception and return NULL.
+*/
+static void *contextMalloc(sqlite3_context *context, i64 nByte){
+ char *z;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ assert( nByte>0 );
+ testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ z = 0;
+ }else{
+ z = sqlite3Malloc((int)nByte);
+ if( !z ){
+ sqlite3_result_error_nomem(context);
+ }
+ }
+ return z;
}
/*
** Implementation of the upper() and lower() SQL functions.
*/
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- unsigned char *z;
- int i;
- if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
- z = sqliteMalloc(sqlite3_value_bytes(argv[0])+1);
- if( z==0 ) return;
- strcpy((char*)z, (char*)sqlite3_value_text(argv[0]));
- for(i=0; z[i]; i++){
- z[i] = toupper(z[i]);
+ char *z1;
+ const char *z2;
+ int i, n;
+ UNUSED_PARAMETER(argc);
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ memcpy(z1, z2, n+1);
+ for(i=0; z1[i]; i++){
+ z1[i] = (char)sqlite3Toupper(z1[i]);
+ }
+ sqlite3_result_text(context, z1, -1, sqlite3_free);
+ }
}
- sqlite3_result_text(context, (char*)z, -1, SQLITE_TRANSIENT);
- sqliteFree(z);
}
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- unsigned char *z;
- int i;
- if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
- z = sqliteMalloc(sqlite3_value_bytes(argv[0])+1);
- if( z==0 ) return;
- strcpy((char*)z, (char*)sqlite3_value_text(argv[0]));
- for(i=0; z[i]; i++){
- z[i] = tolower(z[i]);
+ u8 *z1;
+ const char *z2;
+ int i, n;
+ UNUSED_PARAMETER(argc);
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ memcpy(z1, z2, n+1);
+ for(i=0; z1[i]; i++){
+ z1[i] = sqlite3Tolower(z1[i]);
+ }
+ sqlite3_result_text(context, (char *)z1, -1, sqlite3_free);
+ }
}
- sqlite3_result_text(context, (char*)z, -1, SQLITE_TRANSIENT);
- sqliteFree(z);
}
/*
@@ -45717,13 +70448,23 @@ static void ifnullFunc(
*/
static void randomFunc(
sqlite3_context *context,
- int argc,
- sqlite3_value **argv
+ int NotUsed,
+ sqlite3_value **NotUsed2
){
sqlite_int64 r;
- sqlite3Randomness(sizeof(r), &r);
- if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */
- /* can always do abs() of the result */
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_randomness(sizeof(r), &r);
+ if( r<0 ){
+ /* We need to prevent a random number of 0x8000000000000000
+ ** (or -9223372036854775808) since when you do abs() of that
+ ** number of you get the same value back again. To do this
+ ** in a way that is testable, mask the sign bit off of negative
+ ** values, resulting in a positive value. Then take the
+ ** 2s complement of that positive value. The end result can
+ ** therefore be no less than -9223372036854775807.
+ */
+ r = -(r ^ (((sqlite3_int64)1)<<63));
+ }
sqlite3_result_int64(context, r);
}
@@ -45739,11 +70480,16 @@ static void randomBlob(
int n;
unsigned char *p;
assert( argc==1 );
+ UNUSED_PARAMETER(argc);
n = sqlite3_value_int(argv[0]);
- if( n<1 ) n = 1;
- p = sqlite3_malloc(n);
- sqlite3Randomness(n, p);
- sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
+ if( n<1 ){
+ n = 1;
+ }
+ p = contextMalloc(context, n);
+ if( p ){
+ sqlite3_randomness(n, p);
+ sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
+ }
}
/*
@@ -45752,10 +70498,11 @@ static void randomBlob(
*/
static void last_insert_rowid(
sqlite3_context *context,
- int arg,
- sqlite3_value **argv
+ int NotUsed,
+ sqlite3_value **NotUsed2
){
- sqlite3 *db = sqlite3_user_data(context);
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
}
@@ -45765,10 +70512,11 @@ static void last_insert_rowid(
*/
static void changes(
sqlite3_context *context,
- int arg,
- sqlite3_value **argv
+ int NotUsed,
+ sqlite3_value **NotUsed2
){
- sqlite3 *db = sqlite3_user_data(context);
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
sqlite3_result_int(context, sqlite3_changes(db));
}
@@ -45778,10 +70526,11 @@ static void changes(
*/
static void total_changes(
sqlite3_context *context,
- int arg,
- sqlite3_value **argv
+ int NotUsed,
+ sqlite3_value **NotUsed2
){
- sqlite3 *db = sqlite3_user_data(context);
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
sqlite3_result_int(context, sqlite3_total_changes(db));
}
@@ -45795,6 +70544,19 @@ struct compareInfo {
u8 noCase;
};
+/*
+** For LIKE and GLOB matching on EBCDIC machines, assume that every
+** character is exactly one byte in size. Also, all characters are
+** able to participate in upper-case-to-lower-case mappings in EBCDIC
+** whereas only characters less than 0x80 do in ASCII.
+*/
+#if defined(SQLITE_EBCDIC)
+# define sqlite3Utf8Read(A,C) (*(A++))
+# define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
+#else
+# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
+#endif
+
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
/* The correct SQL-92 behavior is for the LIKE operator to ignore
** case. Thus 'a' LIKE 'A' would be true. */
@@ -45804,15 +70566,6 @@ static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
/*
-** X is a pointer to the first byte of a UTF-8 character. Increment
-** X so that it points to the next character. This only works right
-** if X points to a well-formed UTF-8 string.
-*/
-#define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){}
-#define sqliteCharVal(X) sqlite3ReadUtf8(X)
-
-
-/*
** Compare two UTF-8 strings for equality where the first string can
** potentially be a "glob" expression. Return true (1) if they
** are the same and false (0) if they are different.
@@ -45846,97 +70599,102 @@ static int patternCompare(
const struct compareInfo *pInfo, /* Information about how to do the compare */
const int esc /* The escape character */
){
- register int c;
+ int c, c2;
int invert;
int seen;
- int c2;
u8 matchOne = pInfo->matchOne;
u8 matchAll = pInfo->matchAll;
u8 matchSet = pInfo->matchSet;
u8 noCase = pInfo->noCase;
int prevEscape = 0; /* True if the previous character was 'escape' */
- while( (c = *zPattern)!=0 ){
+ while( (c = sqlite3Utf8Read(zPattern,&zPattern))!=0 ){
if( !prevEscape && c==matchAll ){
- while( (c=zPattern[1]) == matchAll || c == matchOne ){
- if( c==matchOne ){
- if( *zString==0 ) return 0;
- sqliteNextChar(zString);
+ while( (c=sqlite3Utf8Read(zPattern,&zPattern)) == matchAll
+ || c == matchOne ){
+ if( c==matchOne && sqlite3Utf8Read(zString, &zString)==0 ){
+ return 0;
}
- zPattern++;
}
- if( c && esc && sqlite3ReadUtf8(&zPattern[1])==esc ){
- u8 const *zTemp = &zPattern[1];
- sqliteNextChar(zTemp);
- c = *zTemp;
- }
- if( c==0 ) return 1;
- if( c==matchSet ){
- assert( esc==0 ); /* This is GLOB, not LIKE */
- while( *zString && patternCompare(&zPattern[1],zString,pInfo,esc)==0 ){
- sqliteNextChar(zString);
+ if( c==0 ){
+ return 1;
+ }else if( c==esc ){
+ c = sqlite3Utf8Read(zPattern, &zPattern);
+ if( c==0 ){
+ return 0;
+ }
+ }else if( c==matchSet ){
+ assert( esc==0 ); /* This is GLOB, not LIKE */
+ assert( matchSet<0x80 ); /* '[' is a single-byte character */
+ while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
+ SQLITE_SKIP_UTF8(zString);
}
return *zString!=0;
- }else{
- while( (c2 = *zString)!=0 ){
- if( noCase ){
- c2 = sqlite3UpperToLower[c2];
- c = sqlite3UpperToLower[c];
- while( c2 != 0 && c2 != c ){ c2 = sqlite3UpperToLower[*++zString]; }
- }else{
- while( c2 != 0 && c2 != c ){ c2 = *++zString; }
+ }
+ while( (c2 = sqlite3Utf8Read(zString,&zString))!=0 ){
+ if( noCase ){
+ GlogUpperToLower(c2);
+ GlogUpperToLower(c);
+ while( c2 != 0 && c2 != c ){
+ c2 = sqlite3Utf8Read(zString, &zString);
+ GlogUpperToLower(c2);
+ }
+ }else{
+ while( c2 != 0 && c2 != c ){
+ c2 = sqlite3Utf8Read(zString, &zString);
}
- if( c2==0 ) return 0;
- if( patternCompare(&zPattern[1],zString,pInfo,esc) ) return 1;
- sqliteNextChar(zString);
}
- return 0;
+ if( c2==0 ) return 0;
+ if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
}
+ return 0;
}else if( !prevEscape && c==matchOne ){
- if( *zString==0 ) return 0;
- sqliteNextChar(zString);
- zPattern++;
+ if( sqlite3Utf8Read(zString, &zString)==0 ){
+ return 0;
+ }
}else if( c==matchSet ){
int prior_c = 0;
assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
seen = 0;
invert = 0;
- c = sqliteCharVal(zString);
+ c = sqlite3Utf8Read(zString, &zString);
if( c==0 ) return 0;
- c2 = *++zPattern;
- if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
+ c2 = sqlite3Utf8Read(zPattern, &zPattern);
+ if( c2=='^' ){
+ invert = 1;
+ c2 = sqlite3Utf8Read(zPattern, &zPattern);
+ }
if( c2==']' ){
if( c==']' ) seen = 1;
- c2 = *++zPattern;
+ c2 = sqlite3Utf8Read(zPattern, &zPattern);
}
- while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
- if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
- zPattern++;
- c2 = sqliteCharVal(zPattern);
+ while( c2 && c2!=']' ){
+ if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
+ c2 = sqlite3Utf8Read(zPattern, &zPattern);
if( c>=prior_c && c<=c2 ) seen = 1;
prior_c = 0;
- }else if( c==c2 ){
- seen = 1;
- prior_c = c2;
}else{
+ if( c==c2 ){
+ seen = 1;
+ }
prior_c = c2;
}
- sqliteNextChar(zPattern);
+ c2 = sqlite3Utf8Read(zPattern, &zPattern);
+ }
+ if( c2==0 || (seen ^ invert)==0 ){
+ return 0;
}
- if( c2==0 || (seen ^ invert)==0 ) return 0;
- sqliteNextChar(zString);
- zPattern++;
- }else if( esc && !prevEscape && sqlite3ReadUtf8(zPattern)==esc){
+ }else if( esc==c && !prevEscape ){
prevEscape = 1;
- sqliteNextChar(zPattern);
}else{
+ c2 = sqlite3Utf8Read(zString, &zString);
if( noCase ){
- if( sqlite3UpperToLower[c] != sqlite3UpperToLower[*zString] ) return 0;
- }else{
- if( c != *zString ) return 0;
+ GlogUpperToLower(c);
+ GlogUpperToLower(c2);
+ }
+ if( c!=c2 ){
+ return 0;
}
- zPattern++;
- zString++;
prevEscape = 0;
}
}
@@ -45949,7 +70707,7 @@ static int patternCompare(
** only.
*/
#ifdef SQLITE_TEST
-int sqlite3_like_count = 0;
+SQLITE_API int sqlite3_like_count = 0;
#endif
@@ -45970,27 +70728,46 @@ static void likeFunc(
int argc,
sqlite3_value **argv
){
- const unsigned char *zA = sqlite3_value_text(argv[0]);
- const unsigned char *zB = sqlite3_value_text(argv[1]);
+ const unsigned char *zA, *zB;
int escape = 0;
+ int nPat;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ zB = sqlite3_value_text(argv[0]);
+ zA = sqlite3_value_text(argv[1]);
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ nPat = sqlite3_value_bytes(argv[0]);
+ testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
+ testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
+ if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+ assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
+
if( argc==3 ){
/* The escape character string must consist of a single UTF-8 character.
** Otherwise, return an error.
*/
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
- if( sqlite3utf8CharLen((char*)zEsc, -1)!=1 ){
+ if( zEsc==0 ) return;
+ if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
sqlite3_result_error(context,
"ESCAPE expression must be a single character", -1);
return;
}
- escape = sqlite3ReadUtf8(zEsc);
+ escape = sqlite3Utf8Read(zEsc, &zEsc);
}
if( zA && zB ){
struct compareInfo *pInfo = sqlite3_user_data(context);
#ifdef SQLITE_TEST
sqlite3_like_count++;
#endif
- sqlite3_result_int(context, patternCompare(zA, zB, pInfo, escape));
+
+ sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
}
}
@@ -46001,27 +70778,43 @@ static void likeFunc(
*/
static void nullifFunc(
sqlite3_context *context,
- int argc,
+ int NotUsed,
sqlite3_value **argv
){
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ UNUSED_PARAMETER(NotUsed);
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
sqlite3_result_value(context, argv[0]);
}
}
/*
-** Implementation of the VERSION(*) function. The result is the version
+** Implementation of the sqlite_version() function. The result is the version
** of the SQLite library that is running.
*/
static void versionFunc(
sqlite3_context *context,
- int argc,
- sqlite3_value **argv
+ int NotUsed,
+ sqlite3_value **NotUsed2
){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
}
+/*
+** Implementation of the sqlite_source_id() function. The result is a string
+** that identifies the particular version of the source code used to build
+** SQLite.
+*/
+static void sourceidFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_result_text(context, SQLITE_SOURCE_ID, -1, SQLITE_STATIC);
+}
+
/* Array for converting from half-bytes (nybbles) into ASCII hex
** digits. */
static const char hexdigits[] = {
@@ -46041,12 +70834,9 @@ static const char hexdigits[] = {
** single-quote escapes.
*/
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- if( argc<1 ) return;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_NULL: {
- sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
- break;
- }
case SQLITE_INTEGER:
case SQLITE_FLOAT: {
sqlite3_result_value(context, argv[0]);
@@ -46054,13 +70844,11 @@ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
}
case SQLITE_BLOB: {
char *zText = 0;
- int nBlob = sqlite3_value_bytes(argv[0]);
char const *zBlob = sqlite3_value_blob(argv[0]);
-
- zText = (char *)sqliteMalloc((2*nBlob)+4);
- if( !zText ){
- sqlite3_result_error(context, "out of memory", -1);
- }else{
+ int nBlob = sqlite3_value_bytes(argv[0]);
+ assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
+ zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
+ if( zText ){
int i;
for(i=0; i<nBlob; i++){
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
@@ -46071,29 +70859,37 @@ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
zText[0] = 'X';
zText[1] = '\'';
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
- sqliteFree(zText);
+ sqlite3_free(zText);
}
break;
}
case SQLITE_TEXT: {
- int i,j,n;
+ int i,j;
+ u64 n;
const unsigned char *zArg = sqlite3_value_text(argv[0]);
char *z;
- for(i=n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
- z = sqliteMalloc( i+n+3 );
- if( z==0 ) return;
- z[0] = '\'';
- for(i=0, j=1; zArg[i]; i++){
- z[j++] = zArg[i];
- if( zArg[i]=='\'' ){
- z[j++] = '\'';
+ if( zArg==0 ) return;
+ for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
+ z = contextMalloc(context, ((i64)i)+((i64)n)+3);
+ if( z ){
+ z[0] = '\'';
+ for(i=0, j=1; zArg[i]; i++){
+ z[j++] = zArg[i];
+ if( zArg[i]=='\'' ){
+ z[j++] = '\'';
+ }
}
+ z[j++] = '\'';
+ z[j] = 0;
+ sqlite3_result_text(context, z, j, sqlite3_free);
}
- z[j++] = '\'';
- z[j] = 0;
- sqlite3_result_text(context, z, j, SQLITE_TRANSIENT);
- sqliteFree(z);
+ break;
+ }
+ default: {
+ assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
+ sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
+ break;
}
}
}
@@ -46111,17 +70907,42 @@ static void hexFunc(
const unsigned char *pBlob;
char *zHex, *z;
assert( argc==1 );
- n = sqlite3_value_bytes(argv[0]);
+ UNUSED_PARAMETER(argc);
pBlob = sqlite3_value_blob(argv[0]);
- z = zHex = sqlite3_malloc(n*2 + 1);
- if( zHex==0 ) return;
- for(i=0; i<n; i++, pBlob++){
- unsigned char c = *pBlob;
- *(z++) = hexdigits[(c>>4)&0xf];
- *(z++) = hexdigits[c&0xf];
+ n = sqlite3_value_bytes(argv[0]);
+ assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
+ z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
+ if( zHex ){
+ for(i=0; i<n; i++, pBlob++){
+ unsigned char c = *pBlob;
+ *(z++) = hexdigits[(c>>4)&0xf];
+ *(z++) = hexdigits[c&0xf];
+ }
+ *z = 0;
+ sqlite3_result_text(context, zHex, n*2, sqlite3_free);
+ }
+}
+
+/*
+** The zeroblob(N) function returns a zero-filled blob of size N bytes.
+*/
+static void zeroblobFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ i64 n;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ n = sqlite3_value_int64(argv[0]);
+ testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
+ if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ }else{
+ sqlite3_result_zeroblob(context, (int)n);
}
- *z = 0;
- sqlite3_result_text(context, zHex, n*2, sqlite3_free);
}
/*
@@ -46142,39 +70963,67 @@ static void replaceFunc(
int nStr; /* Size of zStr */
int nPattern; /* Size of zPattern */
int nRep; /* Size of zRep */
- int nOut; /* Maximum size of zOut */
+ i64 nOut; /* Maximum size of zOut */
int loopLimit; /* Last zStr[] that might match zPattern[] */
int i, j; /* Loop counters */
assert( argc==3 );
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ||
- sqlite3_value_type(argv[1])==SQLITE_NULL ||
- sqlite3_value_type(argv[2])==SQLITE_NULL ){
- return;
- }
+ UNUSED_PARAMETER(argc);
zStr = sqlite3_value_text(argv[0]);
+ if( zStr==0 ) return;
nStr = sqlite3_value_bytes(argv[0]);
+ assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
zPattern = sqlite3_value_text(argv[1]);
+ if( zPattern==0 ){
+ assert( sqlite3_value_type(argv[1])==SQLITE_NULL
+ || sqlite3_context_db_handle(context)->mallocFailed );
+ return;
+ }
+ if( zPattern[0]==0 ){
+ assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
+ sqlite3_result_value(context, argv[0]);
+ return;
+ }
nPattern = sqlite3_value_bytes(argv[1]);
+ assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
zRep = sqlite3_value_text(argv[2]);
+ if( zRep==0 ) return;
nRep = sqlite3_value_bytes(argv[2]);
- if( nPattern>=nRep ){
- nOut = nStr;
- }else{
- nOut = (nStr/nPattern + 1)*nRep;
+ assert( zRep==sqlite3_value_text(argv[2]) );
+ nOut = nStr + 1;
+ assert( nOut<SQLITE_MAX_LENGTH );
+ zOut = contextMalloc(context, (i64)nOut);
+ if( zOut==0 ){
+ return;
}
- zOut = sqlite3_malloc(nOut+1);
- if( zOut==0 ) return;
loopLimit = nStr - nPattern;
for(i=j=0; i<=loopLimit; i++){
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
zOut[j++] = zStr[i];
}else{
+ u8 *zOld;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ nOut += nRep - nPattern;
+ testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ sqlite3DbFree(db, zOut);
+ return;
+ }
+ zOld = zOut;
+ zOut = sqlite3_realloc(zOut, (int)nOut);
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(context);
+ sqlite3DbFree(db, zOld);
+ return;
+ }
memcpy(&zOut[j], zRep, nRep);
j += nRep;
i += nPattern-1;
}
}
+ assert( j+nStr-i+1==nOut );
memcpy(&zOut[j], &zStr[i], nStr-i);
j += nStr - i;
assert( j<=nOut );
@@ -46194,44 +71043,79 @@ static void trimFunc(
const unsigned char *zIn; /* Input string */
const unsigned char *zCharSet; /* Set of characters to trim */
int nIn; /* Number of bytes in input */
- int flags;
- int i;
- unsigned char cFirst, cNext;
+ int flags; /* 1: trimleft 2: trimright 3: trim */
+ int i; /* Loop counter */
+ unsigned char *aLen = 0; /* Length of each character in zCharSet */
+ unsigned char **azChar = 0; /* Individual characters in zCharSet */
+ int nChar; /* Number of characters in zCharSet */
+
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
return;
}
zIn = sqlite3_value_text(argv[0]);
+ if( zIn==0 ) return;
nIn = sqlite3_value_bytes(argv[0]);
+ assert( zIn==sqlite3_value_text(argv[0]) );
if( argc==1 ){
- static const unsigned char zSpace[] = " ";
- zCharSet = zSpace;
- }else if( sqlite3_value_type(argv[1])==SQLITE_NULL ){
+ static const unsigned char lenOne[] = { 1 };
+ static unsigned char * const azOne[] = { (u8*)" " };
+ nChar = 1;
+ aLen = (u8*)lenOne;
+ azChar = (unsigned char **)azOne;
+ zCharSet = 0;
+ }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
return;
}else{
- zCharSet = sqlite3_value_text(argv[1]);
+ const unsigned char *z;
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ SQLITE_SKIP_UTF8(z);
+ }
+ if( nChar>0 ){
+ azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
+ if( azChar==0 ){
+ return;
+ }
+ aLen = (unsigned char*)&azChar[nChar];
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ azChar[nChar] = (unsigned char *)z;
+ SQLITE_SKIP_UTF8(z);
+ aLen[nChar] = (u8)(z - azChar[nChar]);
+ }
+ }
}
- cFirst = zCharSet[0];
- if( cFirst ){
- flags = (int)sqlite3_user_data(context);
+ if( nChar>0 ){
+ flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
if( flags & 1 ){
- for(; nIn>0; nIn--, zIn++){
- if( cFirst==zIn[0] ) continue;
- for(i=1; zCharSet[i] && zCharSet[i]!=zIn[0]; i++){}
- if( zCharSet[i]==0 ) break;
+ while( nIn>0 ){
+ int len = 0;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ zIn += len;
+ nIn -= len;
}
}
if( flags & 2 ){
- for(; nIn>0; nIn--){
- cNext = zIn[nIn-1];
- if( cFirst==cNext ) continue;
- for(i=1; zCharSet[i] && zCharSet[i]!=cNext; i++){}
- if( zCharSet[i]==0 ) break;
+ while( nIn>0 ){
+ int len = 0;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ nIn -= len;
}
}
+ if( zCharSet ){
+ sqlite3_free(azChar);
+ }
}
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
}
+
#ifdef SQLITE_SOUNDEX
/*
** Compute the soundex encoding of a word.
@@ -46257,10 +71141,10 @@ static void soundexFunc(
assert( argc==1 );
zIn = (u8*)sqlite3_value_text(argv[0]);
if( zIn==0 ) zIn = (u8*)"";
- for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
+ for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
if( zIn[i] ){
u8 prevcode = iCode[zIn[i]&0x7f];
- zResult[0] = toupper(zIn[i]);
+ zResult[0] = sqlite3Toupper(zIn[i]);
for(j=1; j<4 && zIn[i]; i++){
int code = iCode[zIn[i]&0x7f];
if( code>0 ){
@@ -46289,177 +71173,22 @@ static void soundexFunc(
*/
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
- const char *zProc = 0;
- sqlite3 *db = sqlite3_user_data(context);
+ const char *zProc;
+ sqlite3 *db = sqlite3_context_db_handle(context);
char *zErrMsg = 0;
if( argc==2 ){
zProc = (const char *)sqlite3_value_text(argv[1]);
+ }else{
+ zProc = 0;
}
- if( sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
+ if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
sqlite3_result_error(context, zErrMsg, -1);
sqlite3_free(zErrMsg);
}
}
#endif
-#ifdef SQLITE_TEST
-/*
-** This function generates a string of random characters. Used for
-** generating test data.
-*/
-static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
- static const unsigned char zSrc[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789"
- ".-!,:*^+=_|?/<> ";
- int iMin, iMax, n, r, i;
- unsigned char zBuf[1000];
- if( argc>=1 ){
- iMin = sqlite3_value_int(argv[0]);
- if( iMin<0 ) iMin = 0;
- if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
- }else{
- iMin = 1;
- }
- if( argc>=2 ){
- iMax = sqlite3_value_int(argv[1]);
- if( iMax<iMin ) iMax = iMin;
- if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
- }else{
- iMax = 50;
- }
- n = iMin;
- if( iMax>iMin ){
- sqlite3Randomness(sizeof(r), &r);
- r &= 0x7fffffff;
- n += r%(iMax + 1 - iMin);
- }
- assert( n<sizeof(zBuf) );
- sqlite3Randomness(n, zBuf);
- for(i=0; i<n; i++){
- zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
- }
- zBuf[n] = 0;
- sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
-}
-#endif /* SQLITE_TEST */
-
-#ifdef SQLITE_TEST
-/*
-** The following two SQL functions are used to test returning a text
-** result with a destructor. Function 'test_destructor' takes one argument
-** and returns the same argument interpreted as TEXT. A destructor is
-** passed with the sqlite3_result_text() call.
-**
-** SQL function 'test_destructor_count' returns the number of outstanding
-** allocations made by 'test_destructor';
-**
-** WARNING: Not threadsafe.
-*/
-static int test_destructor_count_var = 0;
-static void destructor(void *p){
- char *zVal = (char *)p;
- assert(zVal);
- zVal--;
- sqliteFree(zVal);
- test_destructor_count_var--;
-}
-static void test_destructor(
- sqlite3_context *pCtx,
- int nArg,
- sqlite3_value **argv
-){
- char *zVal;
- int len;
- sqlite3 *db = sqlite3_user_data(pCtx);
-
- test_destructor_count_var++;
- assert( nArg==1 );
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
- len = sqlite3ValueBytes(argv[0], ENC(db));
- zVal = sqliteMalloc(len+3);
- zVal[len] = 0;
- zVal[len-1] = 0;
- assert( zVal );
- zVal++;
- memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len);
- if( ENC(db)==SQLITE_UTF8 ){
- sqlite3_result_text(pCtx, zVal, -1, destructor);
-#ifndef SQLITE_OMIT_UTF16
- }else if( ENC(db)==SQLITE_UTF16LE ){
- sqlite3_result_text16le(pCtx, zVal, -1, destructor);
- }else{
- sqlite3_result_text16be(pCtx, zVal, -1, destructor);
-#endif /* SQLITE_OMIT_UTF16 */
- }
-}
-static void test_destructor_count(
- sqlite3_context *pCtx,
- int nArg,
- sqlite3_value **argv
-){
- sqlite3_result_int(pCtx, test_destructor_count_var);
-}
-#endif /* SQLITE_TEST */
-
-#ifdef SQLITE_TEST
-/*
-** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
-** interface.
-**
-** The test_auxdata() SQL function attempts to register each of its arguments
-** as auxiliary data. If there are no prior registrations of aux data for
-** that argument (meaning the argument is not a constant or this is its first
-** call) then the result for that argument is 0. If there is a prior
-** registration, the result for that argument is 1. The overall result
-** is the individual argument results separated by spaces.
-*/
-static void free_test_auxdata(void *p) {sqliteFree(p);}
-static void test_auxdata(
- sqlite3_context *pCtx,
- int nArg,
- sqlite3_value **argv
-){
- int i;
- char *zRet = sqliteMalloc(nArg*2);
- if( !zRet ) return;
- for(i=0; i<nArg; i++){
- char const *z = (char*)sqlite3_value_text(argv[i]);
- if( z ){
- char *zAux = sqlite3_get_auxdata(pCtx, i);
- if( zAux ){
- zRet[i*2] = '1';
- if( strcmp(zAux, z) ){
- sqlite3_result_error(pCtx, "Auxilary data corruption", -1);
- return;
- }
- }else{
- zRet[i*2] = '0';
- zAux = sqliteStrDup(z);
- sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
- }
- zRet[i*2+1] = ' ';
- }
- }
- sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
-}
-#endif /* SQLITE_TEST */
-
-#ifdef SQLITE_TEST
-/*
-** A function to test error reporting from user functions. This function
-** returns a copy of it's first argument as an error.
-*/
-static void test_error(
- sqlite3_context *pCtx,
- int nArg,
- sqlite3_value **argv
-){
- sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), 0);
-}
-#endif /* SQLITE_TEST */
/*
** An instance of the following structure holds the context of a
@@ -46488,6 +71217,7 @@ static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
SumCtx *p;
int type;
assert( argc==1 );
+ UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
type = sqlite3_value_numeric_type(argv[0]);
if( p && type!=SQLITE_NULL ){
@@ -46497,10 +71227,10 @@ static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
p->rSum += v;
if( (p->approx|p->overflow)==0 ){
i64 iNewSum = p->iSum + v;
- int s1 = p->iSum >> (sizeof(i64)*8-1);
- int s2 = v >> (sizeof(i64)*8-1);
- int s3 = iNewSum >> (sizeof(i64)*8-1);
- p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
+ int s1 = (int)(p->iSum >> (sizeof(i64)*8-1));
+ int s2 = (int)(v >> (sizeof(i64)*8-1));
+ int s3 = (int)(iNewSum >> (sizeof(i64)*8-1));
+ p->overflow = ((s1&s2&~s3) | (~s1&~s2&s3))?1:0;
p->iSum = iNewSum;
}
}else{
@@ -46532,7 +71262,8 @@ static void avgFinalize(sqlite3_context *context){
static void totalFinalize(sqlite3_context *context){
SumCtx *p;
p = sqlite3_aggregate_context(context, 0);
- sqlite3_result_double(context, p ? p->rSum : 0.0);
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ sqlite3_result_double(context, p ? p->rSum : (double)0);
}
/*
@@ -46553,6 +71284,15 @@ static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
p->n++;
}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+ /* The sqlite3_aggregate_count() function is deprecated. But just to make
+ ** sure it still operates correctly, verify that its count agrees with our
+ ** internal count when using count(*) and when the total count can be
+ ** expressed as a 32-bit integer. */
+ assert( argc==1 || p==0 || p->n>0x7fffffff
+ || p->n==sqlite3_aggregate_count(context) );
+#endif
}
static void countFinalize(sqlite3_context *context){
CountCtx *p;
@@ -46563,9 +71303,14 @@ static void countFinalize(sqlite3_context *context){
/*
** Routines to implement min() and max() aggregate functions.
*/
-static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+static void minmaxStep(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
Mem *pArg = (Mem *)argv[0];
Mem *pBest;
+ UNUSED_PARAMETER(NotUsed);
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
@@ -46596,151 +71341,90 @@ static void minMaxFinalize(sqlite3_context *context){
sqlite3_value *pRes;
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
if( pRes ){
- if( pRes->flags ){
+ if( ALWAYS(pRes->flags) ){
sqlite3_result_value(context, pRes);
}
sqlite3VdbeMemRelease(pRes);
}
}
+/*
+** group_concat(EXPR, ?SEPARATOR?)
+*/
+static void groupConcatStep(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zVal;
+ StrAccum *pAccum;
+ const char *zSep;
+ int nVal, nSep;
+ assert( argc==1 || argc==2 );
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
+
+ if( pAccum ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int firstTerm = pAccum->useMalloc==0;
+ pAccum->useMalloc = 1;
+ pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
+ if( !firstTerm ){
+ if( argc==2 ){
+ zSep = (char*)sqlite3_value_text(argv[1]);
+ nSep = sqlite3_value_bytes(argv[1]);
+ }else{
+ zSep = ",";
+ nSep = 1;
+ }
+ sqlite3StrAccumAppend(pAccum, zSep, nSep);
+ }
+ zVal = (char*)sqlite3_value_text(argv[0]);
+ nVal = sqlite3_value_bytes(argv[0]);
+ sqlite3StrAccumAppend(pAccum, zVal, nVal);
+ }
+}
+static void groupConcatFinalize(sqlite3_context *context){
+ StrAccum *pAccum;
+ pAccum = sqlite3_aggregate_context(context, 0);
+ if( pAccum ){
+ if( pAccum->tooBig ){
+ sqlite3_result_error_toobig(context);
+ }else if( pAccum->mallocFailed ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
+ sqlite3_free);
+ }
+ }
+}
/*
** This function registered all of the above C functions as SQL
** functions. This should be the only routine in this file with
** external linkage.
*/
-void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
- static const struct {
- char *zName;
- signed char nArg;
- u8 argType; /* ff: db 1: 0, 2: 1, 3: 2,... N: N-1. */
- u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
- u8 needCollSeq;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
- } aFuncs[] = {
- { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc },
- { "min", 0, 0, SQLITE_UTF8, 1, 0 },
- { "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc },
- { "max", 0, 1, SQLITE_UTF8, 1, 0 },
- { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc },
- { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc },
- { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },
-#ifndef SQLITE_OMIT_UTF16
- { "substr", 3, 0, SQLITE_UTF16LE, 0, sqlite3utf16Substr },
-#endif
- { "abs", 1, 0, SQLITE_UTF8, 0, absFunc },
- { "round", 1, 0, SQLITE_UTF8, 0, roundFunc },
- { "round", 2, 0, SQLITE_UTF8, 0, roundFunc },
- { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc },
- { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc },
- { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc },
- { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 },
- { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 },
- { "hex", 1, 0, SQLITE_UTF8, 0, hexFunc },
- { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc },
- { "random", -1, 0, SQLITE_UTF8, 0, randomFunc },
- { "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob },
- { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc },
- { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
- { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc },
- { "last_insert_rowid", 0, 0xff, SQLITE_UTF8, 0, last_insert_rowid },
- { "changes", 0, 0xff, SQLITE_UTF8, 0, changes },
- { "total_changes", 0, 0xff, SQLITE_UTF8, 0, total_changes },
- { "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc },
- { "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc },
- { "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc },
- { "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc },
- { "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc },
- { "trim", 1, 3, SQLITE_UTF8, 0, trimFunc },
- { "trim", 2, 3, SQLITE_UTF8, 0, trimFunc },
-#ifdef SQLITE_SOUNDEX
- { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
-#endif
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
- { "load_extension", 1, 0xff, SQLITE_UTF8, 0, loadExt },
- { "load_extension", 2, 0xff, SQLITE_UTF8, 0, loadExt },
-#endif
-#ifdef SQLITE_TEST
- { "randstr", 2, 0, SQLITE_UTF8, 0, randStr },
- { "test_destructor", 1, 0xff, SQLITE_UTF8, 0, test_destructor},
- { "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count},
- { "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata},
- { "test_error", 1, 0, SQLITE_UTF8, 0, test_error},
-#endif
- };
- static const struct {
- char *zName;
- signed char nArg;
- u8 argType;
- u8 needCollSeq;
- void (*xStep)(sqlite3_context*,int,sqlite3_value**);
- void (*xFinalize)(sqlite3_context*);
- } aAggs[] = {
- { "min", 1, 0, 1, minmaxStep, minMaxFinalize },
- { "max", 1, 1, 1, minmaxStep, minMaxFinalize },
- { "sum", 1, 0, 0, sumStep, sumFinalize },
- { "total", 1, 0, 0, sumStep, totalFinalize },
- { "avg", 1, 0, 0, sumStep, avgFinalize },
- { "count", 0, 0, 0, countStep, countFinalize },
- { "count", 1, 0, 0, countStep, countFinalize },
- };
- int i;
-
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- void *pArg;
- u8 argType = aFuncs[i].argType;
- if( argType==0xff ){
- pArg = db;
- }else{
- pArg = (void*)(int)argType;
- }
- sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
- aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
- if( aFuncs[i].needCollSeq ){
- FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName,
- strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
- if( pFunc && aFuncs[i].needCollSeq ){
- pFunc->needCollSeq = 1;
- }
- }
- }
+SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
#ifndef SQLITE_OMIT_ALTERTABLE
sqlite3AlterFunctions(db);
#endif
-#ifndef SQLITE_OMIT_PARSER
- sqlite3AttachFunctions(db);
-#endif
- for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
- void *pArg = (void*)(int)aAggs[i].argType;
- sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
- pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
- if( aAggs[i].needCollSeq ){
- FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
- strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
- if( pFunc && aAggs[i].needCollSeq ){
- pFunc->needCollSeq = 1;
- }
+ if( !db->mallocFailed ){
+ int rc = sqlite3_overload_function(db, "MATCH", 2);
+ assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
+ if( rc==SQLITE_NOMEM ){
+ db->mallocFailed = 1;
}
}
- sqlite3RegisterDateTimeFunctions(db);
- sqlite3_overload_function(db, "MATCH", 2);
-#ifdef SQLITE_SSE
- (void)sqlite3SseFunctions(db);
-#endif
-#ifdef SQLITE_CASE_SENSITIVE_LIKE
- sqlite3RegisterLikeFunctions(db, 1);
-#else
- sqlite3RegisterLikeFunctions(db, 0);
-#endif
}
/*
** Set the LIKEOPT flag on the 2-argument function with the given name.
*/
-static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
+static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
FuncDef *pDef;
- pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
- if( pDef ){
+ pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
+ 2, SQLITE_UTF8, 0);
+ if( ALWAYS(pDef) ){
pDef->flags = flagVal;
}
}
@@ -46750,16 +71434,16 @@ static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
** parameter determines whether or not the LIKE operator is case
** sensitive. GLOB is always case sensitive.
*/
-void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
+SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
struct compareInfo *pInfo;
if( caseSensitive ){
pInfo = (struct compareInfo*)&likeInfoAlt;
}else{
pInfo = (struct compareInfo*)&likeInfoNorm;
}
- sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
- sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
- sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
+ sqlite3CreateFunc(db, "like", 2, SQLITE_ANY, pInfo, likeFunc, 0, 0);
+ sqlite3CreateFunc(db, "like", 3, SQLITE_ANY, pInfo, likeFunc, 0, 0);
+ sqlite3CreateFunc(db, "glob", 2, SQLITE_ANY,
(struct compareInfo*)&globInfo, likeFunc, 0,0);
setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
setLikeOptFlag(db, "like",
@@ -46773,17 +71457,19 @@ void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
** return TRUE. If the function is not a LIKE-style function then
** return FALSE.
*/
-int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
+SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
FuncDef *pDef;
- if( pExpr->op!=TK_FUNCTION ){
- return 0;
- }
- if( pExpr->pList->nExpr!=2 ){
+ if( pExpr->op!=TK_FUNCTION
+ || !pExpr->x.pList
+ || pExpr->x.pList->nExpr!=2
+ ){
return 0;
}
- pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
- SQLITE_UTF8, 0);
- if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
+ pDef = sqlite3FindFunction(db, pExpr->u.zToken,
+ sqlite3Strlen30(pExpr->u.zToken),
+ 2, SQLITE_UTF8, 0);
+ if( NEVER(pDef==0) || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
return 0;
}
@@ -46799,6 +71485,98 @@ int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
return 1;
}
+/*
+** All all of the FuncDef structures in the aBuiltinFunc[] array above
+** to the global function hash table. This occurs at start-time (as
+** a consequence of calling sqlite3_initialize()).
+**
+** After this routine runs
+*/
+SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void){
+ /*
+ ** The following array holds FuncDef structures for all of the functions
+ ** defined in this file.
+ **
+ ** The array cannot be constant since changes are made to the
+ ** FuncDef.pHash elements at start-time. The elements of this array
+ ** are read-only after initialization is complete.
+ */
+ static SQLITE_WSD FuncDef aBuiltinFunc[] = {
+ FUNCTION(ltrim, 1, 1, 0, trimFunc ),
+ FUNCTION(ltrim, 2, 1, 0, trimFunc ),
+ FUNCTION(rtrim, 1, 2, 0, trimFunc ),
+ FUNCTION(rtrim, 2, 2, 0, trimFunc ),
+ FUNCTION(trim, 1, 3, 0, trimFunc ),
+ FUNCTION(trim, 2, 3, 0, trimFunc ),
+ FUNCTION(min, -1, 0, 1, minmaxFunc ),
+ FUNCTION(min, 0, 0, 1, 0 ),
+ AGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize ),
+ FUNCTION(max, -1, 1, 1, minmaxFunc ),
+ FUNCTION(max, 0, 1, 1, 0 ),
+ AGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize ),
+ FUNCTION(typeof, 1, 0, 0, typeofFunc ),
+ FUNCTION(length, 1, 0, 0, lengthFunc ),
+ FUNCTION(substr, 2, 0, 0, substrFunc ),
+ FUNCTION(substr, 3, 0, 0, substrFunc ),
+ FUNCTION(abs, 1, 0, 0, absFunc ),
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ FUNCTION(round, 1, 0, 0, roundFunc ),
+ FUNCTION(round, 2, 0, 0, roundFunc ),
+#endif
+ FUNCTION(upper, 1, 0, 0, upperFunc ),
+ FUNCTION(lower, 1, 0, 0, lowerFunc ),
+ FUNCTION(coalesce, 1, 0, 0, 0 ),
+ FUNCTION(coalesce, -1, 0, 0, ifnullFunc ),
+ FUNCTION(coalesce, 0, 0, 0, 0 ),
+ FUNCTION(hex, 1, 0, 0, hexFunc ),
+ FUNCTION(ifnull, 2, 0, 1, ifnullFunc ),
+ FUNCTION(random, 0, 0, 0, randomFunc ),
+ FUNCTION(randomblob, 1, 0, 0, randomBlob ),
+ FUNCTION(nullif, 2, 0, 1, nullifFunc ),
+ FUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
+ FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
+ FUNCTION(quote, 1, 0, 0, quoteFunc ),
+ FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
+ FUNCTION(changes, 0, 0, 0, changes ),
+ FUNCTION(total_changes, 0, 0, 0, total_changes ),
+ FUNCTION(replace, 3, 0, 0, replaceFunc ),
+ FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
+ #ifdef SQLITE_SOUNDEX
+ FUNCTION(soundex, 1, 0, 0, soundexFunc ),
+ #endif
+ #ifndef SQLITE_OMIT_LOAD_EXTENSION
+ FUNCTION(load_extension, 1, 0, 0, loadExt ),
+ FUNCTION(load_extension, 2, 0, 0, loadExt ),
+ #endif
+ AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ),
+ AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ),
+ AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ),
+ /* AGGREGATE(count, 0, 0, 0, countStep, countFinalize ), */
+ {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0},
+ AGGREGATE(count, 1, 0, 0, countStep, countFinalize ),
+ AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize),
+ AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize),
+
+ LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+ #ifdef SQLITE_CASE_SENSITIVE_LIKE
+ LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+ LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+ #else
+ LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
+ LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
+ #endif
+ };
+
+ int i;
+ FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
+ FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
+
+ for(i=0; i<ArraySize(aBuiltinFunc); i++){
+ sqlite3FuncDefInsert(pHash, &aFunc[i]);
+ }
+ sqlite3RegisterDateTimeFunctions();
+}
+
/************** End of func.c ************************************************/
/************** Begin file insert.c ******************************************/
/*
@@ -46815,13 +71593,33 @@ int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
-** $Id: insert.c,v 1.185 2007/04/18 14:24:33 danielk1977 Exp $
+** $Id: insert.c,v 1.270 2009/07/24 17:58:53 danielk1977 Exp $
+*/
+
+/*
+** Generate code that will open a table for reading.
*/
+SQLITE_PRIVATE void sqlite3OpenTable(
+ Parse *p, /* Generate code into this VDBE */
+ int iCur, /* The cursor number of the table */
+ int iDb, /* The database index in sqlite3.aDb[] */
+ Table *pTab, /* The table to be opened */
+ int opcode /* OP_OpenRead or OP_OpenWrite */
+){
+ Vdbe *v;
+ if( IsVirtual(pTab) ) return;
+ v = sqlite3GetVdbe(p);
+ assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
+ sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
+ sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
+ sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32);
+ VdbeComment((v, "%s", pTab->zName));
+}
/*
-** Set P3 of the most recently inserted opcode to a column affinity
-** string for index pIdx. A column affinity string has one character
-** for each column in the table, according to the affinity of the column:
+** Return a pointer to the column affinity string associated with index
+** pIdx. A column affinity string has one character for each column in
+** the table, according to the affinity of the column:
**
** Character Column affinity
** ------------------------------
@@ -46830,8 +71628,15 @@ int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
** 'c' NUMERIC
** 'd' INTEGER
** 'e' REAL
+**
+** An extra 'b' is appended to the end of the string to cover the
+** rowid that appears as the last column in every index.
+**
+** Memory for the buffer containing the column index affinity string
+** is managed along with the rest of the Index structure. It will be
+** released when sqlite3DeleteIndex() is called.
*/
-void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
+SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
if( !pIdx->zColAff ){
/* The first time a column affinity string for a particular index is
** required, it is allocated and populated here. It is then stored as
@@ -46843,21 +71648,24 @@ void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
*/
int n;
Table *pTab = pIdx->pTable;
- pIdx->zColAff = (char *)sqliteMalloc(pIdx->nColumn+1);
+ sqlite3 *db = sqlite3VdbeDb(v);
+ pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
if( !pIdx->zColAff ){
- return;
+ db->mallocFailed = 1;
+ return 0;
}
for(n=0; n<pIdx->nColumn; n++){
pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
}
- pIdx->zColAff[pIdx->nColumn] = '\0';
+ pIdx->zColAff[n++] = SQLITE_AFF_NONE;
+ pIdx->zColAff[n] = 0;
}
- sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
+ return pIdx->zColAff;
}
/*
-** Set P3 of the most recently inserted opcode to a column affinity
+** Set P4 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:
@@ -46870,7 +71678,7 @@ void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
** 'd' INTEGER
** 'e' REAL
*/
-void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
+SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
/* The first time a column affinity string for a particular table
** is required, it is allocated and populated here. It is then
** stored as a member of the Table structure for subsequent use.
@@ -46881,9 +71689,11 @@ void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
if( !pTab->zColAff ){
char *zColAff;
int i;
+ sqlite3 *db = sqlite3VdbeDb(v);
- zColAff = (char *)sqliteMalloc(pTab->nCol+1);
+ zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
if( !zColAff ){
+ db->mallocFailed = 1;
return;
}
@@ -46895,79 +71705,137 @@ void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
pTab->zColAff = zColAff;
}
- sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
+ sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
}
/*
-** Return non-zero if SELECT statement p opens the table with rootpage
-** iTab in database iDb. This is used to see if a statement of the form
-** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary
-** table for the results of the SELECT.
-**
-** No checking is done for sub-selects that are part of expressions.
+** Return non-zero if the table pTab in database iDb or any of its indices
+** have been opened at any point in the VDBE program beginning at location
+** iStartAddr throught the end of the program. This is used to see if
+** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
+** run without using temporary table for the results of the SELECT.
*/
-static int selectReadsTable(Select *p, Schema *pSchema, int iTab){
+static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){
+ Vdbe *v = sqlite3GetVdbe(p);
int i;
- struct SrcList_item *pItem;
- if( p->pSrc==0 ) return 0;
- for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){
- if( pItem->pSelect ){
- if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1;
- }else{
- if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1;
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
+#endif
+
+ for(i=iStartAddr; i<iEnd; i++){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
+ assert( pOp!=0 );
+ if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
+ Index *pIndex;
+ int tnum = pOp->p2;
+ if( tnum==pTab->tnum ){
+ return 1;
+ }
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
+ if( tnum==pIndex->tnum ){
+ return 1;
+ }
+ }
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
+ assert( pOp->p4.pVtab!=0 );
+ assert( pOp->p4type==P4_VTAB );
+ return 1;
}
+#endif
}
return 0;
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
/*
-** Write out code to initialize the autoincrement logic. This code
-** looks up the current autoincrement value in the sqlite_sequence
-** table and stores that value in a memory cell. Code generated by
-** autoIncStep() will keep that memory cell holding the largest
-** rowid value. Code generated by autoIncEnd() will write the new
-** largest value of the counter back into the sqlite_sequence table.
+** Locate or create an AutoincInfo structure associated with table pTab
+** which is in database iDb. Return the register number for the register
+** that holds the maximum rowid.
+**
+** There is at most one AutoincInfo structure per table even if the
+** same table is autoincremented multiple times due to inserts within
+** triggers. A new AutoincInfo structure is created if this is the
+** first use of table pTab. On 2nd and subsequent uses, the original
+** AutoincInfo structure is used.
+**
+** Three memory locations are allocated:
**
-** This routine returns the index of the mem[] cell that contains
-** the maximum rowid counter.
+** (1) Register to hold the name of the pTab table.
+** (2) Register to hold the maximum ROWID of pTab.
+** (3) Register to hold the rowid in sqlite_sequence of pTab
**
-** Two memory cells are allocated. The next memory cell after the
-** one returned holds the rowid in sqlite_sequence where we will
-** write back the revised maximum rowid.
+** The 2nd register is the one that is returned. That is all the
+** insert routine needs to know about.
*/
static int autoIncBegin(
Parse *pParse, /* Parsing context */
int iDb, /* Index of the database holding pTab */
Table *pTab /* The table we are writing to */
){
- int memId = 0;
- if( pTab->autoInc ){
- Vdbe *v = pParse->pVdbe;
- Db *pDb = &pParse->db->aDb[iDb];
- int iCur = pParse->nTab;
- int addr;
- assert( v );
- addr = sqlite3VdbeCurrentAddr(v);
- memId = pParse->nMem+1;
- pParse->nMem += 2;
- sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
- sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
- sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
- sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
- sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
- sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
- sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
- sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
+ int memId = 0; /* Register holding maximum rowid */
+ if( pTab->tabFlags & TF_Autoincrement ){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ AutoincInfo *pInfo;
+
+ pInfo = pToplevel->pAinc;
+ while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
+ if( pInfo==0 ){
+ pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
+ if( pInfo==0 ) return 0;
+ pInfo->pNext = pToplevel->pAinc;
+ pToplevel->pAinc = pInfo;
+ pInfo->pTab = pTab;
+ pInfo->iDb = iDb;
+ pToplevel->nMem++; /* Register to hold name of table */
+ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
+ pToplevel->nMem++; /* Rowid in sqlite_sequence */
+ }
+ memId = pInfo->regCtr;
}
return memId;
}
/*
+** This routine generates code that will initialize all of the
+** register used by the autoincrement tracker.
+*/
+SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
+ AutoincInfo *p; /* Information about an AUTOINCREMENT */
+ sqlite3 *db = pParse->db; /* The database connection */
+ Db *pDb; /* Database only autoinc table */
+ int memId; /* Register holding max rowid */
+ int addr; /* A VDBE address */
+ Vdbe *v = pParse->pVdbe; /* VDBE under construction */
+
+ /* This routine is never called during trigger-generation. It is
+ ** only called from the top-level */
+ assert( pParse->pTriggerTab==0 );
+ assert( pParse==sqlite3ParseToplevel(pParse) );
+
+ assert( v ); /* We failed long ago if this is not so */
+ for(p = pParse->pAinc; p; p = p->pNext){
+ pDb = &db->aDb[p->iDb];
+ memId = p->regCtr;
+ sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
+ addr = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
+ sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9);
+ sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
+ sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
+ sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
+ sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
+ sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
+ sqlite3VdbeAddOp0(v, OP_Close);
+ }
+}
+
+/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the top of the stack holds a
@@ -46975,40 +71843,50 @@ static int autoIncBegin(
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated. The stack is unchanged.
*/
-static void autoIncStep(Parse *pParse, int memId){
+static void autoIncStep(Parse *pParse, int memId, int regRowid){
if( memId>0 ){
- sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
}
}
/*
-** After doing one or more inserts, the maximum rowid is stored
-** in mem[memId]. Generate code to write this value back into the
-** the sqlite_sequence table.
+** This routine generates the code needed to write autoincrement
+** maximum rowid values back into the sqlite_sequence register.
+** Every statement that might do an INSERT into an autoincrement
+** table (either directly or through triggers) needs to call this
+** routine just before the "exit" code.
*/
-static void autoIncEnd(
- Parse *pParse, /* The parsing context */
- int iDb, /* Index of the database holding pTab */
- Table *pTab, /* Table we are inserting into */
- int memId /* Memory cell holding the maximum rowid */
-){
- if( pTab->autoInc ){
- int iCur = pParse->nTab;
- Vdbe *v = pParse->pVdbe;
- Db *pDb = &pParse->db->aDb[iDb];
- int addr;
- assert( v );
- addr = sqlite3VdbeCurrentAddr(v);
- sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
- sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
- sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
- sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
- sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
- sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
+SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){
+ AutoincInfo *p;
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+
+ assert( v );
+ for(p = pParse->pAinc; p; p = p->pNext){
+ Db *pDb = &db->aDb[p->iDb];
+ int j1, j2, j3, j4, j5;
+ int iRec;
+ int memId = p->regCtr;
+
+ iRec = sqlite3GetTempReg(pParse);
+ sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
+ j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
+ j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
+ j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
+ sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
+ sqlite3VdbeJumpHere(v, j2);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
+ j5 = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, j4);
+ sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeJumpHere(v, j5);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
+ sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3VdbeAddOp0(v, OP_Close);
+ sqlite3ReleaseTempReg(pParse, iRec);
}
}
#else
@@ -47017,8 +71895,7 @@ static void autoIncEnd(
** above are all no-ops
*/
# define autoIncBegin(A,B,C) (0)
-# define autoIncStep(A,B)
-# define autoIncEnd(A,B,C,D)
+# define autoIncStep(A,B,C)
#endif /* SQLITE_OMIT_AUTOINCREMENT */
@@ -47048,7 +71925,8 @@ static int xferOptimization(
**
** The code generated follows one of four templates. For a simple
** select with data coming from a VALUES clause, the code executes
-** once straight down through. The template looks like this:
+** once straight down through. Pseudo-code follows (we call this
+** the "1st template"):
**
** open write cursor to <table> and its indices
** puts VALUES clause expressions onto the stack
@@ -47066,7 +71944,7 @@ static int xferOptimization(
** schemas, including all the same indices, then a special optimization
** is invoked that copies raw records from <table2> over to <table1>.
** See the xferOptimization() function for the implementation of this
-** template. This is the second template.
+** template. This is the 2nd template.
**
** open a write cursor to <table>
** open read cursor on <table2>
@@ -47079,47 +71957,60 @@ static int xferOptimization(
** close cursors
** end foreach
**
-** The third template is for when the second template does not apply
+** The 3rd template is for when the second template does not apply
** and the SELECT clause does not read from <table> at any time.
** The generated code follows this template:
**
+** EOF <- 0
+** X <- A
** goto B
** A: setup for the SELECT
** loop over the rows in the SELECT
-** gosub C
+** load values into registers R..R+n
+** yield X
** end loop
** cleanup after the SELECT
-** goto D
-** B: open write cursor to <table> and its indices
+** EOF <- 1
+** yield X
** goto A
-** C: insert the select result into <table>
-** return
+** B: open write cursor to <table> and its indices
+** C: yield X
+** if EOF goto D
+** insert the select result into <table> from R..R+n
+** goto C
** D: cleanup
**
-** The fourth template is used if the insert statement takes its
+** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT. In the third form,
** we have to use a intermediate table to store the results of
** the select. The template is like this:
**
+** EOF <- 0
+** X <- A
** goto B
** A: setup for the SELECT
** loop over the tables in the SELECT
-** gosub C
+** load value into register R..R+n
+** yield X
** end loop
** cleanup after the SELECT
-** goto D
-** C: insert the select result into the intermediate table
-** return
-** B: open a cursor to an intermediate table
-** goto A
-** D: open write cursor to <table> and its indices
-** loop over the intermediate table
+** EOF <- 1
+** yield X
+** halt-error
+** B: open temp table
+** L: yield X
+** if EOF goto M
+** insert row from R..R+n into temp table
+** goto L
+** M: open write cursor to <table> and its indices
+** rewind temp table
+** C: loop over rows of intermediate table
** transfer values form intermediate table into <table>
-** end the loop
-** cleanup
+** end loop
+** D: cleanup
*/
-void sqlite3Insert(
+SQLITE_PRIVATE void sqlite3Insert(
Parse *pParse, /* Parser context */
SrcList *pTabList, /* Name of table into which we are inserting */
ExprList *pList, /* List of values to be inserted */
@@ -47127,45 +72018,56 @@ void sqlite3Insert(
IdList *pColumn, /* Column names corresponding to IDLIST. */
int onError /* How to handle constraint errors */
){
- Table *pTab; /* The table to insert into */
+ sqlite3 *db; /* The main database structure */
+ Table *pTab; /* The table to insert into. aka TABLE */
char *zTab; /* Name of the table into which we are inserting */
const char *zDb; /* Name of the database holding this table */
int i, j, idx; /* Loop counters */
Vdbe *v; /* Generate code into this virtual machine */
Index *pIdx; /* For looping over indices of the table */
int nColumn; /* Number of columns in the data */
- int base = 0; /* VDBE Cursor number for pTab */
- int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
- sqlite3 *db; /* The main database structure */
+ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
+ int baseCur = 0; /* VDBE Cursor number for pTab */
int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
int endOfLoop; /* Label for the end of the insertion loop */
int useTempTable = 0; /* Store SELECT results in intermediate table */
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
- int iSelectLoop = 0; /* Address of code that implements the SELECT */
- int iCleanup = 0; /* Address of the cleanup code */
- int iInsertBlock = 0; /* Address of the subroutine used to insert data */
- int iCntMem = 0; /* Memory cell used for the row counter */
- int newIdx = -1; /* Cursor for the NEW table */
+ int addrInsTop = 0; /* Jump to label "D" */
+ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
+ int addrSelect = 0; /* Address of coroutine that implements the SELECT */
+ SelectDest dest; /* Destination for SELECT on rhs of INSERT */
+ int iDb; /* Index of database holding TABLE */
Db *pDb; /* The database containing table being inserted into */
- int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */
int appendFlag = 0; /* True if the insert is likely to be an append */
- int iDb;
+
+ /* Register allocations */
+ int regFromSelect = 0;/* Base register for data coming from SELECT */
+ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
+ int regRowCount = 0; /* Memory cell used for the row counter */
+ int regIns; /* Block of regs holding rowid+data being inserted */
+ int regRowid; /* registers holding insert rowid */
+ int regData; /* register holding first column to insert */
+ int regRecord; /* Holds the assemblied row record */
+ int regEof = 0; /* Register recording end of SELECT data */
+ int *aRegIdx = 0; /* One register allocated to each index */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* True if attempting to insert into a view */
- int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
+ Trigger *pTrigger; /* List of triggers on pTab, if required */
+ int tmask; /* Mask of trigger times */
#endif
- if( pParse->nErr || sqlite3MallocFailed() ){
+ db = pParse->db;
+ memset(&dest, 0, sizeof(dest));
+ if( pParse->nErr || db->mallocFailed ){
goto insert_cleanup;
}
- db = pParse->db;
/* Locate the table into which we will be inserting new information.
*/
assert( pTabList->nSrc==1 );
zTab = pTabList->a[0].zName;
- if( zTab==0 ) goto insert_cleanup;
+ if( NEVER(zTab==0) ) goto insert_cleanup;
pTab = sqlite3SrcListLookup(pParse, pTabList);
if( pTab==0 ){
goto insert_cleanup;
@@ -47182,25 +72084,18 @@ void sqlite3Insert(
** inserted into is a view
*/
#ifndef SQLITE_OMIT_TRIGGER
- triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
isView = pTab->pSelect!=0;
#else
-# define triggers_exist 0
+# define pTrigger 0
+# define tmask 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif
-
- /* Ensure that:
- * (a) the table is not read-only,
- * (b) that if it is a view then ON INSERT triggers exist
- */
- if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
- goto insert_cleanup;
- }
- assert( pTab!=0 );
+ assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
/* If pTab is really a view, make sure it has been initialized.
** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
@@ -47210,17 +72105,20 @@ void sqlite3Insert(
goto insert_cleanup;
}
+ /* Ensure that:
+ * (a) the table is not read-only,
+ * (b) that if it is a view then ON INSERT triggers exist
+ */
+ if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
+ goto insert_cleanup;
+ }
+
/* Allocate a VDBE
*/
v = sqlite3GetVdbe(pParse);
if( v==0 ) goto insert_cleanup;
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
- sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
-
- /* if there are row triggers, allocate a temp table for new.* references. */
- if( triggers_exist ){
- newIdx = pParse->nTab++;
- }
+ sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
#ifndef SQLITE_OMIT_XFER_OPT
/* If the statement is of the form
@@ -47229,83 +72127,120 @@ void sqlite3Insert(
**
** Then special optimizations can be applied that make the transfer
** very fast and which reduce fragmentation of indices.
+ **
+ ** This is the 2nd template.
*/
if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
- assert( !triggers_exist );
+ assert( !pTrigger );
assert( pList==0 );
- goto insert_cleanup;
+ goto insert_end;
}
#endif /* SQLITE_OMIT_XFER_OPT */
/* If this is an AUTOINCREMENT table, look up the sequence number in the
- ** sqlite_sequence table and store it in memory cell counterMem. Also
- ** remember the rowid of the sqlite_sequence table entry in memory cell
- ** counterRowid.
+ ** sqlite_sequence table and store it in memory cell regAutoinc.
*/
- counterMem = autoIncBegin(pParse, iDb, pTab);
+ regAutoinc = autoIncBegin(pParse, iDb, pTab);
/* Figure out how many columns of data are supplied. If the data
- ** is coming from a SELECT statement, then this step also generates
- ** all the code to implement the SELECT statement and invoke a subroutine
- ** to process each row of the result. (Template 2.) If the SELECT
- ** statement uses the the table that is being inserted into, then the
- ** subroutine is also coded here. That subroutine stores the SELECT
- ** results in a temporary table. (Template 3.)
+ ** is coming from a SELECT statement, then generate a co-routine that
+ ** produces a single row of the SELECT on each invocation. The
+ ** co-routine is the common header to the 3rd and 4th templates.
*/
if( pSelect ){
/* Data is coming from a SELECT. Generate code to implement that SELECT
+ ** as a co-routine. The code is common to both the 3rd and 4th
+ ** templates:
+ **
+ ** EOF <- 0
+ ** X <- A
+ ** goto B
+ ** A: setup for the SELECT
+ ** loop over the tables in the SELECT
+ ** load value into register R..R+n
+ ** yield X
+ ** end loop
+ ** cleanup after the SELECT
+ ** EOF <- 1
+ ** yield X
+ ** halt-error
+ **
+ ** On each invocation of the co-routine, it puts a single row of the
+ ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
+ ** (These output registers are allocated by sqlite3Select().) When
+ ** the SELECT completes, it sets the EOF flag stored in regEof.
*/
- int rc, iInitCode;
- iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
- iSelectLoop = sqlite3VdbeCurrentAddr(v);
- iInsertBlock = sqlite3VdbeMakeLabel(v);
+ int rc, j1;
+
+ regEof = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
+ VdbeComment((v, "SELECT eof flag"));
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
+ addrSelect = sqlite3VdbeCurrentAddr(v)+2;
+ sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
+ j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
+ VdbeComment((v, "Jump over SELECT coroutine"));
/* Resolve the expressions in the SELECT statement and execute it. */
- rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
- if( rc || pParse->nErr || sqlite3MallocFailed() ){
+ rc = sqlite3Select(pParse, pSelect, &dest);
+ assert( pParse->nErr==0 || rc );
+ if( rc || NEVER(pParse->nErr) || db->mallocFailed ){
goto insert_cleanup;
}
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
+ sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
+ VdbeComment((v, "End of SELECT coroutine"));
+ sqlite3VdbeJumpHere(v, j1); /* label B: */
- iCleanup = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
+ regFromSelect = dest.iMem;
assert( pSelect->pEList );
nColumn = pSelect->pEList->nExpr;
+ assert( dest.nMem==nColumn );
/* Set useTempTable to TRUE if the result of the SELECT statement
- ** should be written into a temporary table. Set to FALSE if each
- ** row of the SELECT can be written directly into the result table.
+ ** should be written into a temporary table (template 4). Set to
+ ** FALSE if each* row of the SELECT can be written directly into
+ ** the destination table (template 3).
**
** A temp table must be used if the table being updated is also one
** of the tables being read by the SELECT statement. Also use a
** temp table in the case of row triggers.
*/
- if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){
+ if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){
useTempTable = 1;
}
if( useTempTable ){
- /* Generate the subroutine that SELECT calls to process each row of
- ** the result. Store the result in a temporary table
+ /* Invoke the coroutine to extract information from the SELECT
+ ** and add it to a transient table srcTab. The code generated
+ ** here is from the 4th template:
+ **
+ ** B: open temp table
+ ** L: yield X
+ ** if EOF goto M
+ ** insert row from R..R+n into temp table
+ ** goto L
+ ** M: ...
*/
+ int regRec; /* Register to hold packed record */
+ int regTempRowid; /* Register to hold temp table ROWID */
+ int addrTop; /* Label "L" */
+ int addrIf; /* Address of jump to M */
+
srcTab = pParse->nTab++;
- sqlite3VdbeResolveLabel(v, iInsertBlock);
- sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
- sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
- sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
- sqlite3VdbeAddOp(v, OP_Return, 0, 0);
-
- /* The following code runs first because the GOTO at the very top
- ** of the program jumps to it. Create the temporary table, then jump
- ** back up and execute the SELECT code above.
- */
- sqlite3VdbeJumpHere(v, iInitCode);
- sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
- sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
- sqlite3VdbeResolveLabel(v, iCleanup);
- }else{
- sqlite3VdbeJumpHere(v, iInitCode);
+ regRec = sqlite3GetTempReg(pParse);
+ regTempRowid = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
+ addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
+ addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
+ sqlite3VdbeJumpHere(v, addrIf);
+ sqlite3ReleaseTempReg(pParse, regRec);
+ sqlite3ReleaseTempReg(pParse, regTempRowid);
}
}else{
/* This is the case if the data for the INSERT is coming from a VALUES
@@ -47315,10 +72250,10 @@ void sqlite3Insert(
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
srcTab = -1;
- useTempTable = 0;
+ assert( useTempTable==0 );
nColumn = pList ? pList->nExpr : 0;
for(i=0; i<nColumn; i++){
- if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
+ if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
goto insert_cleanup;
}
}
@@ -47327,10 +72262,15 @@ void sqlite3Insert(
/* Make sure the number of columns in the source data matches the number
** of columns to be inserted into the table.
*/
- if( pColumn==0 && nColumn && nColumn!=pTab->nCol ){
+ if( IsVirtual(pTab) ){
+ for(i=0; i<pTab->nCol; i++){
+ nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
+ }
+ }
+ if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
sqlite3ErrorMsg(pParse,
"table %S has %d columns but %d values were supplied",
- pTabList, 0, pTab->nCol, nColumn);
+ pTabList, 0, pTab->nCol-nHidden, nColumn);
goto insert_cleanup;
}
if( pColumn!=0 && nColumn!=pColumn->nId ){
@@ -47383,45 +72323,73 @@ void sqlite3Insert(
if( pColumn==0 && nColumn>0 ){
keyColumn = pTab->iPKey;
}
-
- /* Open the temp table for FOR EACH ROW triggers
- */
- if( triggers_exist ){
- sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
- }
/* Initialize the count of rows to be inserted
*/
if( db->flags & SQLITE_CountRows ){
- iCntMem = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
+ regRowCount = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
}
- /* Open tables and indices if there are no row triggers */
- if( !triggers_exist ){
- base = pParse->nTab;
- sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
+ /* If this is not a view, open the table and and all indices */
+ if( !isView ){
+ int nIdx;
+
+ baseCur = pParse->nTab;
+ nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
+ aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
+ if( aRegIdx==0 ){
+ goto insert_cleanup;
+ }
+ for(i=0; i<nIdx; i++){
+ aRegIdx[i] = ++pParse->nMem;
+ }
}
- /* If the data source is a temporary table, then we have to create
- ** a loop because there might be multiple rows of data. If the data
- ** source is a subroutine call from the SELECT statement, then we need
- ** to launch the SELECT statement processing.
- */
+ /* This is the top of the main insertion loop */
if( useTempTable ){
- iBreak = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
- iCont = sqlite3VdbeCurrentAddr(v);
+ /* This block codes the top of loop only. The complete loop is the
+ ** following pseudocode (template 4):
+ **
+ ** rewind temp table
+ ** C: loop over rows of intermediate table
+ ** transfer values form intermediate table into <table>
+ ** end loop
+ ** D: ...
+ */
+ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
+ addrCont = sqlite3VdbeCurrentAddr(v);
}else if( pSelect ){
- sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
- sqlite3VdbeResolveLabel(v, iInsertBlock);
+ /* This block codes the top of loop only. The complete loop is the
+ ** following pseudocode (template 3):
+ **
+ ** C: yield X
+ ** if EOF goto D
+ ** insert the select result into <table> from R..R+n
+ ** goto C
+ ** D: ...
+ */
+ addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
+ addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
+ }
+
+ /* Allocate registers for holding the rowid of the new row,
+ ** the content of the new row, and the assemblied row record.
+ */
+ regRecord = ++pParse->nMem;
+ regRowid = regIns = pParse->nMem+1;
+ pParse->nMem += pTab->nCol + 1;
+ if( IsVirtual(pTab) ){
+ regRowid++;
+ pParse->nMem++;
}
+ regData = regRowid+1;
/* Run the BEFORE and INSTEAD OF triggers, if there are any
*/
endOfLoop = sqlite3VdbeMakeLabel(v);
- if( triggers_exist & TRIGGER_BEFORE ){
+ if( tmask & TRIGGER_BEFORE ){
+ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
/* build the NEW.* reference row. Note that if there is an INTEGER
** PRIMARY KEY into which a NULL is being inserted, that NULL will be
@@ -47430,18 +72398,26 @@ void sqlite3Insert(
** not happened yet) so we substitute a rowid of -1
*/
if( keyColumn<0 ){
- sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
- }else if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
}else{
- assert( pSelect==0 ); /* Otherwise useTempTable is true */
- sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
- sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
- sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
+ int j1;
+ if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols);
+ }else{
+ assert( pSelect==0 ); /* Otherwise useTempTable is true */
+ sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols);
+ }
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
}
+ /* Cannot have triggers on a virtual table. If it were possible,
+ ** this block would have to account for hidden column.
+ */
+ assert( !IsVirtual(pTab) );
+
/* Create the new column data
*/
for(i=0; i<pTab->nCol; i++){
@@ -47453,15 +72429,14 @@ void sqlite3Insert(
}
}
if( pColumn && j>=pColumn->nId ){
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
}else if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
}else{
assert( pSelect==0 ); /* Otherwise useTempTable is true */
- sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
+ sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
}
}
- sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
** do not attempt any conversions before assembling the record.
@@ -47469,23 +72444,15 @@ void sqlite3Insert(
** table column affinities.
*/
if( !isView ){
+ sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
sqlite3TableAffinityStr(v, pTab);
}
- sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
/* Fire BEFORE or INSTEAD OF triggers */
- if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
- newIdx, -1, onError, endOfLoop) ){
- goto insert_cleanup;
- }
- }
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
+ pTab, -1, regCols-pTab->nCol-1, onError, endOfLoop);
- /* If any triggers exists, the opening of tables and indices is deferred
- ** until now.
- */
- if( triggers_exist && !isView ){
- base = pParse->nTab;
- sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
+ sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
}
/* Push the record number for the new entry onto the stack. The
@@ -47495,69 +72462,84 @@ void sqlite3Insert(
*/
if( !isView ){
if( IsVirtual(pTab) ){
- /* The row that the VUpdate opcode will delete: none */
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+ /* The row that the VUpdate opcode will delete: none */
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
}
if( keyColumn>=0 ){
if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
}else if( pSelect ){
- sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
}else{
VdbeOp *pOp;
- sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
- pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
- if( pOp && pOp->opcode==OP_Null ){
+ sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
+ pOp = sqlite3VdbeGetOp(v, -1);
+ if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
appendFlag = 1;
pOp->opcode = OP_NewRowid;
- pOp->p1 = base;
- pOp->p2 = counterMem;
+ pOp->p1 = baseCur;
+ pOp->p2 = regRowid;
+ pOp->p3 = regAutoinc;
}
}
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
** to generate a unique primary key value.
*/
if( !appendFlag ){
- sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
- sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
+ int j1;
+ if( !IsVirtual(pTab) ){
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
+ sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
+ sqlite3VdbeJumpHere(v, j1);
+ }else{
+ j1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
+ }
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
}
}else if( IsVirtual(pTab) ){
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
}else{
- sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
+ sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
appendFlag = 1;
}
- autoIncStep(pParse, counterMem);
+ autoIncStep(pParse, regAutoinc, regRowid);
/* Push onto the stack, data for all columns of the new entry, beginning
** with the first column.
*/
+ nHidden = 0;
for(i=0; i<pTab->nCol; i++){
+ int iRegStore = regRowid+1+i;
if( i==pTab->iPKey ){
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
** Whenever this column is read, the record number will be substituted
** in its place. So will fill this column with a NULL to avoid
** taking up data space with information that will never be used. */
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
continue;
}
if( pColumn==0 ){
- j = i;
+ if( IsHiddenColumn(&pTab->aCol[i]) ){
+ assert( IsVirtual(pTab) );
+ j = -1;
+ nHidden++;
+ }else{
+ j = i - nHidden;
+ }
}else{
for(j=0; j<pColumn->nId; j++){
if( pColumn->a[j].idx==i ) break;
}
}
- if( nColumn==0 || (pColumn && j>=pColumn->nId) ){
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
+ if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
}else if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
}else if( pSelect ){
- sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
}else{
- sqlite3ExprCode(pParse, pList->a[j].pExpr);
+ sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
}
}
@@ -47566,115 +72548,113 @@ void sqlite3Insert(
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pTab) ){
- pParse->pVirtualLock = pTab;
- sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
- (const char*)pTab->pVtab, P3_VTAB);
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
+ sqlite3MayAbort(pParse);
}else
#endif
{
- sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
- 0, onError, endOfLoop);
- sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
- (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
- appendFlag);
+ int isReplace; /* Set to true if constraints may cause a replace */
+ sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx,
+ keyColumn>=0, 0, onError, endOfLoop, &isReplace
+ );
+ sqlite3CompleteInsertion(
+ pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0
+ );
}
}
/* Update the count of rows that are inserted
*/
if( (db->flags & SQLITE_CountRows)!=0 ){
- sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
}
- if( triggers_exist ){
- /* Close all tables opened */
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Close, base, 0);
- for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
- sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
- }
- }
-
+ if( pTrigger ){
/* Code AFTER triggers */
- if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
- newIdx, -1, onError, endOfLoop) ){
- goto insert_cleanup;
- }
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
+ pTab, -1, regData-2-pTab->nCol, onError, endOfLoop);
}
- /* The bottom of the loop, if the data source is a SELECT statement
+ /* The bottom of the main insertion loop, if the data source
+ ** is a SELECT statement.
*/
sqlite3VdbeResolveLabel(v, endOfLoop);
if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
- sqlite3VdbeResolveLabel(v, iBreak);
- sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
+ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
+ sqlite3VdbeJumpHere(v, addrInsTop);
+ sqlite3VdbeAddOp1(v, OP_Close, srcTab);
}else if( pSelect ){
- sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
- sqlite3VdbeAddOp(v, OP_Return, 0, 0);
- sqlite3VdbeResolveLabel(v, iCleanup);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
+ sqlite3VdbeJumpHere(v, addrInsTop);
}
- if( !triggers_exist && !IsVirtual(pTab) ){
+ if( !IsVirtual(pTab) && !isView ){
/* Close all tables opened */
- sqlite3VdbeAddOp(v, OP_Close, base, 0);
+ sqlite3VdbeAddOp1(v, OP_Close, baseCur);
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
- sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
+ sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
}
}
+insert_end:
/* Update the sqlite_sequence table by storing the content of the
- ** counter value in memory counterMem back into the sqlite_sequence
- ** table.
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
*/
- autoIncEnd(pParse, iDb, pTab, counterMem);
+ if( pParse->nested==0 && pParse->pTriggerTab==0 ){
+ sqlite3AutoincrementEnd(pParse);
+ }
/*
** Return the number of rows inserted. If this routine is
** generating code because of a call to sqlite3NestedParse(), do not
** invoke the callback function.
*/
- if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
- sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
+ if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
}
insert_cleanup:
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprListDelete(pList);
- sqlite3SelectDelete(pSelect);
- sqlite3IdListDelete(pColumn);
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SelectDelete(db, pSelect);
+ sqlite3IdListDelete(db, pColumn);
+ sqlite3DbFree(db, aRegIdx);
}
/*
-** Generate code to do a constraint check prior to an INSERT or an UPDATE.
-**
-** When this routine is called, the stack contains (from bottom to top)
-** the following values:
+** Generate code to do constraint checks prior to an INSERT or an UPDATE.
**
-** 1. The rowid of the row to be updated before the update. This
-** value is omitted unless we are doing an UPDATE that involves a
-** change to the record number.
+** The input is a range of consecutive registers as follows:
**
-** 2. The rowid of the row after the update.
+** 1. The rowid of the row after the update.
**
-** 3. The data in the first column of the entry after the update.
+** 2. The data in the first column of the entry after the update.
**
** i. Data from middle columns...
**
** N. The data in the last column of the entry after the update.
**
-** The old rowid shown as entry (1) above is omitted unless both isUpdate
-** and rowidChng are 1. isUpdate is true for UPDATEs and false for
-** INSERTs and rowidChng is true if the record number is being changed.
+** The regRowid parameter is the index of the register containing (1).
+**
+** If isUpdate is true and rowidChng is non-zero, then rowidChng contains
+** the address of a register containing the rowid before the update takes
+** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate
+** is false, indicating an INSERT statement, then a non-zero rowidChng
+** indicates that the rowid was explicitly specified as part of the
+** INSERT statement. If rowidChng is false, it means that the rowid is
+** computed automatically in an insert or that the rowid value is not
+** modified by an update.
**
-** The code generated by this routine pushes additional entries onto
-** the stack which are the keys for new index entries for the new record.
-** The order of index keys is the same as the order of the indices on
-** the pTable->pIndex list. A key is only created for index i if
-** aIdxUsed!=0 and aIdxUsed[i]!=0.
+** The code generated by this routine store new index entries into
+** registers identified by aRegIdx[]. No index entry is created for
+** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
+** the same as the order of indices on the linked list of indices
+** attached to the table.
**
** This routine also generates code to check constraints. NOT NULL,
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
@@ -47716,43 +72696,40 @@ insert_cleanup:
** for the constraint is used.
**
** The calling routine must open a read/write cursor for pTab with
-** cursor number "base". All indices of pTab must also have open
-** read/write cursors with cursor number base+i for the i-th cursor.
+** cursor number "baseCur". All indices of pTab must also have open
+** read/write cursors with cursor number baseCur+i for the i-th cursor.
** Except, if there is no possibility of a REPLACE action then
-** cursors do not need to be open for indices where aIdxUsed[i]==0.
-**
-** If the isUpdate flag is true, it means that the "base" cursor is
-** initially pointing to an entry that is being updated. The isUpdate
-** flag causes extra code to be generated so that the "base" cursor
-** is still pointing at the same entry after the routine returns.
-** Without the isUpdate flag, the "base" cursor might be moved.
+** cursors do not need to be open for indices where aRegIdx[i]==0.
*/
-void sqlite3GenerateConstraintChecks(
+SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
Parse *pParse, /* The parser context */
Table *pTab, /* the table into which we are inserting */
- int base, /* Index of a read/write cursor pointing at pTab */
- char *aIdxUsed, /* Which indices are used. NULL means all are used */
- int rowidChng, /* True if the record number will change */
+ int baseCur, /* Index of a read/write cursor pointing at pTab */
+ int regRowid, /* Index of the range of input registers */
+ int *aRegIdx, /* Register used by each index. 0 for unused indices */
+ int rowidChng, /* True if the rowid might collide with existing entry */
int isUpdate, /* True for UPDATE, False for INSERT */
int overrideError, /* Override onError to this if not OE_Default */
- int ignoreDest /* Jump to this label on an OE_Ignore resolution */
+ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
+ int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */
){
- int i;
- Vdbe *v;
- int nCol;
- int onError;
- int addr;
- int extra;
- int iCur;
- Index *pIdx;
- int seenReplace = 0;
- int jumpInst1=0, jumpInst2;
- int hasTwoRowids = (isUpdate && rowidChng);
+ int i; /* loop counter */
+ Vdbe *v; /* VDBE under constrution */
+ int nCol; /* Number of columns */
+ int onError; /* Conflict resolution strategy */
+ int j1; /* Addresss of jump instruction */
+ int j2 = 0, j3; /* Addresses of jump instructions */
+ int regData; /* Register containing first data column */
+ int iCur; /* Table cursor number */
+ Index *pIdx; /* Pointer to one of the indices */
+ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
+ int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid;
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
nCol = pTab->nCol;
+ regData = regRowid + 1;
/* Test all NOT NULL constraints.
*/
@@ -47770,33 +72747,33 @@ void sqlite3GenerateConstraintChecks(
if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
onError = OE_Abort;
}
- sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
- addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|| onError==OE_Ignore || onError==OE_Replace );
switch( onError ){
- case OE_Rollback:
case OE_Abort:
+ sqlite3MayAbort(pParse);
+ case OE_Rollback:
case OE_Fail: {
- char *zMsg = 0;
- sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
- sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
- " may not be NULL", (char*)0);
- sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
+ char *zMsg;
+ j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull,
+ SQLITE_CONSTRAINT, onError, regData+i);
+ zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
+ pTab->zName, pTab->aCol[i].zName);
+ sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
break;
}
case OE_Ignore: {
- sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);
break;
}
- case OE_Replace: {
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
- sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
+ default: {
+ assert( onError==OE_Replace );
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
+ sqlite3VdbeJumpHere(v, j1);
break;
}
}
- sqlite3VdbeJumpHere(v, addr);
}
/* Test all CHECK constraints
@@ -47804,17 +72781,13 @@ void sqlite3GenerateConstraintChecks(
#ifndef SQLITE_OMIT_CHECK
if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
int allOk = sqlite3VdbeMakeLabel(v);
- assert( pParse->ckOffset==0 );
- pParse->ckOffset = nCol;
- sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
- assert( pParse->ckOffset==nCol );
- pParse->ckOffset = 0;
+ pParse->ckBase = regData;
+ sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
onError = overrideError!=OE_Default ? overrideError : OE_Abort;
- if( onError==OE_Ignore || onError==OE_Replace ){
- sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ if( onError==OE_Ignore ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
}else{
- sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
+ sqlite3HaltConstraint(pParse, onError, 0, 0);
}
sqlite3VdbeResolveLabel(v, allOk);
}
@@ -47832,74 +72805,91 @@ void sqlite3GenerateConstraintChecks(
onError = OE_Abort;
}
- if( isUpdate ){
- sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
- sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
- jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
- }
- sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
- jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
- switch( onError ){
- default: {
- onError = OE_Abort;
- /* Fall thru into the next case */
- }
- case OE_Rollback:
- case OE_Abort:
- case OE_Fail: {
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
- "PRIMARY KEY must be unique", P3_STATIC);
- break;
- }
- case OE_Replace: {
- sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
- if( isUpdate ){
- sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
- sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
+ if( onError!=OE_Replace || pTab->pIndex ){
+ if( isUpdate ){
+ j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng);
+ }
+ j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
+ switch( onError ){
+ default: {
+ onError = OE_Abort;
+ /* Fall thru into the next case */
+ }
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ sqlite3HaltConstraint(
+ pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
+ break;
+ }
+ case OE_Replace: {
+ /* If there are DELETE triggers on this table and the
+ ** recursive-triggers flag is set, call GenerateRowDelete() to
+ ** remove the conflicting row from the the table. This will fire
+ ** the triggers and remove both the table and index b-tree entries.
+ **
+ ** Otherwise, if there are no triggers or the recursive-triggers
+ ** flag is not set, call GenerateRowIndexDelete(). This removes
+ ** the index b-tree entries only. The table b-tree entry will be
+ ** replaced by the new entry when it is inserted. */
+ Trigger *pTrigger = 0;
+ if( pParse->db->flags&SQLITE_RecTriggers ){
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
+ }
+ if( pTrigger ){
+ sqlite3GenerateRowDelete(
+ pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace
+ );
+ }else{
+ sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
+ }
+ seenReplace = 1;
+ break;
+ }
+ case OE_Ignore: {
+ assert( seenReplace==0 );
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
+ break;
}
- seenReplace = 1;
- break;
}
- case OE_Ignore: {
- assert( seenReplace==0 );
- sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
- break;
+ sqlite3VdbeJumpHere(v, j3);
+ if( isUpdate ){
+ sqlite3VdbeJumpHere(v, j2);
}
}
- sqlite3VdbeJumpHere(v, jumpInst2);
- if( isUpdate ){
- sqlite3VdbeJumpHere(v, jumpInst1);
- sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
- sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
- }
}
/* Test all UNIQUE constraints by creating entries for each UNIQUE
** index and making sure that duplicate entries do not already exist.
** Add the new records to the indices as we go.
*/
- extra = -1;
for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
- if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */
- extra++;
+ int regIdx;
+ int regR;
+
+ if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
/* Create a key for accessing the index entry */
- sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
+ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
for(i=0; i<pIdx->nColumn; i++){
int idx = pIdx->aiColumn[i];
if( idx==pTab->iPKey ){
- sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
}else{
- sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
}
}
- jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
- sqlite3IndexAffinityStr(v, pIdx);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
+ sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0);
+ sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
/* Find out what action to take in case there is an indexing conflict */
onError = pIdx->onError;
- if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
+ if( onError==OE_None ){
+ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
+ continue; /* pIdx is not a UNIQUE index */
+ }
if( overrideError!=OE_Default ){
onError = overrideError;
}else if( onError==OE_Default ){
@@ -47910,10 +72900,13 @@ void sqlite3GenerateConstraintChecks(
else if( onError==OE_Fail ) onError = OE_Abort;
}
-
/* Check to see if the new index entry will be unique */
- sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
- jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
+ regR = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR);
+ j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
+ regR, SQLITE_INT_TO_PTR(regIdx),
+ P4_INT32);
+ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
/* Generate code that executes if the new index entry is not unique */
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
@@ -47922,97 +72915,97 @@ void sqlite3GenerateConstraintChecks(
case OE_Rollback:
case OE_Abort:
case OE_Fail: {
- int j, n1, n2;
- char zErrMsg[200];
- strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column ");
- n1 = strlen(zErrMsg);
- for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
+ int j;
+ StrAccum errMsg;
+ const char *zSep;
+ char *zErr;
+
+ sqlite3StrAccumInit(&errMsg, 0, 0, 200);
+ errMsg.db = pParse->db;
+ zSep = pIdx->nColumn>1 ? "columns " : "column ";
+ for(j=0; j<pIdx->nColumn; j++){
char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
- n2 = strlen(zCol);
- if( j>0 ){
- strcpy(&zErrMsg[n1], ", ");
- n1 += 2;
- }
- if( n1+n2>sizeof(zErrMsg)-30 ){
- strcpy(&zErrMsg[n1], "...");
- n1 += 3;
- break;
- }else{
- strcpy(&zErrMsg[n1], zCol);
- n1 += n2;
- }
+ sqlite3StrAccumAppend(&errMsg, zSep, -1);
+ zSep = ", ";
+ sqlite3StrAccumAppend(&errMsg, zCol, -1);
}
- strcpy(&zErrMsg[n1],
- pIdx->nColumn>1 ? " are not unique" : " is not unique");
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
+ sqlite3StrAccumAppend(&errMsg,
+ pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
+ zErr = sqlite3StrAccumFinish(&errMsg);
+ sqlite3HaltConstraint(pParse, onError, zErr, 0);
+ sqlite3DbFree(errMsg.db, zErr);
break;
}
case OE_Ignore: {
assert( seenReplace==0 );
- sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
break;
}
- case OE_Replace: {
- sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
- if( isUpdate ){
- sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
- sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
+ default: {
+ Trigger *pTrigger = 0;
+ assert( onError==OE_Replace );
+ if( pParse->db->flags&SQLITE_RecTriggers ){
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
}
+ sqlite3GenerateRowDelete(
+ pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace
+ );
seenReplace = 1;
break;
}
}
-#if NULL_DISTINCT_FOR_UNIQUE
- sqlite3VdbeJumpHere(v, jumpInst1);
-#endif
- sqlite3VdbeJumpHere(v, jumpInst2);
+ sqlite3VdbeJumpHere(v, j3);
+ sqlite3ReleaseTempReg(pParse, regR);
+ }
+
+ if( pbMayReplace ){
+ *pbMayReplace = seenReplace;
}
}
/*
** This routine generates code to finish the INSERT or UPDATE operation
** that was started by a prior call to sqlite3GenerateConstraintChecks.
-** The stack must contain keys for all active indices followed by data
-** and the rowid for the new entry. This routine creates the new
-** entries in all indices and in the main table.
+** A consecutive range of registers starting at regRowid contains the
+** rowid and the content to be inserted.
**
** The arguments to this routine should be the same as the first six
** arguments to sqlite3GenerateConstraintChecks.
*/
-void sqlite3CompleteInsertion(
+SQLITE_PRIVATE void sqlite3CompleteInsertion(
Parse *pParse, /* The parser context */
Table *pTab, /* the table into which we are inserting */
- int base, /* Index of a read/write cursor pointing at pTab */
- char *aIdxUsed, /* Which indices are used. NULL means all are used */
- int rowidChng, /* True if the record number will change */
+ int baseCur, /* Index of a read/write cursor pointing at pTab */
+ int regRowid, /* Range of content */
+ int *aRegIdx, /* Register used by each index. 0 for unused indices */
int isUpdate, /* True for UPDATE, False for INSERT */
- int newIdx, /* Index of NEW table for triggers. -1 if none */
- int appendBias /* True if this is likely to be an append */
+ int appendBias, /* True if this is likely to be an append */
+ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
int i;
Vdbe *v;
int nIdx;
Index *pIdx;
- int pik_flags;
+ u8 pik_flags;
+ int regData;
+ int regRec;
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
for(i=nIdx-1; i>=0; i--){
- if( aIdxUsed && aIdxUsed[i]==0 ) continue;
- sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
+ if( aRegIdx[i]==0 ) continue;
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
+ if( useSeekResult ){
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ }
}
- sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ regData = regRowid + 1;
+ regRec = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
sqlite3TableAffinityStr(v, pTab);
-#ifndef SQLITE_OMIT_TRIGGER
- if( newIdx>=0 ){
- sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
- sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
- sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
- }
-#endif
+ sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
if( pParse->nested ){
pik_flags = 0;
}else{
@@ -48022,25 +73015,27 @@ void sqlite3CompleteInsertion(
if( appendBias ){
pik_flags |= OPFLAG_APPEND;
}
- sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
- if( !pParse->nested ){
- sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ if( useSeekResult ){
+ pik_flags |= OPFLAG_USESEEKRESULT;
}
-
- if( isUpdate && rowidChng ){
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
+ sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
+ if( !pParse->nested ){
+ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
}
+ sqlite3VdbeChangeP5(v, pik_flags);
}
/*
** Generate code that will open cursors for a table and for all
-** indices of that table. The "base" parameter is the cursor number used
+** indices of that table. The "baseCur" parameter is the cursor number used
** for the table. Indices are opened on subsequent cursors.
+**
+** Return the number of indices on the table.
*/
-void sqlite3OpenTableAndIndices(
+SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
Parse *pParse, /* Parsing context */
Table *pTab, /* Table to be opened */
- int base, /* Cursor number assigned to the table */
+ int baseCur, /* Cursor number assigned to the table */
int op /* OP_OpenRead or OP_OpenWrite */
){
int i;
@@ -48048,21 +73043,22 @@ void sqlite3OpenTableAndIndices(
Index *pIdx;
Vdbe *v;
- if( IsVirtual(pTab) ) return;
+ if( IsVirtual(pTab) ) return 0;
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
- sqlite3OpenTable(pParse, base, iDb, pTab, op);
+ sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
assert( pIdx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- VdbeComment((v, "# %s", pIdx->zName));
- sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
+ sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIdx->zName));
}
- if( pParse->nTab<=base+i ){
- pParse->nTab = base+i;
+ if( pParse->nTab<baseCur+i ){
+ pParse->nTab = baseCur+i;
}
+ return i-1;
}
@@ -48073,7 +73069,7 @@ void sqlite3OpenTableAndIndices(
** purposes only - to make sure the transfer optimization really
** is happening when it is suppose to.
*/
-int sqlite3_xferopt_count;
+SQLITE_API int sqlite3_xferopt_count;
#endif /* SQLITE_TEST */
@@ -48119,8 +73115,8 @@ static int xferCompatibleIndex(Index *pDest, Index *pSrc){
if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
return 0; /* Different sort orders */
}
- if( pSrc->azColl[i]!=pDest->azColl[i] ){
- return 0; /* Different sort orders */
+ if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
+ return 0; /* Different collating sequences */
}
}
@@ -48178,17 +73174,18 @@ static int xferOptimization(
int emptySrcTest; /* Address of test for empty pSrc */
Vdbe *v; /* The VDBE we are building */
KeyInfo *pKey; /* Key information for an index */
- int counterMem; /* Memory register used by AUTOINC */
+ int regAutoinc; /* Memory register used by AUTOINC */
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
+ int regData, regRowid; /* Registers holding data and rowid */
if( pSelect==0 ){
return 0; /* Must be of the form INSERT INTO ... SELECT ... */
}
- if( pDest->pTrigger ){
+ if( sqlite3TriggerList(pParse, pDest) ){
return 0; /* tab1 must not have triggers */
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pDest->isVirtual ){
+ if( pDest->tabFlags & TF_Virtual ){
return 0; /* tab1 must not be a virtual table */
}
#endif
@@ -48198,9 +73195,7 @@ static int xferOptimization(
if( onError!=OE_Abort && onError!=OE_Rollback ){
return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
}
- if( pSelect->pSrc==0 ){
- return 0; /* SELECT must have a FROM clause */
- }
+ assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
if( pSelect->pSrc->nSrc!=1 ){
return 0; /* FROM clause must have exactly one term */
}
@@ -48225,7 +73220,7 @@ static int xferOptimization(
if( pSelect->pPrior ){
return 0; /* SELECT may not be a compound query */
}
- if( pSelect->isDistinct ){
+ if( pSelect->selFlags & SF_Distinct ){
return 0; /* SELECT may not be DISTINCT */
}
pEList = pSelect->pEList;
@@ -48243,7 +73238,7 @@ static int xferOptimization(
** we have to check the semantics.
*/
pItem = pSelect->pSrc->a;
- pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
+ pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
if( pSrc==0 ){
return 0; /* FROM clause does not contain a real table */
}
@@ -48251,7 +73246,7 @@ static int xferOptimization(
return 0; /* tab1 and tab2 may not be the same table */
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pSrc->isVirtual ){
+ if( pSrc->tabFlags & TF_Virtual ){
return 0; /* tab2 must not be a virtual table */
}
#endif
@@ -48305,9 +73300,10 @@ static int xferOptimization(
#endif
iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
v = sqlite3GetVdbe(pParse);
+ sqlite3CodeVerifySchema(pParse, iDbSrc);
iSrc = pParse->nTab++;
iDest = pParse->nTab++;
- counterMem = autoIncBegin(pParse, iDbDest, pDest);
+ regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
/* If tables do not have an INTEGER PRIMARY KEY and there
@@ -48320,64 +73316,64 @@ static int xferOptimization(
** insure that all entries in the union of DEST and SRC will be
** unique.
*/
- addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
- emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
+ emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
sqlite3VdbeJumpHere(v, addr1);
}else{
emptyDestTest = 0;
}
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
- emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
+ emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
+ regData = sqlite3GetTempReg(pParse);
+ regRowid = sqlite3GetTempReg(pParse);
if( pDest->iPKey>=0 ){
- addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
- "PRIMARY KEY must be unique", P3_STATIC);
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
+ addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
+ sqlite3HaltConstraint(
+ pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
sqlite3VdbeJumpHere(v, addr2);
- autoIncStep(pParse, counterMem);
+ autoIncStep(pParse, regAutoinc, regRowid);
}else if( pDest->pIndex==0 ){
- addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
+ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
}else{
- addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
- assert( pDest->autoInc==0 );
- }
- sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
- sqlite3VdbeOp3(v, OP_Insert, iDest,
- OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
- pDest->zName, 0);
- sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
- autoIncEnd(pParse, iDbDest, pDest, counterMem);
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
+ assert( (pDest->tabFlags & TF_Autoincrement)==0 );
+ }
+ sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
+ sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
+ sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
- for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
+ for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
}
assert( pSrcIdx );
- sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
- sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
- VdbeComment((v, "# %s", pSrcIdx->zName));
- sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum,
- (char*)pKey, P3_KEYINFO_HANDOFF);
- sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pSrcIdx->zName));
pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
- VdbeComment((v, "# %s", pDestIdx->zName));
- sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum,
- (char*)pKey, P3_KEYINFO_HANDOFF);
- addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
- sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pDestIdx->zName));
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
+ sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
sqlite3VdbeJumpHere(v, addr1);
}
sqlite3VdbeJumpHere(v, emptySrcTest);
- sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ sqlite3ReleaseTempReg(pParse, regData);
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
if( emptyDestTest ){
- sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
sqlite3VdbeJumpHere(v, emptyDestTest);
- sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
return 0;
}else{
return 1;
@@ -48385,6 +73381,11 @@ static int xferOptimization(
}
#endif /* SQLITE_OMIT_XFER_OPT */
+/* Make sure "isView" gets undefined in case this file becomes part of
+** the amalgamation - so that subsequent files do not see isView as a
+** macro. */
+#undef isView
+
/************** End of insert.c **********************************************/
/************** Begin file legacy.c ******************************************/
/*
@@ -48403,7 +73404,7 @@ static int xferOptimization(
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
-** $Id: legacy.c,v 1.16 2006/09/15 07:28:50 drh Exp $
+** $Id: legacy.c,v 1.35 2009/08/07 16:56:00 danielk1977 Exp $
*/
@@ -48417,23 +73418,24 @@ static int xferOptimization(
** argument to xCallback(). If xCallback=NULL then no callback
** is invoked, even for queries.
*/
-int sqlite3_exec(
+SQLITE_API int sqlite3_exec(
sqlite3 *db, /* The database on which the SQL executes */
const char *zSql, /* The SQL to be executed */
sqlite3_callback xCallback, /* Invoke this callback routine */
void *pArg, /* First argument to xCallback() */
char **pzErrMsg /* Write error messages here */
){
- int rc = SQLITE_OK;
- const char *zLeftover;
- sqlite3_stmt *pStmt = 0;
- char **azCols = 0;
+ int rc = SQLITE_OK; /* Return code */
+ const char *zLeftover; /* Tail of unprocessed SQL */
+ sqlite3_stmt *pStmt = 0; /* The current SQL statement */
+ char **azCols = 0; /* Names of result columns */
+ int nRetry = 0; /* Number of retry attempts */
+ int callbackIsInit; /* True if callback data is initialized */
- int nRetry = 0;
- int nChange = 0;
- int nCallback;
+ if( zSql==0 ) zSql = "";
- if( zSql==0 ) return SQLITE_OK;
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3Error(db, SQLITE_OK, 0);
while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
int nCol;
char **azVals = 0;
@@ -48450,14 +73452,8 @@ int sqlite3_exec(
continue;
}
- db->nChange += nChange;
- nCallback = 0;
-
+ callbackIsInit = 0;
nCol = sqlite3_column_count(pStmt);
- azCols = sqliteMalloc(2*nCol*sizeof(const char *) + 1);
- if( azCols==0 ){
- goto exec_out;
- }
while( 1 ){
int i;
@@ -48465,59 +73461,76 @@ int sqlite3_exec(
/* Invoke the callback function if required */
if( xCallback && (SQLITE_ROW==rc ||
- (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
- if( 0==nCallback ){
+ (SQLITE_DONE==rc && !callbackIsInit
+ && db->flags&SQLITE_NullCallback)) ){
+ if( !callbackIsInit ){
+ azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
+ if( azCols==0 ){
+ goto exec_out;
+ }
for(i=0; i<nCol; i++){
azCols[i] = (char *)sqlite3_column_name(pStmt, i);
+ /* sqlite3VdbeSetColName() installs column names as UTF8
+ ** strings so there is no way for sqlite3_column_name() to fail. */
+ assert( azCols[i]!=0 );
}
- nCallback++;
+ callbackIsInit = 1;
}
if( rc==SQLITE_ROW ){
azVals = &azCols[nCol];
for(i=0; i<nCol; i++){
azVals[i] = (char *)sqlite3_column_text(pStmt, i);
+ if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
+ db->mallocFailed = 1;
+ goto exec_out;
+ }
}
}
if( xCallback(pArg, nCol, azVals, azCols) ){
rc = SQLITE_ABORT;
+ sqlite3VdbeFinalize((Vdbe *)pStmt);
+ pStmt = 0;
+ sqlite3Error(db, SQLITE_ABORT, 0);
goto exec_out;
}
}
if( rc!=SQLITE_ROW ){
- rc = sqlite3_finalize(pStmt);
+ rc = sqlite3VdbeFinalize((Vdbe *)pStmt);
pStmt = 0;
- if( db->pVdbe==0 ){
- nChange = db->nChange;
- }
if( rc!=SQLITE_SCHEMA ){
nRetry = 0;
zSql = zLeftover;
- while( isspace((unsigned char)zSql[0]) ) zSql++;
+ while( sqlite3Isspace(zSql[0]) ) zSql++;
}
break;
}
}
- sqliteFree(azCols);
+ sqlite3DbFree(db, azCols);
azCols = 0;
}
exec_out:
- if( pStmt ) sqlite3_finalize(pStmt);
- if( azCols ) sqliteFree(azCols);
+ if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt);
+ sqlite3DbFree(db, azCols);
- rc = sqlite3ApiExit(0, rc);
- if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
- *pzErrMsg = sqlite3_malloc(1+strlen(sqlite3_errmsg(db)));
+ rc = sqlite3ApiExit(db, rc);
+ if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){
+ int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db));
+ *pzErrMsg = sqlite3Malloc(nErrMsg);
if( *pzErrMsg ){
- strcpy(*pzErrMsg, sqlite3_errmsg(db));
+ memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
+ }else{
+ rc = SQLITE_NOMEM;
+ sqlite3Error(db, SQLITE_NOMEM, 0);
}
}else if( pzErrMsg ){
*pzErrMsg = 0;
}
assert( (rc&db->errMask)==rc );
+ sqlite3_mutex_leave(db->mutex);
return rc;
}
@@ -48536,10 +73549,13 @@ exec_out:
*************************************************************************
** This file contains code used to dynamically load extensions into
** the SQLite library.
+**
+** $Id: loadext.c,v 1.60 2009/06/03 01:24:54 drh Exp $
*/
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
-#define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
+#ifndef SQLITE_CORE
+ #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
+#endif
/************** Include sqlite3ext.h in the middle of loadext.c **************/
/************** Begin file sqlite3ext.h **************************************/
/*
@@ -48559,7 +73575,7 @@ exec_out:
** as extensions by SQLite should #include this file instead of
** sqlite3.h.
**
-** @(#) $Id: sqlite3ext.h,v 1.10 2007/03/29 18:46:01 drh Exp $
+** @(#) $Id: sqlite3ext.h,v 1.25 2008/10/12 00:27:54 shane Exp $
*/
#ifndef _SQLITE3EXT_H_
#define _SQLITE3EXT_H_
@@ -48567,8 +73583,14 @@ exec_out:
typedef struct sqlite3_api_routines sqlite3_api_routines;
/*
-** The following structure hold pointers to all of the SQLite API
+** The following structure holds pointers to all of the SQLite API
** routines.
+**
+** WARNING: In order to maintain backwards compatibility, add new
+** interfaces to the end of this structure only. If you insert new
+** interfaces in the middle of this structure, then older different
+** versions of SQLite will not be able to load each others' shared
+** libraries!
*/
struct sqlite3_api_routines {
void * (*aggregate_context)(sqlite3_context*,int nBytes);
@@ -48615,7 +73637,7 @@ struct sqlite3_api_routines {
int (*complete)(const char*sql);
int (*complete16)(const void*sql);
int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
- int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
+ int (*create_collation16)(sqlite3*,const void*,int,void*,int(*)(void*,int,const void*,int,const void*));
int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
@@ -48686,10 +73708,50 @@ struct sqlite3_api_routines {
const void * (*value_text16le)(sqlite3_value*);
int (*value_type)(sqlite3_value*);
char *(*vmprintf)(const char*,va_list);
+ /* Added ??? */
int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
+ /* Added by 3.3.13 */
int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
int (*clear_bindings)(sqlite3_stmt*);
+ /* Added by 3.4.1 */
+ int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *));
+ /* Added by 3.5.0 */
+ int (*bind_zeroblob)(sqlite3_stmt*,int,int);
+ int (*blob_bytes)(sqlite3_blob*);
+ int (*blob_close)(sqlite3_blob*);
+ int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**);
+ int (*blob_read)(sqlite3_blob*,void*,int,int);
+ int (*blob_write)(sqlite3_blob*,const void*,int,int);
+ int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*));
+ int (*file_control)(sqlite3*,const char*,int,void*);
+ sqlite3_int64 (*memory_highwater)(int);
+ sqlite3_int64 (*memory_used)(void);
+ sqlite3_mutex *(*mutex_alloc)(int);
+ void (*mutex_enter)(sqlite3_mutex*);
+ void (*mutex_free)(sqlite3_mutex*);
+ void (*mutex_leave)(sqlite3_mutex*);
+ int (*mutex_try)(sqlite3_mutex*);
+ int (*open_v2)(const char*,sqlite3**,int,const char*);
+ int (*release_memory)(int);
+ void (*result_error_nomem)(sqlite3_context*);
+ void (*result_error_toobig)(sqlite3_context*);
+ int (*sleep)(int);
+ void (*soft_heap_limit)(int);
+ sqlite3_vfs *(*vfs_find)(const char*);
+ int (*vfs_register)(sqlite3_vfs*,int);
+ int (*vfs_unregister)(sqlite3_vfs*);
+ int (*xthreadsafe)(void);
+ void (*result_zeroblob)(sqlite3_context*,int);
+ void (*result_error_code)(sqlite3_context*,int);
+ int (*test_control)(int, ...);
+ void (*randomness)(int,void*);
+ sqlite3 *(*context_db_handle)(sqlite3_context*);
+ int (*extended_result_codes)(sqlite3*,int);
+ int (*limit)(sqlite3*,int,int);
+ sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
+ const char *(*sql)(sqlite3_stmt*);
+ int (*status)(int,int*,int*,int);
};
/*
@@ -48705,7 +73767,9 @@ struct sqlite3_api_routines {
*/
#ifndef SQLITE_CORE
#define sqlite3_aggregate_context sqlite3_api->aggregate_context
+#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite3_aggregate_count sqlite3_api->aggregate_count
+#endif
#define sqlite3_bind_blob sqlite3_api->bind_blob
#define sqlite3_bind_double sqlite3_api->bind_double
#define sqlite3_bind_int sqlite3_api->bind_int
@@ -48752,6 +73816,7 @@ struct sqlite3_api_routines {
#define sqlite3_create_function sqlite3_api->create_function
#define sqlite3_create_function16 sqlite3_api->create_function16
#define sqlite3_create_module sqlite3_api->create_module
+#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
#define sqlite3_data_count sqlite3_api->data_count
#define sqlite3_db_handle sqlite3_api->db_handle
#define sqlite3_declare_vtab sqlite3_api->declare_vtab
@@ -48760,14 +73825,18 @@ struct sqlite3_api_routines {
#define sqlite3_errmsg sqlite3_api->errmsg
#define sqlite3_errmsg16 sqlite3_api->errmsg16
#define sqlite3_exec sqlite3_api->exec
+#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite3_expired sqlite3_api->expired
+#endif
#define sqlite3_finalize sqlite3_api->finalize
#define sqlite3_free sqlite3_api->free
#define sqlite3_free_table sqlite3_api->free_table
#define sqlite3_get_autocommit sqlite3_api->get_autocommit
#define sqlite3_get_auxdata sqlite3_api->get_auxdata
#define sqlite3_get_table sqlite3_api->get_table
+#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite3_global_recover sqlite3_api->global_recover
+#endif
#define sqlite3_interrupt sqlite3_api->interruptx
#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
#define sqlite3_libversion sqlite3_api->libversion
@@ -48805,7 +73874,9 @@ struct sqlite3_api_routines {
#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
#define sqlite3_total_changes sqlite3_api->total_changes
#define sqlite3_trace sqlite3_api->trace
+#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
+#endif
#define sqlite3_update_hook sqlite3_api->update_hook
#define sqlite3_user_data sqlite3_api->user_data
#define sqlite3_value_blob sqlite3_api->value_blob
@@ -48825,9 +73896,44 @@ struct sqlite3_api_routines {
#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
#define sqlite3_clear_bindings sqlite3_api->clear_bindings
+#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
+#define sqlite3_blob_bytes sqlite3_api->blob_bytes
+#define sqlite3_blob_close sqlite3_api->blob_close
+#define sqlite3_blob_open sqlite3_api->blob_open
+#define sqlite3_blob_read sqlite3_api->blob_read
+#define sqlite3_blob_write sqlite3_api->blob_write
+#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
+#define sqlite3_file_control sqlite3_api->file_control
+#define sqlite3_memory_highwater sqlite3_api->memory_highwater
+#define sqlite3_memory_used sqlite3_api->memory_used
+#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
+#define sqlite3_mutex_enter sqlite3_api->mutex_enter
+#define sqlite3_mutex_free sqlite3_api->mutex_free
+#define sqlite3_mutex_leave sqlite3_api->mutex_leave
+#define sqlite3_mutex_try sqlite3_api->mutex_try
+#define sqlite3_open_v2 sqlite3_api->open_v2
+#define sqlite3_release_memory sqlite3_api->release_memory
+#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
+#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
+#define sqlite3_sleep sqlite3_api->sleep
+#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
+#define sqlite3_vfs_find sqlite3_api->vfs_find
+#define sqlite3_vfs_register sqlite3_api->vfs_register
+#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
+#define sqlite3_threadsafe sqlite3_api->xthreadsafe
+#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
+#define sqlite3_result_error_code sqlite3_api->result_error_code
+#define sqlite3_test_control sqlite3_api->test_control
+#define sqlite3_randomness sqlite3_api->randomness
+#define sqlite3_context_db_handle sqlite3_api->context_db_handle
+#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes
+#define sqlite3_limit sqlite3_api->limit
+#define sqlite3_next_stmt sqlite3_api->next_stmt
+#define sqlite3_sql sqlite3_api->sql
+#define sqlite3_status sqlite3_api->status
#endif /* SQLITE_CORE */
-#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api;
+#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
#endif /* _SQLITE3EXT_H_ */
@@ -48835,6 +73941,8 @@ struct sqlite3_api_routines {
/************** End of sqlite3ext.h ******************************************/
/************** Continuing where we left off in loadext.c ********************/
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+
/*
** Some API routines are omitted when various features are
** excluded from a build of SQLite. Substitute a NULL pointer
@@ -48851,28 +73959,32 @@ struct sqlite3_api_routines {
#endif
#ifdef SQLITE_OMIT_AUTHORIZATION
-# define sqlite3_set_authorizer 0
+# define sqlite3_set_authorizer 0
#endif
#ifdef SQLITE_OMIT_UTF16
-# define sqlite3_bind_text16 0
-# define sqlite3_collation_needed16 0
-# define sqlite3_column_decltype16 0
-# define sqlite3_column_name16 0
-# define sqlite3_column_text16 0
-# define sqlite3_complete16 0
-# define sqlite3_create_collation16 0
-# define sqlite3_create_function16 0
-# define sqlite3_errmsg16 0
-# define sqlite3_open16 0
-# define sqlite3_prepare16 0
-# define sqlite3_result_error16 0
-# define sqlite3_result_text16 0
-# define sqlite3_result_text16be 0
-# define sqlite3_result_text16le 0
-# define sqlite3_value_text16 0
-# define sqlite3_value_text16be 0
-# define sqlite3_value_text16le 0
+# define sqlite3_bind_text16 0
+# define sqlite3_collation_needed16 0
+# define sqlite3_column_decltype16 0
+# define sqlite3_column_name16 0
+# define sqlite3_column_text16 0
+# define sqlite3_complete16 0
+# define sqlite3_create_collation16 0
+# define sqlite3_create_function16 0
+# define sqlite3_errmsg16 0
+# define sqlite3_open16 0
+# define sqlite3_prepare16 0
+# define sqlite3_prepare16_v2 0
+# define sqlite3_result_error16 0
+# define sqlite3_result_text16 0
+# define sqlite3_result_text16be 0
+# define sqlite3_result_text16le 0
+# define sqlite3_value_text16 0
+# define sqlite3_value_text16be 0
+# define sqlite3_value_text16le 0
+# define sqlite3_column_database_name16 0
+# define sqlite3_column_table_name16 0
+# define sqlite3_column_origin_name16 0
#endif
#ifdef SQLITE_OMIT_COMPLETE
@@ -48886,6 +73998,7 @@ struct sqlite3_api_routines {
#ifdef SQLITE_OMIT_VIRTUALTABLE
# define sqlite3_create_module 0
+# define sqlite3_create_module_v2 0
# define sqlite3_declare_vtab 0
#endif
@@ -48903,6 +74016,15 @@ struct sqlite3_api_routines {
# define sqlite3_get_table 0
#endif
+#ifdef SQLITE_OMIT_INCRBLOB
+#define sqlite3_bind_zeroblob 0
+#define sqlite3_blob_bytes 0
+#define sqlite3_blob_close 0
+#define sqlite3_blob_open 0
+#define sqlite3_blob_read 0
+#define sqlite3_blob_write 0
+#endif
+
/*
** The following structure contains pointers to all SQLite API routines.
** A pointer to this structure is passed into extensions when they are
@@ -48918,9 +74040,13 @@ struct sqlite3_api_routines {
** also check to make sure that the pointer to the function is
** not NULL before calling it.
*/
-const sqlite3_api_routines sqlite3_apis = {
+static const sqlite3_api_routines sqlite3Apis = {
sqlite3_aggregate_context,
+#ifndef SQLITE_OMIT_DEPRECATED
sqlite3_aggregate_count,
+#else
+ 0,
+#endif
sqlite3_bind_blob,
sqlite3_bind_double,
sqlite3_bind_int,
@@ -48975,7 +74101,11 @@ const sqlite3_api_routines sqlite3_apis = {
sqlite3_errmsg,
sqlite3_errmsg16,
sqlite3_exec,
+#ifndef SQLITE_OMIT_DEPRECATED
sqlite3_expired,
+#else
+ 0,
+#endif
sqlite3_finalize,
sqlite3_free,
sqlite3_free_table,
@@ -49015,10 +74145,18 @@ const sqlite3_api_routines sqlite3_apis = {
sqlite3_snprintf,
sqlite3_step,
sqlite3_table_column_metadata,
+#ifndef SQLITE_OMIT_DEPRECATED
sqlite3_thread_cleanup,
+#else
+ 0,
+#endif
sqlite3_total_changes,
sqlite3_trace,
+#ifndef SQLITE_OMIT_DEPRECATED
sqlite3_transfer_bindings,
+#else
+ 0,
+#endif
sqlite3_update_hook,
sqlite3_user_data,
sqlite3_value_blob,
@@ -49050,6 +74188,66 @@ const sqlite3_api_routines sqlite3_apis = {
sqlite3_prepare_v2,
sqlite3_prepare16_v2,
sqlite3_clear_bindings,
+
+ /*
+ ** Added for 3.4.1
+ */
+ sqlite3_create_module_v2,
+
+ /*
+ ** Added for 3.5.0
+ */
+ sqlite3_bind_zeroblob,
+ sqlite3_blob_bytes,
+ sqlite3_blob_close,
+ sqlite3_blob_open,
+ sqlite3_blob_read,
+ sqlite3_blob_write,
+ sqlite3_create_collation_v2,
+ sqlite3_file_control,
+ sqlite3_memory_highwater,
+ sqlite3_memory_used,
+#ifdef SQLITE_MUTEX_OMIT
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+#else
+ sqlite3_mutex_alloc,
+ sqlite3_mutex_enter,
+ sqlite3_mutex_free,
+ sqlite3_mutex_leave,
+ sqlite3_mutex_try,
+#endif
+ sqlite3_open_v2,
+ sqlite3_release_memory,
+ sqlite3_result_error_nomem,
+ sqlite3_result_error_toobig,
+ sqlite3_sleep,
+ sqlite3_soft_heap_limit,
+ sqlite3_vfs_find,
+ sqlite3_vfs_register,
+ sqlite3_vfs_unregister,
+
+ /*
+ ** Added for 3.5.8
+ */
+ sqlite3_threadsafe,
+ sqlite3_result_zeroblob,
+ sqlite3_result_error_code,
+ sqlite3_test_control,
+ sqlite3_randomness,
+ sqlite3_context_db_handle,
+
+ /*
+ ** Added for 3.6.0
+ */
+ sqlite3_extended_result_codes,
+ sqlite3_limit,
+ sqlite3_next_stmt,
+ sqlite3_sql,
+ sqlite3_status,
};
/*
@@ -49062,18 +74260,22 @@ const sqlite3_api_routines sqlite3_apis = {
**
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
** error message text. The calling function should free this memory
-** by calling sqlite3_free().
+** by calling sqlite3DbFree(db, ).
*/
-int sqlite3_load_extension(
+static int sqlite3LoadExtension(
sqlite3 *db, /* Load the extension into this database connection */
const char *zFile, /* Name of the shared library containing extension */
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
char **pzErrMsg /* Put error message here if not 0 */
){
+ sqlite3_vfs *pVfs = db->pVfs;
void *handle;
int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
char *zErrmsg = 0;
void **aHandle;
+ const int nMsg = 300;
+
+ if( pzErrMsg ) *pzErrMsg = 0;
/* Ticket #1863. To avoid a creating security problems for older
** applications that relink against newer versions of SQLite, the
@@ -49092,156 +74294,241 @@ int sqlite3_load_extension(
zProc = "sqlite3_extension_init";
}
- handle = sqlite3OsDlopen(zFile);
+ handle = sqlite3OsDlOpen(pVfs, zFile);
if( handle==0 ){
if( pzErrMsg ){
- *pzErrMsg = sqlite3_mprintf("unable to open shared library [%s]", zFile);
+ zErrmsg = sqlite3StackAllocZero(db, nMsg);
+ if( zErrmsg ){
+ sqlite3_snprintf(nMsg, zErrmsg,
+ "unable to open shared library [%s]", zFile);
+ sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
+ *pzErrMsg = sqlite3DbStrDup(0, zErrmsg);
+ sqlite3StackFree(db, zErrmsg);
+ }
}
return SQLITE_ERROR;
}
xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
- sqlite3OsDlsym(handle, zProc);
+ sqlite3OsDlSym(pVfs, handle, zProc);
if( xInit==0 ){
if( pzErrMsg ){
- *pzErrMsg = sqlite3_mprintf("no entry point [%s] in shared library [%s]",
- zProc, zFile);
+ zErrmsg = sqlite3StackAllocZero(db, nMsg);
+ if( zErrmsg ){
+ sqlite3_snprintf(nMsg, zErrmsg,
+ "no entry point [%s] in shared library [%s]", zProc,zFile);
+ sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
+ *pzErrMsg = sqlite3DbStrDup(0, zErrmsg);
+ sqlite3StackFree(db, zErrmsg);
+ }
+ sqlite3OsDlClose(pVfs, handle);
}
- sqlite3OsDlclose(handle);
return SQLITE_ERROR;
- }else if( xInit(db, &zErrmsg, &sqlite3_apis) ){
+ }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){
if( pzErrMsg ){
*pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
}
sqlite3_free(zErrmsg);
- sqlite3OsDlclose(handle);
+ sqlite3OsDlClose(pVfs, handle);
return SQLITE_ERROR;
}
/* Append the new shared library handle to the db->aExtension array. */
- db->nExtension++;
- aHandle = sqliteMalloc(sizeof(handle)*db->nExtension);
+ aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
if( aHandle==0 ){
return SQLITE_NOMEM;
}
if( db->nExtension>0 ){
- memcpy(aHandle, db->aExtension, sizeof(handle)*(db->nExtension-1));
+ memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
}
- sqliteFree(db->aExtension);
+ sqlite3DbFree(db, db->aExtension);
db->aExtension = aHandle;
- db->aExtension[db->nExtension-1] = handle;
+ db->aExtension[db->nExtension++] = handle;
return SQLITE_OK;
}
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+){
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
+ rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
/*
** Call this routine when the database connection is closing in order
** to clean up loaded extensions
*/
-void sqlite3CloseExtensions(sqlite3 *db){
+SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
int i;
+ assert( sqlite3_mutex_held(db->mutex) );
for(i=0; i<db->nExtension; i++){
- sqlite3OsDlclose(db->aExtension[i]);
+ sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
}
- sqliteFree(db->aExtension);
+ sqlite3DbFree(db, db->aExtension);
}
/*
** Enable or disable extension loading. Extension loading is disabled by
** default so as not to open security holes in older applications.
*/
-int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
+ sqlite3_mutex_enter(db->mutex);
if( onoff ){
db->flags |= SQLITE_LoadExtension;
}else{
db->flags &= ~SQLITE_LoadExtension;
}
+ sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+
/*
-** A list of automatically loaded extensions.
+** The auto-extension code added regardless of whether or not extension
+** loading is supported. We need a dummy sqlite3Apis pointer for that
+** code if regular extension loading is not available. This is that
+** dummy pointer.
+*/
+#ifdef SQLITE_OMIT_LOAD_EXTENSION
+static const sqlite3_api_routines sqlite3Apis = { 0 };
+#endif
+
+
+/*
+** The following object holds the list of automatically loaded
+** extensions.
**
-** This list is shared across threads, so be sure to hold the
-** mutex while accessing or changing it.
+** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER
+** mutex must be held while accessing this list.
*/
-static int nAutoExtension = 0;
-static void **aAutoExtension = 0;
+typedef struct sqlite3AutoExtList sqlite3AutoExtList;
+static SQLITE_WSD struct sqlite3AutoExtList {
+ int nExt; /* Number of entries in aExt[] */
+ void (**aExt)(void); /* Pointers to the extension init functions */
+} sqlite3Autoext = { 0, 0 };
+
+/* The "wsdAutoext" macro will resolve to the autoextension
+** state vector. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdStat can refer directly
+** to the "sqlite3Autoext" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdAutoextInit \
+ sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext)
+# define wsdAutoext x[0]
+#else
+# define wsdAutoextInit
+# define wsdAutoext sqlite3Autoext
+#endif
/*
** Register a statically linked extension that is automatically
** loaded by every new database connection.
*/
-int sqlite3_auto_extension(void *xInit){
- int i;
+SQLITE_API int sqlite3_auto_extension(void (*xInit)(void)){
int rc = SQLITE_OK;
- sqlite3OsEnterMutex();
- for(i=0; i<nAutoExtension; i++){
- if( aAutoExtension[i]==xInit ) break;
- }
- if( i==nAutoExtension ){
- nAutoExtension++;
- aAutoExtension = sqlite3Realloc( aAutoExtension,
- nAutoExtension*sizeof(aAutoExtension[0]) );
- if( aAutoExtension==0 ){
- nAutoExtension = 0;
- rc = SQLITE_NOMEM;
- }else{
- aAutoExtension[nAutoExtension-1] = xInit;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ){
+ return rc;
+ }else
+#endif
+ {
+ int i;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ wsdAutoextInit;
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<wsdAutoext.nExt; i++){
+ if( wsdAutoext.aExt[i]==xInit ) break;
+ }
+ if( i==wsdAutoext.nExt ){
+ int nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]);
+ void (**aNew)(void);
+ aNew = sqlite3_realloc(wsdAutoext.aExt, nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ wsdAutoext.aExt = aNew;
+ wsdAutoext.aExt[wsdAutoext.nExt] = xInit;
+ wsdAutoext.nExt++;
+ }
}
+ sqlite3_mutex_leave(mutex);
+ assert( (rc&0xff)==rc );
+ return rc;
}
- sqlite3OsLeaveMutex();
- assert( (rc&0xff)==rc );
- return rc;
}
/*
** Reset the automatic extension loading mechanism.
*/
-void sqlite3_reset_auto_extension(void){
- sqlite3OsEnterMutex();
- sqliteFree(aAutoExtension);
- aAutoExtension = 0;
- nAutoExtension = 0;
- sqlite3OsLeaveMutex();
+SQLITE_API void sqlite3_reset_auto_extension(void){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize()==SQLITE_OK )
+#endif
+ {
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ wsdAutoextInit;
+ sqlite3_mutex_enter(mutex);
+ sqlite3_free(wsdAutoext.aExt);
+ wsdAutoext.aExt = 0;
+ wsdAutoext.nExt = 0;
+ sqlite3_mutex_leave(mutex);
+ }
}
/*
** Load all automatic extensions.
+**
+** If anything goes wrong, set an error in the database connection.
*/
-int sqlite3AutoLoadExtensions(sqlite3 *db){
+SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3 *db){
int i;
int go = 1;
- int rc = SQLITE_OK;
int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
- if( nAutoExtension==0 ){
+ wsdAutoextInit;
+ if( wsdAutoext.nExt==0 ){
/* Common case: early out without every having to acquire a mutex */
- return SQLITE_OK;
+ return;
}
for(i=0; go; i++){
- char *zErrmsg = 0;
- sqlite3OsEnterMutex();
- if( i>=nAutoExtension ){
+ char *zErrmsg;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_mutex_enter(mutex);
+ if( i>=wsdAutoext.nExt ){
xInit = 0;
go = 0;
}else{
xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
- aAutoExtension[i];
+ wsdAutoext.aExt[i];
}
- sqlite3OsLeaveMutex();
- if( xInit && xInit(db, &zErrmsg, &sqlite3_apis) ){
+ sqlite3_mutex_leave(mutex);
+ zErrmsg = 0;
+ if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){
sqlite3Error(db, SQLITE_ERROR,
"automatic extension loading failed: %s", zErrmsg);
go = 0;
- rc = SQLITE_ERROR;
}
+ sqlite3_free(zErrmsg);
}
- return rc;
}
-#endif /* SQLITE_OMIT_LOAD_EXTENSION */
-
/************** End of loadext.c *********************************************/
/************** Begin file pragma.c ******************************************/
/*
@@ -49257,15 +74544,12 @@ int sqlite3AutoLoadExtensions(sqlite3 *db){
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
-** $Id: pragma.c,v 1.132 2007/03/30 17:11:13 danielk1977 Exp $
+** $Id: pragma.c,v 1.214 2009/07/02 07:47:33 danielk1977 Exp $
*/
/* Ignore this whole file if pragmas are disabled
*/
-#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
-
-#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
-#endif
+#if !defined(SQLITE_OMIT_PRAGMA)
/*
** Interpret the given string as a safety level. Return 0 for OFF,
@@ -49277,18 +74561,18 @@ int sqlite3AutoLoadExtensions(sqlite3 *db){
** to support legacy SQL code. The safety level used to be boolean
** and older scripts may have used numbers 0 for OFF and 1 for ON.
*/
-static int getSafetyLevel(const char *z){
+static u8 getSafetyLevel(const char *z){
/* 123456789 123456789 */
static const char zText[] = "onoffalseyestruefull";
static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2};
int i, n;
- if( isdigit(*z) ){
- return atoi(z);
+ if( sqlite3Isdigit(*z) ){
+ return (u8)atoi(z);
}
- n = strlen(z);
- for(i=0; i<sizeof(iLength); i++){
+ n = sqlite3Strlen30(z);
+ for(i=0; i<ArraySize(iLength); i++){
if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){
return iValue[i];
}
@@ -49299,7 +74583,7 @@ static int getSafetyLevel(const char *z){
/*
** Interpret the given string as a boolean value.
*/
-static int getBoolean(const char *z){
+static u8 getBoolean(const char *z){
return getSafetyLevel(z)&1;
}
@@ -49314,6 +74598,23 @@ static int getLockingMode(const char *z){
return PAGER_LOCKINGMODE_QUERY;
}
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Interpret the given string as an auto-vacuum mode value.
+**
+** The following strings, "none", "full" and "incremental" are
+** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
+*/
+static int getAutoVacuum(const char *z){
+ int i;
+ if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
+ if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
+ if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
+ i = atoi(z);
+ return (u8)((i>=0&&i<=2)?i:0);
+}
+#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
+
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** Interpret the given string as a temp db location. Return 1 for file
@@ -49341,7 +74642,7 @@ static int getTempStore(const char *z){
static int invalidateTempStorage(Parse *pParse){
sqlite3 *db = pParse->db;
if( db->aDb[1].pBt!=0 ){
- if( !db->autoCommit ){
+ if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
"from within a transaction");
return SQLITE_ERROR;
@@ -49357,7 +74658,7 @@ static int invalidateTempStorage(Parse *pParse){
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** If the TEMP database is open, close it and mark the database schema
-** as needing reloading. This must be done when using the TEMP_STORE
+** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
** or DEFAULT_TEMP_STORE pragmas.
*/
static int changeTempStorage(Parse *pParse, const char *zStorageType){
@@ -49367,7 +74668,7 @@ static int changeTempStorage(Parse *pParse, const char *zStorageType){
if( invalidateTempStorage( pParse ) != SQLITE_OK ){
return SQLITE_ERROR;
}
- db->temp_store = ts;
+ db->temp_store = (u8)ts;
return SQLITE_OK;
}
#endif /* SQLITE_PAGER_PRAGMAS */
@@ -49375,14 +74676,17 @@ static int changeTempStorage(Parse *pParse, const char *zStorageType){
/*
** Generate code to return a single integer value.
*/
-static void returnSingleInt(Parse *pParse, const char *zLabel, int value){
+static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){
Vdbe *v = sqlite3GetVdbe(pParse);
- sqlite3VdbeAddOp(v, OP_Integer, value, 0);
- if( pParse->explain==0 ){
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P3_STATIC);
+ int mem = ++pParse->nMem;
+ i64 *pI64 = sqlite3DbMallocRaw(pParse->db, sizeof(value));
+ if( pI64 ){
+ memcpy(pI64, &value, sizeof(value));
}
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
+ sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
}
#ifndef SQLITE_OMIT_FLAG_PRAGMAS
@@ -49396,15 +74700,18 @@ static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
const char *zName; /* Name of the pragma */
int mask; /* Mask for the db->flags value */
} aPragma[] = {
- { "vdbe_trace", SQLITE_VdbeTrace },
- { "sql_trace", SQLITE_SqlTrace },
- { "vdbe_listing", SQLITE_VdbeListing },
{ "full_column_names", SQLITE_FullColNames },
{ "short_column_names", SQLITE_ShortColNames },
{ "count_changes", SQLITE_CountRows },
{ "empty_result_callbacks", SQLITE_NullCallback },
{ "legacy_file_format", SQLITE_LegacyFileFmt },
{ "fullfsync", SQLITE_FullFSync },
+ { "reverse_unordered_selects", SQLITE_ReverseOrder },
+#ifdef SQLITE_DEBUG
+ { "sql_trace", SQLITE_SqlTrace },
+ { "vdbe_listing", SQLITE_VdbeListing },
+ { "vdbe_trace", SQLITE_VdbeTrace },
+#endif
#ifndef SQLITE_OMIT_CHECK
{ "ignore_check_constraints", SQLITE_IgnoreChecks },
#endif
@@ -49415,15 +74722,17 @@ static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
/* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
** flag if there are any active statements. */
{ "read_uncommitted", SQLITE_ReadUncommitted },
+ { "recursive_triggers", SQLITE_RecTriggers },
};
int i;
const struct sPragmaType *p;
- for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){
+ for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){
if( sqlite3StrICmp(zLeft, p->zName)==0 ){
sqlite3 *db = pParse->db;
Vdbe *v;
v = sqlite3GetVdbe(pParse);
- if( v ){
+ assert( v!=0 ); /* Already allocated by sqlite3Pragma() */
+ if( ALWAYS(v) ){
if( zRight==0 ){
returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 );
}else{
@@ -49432,8 +74741,15 @@ static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
}else{
db->flags &= ~p->mask;
}
+
+ /* Many of the flag-pragmas modify the code generated by the SQL
+ ** compiler (eg. count_changes). So add an opcode to expire all
+ ** compiled SQL statements after modifying a pragma value.
+ */
+ sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
}
}
+
return 1;
}
}
@@ -49442,6 +74758,21 @@ static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
/*
+** Return a human-readable name for a constraint resolution action.
+*/
+static const char *actionName(u8 action){
+ const char *zName;
+ switch( action ){
+ case OE_SetNull: zName = "SET NULL"; break;
+ case OE_SetDflt: zName = "SET DEFAULT"; break;
+ case OE_Cascade: zName = "CASCADE"; break;
+ default: zName = "RESTRICT";
+ assert( action==OE_Restrict ); break;
+ }
+ return zName;
+}
+
+/*
** Process a pragma statement.
**
** Pragmas are of this form:
@@ -49456,7 +74787,7 @@ static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
** and pId2 is the id. If the left side is just "id" then pId1 is the
** id and pId2 is any empty string.
*/
-void sqlite3Pragma(
+SQLITE_PRIVATE void sqlite3Pragma(
Parse *pParse,
Token *pId1, /* First part of [database.]id field */
Token *pId2, /* Second part of [database.]id field, or NULL */
@@ -49470,8 +74801,9 @@ void sqlite3Pragma(
int iDb; /* Database index for <database> */
sqlite3 *db = pParse->db;
Db *pDb;
- Vdbe *v = sqlite3GetVdbe(pParse);
+ Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db);
if( v==0 ) return;
+ pParse->nMem = 2;
/* Interpret the [database.] part of the pragma statement. iDb is the
** index of the database this pragma is being applied to in db.aDb[]. */
@@ -49486,15 +74818,16 @@ void sqlite3Pragma(
return;
}
- zLeft = sqlite3NameFromToken(pId);
+ zLeft = sqlite3NameFromToken(db, pId);
if( !zLeft ) return;
if( minusFlag ){
- zRight = sqlite3MPrintf("-%T", pValue);
+ zRight = sqlite3MPrintf(db, "-%T", pValue);
}else{
- zRight = sqlite3NameFromToken(pValue);
+ zRight = sqlite3NameFromToken(db, pValue);
}
- zDb = ((iDb>0)?pDb->zName:0);
+ assert( pId2 );
+ zDb = pId2->n>0 ? pDb->zName : 0;
if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
goto pragma_out;
}
@@ -49518,32 +74851,36 @@ void sqlite3Pragma(
*/
if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
static const VdbeOpList getCacheSize[] = {
- { OP_ReadCookie, 0, 2, 0}, /* 0 */
- { OP_AbsValue, 0, 0, 0},
- { OP_Dup, 0, 0, 0},
- { OP_Integer, 0, 0, 0},
- { OP_Ne, 0, 6, 0},
- { OP_Integer, 0, 0, 0}, /* 5 */
- { OP_Callback, 1, 0, 0},
+ { OP_Transaction, 0, 0, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
+ { OP_IfPos, 1, 7, 0},
+ { OP_Integer, 0, 2, 0},
+ { OP_Subtract, 1, 2, 1},
+ { OP_IfPos, 1, 7, 0},
+ { OP_Integer, 0, 1, 0}, /* 6 */
+ { OP_ResultRow, 1, 1, 0},
};
int addr;
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ sqlite3VdbeUsesBtree(v, iDb);
if( !zRight ){
sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P3_STATIC);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC);
+ pParse->nMem += 2;
addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
sqlite3VdbeChangeP1(v, addr, iDb);
- sqlite3VdbeChangeP1(v, addr+5, MAX_PAGES);
+ sqlite3VdbeChangeP1(v, addr+1, iDb);
+ sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE);
}else{
int size = atoi(zRight);
if( size<0 ) size = -size;
sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3VdbeAddOp(v, OP_Integer, size, 0);
- sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 2);
- addr = sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
- sqlite3VdbeAddOp(v, OP_Ge, 0, addr+3);
- sqlite3VdbeAddOp(v, OP_Negative, 0, 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 2);
+ sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, BTREE_DEFAULT_CACHE_SIZE);
+ addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, -size, 1);
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, 1);
pDb->pSchema->cache_size = size;
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
}
@@ -49560,12 +74897,57 @@ void sqlite3Pragma(
*/
if( sqlite3StrICmp(zLeft,"page_size")==0 ){
Btree *pBt = pDb->pBt;
+ assert( pBt!=0 );
if( !zRight ){
- int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
+ int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
returnSingleInt(pParse, "page_size", size);
}else{
- sqlite3BtreeSetPageSize(pBt, atoi(zRight), -1);
+ /* Malloc may fail when setting the page-size, as there is an internal
+ ** buffer that the pager module resizes using sqlite3_realloc().
+ */
+ db->nextPagesize = atoi(zRight);
+ if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
+ db->mallocFailed = 1;
+ }
+ }
+ }else
+
+ /*
+ ** PRAGMA [database.]max_page_count
+ ** PRAGMA [database.]max_page_count=N
+ **
+ ** The first form reports the current setting for the
+ ** maximum number of pages in the database file. The
+ ** second form attempts to change this setting. Both
+ ** forms return the current setting.
+ */
+ if( sqlite3StrICmp(zLeft,"max_page_count")==0 ){
+ Btree *pBt = pDb->pBt;
+ int newMax = 0;
+ assert( pBt!=0 );
+ if( zRight ){
+ newMax = atoi(zRight);
+ }
+ if( ALWAYS(pBt) ){
+ newMax = sqlite3BtreeMaxPageCount(pBt, newMax);
}
+ returnSingleInt(pParse, "max_page_count", newMax);
+ }else
+
+ /*
+ ** PRAGMA [database.]page_count
+ **
+ ** Return the number of pages in the specified database.
+ */
+ if( sqlite3StrICmp(zLeft,"page_count")==0 ){
+ int iReg;
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ iReg = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "page_count", SQLITE_STATIC);
}else
/*
@@ -49599,7 +74981,7 @@ void sqlite3Pragma(
pPager = sqlite3BtreePager(db->aDb[ii].pBt);
sqlite3PagerLockingMode(pPager, eMode);
}
- db->dfltLockMode = eMode;
+ db->dfltLockMode = (u8)eMode;
}
pPager = sqlite3BtreePager(pDb->pBt);
eMode = sqlite3PagerLockingMode(pPager, eMode);
@@ -49610,31 +74992,176 @@ void sqlite3Pragma(
zRet = "exclusive";
}
sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P3_STATIC);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, zRet, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", SQLITE_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}else
+
+ /*
+ ** PRAGMA [database.]journal_mode
+ ** PRAGMA [database.]journal_mode = (delete|persist|off|truncate|memory)
+ */
+ if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){
+ int eMode;
+ static char * const azModeName[] = {
+ "delete", "persist", "off", "truncate", "memory"
+ };
+
+ if( zRight==0 ){
+ eMode = PAGER_JOURNALMODE_QUERY;
+ }else{
+ int n = sqlite3Strlen30(zRight);
+ eMode = sizeof(azModeName)/sizeof(azModeName[0]) - 1;
+ while( eMode>=0 && sqlite3StrNICmp(zRight, azModeName[eMode], n)!=0 ){
+ eMode--;
+ }
+ }
+ if( pId2->n==0 && eMode==PAGER_JOURNALMODE_QUERY ){
+ /* Simple "PRAGMA journal_mode;" statement. This is a query for
+ ** the current default journal mode (which may be different to
+ ** the journal-mode of the main database).
+ */
+ eMode = db->dfltJournalMode;
+ }else{
+ Pager *pPager;
+ if( pId2->n==0 ){
+ /* This indicates that no database name was specified as part
+ ** of the PRAGMA command. In this case the journal-mode must be
+ ** set on all attached databases, as well as the main db file.
+ **
+ ** Also, the sqlite3.dfltJournalMode variable is set so that
+ ** any subsequently attached databases also use the specified
+ ** journal mode.
+ */
+ int ii;
+ assert(pDb==&db->aDb[0]);
+ for(ii=1; ii<db->nDb; ii++){
+ if( db->aDb[ii].pBt ){
+ pPager = sqlite3BtreePager(db->aDb[ii].pBt);
+ sqlite3PagerJournalMode(pPager, eMode);
+ }
+ }
+ db->dfltJournalMode = (u8)eMode;
+ }
+ pPager = sqlite3BtreePager(pDb->pBt);
+ eMode = sqlite3PagerJournalMode(pPager, eMode);
+ }
+ assert( eMode==PAGER_JOURNALMODE_DELETE
+ || eMode==PAGER_JOURNALMODE_TRUNCATE
+ || eMode==PAGER_JOURNALMODE_PERSIST
+ || eMode==PAGER_JOURNALMODE_OFF
+ || eMode==PAGER_JOURNALMODE_MEMORY );
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", SQLITE_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0,
+ azModeName[eMode], P4_STATIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }else
+
+ /*
+ ** PRAGMA [database.]journal_size_limit
+ ** PRAGMA [database.]journal_size_limit=N
+ **
+ ** Get or set the size limit on rollback journal files.
+ */
+ if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ i64 iLimit = -2;
+ if( zRight ){
+ sqlite3Atoi64(zRight, &iLimit);
+ if( iLimit<-1 ) iLimit = -1;
+ }
+ iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
+ returnSingleInt(pParse, "journal_size_limit", iLimit);
+ }else
+
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
/*
** PRAGMA [database.]auto_vacuum
** PRAGMA [database.]auto_vacuum=N
**
- ** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
+ ** Get or set the value of the database 'auto-vacuum' parameter.
+ ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
Btree *pBt = pDb->pBt;
+ assert( pBt!=0 );
+ if( sqlite3ReadSchema(pParse) ){
+ goto pragma_out;
+ }
if( !zRight ){
- int auto_vacuum =
- pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
+ int auto_vacuum;
+ if( ALWAYS(pBt) ){
+ auto_vacuum = sqlite3BtreeGetAutoVacuum(pBt);
+ }else{
+ auto_vacuum = SQLITE_DEFAULT_AUTOVACUUM;
+ }
returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
}else{
- sqlite3BtreeSetAutoVacuum(pBt, getBoolean(zRight));
+ int eAuto = getAutoVacuum(zRight);
+ assert( eAuto>=0 && eAuto<=2 );
+ db->nextAutovac = (u8)eAuto;
+ if( ALWAYS(eAuto>=0) ){
+ /* Call SetAutoVacuum() to set initialize the internal auto and
+ ** incr-vacuum flags. This is required in case this connection
+ ** creates the database file. It is important that it is created
+ ** as an auto-vacuum capable db.
+ */
+ int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
+ if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
+ /* When setting the auto_vacuum mode to either "full" or
+ ** "incremental", write the value of meta[6] in the database
+ ** file. Before writing to meta[6], check that meta[3] indicates
+ ** that this really is an auto-vacuum capable database.
+ */
+ static const VdbeOpList setMeta6[] = {
+ { OP_Transaction, 0, 1, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
+ { OP_If, 1, 0, 0}, /* 2 */
+ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
+ { OP_Integer, 0, 1, 0}, /* 4 */
+ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */
+ };
+ int iAddr;
+ iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6);
+ sqlite3VdbeChangeP1(v, iAddr, iDb);
+ sqlite3VdbeChangeP1(v, iAddr+1, iDb);
+ sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
+ sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
+ sqlite3VdbeChangeP1(v, iAddr+5, iDb);
+ sqlite3VdbeUsesBtree(v, iDb);
+ }
+ }
}
}else
#endif
+ /*
+ ** PRAGMA [database.]incremental_vacuum(N)
+ **
+ ** Do N steps of incremental vacuuming on a database.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){
+ int iLimit, addr;
+ if( sqlite3ReadSchema(pParse) ){
+ goto pragma_out;
+ }
+ if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
+ iLimit = 0x7fffffff;
+ }
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
+ addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
+ sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
+ sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
+ sqlite3VdbeJumpHere(v, addr);
+ }else
+#endif
+
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** PRAGMA [database.]cache_size
@@ -49696,31 +75223,87 @@ void sqlite3Pragma(
if( sqlite3_temp_directory ){
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
- "temp_store_directory", P3_STATIC);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3_temp_directory, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
+ "temp_store_directory", SQLITE_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}
}else{
- if( zRight[0] && !sqlite3OsIsDirWritable(zRight) ){
- sqlite3ErrorMsg(pParse, "not a writable directory");
- goto pragma_out;
+#ifndef SQLITE_OMIT_WSD
+ if( zRight[0] ){
+ int rc;
+ int res;
+ rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
+ if( rc!=SQLITE_OK || res==0 ){
+ sqlite3ErrorMsg(pParse, "not a writable directory");
+ goto pragma_out;
+ }
}
- if( TEMP_STORE==0
- || (TEMP_STORE==1 && db->temp_store<=1)
- || (TEMP_STORE==2 && db->temp_store==1)
+ if( SQLITE_TEMP_STORE==0
+ || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
+ || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
){
invalidateTempStorage(pParse);
}
- sqliteFree(sqlite3_temp_directory);
+ sqlite3_free(sqlite3_temp_directory);
if( zRight[0] ){
- sqlite3_temp_directory = zRight;
- zRight = 0;
+ sqlite3_temp_directory = sqlite3DbStrDup(0, zRight);
}else{
sqlite3_temp_directory = 0;
}
+#endif /* SQLITE_OMIT_WSD */
}
}else
+#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
+# if defined(__APPLE__)
+# define SQLITE_ENABLE_LOCKING_STYLE 1
+# else
+# define SQLITE_ENABLE_LOCKING_STYLE 0
+# endif
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE
+ /*
+ ** PRAGMA [database.]lock_proxy_file
+ ** PRAGMA [database.]lock_proxy_file = ":auto:"|"lock_file_path"
+ **
+ ** Return or set the value of the lock_proxy_file flag. Changing
+ ** the value sets a specific file to be used for database access locks.
+ **
+ */
+ if( sqlite3StrICmp(zLeft, "lock_proxy_file")==0 ){
+ if( !zRight ){
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ char *proxy_file_path = NULL;
+ sqlite3_file *pFile = sqlite3PagerFile(pPager);
+ sqlite3OsFileControl(pFile, SQLITE_GET_LOCKPROXYFILE,
+ &proxy_file_path);
+
+ if( proxy_file_path ){
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
+ "lock_proxy_file", SQLITE_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, proxy_file_path, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }
+ }else{
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ sqlite3_file *pFile = sqlite3PagerFile(pPager);
+ int res;
+ if( zRight[0] ){
+ res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
+ zRight);
+ } else {
+ res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
+ NULL);
+ }
+ if( res!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
+ goto pragma_out;
+ }
+ }
+ }else
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
/*
** PRAGMA [database.]synchronous
** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
@@ -49771,29 +75354,34 @@ void sqlite3Pragma(
pTab = sqlite3FindTable(db, zRight, zDb);
if( pTab ){
int i;
+ int nHidden = 0;
Column *pCol;
sqlite3VdbeSetNumCols(v, 6);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P3_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P3_STATIC);
- sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P3_STATIC);
- sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P3_STATIC);
- sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P3_STATIC);
+ pParse->nMem = 6;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC);
sqlite3ViewGetColumnNames(pParse, pTab);
for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
- const Token *pDflt;
- sqlite3VdbeAddOp(v, OP_Integer, i, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pCol->zName, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0,
+ if( IsHiddenColumn(pCol) ){
+ nHidden++;
+ continue;
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
pCol->zType ? pCol->zType : "", 0);
- sqlite3VdbeAddOp(v, OP_Integer, pCol->notNull, 0);
- if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){
- sqlite3VdbeOp3(v, OP_String8, 0, 0, (char*)pDflt->z, pDflt->n);
+ sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4);
+ if( pCol->zDflt ){
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0);
}else{
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
}
- sqlite3VdbeAddOp(v, OP_Integer, pCol->isPrimKey, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 6, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
}
}
}else
@@ -49807,16 +75395,17 @@ void sqlite3Pragma(
int i;
pTab = pIdx->pTable;
sqlite3VdbeSetNumCols(v, 3);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P3_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P3_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P3_STATIC);
+ pParse->nMem = 3;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);
for(i=0; i<pIdx->nColumn; i++){
int cnum = pIdx->aiColumn[i];
- sqlite3VdbeAddOp(v, OP_Integer, i, 0);
- sqlite3VdbeAddOp(v, OP_Integer, cnum, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
+ sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
assert( pTab->nCol>cnum );
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[cnum].zName, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
}
}
}else
@@ -49832,14 +75421,15 @@ void sqlite3Pragma(
if( pIdx ){
int i = 0;
sqlite3VdbeSetNumCols(v, 3);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P3_STATIC);
+ pParse->nMem = 3;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
while(pIdx){
- sqlite3VdbeAddOp(v, OP_Integer, i, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
- sqlite3VdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
++i;
pIdx = pIdx->pNext;
}
@@ -49851,17 +75441,18 @@ void sqlite3Pragma(
int i;
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
sqlite3VdbeSetNumCols(v, 3);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P3_STATIC);
+ pParse->nMem = 3;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", SQLITE_STATIC);
for(i=0; i<db->nDb; i++){
if( db->aDb[i].pBt==0 ) continue;
assert( db->aDb[i].zName!=0 );
- sqlite3VdbeAddOp(v, OP_Integer, i, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0,
+ sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
- sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
}
}else
@@ -49869,13 +75460,14 @@ void sqlite3Pragma(
int i = 0;
HashElem *p;
sqlite3VdbeSetNumCols(v, 2);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
+ pParse->nMem = 2;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
CollSeq *pColl = (CollSeq *)sqliteHashData(p);
- sqlite3VdbeAddOp(v, OP_Integer, i++, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pColl->zName, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
}
}else
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
@@ -49891,23 +75483,32 @@ void sqlite3Pragma(
pFK = pTab->pFKey;
if( pFK ){
int i = 0;
- sqlite3VdbeSetNumCols(v, 5);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P3_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P3_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P3_STATIC);
- sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P3_STATIC);
- sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P3_STATIC);
+ sqlite3VdbeSetNumCols(v, 8);
+ pParse->nMem = 8;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 7, COLNAME_NAME, "match", SQLITE_STATIC);
while(pFK){
int j;
for(j=0; j<pFK->nCol; j++){
char *zCol = pFK->aCol[j].zCol;
- sqlite3VdbeAddOp(v, OP_Integer, i, 0);
- sqlite3VdbeAddOp(v, OP_Integer, j, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->zTo, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0,
- pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
- sqlite3VdbeOp3(v, zCol ? OP_String8 : OP_Null, 0, 0, zCol, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 5, 0);
+ char *zOnUpdate = (char *)actionName(pFK->updateConf);
+ char *zOnDelete = (char *)actionName(pFK->deleteConf);
+ sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
+ sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
+ pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
+ sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 6, 0, zOnUpdate, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 7, 0, zOnDelete, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 8, 0, "NONE", 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8);
}
++i;
pFK = pFK->pNextFrom;
@@ -49919,7 +75520,6 @@ void sqlite3Pragma(
#ifndef NDEBUG
if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
- extern void sqlite3ParserTrace(FILE*, char *);
if( zRight ){
if( getBoolean(zRight) ){
sqlite3ParserTrace(stderr, "parser: ");
@@ -49944,7 +75544,13 @@ void sqlite3Pragma(
#endif
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
- if( sqlite3StrICmp(zLeft, "integrity_check")==0 ){
+ /* Pragma "quick_check" is an experimental reduced version of
+ ** integrity_check designed to detect most database corruption
+ ** without most of the overhead of a full integrity-check.
+ */
+ if( sqlite3StrICmp(zLeft, "integrity_check")==0
+ || sqlite3StrICmp(zLeft, "quick_check")==0
+ ){
int i, j, addr, mxErr;
/* Code that appears at the end of the integrity check. If no error
@@ -49952,17 +75558,19 @@ void sqlite3Pragma(
** error message
*/
static const VdbeOpList endCode[] = {
- { OP_MemLoad, 0, 0, 0},
- { OP_Integer, 0, 0, 0},
- { OP_Ne, 0, 0, 0}, /* 2 */
- { OP_String8, 0, 0, "ok"},
- { OP_Callback, 1, 0, 0},
+ { OP_AddImm, 1, 0, 0}, /* 0 */
+ { OP_IfNeg, 1, 0, 0}, /* 1 */
+ { OP_String8, 0, 3, 0}, /* 2 */
+ { OP_ResultRow, 3, 1, 0},
};
+ int isQuick = (zLeft[0]=='q');
+
/* Initialize the VDBE program */
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ pParse->nMem = 6;
sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P3_STATIC);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", SQLITE_STATIC);
/* Set the maximum error count */
mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
@@ -49972,7 +75580,7 @@ void sqlite3Pragma(
mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
}
}
- sqlite3VdbeAddOp(v, OP_MemInt, mxErr, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */
/* Do an integrity check on each database file */
for(i=0; i<db->nDb; i++){
@@ -49983,100 +75591,117 @@ void sqlite3Pragma(
if( OMIT_TEMPDB && i==1 ) continue;
sqlite3CodeVerifySchema(pParse, i);
- addr = sqlite3VdbeAddOp(v, OP_IfMemPos, 0, 0);
- sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
+ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeJumpHere(v, addr);
/* Do an integrity check of the B-Tree
+ **
+ ** Begin by filling registers 2, 3, ... with the root pages numbers
+ ** for all tables and indices in the database.
*/
pTbls = &db->aDb[i].pSchema->tblHash;
for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
Table *pTab = sqliteHashData(x);
Index *pIdx;
- sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
cnt++;
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
cnt++;
}
}
- if( cnt==0 ) continue;
- sqlite3VdbeAddOp(v, OP_IntegrityCk, 0, i);
- addr = sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0,
- sqlite3MPrintf("*** in database %s ***\n", db->aDb[i].zName),
- P3_DYNAMIC);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
- sqlite3VdbeAddOp(v, OP_Concat, 0, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
+
+ /* Make sure sufficient number of registers have been allocated */
+ if( pParse->nMem < cnt+4 ){
+ pParse->nMem = cnt+4;
+ }
+
+ /* Do the b-tree integrity checks */
+ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
+ sqlite3VdbeChangeP5(v, (u8)i);
+ addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
+ sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
+ P4_DYNAMIC);
+ sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1);
+ sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
sqlite3VdbeJumpHere(v, addr);
/* Make sure all the indices are constructed correctly.
*/
- for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
+ for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
Table *pTab = sqliteHashData(x);
Index *pIdx;
int loopTop;
if( pTab->pIndex==0 ) continue;
- addr = sqlite3VdbeAddOp(v, OP_IfMemPos, 0, 0);
- sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */
+ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeJumpHere(v, addr);
sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
- sqlite3VdbeAddOp(v, OP_MemInt, 0, 1);
- loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0);
- sqlite3VdbeAddOp(v, OP_MemIncr, 1, 1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */
+ loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
+ sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
int jmp2;
static const VdbeOpList idxErr[] = {
- { OP_MemIncr, -1, 0, 0},
- { OP_String8, 0, 0, "rowid "},
- { OP_Rowid, 1, 0, 0},
- { OP_String8, 0, 0, " missing from index "},
- { OP_String8, 0, 0, 0}, /* 4 */
- { OP_Concat, 2, 0, 0},
- { OP_Callback, 1, 0, 0},
+ { OP_AddImm, 1, -1, 0},
+ { OP_String8, 0, 3, 0}, /* 1 */
+ { OP_Rowid, 1, 4, 0},
+ { OP_String8, 0, 5, 0}, /* 3 */
+ { OP_String8, 0, 6, 0}, /* 4 */
+ { OP_Concat, 4, 3, 3},
+ { OP_Concat, 5, 3, 3},
+ { OP_Concat, 6, 3, 3},
+ { OP_ResultRow, 3, 1, 0},
+ { OP_IfPos, 1, 0, 0}, /* 9 */
+ { OP_Halt, 0, 0, 0},
};
- sqlite3GenerateIndexKey(v, pIdx, 1);
- jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0);
+ sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 1);
+ jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j+2, 0, 3);
addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
- sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
+ sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
+ sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
+ sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC);
+ sqlite3VdbeJumpHere(v, addr+9);
sqlite3VdbeJumpHere(v, jmp2);
}
- sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1);
+ sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
sqlite3VdbeJumpHere(v, loopTop);
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
static const VdbeOpList cntIdx[] = {
- { OP_MemInt, 0, 2, 0},
+ { OP_Integer, 0, 3, 0},
{ OP_Rewind, 0, 0, 0}, /* 1 */
- { OP_MemIncr, 1, 2, 0},
+ { OP_AddImm, 3, 1, 0},
{ OP_Next, 0, 0, 0}, /* 3 */
- { OP_MemLoad, 1, 0, 0},
- { OP_MemLoad, 2, 0, 0},
- { OP_Eq, 0, 0, 0}, /* 6 */
- { OP_MemIncr, -1, 0, 0},
- { OP_String8, 0, 0, "wrong # of entries in index "},
- { OP_String8, 0, 0, 0}, /* 9 */
- { OP_Concat, 0, 0, 0},
- { OP_Callback, 1, 0, 0},
+ { OP_Eq, 2, 0, 3}, /* 4 */
+ { OP_AddImm, 1, -1, 0},
+ { OP_String8, 0, 2, 0}, /* 6 */
+ { OP_String8, 0, 3, 0}, /* 7 */
+ { OP_Concat, 3, 2, 2},
+ { OP_ResultRow, 2, 1, 0},
};
- if( pIdx->tnum==0 ) continue;
- addr = sqlite3VdbeAddOp(v, OP_IfMemPos, 0, 0);
- sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
+ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeJumpHere(v, addr);
addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
sqlite3VdbeChangeP1(v, addr+1, j+2);
sqlite3VdbeChangeP2(v, addr+1, addr+4);
sqlite3VdbeChangeP1(v, addr+3, j+2);
sqlite3VdbeChangeP2(v, addr+3, addr+2);
- sqlite3VdbeJumpHere(v, addr+6);
- sqlite3VdbeChangeP3(v, addr+9, pIdx->zName, P3_STATIC);
+ sqlite3VdbeJumpHere(v, addr+4);
+ sqlite3VdbeChangeP4(v, addr+6,
+ "wrong # of entries in index ", P4_STATIC);
+ sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_STATIC);
}
}
}
addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
- sqlite3VdbeChangeP1(v, addr+1, mxErr);
- sqlite3VdbeJumpHere(v, addr+2);
+ sqlite3VdbeChangeP2(v, addr, -mxErr);
+ sqlite3VdbeJumpHere(v, addr+1);
+ sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
}else
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
@@ -50085,7 +75710,7 @@ void sqlite3Pragma(
** PRAGMA encoding
** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
**
- ** In it's first form, this pragma returns the encoding of the main
+ ** In its first form, this pragma returns the encoding of the main
** database. If the database is not initialized, it is initialized now.
**
** The second form of this pragma is a no-op if the main database file
@@ -50108,11 +75733,11 @@ void sqlite3Pragma(
char *zName;
u8 enc;
} encnames[] = {
- { "UTF-8", SQLITE_UTF8 },
{ "UTF8", SQLITE_UTF8 },
- { "UTF-16le", SQLITE_UTF16LE },
+ { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
+ { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
+ { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
{ "UTF16le", SQLITE_UTF16LE },
- { "UTF-16be", SQLITE_UTF16BE },
{ "UTF16be", SQLITE_UTF16BE },
{ "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
{ "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
@@ -50122,15 +75747,13 @@ void sqlite3Pragma(
if( !zRight ){ /* "PRAGMA encoding" */
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P3_STATIC);
- sqlite3VdbeAddOp(v, OP_String8, 0, 0);
- for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
- if( pEnc->enc==ENC(pParse->db) ){
- sqlite3VdbeChangeP3(v, -1, pEnc->zName, P3_STATIC);
- break;
- }
- }
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", SQLITE_STATIC);
+ sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
+ assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
+ assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
+ assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
+ sqlite3VdbeChangeP4(v, -1, encnames[ENC(pParse->db)].zName, P4_STATIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}else{ /* "PRAGMA encoding = XXX" */
/* Only change the value of sqlite.enc if the database handle is not
** initialized. If the main database exists, the new sqlite.enc value
@@ -50181,22 +75804,30 @@ void sqlite3Pragma(
** The user-version is not used internally by SQLite. It may be used by
** applications for any purpose.
*/
- if( sqlite3StrICmp(zLeft, "schema_version")==0 ||
- sqlite3StrICmp(zLeft, "user_version")==0 ){
-
- int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
- if( zLeft[0]=='s' || zLeft[0]=='S' ){
- iCookie = 0;
- }else{
- iCookie = 5;
+ if( sqlite3StrICmp(zLeft, "schema_version")==0
+ || sqlite3StrICmp(zLeft, "user_version")==0
+ || sqlite3StrICmp(zLeft, "freelist_count")==0
+ ){
+ int iCookie; /* Cookie index. 1 for schema-cookie, 6 for user-cookie. */
+ sqlite3VdbeUsesBtree(v, iDb);
+ switch( zLeft[0] ){
+ case 'f': case 'F':
+ iCookie = BTREE_FREE_PAGE_COUNT;
+ break;
+ case 's': case 'S':
+ iCookie = BTREE_SCHEMA_VERSION;
+ break;
+ default:
+ iCookie = BTREE_USER_VERSION;
+ break;
}
- if( zRight ){
+ if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){
/* Write the specified cookie value */
static const VdbeOpList setCookie[] = {
{ OP_Transaction, 0, 1, 0}, /* 0 */
- { OP_Integer, 0, 0, 0}, /* 1 */
- { OP_SetCookie, 0, 0, 0}, /* 2 */
+ { OP_Integer, 0, 1, 0}, /* 1 */
+ { OP_SetCookie, 0, 0, 1}, /* 2 */
};
int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
sqlite3VdbeChangeP1(v, addr, iDb);
@@ -50206,14 +75837,16 @@ void sqlite3Pragma(
}else{
/* Read the specified cookie value */
static const VdbeOpList readCookie[] = {
- { OP_ReadCookie, 0, 0, 0}, /* 0 */
- { OP_Callback, 1, 0, 0}
+ { OP_Transaction, 0, 0, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, 0}, /* 1 */
+ { OP_ResultRow, 1, 1, 0}
};
int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
sqlite3VdbeChangeP1(v, addr, iDb);
- sqlite3VdbeChangeP2(v, addr, iCookie);
+ sqlite3VdbeChangeP1(v, addr+1, iDb);
+ sqlite3VdbeChangeP3(v, addr+1, iCookie);
sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P3_TRANSIENT);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
}
}else
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
@@ -50227,42 +75860,52 @@ void sqlite3Pragma(
"unlocked", "shared", "reserved", "pending", "exclusive"
};
int i;
- Vdbe *v = sqlite3GetVdbe(pParse);
sqlite3VdbeSetNumCols(v, 2);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P3_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P3_STATIC);
+ pParse->nMem = 2;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", SQLITE_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", SQLITE_STATIC);
for(i=0; i<db->nDb; i++){
Btree *pBt;
Pager *pPager;
+ const char *zState = "unknown";
+ int j;
if( db->aDb[i].zName==0 ) continue;
- sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, P3_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
pBt = db->aDb[i].pBt;
if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
- sqlite3VdbeOp3(v, OP_String8, 0, 0, "closed", P3_STATIC);
- }else{
- int j = sqlite3PagerLockstate(pPager);
- sqlite3VdbeOp3(v, OP_String8, 0, 0,
- (j>=0 && j<=4) ? azLockName[j] : "unknown", P3_STATIC);
+ zState = "closed";
+ }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0,
+ SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
+ zState = azLockName[j];
}
- sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
}
- }else
-#endif
-#ifdef SQLITE_SSE
- /*
- ** Check to see if the sqlite_statements table exists. Create it
- ** if it does not.
- */
- if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){
- extern int sqlite3CreateStatementsTable(Parse*);
- sqlite3CreateStatementsTable(pParse);
}else
#endif
#if SQLITE_HAS_CODEC
- if( sqlite3StrICmp(zLeft, "key")==0 ){
- sqlite3_key(db, zRight, strlen(zRight));
+ if( sqlite3StrICmp(zLeft, "key")==0 && zRight ){
+ sqlite3_key(db, zRight, sqlite3Strlen30(zRight));
+ }else
+ if( sqlite3StrICmp(zLeft, "rekey")==0 && zRight ){
+ sqlite3_rekey(db, zRight, sqlite3Strlen30(zRight));
+ }else
+ if( zRight && (sqlite3StrICmp(zLeft, "hexkey")==0 ||
+ sqlite3StrICmp(zLeft, "hexrekey")==0) ){
+ int i, h1, h2;
+ char zKey[40];
+ for(i=0; (h1 = zRight[i])!=0 && (h2 = zRight[i+1])!=0; i+=2){
+ h1 += 9*(1&(h1>>6));
+ h2 += 9*(1&(h2>>6));
+ zKey[i/2] = (h2 & 0x0f) | ((h1 & 0xf)<<4);
+ }
+ if( (zLeft[3] & 0xf)==0xb ){
+ sqlite3_key(db, zKey, i/2);
+ }else{
+ sqlite3_rekey(db, zKey, i/2);
+ }
}else
#endif
#if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD)
@@ -50279,35 +75922,34 @@ void sqlite3Pragma(
sqlite3_activate_cerod(&zRight[6]);
}
#endif
- }
+ }else
#endif
- {}
- if( v ){
- /* Code an OP_Expire at the end of each PRAGMA program to cause
- ** the VDBE implementing the pragma to expire. Most (all?) pragmas
- ** are only valid for a single execution.
- */
- sqlite3VdbeAddOp(v, OP_Expire, 1, 0);
+ {/* Empty ELSE clause */}
- /*
- ** Reset the safety level, in case the fullfsync flag or synchronous
- ** setting changed.
- */
+ /* Code an OP_Expire at the end of each PRAGMA program to cause
+ ** the VDBE implementing the pragma to expire. Most (all?) pragmas
+ ** are only valid for a single execution.
+ */
+ sqlite3VdbeAddOp2(v, OP_Expire, 1, 0);
+
+ /*
+ ** Reset the safety level, in case the fullfsync flag or synchronous
+ ** setting changed.
+ */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
- if( db->autoCommit ){
- sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
- (db->flags&SQLITE_FullFSync)!=0);
- }
-#endif
+ if( db->autoCommit ){
+ sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
+ (db->flags&SQLITE_FullFSync)!=0);
}
+#endif
pragma_out:
- sqliteFree(zLeft);
- sqliteFree(zRight);
+ sqlite3DbFree(db, zLeft);
+ sqlite3DbFree(db, zRight);
}
-#endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */
+#endif /* SQLITE_OMIT_PRAGMA */
/************** End of pragma.c **********************************************/
/************** Begin file prepare.c *****************************************/
@@ -50326,19 +75968,29 @@ pragma_out:
** interface, and routines that contribute to loading the database schema
** from disk.
**
-** $Id: prepare.c,v 1.45 2007/03/26 22:05:02 drh Exp $
+** $Id: prepare.c,v 1.131 2009/08/06 17:43:31 drh Exp $
*/
/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.
*/
-static void corruptSchema(InitData *pData, const char *zExtra){
- if( !sqlite3MallocFailed() ){
- sqlite3SetString(pData->pzErrMsg, "malformed database schema",
- zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
+static void corruptSchema(
+ InitData *pData, /* Initialization context */
+ const char *zObj, /* Object being parsed at the point of error */
+ const char *zExtra /* Error information */
+){
+ sqlite3 *db = pData->db;
+ if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){
+ if( zObj==0 ) zObj = "?";
+ sqlite3SetString(pData->pzErrMsg, db,
+ "malformed database schema (%s)", zObj);
+ if( zExtra ){
+ *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg,
+ "%s - %s", *pData->pzErrMsg, zExtra);
+ }
}
- pData->rc = SQLITE_CORRUPT;
+ pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT;
}
/*
@@ -50353,26 +76005,25 @@ static void corruptSchema(InitData *pData, const char *zExtra){
** argv[2] = SQL text for the CREATE statement.
**
*/
-int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
+SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
InitData *pData = (InitData*)pInit;
sqlite3 *db = pData->db;
int iDb = pData->iDb;
- pData->rc = SQLITE_OK;
+ assert( argc==3 );
+ UNUSED_PARAMETER2(NotUsed, argc);
+ assert( sqlite3_mutex_held(db->mutex) );
DbClearProperty(db, iDb, DB_Empty);
- if( sqlite3MallocFailed() ){
- corruptSchema(pData, 0);
- return SQLITE_NOMEM;
+ if( db->mallocFailed ){
+ corruptSchema(pData, argv[0], 0);
+ return 1;
}
- assert( argc==3 );
+ assert( iDb>=0 && iDb<db->nDb );
if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
if( argv[1]==0 ){
- corruptSchema(pData, 0);
- return 1;
- }
- assert( iDb>=0 && iDb<db->nDb );
- if( argv[2] && argv[2][0] ){
+ corruptSchema(pData, argv[0], 0);
+ }else if( argv[2] && argv[2][0] ){
/* Call the parser to process a CREATE TABLE, INDEX or VIEW.
** But because db->init.busy is set to 1, no VDBE code is generated
** or executed. All the parser does is build the internal data
@@ -50383,19 +76034,25 @@ int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
assert( db->init.busy );
db->init.iDb = iDb;
db->init.newTnum = atoi(argv[1]);
+ db->init.orphanTrigger = 0;
rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
db->init.iDb = 0;
assert( rc!=SQLITE_OK || zErr==0 );
if( SQLITE_OK!=rc ){
- pData->rc = rc;
- if( rc==SQLITE_NOMEM ){
- sqlite3FailedMalloc();
- }else if( rc!=SQLITE_INTERRUPT ){
- corruptSchema(pData, zErr);
+ if( db->init.orphanTrigger ){
+ assert( iDb==1 );
+ }else{
+ pData->rc = rc;
+ if( rc==SQLITE_NOMEM ){
+ db->mallocFailed = 1;
+ }else if( rc!=SQLITE_INTERRUPT && rc!=SQLITE_LOCKED ){
+ corruptSchema(pData, argv[0], zErr);
+ }
}
- sqlite3_free(zErr);
- return 1;
+ sqlite3DbFree(db, zErr);
}
+ }else if( argv[0]==0 ){
+ corruptSchema(pData, 0, 0);
}else{
/* If the SQL column is blank it means this is an index that
** was created to be the PRIMARY KEY or to fulfill a UNIQUE
@@ -50405,15 +76062,15 @@ int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
*/
Index *pIndex;
pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
- if( pIndex==0 || pIndex->tnum!=0 ){
+ if( pIndex==0 ){
/* This can occur if there exists an index on a TEMP table which
** has the same name as another index on a permanent index. Since
** the permanent table is hidden by the TEMP table, we can also
** safely ignore the index on the permanent table.
*/
/* Do Nothing */;
- }else{
- pIndex->tnum = atoi(argv[1]);
+ }else if( sqlite3GetInt32(argv[1], &pIndex->tnum)==0 ){
+ corruptSchema(pData, argv[0], "invalid rootpage");
}
}
return 0;
@@ -50429,15 +76086,16 @@ int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
*/
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
int rc;
- BtCursor *curMain;
+ int i;
int size;
Table *pTab;
Db *pDb;
char const *azArg[4];
- int meta[10];
+ int meta[5];
InitData initData;
char const *zMasterSchema;
char const *zMasterName = SCHEMA_TABLE(iDb);
+ int openedTransaction = 0;
/*
** The master database table has a structure like this
@@ -50467,6 +76125,8 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
assert( iDb>=0 && iDb<db->nDb );
assert( db->aDb[iDb].pSchema );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
/* zMasterSchema and zInitScript are set to point at the master schema
** and initialisation script appropriate for the database being
@@ -50480,38 +76140,47 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
zMasterName = SCHEMA_TABLE(iDb);
/* Construct the schema tables. */
- sqlite3SafetyOff(db);
azArg[0] = zMasterName;
azArg[1] = "1";
azArg[2] = zMasterSchema;
azArg[3] = 0;
initData.db = db;
initData.iDb = iDb;
+ initData.rc = SQLITE_OK;
initData.pzErrMsg = pzErrMsg;
- rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
- if( rc ){
- sqlite3SafetyOn(db);
- return initData.rc;
+ (void)sqlite3SafetyOff(db);
+ sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
+ (void)sqlite3SafetyOn(db);
+ if( initData.rc ){
+ rc = initData.rc;
+ goto error_out;
}
pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
- if( pTab ){
- pTab->readOnly = 1;
+ if( ALWAYS(pTab) ){
+ pTab->tabFlags |= TF_Readonly;
}
- sqlite3SafetyOn(db);
/* Create a cursor to hold the database open
*/
pDb = &db->aDb[iDb];
if( pDb->pBt==0 ){
- if( !OMIT_TEMPDB && iDb==1 ){
+ if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){
DbSetProperty(db, 1, DB_SchemaLoaded);
}
return SQLITE_OK;
}
- rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, 0, &curMain);
- if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
- sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
- return rc;
+
+ /* If there is not already a read-only (or read-write) transaction opened
+ ** on the b-tree database, open one now. If a transaction is opened, it
+ ** will be closed before this function returns. */
+ sqlite3BtreeEnter(pDb->pBt);
+ if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){
+ rc = sqlite3BtreeBeginTrans(pDb->pBt, 0);
+ if( rc!=SQLITE_OK ){
+ sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
+ goto initone_error_out;
+ }
+ openedTransaction = 1;
}
/* Get the database meta information.
@@ -50520,49 +76189,42 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
** meta[0] Schema cookie. Changes with each schema change.
** meta[1] File format of schema layer.
** meta[2] Size of the page cache.
- ** meta[3] Use freelist if 0. Autovacuum if greater than zero.
+ ** meta[3] Largest rootpage (auto/incr_vacuum mode)
** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
- ** meta[5] The user cookie. Used by the application.
- ** meta[6]
- ** meta[7]
- ** meta[8]
- ** meta[9]
+ ** meta[5] User version
+ ** meta[6] Incremental vacuum mode
+ ** meta[7] unused
+ ** meta[8] unused
+ ** meta[9] unused
**
** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
** the possible values of meta[4].
*/
- if( rc==SQLITE_OK ){
- int i;
- for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
- rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
- }
- if( rc ){
- sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
- sqlite3BtreeCloseCursor(curMain);
- return rc;
- }
- }else{
- memset(meta, 0, sizeof(meta));
+ for(i=0; i<ArraySize(meta); i++){
+ sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
}
- pDb->pSchema->schema_cookie = meta[0];
+ pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];
/* If opening a non-empty database, check the text encoding. For the
** main database, set sqlite3.enc to the encoding of the main database.
** For an attached db, it is an error if the encoding is not the same
** as sqlite3.enc.
*/
- if( meta[4] ){ /* text encoding */
+ if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */
if( iDb==0 ){
+ u8 encoding;
/* If opening the main database, set ENC(db). */
- ENC(db) = (u8)meta[4];
- db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
+ encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
+ if( encoding==0 ) encoding = SQLITE_UTF8;
+ ENC(db) = encoding;
+ db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
}else{
/* If opening an attached database, the encoding much match ENC(db) */
- if( meta[4]!=ENC(db) ){
- sqlite3BtreeCloseCursor(curMain);
- sqlite3SetString(pzErrMsg, "attached databases must use the same"
- " text encoding as main database", (char*)0);
- return SQLITE_ERROR;
+ if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){
+ sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
+ " text encoding as main database");
+ rc = SQLITE_ERROR;
+ goto initone_error_out;
}
}
}else{
@@ -50570,10 +76232,13 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
}
pDb->pSchema->enc = ENC(db);
- size = meta[2];
- if( size==0 ){ size = MAX_PAGES; }
- pDb->pSchema->cache_size = size;
- sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ if( pDb->pSchema->cache_size==0 ){
+ size = meta[BTREE_DEFAULT_CACHE_SIZE-1];
+ if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
+ if( size<0 ) size = -size;
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
/*
** file_format==1 Version 3.0.0.
@@ -50581,57 +76246,85 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
*/
- pDb->pSchema->file_format = meta[1];
+ pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1];
if( pDb->pSchema->file_format==0 ){
pDb->pSchema->file_format = 1;
}
if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
- sqlite3BtreeCloseCursor(curMain);
- sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
- return SQLITE_ERROR;
+ sqlite3SetString(pzErrMsg, db, "unsupported file format");
+ rc = SQLITE_ERROR;
+ goto initone_error_out;
}
+ /* Ticket #2804: When we open a database in the newer file format,
+ ** clear the legacy_file_format pragma flag so that a VACUUM will
+ ** not downgrade the database and thus invalidate any descending
+ ** indices that the user might have created.
+ */
+ if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
+ db->flags &= ~SQLITE_LegacyFileFmt;
+ }
/* Read the schema information out of the schema tables
*/
assert( db->init.busy );
- if( rc==SQLITE_EMPTY ){
- /* For an empty database, there is nothing to read */
- rc = SQLITE_OK;
- }else{
+ {
char *zSql;
- zSql = sqlite3MPrintf(
+ zSql = sqlite3MPrintf(db,
"SELECT name, rootpage, sql FROM '%q'.%s",
db->aDb[iDb].zName, zMasterName);
- sqlite3SafetyOff(db);
- rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
- if( rc==SQLITE_ABORT ) rc = initData.rc;
- sqlite3SafetyOn(db);
- sqliteFree(zSql);
+ (void)sqlite3SafetyOff(db);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
+ xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+ }
+#endif
+ if( rc==SQLITE_OK ) rc = initData.rc;
+ (void)sqlite3SafetyOn(db);
+ sqlite3DbFree(db, zSql);
#ifndef SQLITE_OMIT_ANALYZE
if( rc==SQLITE_OK ){
sqlite3AnalysisLoad(db, iDb);
}
#endif
- sqlite3BtreeCloseCursor(curMain);
}
- if( sqlite3MallocFailed() ){
- /* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
+ if( db->mallocFailed ){
rc = SQLITE_NOMEM;
sqlite3ResetInternalSchema(db, 0);
}
if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
/* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
- ** the schema loaded, even if errors occured. In this situation the
+ ** the schema loaded, even if errors occurred. In this situation the
** current sqlite3_prepare() operation will fail, but the following one
** will attempt to compile the supplied statement against whatever subset
- ** of the schema was loaded before the error occured. The primary
+ ** of the schema was loaded before the error occurred. The primary
** purpose of this is to allow access to the sqlite_master table
- ** even when it's contents have been corrupted.
+ ** even when its contents have been corrupted.
*/
DbSetProperty(db, iDb, DB_SchemaLoaded);
rc = SQLITE_OK;
}
+
+ /* Jump here for an error that occurs after successfully allocating
+ ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
+ ** before that point, jump to error_out.
+ */
+initone_error_out:
+ if( openedTransaction ){
+ sqlite3BtreeCommit(pDb->pBt);
+ }
+ sqlite3BtreeLeave(pDb->pBt);
+
+error_out:
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ db->mallocFailed = 1;
+ }
return rc;
}
@@ -50645,11 +76338,11 @@ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
** bit is set in the flags field of the Db structure. If the database
** file was of zero-length, then the DB_Empty flag is also set.
*/
-int sqlite3Init(sqlite3 *db, char **pzErrMsg){
+SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
int i, rc;
- int called_initone = 0;
+ int commit_internal = !(db->flags&SQLITE_InternChanges);
- if( db->init.busy ) return SQLITE_OK;
+ assert( sqlite3_mutex_held(db->mutex) );
rc = SQLITE_OK;
db->init.busy = 1;
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
@@ -50658,7 +76351,6 @@ int sqlite3Init(sqlite3 *db, char **pzErrMsg){
if( rc ){
sqlite3ResetInternalSchema(db, i);
}
- called_initone = 1;
}
/* Once all the other databases have been initialised, load the schema
@@ -50666,17 +76358,17 @@ int sqlite3Init(sqlite3 *db, char **pzErrMsg){
** schema may contain references to objects in other databases.
*/
#ifndef SQLITE_OMIT_TEMPDB
- if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
+ if( rc==SQLITE_OK && ALWAYS(db->nDb>1)
+ && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
rc = sqlite3InitOne(db, 1, pzErrMsg);
if( rc ){
sqlite3ResetInternalSchema(db, 1);
}
- called_initone = 1;
}
#endif
db->init.busy = 0;
- if( rc==SQLITE_OK && called_initone ){
+ if( rc==SQLITE_OK && commit_internal ){
sqlite3CommitInternalChanges(db);
}
@@ -50687,9 +76379,10 @@ int sqlite3Init(sqlite3 *db, char **pzErrMsg){
** This routine is a no-op if the database schema is already initialised.
** Otherwise, the schema is loaded. An error code is returned.
*/
-int sqlite3ReadSchema(Parse *pParse){
+SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
int rc = SQLITE_OK;
sqlite3 *db = pParse->db;
+ assert( sqlite3_mutex_held(db->mutex) );
if( !db->init.busy ){
rc = sqlite3Init(db, &pParse->zErrMsg);
}
@@ -50703,29 +76396,47 @@ int sqlite3ReadSchema(Parse *pParse){
/*
** Check schema cookies in all databases. If any cookie is out
-** of date, return 0. If all schema cookies are current, return 1.
+** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies
+** make no changes to pParse->rc.
*/
-static int schemaIsValid(sqlite3 *db){
+static void schemaIsValid(Parse *pParse){
+ sqlite3 *db = pParse->db;
int iDb;
int rc;
- BtCursor *curTemp;
int cookie;
- int allOk = 1;
- for(iDb=0; allOk && iDb<db->nDb; iDb++){
- Btree *pBt;
- pBt = db->aDb[iDb].pBt;
+ assert( pParse->checkSchema );
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(iDb=0; iDb<db->nDb; iDb++){
+ int openedTransaction = 0; /* True if a transaction is opened */
+ Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */
if( pBt==0 ) continue;
- rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
- if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
- allOk = 0;
+
+ /* If there is not already a read-only (or read-write) transaction opened
+ ** on the b-tree database, open one now. If a transaction is opened, it
+ ** will be closed immediately after reading the meta-value. */
+ if( !sqlite3BtreeIsInReadTrans(pBt) ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0);
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ db->mallocFailed = 1;
}
- sqlite3BtreeCloseCursor(curTemp);
+ if( rc!=SQLITE_OK ) return;
+ openedTransaction = 1;
+ }
+
+ /* Read the schema cookie from the database. If it does not match the
+ ** value stored as part of the in the in-memory schema representation,
+ ** set Parse.rc to SQLITE_SCHEMA. */
+ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie);
+ if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
+ pParse->rc = SQLITE_SCHEMA;
+ }
+
+ /* Close the transaction, if one was opened. */
+ if( openedTransaction ){
+ sqlite3BtreeCommit(pBt);
}
}
- return allOk;
}
/*
@@ -50735,7 +76446,7 @@ static int schemaIsValid(sqlite3 *db){
** If the same database is attached more than once, the first
** attached database is returned.
*/
-int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
+SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
int i = -1000000;
/* If pSchema is NULL, then return -1000000. This happens when code in
@@ -50744,17 +76455,18 @@ int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
** function should never be used.
**
** We return -1000000 instead of the more usual -1 simply because using
- ** -1000000 as incorrectly using -1000000 index into db->aDb[] is much
+ ** -1000000 as the incorrect index into db->aDb[] is much
** more likely to cause a segfault than -1 (of course there are assert()
** statements too, but it never hurts to play the odds).
*/
+ assert( sqlite3_mutex_held(db->mutex) );
if( pSchema ){
- for(i=0; i<db->nDb; i++){
+ for(i=0; ALWAYS(i<db->nDb); i++){
if( db->aDb[i].pSchema==pSchema ){
break;
}
}
- assert( i>=0 &&i>=0 && i<db->nDb );
+ assert( i>=0 && i<db->nDb );
}
return i;
}
@@ -50762,7 +76474,7 @@ int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
/*
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
*/
-int sqlite3Prepare(
+static int sqlite3Prepare(
sqlite3 *db, /* Database handle. */
const char *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
@@ -50770,76 +76482,127 @@ int sqlite3Prepare(
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
const char **pzTail /* OUT: End of parsed string */
){
- Parse sParse;
- char *zErrMsg = 0;
- int rc = SQLITE_OK;
- int i;
+ Parse *pParse; /* Parsing context */
+ char *zErrMsg = 0; /* Error message */
+ int rc = SQLITE_OK; /* Result code */
+ int i; /* Loop counter */
- /* Assert that malloc() has not failed */
- assert( !sqlite3MallocFailed() );
+ /* Allocate the parsing context */
+ pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
+ if( pParse==0 ){
+ rc = SQLITE_NOMEM;
+ goto end_prepare;
+ }
- assert( ppStmt );
- *ppStmt = 0;
if( sqlite3SafetyOn(db) ){
- return SQLITE_MISUSE;
+ rc = SQLITE_MISUSE;
+ goto end_prepare;
}
+ assert( ppStmt && *ppStmt==0 );
+ assert( !db->mallocFailed );
+ assert( sqlite3_mutex_held(db->mutex) );
- /* If any attached database schemas are locked, do not proceed with
- ** compilation. Instead return SQLITE_LOCKED immediately.
+ /* Check to verify that it is possible to get a read lock on all
+ ** database schemas. The inability to get a read lock indicates that
+ ** some other database connection is holding a write-lock, which in
+ ** turn means that the other connection has made uncommitted changes
+ ** to the schema.
+ **
+ ** Were we to proceed and prepare the statement against the uncommitted
+ ** schema changes and if those schema changes are subsequently rolled
+ ** back and different changes are made in their place, then when this
+ ** prepared statement goes to run the schema cookie would fail to detect
+ ** the schema change. Disaster would follow.
+ **
+ ** This thread is currently holding mutexes on all Btrees (because
+ ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it
+ ** is not possible for another thread to start a new schema change
+ ** while this routine is running. Hence, we do not need to hold
+ ** locks on the schema, we just need to make sure nobody else is
+ ** holding them.
+ **
+ ** Note that setting READ_UNCOMMITTED overrides most lock detection,
+ ** but it does *not* override schema lock detection, so this all still
+ ** works even if READ_UNCOMMITTED is set.
*/
for(i=0; i<db->nDb; i++) {
Btree *pBt = db->aDb[i].pBt;
- if( pBt && sqlite3BtreeSchemaLocked(pBt) ){
- const char *zDb = db->aDb[i].zName;
- sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb);
- sqlite3SafetyOff(db);
- return SQLITE_LOCKED;
+ if( pBt ){
+ assert( sqlite3BtreeHoldsMutex(pBt) );
+ rc = sqlite3BtreeSchemaLocked(pBt);
+ if( rc ){
+ const char *zDb = db->aDb[i].zName;
+ sqlite3Error(db, rc, "database schema is locked: %s", zDb);
+ (void)sqlite3SafetyOff(db);
+ testcase( db->flags & SQLITE_ReadUncommitted );
+ goto end_prepare;
+ }
+ }
+ }
+
+ sqlite3VtabUnlockList(db);
+
+ pParse->db = db;
+ if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
+ char *zSqlCopy;
+ int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
+ testcase( nBytes==mxLen );
+ testcase( nBytes==mxLen+1 );
+ if( nBytes>mxLen ){
+ sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
+ (void)sqlite3SafetyOff(db);
+ rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
+ goto end_prepare;
+ }
+ zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
+ if( zSqlCopy ){
+ sqlite3RunParser(pParse, zSqlCopy, &zErrMsg);
+ sqlite3DbFree(db, zSqlCopy);
+ pParse->zTail = &zSql[pParse->zTail-zSqlCopy];
+ }else{
+ pParse->zTail = &zSql[nBytes];
}
- }
-
- memset(&sParse, 0, sizeof(sParse));
- sParse.db = db;
- if( nBytes>=0 && zSql[nBytes]!=0 ){
- char *zSqlCopy = sqlite3StrNDup(zSql, nBytes);
- sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
- sParse.zTail += zSql - zSqlCopy;
- sqliteFree(zSqlCopy);
}else{
- sqlite3RunParser(&sParse, zSql, &zErrMsg);
+ sqlite3RunParser(pParse, zSql, &zErrMsg);
}
- if( sqlite3MallocFailed() ){
- sParse.rc = SQLITE_NOMEM;
+ if( db->mallocFailed ){
+ pParse->rc = SQLITE_NOMEM;
}
- if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
- if( sParse.checkSchema && !schemaIsValid(db) ){
- sParse.rc = SQLITE_SCHEMA;
+ if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
+ if( pParse->checkSchema ){
+ schemaIsValid(pParse);
}
- if( sParse.rc==SQLITE_SCHEMA ){
+ if( pParse->rc==SQLITE_SCHEMA ){
sqlite3ResetInternalSchema(db, 0);
}
- if( sqlite3MallocFailed() ){
- sParse.rc = SQLITE_NOMEM;
+ if( db->mallocFailed ){
+ pParse->rc = SQLITE_NOMEM;
}
if( pzTail ){
- *pzTail = sParse.zTail;
+ *pzTail = pParse->zTail;
}
- rc = sParse.rc;
+ rc = pParse->rc;
#ifndef SQLITE_OMIT_EXPLAIN
- if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
- if( sParse.explain==2 ){
- sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
- sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P3_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P3_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P3_STATIC);
+ if( rc==SQLITE_OK && pParse->pVdbe && pParse->explain ){
+ static const char * const azColName[] = {
+ "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
+ "order", "from", "detail"
+ };
+ int iFirst, mx;
+ if( pParse->explain==2 ){
+ sqlite3VdbeSetNumCols(pParse->pVdbe, 3);
+ iFirst = 8;
+ mx = 11;
}else{
- sqlite3VdbeSetNumCols(sParse.pVdbe, 5);
- sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P3_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P3_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P3_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P3_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P3_STATIC);
+ sqlite3VdbeSetNumCols(pParse->pVdbe, 8);
+ iFirst = 0;
+ mx = 8;
+ }
+ for(i=iFirst; i<mx; i++){
+ sqlite3VdbeSetColName(pParse->pVdbe, i-iFirst, COLNAME_NAME,
+ azColName[i], SQLITE_STATIC);
}
}
#endif
@@ -50847,56 +76610,101 @@ int sqlite3Prepare(
if( sqlite3SafetyOff(db) ){
rc = SQLITE_MISUSE;
}
- if( rc==SQLITE_OK ){
- if( saveSqlFlag ){
- sqlite3VdbeSetSql(sParse.pVdbe, zSql, sParse.zTail - zSql);
- }
- *ppStmt = (sqlite3_stmt*)sParse.pVdbe;
- }else if( sParse.pVdbe ){
- sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
+
+ assert( db->init.busy==0 || saveSqlFlag==0 );
+ if( db->init.busy==0 ){
+ Vdbe *pVdbe = pParse->pVdbe;
+ sqlite3VdbeSetSql(pVdbe, zSql, (int)(pParse->zTail-zSql), saveSqlFlag);
+ }
+ if( pParse->pVdbe && (rc!=SQLITE_OK || db->mallocFailed) ){
+ sqlite3VdbeFinalize(pParse->pVdbe);
+ assert(!(*ppStmt));
+ }else{
+ *ppStmt = (sqlite3_stmt*)pParse->pVdbe;
}
if( zErrMsg ){
sqlite3Error(db, rc, "%s", zErrMsg);
- sqliteFree(zErrMsg);
+ sqlite3DbFree(db, zErrMsg);
}else{
sqlite3Error(db, rc, 0);
}
+ /* Delete any TriggerPrg structures allocated while parsing this statement. */
+ while( pParse->pTriggerPrg ){
+ TriggerPrg *pT = pParse->pTriggerPrg;
+ pParse->pTriggerPrg = pT->pNext;
+ sqlite3VdbeProgramDelete(db, pT->pProgram, 0);
+ sqlite3DbFree(db, pT);
+ }
+
+end_prepare:
+
+ sqlite3StackFree(db, pParse);
rc = sqlite3ApiExit(db, rc);
- sqlite3ReleaseThreadData();
assert( (rc&db->errMask)==rc );
return rc;
}
+static int sqlite3LockAndPrepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ assert( ppStmt!=0 );
+ *ppStmt = 0;
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
+ if( rc==SQLITE_SCHEMA ){
+ sqlite3_finalize(*ppStmt);
+ rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
+ }
+ sqlite3BtreeLeaveAll(db);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
/*
** Rerun the compilation of a statement after a schema change.
-** Return true if the statement was recompiled successfully.
-** Return false if there is an error of some kind.
+**
+** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
+** if the statement cannot be recompiled because another connection has
+** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error
+** occurs, return SQLITE_SCHEMA.
*/
-int sqlite3Reprepare(Vdbe *p){
+SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
int rc;
sqlite3_stmt *pNew;
const char *zSql;
sqlite3 *db;
-
- zSql = sqlite3VdbeGetSql(p);
- if( zSql==0 ){
- return 0;
- }
+
+ assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
+ zSql = sqlite3_sql((sqlite3_stmt *)p);
+ assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
db = sqlite3VdbeDb(p);
- rc = sqlite3Prepare(db, zSql, -1, 0, &pNew, 0);
+ assert( sqlite3_mutex_held(db->mutex) );
+ rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0);
if( rc ){
+ if( rc==SQLITE_NOMEM ){
+ db->mallocFailed = 1;
+ }
assert( pNew==0 );
- return 0;
+ return (rc==SQLITE_LOCKED) ? SQLITE_LOCKED : SQLITE_SCHEMA;
}else{
assert( pNew!=0 );
}
sqlite3VdbeSwap((Vdbe*)pNew, p);
- sqlite3_transfer_bindings(pNew, (sqlite3_stmt*)p);
+ sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
sqlite3VdbeResetStepResult((Vdbe*)pNew);
sqlite3VdbeFinalize((Vdbe*)pNew);
- return 1;
+ return SQLITE_OK;
}
@@ -50908,23 +76716,29 @@ int sqlite3Reprepare(Vdbe *p){
** and the statement is automatically recompiled if an schema change
** occurs.
*/
-int sqlite3_prepare(
+SQLITE_API int sqlite3_prepare(
sqlite3 *db, /* Database handle. */
const char *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
const char **pzTail /* OUT: End of parsed string */
){
- return sqlite3Prepare(db,zSql,nBytes,0,ppStmt,pzTail);
+ int rc;
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
}
-int sqlite3_prepare_v2(
+SQLITE_API int sqlite3_prepare_v2(
sqlite3 *db, /* Database handle. */
const char *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
const char **pzTail /* OUT: End of parsed string */
){
- return sqlite3Prepare(db,zSql,nBytes,1,ppStmt,pzTail);
+ int rc;
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
}
@@ -50948,12 +76762,15 @@ static int sqlite3Prepare16(
const char *zTail8 = 0;
int rc = SQLITE_OK;
- if( sqlite3SafetyCheck(db) ){
+ assert( ppStmt );
+ *ppStmt = 0;
+ if( !sqlite3SafetyCheckOk(db) ){
return SQLITE_MISUSE;
}
- zSql8 = sqlite3utf16to8(zSql, nBytes);
+ sqlite3_mutex_enter(db->mutex);
+ zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
if( zSql8 ){
- rc = sqlite3Prepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
+ rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
}
if( zTail8 && pzTail ){
@@ -50962,11 +76779,13 @@ static int sqlite3Prepare16(
** characters between zSql8 and zTail8, and then returning a pointer
** the same number of characters into the UTF-16 string.
*/
- int chars_parsed = sqlite3utf8CharLen(zSql8, zTail8-zSql8);
- *pzTail = (u8 *)zSql + sqlite3utf16ByteLen(zSql, chars_parsed);
+ int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
+ *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
}
- sqliteFree(zSql8);
- return sqlite3ApiExit(db, rc);
+ sqlite3DbFree(db, zSql8);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
/*
@@ -50977,23 +76796,29 @@ static int sqlite3Prepare16(
** and the statement is automatically recompiled if an schema change
** occurs.
*/
-int sqlite3_prepare16(
+SQLITE_API int sqlite3_prepare16(
sqlite3 *db, /* Database handle. */
const void *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
const void **pzTail /* OUT: End of parsed string */
){
- return sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
}
-int sqlite3_prepare16_v2(
+SQLITE_API int sqlite3_prepare16_v2(
sqlite3 *db, /* Database handle. */
const void *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
const void **pzTail /* OUT: End of parsed string */
){
- return sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
}
#endif /* SQLITE_OMIT_UTF16 */
@@ -51014,7 +76839,7 @@ int sqlite3_prepare16_v2(
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
-** $Id: select.c,v 1.338 2007/04/16 17:07:55 drh Exp $
+** $Id: select.c,v 1.526 2009/08/01 15:09:58 drh Exp $
*/
@@ -51022,16 +76847,27 @@ int sqlite3_prepare16_v2(
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
*/
-static void clearSelect(Select *p){
- sqlite3ExprListDelete(p->pEList);
- sqlite3SrcListDelete(p->pSrc);
- sqlite3ExprDelete(p->pWhere);
- sqlite3ExprListDelete(p->pGroupBy);
- sqlite3ExprDelete(p->pHaving);
- sqlite3ExprListDelete(p->pOrderBy);
- sqlite3SelectDelete(p->pPrior);
- sqlite3ExprDelete(p->pLimit);
- sqlite3ExprDelete(p->pOffset);
+static void clearSelect(sqlite3 *db, Select *p){
+ sqlite3ExprListDelete(db, p->pEList);
+ sqlite3SrcListDelete(db, p->pSrc);
+ sqlite3ExprDelete(db, p->pWhere);
+ sqlite3ExprListDelete(db, p->pGroupBy);
+ sqlite3ExprDelete(db, p->pHaving);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ sqlite3SelectDelete(db, p->pPrior);
+ sqlite3ExprDelete(db, p->pLimit);
+ sqlite3ExprDelete(db, p->pOffset);
+}
+
+/*
+** Initialize a SelectDest structure.
+*/
+SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
+ pDest->eDest = (u8)eDest;
+ pDest->iParm = iParm;
+ pDest->affinity = 0;
+ pDest->iMem = 0;
+ pDest->nMem = 0;
}
@@ -51039,7 +76875,8 @@ static void clearSelect(Select *p){
** Allocate a new Select structure and return a pointer to that
** structure.
*/
-Select *sqlite3SelectNew(
+SQLITE_PRIVATE Select *sqlite3SelectNew(
+ Parse *pParse, /* Parsing context */
ExprList *pEList, /* which columns to include in the result */
SrcList *pSrc, /* the FROM clause -- which tables to scan */
Expr *pWhere, /* the WHERE clause */
@@ -51052,14 +76889,15 @@ Select *sqlite3SelectNew(
){
Select *pNew;
Select standin;
- pNew = sqliteMalloc( sizeof(*pNew) );
- assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */
+ sqlite3 *db = pParse->db;
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
+ assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
if( pNew==0 ){
pNew = &standin;
memset(pNew, 0, sizeof(*pNew));
}
if( pEList==0 ){
- pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
+ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
}
pNew->pEList = pEList;
pNew->pSrc = pSrc;
@@ -51067,18 +76905,17 @@ Select *sqlite3SelectNew(
pNew->pGroupBy = pGroupBy;
pNew->pHaving = pHaving;
pNew->pOrderBy = pOrderBy;
- pNew->isDistinct = isDistinct;
+ pNew->selFlags = isDistinct ? SF_Distinct : 0;
pNew->op = TK_SELECT;
- assert( pOffset==0 || pLimit!=0 );
pNew->pLimit = pLimit;
pNew->pOffset = pOffset;
- pNew->iLimit = -1;
- pNew->iOffset = -1;
+ assert( pOffset==0 || pLimit!=0 );
pNew->addrOpenEphm[0] = -1;
pNew->addrOpenEphm[1] = -1;
pNew->addrOpenEphm[2] = -1;
- if( pNew==&standin) {
- clearSelect(pNew);
+ if( db->mallocFailed ) {
+ clearSelect(db, pNew);
+ if( pNew!=&standin ) sqlite3DbFree(db, pNew);
pNew = 0;
}
return pNew;
@@ -51087,10 +76924,10 @@ Select *sqlite3SelectNew(
/*
** Delete the given Select structure and all of its substructures.
*/
-void sqlite3SelectDelete(Select *p){
+SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){
if( p ){
- clearSelect(p);
- sqliteFree(p);
+ clearSelect(db, p);
+ sqlite3DbFree(db, p);
}
}
@@ -51111,22 +76948,24 @@ void sqlite3SelectDelete(Select *p){
** If an illegal or unsupported join type is seen, then still return
** a join type, but put an error in the pParse structure.
*/
-int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
int jointype = 0;
Token *apAll[3];
Token *p;
+ /* 0123456789 123456789 123456789 123 */
+ static const char zKeyText[] = "naturaleftouterightfullinnercross";
static const struct {
- const char zKeyword[8];
- u8 nChar;
- u8 code;
- } keywords[] = {
- { "natural", 7, JT_NATURAL },
- { "left", 4, JT_LEFT|JT_OUTER },
- { "right", 5, JT_RIGHT|JT_OUTER },
- { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
- { "outer", 5, JT_OUTER },
- { "inner", 5, JT_INNER },
- { "cross", 5, JT_INNER|JT_CROSS },
+ u8 i; /* Beginning of keyword text in zKeyText[] */
+ u8 nChar; /* Length of the keyword in characters */
+ u8 code; /* Join type mask */
+ } aKeyword[] = {
+ /* natural */ { 0, 7, JT_NATURAL },
+ /* left */ { 6, 4, JT_LEFT|JT_OUTER },
+ /* outer */ { 10, 5, JT_OUTER },
+ /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
+ /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
+ /* inner */ { 23, 5, JT_INNER },
+ /* cross */ { 28, 5, JT_INNER|JT_CROSS },
};
int i, j;
apAll[0] = pA;
@@ -51134,14 +76973,15 @@ int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
apAll[2] = pC;
for(i=0; i<3 && apAll[i]; i++){
p = apAll[i];
- for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
- if( p->n==keywords[j].nChar
- && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
- jointype |= keywords[j].code;
+ for(j=0; j<ArraySize(aKeyword); j++){
+ if( p->n==aKeyword[j].nChar
+ && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
+ jointype |= aKeyword[j].code;
break;
}
}
- if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
+ testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
+ if( j>=ArraySize(aKeyword) ){
jointype |= JT_ERROR;
break;
}
@@ -51150,14 +76990,14 @@ int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
(jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
(jointype & JT_ERROR)!=0
){
- const char *zSp1 = " ";
- const char *zSp2 = " ";
- if( pB==0 ){ zSp1++; }
- if( pC==0 ){ zSp2++; }
+ const char *zSp = " ";
+ assert( pB!=0 );
+ if( pC==0 ){ zSp++; }
sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
- "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
+ "%T %T%s%T", pA, pB, zSp, pC);
jointype = JT_INNER;
- }else if( jointype & JT_RIGHT ){
+ }else if( (jointype & JT_OUTER)!=0
+ && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
sqlite3ErrorMsg(pParse,
"RIGHT and FULL OUTER JOINs are not currently supported");
jointype = JT_INNER;
@@ -51178,62 +77018,51 @@ static int columnIndex(Table *pTab, const char *zCol){
}
/*
-** Set the value of a token to a '\000'-terminated string.
-*/
-static void setToken(Token *p, const char *z){
- p->z = (u8*)z;
- p->n = z ? strlen(z) : 0;
- p->dyn = 0;
-}
-
-/*
** Create an expression node for an identifier with the name of zName
*/
-Expr *sqlite3CreateIdExpr(const char *zName){
- Token dummy;
- setToken(&dummy, zName);
- return sqlite3Expr(TK_ID, 0, 0, &dummy);
+SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
+ return sqlite3Expr(pParse->db, TK_ID, zName);
}
-
/*
** Add a term to the WHERE expression in *ppExpr that requires the
** zCol column to be equal in the two tables pTab1 and pTab2.
*/
static void addWhereTerm(
+ Parse *pParse, /* Parsing context */
const char *zCol, /* Name of the column */
const Table *pTab1, /* First table */
const char *zAlias1, /* Alias for first table. May be NULL */
const Table *pTab2, /* Second table */
const char *zAlias2, /* Alias for second table. May be NULL */
int iRightJoinTable, /* VDBE cursor for the right table */
- Expr **ppExpr /* Add the equality term to this expression */
+ Expr **ppExpr, /* Add the equality term to this expression */
+ int isOuterJoin /* True if dealing with an OUTER join */
){
Expr *pE1a, *pE1b, *pE1c;
Expr *pE2a, *pE2b, *pE2c;
Expr *pE;
- pE1a = sqlite3CreateIdExpr(zCol);
- pE2a = sqlite3CreateIdExpr(zCol);
+ pE1a = sqlite3CreateIdExpr(pParse, zCol);
+ pE2a = sqlite3CreateIdExpr(pParse, zCol);
if( zAlias1==0 ){
zAlias1 = pTab1->zName;
}
- pE1b = sqlite3CreateIdExpr(zAlias1);
+ pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
if( zAlias2==0 ){
zAlias2 = pTab2->zName;
}
- pE2b = sqlite3CreateIdExpr(zAlias2);
- pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
- pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
- pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
- if( pE ){
+ pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
+ pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
+ pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
+ pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
+ if( pE && isOuterJoin ){
ExprSetProperty(pE, EP_FromJoin);
- pE->iRightJoinTable = iRightJoinTable;
- }
- pE = sqlite3ExprAnd(*ppExpr, pE);
- if( pE ){
- *ppExpr = pE;
+ assert( !ExprHasAnyProperty(pE, EP_TokenOnly|EP_Reduced) );
+ ExprSetIrreducible(pE);
+ pE->iRightJoinTable = (i16)iRightJoinTable;
}
+ *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
}
/*
@@ -51265,7 +77094,9 @@ static void addWhereTerm(
static void setJoinExpr(Expr *p, int iTable){
while( p ){
ExprSetProperty(p, EP_FromJoin);
- p->iRightJoinTable = iTable;
+ assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
+ ExprSetIrreducible(p);
+ p->iRightJoinTable = (i16)iTable;
setJoinExpr(p->pLeft, iTable);
p = p->pRight;
}
@@ -51297,8 +77128,10 @@ static int sqliteProcessJoin(Parse *pParse, Select *p){
for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
Table *pLeftTab = pLeft->pTab;
Table *pRightTab = pRight->pTab;
+ int isOuter;
- if( pLeftTab==0 || pRightTab==0 ) continue;
+ if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
+ isOuter = (pRight->jointype & JT_OUTER)!=0;
/* When the NATURAL keyword is present, add WHERE clause terms for
** every column that the two tables have in common.
@@ -51312,9 +77145,9 @@ static int sqliteProcessJoin(Parse *pParse, Select *p){
for(j=0; j<pLeftTab->nCol; j++){
char *zName = pLeftTab->aCol[j].zName;
if( columnIndex(pRightTab, zName)>=0 ){
- addWhereTerm(zName, pLeftTab, pLeft->zAlias,
+ addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
pRightTab, pRight->zAlias,
- pRight->iCursor, &p->pWhere);
+ pRight->iCursor, &p->pWhere, isOuter);
}
}
@@ -51332,8 +77165,8 @@ static int sqliteProcessJoin(Parse *pParse, Select *p){
** an AND operator.
*/
if( pRight->pOn ){
- setJoinExpr(pRight->pOn, pRight->iCursor);
- p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn);
+ if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
+ p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
pRight->pOn = 0;
}
@@ -51353,9 +77186,9 @@ static int sqliteProcessJoin(Parse *pParse, Select *p){
"not present in both tables", zName);
return 1;
}
- addWhereTerm(zName, pLeftTab, pLeft->zAlias,
+ addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
pRightTab, pRight->zAlias,
- pRight->iCursor, &p->pWhere);
+ pRight->iCursor, &p->pWhere, isOuter);
}
}
}
@@ -51369,24 +77202,37 @@ static int sqliteProcessJoin(Parse *pParse, Select *p){
static void pushOntoSorter(
Parse *pParse, /* Parser context */
ExprList *pOrderBy, /* The ORDER BY clause */
- Select *pSelect /* The whole SELECT statement */
+ Select *pSelect, /* The whole SELECT statement */
+ int regData /* Register holding data to be sorted */
){
Vdbe *v = pParse->pVdbe;
- sqlite3ExprCodeExprList(pParse, pOrderBy);
- sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
- sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
- sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
- sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
- if( pSelect->iLimit>=0 ){
+ int nExpr = pOrderBy->nExpr;
+ int regBase = sqlite3GetTempRange(pParse, nExpr+2);
+ int regRecord = sqlite3GetTempReg(pParse);
+ sqlite3ExprCacheClear(pParse);
+ sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
+ sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
+ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
+ if( pSelect->iLimit ){
int addr1, addr2;
- addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
- sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
- addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
+ int iLimit;
+ if( pSelect->iOffset ){
+ iLimit = pSelect->iOffset+1;
+ }else{
+ iLimit = pSelect->iLimit;
+ }
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
+ sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
+ addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, addr1);
- sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
- sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
+ sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
+ sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
sqlite3VdbeJumpHere(v, addr2);
- pSelect->iLimit = -1;
+ pSelect->iLimit = 0;
}
}
@@ -51396,25 +77242,21 @@ static void pushOntoSorter(
static void codeOffset(
Vdbe *v, /* Generate code into this VM */
Select *p, /* The SELECT statement being coded */
- int iContinue, /* Jump here to skip the current record */
- int nPop /* Number of times to pop stack when jumping */
+ int iContinue /* Jump here to skip the current record */
){
- if( p->iOffset>=0 && iContinue!=0 ){
+ if( p->iOffset && iContinue!=0 ){
int addr;
- sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
- addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
- if( nPop>0 ){
- sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
- }
- sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
- VdbeComment((v, "# skip OFFSET records"));
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
+ addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
+ VdbeComment((v, "skip OFFSET records"));
sqlite3VdbeJumpHere(v, addr);
}
}
/*
-** Add code that will check to make sure the top N elements of the
-** stack are distinct. iTab is a sorting index that holds previously
+** Add code that will check to make sure the N registers starting at iMem
+** form a distinct entry. iTab is a sorting index that holds previously
** seen combinations of the N values. A new entry is made in iTab
** if the current N values are new.
**
@@ -51422,19 +77264,43 @@ static void codeOffset(
** stack if the top N elements are not distinct.
*/
static void codeDistinct(
- Vdbe *v, /* Generate code into this VM */
+ Parse *pParse, /* Parsing and code generating context */
int iTab, /* A sorting index used to test for distinctness */
int addrRepeat, /* Jump to here if not distinct */
- int N /* The top N elements of the stack must be distinct */
+ int N, /* Number of elements */
+ int iMem /* First element */
){
- sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
- sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
- VdbeComment((v, "# skip indistinct records"));
- sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
+ Vdbe *v;
+ int r1;
+
+ v = pParse->pVdbe;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
+ sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
}
+/*
+** Generate an error message when a SELECT is used within a subexpression
+** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
+** column. We do this in a subroutine because the error occurs in multiple
+** places.
+*/
+static int checkForMultiColumnSelectError(
+ Parse *pParse, /* Parse context. */
+ SelectDest *pDest, /* Destination of SELECT results */
+ int nExpr /* Number of result columns returned by SELECT */
+){
+ int eDest = pDest->eDest;
+ if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
+ sqlite3ErrorMsg(pParse, "only a single result allowed for "
+ "a SELECT that is part of an expression");
+ return 1;
+ }else{
+ return 0;
+ }
+}
/*
** This routine generates the code for the inside of the inner loop
@@ -51445,7 +77311,7 @@ static void codeDistinct(
** then data is pulled from srcTab and pEList is used only to get the
** datatypes for each column.
*/
-static int selectInnerLoop(
+static void selectInnerLoop(
Parse *pParse, /* The parser context */
Select *p, /* The complete select statement being coded */
ExprList *pEList, /* List of values being extracted */
@@ -51453,37 +77319,53 @@ static int selectInnerLoop(
int nColumn, /* Number of columns in the source table */
ExprList *pOrderBy, /* If not NULL, sort results using this key */
int distinct, /* If >=0, make sure results are distinct */
- int eDest, /* How to dispose of the results */
- int iParm, /* An argument to the disposal method */
+ SelectDest *pDest, /* How to dispose of the results */
int iContinue, /* Jump here to continue with next row */
- int iBreak, /* Jump here to break out of the inner loop */
- char *aff /* affinity string if eDest is SRT_Union */
+ int iBreak /* Jump here to break out of the inner loop */
){
Vdbe *v = pParse->pVdbe;
int i;
int hasDistinct; /* True if the DISTINCT keyword is present */
+ int regResult; /* Start of memory holding result set */
+ int eDest = pDest->eDest; /* How to dispose of results */
+ int iParm = pDest->iParm; /* First argument to disposal method */
+ int nResultCol; /* Number of result columns */
- if( v==0 ) return 0;
+ assert( v );
+ if( NEVER(v==0) ) return;
assert( pEList!=0 );
-
- /* If there was a LIMIT clause on the SELECT statement, then do the check
- ** to see if this row should be output.
- */
- hasDistinct = distinct>=0 && pEList->nExpr>0;
+ hasDistinct = distinct>=0;
if( pOrderBy==0 && !hasDistinct ){
- codeOffset(v, p, iContinue, 0);
+ codeOffset(v, p, iContinue);
}
/* Pull the requested columns.
*/
if( nColumn>0 ){
+ nResultCol = nColumn;
+ }else{
+ nResultCol = pEList->nExpr;
+ }
+ if( pDest->iMem==0 ){
+ pDest->iMem = pParse->nMem+1;
+ pDest->nMem = nResultCol;
+ pParse->nMem += nResultCol;
+ }else{
+ assert( pDest->nMem==nResultCol );
+ }
+ regResult = pDest->iMem;
+ if( nColumn>0 ){
for(i=0; i<nColumn; i++){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
}
- }else{
- nColumn = pEList->nExpr;
- sqlite3ExprCodeExprList(pParse, pEList);
+ }else if( eDest!=SRT_Exists ){
+ /* If the destination is an EXISTS(...) expression, the actual
+ ** values returned by the SELECT are not required.
+ */
+ sqlite3ExprCacheClear(pParse);
+ sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
}
+ nColumn = nResultCol;
/* If the DISTINCT keyword was present on the SELECT statement
** and this row has been seen before, then do not make this row
@@ -51492,23 +77374,27 @@ static int selectInnerLoop(
if( hasDistinct ){
assert( pEList!=0 );
assert( pEList->nExpr==nColumn );
- codeDistinct(v, distinct, iContinue, nColumn);
+ codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
if( pOrderBy==0 ){
- codeOffset(v, p, iContinue, nColumn);
+ codeOffset(v, p, iContinue);
}
}
+ if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
+ return;
+ }
+
switch( eDest ){
/* In this mode, write each query result to the key of the temporary
** table iParm.
*/
#ifndef SQLITE_OMIT_COMPOUND_SELECT
case SRT_Union: {
- sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
- if( aff ){
- sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
- }
- sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
+ int r1;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
break;
}
@@ -51517,11 +77403,7 @@ static int selectInnerLoop(
** the temporary table iParm.
*/
case SRT_Except: {
- int addr;
- addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
- sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
- sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
- sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
break;
}
#endif
@@ -51530,14 +77412,20 @@ static int selectInnerLoop(
*/
case SRT_Table:
case SRT_EphemTab: {
- sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+ int r1 = sqlite3GetTempReg(pParse);
+ testcase( eDest==SRT_Table );
+ testcase( eDest==SRT_EphemTab );
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
if( pOrderBy ){
- pushOntoSorter(pParse, pOrderBy, p);
+ pushOntoSorter(pParse, pOrderBy, p, r1);
}else{
- sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
- sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
}
+ sqlite3ReleaseTempReg(pParse, r1);
break;
}
@@ -51547,33 +77435,28 @@ static int selectInnerLoop(
** item into the set table with bogus data.
*/
case SRT_Set: {
- int addr1 = sqlite3VdbeCurrentAddr(v);
- int addr2;
-
assert( nColumn==1 );
- sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
- p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
+ p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
if( pOrderBy ){
/* At first glance you would think we could optimize out the
** ORDER BY in this case since the order of entries in the set
** does not matter. But there might be a LIMIT clause, in which
** case the order does matter */
- pushOntoSorter(pParse, pOrderBy, p);
+ pushOntoSorter(pParse, pOrderBy, p, regResult);
}else{
- sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
- sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
}
- sqlite3VdbeJumpHere(v, addr2);
break;
}
/* If any row exist in the result set, record that fact and abort.
*/
case SRT_Exists: {
- sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
- sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
/* The LIMIT clause will terminate the loop for us */
break;
}
@@ -51585,9 +77468,9 @@ static int selectInnerLoop(
case SRT_Mem: {
assert( nColumn==1 );
if( pOrderBy ){
- pushOntoSorter(pParse, pOrderBy, p);
+ pushOntoSorter(pParse, pOrderBy, p, regResult);
}else{
- sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
+ sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
/* The LIMIT clause will jump out of the loop for us */
}
break;
@@ -51598,15 +77481,20 @@ static int selectInnerLoop(
** case of a subroutine, the subroutine itself is responsible for
** popping the data from the stack.
*/
- case SRT_Subroutine:
- case SRT_Callback: {
+ case SRT_Coroutine:
+ case SRT_Output: {
+ testcase( eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
if( pOrderBy ){
- sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
- pushOntoSorter(pParse, pOrderBy, p);
- }else if( eDest==SRT_Subroutine ){
- sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+ pushOntoSorter(pParse, pOrderBy, p, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }else if( eDest==SRT_Coroutine ){
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
}else{
- sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
+ sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
}
break;
}
@@ -51619,7 +77507,6 @@ static int selectInnerLoop(
*/
default: {
assert( eDest==SRT_Discard );
- sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
break;
}
#endif
@@ -51627,11 +77514,12 @@ static int selectInnerLoop(
/* Jump to the end of the loop if the LIMIT is reached.
*/
- if( p->iLimit>=0 && pOrderBy==0 ){
- sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
- sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
+ if( p->iLimit ){
+ assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to
+ ** pushOntoSorter() would have cleared p->iLimit */
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+ sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
}
- return 0;
}
/*
@@ -51646,8 +77534,8 @@ static int selectInnerLoop(
**
** Space to hold the KeyInfo structure is obtain from malloc. The calling
** function is responsible for seeing that this structure is eventually
-** freed. Add the KeyInfo structure to the P3 field of an opcode using
-** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
+** freed. Add the KeyInfo structure to the P4 field of an opcode using
+** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
sqlite3 *db = pParse->db;
@@ -51657,11 +77545,12 @@ static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
int i;
nExpr = pList->nExpr;
- pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
+ pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
if( pInfo ){
pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
- pInfo->nField = nExpr;
+ pInfo->nField = (u16)nExpr;
pInfo->enc = ENC(db);
+ pInfo->db = db;
for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
CollSeq *pColl;
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
@@ -51683,93 +77572,98 @@ static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
** routine generates the code needed to do that.
*/
static void generateSortTail(
- Parse *pParse, /* Parsing context */
- Select *p, /* The SELECT statement */
- Vdbe *v, /* Generate code into this VDBE */
- int nColumn, /* Number of columns of data */
- int eDest, /* Write the sorted results here */
- int iParm /* Optional parameter associated with eDest */
-){
- int brk = sqlite3VdbeMakeLabel(v);
- int cont = sqlite3VdbeMakeLabel(v);
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ Vdbe *v, /* Generate code into this VDBE */
+ int nColumn, /* Number of columns of data */
+ SelectDest *pDest /* Write the sorted results here */
+){
+ int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */
+ int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
int addr;
int iTab;
int pseudoTab = 0;
ExprList *pOrderBy = p->pOrderBy;
+ int eDest = pDest->eDest;
+ int iParm = pDest->iParm;
+
+ int regRow;
+ int regRowid;
+
iTab = pOrderBy->iECursor;
- if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
+ regRow = sqlite3GetTempReg(pParse);
+ if( eDest==SRT_Output || eDest==SRT_Coroutine ){
pseudoTab = pParse->nTab++;
- sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
- }
- addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
- codeOffset(v, p, cont, 0);
- if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
- sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
+ regRowid = 0;
+ }else{
+ regRowid = sqlite3GetTempReg(pParse);
}
- sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
+ codeOffset(v, p, addrContinue);
+ sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
switch( eDest ){
case SRT_Table:
case SRT_EphemTab: {
- sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
- sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
+ testcase( eDest==SRT_Table );
+ testcase( eDest==SRT_EphemTab );
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
break;
}
#ifndef SQLITE_OMIT_SUBQUERY
case SRT_Set: {
assert( nColumn==1 );
- sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
- sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
break;
}
case SRT_Mem: {
assert( nColumn==1 );
- sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
+ sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
/* The LIMIT clause will terminate the loop for us */
break;
}
#endif
- case SRT_Callback:
- case SRT_Subroutine: {
+ default: {
int i;
- sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
+ assert( eDest==SRT_Output || eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ testcase( eDest==SRT_Coroutine );
for(i=0; i<nColumn; i++){
- sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
+ assert( regRow!=pDest->iMem+i );
+ sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
+ if( i==0 ){
+ sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
+ }
}
- if( eDest==SRT_Callback ){
- sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
+ if( eDest==SRT_Output ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
+ sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
}else{
- sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
}
break;
}
- default: {
- /* Do nothing */
- break;
- }
}
+ sqlite3ReleaseTempReg(pParse, regRow);
+ sqlite3ReleaseTempReg(pParse, regRowid);
- /* Jump to the end of the loop when the LIMIT is reached
+ /* LIMIT has been implemented by the pushOntoSorter() routine.
*/
- if( p->iLimit>=0 ){
- sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
- sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
- }
+ assert( p->iLimit==0 );
/* The bottom of the loop
*/
- sqlite3VdbeResolveLabel(v, cont);
- sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
- sqlite3VdbeResolveLabel(v, brk);
- if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
- sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
+ sqlite3VdbeResolveLabel(v, addrContinue);
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
+ sqlite3VdbeResolveLabel(v, addrBreak);
+ if( eDest==SRT_Output || eDest==SRT_Coroutine ){
+ sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
}
-
}
/*
@@ -51802,13 +77696,7 @@ static const char *columnType(
char const *zOriginTab = 0;
char const *zOriginCol = 0;
int j;
- if( pExpr==0 || pNC->pSrcList==0 ) return 0;
-
- /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING,
- ** and LIMIT clauses. But pExpr originates in the result set of a
- ** SELECT. So pExpr can never contain an AS operator.
- */
- assert( pExpr->op!=TK_AS );
+ if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
switch( pExpr->op ){
case TK_AGG_COLUMN:
@@ -51820,6 +77708,8 @@ static const char *columnType(
Table *pTab = 0; /* Table structure column is extracted from */
Select *pS = 0; /* Select the column is extracted from */
int iCol = pExpr->iColumn; /* Index of column in pTab */
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ testcase( pExpr->op==TK_COLUMN );
while( pNC && !pTab ){
SrcList *pTabList = pNC->pSrcList;
for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
@@ -51832,27 +77722,33 @@ static const char *columnType(
}
if( pTab==0 ){
- /* FIX ME:
- ** This can occurs if you have something like "SELECT new.x;" inside
- ** a trigger. In other words, if you reference the special "new"
- ** table in the result set of a select. We do not have a good way
- ** to find the actual table type, so call it "TEXT". This is really
- ** something of a bug, but I do not know how to fix it.
+ /* At one time, code such as "SELECT new.x" within a trigger would
+ ** cause this condition to run. Since then, we have restructured how
+ ** trigger code is generated and so this condition is no longer
+ ** possible. However, it can still be true for statements like
+ ** the following:
**
- ** This code does not produce the correct answer - it just prevents
- ** a segfault. See ticket #1229.
- */
- zType = "TEXT";
+ ** CREATE TABLE t1(col INTEGER);
+ ** SELECT (SELECT t1.col) FROM FROM t1;
+ **
+ ** when columnType() is called on the expression "t1.col" in the
+ ** sub-select. In this case, set the column type to NULL, even
+ ** though it should really be "INTEGER".
+ **
+ ** This is not a problem, as the column type of "t1.col" is never
+ ** used. When columnType() is called on the expression
+ ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
+ ** branch below. */
break;
}
- assert( pTab );
+ assert( pTab && pExpr->pTab==pTab );
if( pS ){
/* The "table" is actually a sub-select or a view in the FROM clause
** of the SELECT statement. Return the declaration type and origin
** data for the result-set column of the sub-select.
*/
- if( iCol>=0 && iCol<pS->pEList->nExpr ){
+ if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){
/* If iCol is less than zero, then the expression requests the
** rowid of the sub-select or view. This expression is legal (see
** test case misc2.2.2) - it always evaluates to NULL.
@@ -51860,11 +77756,11 @@ static const char *columnType(
NameContext sNC;
Expr *p = pS->pEList->a[iCol].pExpr;
sNC.pSrcList = pS->pSrc;
- sNC.pNext = 0;
+ sNC.pNext = pNC;
sNC.pParse = pNC->pParse;
zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
}
- }else if( pTab->pSchema ){
+ }else if( ALWAYS(pTab->pSchema) ){
/* A real table */
assert( !pS );
if( iCol<0 ) iCol = pTab->iPKey;
@@ -51891,8 +77787,9 @@ static const char *columnType(
** statement.
*/
NameContext sNC;
- Select *pS = pExpr->pSelect;
+ Select *pS = pExpr->x.pSelect;
Expr *p = pS->pEList->a[0].pExpr;
+ assert( ExprHasProperty(pExpr, EP_xIsSelect) );
sNC.pSrcList = pS->pSrc;
sNC.pNext = pNC;
sNC.pParse = pNC->pParse;
@@ -51920,6 +77817,7 @@ static void generateColumnTypes(
SrcList *pTabList, /* List of tables */
ExprList *pEList /* Expressions defining the result set */
){
+#ifndef SQLITE_OMIT_DECLTYPE
Vdbe *v = pParse->pVdbe;
int i;
NameContext sNC;
@@ -51927,20 +77825,26 @@ static void generateColumnTypes(
sNC.pParse = pParse;
for(i=0; i<pEList->nExpr; i++){
Expr *p = pEList->a[i].pExpr;
+ const char *zType;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
const char *zOrigDb = 0;
const char *zOrigTab = 0;
const char *zOrigCol = 0;
- const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
- /* The vdbe must make it's own copy of the column-type and other
+ /* The vdbe must make its own copy of the column-type and other
** column specific strings, in case the schema is reset before this
** virtual machine is deleted.
*/
- sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
- sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
- sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
- sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
+#else
+ zType = columnType(&sNC, p, 0, 0, 0);
+#endif
+ sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
}
+#endif /* SQLITE_OMIT_DECLTYPE */
}
/*
@@ -51965,8 +77869,7 @@ static void generateColumnNames(
}
#endif
- assert( v!=0 );
- if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
+ if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
pParse->colNamesSet = 1;
fullNames = (db->flags & SQLITE_FullColNames)!=0;
shortNames = (db->flags & SQLITE_ShortColNames)!=0;
@@ -51974,17 +77877,17 @@ static void generateColumnNames(
for(i=0; i<pEList->nExpr; i++){
Expr *p;
p = pEList->a[i].pExpr;
- if( p==0 ) continue;
+ if( NEVER(p==0) ) continue;
if( pEList->a[i].zName ){
char *zName = pEList->a[i].zName;
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
- continue;
- }
- if( p->op==TK_COLUMN && pTabList ){
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
+ }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
Table *pTab;
char *zCol;
int iCol = p->iColumn;
- for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
+ for(j=0; ALWAYS(j<pTabList->nSrc); j++){
+ if( pTabList->a[j].iCursor==p->iTable ) break;
+ }
assert( j<pTabList->nSrc );
pTab = pTabList->a[j].pTab;
if( iCol<0 ) iCol = pTab->iPKey;
@@ -51994,27 +77897,19 @@ static void generateColumnNames(
}else{
zCol = pTab->aCol[iCol].zName;
}
- if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
- }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
+ if( !shortNames && !fullNames ){
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME,
+ sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
+ }else if( fullNames ){
char *zName = 0;
- char *zTab;
-
- zTab = pTabList->a[j].zAlias;
- if( fullNames || zTab==0 ) zTab = pTab->zName;
- sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
+ zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
}else{
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
}
- }else if( p->span.z && p->span.z[0] ){
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
- /* sqlite3VdbeCompressSpace(v, addr); */
}else{
- char zName[30];
- assert( p->op!=TK_COLUMN || pTabList==0 );
- sprintf(zName, "column%d", i+1);
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME,
+ sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
}
}
generateColumnTypes(pParse, pTabList, pEList);
@@ -52037,431 +77932,191 @@ static const char *selectOpName(int id){
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
/*
-** Forward declaration
-*/
-static int prepSelectStmt(Parse*, Select*);
-
-/*
-** Given a SELECT statement, generate a Table structure that describes
-** the result set of that SELECT.
+** Given a an expression list (which is really the list of expressions
+** that form the result set of a SELECT statement) compute appropriate
+** column names for a table that would hold the expression list.
+**
+** All column names will be unique.
+**
+** Only the column names are computed. Column.zType, Column.zColl,
+** and other fields of Column are zeroed.
+**
+** Return SQLITE_OK on success. If a memory allocation error occurs,
+** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
*/
-Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
- Table *pTab;
- int i, j;
- ExprList *pEList;
- Column *aCol, *pCol;
-
- while( pSelect->pPrior ) pSelect = pSelect->pPrior;
- if( prepSelectStmt(pParse, pSelect) ){
- return 0;
- }
- if( sqlite3SelectResolve(pParse, pSelect, 0) ){
- return 0;
- }
- pTab = sqliteMalloc( sizeof(Table) );
- if( pTab==0 ){
- return 0;
- }
- pTab->nRef = 1;
- pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
- pEList = pSelect->pEList;
- pTab->nCol = pEList->nExpr;
- assert( pTab->nCol>0 );
- pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
- for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
- Expr *p, *pR;
- char *zType;
- char *zName;
- int nName;
- CollSeq *pColl;
- int cnt;
- NameContext sNC;
-
+static int selectColumnsFromExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* Expr list from which to derive column names */
+ int *pnCol, /* Write the number of columns here */
+ Column **paCol /* Write the new column list here */
+){
+ sqlite3 *db = pParse->db; /* Database connection */
+ int i, j; /* Loop counters */
+ int cnt; /* Index added to make the name unique */
+ Column *aCol, *pCol; /* For looping over result columns */
+ int nCol; /* Number of columns in the result set */
+ Expr *p; /* Expression for a single result column */
+ char *zName; /* Column name */
+ int nName; /* Size of name in zName[] */
+
+ *pnCol = nCol = pEList->nExpr;
+ aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
+ if( aCol==0 ) return SQLITE_NOMEM;
+ for(i=0, pCol=aCol; i<nCol; i++, pCol++){
/* Get an appropriate name for the column
*/
p = pEList->a[i].pExpr;
- assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
+ assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
+ || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
if( (zName = pEList->a[i].zName)!=0 ){
/* If the column contains an "AS <name>" phrase, use <name> as the name */
- zName = sqliteStrDup(zName);
- }else if( p->op==TK_DOT
- && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
- /* For columns of the from A.B use B as the name */
- zName = sqlite3MPrintf("%T", &pR->token);
- }else if( p->span.z && p->span.z[0] ){
- /* Use the original text of the column expression as its name */
- zName = sqlite3MPrintf("%T", &p->span);
- }else{
- /* If all else fails, make up a name */
- zName = sqlite3MPrintf("column%d", i+1);
+ zName = sqlite3DbStrDup(db, zName);
+ }else{
+ Expr *pColExpr = p; /* The expression that is the result column name */
+ Table *pTab; /* Table associated with this expression */
+ while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
+ if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
+ /* For columns use the column name name */
+ int iCol = pColExpr->iColumn;
+ pTab = pColExpr->pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ zName = sqlite3MPrintf(db, "%s",
+ iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
+ }else if( pColExpr->op==TK_ID ){
+ assert( !ExprHasProperty(pColExpr, EP_IntValue) );
+ zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
+ }else{
+ /* Use the original text of the column expression as its name */
+ zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
+ }
}
- sqlite3Dequote(zName);
- if( sqlite3MallocFailed() ){
- sqliteFree(zName);
- sqlite3DeleteTable(pTab);
- return 0;
+ if( db->mallocFailed ){
+ sqlite3DbFree(db, zName);
+ break;
}
/* Make sure the column name is unique. If the name is not unique,
** append a integer to the name so that it becomes unique.
*/
- nName = strlen(zName);
+ nName = sqlite3Strlen30(zName);
for(j=cnt=0; j<i; j++){
if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
+ char *zNewName;
zName[nName] = 0;
- zName = sqlite3MPrintf("%z:%d", zName, ++cnt);
+ zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
+ sqlite3DbFree(db, zName);
+ zName = zNewName;
j = -1;
if( zName==0 ) break;
}
}
pCol->zName = zName;
-
- /* Get the typename, type affinity, and collating sequence for the
- ** column.
- */
- memset(&sNC, 0, sizeof(sNC));
- sNC.pSrcList = pSelect->pSrc;
- zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
- pCol->zType = zType;
- pCol->affinity = sqlite3ExprAffinity(p);
- pColl = sqlite3ExprCollSeq(pParse, p);
- if( pColl ){
- pCol->zColl = sqliteStrDup(pColl->zName);
+ }
+ if( db->mallocFailed ){
+ for(j=0; j<i; j++){
+ sqlite3DbFree(db, aCol[j].zName);
}
+ sqlite3DbFree(db, aCol);
+ *paCol = 0;
+ *pnCol = 0;
+ return SQLITE_NOMEM;
}
- pTab->iPKey = -1;
- return pTab;
+ return SQLITE_OK;
}
/*
-** Prepare a SELECT statement for processing by doing the following
-** things:
-**
-** (1) Make sure VDBE cursor numbers have been assigned to every
-** element of the FROM clause.
+** Add type and collation information to a column list based on
+** a SELECT statement.
**
-** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
-** defines FROM clause. When views appear in the FROM clause,
-** fill pTabList->a[].pSelect with a copy of the SELECT statement
-** that implements the view. A copy is made of the view's SELECT
-** statement so that we can freely modify or delete that statement
-** without worrying about messing up the presistent representation
-** of the view.
+** The column list presumably came from selectColumnNamesFromExprList().
+** The column list has only names, not types or collations. This
+** routine goes through and adds the types and collations.
**
-** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
-** on joins and the ON and USING clause of joins.
-**
-** (4) Scan the list of columns in the result set (pEList) looking
-** for instances of the "*" operator or the TABLE.* operator.
-** If found, expand each "*" to be every column in every table
-** and TABLE.* to be every column in TABLE.
-**
-** Return 0 on success. If there are problems, leave an error message
-** in pParse and return non-zero.
+** This routine requires that all identifiers in the SELECT
+** statement be resolved.
*/
-static int prepSelectStmt(Parse *pParse, Select *p){
- int i, j, k, rc;
- SrcList *pTabList;
- ExprList *pEList;
- struct SrcList_item *pFrom;
-
- if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
- return 1;
- }
- pTabList = p->pSrc;
- pEList = p->pEList;
-
- /* Make sure cursor numbers have been assigned to all entries in
- ** the FROM clause of the SELECT statement.
- */
- sqlite3SrcListAssignCursors(pParse, p->pSrc);
-
- /* Look up every table named in the FROM clause of the select. If
- ** an entry of the FROM clause is a subquery instead of a table or view,
- ** then create a transient table structure to describe the subquery.
- */
- for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
- Table *pTab;
- if( pFrom->pTab!=0 ){
- /* This statement has already been prepared. There is no need
- ** to go further. */
- assert( i==0 );
- return 0;
- }
- if( pFrom->zName==0 ){
-#ifndef SQLITE_OMIT_SUBQUERY
- /* A sub-query in the FROM clause of a SELECT */
- assert( pFrom->pSelect!=0 );
- if( pFrom->zAlias==0 ){
- pFrom->zAlias =
- sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
- }
- assert( pFrom->pTab==0 );
- pFrom->pTab = pTab =
- sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
- if( pTab==0 ){
- return 1;
- }
- /* The isEphem flag indicates that the Table structure has been
- ** dynamically allocated and may be freed at any time. In other words,
- ** pTab is not pointing to a persistent table structure that defines
- ** part of the schema. */
- pTab->isEphem = 1;
-#endif
- }else{
- /* An ordinary table or view name in the FROM clause */
- assert( pFrom->pTab==0 );
- pFrom->pTab = pTab =
- sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
- if( pTab==0 ){
- return 1;
- }
- pTab->nRef++;
-#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
- if( pTab->pSelect || IsVirtual(pTab) ){
- /* We reach here if the named table is a really a view */
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- return 1;
- }
- /* If pFrom->pSelect!=0 it means we are dealing with a
- ** view within a view. The SELECT structure has already been
- ** copied by the outer view so we can skip the copy step here
- ** in the inner view.
- */
- if( pFrom->pSelect==0 ){
- pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
- }
- }
-#endif
- }
- }
-
- /* Process NATURAL keywords, and ON and USING clauses of joins.
- */
- if( sqliteProcessJoin(pParse, p) ) return 1;
-
- /* For every "*" that occurs in the column list, insert the names of
- ** all columns in all tables. And for every TABLE.* insert the names
- ** of all columns in TABLE. The parser inserted a special expression
- ** with the TK_ALL operator for each "*" that it found in the column list.
- ** The following code just has to locate the TK_ALL expressions and expand
- ** each one to the list of all columns in all tables.
- **
- ** The first loop just checks to see if there are any "*" operators
- ** that need expanding.
- */
- for(k=0; k<pEList->nExpr; k++){
- Expr *pE = pEList->a[k].pExpr;
- if( pE->op==TK_ALL ) break;
- if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
- && pE->pLeft && pE->pLeft->op==TK_ID ) break;
- }
- rc = 0;
- if( k<pEList->nExpr ){
- /*
- ** If we get here it means the result set contains one or more "*"
- ** operators that need to be expanded. Loop through each expression
- ** in the result set and expand them one by one.
- */
- struct ExprList_item *a = pEList->a;
- ExprList *pNew = 0;
- int flags = pParse->db->flags;
- int longNames = (flags & SQLITE_FullColNames)!=0 &&
- (flags & SQLITE_ShortColNames)==0;
-
- for(k=0; k<pEList->nExpr; k++){
- Expr *pE = a[k].pExpr;
- if( pE->op!=TK_ALL &&
- (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
- /* This particular expression does not need to be expanded.
- */
- pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
- if( pNew ){
- pNew->a[pNew->nExpr-1].zName = a[k].zName;
- }else{
- rc = 1;
- }
- a[k].pExpr = 0;
- a[k].zName = 0;
- }else{
- /* This expression is a "*" or a "TABLE.*" and needs to be
- ** expanded. */
- int tableSeen = 0; /* Set to 1 when TABLE matches */
- char *zTName; /* text of name of TABLE */
- if( pE->op==TK_DOT && pE->pLeft ){
- zTName = sqlite3NameFromToken(&pE->pLeft->token);
- }else{
- zTName = 0;
- }
- for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
- Table *pTab = pFrom->pTab;
- char *zTabName = pFrom->zAlias;
- if( zTabName==0 || zTabName[0]==0 ){
- zTabName = pTab->zName;
- }
- if( zTName && (zTabName==0 || zTabName[0]==0 ||
- sqlite3StrICmp(zTName, zTabName)!=0) ){
- continue;
- }
- tableSeen = 1;
- for(j=0; j<pTab->nCol; j++){
- Expr *pExpr, *pRight;
- char *zName = pTab->aCol[j].zName;
+static void selectAddColumnTypeAndCollation(
+ Parse *pParse, /* Parsing contexts */
+ int nCol, /* Number of columns */
+ Column *aCol, /* List of columns */
+ Select *pSelect /* SELECT used to determine types and collations */
+){
+ sqlite3 *db = pParse->db;
+ NameContext sNC;
+ Column *pCol;
+ CollSeq *pColl;
+ int i;
+ Expr *p;
+ struct ExprList_item *a;
- if( i>0 ){
- struct SrcList_item *pLeft = &pTabList->a[i-1];
- if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
- columnIndex(pLeft->pTab, zName)>=0 ){
- /* In a NATURAL join, omit the join columns from the
- ** table on the right */
- continue;
- }
- if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
- /* In a join with a USING clause, omit columns in the
- ** using clause from the table on the right. */
- continue;
- }
- }
- pRight = sqlite3Expr(TK_ID, 0, 0, 0);
- if( pRight==0 ) break;
- setToken(&pRight->token, zName);
- if( zTabName && (longNames || pTabList->nSrc>1) ){
- Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
- pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
- if( pExpr==0 ) break;
- setToken(&pLeft->token, zTabName);
- setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
- pExpr->span.dyn = 1;
- pExpr->token.z = 0;
- pExpr->token.n = 0;
- pExpr->token.dyn = 0;
- }else{
- pExpr = pRight;
- pExpr->span = pExpr->token;
- }
- if( longNames ){
- pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
- }else{
- pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
- }
- }
- }
- if( !tableSeen ){
- if( zTName ){
- sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
- }else{
- sqlite3ErrorMsg(pParse, "no tables specified");
- }
- rc = 1;
- }
- sqliteFree(zTName);
- }
+ assert( pSelect!=0 );
+ assert( (pSelect->selFlags & SF_Resolved)!=0 );
+ assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
+ if( db->mallocFailed ) return;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pSrcList = pSelect->pSrc;
+ a = pSelect->pEList->a;
+ for(i=0, pCol=aCol; i<nCol; i++, pCol++){
+ p = a[i].pExpr;
+ pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
+ pCol->affinity = sqlite3ExprAffinity(p);
+ if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
+ pColl = sqlite3ExprCollSeq(pParse, p);
+ if( pColl ){
+ pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
}
- sqlite3ExprListDelete(pEList);
- p->pEList = pNew;
}
- return rc;
}
-#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
-** This routine associates entries in an ORDER BY expression list with
-** columns in a result. For each ORDER BY expression, the opcode of
-** the top-level node is changed to TK_COLUMN and the iColumn value of
-** the top-level node is filled in with column number and the iTable
-** value of the top-level node is filled with iTable parameter.
-**
-** If there are prior SELECT clauses, they are processed first. A match
-** in an earlier SELECT takes precedence over a later SELECT.
-**
-** Any entry that does not match is flagged as an error. The number
-** of errors is returned.
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
*/
-static int matchOrderbyToColumn(
- Parse *pParse, /* A place to leave error messages */
- Select *pSelect, /* Match to result columns of this SELECT */
- ExprList *pOrderBy, /* The ORDER BY values to match against columns */
- int iTable, /* Insert this value in iTable */
- int mustComplete /* If TRUE all ORDER BYs must match */
-){
- int nErr = 0;
- int i, j;
- ExprList *pEList;
+SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
+ Table *pTab;
+ sqlite3 *db = pParse->db;
+ int savedFlags;
- if( pSelect==0 || pOrderBy==0 ) return 1;
- if( mustComplete ){
- for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
- }
- if( prepSelectStmt(pParse, pSelect) ){
- return 1;
- }
- if( pSelect->pPrior ){
- if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
- return 1;
- }
+ savedFlags = db->flags;
+ db->flags &= ~SQLITE_FullColNames;
+ db->flags |= SQLITE_ShortColNames;
+ sqlite3SelectPrep(pParse, pSelect, 0);
+ if( pParse->nErr ) return 0;
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ db->flags = savedFlags;
+ pTab = sqlite3DbMallocZero(db, sizeof(Table) );
+ if( pTab==0 ){
+ return 0;
}
- pEList = pSelect->pEList;
- for(i=0; i<pOrderBy->nExpr; i++){
- struct ExprList_item *pItem;
- Expr *pE = pOrderBy->a[i].pExpr;
- int iCol = -1;
- char *zLabel;
-
- if( pOrderBy->a[i].done ) continue;
- if( sqlite3ExprIsInteger(pE, &iCol) ){
- if( iCol<=0 || iCol>pEList->nExpr ){
- sqlite3ErrorMsg(pParse,
- "ORDER BY position %d should be between 1 and %d",
- iCol, pEList->nExpr);
- nErr++;
- break;
- }
- if( !mustComplete ) continue;
- iCol--;
- }
- if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){
- for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){
- char *zName;
- int isMatch;
- if( pItem->zName ){
- zName = sqlite3StrDup(pItem->zName);
- }else{
- zName = sqlite3NameFromToken(&pItem->pExpr->token);
- }
- isMatch = zName && sqlite3StrICmp(zName, zLabel)==0;
- sqliteFree(zName);
- if( isMatch ){
- iCol = j;
- break;
- }
- }
- sqliteFree(zLabel);
- }
- if( iCol>=0 ){
- pE->op = TK_COLUMN;
- pE->iColumn = iCol;
- pE->iTable = iTable;
- pE->iAgg = -1;
- pOrderBy->a[i].done = 1;
- }else if( mustComplete ){
- sqlite3ErrorMsg(pParse,
- "ORDER BY term number %d does not match any result column", i+1);
- nErr++;
- break;
- }
+ /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
+ ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */
+ assert( db->lookaside.bEnabled==0 );
+ pTab->dbMem = 0;
+ pTab->nRef = 1;
+ pTab->zName = 0;
+ selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
+ selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
+ pTab->iPKey = -1;
+ if( db->mallocFailed ){
+ sqlite3DeleteTable(pTab);
+ return 0;
}
- return nErr;
+ return pTab;
}
-#endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
/*
** Get a VDBE for the given parser context. Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
-Vdbe *sqlite3GetVdbe(Parse *pParse){
+SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
Vdbe *v = pParse->pVdbe;
if( v==0 ){
v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
+#ifndef SQLITE_OMIT_TRACE
+ if( v ){
+ sqlite3VdbeAddOp0(v, OP_Trace);
+ }
+#endif
}
return v;
}
@@ -52489,7 +78144,8 @@ static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
Vdbe *v = 0;
int iLimit = 0;
int iOffset;
- int addr1, addr2;
+ int addr1;
+ if( p->iLimit ) return;
/*
** "LIMIT -1" always shows all rows. There is some
@@ -52497,58 +78153,32 @@ static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
** The current implementation interprets "LIMIT 0" to mean
** no rows.
*/
+ sqlite3ExprCacheClear(pParse);
+ assert( p->pOffset==0 || p->pLimit!=0 );
if( p->pLimit ){
- p->iLimit = iLimit = pParse->nMem;
- pParse->nMem += 2;
+ p->iLimit = iLimit = ++pParse->nMem;
v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
- sqlite3ExprCode(pParse, p->pLimit);
- sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
- sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0);
- VdbeComment((v, "# LIMIT counter"));
- sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
- }
- if( p->pOffset ){
- p->iOffset = iOffset = pParse->nMem++;
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
- sqlite3ExprCode(pParse, p->pOffset);
- sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
- sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
- VdbeComment((v, "# OFFSET counter"));
- addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
- sqlite3VdbeJumpHere(v, addr1);
- if( p->pLimit ){
- sqlite3VdbeAddOp(v, OP_Add, 0, 0);
+ if( NEVER(v==0) ) return; /* VDBE should have already been allocated */
+ sqlite3ExprCode(pParse, p->pLimit, iLimit);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
+ VdbeComment((v, "LIMIT counter"));
+ sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
+ if( p->pOffset ){
+ p->iOffset = iOffset = ++pParse->nMem;
+ pParse->nMem++; /* Allocate an extra register for limit+offset */
+ sqlite3ExprCode(pParse, p->pOffset, iOffset);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
+ VdbeComment((v, "OFFSET counter"));
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
+ VdbeComment((v, "LIMIT+OFFSET"));
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
+ sqlite3VdbeJumpHere(v, addr1);
}
}
- if( p->pLimit ){
- addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
- addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
- sqlite3VdbeJumpHere(v, addr1);
- sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
- VdbeComment((v, "# LIMIT+OFFSET"));
- sqlite3VdbeJumpHere(v, addr2);
- }
-}
-
-/*
-** Allocate a virtual index to use for sorting.
-*/
-static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
- if( pOrderBy ){
- int addr;
- assert( pOrderBy->iECursor==0 );
- pOrderBy->iECursor = pParse->nTab++;
- addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
- pOrderBy->iECursor, pOrderBy->nExpr+1);
- assert( p->addrOpenEphm[2] == -1 );
- p->addrOpenEphm[2] = addr;
- }
}
#ifndef SQLITE_OMIT_COMPOUND_SELECT
@@ -52567,17 +78197,27 @@ static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
}else{
pRet = 0;
}
- if( pRet==0 ){
+ assert( iCol>=0 );
+ if( pRet==0 && iCol<p->pEList->nExpr ){
pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
}
return pRet;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+/* Forward reference */
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+);
+
+
#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
-** This routine is called to process a query that is really the union
-** or intersection of two or more separate queries.
+** This routine is called to process a compound query form from
+** two or more separate queries using UNION, UNION ALL, EXCEPT, or
+** INTERSECT
**
** "p" points to the right-most of the two queries. the query on the
** left is p->pPrior. The left query could also be a compound query
@@ -52608,28 +78248,24 @@ static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
static int multiSelect(
Parse *pParse, /* Parsing context */
Select *p, /* The right-most of SELECTs to be coded */
- int eDest, /* \___ Store query results as specified */
- int iParm, /* / by these two parameters. */
- char *aff /* If eDest is SRT_Union, the affinity string */
+ SelectDest *pDest /* What to do with query results */
){
int rc = SQLITE_OK; /* Success code from a subroutine */
Select *pPrior; /* Another SELECT immediately to our left */
Vdbe *v; /* Generate code to this VDBE */
- int nCol; /* Number of columns in the result set */
- ExprList *pOrderBy; /* The ORDER BY clause on p */
- int aSetP2[2]; /* Set P2 value of these op to number of columns */
- int nSetP2 = 0; /* Number of slots in aSetP2[] used */
+ SelectDest dest; /* Alternative data destination */
+ Select *pDelete = 0; /* Chain of simple selects to delete */
+ sqlite3 *db; /* Database connection */
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
*/
- if( p==0 || p->pPrior==0 ){
- rc = 1;
- goto multi_select_end;
- }
+ assert( p && p->pPrior ); /* Calling function guarantees this much */
+ db = pParse->db;
pPrior = p->pPrior;
assert( pPrior->pRightmost!=pPrior );
assert( pPrior->pRightmost==p->pRightmost );
+ dest = *pDest;
if( pPrior->pOrderBy ){
sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
selectOpName(p->op));
@@ -52643,136 +78279,143 @@ static int multiSelect(
goto multi_select_end;
}
- /* Make sure we have a valid query engine. If not, create a new one.
- */
v = sqlite3GetVdbe(pParse);
- if( v==0 ){
+ assert( v!=0 ); /* The VDBE already created by calling function */
+
+ /* Create the destination temporary table if necessary
+ */
+ if( dest.eDest==SRT_EphemTab ){
+ assert( p->pEList );
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
+ dest.eDest = SRT_Table;
+ }
+
+ /* Make sure all SELECTs in the statement have the same number of elements
+ ** in their result sets.
+ */
+ assert( p->pEList && pPrior->pEList );
+ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
+ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+ " do not have the same number of result columns", selectOpName(p->op));
rc = 1;
goto multi_select_end;
}
- /* Create the destination temporary table if necessary
+ /* Compound SELECTs that have an ORDER BY clause are handled separately.
*/
- if( eDest==SRT_EphemTab ){
- assert( p->pEList );
- assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
- aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
- eDest = SRT_Table;
+ if( p->pOrderBy ){
+ return multiSelectOrderBy(pParse, p, pDest);
}
/* Generate code for the left and right SELECT statements.
*/
- pOrderBy = p->pOrderBy;
switch( p->op ){
case TK_ALL: {
- if( pOrderBy==0 ){
- int addr = 0;
- assert( !pPrior->pLimit );
- pPrior->pLimit = p->pLimit;
- pPrior->pOffset = p->pOffset;
- rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
- p->pLimit = 0;
- p->pOffset = 0;
- if( rc ){
- goto multi_select_end;
- }
- p->pPrior = 0;
- p->iLimit = pPrior->iLimit;
- p->iOffset = pPrior->iOffset;
- if( p->iLimit>=0 ){
- addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
- VdbeComment((v, "# Jump ahead if LIMIT reached"));
- }
- rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
- p->pPrior = pPrior;
- if( rc ){
- goto multi_select_end;
- }
- if( addr ){
- sqlite3VdbeJumpHere(v, addr);
- }
- break;
+ int addr = 0;
+ assert( !pPrior->pLimit );
+ pPrior->pLimit = p->pLimit;
+ pPrior->pOffset = p->pOffset;
+ rc = sqlite3Select(pParse, pPrior, &dest);
+ p->pLimit = 0;
+ p->pOffset = 0;
+ if( rc ){
+ goto multi_select_end;
}
- /* For UNION ALL ... ORDER BY fall through to the next case */
+ p->pPrior = 0;
+ p->iLimit = pPrior->iLimit;
+ p->iOffset = pPrior->iOffset;
+ if( p->iLimit ){
+ addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
+ VdbeComment((v, "Jump ahead if LIMIT reached"));
+ }
+ rc = sqlite3Select(pParse, p, &dest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ if( addr ){
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ break;
}
case TK_EXCEPT:
case TK_UNION: {
int unionTab; /* Cursor number of the temporary table holding result */
- int op = 0; /* One of the SRT_ operations to apply to self */
+ u8 op = 0; /* One of the SRT_ operations to apply to self */
int priorOp; /* The SRT_ operation to apply to prior selects */
Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
int addr;
+ SelectDest uniondest;
- priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
- if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
+ testcase( p->op==TK_EXCEPT );
+ testcase( p->op==TK_UNION );
+ priorOp = SRT_Union;
+ if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
/* We can reuse a temporary table generated by a SELECT to our
** right.
*/
- unionTab = iParm;
+ assert( p->pRightmost!=p ); /* Can only happen for leftward elements
+ ** of a 3-way or more compound */
+ assert( p->pLimit==0 ); /* Not allowed on leftward elements */
+ assert( p->pOffset==0 ); /* Not allowed on leftward elements */
+ unionTab = dest.iParm;
}else{
/* We will need to create our own temporary table to hold the
** intermediate results.
*/
unionTab = pParse->nTab++;
- if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
- rc = 1;
- goto multi_select_end;
- }
- addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
- if( priorOp==SRT_Table ){
- assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
- aSetP2[nSetP2++] = addr;
- }else{
- assert( p->addrOpenEphm[0] == -1 );
- p->addrOpenEphm[0] = addr;
- p->pRightmost->usesEphm = 1;
- }
- createSortingIndex(pParse, p, pOrderBy);
+ assert( p->pOrderBy==0 );
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ p->pRightmost->selFlags |= SF_UsesEphemeral;
assert( p->pEList );
}
/* Code the SELECT statements to our left
*/
assert( !pPrior->pOrderBy );
- rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
+ sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
+ rc = sqlite3Select(pParse, pPrior, &uniondest);
if( rc ){
goto multi_select_end;
}
/* Code the current SELECT statement
*/
- switch( p->op ){
- case TK_EXCEPT: op = SRT_Except; break;
- case TK_UNION: op = SRT_Union; break;
- case TK_ALL: op = SRT_Table; break;
+ if( p->op==TK_EXCEPT ){
+ op = SRT_Except;
+ }else{
+ assert( p->op==TK_UNION );
+ op = SRT_Union;
}
p->pPrior = 0;
- p->pOrderBy = 0;
- p->disallowOrderBy = pOrderBy!=0;
pLimit = p->pLimit;
p->pLimit = 0;
pOffset = p->pOffset;
p->pOffset = 0;
- rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
+ uniondest.eDest = op;
+ rc = sqlite3Select(pParse, p, &uniondest);
+ testcase( rc!=SQLITE_OK );
+ /* Query flattening in sqlite3Select() might refill p->pOrderBy.
+ ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ pDelete = p->pPrior;
p->pPrior = pPrior;
- p->pOrderBy = pOrderBy;
- sqlite3ExprDelete(p->pLimit);
+ p->pOrderBy = 0;
+ sqlite3ExprDelete(db, p->pLimit);
p->pLimit = pLimit;
p->pOffset = pOffset;
- p->iLimit = -1;
- p->iOffset = -1;
- if( rc ){
- goto multi_select_end;
- }
-
+ p->iLimit = 0;
+ p->iOffset = 0;
/* Convert the data in the temporary table into whatever form
** it is that we currently need.
- */
- if( eDest!=priorOp || unionTab!=iParm ){
+ */
+ assert( unionTab==dest.iParm || dest.eDest!=priorOp );
+ if( dest.eDest!=priorOp ){
int iCont, iBreak, iStart;
assert( p->pEList );
- if( eDest==SRT_Callback ){
+ if( dest.eDest==SRT_Output ){
Select *pFirst = p;
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
generateColumnNames(pParse, 0, pFirst->pEList);
@@ -52780,27 +78423,24 @@ static int multiSelect(
iBreak = sqlite3VdbeMakeLabel(v);
iCont = sqlite3VdbeMakeLabel(v);
computeLimitRegisters(pParse, p, iBreak);
- sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
iStart = sqlite3VdbeCurrentAddr(v);
- rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
- pOrderBy, -1, eDest, iParm,
- iCont, iBreak, 0);
- if( rc ){
- rc = 1;
- goto multi_select_end;
- }
+ selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
+ 0, -1, &dest, iCont, iBreak);
sqlite3VdbeResolveLabel(v, iCont);
- sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
+ sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
sqlite3VdbeResolveLabel(v, iBreak);
- sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
}
break;
}
- case TK_INTERSECT: {
+ default: assert( p->op==TK_INTERSECT ); {
int tab1, tab2;
int iCont, iBreak, iStart;
Expr *pLimit, *pOffset;
int addr;
+ SelectDest intersectdest;
+ int r1;
/* INTERSECT is different from the others since it requires
** two temporary tables. Hence it has its own case. Begin
@@ -52808,28 +78448,25 @@ static int multiSelect(
*/
tab1 = pParse->nTab++;
tab2 = pParse->nTab++;
- if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
- rc = 1;
- goto multi_select_end;
- }
- createSortingIndex(pParse, p, pOrderBy);
+ assert( p->pOrderBy==0 );
- addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
assert( p->addrOpenEphm[0] == -1 );
p->addrOpenEphm[0] = addr;
- p->pRightmost->usesEphm = 1;
+ p->pRightmost->selFlags |= SF_UsesEphemeral;
assert( p->pEList );
/* Code the SELECTs to our left into temporary table "tab1".
*/
- rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
+ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
+ rc = sqlite3Select(pParse, pPrior, &intersectdest);
if( rc ){
goto multi_select_end;
}
/* Code the current SELECT into temporary table "tab2"
*/
- addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
assert( p->addrOpenEphm[1] == -1 );
p->addrOpenEphm[1] = addr;
p->pPrior = 0;
@@ -52837,20 +78474,20 @@ static int multiSelect(
p->pLimit = 0;
pOffset = p->pOffset;
p->pOffset = 0;
- rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
+ intersectdest.iParm = tab2;
+ rc = sqlite3Select(pParse, p, &intersectdest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
p->pPrior = pPrior;
- sqlite3ExprDelete(p->pLimit);
+ sqlite3ExprDelete(db, p->pLimit);
p->pLimit = pLimit;
p->pOffset = pOffset;
- if( rc ){
- goto multi_select_end;
- }
/* Generate code to take the intersection of the two temporary
** tables.
*/
assert( p->pEList );
- if( eDest==SRT_Callback ){
+ if( dest.eDest==SRT_Output ){
Select *pFirst = p;
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
generateColumnNames(pParse, 0, pFirst->pEList);
@@ -52858,76 +78495,54 @@ static int multiSelect(
iBreak = sqlite3VdbeMakeLabel(v);
iCont = sqlite3VdbeMakeLabel(v);
computeLimitRegisters(pParse, p, iBreak);
- sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
- iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
- sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
- rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
- pOrderBy, -1, eDest, iParm,
- iCont, iBreak, 0);
- if( rc ){
- rc = 1;
- goto multi_select_end;
- }
+ sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
+ r1 = sqlite3GetTempReg(pParse);
+ iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
+ sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
+ 0, -1, &dest, iCont, iBreak);
sqlite3VdbeResolveLabel(v, iCont);
- sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
+ sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
sqlite3VdbeResolveLabel(v, iBreak);
- sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
- sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
break;
}
}
- /* Make sure all SELECTs in the statement have the same number of elements
- ** in their result sets.
- */
- assert( p->pEList && pPrior->pEList );
- if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
- sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
- " do not have the same number of result columns", selectOpName(p->op));
- rc = 1;
- goto multi_select_end;
- }
-
- /* Set the number of columns in temporary tables
- */
- nCol = p->pEList->nExpr;
- while( nSetP2 ){
- sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
- }
-
- /* Compute collating sequences used by either the ORDER BY clause or
- ** by any temporary tables needed to implement the compound select.
- ** Attach the KeyInfo structure to all temporary tables. Invoke the
- ** ORDER BY processing if there is an ORDER BY clause.
+ /* Compute collating sequences used by
+ ** temporary tables needed to implement the compound select.
+ ** Attach the KeyInfo structure to all temporary tables.
**
** This section is run by the right-most SELECT statement only.
** SELECT statements to the left always skip this part. The right-most
** SELECT might also skip this part if it has no ORDER BY clause and
** no temp tables are required.
*/
- if( pOrderBy || p->usesEphm ){
+ if( p->selFlags & SF_UsesEphemeral ){
int i; /* Loop counter */
KeyInfo *pKeyInfo; /* Collating sequence for the result set */
Select *pLoop; /* For looping through SELECT statements */
- int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */
- CollSeq **apColl;
- CollSeq **aCopy;
+ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
+ int nCol; /* Number of columns in result set */
assert( p->pRightmost==p );
- nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
- pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
+ nCol = p->pEList->nExpr;
+ pKeyInfo = sqlite3DbMallocZero(db,
+ sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
if( !pKeyInfo ){
rc = SQLITE_NOMEM;
goto multi_select_end;
}
- pKeyInfo->enc = ENC(pParse->db);
- pKeyInfo->nField = nCol;
+ pKeyInfo->enc = ENC(db);
+ pKeyInfo->nField = (u16)nCol;
for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
*apColl = multiSelectCollSeq(pParse, p, i);
if( 0==*apColl ){
- *apColl = pParse->db->pDfltColl;
+ *apColl = db->pDfltColl;
}
}
@@ -52941,50 +78556,612 @@ static int multiSelect(
break;
}
sqlite3VdbeChangeP2(v, addr, nCol);
- sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
+ sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
pLoop->addrOpenEphm[i] = -1;
}
}
+ sqlite3DbFree(db, pKeyInfo);
+ }
- if( pOrderBy ){
- struct ExprList_item *pOTerm = pOrderBy->a;
- int nOrderByExpr = pOrderBy->nExpr;
- int addr;
- u8 *pSortOrder;
-
- aCopy = &pKeyInfo->aColl[nOrderByExpr];
- pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
- memcpy(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
- apColl = pKeyInfo->aColl;
- for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
- Expr *pExpr = pOTerm->pExpr;
- if( (pExpr->flags & EP_ExpCollate) ){
- assert( pExpr->pColl!=0 );
- *apColl = pExpr->pColl;
+multi_select_end:
+ pDest->iMem = dest.iMem;
+ pDest->nMem = dest.nMem;
+ sqlite3SelectDelete(db, pDelete);
+ return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Code an output subroutine for a coroutine implementation of a
+** SELECT statment.
+**
+** The data to be output is contained in pIn->iMem. There are
+** pIn->nMem columns to be output. pDest is where the output should
+** be sent.
+**
+** regReturn is the number of the register holding the subroutine
+** return address.
+**
+** If regPrev>0 then it is a the first register in a vector that
+** records the previous output. mem[regPrev] is a flag that is false
+** if there has been no previous output. If regPrev>0 then code is
+** generated to suppress duplicates. pKeyInfo is used for comparing
+** keys.
+**
+** If the LIMIT found in p->iLimit is reached, jump immediately to
+** iBreak.
+*/
+static int generateOutputSubroutine(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SelectDest *pIn, /* Coroutine supplying data */
+ SelectDest *pDest, /* Where to send the data */
+ int regReturn, /* The return address register */
+ int regPrev, /* Previous result register. No uniqueness if 0 */
+ KeyInfo *pKeyInfo, /* For comparing with previous entry */
+ int p4type, /* The p4 type for pKeyInfo */
+ int iBreak /* Jump here if we hit the LIMIT */
+){
+ Vdbe *v = pParse->pVdbe;
+ int iContinue;
+ int addr;
+
+ addr = sqlite3VdbeCurrentAddr(v);
+ iContinue = sqlite3VdbeMakeLabel(v);
+
+ /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
+ */
+ if( regPrev ){
+ int j1, j2;
+ j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
+ j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
+ (char*)pKeyInfo, p4type);
+ sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
+ }
+ if( pParse->db->mallocFailed ) return 0;
+
+ /* Suppress the the first OFFSET entries if there is an OFFSET clause
+ */
+ codeOffset(v, p, iContinue);
+
+ switch( pDest->eDest ){
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Table:
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3GetTempReg(pParse);
+ testcase( pDest->eDest==SRT_Table );
+ testcase( pDest->eDest==SRT_EphemTab );
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ int r1;
+ assert( pIn->nMem==1 );
+ p->affinity =
+ sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#if 0 /* Never occurs on an ORDER BY query */
+ /* If any row exist in the result set, record that fact and abort.
+ */
+ case SRT_Exists: {
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+#endif
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop.
+ */
+ case SRT_Mem: {
+ assert( pIn->nMem==1 );
+ sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
+ /* The LIMIT clause will jump out of the loop for us */
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ /* The results are stored in a sequence of registers
+ ** starting at pDest->iMem. Then the co-routine yields.
+ */
+ case SRT_Coroutine: {
+ if( pDest->iMem==0 ){
+ pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
+ pDest->nMem = pIn->nMem;
+ }
+ sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
+ break;
+ }
+
+ /* If none of the above, then the result destination must be
+ ** SRT_Output. This routine is never called with any other
+ ** destination other than the ones handled above or SRT_Output.
+ **
+ ** For SRT_Output, results are stored in a sequence of registers.
+ ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
+ ** return the next row of result.
+ */
+ default: {
+ assert( pDest->eDest==SRT_Output );
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
+ sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
+ break;
+ }
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached.
+ */
+ if( p->iLimit ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+ sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
+ }
+
+ /* Generate the subroutine return
+ */
+ sqlite3VdbeResolveLabel(v, iContinue);
+ sqlite3VdbeAddOp1(v, OP_Return, regReturn);
+
+ return addr;
+}
+
+/*
+** Alternative compound select code generator for cases when there
+** is an ORDER BY clause.
+**
+** We assume a query of the following form:
+**
+** <selectA> <operator> <selectB> ORDER BY <orderbylist>
+**
+** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
+** is to code both <selectA> and <selectB> with the ORDER BY clause as
+** co-routines. Then run the co-routines in parallel and merge the results
+** into the output. In addition to the two coroutines (called selectA and
+** selectB) there are 7 subroutines:
+**
+** outA: Move the output of the selectA coroutine into the output
+** of the compound query.
+**
+** outB: Move the output of the selectB coroutine into the output
+** of the compound query. (Only generated for UNION and
+** UNION ALL. EXCEPT and INSERTSECT never output a row that
+** appears only in B.)
+**
+** AltB: Called when there is data from both coroutines and A<B.
+**
+** AeqB: Called when there is data from both coroutines and A==B.
+**
+** AgtB: Called when there is data from both coroutines and A>B.
+**
+** EofA: Called when data is exhausted from selectA.
+**
+** EofB: Called when data is exhausted from selectB.
+**
+** The implementation of the latter five subroutines depend on which
+** <operator> is used:
+**
+**
+** UNION ALL UNION EXCEPT INTERSECT
+** ------------- ----------------- -------------- -----------------
+** AltB: outA, nextA outA, nextA outA, nextA nextA
+**
+** AeqB: outA, nextA nextA nextA outA, nextA
+**
+** AgtB: outB, nextB outB, nextB nextB nextB
+**
+** EofA: outB, nextB outB, nextB halt halt
+**
+** EofB: outA, nextA outA, nextA outA, nextA halt
+**
+** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
+** causes an immediate jump to EofA and an EOF on B following nextB causes
+** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
+** following nextX causes a jump to the end of the select processing.
+**
+** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
+** within the output subroutine. The regPrev register set holds the previously
+** output value. A comparison is made against this value and the output
+** is skipped if the next results would be the same as the previous.
+**
+** The implementation plan is to implement the two coroutines and seven
+** subroutines first, then put the control logic at the bottom. Like this:
+**
+** goto Init
+** coA: coroutine for left query (A)
+** coB: coroutine for right query (B)
+** outA: output one row of A
+** outB: output one row of B (UNION and UNION ALL only)
+** EofA: ...
+** EofB: ...
+** AltB: ...
+** AeqB: ...
+** AgtB: ...
+** Init: initialize coroutine registers
+** yield coA
+** if eof(A) goto EofA
+** yield coB
+** if eof(B) goto EofB
+** Cmpr: Compare A, B
+** Jump AltB, AeqB, AgtB
+** End: ...
+**
+** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
+** actually called using Gosub and they do not Return. EofA and EofB loop
+** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
+** and AgtB jump to either L2 or to one of EofA or EofB.
+*/
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int i, j; /* Loop counters */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest destA; /* Destination for coroutine A */
+ SelectDest destB; /* Destination for coroutine B */
+ int regAddrA; /* Address register for select-A coroutine */
+ int regEofA; /* Flag to indicate when select-A is complete */
+ int regAddrB; /* Address register for select-B coroutine */
+ int regEofB; /* Flag to indicate when select-B is complete */
+ int addrSelectA; /* Address of the select-A coroutine */
+ int addrSelectB; /* Address of the select-B coroutine */
+ int regOutA; /* Address register for the output-A subroutine */
+ int regOutB; /* Address register for the output-B subroutine */
+ int addrOutA; /* Address of the output-A subroutine */
+ int addrOutB = 0; /* Address of the output-B subroutine */
+ int addrEofA; /* Address of the select-A-exhausted subroutine */
+ int addrEofB; /* Address of the select-B-exhausted subroutine */
+ int addrAltB; /* Address of the A<B subroutine */
+ int addrAeqB; /* Address of the A==B subroutine */
+ int addrAgtB; /* Address of the A>B subroutine */
+ int regLimitA; /* Limit register for select-A */
+ int regLimitB; /* Limit register for select-A */
+ int regPrev; /* A range of registers to hold previous output */
+ int savedLimit; /* Saved value of p->iLimit */
+ int savedOffset; /* Saved value of p->iOffset */
+ int labelCmpr; /* Label for the start of the merge algorithm */
+ int labelEnd; /* Label for the end of the overall SELECT stmt */
+ int j1; /* Jump instructions that get retargetted */
+ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
+ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
+ KeyInfo *pKeyMerge; /* Comparison information for merging rows */
+ sqlite3 *db; /* Database connection */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ int *aPermute; /* Mapping from ORDER BY terms to result set columns */
+
+ assert( p->pOrderBy!=0 );
+ assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
+ db = pParse->db;
+ v = pParse->pVdbe;
+ assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
+ labelEnd = sqlite3VdbeMakeLabel(v);
+ labelCmpr = sqlite3VdbeMakeLabel(v);
+
+
+ /* Patch up the ORDER BY clause
+ */
+ op = p->op;
+ pPrior = p->pPrior;
+ assert( pPrior->pOrderBy==0 );
+ pOrderBy = p->pOrderBy;
+ assert( pOrderBy );
+ nOrderBy = pOrderBy->nExpr;
+
+ /* For operators other than UNION ALL we have to make sure that
+ ** the ORDER BY clause covers every term of the result set. Add
+ ** terms to the ORDER BY clause as necessary.
+ */
+ if( op!=TK_ALL ){
+ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
+ struct ExprList_item *pItem;
+ for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
+ assert( pItem->iCol>0 );
+ if( pItem->iCol==i ) break;
+ }
+ if( j==nOrderBy ){
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pNew==0 ) return SQLITE_NOMEM;
+ pNew->flags |= EP_IntValue;
+ pNew->u.iValue = i;
+ pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
+ pOrderBy->a[nOrderBy++].iCol = (u16)i;
+ }
+ }
+ }
+
+ /* Compute the comparison permutation and keyinfo that is used with
+ ** the permutation used to determine if the next
+ ** row of results comes from selectA or selectB. Also add explicit
+ ** collations to the ORDER BY clause terms so that when the subqueries
+ ** to the right and the left are evaluated, they use the correct
+ ** collation.
+ */
+ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
+ if( aPermute ){
+ struct ExprList_item *pItem;
+ for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
+ assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr );
+ aPermute[i] = pItem->iCol - 1;
+ }
+ pKeyMerge =
+ sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
+ if( pKeyMerge ){
+ pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
+ pKeyMerge->nField = (u16)nOrderBy;
+ pKeyMerge->enc = ENC(db);
+ for(i=0; i<nOrderBy; i++){
+ CollSeq *pColl;
+ Expr *pTerm = pOrderBy->a[i].pExpr;
+ if( pTerm->flags & EP_ExpCollate ){
+ pColl = pTerm->pColl;
}else{
- *apColl = aCopy[pExpr->iColumn];
+ pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
+ pTerm->flags |= EP_ExpCollate;
+ pTerm->pColl = pColl;
}
- *pSortOrder = pOTerm->sortOrder;
+ pKeyMerge->aColl[i] = pColl;
+ pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
}
- assert( p->pRightmost==p );
- assert( p->addrOpenEphm[2]>=0 );
- addr = p->addrOpenEphm[2];
- sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2);
- pKeyInfo->nField = nOrderByExpr;
- sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
- pKeyInfo = 0;
- generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
}
+ }else{
+ pKeyMerge = 0;
+ }
+
+ /* Reattach the ORDER BY clause to the query.
+ */
+ p->pOrderBy = pOrderBy;
+ pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
- sqliteFree(pKeyInfo);
+ /* Allocate a range of temporary registers and the KeyInfo needed
+ ** for the logic that removes duplicate result rows when the
+ ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
+ */
+ if( op==TK_ALL ){
+ regPrev = 0;
+ }else{
+ int nExpr = p->pEList->nExpr;
+ assert( nOrderBy>=nExpr || db->mallocFailed );
+ regPrev = sqlite3GetTempRange(pParse, nExpr+1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
+ pKeyDup = sqlite3DbMallocZero(db,
+ sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
+ if( pKeyDup ){
+ pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
+ pKeyDup->nField = (u16)nExpr;
+ pKeyDup->enc = ENC(db);
+ for(i=0; i<nExpr; i++){
+ pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
+ pKeyDup->aSortOrder[i] = 0;
+ }
+ }
}
-multi_select_end:
- return rc;
+ /* Separate the left and the right query from one another
+ */
+ p->pPrior = 0;
+ pPrior->pRightmost = 0;
+ sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
+ if( pPrior->pPrior==0 ){
+ sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
+ }
+
+ /* Compute the limit registers */
+ computeLimitRegisters(pParse, p, labelEnd);
+ if( p->iLimit && op==TK_ALL ){
+ regLimitA = ++pParse->nMem;
+ regLimitB = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
+ regLimitA);
+ sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
+ }else{
+ regLimitA = regLimitB = 0;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = 0;
+ sqlite3ExprDelete(db, p->pOffset);
+ p->pOffset = 0;
+
+ regAddrA = ++pParse->nMem;
+ regEofA = ++pParse->nMem;
+ regAddrB = ++pParse->nMem;
+ regEofB = ++pParse->nMem;
+ regOutA = ++pParse->nMem;
+ regOutB = ++pParse->nMem;
+ sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
+ sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
+
+ /* Jump past the various subroutines and coroutines to the main
+ ** merge loop
+ */
+ j1 = sqlite3VdbeAddOp0(v, OP_Goto);
+ addrSelectA = sqlite3VdbeCurrentAddr(v);
+
+
+ /* Generate a coroutine to evaluate the SELECT statement to the
+ ** left of the compound operator - the "A" select.
+ */
+ VdbeNoopComment((v, "Begin coroutine for left SELECT"));
+ pPrior->iLimit = regLimitA;
+ sqlite3Select(pParse, pPrior, &destA);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ VdbeNoopComment((v, "End coroutine for left SELECT"));
+
+ /* Generate a coroutine to evaluate the SELECT statement on
+ ** the right - the "B" select
+ */
+ addrSelectB = sqlite3VdbeCurrentAddr(v);
+ VdbeNoopComment((v, "Begin coroutine for right SELECT"));
+ savedLimit = p->iLimit;
+ savedOffset = p->iOffset;
+ p->iLimit = regLimitB;
+ p->iOffset = 0;
+ sqlite3Select(pParse, p, &destB);
+ p->iLimit = savedLimit;
+ p->iOffset = savedOffset;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ VdbeNoopComment((v, "End coroutine for right SELECT"));
+
+ /* Generate a subroutine that outputs the current row of the A
+ ** select as the next output row of the compound select.
+ */
+ VdbeNoopComment((v, "Output routine for A"));
+ addrOutA = generateOutputSubroutine(pParse,
+ p, &destA, pDest, regOutA,
+ regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
+
+ /* Generate a subroutine that outputs the current row of the B
+ ** select as the next output row of the compound select.
+ */
+ if( op==TK_ALL || op==TK_UNION ){
+ VdbeNoopComment((v, "Output routine for B"));
+ addrOutB = generateOutputSubroutine(pParse,
+ p, &destB, pDest, regOutB,
+ regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
+ }
+
+ /* Generate a subroutine to run when the results from select A
+ ** are exhausted and only data in select B remains.
+ */
+ VdbeNoopComment((v, "eof-A subroutine"));
+ if( op==TK_EXCEPT || op==TK_INTERSECT ){
+ addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
+ }else{
+ addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
+ }
+
+ /* Generate a subroutine to run when the results from select B
+ ** are exhausted and only data in select A remains.
+ */
+ if( op==TK_INTERSECT ){
+ addrEofB = addrEofA;
+ }else{
+ VdbeNoopComment((v, "eof-B subroutine"));
+ addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
+ }
+
+ /* Generate code to handle the case of A<B
+ */
+ VdbeNoopComment((v, "A-lt-B subroutine"));
+ addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+
+ /* Generate code to handle the case of A==B
+ */
+ if( op==TK_ALL ){
+ addrAeqB = addrAltB;
+ }else if( op==TK_INTERSECT ){
+ addrAeqB = addrAltB;
+ addrAltB++;
+ }else{
+ VdbeNoopComment((v, "A-eq-B subroutine"));
+ addrAeqB =
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+ }
+
+ /* Generate code to handle the case of A>B
+ */
+ VdbeNoopComment((v, "A-gt-B subroutine"));
+ addrAgtB = sqlite3VdbeCurrentAddr(v);
+ if( op==TK_ALL || op==TK_UNION ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ }
+ sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+ sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+
+ /* This code runs once to initialize everything.
+ */
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
+ sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+ sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
+
+ /* Implement the main merge loop
+ */
+ sqlite3VdbeResolveLabel(v, labelCmpr);
+ sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
+ sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
+ (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
+
+ /* Release temporary registers
+ */
+ if( regPrev ){
+ sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
+ }
+
+ /* Jump to the this point in order to terminate the query.
+ */
+ sqlite3VdbeResolveLabel(v, labelEnd);
+
+ /* Set the number of output columns
+ */
+ if( pDest->eDest==SRT_Output ){
+ Select *pFirst = pPrior;
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+ generateColumnNames(pParse, 0, pFirst->pEList);
+ }
+
+ /* Reassembly the compound query so that it will be freed correctly
+ ** by the calling function */
+ if( p->pPrior ){
+ sqlite3SelectDelete(db, p->pPrior);
+ }
+ p->pPrior = pPrior;
+
+ /*** TBD: Insert subroutine calls to close cursors on incomplete
+ **** subqueries ****/
+ return SQLITE_OK;
}
-#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+#endif
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/* Forward Declarations */
+static void substExprList(sqlite3*, ExprList*, int, ExprList*);
+static void substSelect(sqlite3*, Select *, int, ExprList *);
-#ifndef SQLITE_OMIT_VIEW
/*
** Scan through the expression pExpr. Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
@@ -52998,60 +79175,77 @@ multi_select_end:
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
-static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */
-static void substSelect(Select *, int, ExprList *); /* Forward Decl */
-static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
- if( pExpr==0 ) return;
+static Expr *substExpr(
+ sqlite3 *db, /* Report malloc errors to this connection */
+ Expr *pExpr, /* Expr in which substitution occurs */
+ int iTable, /* Table to be substituted */
+ ExprList *pEList /* Substitute expressions */
+){
+ if( pExpr==0 ) return 0;
if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
if( pExpr->iColumn<0 ){
pExpr->op = TK_NULL;
}else{
Expr *pNew;
assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
- assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
- pNew = pEList->a[pExpr->iColumn].pExpr;
- assert( pNew!=0 );
- pExpr->op = pNew->op;
- assert( pExpr->pLeft==0 );
- pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
- assert( pExpr->pRight==0 );
- pExpr->pRight = sqlite3ExprDup(pNew->pRight);
- assert( pExpr->pList==0 );
- pExpr->pList = sqlite3ExprListDup(pNew->pList);
- pExpr->iTable = pNew->iTable;
- pExpr->pTab = pNew->pTab;
- pExpr->iColumn = pNew->iColumn;
- pExpr->iAgg = pNew->iAgg;
- sqlite3TokenCopy(&pExpr->token, &pNew->token);
- sqlite3TokenCopy(&pExpr->span, &pNew->span);
- pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
- pExpr->flags = pNew->flags;
- }
- }else{
- substExpr(pExpr->pLeft, iTable, pEList);
- substExpr(pExpr->pRight, iTable, pEList);
- substSelect(pExpr->pSelect, iTable, pEList);
- substExprList(pExpr->pList, iTable, pEList);
- }
-}
-static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
+ pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
+ if( pNew && pExpr->pColl ){
+ pNew->pColl = pExpr->pColl;
+ }
+ sqlite3ExprDelete(db, pExpr);
+ pExpr = pNew;
+ }
+ }else{
+ pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
+ pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ substSelect(db, pExpr->x.pSelect, iTable, pEList);
+ }else{
+ substExprList(db, pExpr->x.pList, iTable, pEList);
+ }
+ }
+ return pExpr;
+}
+static void substExprList(
+ sqlite3 *db, /* Report malloc errors here */
+ ExprList *pList, /* List to scan and in which to make substitutes */
+ int iTable, /* Table to be substituted */
+ ExprList *pEList /* Substitute values */
+){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nExpr; i++){
- substExpr(pList->a[i].pExpr, iTable, pEList);
+ pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
}
}
-static void substSelect(Select *p, int iTable, ExprList *pEList){
+static void substSelect(
+ sqlite3 *db, /* Report malloc errors here */
+ Select *p, /* SELECT statement in which to make substitutions */
+ int iTable, /* Table to be replaced */
+ ExprList *pEList /* Substitute values */
+){
+ SrcList *pSrc;
+ struct SrcList_item *pItem;
+ int i;
if( !p ) return;
- substExprList(p->pEList, iTable, pEList);
- substExprList(p->pGroupBy, iTable, pEList);
- substExprList(p->pOrderBy, iTable, pEList);
- substExpr(p->pHaving, iTable, pEList);
- substExpr(p->pWhere, iTable, pEList);
+ substExprList(db, p->pEList, iTable, pEList);
+ substExprList(db, p->pGroupBy, iTable, pEList);
+ substExprList(db, p->pOrderBy, iTable, pEList);
+ p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
+ p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
+ substSelect(db, p->pPrior, iTable, pEList);
+ pSrc = p->pSrc;
+ assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
+ if( ALWAYS(pSrc) ){
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+ substSelect(db, pItem->pSelect, iTable, pEList);
+ }
+ }
}
-#endif /* !defined(SQLITE_OMIT_VIEW) */
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
-#ifndef SQLITE_OMIT_VIEW
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** This routine attempts to flatten subqueries in order to speed
** execution. It returns 1 if it makes changes and 0 if no flattening
@@ -53085,8 +79279,8 @@ static void substSelect(Select *p, int iTable, ExprList *pEList){
**
** (2) The subquery is not an aggregate or the outer query is not a join.
**
-** (3) The subquery is not the right operand of a left outer join, or
-** the subquery is not itself a join. (Ticket #306)
+** (3) The subquery is not the right operand of a left outer join
+** (Originally ticket #306. Strenghtened by ticket #3300)
**
** (4) The subquery is not DISTINCT or the outer query is not a join.
**
@@ -53108,13 +79302,46 @@ static void substSelect(Select *p, int iTable, ExprList *pEList){
**
** (11) The subquery and the outer query do not both have ORDER BY clauses.
**
-** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
-** subquery has no WHERE clause. (added by ticket #350)
+** (12) Not implemented. Subsumed into restriction (3). Was previously
+** a separate restriction deriving from ticket #350.
**
** (13) The subquery and outer query do not both use LIMIT
**
** (14) The subquery does not use OFFSET
**
+** (15) The outer query is not part of a compound select or the
+** subquery does not have both an ORDER BY and a LIMIT clause.
+** (See ticket #2339)
+**
+** (16) The outer query is not an aggregate or the subquery does
+** not contain ORDER BY. (Ticket #2942) This used to not matter
+** until we introduced the group_concat() function.
+**
+** (17) The sub-query is not a compound select, or it is a UNION ALL
+** compound clause made up entirely of non-aggregate queries, and
+** the parent query:
+**
+** * is not itself part of a compound select,
+** * is not an aggregate or DISTINCT query, and
+** * has no other tables or sub-selects in the FROM clause.
+**
+** The parent and sub-query may contain WHERE clauses. Subject to
+** rules (11), (13) and (14), they may also contain ORDER BY,
+** LIMIT and OFFSET clauses.
+**
+** (18) If the sub-query is a compound select, then all terms of the
+** ORDER by clause of the parent must be simple references to
+** columns of the sub-query.
+**
+** (19) The subquery does not use LIMIT or the outer query does not
+** have a WHERE clause.
+**
+** (20) If the sub-query is a compound select, then it must not use
+** an ORDER BY clause. Ticket #3773. We could relax this constraint
+** somewhat by saying that the terms of the ORDER BY clause must
+** appear as unmodified result columns in the outer query. But
+** have other optimizations in mind to deal with that case.
+**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
@@ -53126,12 +79353,16 @@ static void substSelect(Select *p, int iTable, ExprList *pEList){
** the subquery before this routine runs.
*/
static int flattenSubquery(
+ Parse *pParse, /* Parsing context */
Select *p, /* The parent or outer SELECT statement */
int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
int isAgg, /* True if outer SELECT uses aggregate functions */
int subqueryIsAgg /* True if the subquery uses aggregate functions */
){
+ const char *zSavedAuthContext = pParse->zAuthContext;
+ Select *pParent;
Select *pSub; /* The inner query or "subquery" */
+ Select *pSub1; /* Pointer to the rightmost select in sub-query */
SrcList *pSrc; /* The FROM clause of the outer query */
SrcList *pSubSrc; /* The FROM clause of the subquery */
ExprList *pList; /* The result set of the outer query */
@@ -53139,13 +79370,16 @@ static int flattenSubquery(
int i; /* Loop counter */
Expr *pWhere; /* The WHERE clause */
struct SrcList_item *pSubitem; /* The subquery */
+ sqlite3 *db = pParse->db;
/* Check to see if flattening is permitted. Return 0 if not.
*/
- if( p==0 ) return 0;
+ assert( p!=0 );
+ assert( p->pPrior==0 ); /* Unable to flatten compound queries */
pSrc = p->pSrc;
assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
pSubitem = &pSrc->a[iFrom];
+ iParent = pSubitem->iCursor;
pSub = pSubitem->pSelect;
assert( pSub!=0 );
if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
@@ -53159,17 +79393,25 @@ static int flattenSubquery(
** and (14). */
if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
if( pSub->pOffset ) return 0; /* Restriction (14) */
+ if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
+ return 0; /* Restriction (15) */
+ }
if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
- if( (pSub->isDistinct || pSub->pLimit)
+ if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
&& (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */
return 0;
}
- if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */
- if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
+ if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
+ return 0; /* Restriction (6) */
+ }
+ if( p->pOrderBy && pSub->pOrderBy ){
return 0; /* Restriction (11) */
}
+ if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
+ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
- /* Restriction 3: If the subquery is a join, make sure the subquery is
+ /* OBSOLETE COMMENT 1:
+ ** Restriction 3: If the subquery is a join, make sure the subquery is
** not used as the right operand of an outer join. Examples of why this
** is not allowed:
**
@@ -53180,12 +79422,9 @@ static int flattenSubquery(
** (t1 LEFT OUTER JOIN t2) JOIN t3
**
** which is not at all the same thing.
- */
- if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
- return 0;
- }
-
- /* Restriction 12: If the subquery is the right operand of a left outer
+ **
+ ** OBSOLETE COMMENT 2:
+ ** Restriction 12: If the subquery is the right operand of a left outer
** join, make sure the subquery has no WHERE clause.
** An examples of why this is not allowed:
**
@@ -53197,16 +79436,154 @@ static int flattenSubquery(
**
** But the t2.x>0 test will always fail on a NULL row of t2, which
** effectively converts the OUTER JOIN into an INNER JOIN.
+ **
+ ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
+ ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
+ ** is fraught with danger. Best to avoid the whole thing. If the
+ ** subquery is the right term of a LEFT JOIN, then do not flatten.
*/
- if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
+ if( (pSubitem->jointype & JT_OUTER)!=0 ){
return 0;
}
- /* If we reach this point, it means flattening is permitted for the
- ** iFrom-th entry of the FROM clause in the outer query.
+ /* Restriction 17: If the sub-query is a compound SELECT, then it must
+ ** use only the UNION ALL operator. And none of the simple select queries
+ ** that make up the compound SELECT are allowed to be aggregate or distinct
+ ** queries.
+ */
+ if( pSub->pPrior ){
+ if( pSub->pOrderBy ){
+ return 0; /* Restriction 20 */
+ }
+ if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
+ return 0;
+ }
+ for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
+ if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
+ || (pSub1->pPrior && pSub1->op!=TK_ALL)
+ || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
+ ){
+ return 0;
+ }
+ }
+
+ /* Restriction 18. */
+ if( p->pOrderBy ){
+ int ii;
+ for(ii=0; ii<p->pOrderBy->nExpr; ii++){
+ if( p->pOrderBy->a[ii].iCol==0 ) return 0;
+ }
+ }
+ }
+
+ /***** If we reach this point, flattening is permitted. *****/
+
+ /* Authorize the subquery */
+ pParse->zAuthContext = pSubitem->zName;
+ sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
+ pParse->zAuthContext = zSavedAuthContext;
+
+ /* If the sub-query is a compound SELECT statement, then (by restrictions
+ ** 17 and 18 above) it must be a UNION ALL and the parent query must
+ ** be of the form:
+ **
+ ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
+ **
+ ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
+ ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
+ ** OFFSET clauses and joins them to the left-hand-side of the original
+ ** using UNION ALL operators. In this case N is the number of simple
+ ** select statements in the compound sub-query.
+ **
+ ** Example:
+ **
+ ** SELECT a+1 FROM (
+ ** SELECT x FROM tab
+ ** UNION ALL
+ ** SELECT y FROM tab
+ ** UNION ALL
+ ** SELECT abs(z*2) FROM tab2
+ ** ) WHERE a!=5 ORDER BY 1
+ **
+ ** Transformed into:
+ **
+ ** SELECT x+1 FROM tab WHERE x+1!=5
+ ** UNION ALL
+ ** SELECT y+1 FROM tab WHERE y+1!=5
+ ** UNION ALL
+ ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
+ ** ORDER BY 1
+ **
+ ** We call this the "compound-subquery flattening".
*/
+ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
+ Select *pNew;
+ ExprList *pOrderBy = p->pOrderBy;
+ Expr *pLimit = p->pLimit;
+ Select *pPrior = p->pPrior;
+ p->pOrderBy = 0;
+ p->pSrc = 0;
+ p->pPrior = 0;
+ p->pLimit = 0;
+ pNew = sqlite3SelectDup(db, p, 0);
+ p->pLimit = pLimit;
+ p->pOrderBy = pOrderBy;
+ p->pSrc = pSrc;
+ p->op = TK_ALL;
+ p->pRightmost = 0;
+ if( pNew==0 ){
+ pNew = pPrior;
+ }else{
+ pNew->pPrior = pPrior;
+ pNew->pRightmost = 0;
+ }
+ p->pPrior = pNew;
+ if( db->mallocFailed ) return 1;
+ }
- /* Move all of the FROM elements of the subquery into the
+ /* Begin flattening the iFrom-th entry of the FROM clause
+ ** in the outer query.
+ */
+ pSub = pSub1 = pSubitem->pSelect;
+
+ /* Delete the transient table structure associated with the
+ ** subquery
+ */
+ sqlite3DbFree(db, pSubitem->zDatabase);
+ sqlite3DbFree(db, pSubitem->zName);
+ sqlite3DbFree(db, pSubitem->zAlias);
+ pSubitem->zDatabase = 0;
+ pSubitem->zName = 0;
+ pSubitem->zAlias = 0;
+ pSubitem->pSelect = 0;
+
+ /* Defer deleting the Table object associated with the
+ ** subquery until code generation is
+ ** complete, since there may still exist Expr.pTab entries that
+ ** refer to the subquery even after flattening. Ticket #3346.
+ **
+ ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
+ */
+ if( ALWAYS(pSubitem->pTab!=0) ){
+ Table *pTabToDel = pSubitem->pTab;
+ if( pTabToDel->nRef==1 ){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ pTabToDel->pNextZombie = pToplevel->pZombieTab;
+ pToplevel->pZombieTab = pTabToDel;
+ }else{
+ pTabToDel->nRef--;
+ }
+ pSubitem->pTab = 0;
+ }
+
+ /* The following loop runs once for each term in a compound-subquery
+ ** flattening (as described above). If we are doing a different kind
+ ** of flattening - a flattening other than a compound-subquery flattening -
+ ** then this loop only runs once.
+ **
+ ** This loop moves all of the FROM elements of the subquery into the
** the FROM clause of the outer query. Before doing this, remember
** the cursor number for the original outer query FROM element in
** iParent. The iParent cursor will never be used. Subsequent code
@@ -53214,421 +79591,588 @@ static int flattenSubquery(
** those references with expressions that resolve to the subquery FROM
** elements we are now copying in.
*/
- iParent = pSubitem->iCursor;
- {
- int nSubSrc = pSubSrc->nSrc;
- int jointype = pSubitem->jointype;
+ for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
+ int nSubSrc;
+ u8 jointype = 0;
+ pSubSrc = pSub->pSrc; /* FROM clause of subquery */
+ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
+ pSrc = pParent->pSrc; /* FROM clause of the outer query */
+
+ if( pSrc ){
+ assert( pParent==p ); /* First time through the loop */
+ jointype = pSubitem->jointype;
+ }else{
+ assert( pParent!=p ); /* 2nd and subsequent times through the loop */
+ pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
+ if( pSrc==0 ){
+ assert( db->mallocFailed );
+ break;
+ }
+ }
- sqlite3DeleteTable(pSubitem->pTab);
- sqliteFree(pSubitem->zDatabase);
- sqliteFree(pSubitem->zName);
- sqliteFree(pSubitem->zAlias);
+ /* The subquery uses a single slot of the FROM clause of the outer
+ ** query. If the subquery has more than one element in its FROM clause,
+ ** then expand the outer query to make space for it to hold all elements
+ ** of the subquery.
+ **
+ ** Example:
+ **
+ ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
+ **
+ ** The outer query has 3 slots in its FROM clause. One slot of the
+ ** outer query (the middle slot) is used by the subquery. The next
+ ** block of code will expand the out query to 4 slots. The middle
+ ** slot is expanded to two slots in order to make space for the
+ ** two elements in the FROM clause of the subquery.
+ */
if( nSubSrc>1 ){
- int extra = nSubSrc - 1;
- for(i=1; i<nSubSrc; i++){
- pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
- }
- p->pSrc = pSrc;
- for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
- pSrc->a[i] = pSrc->a[i-extra];
+ pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
+ if( db->mallocFailed ){
+ break;
}
}
+
+ /* Transfer the FROM clause terms from the subquery into the
+ ** outer query.
+ */
for(i=0; i<nSubSrc; i++){
+ sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
pSrc->a[i+iFrom] = pSubSrc->a[i];
memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
}
pSrc->a[iFrom].jointype = jointype;
- }
- /* Now begin substituting subquery result set expressions for
- ** references to the iParent in the outer query.
- **
- ** Example:
- **
- ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
- ** \ \_____________ subquery __________/ /
- ** \_____________________ outer query ______________________________/
- **
- ** We look at every expression in the outer query and every place we see
- ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
- */
- pList = p->pEList;
- for(i=0; i<pList->nExpr; i++){
- Expr *pExpr;
- if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
- pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
+ /* Now begin substituting subquery result set expressions for
+ ** references to the iParent in the outer query.
+ **
+ ** Example:
+ **
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+ ** \ \_____________ subquery __________/ /
+ ** \_____________________ outer query ______________________________/
+ **
+ ** We look at every expression in the outer query and every place we see
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+ */
+ pList = pParent->pEList;
+ for(i=0; i<pList->nExpr; i++){
+ if( pList->a[i].zName==0 ){
+ const char *zSpan = pList->a[i].zSpan;
+ if( ALWAYS(zSpan) ){
+ pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
+ }
+ }
+ }
+ substExprList(db, pParent->pEList, iParent, pSub->pEList);
+ if( isAgg ){
+ substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
+ pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
+ }
+ if( pSub->pOrderBy ){
+ assert( pParent->pOrderBy==0 );
+ pParent->pOrderBy = pSub->pOrderBy;
+ pSub->pOrderBy = 0;
+ }else if( pParent->pOrderBy ){
+ substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
+ }
+ if( pSub->pWhere ){
+ pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
+ }else{
+ pWhere = 0;
+ }
+ if( subqueryIsAgg ){
+ assert( pParent->pHaving==0 );
+ pParent->pHaving = pParent->pWhere;
+ pParent->pWhere = pWhere;
+ pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
+ pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
+ sqlite3ExprDup(db, pSub->pHaving, 0));
+ assert( pParent->pGroupBy==0 );
+ pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
+ }else{
+ pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
+ pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
}
- }
- substExprList(p->pEList, iParent, pSub->pEList);
- if( isAgg ){
- substExprList(p->pGroupBy, iParent, pSub->pEList);
- substExpr(p->pHaving, iParent, pSub->pEList);
- }
- if( pSub->pOrderBy ){
- assert( p->pOrderBy==0 );
- p->pOrderBy = pSub->pOrderBy;
- pSub->pOrderBy = 0;
- }else if( p->pOrderBy ){
- substExprList(p->pOrderBy, iParent, pSub->pEList);
- }
- if( pSub->pWhere ){
- pWhere = sqlite3ExprDup(pSub->pWhere);
- }else{
- pWhere = 0;
- }
- if( subqueryIsAgg ){
- assert( p->pHaving==0 );
- p->pHaving = p->pWhere;
- p->pWhere = pWhere;
- substExpr(p->pHaving, iParent, pSub->pEList);
- p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
- assert( p->pGroupBy==0 );
- p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
- }else{
- substExpr(p->pWhere, iParent, pSub->pEList);
- p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
- }
- /* The flattened query is distinct if either the inner or the
- ** outer query is distinct.
- */
- p->isDistinct = p->isDistinct || pSub->isDistinct;
+ /* The flattened query is distinct if either the inner or the
+ ** outer query is distinct.
+ */
+ pParent->selFlags |= pSub->selFlags & SF_Distinct;
- /*
- ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
- **
- ** One is tempted to try to add a and b to combine the limits. But this
- ** does not work if either limit is negative.
- */
- if( pSub->pLimit ){
- p->pLimit = pSub->pLimit;
- pSub->pLimit = 0;
+ /*
+ ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+ **
+ ** One is tempted to try to add a and b to combine the limits. But this
+ ** does not work if either limit is negative.
+ */
+ if( pSub->pLimit ){
+ pParent->pLimit = pSub->pLimit;
+ pSub->pLimit = 0;
+ }
}
/* Finially, delete what is left of the subquery and return
** success.
*/
- sqlite3SelectDelete(pSub);
+ sqlite3SelectDelete(db, pSub1);
+
return 1;
}
-#endif /* SQLITE_OMIT_VIEW */
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
/*
-** Analyze the SELECT statement passed in as an argument to see if it
-** is a simple min() or max() query. If it is and this query can be
-** satisfied using a single seek to the beginning or end of an index,
-** then generate the code for this SELECT and return 1. If this is not a
-** simple min() or max() query, then return 0;
+** Analyze the SELECT statement passed as an argument to see if it
+** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
+** it is, or 0 otherwise. At present, a query is considered to be
+** a min()/max() query if:
**
-** A simply min() or max() query looks like this:
+** 1. There is a single object in the FROM clause.
**
-** SELECT min(a) FROM table;
-** SELECT max(a) FROM table;
-**
-** The query may have only a single table in its FROM argument. There
-** can be no GROUP BY or HAVING or WHERE clauses. The result set must
-** be the min() or max() of a single column of the table. The column
-** in the min() or max() function must be indexed.
-**
-** The parameters to this routine are the same as for sqlite3Select().
-** See the header comment on that routine for additional information.
+** 2. There is a single expression in the result set, and it is
+** either min(x) or max(x), where x is a column reference.
*/
-static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
+static u8 minMaxQuery(Select *p){
Expr *pExpr;
- int iCol;
- Table *pTab;
- Index *pIdx;
- int base;
- Vdbe *v;
- int seekOp;
- ExprList *pEList, *pList, eList;
- struct ExprList_item eListItem;
- SrcList *pSrc;
- int brk;
- int iDb;
+ ExprList *pEList = p->pEList;
- /* Check to see if this query is a simple min() or max() query. Return
- ** zero if it is not.
- */
- if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
- pSrc = p->pSrc;
- if( pSrc->nSrc!=1 ) return 0;
- pEList = p->pEList;
- if( pEList->nExpr!=1 ) return 0;
+ if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
pExpr = pEList->a[0].pExpr;
if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
- pList = pExpr->pList;
- if( pList==0 || pList->nExpr!=1 ) return 0;
- if( pExpr->token.n!=3 ) return 0;
- if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
- seekOp = OP_Rewind;
- }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
- seekOp = OP_Last;
- }else{
- return 0;
+ if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
+ pEList = pExpr->x.pList;
+ if( pEList==0 || pEList->nExpr!=1 ) return 0;
+ if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
+ return WHERE_ORDERBY_MIN;
+ }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
+ return WHERE_ORDERBY_MAX;
}
- pExpr = pList->a[0].pExpr;
- if( pExpr->op!=TK_COLUMN ) return 0;
- iCol = pExpr->iColumn;
- pTab = pSrc->a[0].pTab;
-
- /* This optimization cannot be used with virtual tables. */
- if( IsVirtual(pTab) ) return 0;
+ return WHERE_ORDERBY_NORMAL;
+}
- /* If we get to here, it means the query is of the correct form.
- ** Check to make sure we have an index and make pIdx point to the
- ** appropriate index. If the min() or max() is on an INTEGER PRIMARY
- ** key column, no index is necessary so set pIdx to NULL. If no
- ** usable index is found, return 0.
- */
- if( iCol<0 ){
- pIdx = 0;
- }else{
- CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
- if( pColl==0 ) return 0;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- assert( pIdx->nColumn>=1 );
- if( pIdx->aiColumn[0]==iCol &&
- 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
- break;
- }
- }
- if( pIdx==0 ) return 0;
- }
+/*
+** The select statement passed as the first argument is an aggregate query.
+** The second argment is the associated aggregate-info object. This
+** function tests if the SELECT is of the form:
+**
+** SELECT count(*) FROM <tbl>
+**
+** where table is a database table, not a sub-select or view. If the query
+** does match this pattern, then a pointer to the Table object representing
+** <tbl> is returned. Otherwise, 0 is returned.
+*/
+static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
+ Table *pTab;
+ Expr *pExpr;
- /* Identify column types if we will be using the callback. This
- ** step is skipped if the output is going to a table or a memory cell.
- ** The column names have already been generated in the calling function.
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return 0;
+ assert( !p->pGroupBy );
- /* If the output is destined for a temporary table, open that table.
- */
- if( eDest==SRT_EphemTab ){
- sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
+ if( p->pWhere || p->pEList->nExpr!=1
+ || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
+ ){
+ return 0;
}
+ pTab = p->pSrc->a[0].pTab;
+ pExpr = p->pEList->a[0].pExpr;
+ assert( pTab && !pTab->pSelect && pExpr );
- /* Generating code to find the min or the max. Basically all we have
- ** to do is find the first or the last entry in the chosen index. If
- ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
- ** or last entry in the main table.
- */
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- assert( iDb>=0 || pTab->isEphem );
- sqlite3CodeVerifySchema(pParse, iDb);
- sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
- base = pSrc->a[0].iCursor;
- brk = sqlite3VdbeMakeLabel(v);
- computeLimitRegisters(pParse, p, brk);
- if( pSrc->a[0].pSelect==0 ){
- sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
- }
- if( pIdx==0 ){
- sqlite3VdbeAddOp(v, seekOp, base, 0);
- }else{
- /* Even though the cursor used to open the index here is closed
- ** as soon as a single value has been read from it, allocate it
- ** using (pParse->nTab++) to prevent the cursor id from being
- ** reused. This is important for statements of the form
- ** "INSERT INTO x SELECT max() FROM x".
- */
- int iIdx;
- KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
- iIdx = pParse->nTab++;
- assert( pIdx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
- (char*)pKey, P3_KEYINFO_HANDOFF);
- if( seekOp==OP_Rewind ){
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
- seekOp = OP_MoveGt;
- }
- sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
- sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
- sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
- sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
- }
- eList.nExpr = 1;
- memset(&eListItem, 0, sizeof(eListItem));
- eList.a = &eListItem;
- eList.a[0].pExpr = pExpr;
- selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
- sqlite3VdbeResolveLabel(v, brk);
- sqlite3VdbeAddOp(v, OP_Close, base, 0);
-
- return 1;
+ if( IsVirtual(pTab) ) return 0;
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+ if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
+ if( pExpr->flags&EP_Distinct ) return 0;
+
+ return pTab;
}
/*
-** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return
-** the number of errors seen.
-**
-** An ORDER BY or GROUP BY is a list of expressions. If any expression
-** is an integer constant, then that expression is replaced by the
-** corresponding entry in the result set.
+** If the source-list item passed as an argument was augmented with an
+** INDEXED BY clause, then try to locate the specified index. If there
+** was such a clause and the named index cannot be found, return
+** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
+** pFrom->pIndex and return SQLITE_OK.
*/
-static int processOrderGroupBy(
- NameContext *pNC, /* Name context of the SELECT statement. */
- ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
- const char *zType /* Either "ORDER" or "GROUP", as appropriate */
-){
- int i;
- ExprList *pEList = pNC->pEList; /* The result set of the SELECT */
- Parse *pParse = pNC->pParse; /* The result set of the SELECT */
- assert( pEList );
-
- if( pOrderBy==0 ) return 0;
- for(i=0; i<pOrderBy->nExpr; i++){
- int iCol;
- Expr *pE = pOrderBy->a[i].pExpr;
- if( sqlite3ExprIsInteger(pE, &iCol) ){
- if( iCol>0 && iCol<=pEList->nExpr ){
- CollSeq *pColl = pE->pColl;
- int flags = pE->flags & EP_ExpCollate;
- sqlite3ExprDelete(pE);
- pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
- if( pColl && flags ){
- pE->pColl = pColl;
- pE->flags |= flags;
- }
- }else{
- sqlite3ErrorMsg(pParse,
- "%s BY column number %d out of range - should be "
- "between 1 and %d", zType, iCol, pEList->nExpr);
- return 1;
- }
- }
- if( sqlite3ExprResolveNames(pNC, pE) ){
- return 1;
+SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
+ if( pFrom->pTab && pFrom->zIndex ){
+ Table *pTab = pFrom->pTab;
+ char *zIndex = pFrom->zIndex;
+ Index *pIdx;
+ for(pIdx=pTab->pIndex;
+ pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
+ pIdx=pIdx->pNext
+ );
+ if( !pIdx ){
+ sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
+ return SQLITE_ERROR;
}
+ pFrom->pIndex = pIdx;
}
- return 0;
+ return SQLITE_OK;
}
/*
-** This routine resolves any names used in the result set of the
-** supplied SELECT statement. If the SELECT statement being resolved
-** is a sub-select, then pOuterNC is a pointer to the NameContext
-** of the parent SELECT.
+** This routine is a Walker callback for "expanding" a SELECT statement.
+** "Expanding" means to do the following:
+**
+** (1) Make sure VDBE cursor numbers have been assigned to every
+** element of the FROM clause.
+**
+** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
+** defines FROM clause. When views appear in the FROM clause,
+** fill pTabList->a[].pSelect with a copy of the SELECT statement
+** that implements the view. A copy is made of the view's SELECT
+** statement so that we can freely modify or delete that statement
+** without worrying about messing up the presistent representation
+** of the view.
+**
+** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
+** on joins and the ON and USING clause of joins.
+**
+** (4) Scan the list of columns in the result set (pEList) looking
+** for instances of the "*" operator or the TABLE.* operator.
+** If found, expand each "*" to be every column in every table
+** and TABLE.* to be every column in TABLE.
+**
*/
-int sqlite3SelectResolve(
- Parse *pParse, /* The parser context */
- Select *p, /* The SELECT statement being coded. */
- NameContext *pOuterNC /* The outer name context. May be NULL. */
-){
- ExprList *pEList; /* Result set. */
- int i; /* For-loop variable used in multiple places */
- NameContext sNC; /* Local name-context */
- ExprList *pGroupBy; /* The group by clause */
+static int selectExpander(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ int i, j, k;
+ SrcList *pTabList;
+ ExprList *pEList;
+ struct SrcList_item *pFrom;
+ sqlite3 *db = pParse->db;
- /* If this routine has run before, return immediately. */
- if( p->isResolved ){
- assert( !pOuterNC );
- return SQLITE_OK;
+ if( db->mallocFailed ){
+ return WRC_Abort;
}
- p->isResolved = 1;
-
- /* If there have already been errors, do nothing. */
- if( pParse->nErr>0 ){
- return SQLITE_ERROR;
- }
-
- /* Prepare the select statement. This call will allocate all cursors
- ** required to handle the tables and subqueries in the FROM clause.
- */
- if( prepSelectStmt(pParse, p) ){
- return SQLITE_ERROR;
+ if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
+ return WRC_Prune;
}
+ p->selFlags |= SF_Expanded;
+ pTabList = p->pSrc;
+ pEList = p->pEList;
- /* Resolve the expressions in the LIMIT and OFFSET clauses. These
- ** are not allowed to refer to any names, so pass an empty NameContext.
+ /* Make sure cursor numbers have been assigned to all entries in
+ ** the FROM clause of the SELECT statement.
*/
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
- sqlite3ExprResolveNames(&sNC, p->pOffset) ){
- return SQLITE_ERROR;
- }
+ sqlite3SrcListAssignCursors(pParse, pTabList);
- /* Set up the local name-context to pass to ExprResolveNames() to
- ** resolve the expression-list.
+ /* Look up every table named in the FROM clause of the select. If
+ ** an entry of the FROM clause is a subquery instead of a table or view,
+ ** then create a transient table structure to describe the subquery.
*/
- sNC.allowAgg = 1;
- sNC.pSrcList = p->pSrc;
- sNC.pNext = pOuterNC;
-
- /* Resolve names in the result set. */
- pEList = p->pEList;
- if( !pEList ) return SQLITE_ERROR;
- for(i=0; i<pEList->nExpr; i++){
- Expr *pX = pEList->a[i].pExpr;
- if( sqlite3ExprResolveNames(&sNC, pX) ){
- return SQLITE_ERROR;
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab;
+ if( pFrom->pTab!=0 ){
+ /* This statement has already been prepared. There is no need
+ ** to go further. */
+ assert( i==0 );
+ return WRC_Prune;
+ }
+ if( pFrom->zName==0 ){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Select *pSel = pFrom->pSelect;
+ /* A sub-query in the FROM clause of a SELECT */
+ assert( pSel!=0 );
+ assert( pFrom->pTab==0 );
+ sqlite3WalkSelect(pWalker, pSel);
+ pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ) return WRC_Abort;
+ pTab->dbMem = db->lookaside.bEnabled ? db : 0;
+ pTab->nRef = 1;
+ pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
+ while( pSel->pPrior ){ pSel = pSel->pPrior; }
+ selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
+ pTab->iPKey = -1;
+ pTab->tabFlags |= TF_Ephemeral;
+#endif
+ }else{
+ /* An ordinary table or view name in the FROM clause */
+ assert( pFrom->pTab==0 );
+ pFrom->pTab = pTab =
+ sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
+ if( pTab==0 ) return WRC_Abort;
+ pTab->nRef++;
+#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
+ if( pTab->pSelect || IsVirtual(pTab) ){
+ /* We reach here if the named table is a really a view */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
+ assert( pFrom->pSelect==0 );
+ pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
+ sqlite3WalkSelect(pWalker, pFrom->pSelect);
+ }
+#endif
}
- }
- /* If there are no aggregate functions in the result-set, and no GROUP BY
- ** expression, do not allow aggregates in any of the other expressions.
- */
- assert( !p->isAgg );
- pGroupBy = p->pGroupBy;
- if( pGroupBy || sNC.hasAgg ){
- p->isAgg = 1;
- }else{
- sNC.allowAgg = 0;
+ /* Locate the index named by the INDEXED BY clause, if any. */
+ if( sqlite3IndexedByLookup(pParse, pFrom) ){
+ return WRC_Abort;
+ }
}
- /* If a HAVING clause is present, then there must be a GROUP BY clause.
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
*/
- if( p->pHaving && !pGroupBy ){
- sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
- return SQLITE_ERROR;
+ if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
+ return WRC_Abort;
}
- /* Add the expression list to the name-context before parsing the
- ** other expressions in the SELECT statement. This is so that
- ** expressions in the WHERE clause (etc.) can refer to expressions by
- ** aliases in the result set.
+ /* For every "*" that occurs in the column list, insert the names of
+ ** all columns in all tables. And for every TABLE.* insert the names
+ ** of all columns in TABLE. The parser inserted a special expression
+ ** with the TK_ALL operator for each "*" that it found in the column list.
+ ** The following code just has to locate the TK_ALL expressions and expand
+ ** each one to the list of all columns in all tables.
**
- ** Minor point: If this is the case, then the expression will be
- ** re-evaluated for each reference to it.
+ ** The first loop just checks to see if there are any "*" operators
+ ** that need expanding.
*/
- sNC.pEList = p->pEList;
- if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
- sqlite3ExprResolveNames(&sNC, p->pHaving) ){
- return SQLITE_ERROR;
- }
- if( p->pPrior==0 ){
- if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
- processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){
- return SQLITE_ERROR;
- }
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = pEList->a[k].pExpr;
+ if( pE->op==TK_ALL ) break;
+ assert( pE->op!=TK_DOT || pE->pRight!=0 );
+ assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
+ if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
}
+ if( k<pEList->nExpr ){
+ /*
+ ** If we get here it means the result set contains one or more "*"
+ ** operators that need to be expanded. Loop through each expression
+ ** in the result set and expand them one by one.
+ */
+ struct ExprList_item *a = pEList->a;
+ ExprList *pNew = 0;
+ int flags = pParse->db->flags;
+ int longNames = (flags & SQLITE_FullColNames)!=0
+ && (flags & SQLITE_ShortColNames)==0;
- /* Make sure the GROUP BY clause does not contain aggregate functions.
- */
- if( pGroupBy ){
- struct ExprList_item *pItem;
-
- for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
- if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
- sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
- "the GROUP BY clause");
- return SQLITE_ERROR;
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = a[k].pExpr;
+ assert( pE->op!=TK_DOT || pE->pRight!=0 );
+ if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
+ /* This particular expression does not need to be expanded.
+ */
+ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
+ if( pNew ){
+ pNew->a[pNew->nExpr-1].zName = a[k].zName;
+ pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
+ a[k].zName = 0;
+ a[k].zSpan = 0;
+ }
+ a[k].pExpr = 0;
+ }else{
+ /* This expression is a "*" or a "TABLE.*" and needs to be
+ ** expanded. */
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
+ char *zTName; /* text of name of TABLE */
+ if( pE->op==TK_DOT ){
+ assert( pE->pLeft!=0 );
+ assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
+ zTName = pE->pLeft->u.zToken;
+ }else{
+ zTName = 0;
+ }
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab;
+ char *zTabName = pFrom->zAlias;
+ if( zTabName==0 ){
+ zTabName = pTab->zName;
+ }
+ if( db->mallocFailed ) break;
+ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
+ continue;
+ }
+ tableSeen = 1;
+ for(j=0; j<pTab->nCol; j++){
+ Expr *pExpr, *pRight;
+ char *zName = pTab->aCol[j].zName;
+ char *zColname; /* The computed column name */
+ char *zToFree; /* Malloced string that needs to be freed */
+ Token sColname; /* Computed column name as a token */
+
+ /* If a column is marked as 'hidden' (currently only possible
+ ** for virtual tables), do not include it in the expanded
+ ** result-set list.
+ */
+ if( IsHiddenColumn(&pTab->aCol[j]) ){
+ assert(IsVirtual(pTab));
+ continue;
+ }
+
+ if( i>0 && zTName==0 ){
+ struct SrcList_item *pLeft = &pTabList->a[i-1];
+ if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
+ columnIndex(pLeft->pTab, zName)>=0 ){
+ /* In a NATURAL join, omit the join columns from the
+ ** table on the right */
+ continue;
+ }
+ if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
+ /* In a join with a USING clause, omit columns in the
+ ** using clause from the table on the right. */
+ continue;
+ }
+ }
+ pRight = sqlite3Expr(db, TK_ID, zName);
+ zColname = zName;
+ zToFree = 0;
+ if( longNames || pTabList->nSrc>1 ){
+ Expr *pLeft;
+ pLeft = sqlite3Expr(db, TK_ID, zTabName);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
+ if( longNames ){
+ zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
+ zToFree = zColname;
+ }
+ }else{
+ pExpr = pRight;
+ }
+ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
+ sColname.z = zColname;
+ sColname.n = sqlite3Strlen30(zColname);
+ sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
+ sqlite3DbFree(db, zToFree);
+ }
+ }
+ if( !tableSeen ){
+ if( zTName ){
+ sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
+ }else{
+ sqlite3ErrorMsg(pParse, "no tables specified");
+ }
+ }
}
}
+ sqlite3ExprListDelete(db, pEList);
+ p->pEList = pNew;
}
+#if SQLITE_MAX_COLUMN
+ if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns in result set");
+ }
+#endif
+ return WRC_Continue;
+}
- /* If this is one SELECT of a compound, be sure to resolve names
- ** in the other SELECTs.
- */
- if( p->pPrior ){
- return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
- }else{
- return SQLITE_OK;
+/*
+** No-op routine for the parse-tree walker.
+**
+** When this routine is the Walker.xExprCallback then expression trees
+** are walked without any actions being taken at each node. Presumably,
+** when this routine is used for Walker.xExprCallback then
+** Walker.xSelectCallback is set to do something useful for every
+** subquery in the parser tree.
+*/
+static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return WRC_Continue;
+}
+
+/*
+** This routine "expands" a SELECT statement and all of its subqueries.
+** For additional information on what it means to "expand" a SELECT
+** statement, see the comment on the selectExpand worker callback above.
+**
+** Expanding a SELECT statement is the first step in processing a
+** SELECT statement. The SELECT statement must be expanded before
+** name resolution is performed.
+**
+** If anything goes wrong, an error message is written into pParse.
+** The calling function can detect the problem by looking at pParse->nErr
+** and/or pParse->db->mallocFailed.
+*/
+static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
+ Walker w;
+ w.xSelectCallback = selectExpander;
+ w.xExprCallback = exprWalkNoop;
+ w.pParse = pParse;
+ sqlite3WalkSelect(&w, pSelect);
+}
+
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
+** interface.
+**
+** For each FROM-clause subquery, add Column.zType and Column.zColl
+** information to the Table structure that represents the result set
+** of that subquery.
+**
+** The Table structure that represents the result set was constructed
+** by selectExpander() but the type and collation information was omitted
+** at that point because identifiers had not yet been resolved. This
+** routine is called after identifier resolution.
+*/
+static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
+ Parse *pParse;
+ int i;
+ SrcList *pTabList;
+ struct SrcList_item *pFrom;
+
+ assert( p->selFlags & SF_Resolved );
+ assert( (p->selFlags & SF_HasTypeInfo)==0 );
+ p->selFlags |= SF_HasTypeInfo;
+ pParse = pWalker->pParse;
+ pTabList = p->pSrc;
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab;
+ if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
+ /* A sub-query in the FROM clause of a SELECT */
+ Select *pSel = pFrom->pSelect;
+ assert( pSel );
+ while( pSel->pPrior ) pSel = pSel->pPrior;
+ selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
+ }
}
+ return WRC_Continue;
+}
+#endif
+
+
+/*
+** This routine adds datatype and collating sequence information to
+** the Table structures of all FROM-clause subqueries in a
+** SELECT statement.
+**
+** Use this routine after name resolution.
+*/
+static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Walker w;
+ w.xSelectCallback = selectAddSubqueryTypeInfo;
+ w.xExprCallback = exprWalkNoop;
+ w.pParse = pParse;
+ sqlite3WalkSelect(&w, pSelect);
+#endif
+}
+
+
+/*
+** This routine sets of a SELECT statement for processing. The
+** following is accomplished:
+**
+** * VDBE Cursor numbers are assigned to all FROM-clause terms.
+** * Ephemeral Table objects are created for all FROM-clause subqueries.
+** * ON and USING clauses are shifted into WHERE statements
+** * Wildcards "*" and "TABLE.*" in result sets are expanded.
+** * Identifiers in expression are matched to tables.
+**
+** This routine acts recursively on all subqueries within the SELECT.
+*/
+SQLITE_PRIVATE void sqlite3SelectPrep(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* Name context for container */
+){
+ sqlite3 *db;
+ if( NEVER(p==0) ) return;
+ db = pParse->db;
+ if( p->selFlags & SF_HasTypeInfo ) return;
+ sqlite3SelectExpand(pParse, p);
+ if( pParse->nErr || db->mallocFailed ) return;
+ sqlite3ResolveSelectNames(pParse, p, pOuterNC);
+ if( pParse->nErr || db->mallocFailed ) return;
+ sqlite3SelectAddTypeInfo(pParse, p);
}
/*
@@ -53646,20 +80190,21 @@ static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
return;
}
for(i=0; i<pAggInfo->nColumn; i++){
- sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
}
for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
- sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
if( pFunc->iDistinct>=0 ){
Expr *pE = pFunc->pExpr;
- if( pE->pList==0 || pE->pList->nExpr!=1 ){
- sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
- "by an expression");
+ assert( !ExprHasProperty(pE, EP_xIsSelect) );
+ if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
+ "argument");
pFunc->iDistinct = -1;
}else{
- KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
- sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
- (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+ KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
}
}
}
@@ -53674,9 +80219,10 @@ static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
int i;
struct AggInfo_func *pF;
for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
- ExprList *pList = pF->pExpr->pList;
- sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
- (void*)pF->pFunc, P3_FUNCDEF);
+ ExprList *pList = pF->pExpr->x.pList;
+ assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
+ sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
+ (void*)pF->pFunc, P4_FUNCDEF);
}
}
@@ -53691,70 +80237,102 @@ static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
struct AggInfo_col *pC;
pAggInfo->directMode = 1;
+ sqlite3ExprCacheClear(pParse);
for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
int nArg;
int addrNext = 0;
- ExprList *pList = pF->pExpr->pList;
+ int regAgg;
+ ExprList *pList = pF->pExpr->x.pList;
+ assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
if( pList ){
nArg = pList->nExpr;
- sqlite3ExprCodeExprList(pParse, pList);
+ regAgg = sqlite3GetTempRange(pParse, nArg);
+ sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
}else{
nArg = 0;
+ regAgg = 0;
}
if( pF->iDistinct>=0 ){
addrNext = sqlite3VdbeMakeLabel(v);
assert( nArg==1 );
- codeDistinct(v, pF->iDistinct, addrNext, 1);
+ codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
}
- if( pF->pFunc->needCollSeq ){
+ if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
CollSeq *pColl = 0;
struct ExprList_item *pItem;
int j;
- assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */
+ assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
}
if( !pColl ){
pColl = pParse->db->pDfltColl;
}
- sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
}
- sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
+ sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
+ (void*)pF->pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nArg);
+ sqlite3ReleaseTempRange(pParse, regAgg, nArg);
+ sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
if( addrNext ){
sqlite3VdbeResolveLabel(v, addrNext);
+ sqlite3ExprCacheClear(pParse);
}
}
for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
- sqlite3ExprCode(pParse, pC->pExpr);
- sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
+ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
}
pAggInfo->directMode = 0;
+ sqlite3ExprCacheClear(pParse);
}
-
/*
-** Generate code for the given SELECT statement.
+** Generate code for the SELECT statement given in the p argument.
**
** The results are distributed in various ways depending on the
-** value of eDest and iParm.
+** contents of the SelectDest structure pointed to by argument pDest
+** as follows:
**
-** eDest Value Result
+** pDest->eDest Result
** ------------ -------------------------------------------
-** SRT_Callback Invoke the callback for each row of the result.
+** SRT_Output Generate a row of output (using the OP_ResultRow
+** opcode) for each row in the result set.
+**
+** SRT_Mem Only valid if the result is a single column.
+** Store the first column of the first result row
+** in register pDest->iParm then abandon the rest
+** of the query. This destination implies "LIMIT 1".
**
-** SRT_Mem Store first result in memory cell iParm
+** SRT_Set The result must be a single column. Store each
+** row of result as the key in table pDest->iParm.
+** Apply the affinity pDest->affinity before storing
+** results. Used to implement "IN (SELECT ...)".
**
-** SRT_Set Store results as keys of table iParm.
+** SRT_Union Store results as a key in a temporary table pDest->iParm.
**
-** SRT_Union Store results as a key in a temporary table iParm
+** SRT_Except Remove results from the temporary table pDest->iParm.
**
-** SRT_Except Remove results from the temporary table iParm.
+** SRT_Table Store results in temporary table pDest->iParm.
+** This is like SRT_EphemTab except that the table
+** is assumed to already be open.
**
-** SRT_Table Store results in temporary table iParm
+** SRT_EphemTab Create an temporary table pDest->iParm and store
+** the result there. The cursor is left open after
+** returning. This is like SRT_Table except that
+** this destination uses OP_OpenEphemeral to create
+** the table first.
**
-** The table above is incomplete. Additional eDist value have be added
-** since this comment was written. See the selectInnerLoop() function for
-** a complete listing of the allowed values of eDest and their meanings.
+** SRT_Coroutine Generate a co-routine that returns a new row of
+** results each time it is invoked. The entry point
+** of the co-routine is stored in register pDest->iParm.
+**
+** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
+** set is not empty.
+**
+** SRT_Discard Throw the results away. This is used by SELECT
+** statements within triggers whose only purpose is
+** the side-effects of functions.
**
** This routine returns the number of errors. If any errors are
** encountered, then an appropriate error message is left in
@@ -53762,37 +80340,11 @@ static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
**
** This routine does NOT free the Select structure passed in. The
** calling function needs to do that.
-**
-** The pParent, parentTab, and *pParentAgg fields are filled in if this
-** SELECT is a subquery. This routine may try to combine this SELECT
-** with its parent to form a single flat query. In so doing, it might
-** change the parent query from a non-aggregate to an aggregate query.
-** For that reason, the pParentAgg flag is passed as a pointer, so it
-** can be changed.
-**
-** Example 1: The meaning of the pParent parameter.
-**
-** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
-** \ \_______ subquery _______/ /
-** \ /
-** \____________________ outer query ___________________/
-**
-** This routine is called for the outer query first. For that call,
-** pParent will be NULL. During the processing of the outer query, this
-** routine is called recursively to handle the subquery. For the recursive
-** call, pParent will point to the outer query. Because the subquery is
-** the second element in a three-way join, the parentTab parameter will
-** be 1 (the 2nd value of a 0-indexed array.)
*/
-int sqlite3Select(
+SQLITE_PRIVATE int sqlite3Select(
Parse *pParse, /* The parser context */
Select *p, /* The SELECT statement being coded. */
- int eDest, /* How to dispose of the results */
- int iParm, /* A parameter used by the eDest disposal method */
- Select *pParent, /* Another SELECT for which this is a sub-query */
- int parentTab, /* Index in pParent->pSrc of this query */
- int *pParentAgg, /* True if pParent uses aggregate functions */
- char *aff /* If eDest is SRT_Union, the affinity string */
+ SelectDest *pDest /* What to do with the query results */
){
int i, j; /* Loop counters */
WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
@@ -53810,69 +80362,33 @@ int sqlite3Select(
int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
AggInfo sAggInfo; /* Information used by aggregate queries */
int iEnd; /* Address of the end of the query */
+ sqlite3 *db; /* The database connection */
- if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
+ db = pParse->db;
+ if( p==0 || db->mallocFailed || pParse->nErr ){
return 1;
}
if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
memset(&sAggInfo, 0, sizeof(sAggInfo));
-#ifndef SQLITE_OMIT_COMPOUND_SELECT
- /* If there is are a sequence of queries, do the earlier ones first.
- */
- if( p->pPrior ){
- if( p->pRightmost==0 ){
- Select *pLoop;
- for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
- pLoop->pRightmost = p;
- }
- }
- return multiSelect(pParse, p, eDest, iParm, aff);
- }
-#endif
-
- pOrderBy = p->pOrderBy;
- if( IgnorableOrderby(eDest) ){
+ if( IgnorableOrderby(pDest) ){
+ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
+ pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
+ /* If ORDER BY makes no difference in the output then neither does
+ ** DISTINCT so it can be removed too. */
+ sqlite3ExprListDelete(db, p->pOrderBy);
p->pOrderBy = 0;
+ p->selFlags &= ~SF_Distinct;
}
- if( sqlite3SelectResolve(pParse, p, 0) ){
- goto select_end;
- }
- p->pOrderBy = pOrderBy;
-
- /* Make local copies of the parameters for this query.
- */
+ sqlite3SelectPrep(pParse, p, 0);
+ pOrderBy = p->pOrderBy;
pTabList = p->pSrc;
- pWhere = p->pWhere;
- pGroupBy = p->pGroupBy;
- pHaving = p->pHaving;
- isAgg = p->isAgg;
- isDistinct = p->isDistinct;
pEList = p->pEList;
- if( pEList==0 ) goto select_end;
-
- /*
- ** Do not even attempt to generate any code if we have already seen
- ** errors before this routine starts.
- */
- if( pParse->nErr>0 ) goto select_end;
-
- /* If writing to memory or generating a set
- ** only a single column may be output.
- */
-#ifndef SQLITE_OMIT_SUBQUERY
- if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
- sqlite3ErrorMsg(pParse, "only a single result allowed for "
- "a SELECT that is part of an expression");
+ if( pParse->nErr || db->mallocFailed ){
goto select_end;
}
-#endif
-
- /* ORDER BY is ignored for some destinations.
- */
- if( IgnorableOrderby(eDest) ){
- pOrderBy = 0;
- }
+ isAgg = (p->selFlags & SF_Aggregate)!=0;
+ assert( pEList!=0 );
/* Begin generating code.
*/
@@ -53882,54 +80398,96 @@ int sqlite3Select(
/* Generate code for all sub-queries in the FROM clause
*/
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
- for(i=0; i<pTabList->nSrc; i++){
- const char *zSavedAuthContext = 0;
- int needRestoreContext;
+ for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
struct SrcList_item *pItem = &pTabList->a[i];
+ SelectDest dest;
+ Select *pSub = pItem->pSelect;
+ int isAggSub;
+
+ if( pSub==0 || pItem->isPopulated ) continue;
+
+ /* Increment Parse.nHeight by the height of the largest expression
+ ** tree refered to by this, the parent select. The child select
+ ** may contain expression trees of at most
+ ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
+ ** more conservative than necessary, but much easier than enforcing
+ ** an exact limit.
+ */
+ pParse->nHeight += sqlite3SelectExprHeight(p);
- if( pItem->pSelect==0 || pItem->isPopulated ) continue;
- if( pItem->zName!=0 ){
- zSavedAuthContext = pParse->zAuthContext;
- pParse->zAuthContext = pItem->zName;
- needRestoreContext = 1;
+ /* Check to see if the subquery can be absorbed into the parent. */
+ isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
+ if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
+ if( isAggSub ){
+ isAgg = 1;
+ p->selFlags |= SF_Aggregate;
+ }
+ i = -1;
}else{
- needRestoreContext = 0;
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
+ assert( pItem->isPopulated==0 );
+ sqlite3Select(pParse, pSub, &dest);
+ pItem->isPopulated = 1;
}
- sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
- pItem->iCursor, p, i, &isAgg, 0);
- if( needRestoreContext ){
- pParse->zAuthContext = zSavedAuthContext;
+ if( /*pParse->nErr ||*/ db->mallocFailed ){
+ goto select_end;
}
+ pParse->nHeight -= sqlite3SelectExprHeight(p);
pTabList = p->pSrc;
- pWhere = p->pWhere;
- if( !IgnorableOrderby(eDest) ){
+ if( !IgnorableOrderby(pDest) ){
pOrderBy = p->pOrderBy;
}
- pGroupBy = p->pGroupBy;
- pHaving = p->pHaving;
- isDistinct = p->isDistinct;
}
+ pEList = p->pEList;
#endif
+ pWhere = p->pWhere;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isDistinct = (p->selFlags & SF_Distinct)!=0;
- /* Check for the special case of a min() or max() function by itself
- ** in the result set.
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ /* If there is are a sequence of queries, do the earlier ones first.
*/
- if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
- rc = 0;
- goto select_end;
+ if( p->pPrior ){
+ if( p->pRightmost==0 ){
+ Select *pLoop, *pRight = 0;
+ int cnt = 0;
+ int mxSelect;
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
+ pLoop->pRightmost = p;
+ pLoop->pNext = pRight;
+ pRight = pLoop;
+ }
+ mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
+ if( mxSelect && cnt>mxSelect ){
+ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
+ return 1;
+ }
+ }
+ return multiSelect(pParse, p, pDest);
}
+#endif
- /* Check to see if this is a subquery that can be "flattened" into its parent.
- ** If flattening is a possiblity, do so and return immediately.
+ /* If writing to memory or generating a set
+ ** only a single column may be output.
*/
-#ifndef SQLITE_OMIT_VIEW
- if( pParent && pParentAgg &&
- flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
- if( isAgg ) *pParentAgg = 1;
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
goto select_end;
}
#endif
+ /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
+ ** GROUP BY might use an index, DISTINCT never does.
+ */
+ assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
+ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
+ p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
+ pGroupBy = p->pGroupBy;
+ p->selFlags &= ~SF_Distinct;
+ isDistinct = 0;
+ }
+
/* If there is an ORDER BY clause, then this sorting
** index might end up being unused if the data can be
** extracted in pre-sorted order. If that is the case, then the
@@ -53939,21 +80497,20 @@ int sqlite3Select(
*/
if( pOrderBy ){
KeyInfo *pKeyInfo;
- if( pParse->nErr ){
- goto select_end;
- }
pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
pOrderBy->iECursor = pParse->nTab++;
p->addrOpenEphm[2] = addrSortIndex =
- sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
}else{
addrSortIndex = -1;
}
/* If the output is destined for a temporary table, open that table.
*/
- if( eDest==SRT_EphemTab ){
- sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
+ if( pDest->eDest==SRT_EphemTab ){
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
}
/* Set the limiter.
@@ -53965,10 +80522,11 @@ int sqlite3Select(
*/
if( isDistinct ){
KeyInfo *pKeyInfo;
+ assert( isAgg || pGroupBy );
distinct = pParse->nTab++;
pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
- sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
- (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
}else{
distinct = -1;
}
@@ -53978,7 +80536,7 @@ int sqlite3Select(
/* This case is for non-aggregate queries
** Begin the database scan
*/
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
if( pWInfo==0 ) goto select_end;
/* If sorting index that was created by a prior OP_OpenEphemeral
@@ -53992,10 +80550,9 @@ int sqlite3Select(
/* Use the standard inner loop
*/
- if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
- iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
- goto select_end;
- }
+ assert(!isDistinct);
+ selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
+ pWInfo->iContinue, pWInfo->iBreak);
/* End the database scan loop.
*/
@@ -54010,20 +80567,25 @@ int sqlite3Select(
** processed */
int iAbortFlag; /* Mem address which causes query abort if positive */
int groupBySort; /* Rows come from source in GROUP BY order */
+ int addrEnd; /* End of processing for this SELECT */
+
+ /* Remove any and all aliases between the result set and the
+ ** GROUP BY clause.
+ */
+ if( pGroupBy ){
+ int k; /* Loop counter */
+ struct ExprList_item *pItem; /* For looping over expression in a list */
+ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
+ pItem->iAlias = 0;
+ }
+ for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
+ pItem->iAlias = 0;
+ }
+ }
- /* The following variables hold addresses or labels for parts of the
- ** virtual machine program we are putting together */
- int addrOutputRow; /* Start of subroutine that outputs a result row */
- int addrSetAbort; /* Set the abort flag and return */
- int addrInitializeLoop; /* Start of code that initializes the input loop */
- int addrTopOfLoop; /* Top of the input loop */
- int addrGroupByChange; /* Code that runs when any GROUP BY term changes */
- int addrProcessRow; /* Code to process a single input row */
- int addrEnd; /* End of all processing */
- int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
- int addrReset; /* Subroutine for resetting the accumulator */
+ /* Create a label to jump to when we want to abort the query */
addrEnd = sqlite3VdbeMakeLabel(v);
/* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
@@ -54036,35 +80598,31 @@ int sqlite3Select(
sNC.pAggInfo = &sAggInfo;
sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
sAggInfo.pGroupBy = pGroupBy;
- if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
- goto select_end;
- }
- if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
- goto select_end;
- }
- if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
- goto select_end;
+ sqlite3ExprAnalyzeAggList(&sNC, pEList);
+ sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
+ if( pHaving ){
+ sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
}
sAggInfo.nAccumulator = sAggInfo.nColumn;
for(i=0; i<sAggInfo.nFunc; i++){
- if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
- goto select_end;
- }
+ assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
+ sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
}
- if( sqlite3MallocFailed() ) goto select_end;
+ if( db->mallocFailed ) goto select_end;
/* Processing for aggregates with GROUP BY is very different and
- ** much more complex tha aggregates without a GROUP BY.
+ ** much more complex than aggregates without a GROUP BY.
*/
if( pGroupBy ){
KeyInfo *pKeyInfo; /* Keying information for the group by clause */
-
- /* Create labels that we will be needing
- */
-
- addrInitializeLoop = sqlite3VdbeMakeLabel(v);
- addrGroupByChange = sqlite3VdbeMakeLabel(v);
- addrProcessRow = sqlite3VdbeMakeLabel(v);
+ int j1; /* A-vs-B comparision jump */
+ int addrOutputRow; /* Start of subroutine that outputs a result row */
+ int regOutputRow; /* Return address register for output subroutine */
+ int addrSetAbort; /* Set the abort flag and return */
+ int addrTopOfLoop; /* Top of the input loop */
+ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
+ int addrReset; /* Subroutine for resetting the accumulator */
+ int regReset; /* Return address register for reset subroutine */
/* If there is a GROUP BY clause we might need a sorting index to
** implement it. Allocate that sorting index now. If it turns out
@@ -54073,67 +80631,34 @@ int sqlite3Select(
*/
sAggInfo.sortingIdx = pParse->nTab++;
pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
- addrSortingIdx =
- sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
- sAggInfo.nSortingColumn,
- (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+ addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
+ 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
/* Initialize memory locations used by GROUP BY aggregate processing
*/
- iUseFlag = pParse->nMem++;
- iAbortFlag = pParse->nMem++;
- iAMem = pParse->nMem;
+ iUseFlag = ++pParse->nMem;
+ iAbortFlag = ++pParse->nMem;
+ regOutputRow = ++pParse->nMem;
+ addrOutputRow = sqlite3VdbeMakeLabel(v);
+ regReset = ++pParse->nMem;
+ addrReset = sqlite3VdbeMakeLabel(v);
+ iAMem = pParse->nMem + 1;
pParse->nMem += pGroupBy->nExpr;
- iBMem = pParse->nMem;
+ iBMem = pParse->nMem + 1;
pParse->nMem += pGroupBy->nExpr;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
- VdbeComment((v, "# clear abort flag"));
- sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
- VdbeComment((v, "# indicate accumulator empty"));
- sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
-
- /* Generate a subroutine that outputs a single row of the result
- ** set. This subroutine first looks at the iUseFlag. If iUseFlag
- ** is less than or equal to zero, the subroutine is a no-op. If
- ** the processing calls for the query to abort, this subroutine
- ** increments the iAbortFlag memory location before returning in
- ** order to signal the caller to abort.
- */
- addrSetAbort = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
- VdbeComment((v, "# set abort flag"));
- sqlite3VdbeAddOp(v, OP_Return, 0, 0);
- addrOutputRow = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
- VdbeComment((v, "# Groupby result generator entry point"));
- sqlite3VdbeAddOp(v, OP_Return, 0, 0);
- finalizeAggFunctions(pParse, &sAggInfo);
- if( pHaving ){
- sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
- }
- rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
- distinct, eDest, iParm,
- addrOutputRow+1, addrSetAbort, aff);
- if( rc ){
- goto select_end;
- }
- sqlite3VdbeAddOp(v, OP_Return, 0, 0);
- VdbeComment((v, "# end groupby result generator"));
-
- /* Generate a subroutine that will reset the group-by accumulator
- */
- addrReset = sqlite3VdbeCurrentAddr(v);
- resetAccumulator(pParse, &sAggInfo);
- sqlite3VdbeAddOp(v, OP_Return, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
+ VdbeComment((v, "clear abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
+ VdbeComment((v, "indicate accumulator empty"));
/* Begin a loop that will extract all source rows in GROUP BY order.
** This might involve two separate loops with an OP_Sort in between, or
** it might be a single loop that uses an index to extract information
** in the right order to begin with.
*/
- sqlite3VdbeResolveLabel(v, addrInitializeLoop);
- sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
if( pWInfo==0 ) goto select_end;
if( pGroupBy==0 ){
/* The optimizer is able to deliver rows in group by order so
@@ -54148,22 +80673,50 @@ int sqlite3Select(
** then loop over the sorting index in order to get the output
** in sorted order
*/
+ int regBase;
+ int regRecord;
+ int nCol;
+ int nGroupBy;
+
groupBySort = 1;
- sqlite3ExprCodeExprList(pParse, pGroupBy);
- sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
- j = pGroupBy->nExpr+1;
+ nGroupBy = pGroupBy->nExpr;
+ nCol = nGroupBy + 1;
+ j = nGroupBy+1;
+ for(i=0; i<sAggInfo.nColumn; i++){
+ if( sAggInfo.aCol[i].iSorterColumn>=j ){
+ nCol++;
+ j++;
+ }
+ }
+ regBase = sqlite3GetTempRange(pParse, nCol);
+ sqlite3ExprCacheClear(pParse);
+ sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
+ sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
+ j = nGroupBy+1;
for(i=0; i<sAggInfo.nColumn; i++){
struct AggInfo_col *pCol = &sAggInfo.aCol[i];
- if( pCol->iSorterColumn<j ) continue;
- sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
- j++;
+ if( pCol->iSorterColumn>=j ){
+ int r1 = j + regBase;
+ int r2;
+
+ r2 = sqlite3ExprCodeGetColumn(pParse,
+ pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
+ if( r1!=r2 ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
+ }
+ j++;
+ }
}
- sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
- sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nCol);
sqlite3WhereEnd(pWInfo);
- sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
- VdbeComment((v, "# GROUP BY sort"));
+ sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
+ VdbeComment((v, "GROUP BY sort"));
sAggInfo.useSortingIdx = 1;
+ sqlite3ExprCacheClear(pParse);
}
/* Evaluate the current GROUP BY terms and store in b0, b1, b2...
@@ -54172,30 +80725,22 @@ int sqlite3Select(
** from the previous row currently stored in a0, a1, a2...
*/
addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
+ sqlite3ExprCacheClear(pParse);
for(j=0; j<pGroupBy->nExpr; j++){
if( groupBySort ){
- sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
+ sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
}else{
sAggInfo.directMode = 1;
- sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
- }
- sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
- }
- for(j=pGroupBy->nExpr-1; j>=0; j--){
- if( j<pGroupBy->nExpr-1 ){
- sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
+ sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
}
- sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
- if( j==0 ){
- sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
- }else{
- sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
- }
- sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
}
+ sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
+ (char*)pKeyInfo, P4_KEYINFO);
+ j1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
/* Generate code that runs whenever the GROUP BY changes.
- ** Change in the GROUP BY are detected by the previous code
+ ** Changes in the GROUP BY are detected by the previous code
** block. If there were no changes, this block is skipped.
**
** This code copies current group by terms in b0,b1,b2,...
@@ -54203,29 +80748,26 @@ int sqlite3Select(
** and resets the aggregate accumulator registers in preparation
** for the next GROUP BY batch.
*/
- sqlite3VdbeResolveLabel(v, addrGroupByChange);
- for(j=0; j<pGroupBy->nExpr; j++){
- sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
- }
- sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
- VdbeComment((v, "# output one row"));
- sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
- VdbeComment((v, "# check abort flag"));
- sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
- VdbeComment((v, "# reset accumulator"));
+ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output one row"));
+ sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
+ VdbeComment((v, "check abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ VdbeComment((v, "reset accumulator"));
/* Update the aggregate accumulators based on the content of
** the current row
*/
- sqlite3VdbeResolveLabel(v, addrProcessRow);
+ sqlite3VdbeJumpHere(v, j1);
updateAccumulator(pParse, &sAggInfo);
- sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
- VdbeComment((v, "# indicate data in accumulator"));
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
+ VdbeComment((v, "indicate data in accumulator"));
/* End of the loop
*/
if( groupBySort ){
- sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
+ sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
}else{
sqlite3WhereEnd(pWInfo);
sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
@@ -54233,27 +80775,165 @@ int sqlite3Select(
/* Output the final row of result
*/
- sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
- VdbeComment((v, "# output final row"));
-
- } /* endif pGroupBy */
- else {
- /* This case runs if the aggregate has no GROUP BY clause. The
- ** processing is much simpler since there is only a single row
- ** of output.
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output final row"));
+
+ /* Jump over the subroutines
*/
- resetAccumulator(pParse, &sAggInfo);
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
- if( pWInfo==0 ) goto select_end;
- updateAccumulator(pParse, &sAggInfo);
- sqlite3WhereEnd(pWInfo);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
+
+ /* Generate a subroutine that outputs a single row of the result
+ ** set. This subroutine first looks at the iUseFlag. If iUseFlag
+ ** is less than or equal to zero, the subroutine is a no-op. If
+ ** the processing calls for the query to abort, this subroutine
+ ** increments the iAbortFlag memory location before returning in
+ ** order to signal the caller to abort.
+ */
+ addrSetAbort = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
+ VdbeComment((v, "set abort flag"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ sqlite3VdbeResolveLabel(v, addrOutputRow);
+ addrOutputRow = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
+ VdbeComment((v, "Groupby result generator entry point"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
finalizeAggFunctions(pParse, &sAggInfo);
- pOrderBy = 0;
- if( pHaving ){
- sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
+ sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
+ distinct, pDest,
+ addrOutputRow+1, addrSetAbort);
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ VdbeComment((v, "end groupby result generator"));
+
+ /* Generate a subroutine that will reset the group-by accumulator
+ */
+ sqlite3VdbeResolveLabel(v, addrReset);
+ resetAccumulator(pParse, &sAggInfo);
+ sqlite3VdbeAddOp1(v, OP_Return, regReset);
+
+ } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
+ else {
+ ExprList *pDel = 0;
+#ifndef SQLITE_OMIT_BTREECOUNT
+ Table *pTab;
+ if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
+ /* If isSimpleCount() returns a pointer to a Table structure, then
+ ** the SQL statement is of the form:
+ **
+ ** SELECT count(*) FROM <tbl>
+ **
+ ** where the Table structure returned represents table <tbl>.
+ **
+ ** This statement is so common that it is optimized specially. The
+ ** OP_Count instruction is executed either on the intkey table that
+ ** contains the data for table <tbl> or on one of its indexes. It
+ ** is better to execute the op on an index, as indexes are almost
+ ** always spread across less pages than their corresponding tables.
+ */
+ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
+ Index *pIdx; /* Iterator variable */
+ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
+ Index *pBest = 0; /* Best index found so far */
+ int iRoot = pTab->tnum; /* Root page of scanned b-tree */
+
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ /* Search for the index that has the least amount of columns. If
+ ** there is such an index, and it has less columns than the table
+ ** does, then we can assume that it consumes less space on disk and
+ ** will therefore be cheaper to scan to determine the query result.
+ ** In this case set iRoot to the root page number of the index b-tree
+ ** and pKeyInfo to the KeyInfo structure required to navigate the
+ ** index.
+ **
+ ** In practice the KeyInfo structure will not be used. It is only
+ ** passed to keep OP_OpenRead happy.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( !pBest || pIdx->nColumn<pBest->nColumn ){
+ pBest = pIdx;
+ }
+ }
+ if( pBest && pBest->nColumn<pTab->nCol ){
+ iRoot = pBest->tnum;
+ pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
+ }
+
+ /* Open a read-only cursor, execute the OP_Count, close the cursor. */
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
+ if( pKeyInfo ){
+ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
+ }
+ sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
+ sqlite3VdbeAddOp1(v, OP_Close, iCsr);
+ }else
+#endif /* SQLITE_OMIT_BTREECOUNT */
+ {
+ /* Check if the query is of one of the following forms:
+ **
+ ** SELECT min(x) FROM ...
+ ** SELECT max(x) FROM ...
+ **
+ ** If it is, then ask the code in where.c to attempt to sort results
+ ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
+ ** If where.c is able to produce results sorted in this order, then
+ ** add vdbe code to break out of the processing loop after the
+ ** first iteration (since the first iteration of the loop is
+ ** guaranteed to operate on the row with the minimum or maximum
+ ** value of x, the only row required).
+ **
+ ** A special flag must be passed to sqlite3WhereBegin() to slightly
+ ** modify behaviour as follows:
+ **
+ ** + If the query is a "SELECT min(x)", then the loop coded by
+ ** where.c should not iterate over any values with a NULL value
+ ** for x.
+ **
+ ** + The optimizer code in where.c (the thing that decides which
+ ** index or indices to use) should place a different priority on
+ ** satisfying the 'ORDER BY' clause than it does in other cases.
+ ** Refer to code and comments in where.c for details.
+ */
+ ExprList *pMinMax = 0;
+ u8 flag = minMaxQuery(p);
+ if( flag ){
+ assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
+ pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
+ pDel = pMinMax;
+ if( pMinMax && !db->mallocFailed ){
+ pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
+ pMinMax->a[0].pExpr->op = TK_COLUMN;
+ }
+ }
+
+ /* This case runs if the aggregate has no GROUP BY clause. The
+ ** processing is much simpler since there is only a single row
+ ** of output.
+ */
+ resetAccumulator(pParse, &sAggInfo);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
+ if( pWInfo==0 ){
+ sqlite3ExprListDelete(db, pDel);
+ goto select_end;
+ }
+ updateAccumulator(pParse, &sAggInfo);
+ if( !pMinMax && flag ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
+ VdbeComment((v, "%s() by index",
+ (flag==WHERE_ORDERBY_MIN?"min":"max")));
+ }
+ sqlite3WhereEnd(pWInfo);
+ finalizeAggFunctions(pParse, &sAggInfo);
}
+
+ pOrderBy = 0;
+ sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
- eDest, iParm, addrEnd, addrEnd, aff);
+ pDest, addrEnd, addrEnd);
+ sqlite3ExprListDelete(db, pDel);
}
sqlite3VdbeResolveLabel(v, addrEnd);
@@ -54263,22 +80943,9 @@ int sqlite3Select(
** and send them to the callback one by one.
*/
if( pOrderBy ){
- generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
+ generateSortTail(pParse, p, v, pEList->nExpr, pDest);
}
-#ifndef SQLITE_OMIT_SUBQUERY
- /* If this was a subquery, we have now converted the subquery into a
- ** temporary table. So set the SrcList_item.isPopulated flag to prevent
- ** this subquery from being evaluated again and to force the use of
- ** the temporary table.
- */
- if( pParent ){
- assert( pParent->pSrc->nSrc>parentTab );
- assert( pParent->pSrc->a[parentTab].pSelect==p );
- pParent->pSrc->a[parentTab].isPopulated = 1;
- }
-#endif
-
/* Jump here to skip this query
*/
sqlite3VdbeResolveLabel(v, iEnd);
@@ -54293,15 +80960,14 @@ int sqlite3Select(
*/
select_end:
- /* Identify column names if we will be using them in a callback. This
- ** step is skipped if the output is going to some other destination.
+ /* Identify column names if results of the SELECT are to be output.
*/
- if( rc==SQLITE_OK && eDest==SRT_Callback ){
+ if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
generateColumnNames(pParse, pTabList, pEList);
}
- sqliteFree(sAggInfo.aCol);
- sqliteFree(sAggInfo.aFunc);
+ sqlite3DbFree(db, sAggInfo.aCol);
+ sqlite3DbFree(db, sAggInfo.aFunc);
return rc;
}
@@ -54320,9 +80986,9 @@ select_end:
** code base. Then are intended to be called from within the debugger
** or from temporary "printf" statements inserted for debugging.
*/
-void sqlite3PrintExpr(Expr *p){
- if( p->token.z && p->token.n>0 ){
- sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
+SQLITE_PRIVATE void sqlite3PrintExpr(Expr *p){
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ sqlite3DebugPrintf("(%s", p->u.zToken);
}else{
sqlite3DebugPrintf("(%d", p->op);
}
@@ -54336,7 +81002,7 @@ void sqlite3PrintExpr(Expr *p){
}
sqlite3DebugPrintf(")");
}
-void sqlite3PrintExprList(ExprList *pList){
+SQLITE_PRIVATE void sqlite3PrintExprList(ExprList *pList){
int i;
for(i=0; i<pList->nExpr; i++){
sqlite3PrintExpr(pList->a[i].pExpr);
@@ -54345,7 +81011,7 @@ void sqlite3PrintExprList(ExprList *pList){
}
}
}
-void sqlite3PrintSelect(Select *p, int indent){
+SQLITE_PRIVATE void sqlite3PrintSelect(Select *p, int indent){
sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
sqlite3PrintExprList(p->pEList);
sqlite3DebugPrintf("\n");
@@ -54420,6 +81086,8 @@ void sqlite3PrintSelect(Select *p, int indent){
**
** These routines are in a separate files so that they will not be linked
** if they are not used.
+**
+** $Id: table.c,v 1.40 2009/04/10 14:28:00 drh Exp $
*/
#ifndef SQLITE_OMIT_GET_TABLE
@@ -54429,14 +81097,13 @@ void sqlite3PrintSelect(Select *p, int indent){
** to the callback function is uses to build the result.
*/
typedef struct TabResult {
- char **azResult;
- char *zErrMsg;
- int nResult;
- int nAlloc;
- int nRow;
- int nColumn;
- int nData;
- int rc;
+ char **azResult; /* Accumulated output */
+ char *zErrMsg; /* Error message text, if an error occurs */
+ int nAlloc; /* Slots allocated for azResult[] */
+ int nRow; /* Number of rows in the result */
+ int nColumn; /* Number of columns in the result */
+ int nData; /* Slots used in azResult[]. (nRow+1)*nColumn */
+ int rc; /* Return code from sqlite3_exec() */
} TabResult;
/*
@@ -54445,10 +81112,10 @@ typedef struct TabResult {
** memory as necessary.
*/
static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
- TabResult *p = (TabResult*)pArg;
- int need;
- int i;
- char *z;
+ TabResult *p = (TabResult*)pArg; /* Result accumulator */
+ int need; /* Slots needed in p->azResult[] */
+ int i; /* Loop counter */
+ char *z; /* A single column of result */
/* Make sure there is enough space in p->azResult to hold everything
** we need to remember from this invocation of the callback.
@@ -54458,9 +81125,9 @@ static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
}else{
need = nCol;
}
- if( p->nData + need >= p->nAlloc ){
+ if( p->nData + need > p->nAlloc ){
char **azNew;
- p->nAlloc = p->nAlloc*2 + need + 1;
+ p->nAlloc = p->nAlloc*2 + need;
azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
if( azNew==0 ) goto malloc_failed;
p->azResult = azNew;
@@ -54472,17 +81139,15 @@ static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
if( p->nRow==0 ){
p->nColumn = nCol;
for(i=0; i<nCol; i++){
- if( colv[i]==0 ){
- z = sqlite3_mprintf("");
- }else{
- z = sqlite3_mprintf("%s", colv[i]);
- }
+ z = sqlite3_mprintf("%s", colv[i]);
+ if( z==0 ) goto malloc_failed;
p->azResult[p->nData++] = z;
}
}else if( p->nColumn!=nCol ){
- sqlite3SetString(&p->zErrMsg,
- "sqlite3_get_table() called with two or more incompatible queries",
- (char*)0);
+ sqlite3_free(p->zErrMsg);
+ p->zErrMsg = sqlite3_mprintf(
+ "sqlite3_get_table() called with two or more incompatible queries"
+ );
p->rc = SQLITE_ERROR;
return 1;
}
@@ -54494,9 +81159,10 @@ static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
if( argv[i]==0 ){
z = 0;
}else{
- z = sqlite3_malloc( strlen(argv[i])+1 );
+ int n = sqlite3Strlen30(argv[i])+1;
+ z = sqlite3_malloc( n );
if( z==0 ) goto malloc_failed;
- strcpy(z, argv[i]);
+ memcpy(z, argv[i], n);
}
p->azResult[p->nData++] = z;
}
@@ -54519,7 +81185,7 @@ malloc_failed:
** Instead, the entire table should be passed to sqlite3_free_table() when
** the calling procedure is finished using it.
*/
-int sqlite3_get_table(
+SQLITE_API int sqlite3_get_table(
sqlite3 *db, /* The database on which the SQL executes */
const char *zSql, /* The SQL to be executed */
char ***pazResult, /* Write the result table here */
@@ -54529,25 +81195,26 @@ int sqlite3_get_table(
){
int rc;
TabResult res;
- if( pazResult==0 ){ return SQLITE_ERROR; }
+
*pazResult = 0;
if( pnColumn ) *pnColumn = 0;
if( pnRow ) *pnRow = 0;
+ if( pzErrMsg ) *pzErrMsg = 0;
res.zErrMsg = 0;
- res.nResult = 0;
res.nRow = 0;
res.nColumn = 0;
res.nData = 1;
res.nAlloc = 20;
res.rc = SQLITE_OK;
- res.azResult = sqlite3_malloc( sizeof(char*)*res.nAlloc );
- if( res.azResult==0 ) return SQLITE_NOMEM;
+ res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
+ if( res.azResult==0 ){
+ db->errCode = SQLITE_NOMEM;
+ return SQLITE_NOMEM;
+ }
res.azResult[0] = 0;
rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
- if( res.azResult ){
- assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
- res.azResult[0] = (char*)res.nData;
- }
+ assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
+ res.azResult[0] = SQLITE_INT_TO_PTR(res.nData);
if( (rc&0xff)==SQLITE_ABORT ){
sqlite3_free_table(&res.azResult[1]);
if( res.zErrMsg ){
@@ -54555,43 +81222,43 @@ int sqlite3_get_table(
sqlite3_free(*pzErrMsg);
*pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
}
- sqliteFree(res.zErrMsg);
+ sqlite3_free(res.zErrMsg);
}
- db->errCode = res.rc;
- return res.rc & db->errMask;
+ db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
+ return res.rc;
}
- sqliteFree(res.zErrMsg);
+ sqlite3_free(res.zErrMsg);
if( rc!=SQLITE_OK ){
sqlite3_free_table(&res.azResult[1]);
- return rc & db->errMask;
+ return rc;
}
if( res.nAlloc>res.nData ){
char **azNew;
- azNew = sqlite3_realloc( res.azResult, sizeof(char*)*(res.nData+1) );
+ azNew = sqlite3_realloc( res.azResult, sizeof(char*)*res.nData );
if( azNew==0 ){
sqlite3_free_table(&res.azResult[1]);
+ db->errCode = SQLITE_NOMEM;
return SQLITE_NOMEM;
}
- res.nAlloc = res.nData+1;
res.azResult = azNew;
}
*pazResult = &res.azResult[1];
if( pnColumn ) *pnColumn = res.nColumn;
if( pnRow ) *pnRow = res.nRow;
- return rc & db->errMask;
+ return rc;
}
/*
** This routine frees the space the sqlite3_get_table() malloced.
*/
-void sqlite3_free_table(
+SQLITE_API void sqlite3_free_table(
char **azResult /* Result returned from from sqlite3_get_table() */
){
if( azResult ){
int i, n;
azResult--;
- if( azResult==0 ) return;
- n = (int)azResult[0];
+ assert( azResult!=0 );
+ n = SQLITE_PTR_TO_INT(azResult[0]);
for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
sqlite3_free(azResult);
}
@@ -54611,26 +81278,61 @@ void sqlite3_free_table(
** May you share freely, never taking more than you give.
**
*************************************************************************
-*
+**
+**
+** $Id: trigger.c,v 1.143 2009/08/10 03:57:58 shane Exp $
*/
#ifndef SQLITE_OMIT_TRIGGER
/*
** Delete a linked list of TriggerStep structures.
*/
-void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){
while( pTriggerStep ){
TriggerStep * pTmp = pTriggerStep;
pTriggerStep = pTriggerStep->pNext;
- if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z);
- sqlite3ExprDelete(pTmp->pWhere);
- sqlite3ExprListDelete(pTmp->pExprList);
- sqlite3SelectDelete(pTmp->pSelect);
- sqlite3IdListDelete(pTmp->pIdList);
+ sqlite3ExprDelete(db, pTmp->pWhere);
+ sqlite3ExprListDelete(db, pTmp->pExprList);
+ sqlite3SelectDelete(db, pTmp->pSelect);
+ sqlite3IdListDelete(db, pTmp->pIdList);
+
+ sqlite3DbFree(db, pTmp);
+ }
+}
+
+/*
+** Given table pTab, return a list of all the triggers attached to
+** the table. The list is connected by Trigger.pNext pointers.
+**
+** All of the triggers on pTab that are in the same database as pTab
+** are already attached to pTab->pTrigger. But there might be additional
+** triggers on pTab in the TEMP schema. This routine prepends all
+** TEMP triggers on pTab to the beginning of the pTab->pTrigger list
+** and returns the combined list.
+**
+** To state it another way: This routine returns a list of all triggers
+** that fire off of pTab. The list will include any TEMP triggers on
+** pTab as well as the triggers lised in pTab->pTrigger.
+*/
+SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){
+ Schema * const pTmpSchema = pParse->db->aDb[1].pSchema;
+ Trigger *pList = 0; /* List of triggers to return */
- sqliteFree(pTmp);
+ if( pTmpSchema!=pTab->pSchema ){
+ HashElem *p;
+ for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){
+ Trigger *pTrig = (Trigger *)sqliteHashData(p);
+ if( pTrig->pTabSchema==pTab->pSchema
+ && 0==sqlite3StrICmp(pTrig->table, pTab->zName)
+ ){
+ pTrig->pNext = (pList ? pList : pTab->pTrigger);
+ pList = pTrig;
+ }
+ }
}
+
+ return (pList ? pList : pTab->pTrigger);
}
/*
@@ -54641,7 +81343,7 @@ void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
** sqlite3FinishTrigger() function is called to complete the trigger
** construction process.
*/
-void sqlite3BeginTrigger(
+SQLITE_PRIVATE void sqlite3BeginTrigger(
Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
Token *pName1, /* The name of the trigger */
Token *pName2, /* The name of the trigger */
@@ -54653,17 +81355,19 @@ void sqlite3BeginTrigger(
int isTemp, /* True if the TEMPORARY keyword is present */
int noErr /* Suppress errors if the trigger already exists */
){
- Trigger *pTrigger = 0;
- Table *pTab;
+ Trigger *pTrigger = 0; /* The new trigger */
+ Table *pTab; /* Table that the trigger fires off of */
char *zName = 0; /* Name of the trigger */
- sqlite3 *db = pParse->db;
+ sqlite3 *db = pParse->db; /* The database connection */
int iDb; /* The database to store the trigger in */
Token *pName; /* The unqualified db name */
- DbFixer sFix;
- int iTabDb;
+ DbFixer sFix; /* State vector for the DB fixer */
+ int iTabDb; /* Index of the database holding pTab */
assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
assert( pName2!=0 );
+ assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE );
+ assert( op>0 && op<0xff );
if( isTemp ){
/* If TEMP was specified, then the trigger name may not be qualified. */
if( pName2->n>0 ){
@@ -54685,7 +81389,7 @@ void sqlite3BeginTrigger(
** If sqlite3SrcListLookup() returns 0, indicating the table does not
** exist, the error is caught by the block below.
*/
- if( !pTableName || sqlite3MallocFailed() ){
+ if( !pTableName || db->mallocFailed ){
goto trigger_cleanup;
}
pTab = sqlite3SrcListLookup(pParse, pTableName);
@@ -54694,7 +81398,7 @@ void sqlite3BeginTrigger(
}
/* Ensure the table name matches database name and that the table exists */
- if( sqlite3MallocFailed() ) goto trigger_cleanup;
+ if( db->mallocFailed ) goto trigger_cleanup;
assert( pTableName->nSrc==1 );
if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
sqlite3FixSrcList(&sFix, pTableName) ){
@@ -54703,6 +81407,17 @@ void sqlite3BeginTrigger(
pTab = sqlite3SrcListLookup(pParse, pTableName);
if( !pTab ){
/* The table does not exist. */
+ if( db->init.iDb==1 ){
+ /* Ticket #3810.
+ ** Normally, whenever a table is dropped, all associated triggers are
+ ** dropped too. But if a TEMP trigger is created on a non-TEMP table
+ ** and the table is dropped by a different database connection, the
+ ** trigger is not visible to the database connection that does the
+ ** drop so the trigger cannot be dropped. This results in an
+ ** "orphaned trigger" - a trigger whose associated table is missing.
+ */
+ db->init.orphanTrigger = 1;
+ }
goto trigger_cleanup;
}
if( IsVirtual(pTab) ){
@@ -54712,11 +81427,12 @@ void sqlite3BeginTrigger(
/* Check that the trigger name is not reserved and that no trigger of the
** specified name exists */
- zName = sqlite3NameFromToken(pName);
+ zName = sqlite3NameFromToken(db, pName);
if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
goto trigger_cleanup;
}
- if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,strlen(zName)) ){
+ if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),
+ zName, sqlite3Strlen30(zName)) ){
if( !noErr ){
sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
}
@@ -54770,28 +81486,27 @@ void sqlite3BeginTrigger(
}
/* Build the Trigger object */
- pTrigger = (Trigger*)sqliteMalloc(sizeof(Trigger));
+ pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
if( pTrigger==0 ) goto trigger_cleanup;
- pTrigger->name = zName;
+ pTrigger->zName = zName;
zName = 0;
- pTrigger->table = sqliteStrDup(pTableName->a[0].zName);
+ pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
pTrigger->pSchema = db->aDb[iDb].pSchema;
pTrigger->pTabSchema = pTab->pSchema;
- pTrigger->op = op;
+ pTrigger->op = (u8)op;
pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
- pTrigger->pWhen = sqlite3ExprDup(pWhen);
- pTrigger->pColumns = sqlite3IdListDup(pColumns);
- sqlite3TokenCopy(&pTrigger->nameToken,pName);
+ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
+ pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
assert( pParse->pNewTrigger==0 );
pParse->pNewTrigger = pTrigger;
trigger_cleanup:
- sqliteFree(zName);
- sqlite3SrcListDelete(pTableName);
- sqlite3IdListDelete(pColumns);
- sqlite3ExprDelete(pWhen);
+ sqlite3DbFree(db, zName);
+ sqlite3SrcListDelete(db, pTableName);
+ sqlite3IdListDelete(db, pColumns);
+ sqlite3ExprDelete(db, pWhen);
if( !pParse->pNewTrigger ){
- sqlite3DeleteTrigger(pTrigger);
+ sqlite3DeleteTrigger(db, pTrigger);
}else{
assert( pParse->pNewTrigger==pTrigger );
}
@@ -54801,26 +81516,31 @@ trigger_cleanup:
** This routine is called after all of the trigger actions have been parsed
** in order to complete the process of building the trigger.
*/
-void sqlite3FinishTrigger(
+SQLITE_PRIVATE void sqlite3FinishTrigger(
Parse *pParse, /* Parser context */
TriggerStep *pStepList, /* The triggered program */
Token *pAll /* Token that describes the complete CREATE TRIGGER */
){
- Trigger *pTrig = 0; /* The trigger whose construction is finishing up */
- sqlite3 *db = pParse->db; /* The database */
+ Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */
+ char *zName; /* Name of trigger */
+ sqlite3 *db = pParse->db; /* The database */
DbFixer sFix;
- int iDb; /* Database containing the trigger */
+ int iDb; /* Database containing the trigger */
+ Token nameToken; /* Trigger name for error reporting */
pTrig = pParse->pNewTrigger;
pParse->pNewTrigger = 0;
- if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;
+ if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup;
+ zName = pTrig->zName;
iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
pTrig->step_list = pStepList;
while( pStepList ){
pStepList->pTrig = pTrig;
pStepList = pStepList->pNext;
}
- if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken)
+ nameToken.z = pTrig->zName;
+ nameToken.n = sqlite3Strlen30(nameToken.z);
+ if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken)
&& sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
goto triggerfinish_cleanup;
}
@@ -54829,95 +81549,45 @@ void sqlite3FinishTrigger(
** build the sqlite_master entry
*/
if( !db->init.busy ){
- static const VdbeOpList insertTrig[] = {
- { OP_NewRowid, 0, 0, 0 },
- { OP_String8, 0, 0, "trigger" },
- { OP_String8, 0, 0, 0 }, /* 2: trigger name */
- { OP_String8, 0, 0, 0 }, /* 3: table name */
- { OP_Integer, 0, 0, 0 },
- { OP_String8, 0, 0, "CREATE TRIGGER "},
- { OP_String8, 0, 0, 0 }, /* 6: SQL */
- { OP_Concat, 0, 0, 0 },
- { OP_MakeRecord, 5, 0, "aaada" },
- { OP_Insert, 0, 0, 0 },
- };
- int addr;
Vdbe *v;
+ char *z;
/* Make an entry in the sqlite_master table */
v = sqlite3GetVdbe(pParse);
if( v==0 ) goto triggerfinish_cleanup;
sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3OpenMasterTable(pParse, iDb);
- addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
- sqlite3VdbeChangeP3(v, addr+2, pTrig->name, 0);
- sqlite3VdbeChangeP3(v, addr+3, pTrig->table, 0);
- sqlite3VdbeChangeP3(v, addr+6, (char*)pAll->z, pAll->n);
- sqlite3ChangeCookie(db, v, iDb);
- sqlite3VdbeAddOp(v, OP_Close, 0, 0);
- sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
- sqlite3MPrintf("type='trigger' AND name='%q'", pTrig->name), P3_DYNAMIC);
+ z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
+ sqlite3NestedParse(pParse,
+ "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName,
+ pTrig->table, z);
+ sqlite3DbFree(db, z);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
+ db, "type='trigger' AND name='%q'", zName), P4_DYNAMIC
+ );
}
if( db->init.busy ){
- int n;
- Table *pTab;
- Trigger *pDel;
- pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash,
- pTrig->name, strlen(pTrig->name), pTrig);
- if( pDel ){
- assert( sqlite3MallocFailed() && pDel==pTrig );
- goto triggerfinish_cleanup;
- }
- n = strlen(pTrig->table) + 1;
- pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n);
- assert( pTab!=0 );
- pTrig->pNext = pTab->pTrigger;
- pTab->pTrigger = pTrig;
- pTrig = 0;
+ Trigger *pLink = pTrig;
+ Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
+ pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig);
+ if( pTrig ){
+ db->mallocFailed = 1;
+ }else if( pLink->pSchema==pLink->pTabSchema ){
+ Table *pTab;
+ int n = sqlite3Strlen30(pLink->table);
+ pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table, n);
+ assert( pTab!=0 );
+ pLink->pNext = pTab->pTrigger;
+ pTab->pTrigger = pLink;
+ }
}
triggerfinish_cleanup:
- sqlite3DeleteTrigger(pTrig);
+ sqlite3DeleteTrigger(db, pTrig);
assert( !pParse->pNewTrigger );
- sqlite3DeleteTriggerStep(pStepList);
-}
-
-/*
-** Make a copy of all components of the given trigger step. This has
-** the effect of copying all Expr.token.z values into memory obtained
-** from sqliteMalloc(). As initially created, the Expr.token.z values
-** all point to the input string that was fed to the parser. But that
-** string is ephemeral - it will go away as soon as the sqlite3_exec()
-** call that started the parser exits. This routine makes a persistent
-** copy of all the Expr.token.z strings so that the TriggerStep structure
-** will be valid even after the sqlite3_exec() call returns.
-*/
-static void sqlitePersistTriggerStep(TriggerStep *p){
- if( p->target.z ){
- p->target.z = (u8*)sqliteStrNDup((char*)p->target.z, p->target.n);
- p->target.dyn = 1;
- }
- if( p->pSelect ){
- Select *pNew = sqlite3SelectDup(p->pSelect);
- sqlite3SelectDelete(p->pSelect);
- p->pSelect = pNew;
- }
- if( p->pWhere ){
- Expr *pNew = sqlite3ExprDup(p->pWhere);
- sqlite3ExprDelete(p->pWhere);
- p->pWhere = pNew;
- }
- if( p->pExprList ){
- ExprList *pNew = sqlite3ExprListDup(p->pExprList);
- sqlite3ExprListDelete(p->pExprList);
- p->pExprList = pNew;
- }
- if( p->pIdList ){
- IdList *pNew = sqlite3IdListDup(p->pIdList);
- sqlite3IdListDelete(p->pIdList);
- p->pIdList = pNew;
- }
+ sqlite3DeleteTriggerStep(db, pStepList);
}
/*
@@ -54927,18 +81597,39 @@ static void sqlitePersistTriggerStep(TriggerStep *p){
** The parser calls this routine when it finds a SELECT statement in
** body of a TRIGGER.
*/
-TriggerStep *sqlite3TriggerSelectStep(Select *pSelect){
- TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
+ TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
if( pTriggerStep==0 ) {
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
return 0;
}
-
pTriggerStep->op = TK_SELECT;
pTriggerStep->pSelect = pSelect;
pTriggerStep->orconf = OE_Default;
- sqlitePersistTriggerStep(pTriggerStep);
+ return pTriggerStep;
+}
+
+/*
+** Allocate space to hold a new trigger step. The allocated space
+** holds both the TriggerStep object and the TriggerStep.target.z string.
+**
+** If an OOM error occurs, NULL is returned and db->mallocFailed is set.
+*/
+static TriggerStep *triggerStepAllocate(
+ sqlite3 *db, /* Database connection */
+ u8 op, /* Trigger opcode */
+ Token *pName /* The target name */
+){
+ TriggerStep *pTriggerStep;
+ pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n);
+ if( pTriggerStep ){
+ char *z = (char*)&pTriggerStep[1];
+ memcpy(z, pName->z, pName->n);
+ pTriggerStep->target.z = z;
+ pTriggerStep->target.n = pName->n;
+ pTriggerStep->op = op;
+ }
return pTriggerStep;
}
@@ -54949,31 +81640,30 @@ TriggerStep *sqlite3TriggerSelectStep(Select *pSelect){
** The parser calls this routine when it sees an INSERT inside the
** body of a trigger.
*/
-TriggerStep *sqlite3TriggerInsertStep(
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
+ sqlite3 *db, /* The database connection */
Token *pTableName, /* Name of the table into which we insert */
IdList *pColumn, /* List of columns in pTableName to insert into */
ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
Select *pSelect, /* A SELECT statement that supplies values */
- int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
+ u8 orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
){
- TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ TriggerStep *pTriggerStep;
assert(pEList == 0 || pSelect == 0);
- assert(pEList != 0 || pSelect != 0);
+ assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
+ pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName);
if( pTriggerStep ){
- pTriggerStep->op = TK_INSERT;
- pTriggerStep->pSelect = pSelect;
- pTriggerStep->target = *pTableName;
+ pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
pTriggerStep->pIdList = pColumn;
- pTriggerStep->pExprList = pEList;
+ pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
pTriggerStep->orconf = orconf;
- sqlitePersistTriggerStep(pTriggerStep);
}else{
- sqlite3IdListDelete(pColumn);
- sqlite3ExprListDelete(pEList);
- sqlite3SelectDup(pSelect);
+ sqlite3IdListDelete(db, pColumn);
}
+ sqlite3ExprListDelete(db, pEList);
+ sqlite3SelectDelete(db, pSelect);
return pTriggerStep;
}
@@ -54983,26 +81673,23 @@ TriggerStep *sqlite3TriggerInsertStep(
** a pointer to that trigger step. The parser calls this routine when it
** sees an UPDATE statement inside the body of a CREATE TRIGGER.
*/
-TriggerStep *sqlite3TriggerUpdateStep(
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
+ sqlite3 *db, /* The database connection */
Token *pTableName, /* Name of the table to be updated */
ExprList *pEList, /* The SET clause: list of column and new values */
Expr *pWhere, /* The WHERE clause */
- int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
+ u8 orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
){
- TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
- if( pTriggerStep==0 ){
- sqlite3ExprListDelete(pEList);
- sqlite3ExprDelete(pWhere);
- return 0;
- }
-
- pTriggerStep->op = TK_UPDATE;
- pTriggerStep->target = *pTableName;
- pTriggerStep->pExprList = pEList;
- pTriggerStep->pWhere = pWhere;
- pTriggerStep->orconf = orconf;
- sqlitePersistTriggerStep(pTriggerStep);
+ TriggerStep *pTriggerStep;
+ pTriggerStep = triggerStepAllocate(db, TK_UPDATE, pTableName);
+ if( pTriggerStep ){
+ pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
+ pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ pTriggerStep->orconf = orconf;
+ }
+ sqlite3ExprListDelete(db, pEList);
+ sqlite3ExprDelete(db, pWhere);
return pTriggerStep;
}
@@ -55011,34 +81698,33 @@ TriggerStep *sqlite3TriggerUpdateStep(
** a pointer to that trigger step. The parser calls this routine when it
** sees a DELETE statement inside the body of a CREATE TRIGGER.
*/
-TriggerStep *sqlite3TriggerDeleteStep(Token *pTableName, Expr *pWhere){
- TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
- if( pTriggerStep==0 ){
- sqlite3ExprDelete(pWhere);
- return 0;
- }
-
- pTriggerStep->op = TK_DELETE;
- pTriggerStep->target = *pTableName;
- pTriggerStep->pWhere = pWhere;
- pTriggerStep->orconf = OE_Default;
- sqlitePersistTriggerStep(pTriggerStep);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
+ sqlite3 *db, /* Database connection */
+ Token *pTableName, /* The table from which rows are deleted */
+ Expr *pWhere /* The WHERE clause */
+){
+ TriggerStep *pTriggerStep;
+ pTriggerStep = triggerStepAllocate(db, TK_DELETE, pTableName);
+ if( pTriggerStep ){
+ pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ pTriggerStep->orconf = OE_Default;
+ }
+ sqlite3ExprDelete(db, pWhere);
return pTriggerStep;
}
/*
** Recursively delete a Trigger structure
*/
-void sqlite3DeleteTrigger(Trigger *pTrigger){
+SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
if( pTrigger==0 ) return;
- sqlite3DeleteTriggerStep(pTrigger->step_list);
- sqliteFree(pTrigger->name);
- sqliteFree(pTrigger->table);
- sqlite3ExprDelete(pTrigger->pWhen);
- sqlite3IdListDelete(pTrigger->pColumns);
- if( pTrigger->nameToken.dyn ) sqliteFree((char*)pTrigger->nameToken.z);
- sqliteFree(pTrigger);
+ sqlite3DeleteTriggerStep(db, pTrigger->step_list);
+ sqlite3DbFree(db, pTrigger->zName);
+ sqlite3DbFree(db, pTrigger->table);
+ sqlite3ExprDelete(db, pTrigger->pWhen);
+ sqlite3IdListDelete(db, pTrigger->pColumns);
+ sqlite3DbFree(db, pTrigger);
}
/*
@@ -55049,7 +81735,7 @@ void sqlite3DeleteTrigger(Trigger *pTrigger){
** same job as this routine except it takes a pointer to the trigger
** instead of the trigger name.
**/
-void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
+SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
Trigger *pTrigger = 0;
int i;
const char *zDb;
@@ -55057,7 +81743,7 @@ void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
int nName;
sqlite3 *db = pParse->db;
- if( sqlite3MallocFailed() ) goto drop_trigger_cleanup;
+ if( db->mallocFailed ) goto drop_trigger_cleanup;
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
goto drop_trigger_cleanup;
}
@@ -55065,7 +81751,7 @@ void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
assert( pName->nSrc==1 );
zDb = pName->a[0].zDatabase;
zName = pName->a[0].zName;
- nName = strlen(zName);
+ nName = sqlite3Strlen30(zName);
for(i=OMIT_TEMPDB; i<db->nDb; i++){
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
@@ -55081,7 +81767,7 @@ void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
sqlite3DropTriggerPtr(pParse, pTrigger);
drop_trigger_cleanup:
- sqlite3SrcListDelete(pName);
+ sqlite3SrcListDelete(db, pName);
}
/*
@@ -55089,7 +81775,7 @@ drop_trigger_cleanup:
** is set on.
*/
static Table *tableOfTrigger(Trigger *pTrigger){
- int n = strlen(pTrigger->table) + 1;
+ int n = sqlite3Strlen30(pTrigger->table);
return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
}
@@ -55097,7 +81783,7 @@ static Table *tableOfTrigger(Trigger *pTrigger){
/*
** Drop a trigger given a pointer to that trigger.
*/
-void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
+SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
Table *pTable;
Vdbe *v;
sqlite3 *db = pParse->db;
@@ -55114,7 +81800,7 @@ void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
const char *zDb = db->aDb[iDb].zName;
const char *zTab = SCHEMA_TABLE(iDb);
if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
- if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
+ if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) ||
sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
return;
}
@@ -55128,12 +81814,12 @@ void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
int base;
static const VdbeOpList dropTrigger[] = {
{ OP_Rewind, 0, ADDR(9), 0},
- { OP_String8, 0, 0, 0}, /* 1 */
- { OP_Column, 0, 1, 0},
- { OP_Ne, 0, ADDR(8), 0},
- { OP_String8, 0, 0, "trigger"},
- { OP_Column, 0, 0, 0},
- { OP_Ne, 0, ADDR(8), 0},
+ { OP_String8, 0, 1, 0}, /* 1 */
+ { OP_Column, 0, 1, 2},
+ { OP_Ne, 2, ADDR(8), 1},
+ { OP_String8, 0, 1, 0}, /* 4: "trigger" */
+ { OP_Column, 0, 0, 2},
+ { OP_Ne, 2, ADDR(8), 1},
{ OP_Delete, 0, 0, 0},
{ OP_Next, 0, ADDR(1), 0}, /* 8 */
};
@@ -55141,38 +81827,32 @@ void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3OpenMasterTable(pParse, iDb);
base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
- sqlite3VdbeChangeP3(v, base+1, pTrigger->name, 0);
- sqlite3ChangeCookie(db, v, iDb);
- sqlite3VdbeAddOp(v, OP_Close, 0, 0);
- sqlite3VdbeOp3(v, OP_DropTrigger, iDb, 0, pTrigger->name, 0);
+ sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, 0);
+ sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
+ sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);
+ if( pParse->nMem<3 ){
+ pParse->nMem = 3;
+ }
}
}
/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
-void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
+ Hash *pHash = &(db->aDb[iDb].pSchema->trigHash);
Trigger *pTrigger;
- int nName = strlen(zName);
- pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash),
- zName, nName, 0);
- if( pTrigger ){
- Table *pTable = tableOfTrigger(pTrigger);
- assert( pTable!=0 );
- if( pTable->pTrigger == pTrigger ){
- pTable->pTrigger = pTrigger->pNext;
- }else{
- Trigger *cc = pTable->pTrigger;
- while( cc ){
- if( cc->pNext == pTrigger ){
- cc->pNext = cc->pNext->pNext;
- break;
- }
- cc = cc->pNext;
- }
- assert(cc);
- }
- sqlite3DeleteTrigger(pTrigger);
+ pTrigger = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), 0);
+ if( ALWAYS(pTrigger) ){
+ if( pTrigger->pSchema==pTrigger->pTabSchema ){
+ Table *pTab = tableOfTrigger(pTrigger);
+ Trigger **pp;
+ for(pp=&pTab->pTrigger; *pp!=pTrigger; pp=&((*pp)->pNext));
+ *pp = (*pp)->pNext;
+ }
+ sqlite3DeleteTrigger(db, pTrigger);
db->flags |= SQLITE_InternChanges;
}
}
@@ -55186,9 +81866,9 @@ void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
** it matches anything so always return true. Return false only
** if there is no match.
*/
-static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
+static int checkColumnOverlap(IdList *pIdList, ExprList *pEList){
int e;
- if( !pIdList || !pEList ) return 1;
+ if( pIdList==0 || NEVER(pEList==0) ) return 1;
for(e=0; e<pEList->nExpr; e++){
if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
}
@@ -55196,31 +81876,31 @@ static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
}
/*
-** Return a bit vector to indicate what kind of triggers exist for operation
-** "op" on table pTab. If pChanges is not NULL then it is a list of columns
-** that are being updated. Triggers only match if the ON clause of the
-** trigger definition overlaps the set of columns being updated.
-**
-** The returned bit vector is some combination of TRIGGER_BEFORE and
-** TRIGGER_AFTER.
+** Return a list of all triggers on table pTab if there exists at least
+** one trigger that must be fired when an operation of type 'op' is
+** performed on the table, and, if that operation is an UPDATE, if at
+** least one of the columns in pChanges is being modified.
*/
-int sqlite3TriggersExist(
- Parse *pParse, /* Used to check for recursive triggers */
+SQLITE_PRIVATE Trigger *sqlite3TriggersExist(
+ Parse *pParse, /* Parse context */
Table *pTab, /* The table the contains the triggers */
int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
- ExprList *pChanges /* Columns that change in an UPDATE statement */
+ ExprList *pChanges, /* Columns that change in an UPDATE statement */
+ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
){
- Trigger *pTrigger;
int mask = 0;
-
- pTrigger = IsVirtual(pTab) ? 0 : pTab->pTrigger;
- while( pTrigger ){
- if( pTrigger->op==op && checkColumnOverLap(pTrigger->pColumns, pChanges) ){
- mask |= pTrigger->tr_tm;
+ Trigger *pList = sqlite3TriggerList(pParse, pTab);
+ Trigger *p;
+ assert( pList==0 || IsVirtual(pTab)==0 );
+ for(p=pList; p; p=p->pNext){
+ if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){
+ mask |= p->tr_tm;
}
- pTrigger = pTrigger->pNext;
}
- return mask;
+ if( pMask ){
+ *pMask = mask;
+ }
+ return (mask ? pList : 0);
}
/*
@@ -55237,92 +81917,272 @@ static SrcList *targetSrcList(
Parse *pParse, /* The parsing context */
TriggerStep *pStep /* The trigger containing the target token */
){
- Token sDb; /* Dummy database name token */
int iDb; /* Index of the database to use */
SrcList *pSrc; /* SrcList to be returned */
- iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
- if( iDb==0 || iDb>=2 ){
- assert( iDb<pParse->db->nDb );
- sDb.z = (u8*)pParse->db->aDb[iDb].zName;
- sDb.n = strlen((char*)sDb.z);
- pSrc = sqlite3SrcListAppend(0, &sDb, &pStep->target);
- } else {
- pSrc = sqlite3SrcListAppend(0, &pStep->target, 0);
+ pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
+ if( pSrc ){
+ assert( pSrc->nSrc>0 );
+ assert( pSrc->a!=0 );
+ iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
+ if( iDb==0 || iDb>=2 ){
+ sqlite3 *db = pParse->db;
+ assert( iDb<pParse->db->nDb );
+ pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
+ }
}
return pSrc;
}
/*
-** Generate VDBE code for zero or more statements inside the body of a
-** trigger.
+** Generate VDBE code for the statements inside the body of a single
+** trigger.
*/
static int codeTriggerProgram(
Parse *pParse, /* The parser context */
TriggerStep *pStepList, /* List of statements inside the trigger body */
- int orconfin /* Conflict algorithm. (OE_Abort, etc) */
+ int orconf /* Conflict algorithm. (OE_Abort, etc) */
){
- TriggerStep * pTriggerStep = pStepList;
- int orconf;
+ TriggerStep *pStep;
Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
- assert( pTriggerStep!=0 );
+ assert( pParse->pTriggerTab && pParse->pToplevel );
+ assert( pStepList );
assert( v!=0 );
- sqlite3VdbeAddOp(v, OP_ContextPush, 0, 0);
- VdbeComment((v, "# begin trigger %s", pStepList->pTrig->name));
- while( pTriggerStep ){
- orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
- pParse->trigStack->orconf = orconf;
- switch( pTriggerStep->op ){
- case TK_SELECT: {
- Select *ss = sqlite3SelectDup(pTriggerStep->pSelect);
- if( ss ){
- sqlite3SelectResolve(pParse, ss, 0);
- sqlite3Select(pParse, ss, SRT_Discard, 0, 0, 0, 0, 0);
- sqlite3SelectDelete(ss);
- }
- break;
- }
+ for(pStep=pStepList; pStep; pStep=pStep->pNext){
+ /* Figure out the ON CONFLICT policy that will be used for this step
+ ** of the trigger program. If the statement that caused this trigger
+ ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use
+ ** the ON CONFLICT policy that was specified as part of the trigger
+ ** step statement. Example:
+ **
+ ** CREATE TRIGGER AFTER INSERT ON t1 BEGIN;
+ ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b);
+ ** END;
+ **
+ ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy
+ ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy
+ */
+ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;
+
+ switch( pStep->op ){
case TK_UPDATE: {
- SrcList *pSrc;
- pSrc = targetSrcList(pParse, pTriggerStep);
- sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
- sqlite3Update(pParse, pSrc,
- sqlite3ExprListDup(pTriggerStep->pExprList),
- sqlite3ExprDup(pTriggerStep->pWhere), orconf);
- sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
+ sqlite3Update(pParse,
+ targetSrcList(pParse, pStep),
+ sqlite3ExprListDup(db, pStep->pExprList, 0),
+ sqlite3ExprDup(db, pStep->pWhere, 0),
+ pParse->eOrconf
+ );
break;
}
case TK_INSERT: {
- SrcList *pSrc;
- pSrc = targetSrcList(pParse, pTriggerStep);
- sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
- sqlite3Insert(pParse, pSrc,
- sqlite3ExprListDup(pTriggerStep->pExprList),
- sqlite3SelectDup(pTriggerStep->pSelect),
- sqlite3IdListDup(pTriggerStep->pIdList), orconf);
- sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
+ sqlite3Insert(pParse,
+ targetSrcList(pParse, pStep),
+ sqlite3ExprListDup(db, pStep->pExprList, 0),
+ sqlite3SelectDup(db, pStep->pSelect, 0),
+ sqlite3IdListDup(db, pStep->pIdList),
+ pParse->eOrconf
+ );
break;
}
case TK_DELETE: {
- SrcList *pSrc;
- sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
- pSrc = targetSrcList(pParse, pTriggerStep);
- sqlite3DeleteFrom(pParse, pSrc, sqlite3ExprDup(pTriggerStep->pWhere));
- sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
+ sqlite3DeleteFrom(pParse,
+ targetSrcList(pParse, pStep),
+ sqlite3ExprDup(db, pStep->pWhere, 0)
+ );
+ break;
+ }
+ default: assert( pStep->op==TK_SELECT ); {
+ SelectDest sDest;
+ Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0);
+ sqlite3SelectDestInit(&sDest, SRT_Discard, 0);
+ sqlite3Select(pParse, pSelect, &sDest);
+ sqlite3SelectDelete(db, pSelect);
break;
}
- default:
- assert(0);
}
- pTriggerStep = pTriggerStep->pNext;
+ if( pStep->op!=TK_SELECT ){
+ sqlite3VdbeAddOp0(v, OP_ResetCount);
+ }
}
- sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
- VdbeComment((v, "# end trigger %s", pStepList->pTrig->name));
return 0;
}
+#ifdef SQLITE_DEBUG
+/*
+** This function is used to add VdbeComment() annotations to a VDBE
+** program. It is not used in production code, only for debugging.
+*/
+static const char *onErrorText(int onError){
+ switch( onError ){
+ case OE_Abort: return "abort";
+ case OE_Rollback: return "rollback";
+ case OE_Fail: return "fail";
+ case OE_Replace: return "replace";
+ case OE_Ignore: return "ignore";
+ case OE_Default: return "default";
+ }
+ return "n/a";
+}
+#endif
+
+/*
+** Parse context structure pFrom has just been used to create a sub-vdbe
+** (trigger program). If an error has occurred, transfer error information
+** from pFrom to pTo.
+*/
+static void transferParseError(Parse *pTo, Parse *pFrom){
+ assert( pFrom->zErrMsg==0 || pFrom->nErr );
+ assert( pTo->zErrMsg==0 || pTo->nErr );
+ if( pTo->nErr==0 ){
+ pTo->zErrMsg = pFrom->zErrMsg;
+ pTo->nErr = pFrom->nErr;
+ }else{
+ sqlite3DbFree(pFrom->db, pFrom->zErrMsg);
+ }
+}
+
+/*
+** Create and populate a new TriggerPrg object with a sub-program
+** implementing trigger pTrigger with ON CONFLICT policy orconf.
+*/
+static TriggerPrg *codeRowTrigger(
+ Parse *pParse, /* Current parse context */
+ Trigger *pTrigger, /* Trigger to code */
+ Table *pTab, /* The table pTrigger is attached to */
+ int orconf /* ON CONFLICT policy to code trigger program with */
+){
+ Parse *pTop = sqlite3ParseToplevel(pParse);
+ sqlite3 *db = pParse->db; /* Database handle */
+ TriggerPrg *pPrg; /* Value to return */
+ Expr *pWhen = 0; /* Duplicate of trigger WHEN expression */
+ Vdbe *v; /* Temporary VM */
+ NameContext sNC; /* Name context for sub-vdbe */
+ SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */
+ Parse *pSubParse; /* Parse context for sub-vdbe */
+ int iEndTrigger = 0; /* Label to jump to if WHEN is false */
+
+ assert( pTab==tableOfTrigger(pTrigger) );
+
+ /* Allocate the TriggerPrg and SubProgram objects. To ensure that they
+ ** are freed if an error occurs, link them into the Parse.pTriggerPrg
+ ** list of the top-level Parse object sooner rather than later. */
+ pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg));
+ if( !pPrg ) return 0;
+ pPrg->pNext = pTop->pTriggerPrg;
+ pTop->pTriggerPrg = pPrg;
+ pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram));
+ if( !pProgram ) return 0;
+ pProgram->nRef = 1;
+ pPrg->pTrigger = pTrigger;
+ pPrg->orconf = orconf;
+
+ /* Allocate and populate a new Parse context to use for coding the
+ ** trigger sub-program. */
+ pSubParse = sqlite3StackAllocZero(db, sizeof(Parse));
+ if( !pSubParse ) return 0;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pSubParse;
+ pSubParse->db = db;
+ pSubParse->pTriggerTab = pTab;
+ pSubParse->pToplevel = pTop;
+ pSubParse->zAuthContext = pTrigger->zName;
+ pSubParse->eTriggerOp = pTrigger->op;
+
+ v = sqlite3GetVdbe(pSubParse);
+ if( v ){
+ VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)",
+ pTrigger->zName, onErrorText(orconf),
+ (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"),
+ (pTrigger->op==TK_UPDATE ? "UPDATE" : ""),
+ (pTrigger->op==TK_INSERT ? "INSERT" : ""),
+ (pTrigger->op==TK_DELETE ? "DELETE" : ""),
+ pTab->zName
+ ));
+#ifndef SQLITE_OMIT_TRACE
+ sqlite3VdbeChangeP4(v, -1,
+ sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC
+ );
+#endif
+
+ /* If one was specified, code the WHEN clause. If it evaluates to false
+ ** (or NULL) the sub-vdbe is immediately halted by jumping to the
+ ** OP_Halt inserted at the end of the program. */
+ if( pTrigger->pWhen ){
+ pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0);
+ if( SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen)
+ && db->mallocFailed==0
+ ){
+ iEndTrigger = sqlite3VdbeMakeLabel(v);
+ sqlite3ExprIfFalse(pSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL);
+ }
+ sqlite3ExprDelete(db, pWhen);
+ }
+
+ /* Code the trigger program into the sub-vdbe. */
+ codeTriggerProgram(pSubParse, pTrigger->step_list, orconf);
+
+ /* Insert an OP_Halt at the end of the sub-program. */
+ if( iEndTrigger ){
+ sqlite3VdbeResolveLabel(v, iEndTrigger);
+ }
+ sqlite3VdbeAddOp0(v, OP_Halt);
+ VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf)));
+
+ transferParseError(pParse, pSubParse);
+ if( db->mallocFailed==0 ){
+ pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg);
+ }
+ pProgram->nMem = pSubParse->nMem;
+ pProgram->nCsr = pSubParse->nTab;
+ pProgram->token = (void *)pTrigger;
+ pPrg->oldmask = pSubParse->oldmask;
+ sqlite3VdbeDelete(v);
+ }
+
+ assert( !pSubParse->pAinc && !pSubParse->pZombieTab );
+ assert( !pSubParse->pTriggerPrg && !pSubParse->nMaxArg );
+ sqlite3StackFree(db, pSubParse);
+
+ return pPrg;
+}
+
+/*
+** Return a pointer to a TriggerPrg object containing the sub-program for
+** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such
+** TriggerPrg object exists, a new object is allocated and populated before
+** being returned.
+*/
+static TriggerPrg *getRowTrigger(
+ Parse *pParse, /* Current parse context */
+ Trigger *pTrigger, /* Trigger to code */
+ Table *pTab, /* The table trigger pTrigger is attached to */
+ int orconf /* ON CONFLICT algorithm. */
+){
+ Parse *pRoot = sqlite3ParseToplevel(pParse);
+ TriggerPrg *pPrg;
+
+ assert( pTab==tableOfTrigger(pTrigger) );
+
+ /* It may be that this trigger has already been coded (or is in the
+ ** process of being coded). If this is the case, then an entry with
+ ** a matching TriggerPrg.pTrigger field will be present somewhere
+ ** in the Parse.pTriggerPrg list. Search for such an entry. */
+ for(pPrg=pRoot->pTriggerPrg;
+ pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf);
+ pPrg=pPrg->pNext
+ );
+
+ /* If an existing TriggerPrg could not be located, create a new one. */
+ if( !pPrg ){
+ pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf);
+ }
+
+ return pPrg;
+}
+
/*
** This is called to code FOR EACH ROW triggers.
**
@@ -55342,9 +82202,17 @@ static int codeTriggerProgram(
** a row containing values to be substituted for old.* expressions in the
** trigger program(s).
**
+** If they are not NULL, the piOldColMask and piNewColMask output variables
+** are set to values that describe the columns used by the trigger program
+** in the OLD.* and NEW.* tables respectively. If column N of the
+** pseudo-table is read at least once, the corresponding bit of the output
+** mask is set. If a column with an index greater than 32 is read, the
+** output mask is set to the special value 0xffffffff.
+**
*/
-int sqlite3CodeRowTrigger(
+SQLITE_PRIVATE void sqlite3CodeRowTrigger(
Parse *pParse, /* Parse context */
+ Trigger *pTrigger, /* List of triggers on table pTab */
int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
@@ -55355,78 +82223,88 @@ int sqlite3CodeRowTrigger(
int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
){
Trigger *p;
- TriggerStack trigStackEntry;
+
+ UNUSED_PARAMETER(newIdx);
assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );
- assert(newIdx != -1 || oldIdx != -1);
+ for(p=pTrigger; p; p=p->pNext){
- for(p=pTab->pTrigger; p; p=p->pNext){
- int fire_this = 0;
+ /* Sanity checking: The schema for the trigger and for the table are
+ ** always defined. The trigger must be in the same schema as the table
+ ** or else it must be a TEMP trigger. */
+ assert( p->pSchema!=0 );
+ assert( p->pTabSchema!=0 );
+ assert( p->pSchema==p->pTabSchema
+ || p->pSchema==pParse->db->aDb[1].pSchema );
/* Determine whether we should code this trigger */
- if(
- p->op==op &&
- p->tr_tm==tr_tm &&
- (p->pSchema==p->pTabSchema || p->pSchema==pParse->db->aDb[1].pSchema) &&
- (op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges))
+ if( p->op==op
+ && p->tr_tm==tr_tm
+ && checkColumnOverlap(p->pColumns,pChanges)
){
- TriggerStack *pS; /* Pointer to trigger-stack entry */
- for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){}
- if( !pS ){
- fire_this = 1;
- }
-#if 0 /* Give no warning for recursive triggers. Just do not do them */
- else{
- sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
- p->name);
- return SQLITE_ERROR;
- }
-#endif
- }
-
- if( fire_this ){
- int endTrigger;
- Expr * whenExpr;
- AuthContext sContext;
- NameContext sNC;
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */
+ TriggerPrg *pPrg;
+ pPrg = getRowTrigger(pParse, p, pTab, orconf);
+ assert( pPrg || pParse->nErr || pParse->db->mallocFailed );
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
-
- /* Push an entry on to the trigger stack */
- trigStackEntry.pTrigger = p;
- trigStackEntry.newIdx = newIdx;
- trigStackEntry.oldIdx = oldIdx;
- trigStackEntry.pTab = pTab;
- trigStackEntry.pNext = pParse->trigStack;
- trigStackEntry.ignoreJump = ignoreJump;
- pParse->trigStack = &trigStackEntry;
- sqlite3AuthContextPush(pParse, &sContext, p->name);
-
- /* code the WHEN clause */
- endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
- whenExpr = sqlite3ExprDup(p->pWhen);
- if( sqlite3ExprResolveNames(&sNC, whenExpr) ){
- pParse->trigStack = trigStackEntry.pNext;
- sqlite3ExprDelete(whenExpr);
- return 1;
+ /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program
+ ** is a pointer to the sub-vdbe containing the trigger program. */
+ if( pPrg ){
+ sqlite3VdbeAddOp3(v, OP_Program, oldIdx, ignoreJump, ++pParse->nMem);
+ pPrg->pProgram->nRef++;
+ sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM);
+ VdbeComment((v, "Call: %s.%s", p->zName, onErrorText(orconf)));
}
- sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, 1);
- sqlite3ExprDelete(whenExpr);
-
- codeTriggerProgram(pParse, p->step_list, orconf);
+ }
+ }
+}
- /* Pop the entry off the trigger stack */
- pParse->trigStack = trigStackEntry.pNext;
- sqlite3AuthContextPop(&sContext);
+/*
+** Triggers fired by UPDATE or DELETE statements may access values stored
+** in the old.* pseudo-table. This function returns a 32-bit bitmask
+** indicating which columns of the old.* table actually are used by
+** triggers. This information may be used by the caller to avoid having
+** to load the entire old.* record into memory when executing an UPDATE
+** or DELETE command.
+**
+** Bit 0 of the returned mask is set if the left-most column of the
+** table may be accessed using an old.<col> reference. Bit 1 is set if
+** the second leftmost column value is required, and so on. If there
+** are more than 32 columns in the table, and at least one of the columns
+** with an index greater than 32 may be accessed, 0xffffffff is returned.
+**
+** It is not possible to determine if the old.rowid column is accessed
+** by triggers. The caller must always assume that it is.
+**
+** There is no equivalent function for new.* references.
+*/
+SQLITE_PRIVATE u32 sqlite3TriggerOldmask(
+ Parse *pParse, /* Parse context */
+ Trigger *pTrigger, /* List of triggers on table pTab */
+ int op, /* Either TK_UPDATE or TK_DELETE */
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
+ Table *pTab, /* The table to code triggers from */
+ int orconf /* Default ON CONFLICT policy for trigger steps */
+){
+ u32 mask = 0;
+ Trigger *p;
- sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
+ assert(op==TK_UPDATE || op==TK_DELETE);
+ for(p=pTrigger; p; p=p->pNext){
+ if( p->op==op && checkColumnOverlap(p->pColumns,pChanges) ){
+ TriggerPrg *pPrg;
+ pPrg = getRowTrigger(pParse, p, pTab, orconf);
+ if( pPrg ){
+ mask |= pPrg->oldmask;
+ }
}
}
- return 0;
+
+ return mask;
}
+
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
/************** End of trigger.c *********************************************/
@@ -55445,7 +82323,7 @@ int sqlite3CodeRowTrigger(
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
-** $Id: update.c,v 1.137 2007/03/29 05:51:49 drh Exp $
+** $Id: update.c,v 1.207 2009/08/08 18:01:08 drh Exp $
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
@@ -55463,7 +82341,7 @@ static void updateVirtualTable(
/*
** The most recently coded instruction was an OP_Column to retrieve the
-** i-th column of table pTab. This routine sets the P3 parameter of the
+** i-th column of table pTab. This routine sets the P4 parameter of the
** OP_Column to the default value, if any.
**
** The default value of a column is specified by a DEFAULT clause in the
@@ -55471,9 +82349,9 @@ static void updateVirtualTable(
** was created, or added later to the table definition by an ALTER TABLE
** command. If the latter, then the row-records in the table btree on disk
** may not contain a value for the column and the default value, taken
-** from the P3 parameter of the OP_Column instruction, is returned instead.
+** from the P4 parameter of the OP_Column instruction, is returned instead.
** If the former, then all row-records are guaranteed to include a value
-** for the column and the P3 value is not required.
+** for the column and the P4 value is not required.
**
** Column definitions created by an ALTER TABLE command may only have
** literal default values specified: a number, null or a string. (If a more
@@ -55481,22 +82359,34 @@ static void updateVirtualTable(
** when the ALTER TABLE is executed and one of the literal values written
** into the sqlite_master table.)
**
-** Therefore, the P3 parameter is only required if the default value for
+** Therefore, the P4 parameter is only required if the default value for
** the column is a literal number, string or null. The sqlite3ValueFromExpr()
** function is capable of transforming these types of expressions into
** sqlite3_value objects.
+**
+** If parameter iReg is not negative, code an OP_RealAffinity instruction
+** on register iReg. This is used when an equivalent integer value is
+** stored in place of an 8-byte floating point value in order to save
+** space.
*/
-void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
- if( pTab && !pTab->pSelect ){
+SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
+ assert( pTab!=0 );
+ if( !pTab->pSelect ){
sqlite3_value *pValue;
u8 enc = ENC(sqlite3VdbeDb(v));
Column *pCol = &pTab->aCol[i];
- sqlite3ValueFromExpr(pCol->pDflt, enc, pCol->affinity, &pValue);
+ VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
+ assert( i<pTab->nCol );
+ sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc,
+ pCol->affinity, &pValue);
if( pValue ){
- sqlite3VdbeChangeP3(v, -1, (const char *)pValue, P3_MEM);
- }else{
- VdbeComment((v, "# %s.%s", pTab->zName, pCol->zName));
+ sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
+ }
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( iReg>=0 && pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
}
+#endif
}
}
@@ -55507,7 +82397,7 @@ void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
** \_______/ \________/ \______/ \________________/
* onError pTabList pChanges pWhere
*/
-void sqlite3Update(
+SQLITE_PRIVATE void sqlite3Update(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* The table in which we should change things */
ExprList *pChanges, /* Things to be changed */
@@ -55521,11 +82411,9 @@ void sqlite3Update(
Vdbe *v; /* The virtual database engine */
Index *pIdx; /* For looping over indices */
int nIdx; /* Number of indices that need updating */
- int nIdxTotal; /* Total number of indices */
int iCur; /* VDBE Cursor number of pTab */
sqlite3 *db; /* The database structure */
- Index **apIdx = 0; /* An array of indices that need updating too */
- char *aIdxUsed = 0; /* aIdxUsed[i]==1 if the i-th index is used */
+ int *aRegIdx = 0; /* One register assigned to each index to be updated */
int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
** an expression for the i-th column of the table.
** aXRef[i]==-1 if the i-th column is not changed. */
@@ -55535,21 +82423,29 @@ void sqlite3Update(
AuthContext sContext; /* The authorization context */
NameContext sNC; /* The name-context to resolve expressions in */
int iDb; /* Database containing the table being updated */
- int memCnt = 0; /* Memory cell used for counting rows changed */
+ int j1; /* Addresses of jump instructions */
+ int okOnePass; /* True for one-pass algorithm without the FIFO */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* Trying to update a view */
- int triggers_exist = 0; /* True if any row triggers exist */
+ Trigger *pTrigger; /* List of triggers on pTab, if required */
#endif
+ u32 oldmask = 0; /* Mask of OLD.* columns in use */
- int newIdx = -1; /* index of trigger "new" temp table */
- int oldIdx = -1; /* index of trigger "old" temp table */
+ /* Register Allocations */
+ int regRowCount = 0; /* A count of rows changed */
+ int regOldRowid; /* The old rowid */
+ int regNewRowid; /* The new rowid */
+ int regNew;
+ int regOld = 0;
+ int regRowSet = 0; /* Rowset of rows to be updated */
+ int regRec; /* Register used for new table record to insert */
- sContext.pParse = 0;
- if( pParse->nErr || sqlite3MallocFailed() ){
+ memset(&sContext, 0, sizeof(sContext));
+ db = pParse->db;
+ if( pParse->nErr || db->mallocFailed ){
goto update_cleanup;
}
- db = pParse->db;
assert( pTabList->nSrc==1 );
/* Locate the table which we want to update.
@@ -55559,13 +82455,13 @@ void sqlite3Update(
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
/* Figure out if we have any triggers and if the table being
- ** updated is a view
+ ** updated is a view.
*/
#ifndef SQLITE_OMIT_TRIGGER
- triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, 0);
isView = pTab->pSelect!=0;
#else
-# define triggers_exist 0
+# define pTrigger 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
@@ -55573,24 +82469,16 @@ void sqlite3Update(
# define isView 0
#endif
- if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
goto update_cleanup;
}
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
goto update_cleanup;
}
- aXRef = sqliteMallocRaw( sizeof(int) * pTab->nCol );
+ aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
if( aXRef==0 ) goto update_cleanup;
for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
- /* If there are FOR EACH ROW triggers, allocate cursors for the
- ** special OLD and NEW tables
- */
- if( triggers_exist ){
- newIdx = pParse->nTab++;
- oldIdx = pParse->nTab++;
- }
-
/* Allocate a cursors for the main database table and for all indices.
** The index cursors might not be used, but if they are used they
** need to occur right after the database cursor. So go ahead and
@@ -55614,7 +82502,7 @@ void sqlite3Update(
*/
chngRowid = 0;
for(i=0; i<pChanges->nExpr; i++){
- if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
+ if( sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){
goto update_cleanup;
}
for(j=0; j<pTab->nCol; j++){
@@ -55650,44 +82538,33 @@ void sqlite3Update(
#endif
}
- /* Allocate memory for the array apIdx[] and fill it with pointers to every
- ** index that needs to be updated. Indices only need updating if their
- ** key includes one of the columns named in pChanges or if the record
- ** number of the original table entry is changing.
+ /* Allocate memory for the array aRegIdx[]. There is one entry in the
+ ** array for each index associated with table being updated. Fill in
+ ** the value with a register number for indices that are to be used
+ ** and with zero for unused indices.
*/
- for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
- if( chngRowid ){
- i = 0;
- }else {
- for(i=0; i<pIdx->nColumn; i++){
- if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
- }
- }
- if( i<pIdx->nColumn ) nIdx++;
- }
- if( nIdxTotal>0 ){
- apIdx = sqliteMallocRaw( sizeof(Index*) * nIdx + nIdxTotal );
- if( apIdx==0 ) goto update_cleanup;
- aIdxUsed = (char*)&apIdx[nIdx];
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
+ if( nIdx>0 ){
+ aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
+ if( aRegIdx==0 ) goto update_cleanup;
}
- for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ int reg;
if( chngRowid ){
- i = 0;
+ reg = ++pParse->nMem;
}else{
+ reg = 0;
for(i=0; i<pIdx->nColumn; i++){
- if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
+ if( aXRef[pIdx->aiColumn[i]]>=0 ){
+ reg = ++pParse->nMem;
+ break;
+ }
}
}
- if( i<pIdx->nColumn ){
- apIdx[nIdx++] = pIdx;
- aIdxUsed[j] = 1;
- }else{
- aIdxUsed[j] = 0;
- }
+ aRegIdx[j] = reg;
}
- /* Begin generating code.
- */
+ /* Begin generating code. */
v = sqlite3GetVdbe(pParse);
if( v==0 ) goto update_cleanup;
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
@@ -55704,38 +82581,58 @@ void sqlite3Update(
}
#endif
- /* Resolve the column names in all the expressions in the
- ** WHERE clause.
- */
- if( sqlite3ExprResolveNames(&sNC, pWhere) ){
- goto update_cleanup;
+ /* Allocate required registers. */
+ regOldRowid = regNewRowid = ++pParse->nMem;
+ if( pTrigger ){
+ regOld = pParse->nMem + 1;
+ pParse->nMem += pTab->nCol;
+ }
+ if( chngRowid || pTrigger ){
+ regNewRowid = ++pParse->nMem;
}
+ regNew = pParse->nMem + 1;
+ pParse->nMem += pTab->nCol;
+ regRec = ++pParse->nMem;
- /* Start the view context
- */
+ /* Start the view context. */
if( isView ){
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
}
+ /* If there are any triggers, set oldmask and new_col_mask. */
+ oldmask = sqlite3TriggerOldmask(
+ pParse, pTrigger, TK_UPDATE, pChanges, pTab, onError);
+
/* If we are trying to update a view, realize that view into
** a ephemeral table.
*/
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
if( isView ){
- Select *pView;
- pView = sqlite3SelectDup(pTab->pSelect);
- sqlite3Select(pParse, pView, SRT_EphemTab, iCur, 0, 0, 0, 0);
- sqlite3SelectDelete(pView);
+ sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
+ }
+#endif
+
+ /* Resolve the column names in all the expressions in the
+ ** WHERE clause.
+ */
+ if( sqlite3ResolveExprNames(&sNC, pWhere) ){
+ goto update_cleanup;
}
/* Begin the database scan
*/
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0, WHERE_ONEPASS_DESIRED);
if( pWInfo==0 ) goto update_cleanup;
+ okOnePass = pWInfo->okOnePass;
/* Remember the rowid of every item to be updated.
*/
- sqlite3VdbeAddOp(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
+ if( !okOnePass ){
+ regRowSet = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
+ }
/* End the database scan loop.
*/
@@ -55743,85 +82640,19 @@ void sqlite3Update(
/* Initialize the count of updated rows
*/
- if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
- memCnt = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, memCnt);
- }
-
- if( triggers_exist ){
- /* Create pseudo-tables for NEW and OLD
- */
- sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
- sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
-
- /* The top of the update loop for when there are triggers.
- */
- addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, 0);
-
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- /* Open a cursor and make it point to the record that is
- ** being updated.
- */
- sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
- }
- sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
-
- /* Generate the OLD table
- */
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
- sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
-
- /* Generate the NEW table
- */
- if( chngRowid ){
- sqlite3ExprCodeAndCache(pParse, pRowidExpr);
- }else{
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- }
- for(i=0; i<pTab->nCol; i++){
- if( i==pTab->iPKey ){
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- continue;
- }
- j = aXRef[i];
- if( j<0 ){
- sqlite3VdbeAddOp(v, OP_Column, iCur, i);
- sqlite3ColumnDefault(v, pTab, i);
- }else{
- sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr);
- }
- }
- sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
- if( !isView ){
- sqlite3TableAffinityStr(v, pTab);
- }
- if( pParse->nErr ) goto update_cleanup;
- sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
-
- /* Fire the BEFORE and INSTEAD OF triggers
- */
- if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
- newIdx, oldIdx, onError, addr) ){
- goto update_cleanup;
- }
+ if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){
+ regRowCount = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
}
- if( !isView && !IsVirtual(pTab) ){
+ if( !isView ){
/*
** Open every index that needs updating. Note that if any
** index could potentially invoke a REPLACE conflict resolution
** action, then we need to open all indices because we might need
** to be deleting some records.
*/
- sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
+ if( !okOnePass ) sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
if( onError==OE_Replace ){
openAll = 1;
}else{
@@ -55834,112 +82665,137 @@ void sqlite3Update(
}
}
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
- if( openAll || aIdxUsed[i] ){
+ if( openAll || aRegIdx[i]>0 ){
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum,
- (char*)pKey, P3_KEYINFO_HANDOFF);
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
assert( pParse->nTab>iCur+i+1 );
}
}
+ }
- /* Loop over every record that needs updating. We have to load
- ** the old data for each record to be updated because some columns
- ** might not change and we will need to copy the old value.
- ** Also, the old data is needed to delete the old index entries.
- ** So make the cursor point at the old record.
- */
- if( !triggers_exist ){
- addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, 0);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- }
- sqlite3VdbeAddOp(v, OP_NotExists, iCur, addr);
+ /* Top of the update loop */
+ if( okOnePass ){
+ int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
+ addr = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, a1);
+ }else{
+ addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, 0, regOldRowid);
+ }
- /* If the record number will change, push the record number as it
- ** will be after the update. (The old record number is currently
- ** on top of the stack.)
- */
- if( chngRowid ){
- sqlite3ExprCode(pParse, pRowidExpr);
- sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
- }
+ /* Make cursor iCur point to the record that is being updated. If
+ ** this record does not exist for some reason (deleted by a trigger,
+ ** for example, then jump to the next iteration of the RowSet loop. */
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
- /* Compute new data for this record.
- */
+ /* If there are triggers on this table, populate an array of registers
+ ** with the required old.* column data. */
+ if( pTrigger ){
for(i=0; i<pTab->nCol; i++){
- if( i==pTab->iPKey ){
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- continue;
+ if( aXRef[i]<0 || oldmask==0xffffffff || (oldmask & (1<<i)) ){
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regOld+i);
+ sqlite3ColumnDefault(v, pTab, i, regOld+i);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i);
}
+ }
+ }
+
+ /* If the record number will change, set register regNewRowid to
+ ** contain the new value. If the record number is not being modified,
+ ** then regNewRowid is the same register as regOldRowid, which is
+ ** already populated. */
+ assert( chngRowid || pTrigger || regOldRowid==regNewRowid );
+ if( chngRowid ){
+ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
+ }else if( pTrigger ){
+ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid);
+ }
+
+ /* Populate the array of registers beginning at regNew with the new
+ ** row data. This array is used to check constaints, create the new
+ ** table and index records, and as the values for any new.* references
+ ** made by triggers. */
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
+ }else{
j = aXRef[i];
if( j<0 ){
- sqlite3VdbeAddOp(v, OP_Column, iCur, i);
- sqlite3ColumnDefault(v, pTab, i);
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regNew+i);
+ sqlite3ColumnDefault(v, pTab, i, regNew+i);
}else{
- sqlite3ExprCode(pParse, pChanges->a[j].pExpr);
+ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i);
}
}
+ }
- /* Do constraint checks
- */
- sqlite3GenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRowid, 1,
- onError, addr);
+ /* Fire any BEFORE UPDATE triggers. This happens before constraints are
+ ** verified. One could argue that this is wrong. */
+ if( pTrigger ){
+ sqlite3VdbeAddOp2(v, OP_Affinity, regNew, pTab->nCol);
+ sqlite3TableAffinityStr(v, pTab);
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
+ TRIGGER_BEFORE, pTab, -1, regOldRowid, onError, addr);
- /* Delete the old indices for the current record.
- */
- sqlite3GenerateRowIndexDelete(v, pTab, iCur, aIdxUsed);
+ /* The row-trigger may have deleted the row being updated. In this
+ ** case, jump to the next row. No updates or AFTER triggers are
+ ** required. This behaviour - what happens when the row being updated
+ ** is deleted or renamed by a BEFORE trigger - is left undefined in the
+ ** documentation. */
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
+ }
- /* If changing the record number, delete the old record.
- */
+ if( !isView ){
+
+ /* Do constraint checks. */
+ sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
+ aRegIdx, (chngRowid?regOldRowid:0), 1, onError, addr, 0);
+
+ /* Delete the index entries associated with the current record. */
+ j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
+
+ /* If changing the record number, delete the old record. */
if( chngRowid ){
- sqlite3VdbeAddOp(v, OP_Delete, iCur, 0);
+ sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
}
+ sqlite3VdbeJumpHere(v, j1);
- /* Create the new index entries and the new record.
- */
- sqlite3CompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRowid, 1, -1, 0);
+ /* Insert the new index entries and the new record. */
+ sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, aRegIdx, 1, 0, 0);
}
/* Increment the row counter
*/
- if( db->flags & SQLITE_CountRows && !pParse->trigStack){
- sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
+ if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
}
- /* If there are triggers, close all the cursors after each iteration
- ** through the loop. The fire the after triggers.
- */
- if( triggers_exist ){
- if( !isView ){
- for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
- if( openAll || aIdxUsed[i] )
- sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
- }
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
- if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab,
- newIdx, oldIdx, onError, addr) ){
- goto update_cleanup;
- }
- }
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
+ TRIGGER_AFTER, pTab, -1, regOldRowid, onError, addr);
/* Repeat the above with the next record to be updated, until
** all record selected by the WHERE clause have been updated.
*/
- sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
sqlite3VdbeJumpHere(v, addr);
- /* Close all tables if there were no FOR EACH ROW triggers */
- if( !triggers_exist ){
- for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
- if( openAll || aIdxUsed[i] ){
- sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
- }
+ /* Close all tables */
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aRegIdx[i]>0 ){
+ sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
}
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }else{
- sqlite3VdbeAddOp(v, OP_Close, newIdx, 0);
- sqlite3VdbeAddOp(v, OP_Close, oldIdx, 0);
+ }
+ sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
+
+ /* Update the sqlite_sequence table by storing the content of the
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
+ */
+ if( pParse->nested==0 && pParse->pTriggerTab==0 ){
+ sqlite3AutoincrementEnd(pParse);
}
/*
@@ -55947,20 +82803,19 @@ void sqlite3Update(
** generating code because of a call to sqlite3NestedParse(), do not
** invoke the callback function.
*/
- if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
- sqlite3VdbeAddOp(v, OP_MemLoad, memCnt, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
+ if( (db->flags&SQLITE_CountRows) && !pParse->pTriggerTab && !pParse->nested ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P3_STATIC);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
}
update_cleanup:
sqlite3AuthContextPop(&sContext);
- sqliteFree(apIdx);
- sqliteFree(aXRef);
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprListDelete(pChanges);
- sqlite3ExprDelete(pWhere);
+ sqlite3DbFree(db, aRegIdx);
+ sqlite3DbFree(db, aXRef);
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprListDelete(db, pChanges);
+ sqlite3ExprDelete(db, pWhere);
return;
}
@@ -56000,63 +82855,69 @@ static void updateVirtualTable(
int ephemTab; /* Table holding the result of the SELECT */
int i; /* Loop counter */
int addr; /* Address of top of loop */
+ int iReg; /* First register in set passed to OP_VUpdate */
+ sqlite3 *db = pParse->db; /* Database connection */
+ const char *pVTab = (const char*)sqlite3GetVTable(db, pTab);
+ SelectDest dest;
/* Construct the SELECT statement that will find the new values for
** all updated rows.
*/
- pEList = sqlite3ExprListAppend(0, sqlite3CreateIdExpr("_rowid_"), 0);
+ pEList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3CreateIdExpr(pParse, "_rowid_"));
if( pRowid ){
- pEList = sqlite3ExprListAppend(pEList, sqlite3ExprDup(pRowid), 0);
+ pEList = sqlite3ExprListAppend(pParse, pEList,
+ sqlite3ExprDup(db, pRowid, 0));
}
assert( pTab->iPKey<0 );
for(i=0; i<pTab->nCol; i++){
if( aXRef[i]>=0 ){
- pExpr = sqlite3ExprDup(pChanges->a[aXRef[i]].pExpr);
+ pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0);
}else{
- pExpr = sqlite3CreateIdExpr(pTab->aCol[i].zName);
+ pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName);
}
- pEList = sqlite3ExprListAppend(pEList, pExpr, 0);
+ pEList = sqlite3ExprListAppend(pParse, pEList, pExpr);
}
- pSelect = sqlite3SelectNew(pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
+ pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
/* Create the ephemeral table into which the update results will
** be stored.
*/
assert( v );
ephemTab = pParse->nTab++;
- sqlite3VdbeAddOp(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
/* fill the ephemeral table
*/
- sqlite3Select(pParse, pSelect, SRT_Table, ephemTab, 0, 0, 0, 0);
-
- /*
- ** Generate code to scan the ephemeral table and call VDelete and
- ** VInsert
- */
- sqlite3VdbeAddOp(v, OP_Rewind, ephemTab, 0);
- addr = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp(v, OP_Column, ephemTab, 0);
- if( pRowid ){
- sqlite3VdbeAddOp(v, OP_Column, ephemTab, 1);
- }else{
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- }
+ sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
+ sqlite3Select(pParse, pSelect, &dest);
+
+ /* Generate code to scan the ephemeral table and call VUpdate. */
+ iReg = ++pParse->nMem;
+ pParse->nMem += pTab->nCol+1;
+ addr = sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
+ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
+ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
for(i=0; i<pTab->nCol; i++){
- sqlite3VdbeAddOp(v, OP_Column, ephemTab, i+1+(pRowid!=0));
+ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
}
- pParse->pVirtualLock = pTab;
- sqlite3VdbeOp3(v, OP_VUpdate, 0, pTab->nCol+2,
- (const char*)pTab->pVtab, P3_VTAB);
- sqlite3VdbeAddOp(v, OP_Next, ephemTab, addr);
- sqlite3VdbeJumpHere(v, addr-1);
- sqlite3VdbeAddOp(v, OP_Close, ephemTab, 0);
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB);
+ sqlite3MayAbort(pParse);
+ sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1);
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
/* Cleanup */
- sqlite3SelectDelete(pSelect);
+ sqlite3SelectDelete(db, pSelect);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
+/* Make sure "isView" gets undefined in case this file becomes part of
+** the amalgamation - so that subsequent files do not see isView as a
+** macro. */
+#undef isView
+
/************** End of update.c **********************************************/
/************** Begin file vacuum.c ******************************************/
/*
@@ -56075,7 +82936,7 @@ static void updateVirtualTable(
** Most of the code in this file may be omitted by defining the
** SQLITE_OMIT_VACUUM macro.
**
-** $Id: vacuum.c,v 1.69 2007/03/27 16:19:52 danielk1977 Exp $
+** $Id: vacuum.c,v 1.91 2009/07/02 07:47:33 danielk1977 Exp $
*/
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
@@ -56084,10 +82945,15 @@ static void updateVirtualTable(
*/
static int execSql(sqlite3 *db, const char *zSql){
sqlite3_stmt *pStmt;
+ VVA_ONLY( int rc; )
+ if( !zSql ){
+ return SQLITE_NOMEM;
+ }
if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
return sqlite3_errcode(db);
}
- while( SQLITE_ROW==sqlite3_step(pStmt) ){}
+ VVA_ONLY( rc = ) sqlite3_step(pStmt);
+ assert( rc!=SQLITE_ROW );
return sqlite3_finalize(pStmt);
}
@@ -56123,10 +82989,10 @@ static int execExecSql(sqlite3 *db, const char *zSql){
** with 2.0.0, SQLite no longer uses GDBM so this command has
** become a no-op.
*/
-void sqlite3Vacuum(Parse *pParse){
+SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
Vdbe *v = sqlite3GetVdbe(pParse);
if( v ){
- sqlite3VdbeAddOp(v, OP_Vacuum, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
}
return;
}
@@ -56134,25 +83000,31 @@ void sqlite3Vacuum(Parse *pParse){
/*
** This routine implements the OP_Vacuum opcode of the VDBE.
*/
-int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
+SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
int rc = SQLITE_OK; /* Return code from service routines */
Btree *pMain; /* The database being vacuumed */
Btree *pTemp; /* The temporary database we vacuum into */
char *zSql = 0; /* SQL statements */
int saved_flags; /* Saved value of the db->flags */
+ int saved_nChange; /* Saved value of db->nChange */
+ int saved_nTotalChange; /* Saved value of db->nTotalChange */
Db *pDb = 0; /* Database to detach at end of vacuum */
+ int isMemDb; /* True if vacuuming a :memory: database */
+ int nRes;
+
+ if( !db->autoCommit ){
+ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
+ return SQLITE_ERROR;
+ }
/* Save the current value of the write-schema flag before setting it. */
saved_flags = db->flags;
+ saved_nChange = db->nChange;
+ saved_nTotalChange = db->nTotalChange;
db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
- if( !db->autoCommit ){
- sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction",
- (char*)0);
- rc = SQLITE_ERROR;
- goto end_of_vacuum;
- }
pMain = db->aDb[0].pBt;
+ isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain));
/* Attach the temporary database as 'vacuum_db'. The synchronous pragma
** can be set to 'off' for this file, as it is not recovered if a crash
@@ -56161,6 +83033,12 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
** sqlite3BtreeCopyFile() is called.
**
** An optimisation would be to use a non-journaled pager.
+ ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
+ ** that actually made the VACUUM run slower. Very little journalling
+ ** actually occurs when doing a vacuum since the vacuum_db is initially
+ ** empty. Only the journal header is written. Apparently it takes more
+ ** time to parse and run the PRAGMA to turn journalling off than it does
+ ** to write the journal header file.
*/
zSql = "ATTACH '' AS vacuum_db;";
rc = execSql(db, zSql);
@@ -56168,20 +83046,35 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
pDb = &db->aDb[db->nDb-1];
assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
pTemp = db->aDb[db->nDb-1].pBt;
- sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain),
- sqlite3BtreeGetReserve(pMain));
- if( sqlite3MallocFailed() ){
+
+ nRes = sqlite3BtreeGetReserve(pMain);
+
+ /* A VACUUM cannot change the pagesize of an encrypted database. */
+#ifdef SQLITE_HAS_CODEC
+ if( db->nextPagesize ){
+ extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
+ int nKey;
+ char *zKey;
+ sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
+ if( nKey ) db->nextPagesize = 0;
+ }
+#endif
+
+ if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0)
+ || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0))
+ || NEVER(db->mallocFailed)
+ ){
rc = SQLITE_NOMEM;
goto end_of_vacuum;
}
- assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) );
rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
if( rc!=SQLITE_OK ){
goto end_of_vacuum;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
- sqlite3BtreeSetAutoVacuum(pTemp, sqlite3BtreeGetAutoVacuum(pMain));
+ sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
+ sqlite3BtreeGetAutoVacuum(pMain));
#endif
/* Begin a transaction */
@@ -56192,17 +83085,17 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
** in the temporary database.
*/
rc = execExecSql(db,
- "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) "
+ "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
" FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
" AND rootpage>0"
);
if( rc!=SQLITE_OK ) goto end_of_vacuum;
rc = execExecSql(db,
- "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000)"
+ "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
" FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
if( rc!=SQLITE_OK ) goto end_of_vacuum;
rc = execExecSql(db,
- "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) "
+ "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
" FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
if( rc!=SQLITE_OK ) goto end_of_vacuum;
@@ -56257,7 +83150,7 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
** opened for writing. This way, the SQL transaction used to create the
** temporary database never needs to be committed.
*/
- if( rc==SQLITE_OK ){
+ {
u32 meta;
int i;
@@ -56268,33 +83161,41 @@ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
** connections to the same database will know to reread the schema.
*/
static const unsigned char aCopy[] = {
- 1, 1, /* Add one to the old schema cookie */
- 3, 0, /* Preserve the default page cache size */
- 5, 0, /* Preserve the default text encoding */
- 6, 0, /* Preserve the user version */
+ BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */
+ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */
+ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */
+ BTREE_USER_VERSION, 0, /* Preserve the user version */
};
assert( 1==sqlite3BtreeIsInTrans(pTemp) );
assert( 1==sqlite3BtreeIsInTrans(pMain) );
/* Copy Btree meta values */
- for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){
- rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ for(i=0; i<ArraySize(aCopy); i+=2){
+ /* GetMeta() and UpdateMeta() cannot fail in this context because
+ ** we already have page 1 loaded into cache and marked dirty. */
+ sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ if( NEVER(rc!=SQLITE_OK) ) goto end_of_vacuum;
}
rc = sqlite3BtreeCopyFile(pMain, pTemp);
if( rc!=SQLITE_OK ) goto end_of_vacuum;
rc = sqlite3BtreeCommit(pTemp);
if( rc!=SQLITE_OK ) goto end_of_vacuum;
- rc = sqlite3BtreeCommit(pMain);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
+#endif
}
+ assert( rc==SQLITE_OK );
+ rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1);
+
end_of_vacuum:
/* Restore the original value of db->flags */
db->flags = saved_flags;
+ db->nChange = saved_nChange;
+ db->nTotalChange = saved_nTotalChange;
/* Currently there is an SQL level transaction open on the vacuum
** database. No locks are held on any other files (since the main file
@@ -56306,9 +83207,7 @@ end_of_vacuum:
db->autoCommit = 1;
if( pDb ){
- sqlite3MallocDisallow();
sqlite3BtreeClose(pDb->pBt);
- sqlite3MallocAllow();
pDb->pBt = 0;
pDb->pSchema = 0;
}
@@ -56334,32 +83233,77 @@ end_of_vacuum:
*************************************************************************
** This file contains code used to help implement virtual tables.
**
-** $Id: vtab.c,v 1.42 2007/04/18 14:24:34 danielk1977 Exp $
+** $Id: vtab.c,v 1.94 2009/08/08 18:01:08 drh Exp $
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
-** External API function used to create a new virtual-table module.
+** The actual function that does the work of creating a new module.
+** This function implements the sqlite3_create_module() and
+** sqlite3_create_module_v2() interfaces.
*/
-int sqlite3_create_module(
+static int createModule(
sqlite3 *db, /* Database in which module is registered */
const char *zName, /* Name assigned to this module */
const sqlite3_module *pModule, /* The definition of the module */
- void *pAux /* Context pointer for xCreate/xConnect */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
){
- int nName = strlen(zName);
- Module *pMod = (Module *)sqliteMallocRaw(sizeof(Module) + nName + 1);
+ int rc, nName;
+ Module *pMod;
+
+ sqlite3_mutex_enter(db->mutex);
+ nName = sqlite3Strlen30(zName);
+ pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
if( pMod ){
+ Module *pDel;
char *zCopy = (char *)(&pMod[1]);
- strcpy(zCopy, zName);
+ memcpy(zCopy, zName, nName+1);
pMod->zName = zCopy;
pMod->pModule = pModule;
pMod->pAux = pAux;
- pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
- sqliteFree(pMod);
+ pMod->xDestroy = xDestroy;
+ pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
+ if( pDel && pDel->xDestroy ){
+ pDel->xDestroy(pDel->pAux);
+ }
+ sqlite3DbFree(db, pDel);
+ if( pDel==pMod ){
+ db->mallocFailed = 1;
+ }
sqlite3ResetInternalSchema(db, 0);
+ }else if( xDestroy ){
+ xDestroy(pAux);
}
- return sqlite3ApiExit(db, SQLITE_OK);
+ rc = sqlite3ApiExit(db, SQLITE_OK);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+
+/*
+** External API function used to create a new virtual-table module.
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux /* Context pointer for xCreate/xConnect */
+){
+ return createModule(db, zName, pModule, pAux, 0);
+}
+
+/*
+** External API function used to create a new virtual-table module.
+*/
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+){
+ return createModule(db, zName, pModule, pAux, xDestroy);
}
/*
@@ -56370,26 +83314,128 @@ int sqlite3_create_module(
** If a disconnect is attempted while a virtual table is locked,
** the disconnect is deferred until all locks have been removed.
*/
-void sqlite3VtabLock(sqlite3_vtab *pVtab){
- pVtab->nRef++;
+SQLITE_PRIVATE void sqlite3VtabLock(VTable *pVTab){
+ pVTab->nRef++;
}
+
/*
-** Unlock a virtual table. When the last lock is removed,
-** disconnect the virtual table.
+** pTab is a pointer to a Table structure representing a virtual-table.
+** Return a pointer to the VTable object used by connection db to access
+** this virtual-table, if one has been created, or NULL otherwise.
*/
-void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
- pVtab->nRef--;
- assert(db);
- assert(!sqlite3SafetyCheck(db));
- if( pVtab->nRef==0 ){
- if( db->magic==SQLITE_MAGIC_BUSY ){
- sqlite3SafetyOff(db);
- pVtab->pModule->xDisconnect(pVtab);
- sqlite3SafetyOn(db);
- } else {
- pVtab->pModule->xDisconnect(pVtab);
+SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
+ VTable *pVtab;
+ assert( IsVirtual(pTab) );
+ for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
+ return pVtab;
+}
+
+/*
+** Decrement the ref-count on a virtual table object. When the ref-count
+** reaches zero, call the xDisconnect() method to delete the object.
+*/
+SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){
+ sqlite3 *db = pVTab->db;
+
+ assert( db );
+ assert( pVTab->nRef>0 );
+ assert( sqlite3SafetyCheckOk(db) );
+
+ pVTab->nRef--;
+ if( pVTab->nRef==0 ){
+ sqlite3_vtab *p = pVTab->pVtab;
+ if( p ){
+#ifdef SQLITE_DEBUG
+ if( pVTab->db->magic==SQLITE_MAGIC_BUSY ){
+ (void)sqlite3SafetyOff(db);
+ p->pModule->xDisconnect(p);
+ (void)sqlite3SafetyOn(db);
+ } else
+#endif
+ {
+ p->pModule->xDisconnect(p);
+ }
+ }
+ sqlite3DbFree(db, pVTab);
+ }
+}
+
+/*
+** Table p is a virtual table. This function moves all elements in the
+** p->pVTable list to the sqlite3.pDisconnect lists of their associated
+** database connections to be disconnected at the next opportunity.
+** Except, if argument db is not NULL, then the entry associated with
+** connection db is left in the p->pVTable list.
+*/
+static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
+ VTable *pRet = 0;
+ VTable *pVTable = p->pVTable;
+ p->pVTable = 0;
+
+ /* Assert that the mutex (if any) associated with the BtShared database
+ ** that contains table p is held by the caller. See header comments
+ ** above function sqlite3VtabUnlockList() for an explanation of why
+ ** this makes it safe to access the sqlite3.pDisconnect list of any
+ ** database connection that may have an entry in the p->pVTable list. */
+ assert( db==0 ||
+ sqlite3BtreeHoldsMutex(db->aDb[sqlite3SchemaToIndex(db, p->pSchema)].pBt)
+ );
+
+ while( pVTable ){
+ sqlite3 *db2 = pVTable->db;
+ VTable *pNext = pVTable->pNext;
+ assert( db2 );
+ if( db2==db ){
+ pRet = pVTable;
+ p->pVTable = pRet;
+ pRet->pNext = 0;
+ }else{
+ pVTable->pNext = db2->pDisconnect;
+ db2->pDisconnect = pVTable;
}
+ pVTable = pNext;
+ }
+
+ assert( !db || pRet );
+ return pRet;
+}
+
+
+/*
+** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
+**
+** This function may only be called when the mutexes associated with all
+** shared b-tree databases opened using connection db are held by the
+** caller. This is done to protect the sqlite3.pDisconnect list. The
+** sqlite3.pDisconnect list is accessed only as follows:
+**
+** 1) By this function. In this case, all BtShared mutexes and the mutex
+** associated with the database handle itself must be held.
+**
+** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
+** the sqlite3.pDisconnect list. In this case either the BtShared mutex
+** associated with the database the virtual table is stored in is held
+** or, if the virtual table is stored in a non-sharable database, then
+** the database handle mutex is held.
+**
+** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
+** by multiple threads. It is thread-safe.
+*/
+SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3 *db){
+ VTable *p = db->pDisconnect;
+ db->pDisconnect = 0;
+
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ if( p ){
+ sqlite3ExpirePreparedStatements(db);
+ do {
+ VTable *pNext = p->pNext;
+ sqlite3VtabUnlock(p);
+ p = pNext;
+ }while( p );
}
}
@@ -56397,20 +83443,24 @@ void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
** Clear any and all virtual-table information from the Table record.
** This routine is called, for example, just before deleting the Table
** record.
-*/
-void sqlite3VtabClear(Table *p){
- sqlite3_vtab *pVtab = p->pVtab;
- if( pVtab ){
- assert( p->pMod && p->pMod->pModule );
- sqlite3VtabUnlock(p->pSchema->db, pVtab);
- p->pVtab = 0;
- }
+**
+** Since it is a virtual-table, the Table structure contains a pointer
+** to the head of a linked list of VTable structures. Each VTable
+** structure is associated with a single sqlite3* user of the schema.
+** The reference count of the VTable structure associated with database
+** connection db is decremented immediately (which may lead to the
+** structure being xDisconnected and free). Any other VTable structures
+** in the list are moved to the sqlite3.pDisconnect list of the associated
+** database connection.
+*/
+SQLITE_PRIVATE void sqlite3VtabClear(Table *p){
+ vtabDisconnectAll(0, p);
if( p->azModuleArg ){
int i;
for(i=0; i<p->nModuleArg; i++){
- sqliteFree(p->azModuleArg[i]);
+ sqlite3DbFree(p->dbMem, p->azModuleArg[i]);
}
- sqliteFree(p->azModuleArg);
+ sqlite3DbFree(p->dbMem, p->azModuleArg);
}
}
@@ -56420,18 +83470,18 @@ void sqlite3VtabClear(Table *p){
** string will be freed automatically when the table is
** deleted.
*/
-static void addModuleArgument(Table *pTable, char *zArg){
+static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
int i = pTable->nModuleArg++;
int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
char **azModuleArg;
- azModuleArg = sqliteRealloc(pTable->azModuleArg, nBytes);
+ azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
if( azModuleArg==0 ){
int j;
for(j=0; j<i; j++){
- sqliteFree(pTable->azModuleArg[j]);
+ sqlite3DbFree(db, pTable->azModuleArg[j]);
}
- sqliteFree(zArg);
- sqliteFree(pTable->azModuleArg);
+ sqlite3DbFree(db, zArg);
+ sqlite3DbFree(db, pTable->azModuleArg);
pTable->nModuleArg = 0;
}else{
azModuleArg[i] = zArg;
@@ -56445,7 +83495,7 @@ static void addModuleArgument(Table *pTable, char *zArg){
** statement. The module name has been parsed, but the optional list
** of parameters that follow the module name are still pending.
*/
-void sqlite3VtabBeginParse(
+SQLITE_PRIVATE void sqlite3VtabBeginParse(
Parse *pParse, /* Parsing context */
Token *pName1, /* Name of new table, or database name */
Token *pName2, /* Name of new table or NULL */
@@ -56453,26 +83503,23 @@ void sqlite3VtabBeginParse(
){
int iDb; /* The database the table is being created in */
Table *pTable; /* The new virtual table */
-
- if( sqlite3ThreadDataReadOnly()->useSharedData ){
- sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode");
- return;
- }
+ sqlite3 *db; /* Database connection */
sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
pTable = pParse->pNewTable;
- if( pTable==0 || pParse->nErr ) return;
+ if( pTable==0 ) return;
assert( 0==pTable->pIndex );
- iDb = sqlite3SchemaToIndex(pParse->db, pTable->pSchema);
+ db = pParse->db;
+ iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
assert( iDb>=0 );
- pTable->isVirtual = 1;
+ pTable->tabFlags |= TF_Virtual;
pTable->nModuleArg = 0;
- addModuleArgument(pTable, sqlite3NameFromToken(pModuleName));
- addModuleArgument(pTable, sqlite3StrDup(pParse->db->aDb[iDb].zName));
- addModuleArgument(pTable, sqlite3StrDup(pTable->zName));
- pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;
+ addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
+ addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
+ addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
+ pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
#ifndef SQLITE_OMIT_AUTHORIZATION
/* Creating a virtual table invokes the authorization callback twice.
@@ -56493,10 +83540,11 @@ void sqlite3VtabBeginParse(
** virtual table currently under construction in pParse->pTable.
*/
static void addArgumentToVtab(Parse *pParse){
- if( pParse->sArg.z && pParse->pNewTable ){
+ if( pParse->sArg.z && ALWAYS(pParse->pNewTable) ){
const char *z = (const char*)pParse->sArg.z;
int n = pParse->sArg.n;
- addModuleArgument(pParse->pNewTable, sqliteStrNDup(z, n));
+ sqlite3 *db = pParse->db;
+ addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
}
}
@@ -56504,23 +83552,14 @@ static void addArgumentToVtab(Parse *pParse){
** The parser calls this routine after the CREATE VIRTUAL TABLE statement
** has been completely parsed.
*/
-void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
- Table *pTab; /* The table being constructed */
- sqlite3 *db; /* The database connection */
- char *zModule; /* The module name of the table: USING modulename */
- Module *pMod = 0;
+SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
+ Table *pTab = pParse->pNewTable; /* The table being constructed */
+ sqlite3 *db = pParse->db; /* The database connection */
+ if( pTab==0 ) return;
addArgumentToVtab(pParse);
pParse->sArg.z = 0;
-
- /* Lookup the module name. */
- pTab = pParse->pNewTable;
- if( pTab==0 ) return;
- db = pParse->db;
if( pTab->nModuleArg<1 ) return;
- zModule = pTab->azModuleArg[0];
- pMod = (Module *)sqlite3HashFind(&db->aModule, zModule, strlen(zModule));
- pTab->pMod = pMod;
/* If the CREATE VIRTUAL TABLE statement is being entered for the
** first time (in other words if the virtual table is actually being
@@ -56536,50 +83575,53 @@ void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
/* Compute the complete text of the CREATE VIRTUAL TABLE statement */
if( pEnd ){
- pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n;
+ pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
}
- zStmt = sqlite3MPrintf("CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
+ zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
/* A slot for the record has already been allocated in the
** SQLITE_MASTER table. We just need to update that slot with all
** the information we've collected.
**
- ** The top of the stack is the rootpage allocated by sqlite3StartTable().
- ** This value is always 0 and is ignored, a virtual table does not have a
- ** rootpage. The next entry on the stack is the rowid of the record
- ** in the sqlite_master table.
+ ** The VM register number pParse->regRowid holds the rowid of an
+ ** entry in the sqlite_master table tht was created for this vtab
+ ** by sqlite3StartTable().
*/
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sqlite3NestedParse(pParse,
"UPDATE %Q.%s "
"SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
- "WHERE rowid=#1",
+ "WHERE rowid=#%d",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
pTab->zName,
pTab->zName,
- zStmt
+ zStmt,
+ pParse->regRowid
);
- sqliteFree(zStmt);
+ sqlite3DbFree(db, zStmt);
v = sqlite3GetVdbe(pParse);
- sqlite3ChangeCookie(db, v, iDb);
+ sqlite3ChangeCookie(pParse, iDb);
- sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
- zWhere = sqlite3MPrintf("name='%q'", pTab->zName);
- sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 1, zWhere, P3_DYNAMIC);
- sqlite3VdbeOp3(v, OP_VCreate, iDb, 0, pTab->zName, strlen(pTab->zName) + 1);
+ sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
+ zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
+ sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
+ pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
}
/* If we are rereading the sqlite_master table create the in-memory
- ** record of the table. If the module has already been registered,
- ** also call the xConnect method here.
- */
+ ** record of the table. The xConnect() method is not called until
+ ** the first time the virtual table is used in an SQL statement. This
+ ** allows a schema that contains virtual tables to be loaded before
+ ** the required virtual table implementations are registered. */
else {
Table *pOld;
Schema *pSchema = pTab->pSchema;
const char *zName = pTab->zName;
- int nName = strlen(zName) + 1;
+ int nName = sqlite3Strlen30(zName);
pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
if( pOld ){
+ db->mallocFailed = 1;
assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
return;
}
@@ -56592,7 +83634,7 @@ void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
** The parser calls this routine when it sees the first token
** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
*/
-void sqlite3VtabArgInit(Parse *pParse){
+SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
addArgumentToVtab(pParse);
pParse->sArg.z = 0;
pParse->sArg.n = 0;
@@ -56602,14 +83644,14 @@ void sqlite3VtabArgInit(Parse *pParse){
** The parser calls this routine for each token after the first token
** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
*/
-void sqlite3VtabArgExtend(Parse *pParse, Token *p){
+SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
Token *pArg = &pParse->sArg;
if( pArg->z==0 ){
pArg->z = p->z;
pArg->n = p->n;
}else{
assert(pArg->z < p->z);
- pArg->n = (p->z + p->n - pArg->z);
+ pArg->n = (int)(&p->z[p->n] - pArg->z);
}
}
@@ -56625,49 +83667,97 @@ static int vtabCallConstructor(
int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
char **pzErr
){
+ VTable *pVTable;
int rc;
- int rc2;
- sqlite3_vtab *pVtab;
const char *const*azArg = (const char *const*)pTab->azModuleArg;
int nArg = pTab->nModuleArg;
char *zErr = 0;
- char *zModuleName = sqlite3MPrintf("%s", pTab->zName);
+ char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
if( !zModuleName ){
return SQLITE_NOMEM;
}
+ pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
+ if( !pVTable ){
+ sqlite3DbFree(db, zModuleName);
+ return SQLITE_NOMEM;
+ }
+ pVTable->db = db;
+ pVTable->pMod = pMod;
+
assert( !db->pVTab );
assert( xConstruct );
-
db->pVTab = pTab;
- rc = sqlite3SafetyOff(db);
- assert( rc==SQLITE_OK );
- rc = xConstruct(db, pMod->pAux, nArg, azArg, &pTab->pVtab, &zErr);
- rc2 = sqlite3SafetyOn(db);
- pVtab = pTab->pVtab;
- if( rc==SQLITE_OK && pVtab ){
- pVtab->pModule = pMod->pModule;
- pVtab->nRef = 1;
- }
+
+ /* Invoke the virtual table constructor */
+ (void)sqlite3SafetyOff(db);
+ rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
+ (void)sqlite3SafetyOn(db);
+ if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
if( SQLITE_OK!=rc ){
if( zErr==0 ){
- *pzErr = sqlite3MPrintf("vtable constructor failed: %s", zModuleName);
+ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
}else {
- *pzErr = sqlite3MPrintf("%s", zErr);
- sqlite3_free(zErr);
+ *pzErr = sqlite3MPrintf(db, "%s", zErr);
+ sqlite3DbFree(db, zErr);
+ }
+ sqlite3DbFree(db, pVTable);
+ }else if( ALWAYS(pVTable->pVtab) ){
+ /* Justification of ALWAYS(): A correct vtab constructor must allocate
+ ** the sqlite3_vtab object if successful. */
+ pVTable->pVtab->pModule = pMod->pModule;
+ pVTable->nRef = 1;
+ if( db->pVTab ){
+ const char *zFormat = "vtable constructor did not declare schema: %s";
+ *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
+ sqlite3VtabUnlock(pVTable);
+ rc = SQLITE_ERROR;
+ }else{
+ int iCol;
+ /* If everything went according to plan, link the new VTable structure
+ ** into the linked list headed by pTab->pVTable. Then loop through the
+ ** columns of the table to see if any of them contain the token "hidden".
+ ** If so, set the Column.isHidden flag and remove the token from
+ ** the type string. */
+ pVTable->pNext = pTab->pVTable;
+ pTab->pVTable = pVTable;
+
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ char *zType = pTab->aCol[iCol].zType;
+ int nType;
+ int i = 0;
+ if( !zType ) continue;
+ nType = sqlite3Strlen30(zType);
+ if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
+ for(i=0; i<nType; i++){
+ if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
+ && (zType[i+7]=='\0' || zType[i+7]==' ')
+ ){
+ i++;
+ break;
+ }
+ }
+ }
+ if( i<nType ){
+ int j;
+ int nDel = 6 + (zType[i+6] ? 1 : 0);
+ for(j=i; (j+nDel)<=nType; j++){
+ zType[j] = zType[j+nDel];
+ }
+ if( zType[i]=='\0' && i>0 ){
+ assert(zType[i-1]==' ');
+ zType[i-1] = '\0';
+ }
+ pTab->aCol[iCol].isHidden = 1;
+ }
+ }
}
- }else if( db->pVTab ){
- const char *zFormat = "vtable constructor did not declare schema: %s";
- *pzErr = sqlite3MPrintf(zFormat, pTab->zName);
- rc = SQLITE_ERROR;
- }
- if( rc==SQLITE_OK ){
- rc = rc2;
}
+
+ sqlite3DbFree(db, zModuleName);
db->pVTab = 0;
- sqliteFree(zModuleName);
return rc;
}
@@ -56678,43 +83768,48 @@ static int vtabCallConstructor(
**
** This call is a no-op if table pTab is not a virtual table.
*/
-int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
+SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
+ sqlite3 *db = pParse->db;
+ const char *zMod;
Module *pMod;
- int rc = SQLITE_OK;
+ int rc;
- if( !pTab || !pTab->isVirtual || pTab->pVtab ){
+ assert( pTab );
+ if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
return SQLITE_OK;
}
- pMod = pTab->pMod;
+ /* Locate the required virtual table module */
+ zMod = pTab->azModuleArg[0];
+ pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
+
if( !pMod ){
const char *zModule = pTab->azModuleArg[0];
sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
rc = SQLITE_ERROR;
- } else {
+ }else{
char *zErr = 0;
- sqlite3 *db = pParse->db;
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
if( rc!=SQLITE_OK ){
sqlite3ErrorMsg(pParse, "%s", zErr);
}
- sqliteFree(zErr);
+ sqlite3DbFree(db, zErr);
}
return rc;
}
/*
-** Add the virtual table pVtab to the array sqlite3.aVTrans[].
+** Add the virtual table pVTab to the array sqlite3.aVTrans[].
*/
-static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
+static int addToVTrans(sqlite3 *db, VTable *pVTab){
const int ARRAY_INCR = 5;
/* Grow the sqlite3.aVTrans array if required */
if( (db->nVTrans%ARRAY_INCR)==0 ){
- sqlite3_vtab **aVTrans;
+ VTable **aVTrans;
int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
- aVTrans = sqliteRealloc((void *)db->aVTrans, nBytes);
+ aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
if( !aVTrans ){
return SQLITE_NOMEM;
}
@@ -56723,8 +83818,8 @@ static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
}
/* Add pVtab to the end of sqlite3.aVTrans */
- db->aVTrans[db->nVTrans++] = pVtab;
- sqlite3VtabLock(pVtab);
+ db->aVTrans[db->nVTrans++] = pVTab;
+ sqlite3VtabLock(pVTab);
return SQLITE_OK;
}
@@ -56734,32 +83829,36 @@ static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
**
** If an error occurs, *pzErr is set to point an an English language
** description of the error and an SQLITE_XXX error code is returned.
-** In this case the caller must call sqliteFree() on *pzErr.
+** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
*/
-int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
+SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
int rc = SQLITE_OK;
Table *pTab;
Module *pMod;
- const char *zModule;
+ const char *zMod;
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
- assert(pTab && pTab->isVirtual && !pTab->pVtab);
- pMod = pTab->pMod;
- zModule = pTab->azModuleArg[0];
+ assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
+
+ /* Locate the required virtual table module */
+ zMod = pTab->azModuleArg[0];
+ pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
/* If the module has been registered and includes a Create method,
** invoke it now. If the module has not been registered, return an
** error. Otherwise, do nothing.
*/
if( !pMod ){
- *pzErr = sqlite3MPrintf("no such module: %s", zModule);
+ *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
rc = SQLITE_ERROR;
}else{
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
}
- if( rc==SQLITE_OK && pTab->pVtab ){
- rc = addToVTrans(db, pTab->pVtab);
+ /* Justification of ALWAYS(): The xConstructor method is required to
+ ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
+ if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
+ rc = addToVTrans(db, sqlite3GetVTable(db, pTab));
}
return rc;
@@ -56770,47 +83869,60 @@ int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
** valid to call this function from within the xCreate() or xConnect() of a
** virtual table module.
*/
-int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
- Parse sParse;
+SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
+ Parse *pParse;
int rc = SQLITE_OK;
- Table *pTab = db->pVTab;
+ Table *pTab;
char *zErr = 0;
+ sqlite3_mutex_enter(db->mutex);
+ pTab = db->pVTab;
if( !pTab ){
sqlite3Error(db, SQLITE_MISUSE, 0);
+ sqlite3_mutex_leave(db->mutex);
return SQLITE_MISUSE;
}
- assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0);
+ assert( (pTab->tabFlags & TF_Virtual)!=0 );
- memset(&sParse, 0, sizeof(Parse));
- sParse.declareVtab = 1;
- sParse.db = db;
+ pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
+ if( pParse==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pParse->declareVtab = 1;
+ pParse->db = db;
+
+ if(
+ SQLITE_OK == sqlite3RunParser(pParse, zCreateTable, &zErr) &&
+ pParse->pNewTable &&
+ !pParse->pNewTable->pSelect &&
+ (pParse->pNewTable->tabFlags & TF_Virtual)==0
+ ){
+ if( !pTab->aCol ){
+ pTab->aCol = pParse->pNewTable->aCol;
+ pTab->nCol = pParse->pNewTable->nCol;
+ pParse->pNewTable->nCol = 0;
+ pParse->pNewTable->aCol = 0;
+ }
+ db->pVTab = 0;
+ } else {
+ sqlite3Error(db, SQLITE_ERROR, zErr);
+ sqlite3DbFree(db, zErr);
+ rc = SQLITE_ERROR;
+ }
+ pParse->declareVtab = 0;
- if(
- SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) &&
- sParse.pNewTable &&
- !sParse.pNewTable->pSelect &&
- !sParse.pNewTable->isVirtual
- ){
- pTab->aCol = sParse.pNewTable->aCol;
- pTab->nCol = sParse.pNewTable->nCol;
- sParse.pNewTable->nCol = 0;
- sParse.pNewTable->aCol = 0;
- db->pVTab = 0;
- } else {
- sqlite3Error(db, SQLITE_ERROR, zErr);
- sqliteFree(zErr);
- rc = SQLITE_ERROR;
+ if( pParse->pVdbe ){
+ sqlite3VdbeFinalize(pParse->pVdbe);
+ }
+ sqlite3DeleteTable(pParse->pNewTable);
+ sqlite3StackFree(db, pParse);
}
- sParse.declareVtab = 0;
-
- sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
- sqlite3DeleteTable(sParse.pNewTable);
- sParse.pNewTable = 0;
assert( (rc&0xff)==rc );
- return sqlite3ApiExit(db, rc);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
/*
@@ -56820,23 +83932,25 @@ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
**
** This call is a no-op if zTab is not a virtual table.
*/
-int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab)
-{
+SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
int rc = SQLITE_OK;
Table *pTab;
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
- assert(pTab);
- if( pTab->pVtab ){
- int (*xDestroy)(sqlite3_vtab *pVTab) = pTab->pMod->pModule->xDestroy;
+ if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
+ VTable *p = vtabDisconnectAll(db, pTab);
+
rc = sqlite3SafetyOff(db);
assert( rc==SQLITE_OK );
- if( xDestroy ){
- rc = xDestroy(pTab->pVtab);
- }
- sqlite3SafetyOn(db);
+ rc = p->pMod->pModule->xDestroy(p->pVtab);
+ (void)sqlite3SafetyOn(db);
+
+ /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
if( rc==SQLITE_OK ){
- pTab->pVtab = 0;
+ assert( pTab->pVTable==p && p->pNext==0 );
+ p->pVtab = 0;
+ pTab->pVTable = 0;
+ sqlite3VtabUnlock(p);
}
}
@@ -56853,39 +83967,47 @@ int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab)
*/
static void callFinaliser(sqlite3 *db, int offset){
int i;
- for(i=0; i<db->nVTrans && db->aVTrans[i]; i++){
- sqlite3_vtab *pVtab = db->aVTrans[i];
- int (*x)(sqlite3_vtab *);
- x = *(int (**)(sqlite3_vtab *))((char *)pVtab->pModule + offset);
- if( x ) x(pVtab);
- sqlite3VtabUnlock(db, pVtab);
+ if( db->aVTrans ){
+ for(i=0; i<db->nVTrans; i++){
+ VTable *pVTab = db->aVTrans[i];
+ sqlite3_vtab *p = pVTab->pVtab;
+ if( p ){
+ int (*x)(sqlite3_vtab *);
+ x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
+ if( x ) x(p);
+ }
+ sqlite3VtabUnlock(pVTab);
+ }
+ sqlite3DbFree(db, db->aVTrans);
+ db->nVTrans = 0;
+ db->aVTrans = 0;
}
- sqliteFree(db->aVTrans);
- db->nVTrans = 0;
- db->aVTrans = 0;
}
/*
-** If argument rc2 is not SQLITE_OK, then return it and do nothing.
-** Otherwise, invoke the xSync method of all virtual tables in the
-** sqlite3.aVTrans array. Return the error code for the first error
-** that occurs, or SQLITE_OK if all xSync operations are successful.
+** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
+** array. Return the error code for the first error that occurs, or
+** SQLITE_OK if all xSync operations are successful.
+**
+** Set *pzErrmsg to point to a buffer that should be released using
+** sqlite3DbFree() containing an error message, if one is available.
*/
-int sqlite3VtabSync(sqlite3 *db, int rc2){
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
int i;
int rc = SQLITE_OK;
int rcsafety;
- sqlite3_vtab **aVTrans = db->aVTrans;
- if( rc2!=SQLITE_OK ) return rc2;
+ VTable **aVTrans = db->aVTrans;
rc = sqlite3SafetyOff(db);
db->aVTrans = 0;
- for(i=0; rc==SQLITE_OK && i<db->nVTrans && aVTrans[i]; i++){
- sqlite3_vtab *pVtab = aVTrans[i];
+ for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
int (*x)(sqlite3_vtab *);
- x = pVtab->pModule->xSync;
- if( x ){
+ sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
+ if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
rc = x(pVtab);
+ sqlite3DbFree(db, *pzErrmsg);
+ *pzErrmsg = pVtab->zErrMsg;
+ pVtab->zErrMsg = 0;
}
}
db->aVTrans = aVTrans;
@@ -56901,8 +84023,8 @@ int sqlite3VtabSync(sqlite3 *db, int rc2){
** Invoke the xRollback method of all virtual tables in the
** sqlite3.aVTrans array. Then clear the array itself.
*/
-int sqlite3VtabRollback(sqlite3 *db){
- callFinaliser(db, (int)(&((sqlite3_module *)0)->xRollback));
+SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
+ callFinaliser(db, offsetof(sqlite3_module,xRollback));
return SQLITE_OK;
}
@@ -56910,8 +84032,8 @@ int sqlite3VtabRollback(sqlite3 *db){
** Invoke the xCommit method of all virtual tables in the
** sqlite3.aVTrans array. Then clear the array itself.
*/
-int sqlite3VtabCommit(sqlite3 *db){
- callFinaliser(db, (int)(&((sqlite3_module *)0)->xCommit));
+SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
+ callFinaliser(db, offsetof(sqlite3_module,xCommit));
return SQLITE_OK;
}
@@ -56923,7 +84045,7 @@ int sqlite3VtabCommit(sqlite3 *db){
** If the xBegin call is successful, place the sqlite3_vtab pointer
** in the sqlite3.aVTrans array.
*/
-int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
+SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
int rc = SQLITE_OK;
const sqlite3_module *pModule;
@@ -56932,32 +84054,30 @@ int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
** virtual module xSync() callback. It is illegal to write to
** virtual module tables in this case, so return SQLITE_LOCKED.
*/
- if( 0==db->aVTrans && db->nVTrans>0 ){
+ if( sqlite3VtabInSync(db) ){
return SQLITE_LOCKED;
}
- if( !pVtab ){
+ if( !pVTab ){
return SQLITE_OK;
}
- pModule = pVtab->pModule;
+ pModule = pVTab->pVtab->pModule;
if( pModule->xBegin ){
int i;
/* If pVtab is already in the aVTrans array, return early */
- for(i=0; (i<db->nVTrans) && 0!=db->aVTrans[i]; i++){
- if( db->aVTrans[i]==pVtab ){
+ for(i=0; i<db->nVTrans; i++){
+ if( db->aVTrans[i]==pVTab ){
return SQLITE_OK;
}
}
/* Invoke the xBegin method */
- rc = pModule->xBegin(pVtab);
- if( rc!=SQLITE_OK ){
- return rc;
+ rc = pModule->xBegin(pVTab->pVtab);
+ if( rc==SQLITE_OK ){
+ rc = addToVTrans(db, pVTab);
}
-
- rc = addToVTrans(db, pVtab);
}
return rc;
}
@@ -56975,7 +84095,8 @@ int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
** new FuncDef structure that is marked as ephemeral using the
** SQLITE_FUNC_EPHEM flag.
*/
-FuncDef *sqlite3VtabOverloadFunction(
+SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
+ sqlite3 *db, /* Database connection for reporting malloc problems */
FuncDef *pDef, /* Function to possibly overload */
int nArg, /* Number of arguments to the function */
Expr *pExpr /* First argument to the function */
@@ -56983,53 +84104,82 @@ FuncDef *sqlite3VtabOverloadFunction(
Table *pTab;
sqlite3_vtab *pVtab;
sqlite3_module *pMod;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
- void *pArg;
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
+ void *pArg = 0;
FuncDef *pNew;
- int rc;
+ int rc = 0;
char *zLowerName;
unsigned char *z;
/* Check to see the left operand is a column in a virtual table */
- if( pExpr==0 ) return pDef;
+ if( NEVER(pExpr==0) ) return pDef;
if( pExpr->op!=TK_COLUMN ) return pDef;
pTab = pExpr->pTab;
- if( pTab==0 ) return pDef;
- if( !pTab->isVirtual ) return pDef;
- pVtab = pTab->pVtab;
+ if( NEVER(pTab==0) ) return pDef;
+ if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
+ pVtab = sqlite3GetVTable(db, pTab)->pVtab;
assert( pVtab!=0 );
assert( pVtab->pModule!=0 );
pMod = (sqlite3_module *)pVtab->pModule;
if( pMod->xFindFunction==0 ) return pDef;
- /* Call the xFuncFunction method on the virtual table implementation
+ /* Call the xFindFunction method on the virtual table implementation
** to see if the implementation wants to overload this function
*/
- zLowerName = sqlite3StrDup(pDef->zName);
- for(z=(unsigned char*)zLowerName; *z; z++){
- *z = sqlite3UpperToLower[*z];
+ zLowerName = sqlite3DbStrDup(db, pDef->zName);
+ if( zLowerName ){
+ for(z=(unsigned char*)zLowerName; *z; z++){
+ *z = sqlite3UpperToLower[*z];
+ }
+ rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
+ sqlite3DbFree(db, zLowerName);
}
- rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
- sqliteFree(zLowerName);
if( rc==0 ){
return pDef;
}
/* Create a new ephemeral function definition for the overloaded
** function */
- pNew = sqliteMalloc( sizeof(*pNew) + strlen(pDef->zName) );
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
+ + sqlite3Strlen30(pDef->zName) + 1);
if( pNew==0 ){
return pDef;
}
*pNew = *pDef;
- strcpy(pNew->zName, pDef->zName);
+ pNew->zName = (char *)&pNew[1];
+ memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
pNew->xFunc = xFunc;
pNew->pUserData = pArg;
pNew->flags |= SQLITE_FUNC_EPHEM;
return pNew;
}
+/*
+** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
+** array so that an OP_VBegin will get generated for it. Add pTab to the
+** array if it is missing. If pTab is already in the array, this routine
+** is a no-op.
+*/
+SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ int i, n;
+ Table **apVtabLock;
+
+ assert( IsVirtual(pTab) );
+ for(i=0; i<pToplevel->nVtabLock; i++){
+ if( pTab==pToplevel->apVtabLock[i] ) return;
+ }
+ n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
+ apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
+ if( apVtabLock ){
+ pToplevel->apVtabLock = apVtabLock;
+ pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
+ }else{
+ pToplevel->db->mallocFailed = 1;
+ }
+}
+
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/************** End of vtab.c ************************************************/
@@ -57046,31 +84196,23 @@ FuncDef *sqlite3VtabOverloadFunction(
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
-** the WHERE clause of SQL statements. This module is reponsible for
+** the WHERE clause of SQL statements. This module is responsible for
** generating the code that loops through a table looking for applicable
** rows. Indices are selected and used to speed the search when doing
** so is applicable. Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
-** $Id: where.c,v 1.246 2007/04/06 01:04:40 drh Exp $
-*/
-
-/*
-** The number of bits in a Bitmask. "BMS" means "BitMask Size".
-*/
-#define BMS (sizeof(Bitmask)*8)
-
-/*
-** Determine the number of elements in an array.
+** $Id: where.c,v 1.411 2009/07/31 06:14:52 danielk1977 Exp $
*/
-#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
/*
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
-int sqlite3_where_trace = 0;
-# define WHERETRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X
+SQLITE_PRIVATE int sqlite3WhereTrace = 0;
+#endif
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
#else
# define WHERETRACE(X)
#endif
@@ -57078,12 +84220,16 @@ int sqlite3_where_trace = 0;
/* Forward reference
*/
typedef struct WhereClause WhereClause;
-typedef struct ExprMaskSet ExprMaskSet;
+typedef struct WhereMaskSet WhereMaskSet;
+typedef struct WhereOrInfo WhereOrInfo;
+typedef struct WhereAndInfo WhereAndInfo;
+typedef struct WhereCost WhereCost;
/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause. Each WHERE
-** clause subexpression is separated from the others by an AND operator.
+** clause subexpression is separated from the others by AND operators,
+** usually, or sometimes subexpressions separated by OR.
**
** All WhereTerms are collected into a single WhereClause structure.
** The following identity holds:
@@ -57095,46 +84241,69 @@ typedef struct ExprMaskSet ExprMaskSet;
** X <op> <expr>
**
** where X is a column name and <op> is one of certain operators,
-** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
-** cursor number and column number for X. WhereTerm.operator records
+** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
+** cursor number and column number for X. WhereTerm.eOperator records
** the <op> using a bitmask encoding defined by WO_xxx below. The
** use of a bitmask encoding for the operator allows us to search
** quickly for terms that match any of several different operators.
**
-** prereqRight and prereqAll record sets of cursor numbers,
-** but they do so indirectly. A single ExprMaskSet structure translates
+** A WhereTerm might also be two or more subterms connected by OR:
+**
+** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
+**
+** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
+** and the WhereTerm.u.pOrInfo field points to auxiliary information that
+** is collected about the
+**
+** If a term in the WHERE clause does not match either of the two previous
+** categories, then eOperator==0. The WhereTerm.pExpr field is still set
+** to the original subexpression content and wtFlags is set up appropriately
+** but no other fields in the WhereTerm object are meaningful.
+**
+** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
+** but they do so indirectly. A single WhereMaskSet structure translates
** cursor number into bits and the translated bit is stored in the prereq
** fields. The translation is used in order to maximize the number of
** bits that will fit in a Bitmask. The VDBE cursor numbers might be
** spread out over the non-negative integers. For example, the cursor
-** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
+** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
** translates these sparse cursor numbers into consecutive integers
** beginning with 0 in order to make the best possible use of the available
** bits in the Bitmask. So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
+**
+** The number of terms in a join is limited by the number of bits
+** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
+** is only able to process joins with 64 or fewer tables.
*/
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
- Expr *pExpr; /* Pointer to the subexpression */
- i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
- i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
- i16 leftColumn; /* Column number of X in "X <op> <expr>" */
+ Expr *pExpr; /* Pointer to the subexpression that is this term */
+ int iParent; /* Disable pWC->a[iParent] when this term disabled */
+ int leftCursor; /* Cursor number of X in "X <op> <expr>" */
+ union {
+ int leftColumn; /* Column number of X in "X <op> <expr>" */
+ WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
+ WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
+ } u;
u16 eOperator; /* A WO_xx value describing <op> */
- u8 flags; /* Bit flags. See below */
+ u8 wtFlags; /* TERM_xxx bit flags. See below */
u8 nChild; /* Number of children that must disable us */
WhereClause *pWC; /* The clause this term is part of */
- Bitmask prereqRight; /* Bitmask of tables used by pRight */
- Bitmask prereqAll; /* Bitmask of tables referenced by p */
+ Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
+ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
};
/*
-** Allowed values of WhereTerm.flags
+** Allowed values of WhereTerm.wtFlags
*/
-#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */
+#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
#define TERM_CODED 0x04 /* This term is already coded */
#define TERM_COPIED 0x08 /* Has a child */
-#define TERM_OR_OK 0x10 /* Used during OR-clause processing */
+#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
+#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
+#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
/*
** An instance of the following structure holds all information about a
@@ -57142,11 +84311,34 @@ struct WhereTerm {
*/
struct WhereClause {
Parse *pParse; /* The parser context */
- ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */
+ WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
+ Bitmask vmask; /* Bitmask identifying virtual table cursors */
+ u8 op; /* Split operator. TK_AND or TK_OR */
int nTerm; /* Number of terms */
int nSlot; /* Number of entries in a[] */
WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
- WhereTerm aStatic[10]; /* Initial static space for a[] */
+#if defined(SQLITE_SMALL_STACK)
+ WhereTerm aStatic[1]; /* Initial static space for a[] */
+#else
+ WhereTerm aStatic[8]; /* Initial static space for a[] */
+#endif
+};
+
+/*
+** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
+** a dynamically allocated instance of the following structure.
+*/
+struct WhereOrInfo {
+ WhereClause wc; /* Decomposition into subterms */
+ Bitmask indexable; /* Bitmask of all indexable tables in the clause */
+};
+
+/*
+** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
+** a dynamically allocated instance of the following structure.
+*/
+struct WhereAndInfo {
+ WhereClause wc; /* The subexpression broken out */
};
/*
@@ -57161,11 +84353,11 @@ struct WhereClause {
** from the sparse cursor numbers into consecutive integers beginning
** with 0.
**
-** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
+** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
**
** For example, if the WHERE clause expression used these VDBE
-** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
+** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
** would map those cursor numbers into bits 0 through 5.
**
** Note that the mapping is not necessarily ordered. In the example
@@ -57175,49 +84367,70 @@ struct WhereClause {
** numbers all get mapped into bit numbers that begin with 0 and contain
** no gaps.
*/
-struct ExprMaskSet {
+struct WhereMaskSet {
int n; /* Number of assigned cursor values */
- int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
+ int ix[BMS]; /* Cursor assigned to each bit */
};
+/*
+** A WhereCost object records a lookup strategy and the estimated
+** cost of pursuing that strategy.
+*/
+struct WhereCost {
+ WherePlan plan; /* The lookup strategy */
+ double rCost; /* Overall cost of pursuing this search strategy */
+ double nRow; /* Estimated number of output rows */
+ Bitmask used; /* Bitmask of cursors used by this plan */
+};
/*
** Bitmasks for the operators that indices are able to exploit. An
** OR-ed combination of these values can be used when searching for
** terms in the where clause.
*/
-#define WO_IN 1
-#define WO_EQ 2
+#define WO_IN 0x001
+#define WO_EQ 0x002
#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
-#define WO_MATCH 64
-#define WO_ISNULL 128
+#define WO_MATCH 0x040
+#define WO_ISNULL 0x080
+#define WO_OR 0x100 /* Two or more OR-connected terms */
+#define WO_AND 0x200 /* Two or more AND-connected terms */
+
+#define WO_ALL 0xfff /* Mask of all possible WO_* values */
+#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
/*
-** Value for flags returned by bestIndex().
+** Value for wsFlags returned by bestIndex() and stored in
+** WhereLevel.wsFlags. These flags determine which search
+** strategies are appropriate.
**
-** The least significant byte is reserved as a mask for WO_ values above.
-** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
-** But if the table is the right table of a left join, WhereLevel.flags
-** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as
+** The least significant 12 bits is reserved as a mask for WO_ values above.
+** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
+** But if the table is the right table of a left join, WhereLevel.wsFlags
+** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
** the "op" parameter to findTerm when we are resolving equality constraints.
** ISNULL constraints will then not be used on the right table of a left
** join. Tickets #2177 and #2189.
*/
-#define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */
-#define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */
-#define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */
-#define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */
-#define WHERE_COLUMN_IN 0x004000 /* x IN (...) */
-#define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */
-#define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */
-#define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */
-#define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */
-#define WHERE_REVERSE 0x200000 /* Scan in reverse order */
-#define WHERE_UNIQUE 0x400000 /* Selects no more than one row */
-#define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */
+#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
+#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
+#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
+#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
+#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
+#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
+#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
+#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
+#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
+#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
+#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
+#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
+#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
+#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
+#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
+#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
/*
** Initialize a preallocated WhereClause structure.
@@ -57225,13 +84438,33 @@ struct ExprMaskSet {
static void whereClauseInit(
WhereClause *pWC, /* The WhereClause to be initialized */
Parse *pParse, /* The parsing context */
- ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */
+ WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
){
pWC->pParse = pParse;
pWC->pMaskSet = pMaskSet;
pWC->nTerm = 0;
- pWC->nSlot = ARRAYSIZE(pWC->aStatic);
+ pWC->nSlot = ArraySize(pWC->aStatic);
pWC->a = pWC->aStatic;
+ pWC->vmask = 0;
+}
+
+/* Forward reference */
+static void whereClauseClear(WhereClause*);
+
+/*
+** Deallocate all memory associated with a WhereOrInfo object.
+*/
+static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
+ whereClauseClear(&p->wc);
+ sqlite3DbFree(db, p);
+}
+
+/*
+** Deallocate all memory associated with a WhereAndInfo object.
+*/
+static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
+ whereClauseClear(&p->wc);
+ sqlite3DbFree(db, p);
}
/*
@@ -57241,50 +84474,64 @@ static void whereClauseInit(
static void whereClauseClear(WhereClause *pWC){
int i;
WhereTerm *a;
+ sqlite3 *db = pWC->pParse->db;
for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
- if( a->flags & TERM_DYNAMIC ){
- sqlite3ExprDelete(a->pExpr);
+ if( a->wtFlags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(db, a->pExpr);
+ }
+ if( a->wtFlags & TERM_ORINFO ){
+ whereOrInfoDelete(db, a->u.pOrInfo);
+ }else if( a->wtFlags & TERM_ANDINFO ){
+ whereAndInfoDelete(db, a->u.pAndInfo);
}
}
if( pWC->a!=pWC->aStatic ){
- sqliteFree(pWC->a);
+ sqlite3DbFree(db, pWC->a);
}
}
/*
-** Add a new entries to the WhereClause structure. Increase the allocated
-** space as necessary.
+** Add a single new WhereTerm entry to the WhereClause object pWC.
+** The new WhereTerm object is constructed from Expr p and with wtFlags.
+** The index in pWC->a[] of the new WhereTerm is returned on success.
+** 0 is returned if the new WhereTerm could not be added due to a memory
+** allocation error. The memory allocation failure will be recorded in
+** the db->mallocFailed flag so that higher-level functions can detect it.
+**
+** This routine will increase the size of the pWC->a[] array as necessary.
**
-** If the flags argument includes TERM_DYNAMIC, then responsibility
-** for freeing the expression p is assumed by the WhereClause object.
+** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
+** for freeing the expression p is assumed by the WhereClause object pWC.
+** This is true even if this routine fails to allocate a new WhereTerm.
**
** WARNING: This routine might reallocate the space used to store
-** WhereTerms. All pointers to WhereTerms should be invalided after
+** WhereTerms. All pointers to WhereTerms should be invalidated after
** calling this routine. Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
-static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
+static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
WhereTerm *pTerm;
int idx;
if( pWC->nTerm>=pWC->nSlot ){
WhereTerm *pOld = pWC->a;
- pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
+ sqlite3 *db = pWC->pParse->db;
+ pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
if( pWC->a==0 ){
- if( flags & TERM_DYNAMIC ){
- sqlite3ExprDelete(p);
+ if( wtFlags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(db, p);
}
+ pWC->a = pOld;
return 0;
}
memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
if( pOld!=pWC->aStatic ){
- sqliteFree(pOld);
+ sqlite3DbFree(db, pOld);
}
- pWC->nSlot *= 2;
+ pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
}
- pTerm = &pWC->a[idx = pWC->nTerm];
- pWC->nTerm++;
+ pTerm = &pWC->a[idx = pWC->nTerm++];
pTerm->pExpr = p;
- pTerm->flags = flags;
+ pTerm->wtFlags = wtFlags;
pTerm->pWC = pWC;
pTerm->iParent = -1;
return idx;
@@ -57304,10 +84551,11 @@ static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
** does is make slot[] entries point to substructure within pExpr.
**
** In the previous sentence and in the diagram, "slot[]" refers to
-** the WhereClause.a[] array. This array grows as needed to contain
+** the WhereClause.a[] array. The slot[] array grows as needed to contain
** all terms of the WHERE clause.
*/
static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
+ pWC->op = (u8)op;
if( pExpr==0 ) return;
if( pExpr->op!=op ){
whereClauseInsert(pWC, pExpr, 0);
@@ -57318,7 +84566,7 @@ static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
}
/*
-** Initialize an expression mask set
+** Initialize an expression mask set (a WhereMaskSet object)
*/
#define initMaskSet(P) memset(P, 0, sizeof(*P))
@@ -57326,8 +84574,9 @@ static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
** Return the bitmask for the given cursor number. Return 0 if
** iCursor is not in the set.
*/
-static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
+static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
int i;
+ assert( pMaskSet->n<=sizeof(Bitmask)*8 );
for(i=0; i<pMaskSet->n; i++){
if( pMaskSet->ix[i]==iCursor ){
return ((Bitmask)1)<<i;
@@ -57344,8 +84593,8 @@ static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
** array will never overflow.
*/
-static void createMask(ExprMaskSet *pMaskSet, int iCursor){
- assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) );
+static void createMask(WhereMaskSet *pMaskSet, int iCursor){
+ assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
pMaskSet->ix[pMaskSet->n++] = iCursor;
}
@@ -57355,17 +84604,17 @@ static void createMask(ExprMaskSet *pMaskSet, int iCursor){
** tree.
**
** In order for this routine to work, the calling function must have
-** previously invoked sqlite3ExprResolveNames() on the expression. See
+** previously invoked sqlite3ResolveExprNames() on the expression. See
** the header comment on that routine for additional information.
-** The sqlite3ExprResolveNames() routines looks for column names and
+** The sqlite3ResolveExprNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table. This routine just has to
** translate the cursor numbers into bitmask values and OR all
** the bitmasks together.
*/
-static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
-static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
-static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
+static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
+static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
+static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
Bitmask mask = 0;
if( p==0 ) return 0;
if( p->op==TK_COLUMN ){
@@ -57374,11 +84623,14 @@ static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
}
mask = exprTableUsage(pMaskSet, p->pRight);
mask |= exprTableUsage(pMaskSet, p->pLeft);
- mask |= exprListTableUsage(pMaskSet, p->pList);
- mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
+ if( ExprHasProperty(p, EP_xIsSelect) ){
+ mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
+ }else{
+ mask |= exprListTableUsage(pMaskSet, p->x.pList);
+ }
return mask;
}
-static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
+static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
int i;
Bitmask mask = 0;
if( pList ){
@@ -57388,16 +84640,15 @@ static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
}
return mask;
}
-static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
- Bitmask mask;
- if( pS==0 ){
- mask = 0;
- }else{
- mask = exprListTableUsage(pMaskSet, pS->pEList);
+static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
+ Bitmask mask = 0;
+ while( pS ){
+ mask |= exprListTableUsage(pMaskSet, pS->pEList);
mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
mask |= exprTableUsage(pMaskSet, pS->pWhere);
mask |= exprTableUsage(pMaskSet, pS->pHaving);
+ pS = pS->pPrior;
}
return mask;
}
@@ -57416,17 +84667,31 @@ static int allowedOp(int op){
}
/*
-** Swap two objects of type T.
+** Swap two objects of type TYPE.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
/*
-** Commute a comparision operator. Expressions of the form "X op Y"
+** Commute a comparison operator. Expressions of the form "X op Y"
** are converted into "Y op X".
-*/
-static void exprCommute(Expr *pExpr){
+**
+** If a collation sequence is associated with either the left or right
+** side of the comparison, it remains associated with the same side after
+** the commutation. So "Y collate NOCASE op X" becomes
+** "X collate NOCASE op Y". This is because any collation sequence on
+** the left hand side of a comparison overrides any collation sequence
+** attached to the right. For the same reason the EP_ExpCollate flag
+** is not commuted.
+*/
+static void exprCommute(Parse *pParse, Expr *pExpr){
+ u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
+ u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
+ pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
+ pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
+ pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
+ pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
if( pExpr->op>=TK_GT ){
assert( TK_LT==TK_GT+2 );
@@ -57441,15 +84706,16 @@ static void exprCommute(Expr *pExpr){
/*
** Translate from TK_xx operator to WO_xx bitmask.
*/
-static int operatorMask(int op){
- int c;
+static u16 operatorMask(int op){
+ u16 c;
assert( allowedOp(op) );
if( op==TK_IN ){
c = WO_IN;
}else if( op==TK_ISNULL ){
c = WO_ISNULL;
}else{
- c = WO_EQ<<(op-TK_EQ);
+ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
+ c = (u16)(WO_EQ<<(op-TK_EQ));
}
assert( op!=TK_ISNULL || c==WO_ISNULL );
assert( op!=TK_IN || c==WO_IN );
@@ -57472,18 +84738,20 @@ static WhereTerm *findTerm(
int iCur, /* Cursor number of LHS */
int iColumn, /* Column number of LHS */
Bitmask notReady, /* RHS must not overlap with this mask */
- u16 op, /* Mask of WO_xx values describing operator */
+ u32 op, /* Mask of WO_xx values describing operator */
Index *pIdx /* Must be compatible with this index, if not NULL */
){
WhereTerm *pTerm;
int k;
+ assert( iCur>=0 );
+ op &= WO_ALL;
for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
if( pTerm->leftCursor==iCur
&& (pTerm->prereqRight & notReady)==0
- && pTerm->leftColumn==iColumn
+ && pTerm->u.leftColumn==iColumn
&& (pTerm->eOperator & op)!=0
){
- if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
+ if( pIdx && pTerm->eOperator!=WO_ISNULL ){
Expr *pX = pTerm->pExpr;
CollSeq *pColl;
char idxaff;
@@ -57492,18 +84760,19 @@ static WhereTerm *findTerm(
idxaff = pIdx->pTable->aCol[iColumn].affinity;
if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
- pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
- if( !pColl ){
- if( pX->pRight ){
- pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
- }
- if( !pColl ){
- pColl = pParse->db->pDfltColl;
- }
+
+ /* Figure out the collation sequence required from an index for
+ ** it to be useful for optimising expression pX. Store this
+ ** value in variable pColl.
+ */
+ assert(pX->pLeft);
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
+ assert(pColl || pParse->nErr);
+
+ for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
+ if( NEVER(j>=pIdx->nColumn) ) return 0;
}
- for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
- assert( j<pIdx->nColumn );
- if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
+ if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
}
return pTerm;
}
@@ -57539,23 +84808,28 @@ static void exprAnalyzeAll(
** literal that does not begin with a wildcard.
*/
static int isLikeOrGlob(
- sqlite3 *db, /* The database */
+ Parse *pParse, /* Parsing and code generating context */
Expr *pExpr, /* Test this expression */
int *pnPattern, /* Number of non-wildcard prefix characters */
- int *pisComplete /* True if the only wildcard is % in the last character */
+ int *pisComplete, /* True if the only wildcard is % in the last character */
+ int *pnoCase /* True if uppercase is equivalent to lowercase */
){
- const char *z;
- Expr *pRight, *pLeft;
- ExprList *pList;
- int c, cnt;
- int noCase;
- char wc[3];
- CollSeq *pColl;
-
- if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
+ const char *z; /* String on RHS of LIKE operator */
+ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
+ ExprList *pList; /* List of operands to the LIKE operator */
+ int c; /* One character in z[] */
+ int cnt; /* Number of non-wildcard prefix characters */
+ char wc[3]; /* Wildcard characters */
+ CollSeq *pColl; /* Collating sequence for LHS */
+ sqlite3 *db = pParse->db; /* Database connection */
+
+ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
return 0;
}
- pList = pExpr->pList;
+#ifdef SQLITE_EBCDIC
+ if( *pnoCase ) return 0;
+#endif
+ pList = pExpr->x.pList;
pRight = pList->a[0].pExpr;
if( pRight->op!=TK_STRING ){
return 0;
@@ -57564,27 +84838,27 @@ static int isLikeOrGlob(
if( pLeft->op!=TK_COLUMN ){
return 0;
}
- pColl = pLeft->pColl;
- if( pColl==0 ){
- /* TODO: Coverage testing doesn't get this case. Is it actually possible
- ** for an expression of type TK_COLUMN to not have an assigned collation
- ** sequence at this point?
- */
- pColl = db->pDfltColl;
- }
- if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
- (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
+ pColl = sqlite3ExprCollSeq(pParse, pLeft);
+ assert( pColl!=0 || pLeft->iColumn==-1 );
+ if( pColl==0 ) return 0;
+ if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
+ (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
return 0;
}
- sqlite3DequoteExpr(pRight);
- z = (char *)pRight->token.z;
- for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
- if( cnt==0 || 255==(u8)z[cnt] ){
- return 0;
+ if( sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ) return 0;
+ z = pRight->u.zToken;
+ if( ALWAYS(z) ){
+ cnt = 0;
+ while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
+ cnt++;
+ }
+ if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){
+ *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
+ *pnPattern = cnt;
+ return 1;
+ }
}
- *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
- *pnPattern = cnt;
- return 1;
+ return 0;
}
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
@@ -57605,11 +84879,10 @@ static int isMatchOfColumn(
if( pExpr->op!=TK_FUNCTION ){
return 0;
}
- if( pExpr->token.n!=5 ||
- sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
+ if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
return 0;
}
- pList = pExpr->pList;
+ pList = pExpr->x.pList;
if( pList->nExpr!=2 ){
return 0;
}
@@ -57631,91 +84904,313 @@ static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/*
-** Return TRUE if the given term of an OR clause can be converted
-** into an IN clause. The iCursor and iColumn define the left-hand
-** side of the IN clause.
+** Analyze a term that consists of two or more OR-connected
+** subterms. So in:
**
-** The context is that we have multiple OR-connected equality terms
-** like this:
+** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
+** ^^^^^^^^^^^^^^^^^^^^
**
-** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
+** This routine analyzes terms such as the middle term in the above example.
+** A WhereOrTerm object is computed and attached to the term under
+** analysis, regardless of the outcome of the analysis. Hence:
**
-** The pOrTerm input to this routine corresponds to a single term of
-** this OR clause. In order for the term to be a condidate for
-** conversion to an IN operator, the following must be true:
+** WhereTerm.wtFlags |= TERM_ORINFO
+** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
**
-** * The left-hand side of the term must be the column which
-** is identified by iCursor and iColumn.
+** The term being analyzed must have two or more of OR-connected subterms.
+** A single subterm might be a set of AND-connected sub-subterms.
+** Examples of terms under analysis:
**
-** * If the right-hand side is also a column, then the affinities
-** of both right and left sides must be such that no type
-** conversions are required on the right. (Ticket #2249)
+** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
+** (B) x=expr1 OR expr2=x OR x=expr3
+** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
+** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
+** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
**
-** If both of these conditions are true, then return true. Otherwise
-** return false.
-*/
-static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
- int affLeft, affRight;
- assert( pOrTerm->eOperator==WO_EQ );
- if( pOrTerm->leftCursor!=iCursor ){
- return 0;
- }
- if( pOrTerm->leftColumn!=iColumn ){
- return 0;
- }
- affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
- if( affRight==0 ){
- return 1;
- }
- affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
- if( affRight!=affLeft ){
- return 0;
- }
- return 1;
-}
-
-/*
-** Return true if the given term of an OR clause can be ignored during
-** a check to make sure all OR terms are candidates for optimization.
-** In other words, return true if a call to the orTermIsOptCandidate()
-** above returned false but it is not necessary to disqualify the
-** optimization.
+** CASE 1:
+**
+** If all subterms are of the form T.C=expr for some single column of C
+** a single table T (as shown in example B above) then create a new virtual
+** term that is an equivalent IN expression. In other words, if the term
+** being analyzed is:
+**
+** x = expr1 OR expr2 = x OR x = expr3
+**
+** then create a new virtual term like this:
+**
+** x IN (expr1,expr2,expr3)
+**
+** CASE 2:
+**
+** If all subterms are indexable by a single table T, then set
+**
+** WhereTerm.eOperator = WO_OR
+** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
**
-** Suppose the original OR phrase was this:
+** A subterm is "indexable" if it is of the form
+** "T.C <op> <expr>" where C is any column of table T and
+** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
+** A subterm is also indexable if it is an AND of two or more
+** subsubterms at least one of which is indexable. Indexable AND
+** subterms have their eOperator set to WO_AND and they have
+** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
**
-** a=4 OR a=11 OR a=b
+** From another point of view, "indexable" means that the subterm could
+** potentially be used with an index if an appropriate index exists.
+** This analysis does not consider whether or not the index exists; that
+** is something the bestIndex() routine will determine. This analysis
+** only looks at whether subterms appropriate for indexing exist.
**
-** During analysis, the third term gets flipped around and duplicate
-** so that we are left with this:
+** All examples A through E above all satisfy case 2. But if a term
+** also statisfies case 1 (such as B) we know that the optimizer will
+** always prefer case 1, so in that case we pretend that case 2 is not
+** satisfied.
**
-** a=4 OR a=11 OR a=b OR b=a
+** It might be the case that multiple tables are indexable. For example,
+** (E) above is indexable on tables P, Q, and R.
**
-** Since the last two terms are duplicates, only one of them
-** has to qualify in order for the whole phrase to qualify. When
-** this routine is called, we know that pOrTerm did not qualify.
-** This routine merely checks to see if pOrTerm has a duplicate that
-** might qualify. If there is a duplicate that has not yet been
-** disqualified, then return true. If there are no duplicates, or
-** the duplicate has also been disqualifed, return false.
+** Terms that satisfy case 2 are candidates for lookup by using
+** separate indices to find rowids for each subterm and composing
+** the union of all rowids using a RowSet object. This is similar
+** to "bitmap indices" in other database engines.
+**
+** OTHERWISE:
+**
+** If neither case 1 nor case 2 apply, then leave the eOperator set to
+** zero. This term is not useful for search.
*/
-static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
- if( pOrTerm->flags & TERM_COPIED ){
- /* This is the original term. The duplicate is to the left had
- ** has not yet been analyzed and thus has not yet been disqualified. */
- return 1;
+static void exprAnalyzeOrTerm(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* the complete WHERE clause */
+ int idxTerm /* Index of the OR-term to be analyzed */
+){
+ Parse *pParse = pWC->pParse; /* Parser context */
+ sqlite3 *db = pParse->db; /* Database connection */
+ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
+ Expr *pExpr = pTerm->pExpr; /* The expression of the term */
+ WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
+ int i; /* Loop counters */
+ WhereClause *pOrWc; /* Breakup of pTerm into subterms */
+ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
+ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
+ Bitmask chngToIN; /* Tables that might satisfy case 1 */
+ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
+
+ /*
+ ** Break the OR clause into its separate subterms. The subterms are
+ ** stored in a WhereClause structure containing within the WhereOrInfo
+ ** object that is attached to the original OR clause term.
+ */
+ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
+ assert( pExpr->op==TK_OR );
+ pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
+ if( pOrInfo==0 ) return;
+ pTerm->wtFlags |= TERM_ORINFO;
+ pOrWc = &pOrInfo->wc;
+ whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
+ whereSplit(pOrWc, pExpr, TK_OR);
+ exprAnalyzeAll(pSrc, pOrWc);
+ if( db->mallocFailed ) return;
+ assert( pOrWc->nTerm>=2 );
+
+ /*
+ ** Compute the set of tables that might satisfy cases 1 or 2.
+ */
+ indexable = ~(Bitmask)0;
+ chngToIN = ~(pWC->vmask);
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
+ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
+ WhereAndInfo *pAndInfo;
+ assert( pOrTerm->eOperator==0 );
+ assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
+ chngToIN = 0;
+ pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
+ if( pAndInfo ){
+ WhereClause *pAndWC;
+ WhereTerm *pAndTerm;
+ int j;
+ Bitmask b = 0;
+ pOrTerm->u.pAndInfo = pAndInfo;
+ pOrTerm->wtFlags |= TERM_ANDINFO;
+ pOrTerm->eOperator = WO_AND;
+ pAndWC = &pAndInfo->wc;
+ whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
+ whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
+ exprAnalyzeAll(pSrc, pAndWC);
+ testcase( db->mallocFailed );
+ if( !db->mallocFailed ){
+ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
+ assert( pAndTerm->pExpr );
+ if( allowedOp(pAndTerm->pExpr->op) ){
+ b |= getMask(pMaskSet, pAndTerm->leftCursor);
+ }
+ }
+ }
+ indexable &= b;
+ }
+ }else if( pOrTerm->wtFlags & TERM_COPIED ){
+ /* Skip this term for now. We revisit it when we process the
+ ** corresponding TERM_VIRTUAL term */
+ }else{
+ Bitmask b;
+ b = getMask(pMaskSet, pOrTerm->leftCursor);
+ if( pOrTerm->wtFlags & TERM_VIRTUAL ){
+ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
+ b |= getMask(pMaskSet, pOther->leftCursor);
+ }
+ indexable &= b;
+ if( pOrTerm->eOperator!=WO_EQ ){
+ chngToIN = 0;
+ }else{
+ chngToIN &= b;
+ }
+ }
}
- if( (pOrTerm->flags & TERM_VIRTUAL)!=0
- && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
- /* This is a duplicate term. The original qualified so this one
- ** does not have to. */
- return 1;
+
+ /*
+ ** Record the set of tables that satisfy case 2. The set might be
+ ** empty.
+ */
+ pOrInfo->indexable = indexable;
+ pTerm->eOperator = indexable==0 ? 0 : WO_OR;
+
+ /*
+ ** chngToIN holds a set of tables that *might* satisfy case 1. But
+ ** we have to do some additional checking to see if case 1 really
+ ** is satisfied.
+ **
+ ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
+ ** that there is no possibility of transforming the OR clause into an
+ ** IN operator because one or more terms in the OR clause contain
+ ** something other than == on a column in the single table. The 1-bit
+ ** case means that every term of the OR clause is of the form
+ ** "table.column=expr" for some single table. The one bit that is set
+ ** will correspond to the common table. We still need to check to make
+ ** sure the same column is used on all terms. The 2-bit case is when
+ ** the all terms are of the form "table1.column=table2.column". It
+ ** might be possible to form an IN operator with either table1.column
+ ** or table2.column as the LHS if either is common to every term of
+ ** the OR clause.
+ **
+ ** Note that terms of the form "table.column1=table.column2" (the
+ ** same table on both sizes of the ==) cannot be optimized.
+ */
+ if( chngToIN ){
+ int okToChngToIN = 0; /* True if the conversion to IN is valid */
+ int iColumn = -1; /* Column index on lhs of IN operator */
+ int iCursor = -1; /* Table cursor common to all terms */
+ int j = 0; /* Loop counter */
+
+ /* Search for a table and column that appears on one side or the
+ ** other of the == operator in every subterm. That table and column
+ ** will be recorded in iCursor and iColumn. There might not be any
+ ** such table and column. Set okToChngToIN if an appropriate table
+ ** and column is found but leave okToChngToIN false if not found.
+ */
+ for(j=0; j<2 && !okToChngToIN; j++){
+ pOrTerm = pOrWc->a;
+ for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
+ assert( pOrTerm->eOperator==WO_EQ );
+ pOrTerm->wtFlags &= ~TERM_OR_OK;
+ if( pOrTerm->leftCursor==iCursor ){
+ /* This is the 2-bit case and we are on the second iteration and
+ ** current term is from the first iteration. So skip this term. */
+ assert( j==1 );
+ continue;
+ }
+ if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
+ /* This term must be of the form t1.a==t2.b where t2 is in the
+ ** chngToIN set but t1 is not. This term will be either preceeded
+ ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
+ ** and use its inversion. */
+ testcase( pOrTerm->wtFlags & TERM_COPIED );
+ testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
+ assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
+ continue;
+ }
+ iColumn = pOrTerm->u.leftColumn;
+ iCursor = pOrTerm->leftCursor;
+ break;
+ }
+ if( i<0 ){
+ /* No candidate table+column was found. This can only occur
+ ** on the second iteration */
+ assert( j==1 );
+ assert( (chngToIN&(chngToIN-1))==0 );
+ assert( chngToIN==getMask(pMaskSet, iCursor) );
+ break;
+ }
+ testcase( j==1 );
+
+ /* We have found a candidate table and column. Check to see if that
+ ** table and column is common to every term in the OR clause */
+ okToChngToIN = 1;
+ for(; i>=0 && okToChngToIN; i--, pOrTerm++){
+ assert( pOrTerm->eOperator==WO_EQ );
+ if( pOrTerm->leftCursor!=iCursor ){
+ pOrTerm->wtFlags &= ~TERM_OR_OK;
+ }else if( pOrTerm->u.leftColumn!=iColumn ){
+ okToChngToIN = 0;
+ }else{
+ int affLeft, affRight;
+ /* If the right-hand side is also a column, then the affinities
+ ** of both right and left sides must be such that no type
+ ** conversions are required on the right. (Ticket #2249)
+ */
+ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
+ affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
+ if( affRight!=0 && affRight!=affLeft ){
+ okToChngToIN = 0;
+ }else{
+ pOrTerm->wtFlags |= TERM_OR_OK;
+ }
+ }
+ }
+ }
+
+ /* At this point, okToChngToIN is true if original pTerm satisfies
+ ** case 1. In that case, construct a new virtual term that is
+ ** pTerm converted into an IN operator.
+ */
+ if( okToChngToIN ){
+ Expr *pDup; /* A transient duplicate expression */
+ ExprList *pList = 0; /* The RHS of the IN operator */
+ Expr *pLeft = 0; /* The LHS of the IN operator */
+ Expr *pNew; /* The complete IN operator */
+
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
+ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
+ assert( pOrTerm->eOperator==WO_EQ );
+ assert( pOrTerm->leftCursor==iCursor );
+ assert( pOrTerm->u.leftColumn==iColumn );
+ pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
+ pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
+ pLeft = pOrTerm->pExpr->pLeft;
+ }
+ assert( pLeft!=0 );
+ pDup = sqlite3ExprDup(db, pLeft, 0);
+ pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
+ if( pNew ){
+ int idxNew;
+ transferJoinMarkings(pNew, pExpr);
+ assert( !ExprHasProperty(pNew, EP_xIsSelect) );
+ pNew->x.pList = pList;
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ exprAnalyze(pSrc, pWC, idxNew);
+ pTerm = &pWC->a[idxTerm];
+ pWC->a[idxNew].iParent = idxTerm;
+ pTerm->nChild = 1;
+ }else{
+ sqlite3ExprListDelete(db, pList);
+ }
+ pTerm->eOperator = 0; /* case 1 trumps case 2 */
+ }
}
- /* This is either a singleton term or else it is a duplicate for
- ** which the original did not qualify. Either way we are done for. */
- return 0;
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
+
/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in. The job of this routine is to analyze the
@@ -57723,32 +85218,50 @@ static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
** structure.
**
** If the expression is of the form "<expr> <op> X" it gets commuted
-** to the standard form of "X <op> <expr>". If the expression is of
-** the form "X <op> Y" where both X and Y are columns, then the original
-** expression is unchanged and a new virtual expression of the form
-** "Y <op> X" is added to the WHERE clause and analyzed separately.
+** to the standard form of "X <op> <expr>".
+**
+** If the expression is of the form "X <op> Y" where both X and Y are
+** columns, then the original expression is unchanged and a new virtual
+** term of the form "Y <op> X" is added to the WHERE clause and
+** analyzed separately. The original term is marked with TERM_COPIED
+** and the new term is marked with TERM_DYNAMIC (because it's pExpr
+** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
+** is a commuted copy of a prior term.) The original term has nChild=1
+** and the copy has idxParent set to the index of the original term.
*/
static void exprAnalyze(
SrcList *pSrc, /* the FROM clause */
WhereClause *pWC, /* the WHERE clause */
int idxTerm /* Index of the term to be analyzed */
){
- WhereTerm *pTerm = &pWC->a[idxTerm];
- ExprMaskSet *pMaskSet = pWC->pMaskSet;
- Expr *pExpr = pTerm->pExpr;
- Bitmask prereqLeft;
- Bitmask prereqAll;
+ WhereTerm *pTerm; /* The term to be analyzed */
+ WhereMaskSet *pMaskSet; /* Set of table index masks */
+ Expr *pExpr; /* The expression to be analyzed */
+ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
+ Bitmask prereqAll; /* Prerequesites of pExpr */
+ Bitmask extraRight = 0;
int nPattern;
int isComplete;
- int op;
+ int noCase;
+ int op; /* Top-level operator. pExpr->op */
+ Parse *pParse = pWC->pParse; /* Parsing context */
+ sqlite3 *db = pParse->db; /* Database connection */
- if( sqlite3MallocFailed() ) return;
+ if( db->mallocFailed ){
+ return;
+ }
+ pTerm = &pWC->a[idxTerm];
+ pMaskSet = pWC->pMaskSet;
+ pExpr = pTerm->pExpr;
prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
op = pExpr->op;
if( op==TK_IN ){
assert( pExpr->pRight==0 );
- pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
- | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
+ }else{
+ pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
+ }
}else if( op==TK_ISNULL ){
pTerm->prereqRight = 0;
}else{
@@ -57756,7 +85269,10 @@ static void exprAnalyze(
}
prereqAll = exprTableUsage(pMaskSet, pExpr);
if( ExprHasProperty(pExpr, EP_FromJoin) ){
- prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
+ Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
+ prereqAll |= x;
+ extraRight = x-1; /* ON clause terms may not be used with an index
+ ** on left table of a LEFT JOIN. Ticket #3015 */
}
pTerm->prereqAll = prereqAll;
pTerm->leftCursor = -1;
@@ -57767,7 +85283,7 @@ static void exprAnalyze(
Expr *pRight = pExpr->pRight;
if( pLeft->op==TK_COLUMN ){
pTerm->leftCursor = pLeft->iTable;
- pTerm->leftColumn = pLeft->iColumn;
+ pTerm->u.leftColumn = pLeft->iColumn;
pTerm->eOperator = operatorMask(op);
}
if( pRight && pRight->op==TK_COLUMN ){
@@ -57775,9 +85291,9 @@ static void exprAnalyze(
Expr *pDup;
if( pTerm->leftCursor>=0 ){
int idxNew;
- pDup = sqlite3ExprDup(pExpr);
- if( sqlite3MallocFailed() ){
- sqlite3ExprDelete(pDup);
+ pDup = sqlite3ExprDup(db, pExpr, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDup);
return;
}
idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
@@ -57786,15 +85302,15 @@ static void exprAnalyze(
pNew->iParent = idxTerm;
pTerm = &pWC->a[idxTerm];
pTerm->nChild = 1;
- pTerm->flags |= TERM_COPIED;
+ pTerm->wtFlags |= TERM_COPIED;
}else{
pDup = pExpr;
pNew = pTerm;
}
- exprCommute(pDup);
+ exprCommute(pParse, pDup);
pLeft = pDup->pLeft;
pNew->leftCursor = pLeft->iTable;
- pNew->leftColumn = pLeft->iColumn;
+ pNew->u.leftColumn = pLeft->iColumn;
pNew->prereqRight = prereqLeft;
pNew->prereqAll = prereqAll;
pNew->eOperator = operatorMask(pDup->op);
@@ -57803,10 +85319,22 @@ static void exprAnalyze(
#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
/* If a term is the BETWEEN operator, create two new virtual terms
- ** that define the range that the BETWEEN implements.
+ ** that define the range that the BETWEEN implements. For example:
+ **
+ ** a BETWEEN b AND c
+ **
+ ** is converted into:
+ **
+ ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
+ **
+ ** The two new terms are added onto the end of the WhereClause object.
+ ** The new terms are "dynamic" and are children of the original BETWEEN
+ ** term. That means that if the BETWEEN term is coded, the children are
+ ** skipped. Or, if the children are satisfied by an index, the original
+ ** BETWEEN term is skipped.
*/
- else if( pExpr->op==TK_BETWEEN ){
- ExprList *pList = pExpr->pList;
+ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
+ ExprList *pList = pExpr->x.pList;
int i;
static const u8 ops[] = {TK_GE, TK_LE};
assert( pList!=0 );
@@ -57814,9 +85342,11 @@ static void exprAnalyze(
for(i=0; i<2; i++){
Expr *pNewExpr;
int idxNew;
- pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
- sqlite3ExprDup(pList->a[i].pExpr), 0);
+ pNewExpr = sqlite3PExpr(pParse, ops[i],
+ sqlite3ExprDup(db, pExpr->pLeft, 0),
+ sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
exprAnalyze(pSrc, pWC, idxNew);
pTerm = &pWC->a[idxTerm];
pWC->a[idxNew].iParent = idxTerm;
@@ -57826,107 +85356,63 @@ static void exprAnalyze(
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
- /* Attempt to convert OR-connected terms into an IN operator so that
- ** they can make use of indices. Example:
- **
- ** x = expr1 OR expr2 = x OR x = expr3
- **
- ** is converted into
- **
- ** x IN (expr1,expr2,expr3)
- **
- ** This optimization must be omitted if OMIT_SUBQUERY is defined because
- ** the compiler for the the IN operator is part of sub-queries.
+ /* Analyze a term that is composed of two or more subterms connected by
+ ** an OR operator.
*/
else if( pExpr->op==TK_OR ){
- int ok;
- int i, j;
- int iColumn, iCursor;
- WhereClause sOr;
- WhereTerm *pOrTerm;
-
- assert( (pTerm->flags & TERM_DYNAMIC)==0 );
- whereClauseInit(&sOr, pWC->pParse, pMaskSet);
- whereSplit(&sOr, pExpr, TK_OR);
- exprAnalyzeAll(pSrc, &sOr);
- assert( sOr.nTerm>=2 );
- j = 0;
- do{
- assert( j<sOr.nTerm );
- iColumn = sOr.a[j].leftColumn;
- iCursor = sOr.a[j].leftCursor;
- ok = iCursor>=0;
- for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
- if( pOrTerm->eOperator!=WO_EQ ){
- goto or_not_possible;
- }
- if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
- pOrTerm->flags |= TERM_OR_OK;
- }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
- pOrTerm->flags &= ~TERM_OR_OK;
- }else{
- ok = 0;
- }
- }
- }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
- if( ok ){
- ExprList *pList = 0;
- Expr *pNew, *pDup;
- Expr *pLeft = 0;
- for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
- if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
- pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
- pList = sqlite3ExprListAppend(pList, pDup, 0);
- pLeft = pOrTerm->pExpr->pLeft;
- }
- assert( pLeft!=0 );
- pDup = sqlite3ExprDup(pLeft);
- pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
- if( pNew ){
- int idxNew;
- transferJoinMarkings(pNew, pExpr);
- pNew->pList = pList;
- idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
- exprAnalyze(pSrc, pWC, idxNew);
- pTerm = &pWC->a[idxTerm];
- pWC->a[idxNew].iParent = idxTerm;
- pTerm->nChild = 1;
- }else{
- sqlite3ExprListDelete(pList);
- }
- }
-or_not_possible:
- whereClauseClear(&sOr);
+ assert( pWC->op==TK_AND );
+ exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
+ pTerm = &pWC->a[idxTerm];
}
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/* Add constraints to reduce the search space on a LIKE or GLOB
** operator.
+ **
+ ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
+ **
+ ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
+ **
+ ** The last character of the prefix "abc" is incremented to form the
+ ** termination condition "abd".
*/
- if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
+ if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase)
+ && pWC->op==TK_AND ){
Expr *pLeft, *pRight;
Expr *pStr1, *pStr2;
Expr *pNewExpr1, *pNewExpr2;
int idxNew1, idxNew2;
- pLeft = pExpr->pList->a[1].pExpr;
- pRight = pExpr->pList->a[0].pExpr;
- pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
- if( pStr1 ){
- sqlite3TokenCopy(&pStr1->token, &pRight->token);
- pStr1->token.n = nPattern;
- }
- pStr2 = sqlite3ExprDup(pStr1);
- if( pStr2 ){
- assert( pStr2->token.dyn );
- ++*(u8*)&pStr2->token.z[nPattern-1];
+ pLeft = pExpr->x.pList->a[1].pExpr;
+ pRight = pExpr->x.pList->a[0].pExpr;
+ pStr1 = sqlite3Expr(db, TK_STRING, pRight->u.zToken);
+ if( pStr1 ) pStr1->u.zToken[nPattern] = 0;
+ pStr2 = sqlite3ExprDup(db, pStr1, 0);
+ if( !db->mallocFailed ){
+ u8 c, *pC; /* Last character before the first wildcard */
+ pC = (u8*)&pStr2->u.zToken[nPattern-1];
+ c = *pC;
+ if( noCase ){
+ /* The point is to increment the last character before the first
+ ** wildcard. But if we increment '@', that will push it into the
+ ** alphabetic range where case conversions will mess up the
+ ** inequality. To avoid this, make sure to also run the full
+ ** LIKE on all candidate expressions by clearing the isComplete flag
+ */
+ if( c=='A'-1 ) isComplete = 0;
+
+ c = sqlite3UpperToLower[c];
+ }
+ *pC = c + 1;
}
- pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0);
idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew1==0 );
exprAnalyze(pSrc, pWC, idxNew1);
- pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0);
idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew2==0 );
exprAnalyze(pSrc, pWC, idxNew2);
pTerm = &pWC->a[idxTerm];
if( isComplete ){
@@ -57950,27 +85436,34 @@ or_not_possible:
WhereTerm *pNewTerm;
Bitmask prereqColumn, prereqExpr;
- pRight = pExpr->pList->a[0].pExpr;
- pLeft = pExpr->pList->a[1].pExpr;
+ pRight = pExpr->x.pList->a[0].pExpr;
+ pLeft = pExpr->x.pList->a[1].pExpr;
prereqExpr = exprTableUsage(pMaskSet, pRight);
prereqColumn = exprTableUsage(pMaskSet, pLeft);
if( (prereqExpr & prereqColumn)==0 ){
Expr *pNewExpr;
- pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0);
+ pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
+ 0, sqlite3ExprDup(db, pRight, 0), 0);
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
pNewTerm = &pWC->a[idxNew];
pNewTerm->prereqRight = prereqExpr;
pNewTerm->leftCursor = pLeft->iTable;
- pNewTerm->leftColumn = pLeft->iColumn;
+ pNewTerm->u.leftColumn = pLeft->iColumn;
pNewTerm->eOperator = WO_MATCH;
pNewTerm->iParent = idxTerm;
pTerm = &pWC->a[idxTerm];
pTerm->nChild = 1;
- pTerm->flags |= TERM_COPIED;
+ pTerm->wtFlags |= TERM_COPIED;
pNewTerm->prereqAll = pTerm->prereqAll;
}
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ /* Prevent ON clause terms of a LEFT JOIN from being used to drive
+ ** an index for tables to the left of the join.
+ */
+ pTerm->prereqRight |= extraRight;
}
/*
@@ -57979,7 +85472,7 @@ or_not_possible:
*/
static int referencesOtherTables(
ExprList *pList, /* Search expressions in ths list */
- ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
+ WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
int iFirst, /* Be searching with the iFirst-th expression */
int iBase /* Ignore references to this table */
){
@@ -58014,7 +85507,7 @@ static int referencesOtherTables(
*/
static int isSortingIndex(
Parse *pParse, /* Parsing context */
- ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */
+ WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
Index *pIdx, /* The index we are testing */
int base, /* Cursor number for the table to be sorted */
ExprList *pOrderBy, /* The ORDER BY clause */
@@ -58031,6 +85524,11 @@ static int isSortingIndex(
nTerm = pOrderBy->nExpr;
assert( nTerm>0 );
+ /* Argument pIdx must either point to a 'real' named index structure,
+ ** or an index structure allocated on the stack by bestBtreeIndex() to
+ ** represent the rowid index that is part of every table. */
+ assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
+
/* Match terms of the ORDER BY clause against columns of
** the index.
**
@@ -58057,7 +85555,7 @@ static int isSortingIndex(
if( !pColl ){
pColl = db->pDfltColl;
}
- if( i<pIdx->nColumn ){
+ if( pIdx->zName && i<pIdx->nColumn ){
iColumn = pIdx->aiColumn[i];
if( iColumn==pIdx->pTable->iPKey ){
iColumn = -1;
@@ -58076,6 +85574,9 @@ static int isSortingIndex(
** ORDER BY term, that is OK. Just ignore that column of the index
*/
continue;
+ }else if( i==pIdx->nColumn ){
+ /* Index column i is the rowid. All other terms match. */
+ break;
}else{
/* If an index column fails to match and is not constrained by ==
** then the index cannot satisfy the ORDER BY constraint.
@@ -58083,7 +85584,7 @@ static int isSortingIndex(
return 0;
}
}
- assert( pIdx->aSortOrder!=0 );
+ assert( pIdx->aSortOrder!=0 || iColumn==-1 );
assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
assert( iSortOrder==0 || iSortOrder==1 );
termSortOrder = iSortOrder ^ pTerm->sortOrder;
@@ -58127,33 +85628,9 @@ static int isSortingIndex(
}
/*
-** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
-** by sorting in order of ROWID. Return true if so and set *pbRev to be
-** true for reverse ROWID and false for forward ROWID order.
-*/
-static int sortableByRowid(
- int base, /* Cursor number for table to be sorted */
- ExprList *pOrderBy, /* The ORDER BY clause */
- ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
- int *pbRev /* Set to 1 if ORDER BY is DESC */
-){
- Expr *p;
-
- assert( pOrderBy!=0 );
- assert( pOrderBy->nExpr>0 );
- p = pOrderBy->a[0].pExpr;
- if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
- && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
- *pbRev = pOrderBy->a[0].sortOrder;
- return 1;
- }
- return 0;
-}
-
-/*
** Prepare a crude estimate of the logarithm of the input value.
** The results need not be exact. This is only used for estimating
-** the total cost of performing operatings with O(logN) or O(NlogN)
+** the total cost of performing operations with O(logN) or O(NlogN)
** complexity. Because N is just a guess, it is no great tragedy if
** logN is a little off.
*/
@@ -58176,7 +85653,7 @@ static double estLog(double N){
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
int i;
- if( !sqlite3_where_trace ) return;
+ if( !sqlite3WhereTrace ) return;
for(i=0; i<p->nConstraint; i++){
sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
i,
@@ -58194,7 +85671,7 @@ static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
}
static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
int i;
- if( !sqlite3_where_trace ) return;
+ if( !sqlite3WhereTrace ) return;
for(i=0; i<p->nConstraint; i++){
sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
i,
@@ -58211,8 +85688,250 @@ static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
#define TRACE_IDX_OUTPUTS(A)
#endif
+/*
+** Required because bestIndex() is called by bestOrClauseIndex()
+*/
+static void bestIndex(
+ Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
+
+/*
+** This routine attempts to find an scanning strategy that can be used
+** to optimize an 'OR' expression that is part of a WHERE clause.
+**
+** The table associated with FROM clause term pSrc may be either a
+** regular B-Tree table or a virtual table.
+*/
+static void bestOrClauseIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors that are not available */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ WhereCost *pCost /* Lowest cost query plan */
+){
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION
+ const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
+ const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
+ WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+
+ /* Search the WHERE clause terms for a usable WO_OR term. */
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ if( pTerm->eOperator==WO_OR
+ && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
+ && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
+ ){
+ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
+ WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
+ WhereTerm *pOrTerm;
+ int flags = WHERE_MULTI_OR;
+ double rTotal = 0;
+ double nRow = 0;
+ Bitmask used = 0;
+
+ for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
+ WhereCost sTermCost;
+ WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
+ (pOrTerm - pOrWC->a), (pTerm - pWC->a)
+ ));
+ if( pOrTerm->eOperator==WO_AND ){
+ WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
+ bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
+ }else if( pOrTerm->leftCursor==iCur ){
+ WhereClause tempWC;
+ tempWC.pParse = pWC->pParse;
+ tempWC.pMaskSet = pWC->pMaskSet;
+ tempWC.op = TK_AND;
+ tempWC.a = pOrTerm;
+ tempWC.nTerm = 1;
+ bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
+ }else{
+ continue;
+ }
+ rTotal += sTermCost.rCost;
+ nRow += sTermCost.nRow;
+ used |= sTermCost.used;
+ if( rTotal>=pCost->rCost ) break;
+ }
+
+ /* If there is an ORDER BY clause, increase the scan cost to account
+ ** for the cost of the sort. */
+ if( pOrderBy!=0 ){
+ rTotal += nRow*estLog(nRow);
+ WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
+ }
+
+ /* If the cost of scanning using this OR term for optimization is
+ ** less than the current cost stored in pCost, replace the contents
+ ** of pCost. */
+ WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
+ if( rTotal<pCost->rCost ){
+ pCost->rCost = rTotal;
+ pCost->nRow = nRow;
+ pCost->used = used;
+ pCost->plan.wsFlags = flags;
+ pCost->plan.u.pTerm = pTerm;
+ }
+ }
+ }
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+}
+
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
+** Allocate and populate an sqlite3_index_info structure. It is the
+** responsibility of the caller to eventually release the structure
+** by passing the pointer returned by this function to sqlite3_free().
+*/
+static sqlite3_index_info *allocateIndexInfo(
+ Parse *pParse,
+ WhereClause *pWC,
+ struct SrcList_item *pSrc,
+ ExprList *pOrderBy
+){
+ int i, j;
+ int nTerm;
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_orderby *pIdxOrderBy;
+ struct sqlite3_index_constraint_usage *pUsage;
+ WhereTerm *pTerm;
+ int nOrderBy;
+ sqlite3_index_info *pIdxInfo;
+
+ WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
+
+ /* Count the number of possible WHERE clause constraints referring
+ ** to this virtual table */
+ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
+ testcase( pTerm->eOperator==WO_IN );
+ testcase( pTerm->eOperator==WO_ISNULL );
+ if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
+ nTerm++;
+ }
+
+ /* If the ORDER BY clause contains only columns in the current
+ ** virtual table then allocate space for the aOrderBy part of
+ ** the sqlite3_index_info structure.
+ */
+ nOrderBy = 0;
+ if( pOrderBy ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
+ }
+ if( i==pOrderBy->nExpr ){
+ nOrderBy = pOrderBy->nExpr;
+ }
+ }
+
+ /* Allocate the sqlite3_index_info structure
+ */
+ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
+ + sizeof(*pIdxOrderBy)*nOrderBy );
+ if( pIdxInfo==0 ){
+ sqlite3ErrorMsg(pParse, "out of memory");
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ return 0;
+ }
+
+ /* Initialize the structure. The sqlite3_index_info structure contains
+ ** many fields that are declared "const" to prevent xBestIndex from
+ ** changing them. We have to do some funky casting in order to
+ ** initialize those fields.
+ */
+ pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
+ pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
+ pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
+ *(int*)&pIdxInfo->nConstraint = nTerm;
+ *(int*)&pIdxInfo->nOrderBy = nOrderBy;
+ *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
+ *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
+ *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
+ pUsage;
+
+ for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
+ testcase( pTerm->eOperator==WO_IN );
+ testcase( pTerm->eOperator==WO_ISNULL );
+ if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
+ pIdxCons[j].iColumn = pTerm->u.leftColumn;
+ pIdxCons[j].iTermOffset = i;
+ pIdxCons[j].op = (u8)pTerm->eOperator;
+ /* The direct assignment in the previous line is possible only because
+ ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
+ ** following asserts verify this fact. */
+ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
+ assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
+ assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
+ assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
+ assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
+ assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
+ j++;
+ }
+ for(i=0; i<nOrderBy; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ pIdxOrderBy[i].iColumn = pExpr->iColumn;
+ pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
+ }
+
+ return pIdxInfo;
+}
+
+/*
+** The table object reference passed as the second argument to this function
+** must represent a virtual table. This function invokes the xBestIndex()
+** method of the virtual table with the sqlite3_index_info pointer passed
+** as the argument.
+**
+** If an error occurs, pParse is populated with an error message and a
+** non-zero value is returned. Otherwise, 0 is returned and the output
+** part of the sqlite3_index_info structure is left populated.
+**
+** Whether or not an error is returned, it is the responsibility of the
+** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
+** that this is required.
+*/
+static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
+ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
+ int i;
+ int rc;
+
+ (void)sqlite3SafetyOff(pParse->db);
+ WHERETRACE(("xBestIndex for %s\n", pTab->zName));
+ TRACE_IDX_INPUTS(p);
+ rc = pVtab->pModule->xBestIndex(pVtab, p);
+ TRACE_IDX_OUTPUTS(p);
+ (void)sqlite3SafetyOn(pParse->db);
+
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ){
+ pParse->db->mallocFailed = 1;
+ }else if( !pVtab->zErrMsg ){
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
+ }else{
+ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
+ }
+ }
+ sqlite3DbFree(pParse->db, pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+
+ for(i=0; i<p->nConstraint; i++){
+ if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
+ sqlite3ErrorMsg(pParse,
+ "table %s: xBestIndex returned an invalid plan", pTab->zName);
+ }
+ }
+
+ return pParse->nErr;
+}
+
+
+/*
** Compute the best index for a virtual table.
**
** The best index is computed by the xBestIndex method of the virtual
@@ -58228,107 +85947,39 @@ static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
** routine takes care of freeing the sqlite3_index_info structure after
** everybody has finished with it.
*/
-static double bestVirtualIndex(
- Parse *pParse, /* The parsing context */
- WhereClause *pWC, /* The WHERE clause */
- struct SrcList_item *pSrc, /* The FROM clause term to search */
- Bitmask notReady, /* Mask of cursors that are not available */
- ExprList *pOrderBy, /* The order by clause */
- int orderByUsable, /* True if we can potential sort */
- sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
+static void bestVirtualIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors that are not available */
+ ExprList *pOrderBy, /* The order by clause */
+ WhereCost *pCost, /* Lowest cost query plan */
+ sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
){
Table *pTab = pSrc->pTab;
sqlite3_index_info *pIdxInfo;
struct sqlite3_index_constraint *pIdxCons;
- struct sqlite3_index_orderby *pIdxOrderBy;
struct sqlite3_index_constraint_usage *pUsage;
WhereTerm *pTerm;
int i, j;
int nOrderBy;
- int rc;
+
+ /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
+ ** malloc in allocateIndexInfo() fails and this function returns leaving
+ ** wsFlags in an uninitialized state, the caller may behave unpredictably.
+ */
+ memset(pCost, 0, sizeof(*pCost));
+ pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
/* If the sqlite3_index_info structure has not been previously
- ** allocated and initialized for this virtual table, then allocate
- ** and initialize it now
+ ** allocated and initialized, then allocate and initialize it now.
*/
pIdxInfo = *ppIdxInfo;
if( pIdxInfo==0 ){
- WhereTerm *pTerm;
- int nTerm;
- WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
-
- /* Count the number of possible WHERE clause constraints referring
- ** to this virtual table */
- for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
- if( pTerm->leftCursor != pSrc->iCursor ) continue;
- if( pTerm->eOperator==WO_IN ) continue;
- nTerm++;
- }
-
- /* If the ORDER BY clause contains only columns in the current
- ** virtual table then allocate space for the aOrderBy part of
- ** the sqlite3_index_info structure.
- */
- nOrderBy = 0;
- if( pOrderBy ){
- for(i=0; i<pOrderBy->nExpr; i++){
- Expr *pExpr = pOrderBy->a[i].pExpr;
- if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
- }
- if( i==pOrderBy->nExpr ){
- nOrderBy = pOrderBy->nExpr;
- }
- }
-
- /* Allocate the sqlite3_index_info structure
- */
- pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo)
- + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
- + sizeof(*pIdxOrderBy)*nOrderBy );
- if( pIdxInfo==0 ){
- sqlite3ErrorMsg(pParse, "out of memory");
- return 0.0;
- }
- *ppIdxInfo = pIdxInfo;
-
- /* Initialize the structure. The sqlite3_index_info structure contains
- ** many fields that are declared "const" to prevent xBestIndex from
- ** changing them. We have to do some funky casting in order to
- ** initialize those fields.
- */
- pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
- pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
- pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
- *(int*)&pIdxInfo->nConstraint = nTerm;
- *(int*)&pIdxInfo->nOrderBy = nOrderBy;
- *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
- *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
- *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
- pUsage;
-
- for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
- if( pTerm->leftCursor != pSrc->iCursor ) continue;
- if( pTerm->eOperator==WO_IN ) continue;
- pIdxCons[j].iColumn = pTerm->leftColumn;
- pIdxCons[j].iTermOffset = i;
- pIdxCons[j].op = pTerm->eOperator;
- /* The direct assignment in the previous line is possible only because
- ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
- ** following asserts verify this fact. */
- assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
- assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
- assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
- assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
- assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
- assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
- assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
- j++;
- }
- for(i=0; i<nOrderBy; i++){
- Expr *pExpr = pOrderBy->a[i].pExpr;
- pIdxOrderBy[i].iColumn = pExpr->iColumn;
- pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
- }
+ *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
+ }
+ if( pIdxInfo==0 ){
+ return;
}
/* At this point, the sqlite3_index_info structure that pIdxInfo points
@@ -58343,14 +85994,7 @@ static double bestVirtualIndex(
** sqlite3ViewGetColumnNames() would have picked up the error.
*/
assert( pTab->azModuleArg && pTab->azModuleArg[0] );
- assert( pTab->pVtab );
-#if 0
- if( pTab->pVtab==0 ){
- sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
- pTab->azModuleArg[0], pTab->zName);
- return 0.0;
- }
-#endif
+ assert( sqlite3GetVTable(pParse->db, pTab) );
/* Set the aConstraint[].usable fields and initialize all
** output variables to zero.
@@ -58377,7 +86021,7 @@ static double bestVirtualIndex(
for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
j = pIdxCons->iTermOffset;
pTerm = &pWC->a[j];
- pIdxCons->usable = (pTerm->prereqRight & notReady)==0;
+ pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
}
memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
if( pIdxInfo->needToFreeIdxStr ){
@@ -58387,40 +86031,264 @@ static double bestVirtualIndex(
pIdxInfo->idxNum = 0;
pIdxInfo->needToFreeIdxStr = 0;
pIdxInfo->orderByConsumed = 0;
- pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
+ /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
+ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
nOrderBy = pIdxInfo->nOrderBy;
- if( pIdxInfo->nOrderBy && !orderByUsable ){
- *(int*)&pIdxInfo->nOrderBy = 0;
+ if( !pOrderBy ){
+ pIdxInfo->nOrderBy = 0;
}
- sqlite3SafetyOff(pParse->db);
- WHERETRACE(("xBestIndex for %s\n", pTab->zName));
- TRACE_IDX_INPUTS(pIdxInfo);
- rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
- TRACE_IDX_OUTPUTS(pIdxInfo);
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_NOMEM ){
- sqlite3FailedMalloc();
- }else {
- sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
+ if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
+ return;
+ }
+
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ if( pUsage[i].argvIndex>0 ){
+ pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
}
- sqlite3SafetyOn(pParse->db);
+ }
+
+ /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
+ ** inital value of lowestCost in this loop. If it is, then the
+ ** (cost<lowestCost) test below will never be true.
+ **
+ ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
+ ** is defined.
+ */
+ if( (SQLITE_BIG_DBL/((double)2))<pIdxInfo->estimatedCost ){
+ pCost->rCost = (SQLITE_BIG_DBL/((double)2));
}else{
- rc = sqlite3SafetyOn(pParse->db);
+ pCost->rCost = pIdxInfo->estimatedCost;
}
- *(int*)&pIdxInfo->nOrderBy = nOrderBy;
+ pCost->plan.u.pVtabIdx = pIdxInfo;
+ if( pIdxInfo->orderByConsumed ){
+ pCost->plan.wsFlags |= WHERE_ORDERBY;
+ }
+ pCost->plan.nEq = 0;
+ pIdxInfo->nOrderBy = nOrderBy;
- return pIdxInfo->estimatedCost;
+ /* Try to find a more efficient access pattern by using multiple indexes
+ ** to optimize an OR expression within the WHERE clause.
+ */
+ bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/*
-** Find the best index for accessing a particular table. Return a pointer
-** to the index, flags that describe how the index should be used, the
-** number of equality constraints, and the "cost" for this index.
+** Argument pIdx is a pointer to an index structure that has an array of
+** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
+** stored in Index.aSample. The domain of values stored in said column
+** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
+** Region 0 contains all values smaller than the first sample value. Region
+** 1 contains values larger than or equal to the value of the first sample,
+** but smaller than the value of the second. And so on.
+**
+** If successful, this function determines which of the regions value
+** pVal lies in, sets *piRegion to the region index (a value between 0
+** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
+** Or, if an OOM occurs while converting text values between encodings,
+** SQLITE_NOMEM is returned and *piRegion is undefined.
+*/
+#ifdef SQLITE_ENABLE_STAT2
+static int whereRangeRegion(
+ Parse *pParse, /* Database connection */
+ Index *pIdx, /* Index to consider domain of */
+ sqlite3_value *pVal, /* Value to consider */
+ int *piRegion /* OUT: Region of domain in which value lies */
+){
+ if( ALWAYS(pVal) ){
+ IndexSample *aSample = pIdx->aSample;
+ int i = 0;
+ int eType = sqlite3_value_type(pVal);
+
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ double r = sqlite3_value_double(pVal);
+ for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
+ if( aSample[i].eType==SQLITE_NULL ) continue;
+ if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
+ }
+ }else{
+ sqlite3 *db = pParse->db;
+ CollSeq *pColl;
+ const u8 *z;
+ int n;
+
+ /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+
+ if( eType==SQLITE_BLOB ){
+ z = (const u8 *)sqlite3_value_blob(pVal);
+ pColl = db->pDfltColl;
+ assert( pColl->enc==SQLITE_UTF8 );
+ }else{
+ pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
+ if( pColl==0 ){
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
+ *pIdx->azColl);
+ return SQLITE_ERROR;
+ }
+ z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
+ if( !z ){
+ return SQLITE_NOMEM;
+ }
+ assert( z && pColl && pColl->xCmp );
+ }
+ n = sqlite3ValueBytes(pVal, pColl->enc);
+
+ for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
+ int r;
+ int eSampletype = aSample[i].eType;
+ if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
+ if( (eSampletype!=eType) ) break;
+ if( pColl->enc==SQLITE_UTF8 ){
+ r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
+ }else{
+ int nSample;
+ char *zSample = sqlite3Utf8to16(
+ db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
+ );
+ if( !zSample ){
+ assert( db->mallocFailed );
+ return SQLITE_NOMEM;
+ }
+ r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
+ sqlite3DbFree(db, zSample);
+ }
+ if( r>0 ) break;
+ }
+ }
+
+ assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
+ *piRegion = i;
+ }
+ return SQLITE_OK;
+}
+#endif /* #ifdef SQLITE_ENABLE_STAT2 */
+
+/*
+** This function is used to estimate the number of rows that will be visited
+** by scanning an index for a range of values. The range may have an upper
+** bound, a lower bound, or both. The WHERE clause terms that set the upper
+** and lower bounds are represented by pLower and pUpper respectively. For
+** example, assuming that index p is on t1(a):
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+** |_____| |_____|
+** | |
+** pLower pUpper
+**
+** If either of the upper or lower bound is not present, then NULL is passed in
+** place of the corresponding WhereTerm.
+**
+** The nEq parameter is passed the index of the index column subject to the
+** range constraint. Or, equivalently, the number of equality constraints
+** optimized by the proposed index scan. For example, assuming index p is
+** on t1(a, b), and the SQL query is:
+**
+** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
+**
+** then nEq should be passed the value 1 (as the range restricted column,
+** b, is the second left-most column of the index). Or, if the query is:
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+**
+** then nEq should be passed 0.
+**
+** The returned value is an integer between 1 and 100, inclusive. A return
+** value of 1 indicates that the proposed range scan is expected to visit
+** approximately 1/100th (1%) of the rows selected by the nEq equality
+** constraints (if any). A return value of 100 indicates that it is expected
+** that the range scan will visit every row (100%) selected by the equality
+** constraints.
+**
+** In the absence of sqlite_stat2 ANALYZE data, each range inequality
+** reduces the search space by 2/3rds. Hence a single constraint (x>?)
+** results in a return of 33 and a range constraint (x>? AND x<?) results
+** in a return of 11.
+*/
+static int whereRangeScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ Index *p, /* The index containing the range-compared column; "x" */
+ int nEq, /* index into p->aCol[] of the range-compared column */
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ int *piEst /* OUT: Return value */
+){
+ int rc = SQLITE_OK;
+
+#ifdef SQLITE_ENABLE_STAT2
+ sqlite3 *db = pParse->db;
+ sqlite3_value *pLowerVal = 0;
+ sqlite3_value *pUpperVal = 0;
+
+ if( nEq==0 && p->aSample ){
+ int iEst;
+ int iLower = 0;
+ int iUpper = SQLITE_INDEX_SAMPLES;
+ u8 aff = p->pTable->aCol[0].affinity;
+
+ if( pLower ){
+ Expr *pExpr = pLower->pExpr->pRight;
+ rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pLowerVal);
+ }
+ if( rc==SQLITE_OK && pUpper ){
+ Expr *pExpr = pUpper->pExpr->pRight;
+ rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pUpperVal);
+ }
+
+ if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
+ sqlite3ValueFree(pLowerVal);
+ sqlite3ValueFree(pUpperVal);
+ goto range_est_fallback;
+ }else if( pLowerVal==0 ){
+ rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
+ if( pLower ) iLower = iUpper/2;
+ }else if( pUpperVal==0 ){
+ rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
+ if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
+ }else{
+ rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
+ if( rc==SQLITE_OK ){
+ rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
+ }
+ }
+
+ iEst = iUpper - iLower;
+ testcase( iEst==SQLITE_INDEX_SAMPLES );
+ assert( iEst<=SQLITE_INDEX_SAMPLES );
+ if( iEst<1 ){
+ iEst = 1;
+ }
+
+ sqlite3ValueFree(pLowerVal);
+ sqlite3ValueFree(pUpperVal);
+ *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
+ return rc;
+ }
+range_est_fallback:
+#else
+ UNUSED_PARAMETER(pParse);
+ UNUSED_PARAMETER(p);
+ UNUSED_PARAMETER(nEq);
+#endif
+ assert( pLower || pUpper );
+ if( pLower && pUpper ){
+ *piEst = 11;
+ }else{
+ *piEst = 33;
+ }
+ return rc;
+}
+
+
+/*
+** Find the query plan for accessing a particular table. Write the
+** best query plan and its cost into the WhereCost object supplied as the
+** last parameter.
**
-** The lowest cost index wins. The cost is an estimate of the amount of
-** CPU and disk I/O need to process the request using the selected index.
+** The lowest cost plan wins. The cost is an estimate of the amount of
+** CPU and disk I/O need to process the request using the selected plan.
** Factors that influence cost include:
**
** * The estimated number of rows that will be retrieved. (The
@@ -58431,243 +86299,363 @@ static double bestVirtualIndex(
** * Whether or not there must be separate lookups in the
** index and in the main table.
**
+** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
+** the SQL statement, then this function only considers plans using the
+** named index. If no such plan is found, then the returned cost is
+** SQLITE_BIG_DBL. If a plan is found that uses the named index,
+** then the cost is calculated in the usual way.
+**
+** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
+** in the SELECT statement, then no indexes are considered. However, the
+** selected plan may still take advantage of the tables built-in rowid
+** index.
*/
-static double bestIndex(
+static void bestBtreeIndex(
Parse *pParse, /* The parsing context */
WhereClause *pWC, /* The WHERE clause */
struct SrcList_item *pSrc, /* The FROM clause term to search */
Bitmask notReady, /* Mask of cursors that are not available */
- ExprList *pOrderBy, /* The order by clause */
- Index **ppIndex, /* Make *ppIndex point to the best index */
- int *pFlags, /* Put flags describing this choice in *pFlags */
- int *pnEq /* Put the number of == or IN constraints here */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ WhereCost *pCost /* Lowest cost query plan */
){
- WhereTerm *pTerm;
- Index *bestIdx = 0; /* Index that gives the lowest cost */
- double lowestCost; /* The cost of using bestIdx */
- int bestFlags = 0; /* Flags associated with bestIdx */
- int bestNEq = 0; /* Best value for nEq */
int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
Index *pProbe; /* An index we are evaluating */
- int rev; /* True to scan in reverse order */
- int flags; /* Flags associated with pProbe */
- int nEq; /* Number of == or IN constraints */
- int eqTermMask; /* Mask of valid equality operators */
- double cost; /* Cost of using pProbe */
-
- WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
- lowestCost = SQLITE_BIG_DBL;
- pProbe = pSrc->pTab->pIndex;
-
- /* If the table has no indices and there are no terms in the where
- ** clause that refer to the ROWID, then we will never be able to do
- ** anything other than a full table scan on this table. We might as
- ** well put it first in the join order. That way, perhaps it can be
- ** referenced by other tables in the join.
- */
- if( pProbe==0 &&
- findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
- (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
- *pFlags = 0;
- *ppIndex = 0;
- *pnEq = 0;
- return 0.0;
- }
-
- /* Check for a rowid=EXPR or rowid IN (...) constraints
- */
- pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
- if( pTerm ){
- Expr *pExpr;
- *ppIndex = 0;
- bestFlags = WHERE_ROWID_EQ;
- if( pTerm->eOperator & WO_EQ ){
- /* Rowid== is always the best pick. Look no further. Because only
- ** a single row is generated, output is always in sorted order */
- *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
- *pnEq = 1;
- WHERETRACE(("... best is rowid\n"));
- return 0.0;
- }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
- /* Rowid IN (LIST): cost is NlogN where N is the number of list
- ** elements. */
- lowestCost = pExpr->pList->nExpr;
- lowestCost *= estLog(lowestCost);
- }else{
- /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
- ** in the result of the inner select. We have no way to estimate
- ** that value so make a wild guess. */
- lowestCost = 200;
- }
- WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
- }
-
- /* Estimate the cost of a table scan. If we do not know how many
- ** entries are in the table, use 1 million as a guess.
- */
- cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
- WHERETRACE(("... table scan base cost: %.9g\n", cost));
- flags = WHERE_ROWID_RANGE;
-
- /* Check for constraints on a range of rowids in a table scan.
- */
- pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
- if( pTerm ){
- if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
- flags |= WHERE_TOP_LIMIT;
- cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */
- }
- if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
- flags |= WHERE_BTM_LIMIT;
- cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */
- }
- WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
- }else{
- flags = 0;
- }
-
- /* If the table scan does not satisfy the ORDER BY clause, increase
- ** the cost by NlogN to cover the expense of sorting. */
- if( pOrderBy ){
- if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
- flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
- if( rev ){
- flags |= WHERE_REVERSE;
- }
- }else{
- cost += cost*estLog(cost);
- WHERETRACE(("... sorting increases cost to %.9g\n", cost));
- }
- }
- if( cost<lowestCost ){
- lowestCost = cost;
- bestFlags = flags;
- }
+ Index *pIdx; /* Copy of pProbe, or zero for IPK index */
+ int eqTermMask; /* Current mask of valid equality operators */
+ int idxEqTermMask; /* Index mask of valid equality operators */
+ Index sPk; /* A fake index object for the primary key */
+ unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
+ int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
+ int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
+
+ /* Initialize the cost to a worst-case value */
+ memset(pCost, 0, sizeof(*pCost));
+ pCost->rCost = SQLITE_BIG_DBL;
/* If the pSrc table is the right table of a LEFT JOIN then we may not
** use an index to satisfy IS NULL constraints on that table. This is
** because columns might end up being NULL if the table does not match -
** a circumstance which the index cannot help us discover. Ticket #2177.
*/
- if( (pSrc->jointype & JT_LEFT)!=0 ){
- eqTermMask = WO_EQ|WO_IN;
+ if( pSrc->jointype & JT_LEFT ){
+ idxEqTermMask = WO_EQ|WO_IN;
}else{
- eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
+ idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
}
- /* Look at each index.
- */
- for(; pProbe; pProbe=pProbe->pNext){
- int i; /* Loop counter */
- double inMultiplier = 1;
-
- WHERETRACE(("... index %s:\n", pProbe->zName));
+ if( pSrc->pIndex ){
+ /* An INDEXED BY clause specifies a particular index to use */
+ pIdx = pProbe = pSrc->pIndex;
+ wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
+ eqTermMask = idxEqTermMask;
+ }else{
+ /* There is no INDEXED BY clause. Create a fake Index object to
+ ** represent the primary key */
+ Index *pFirst; /* Any other index on the table */
+ memset(&sPk, 0, sizeof(Index));
+ sPk.nColumn = 1;
+ sPk.aiColumn = &aiColumnPk;
+ sPk.aiRowEst = aiRowEstPk;
+ aiRowEstPk[1] = 1;
+ sPk.onError = OE_Replace;
+ sPk.pTable = pSrc->pTab;
+ pFirst = pSrc->pTab->pIndex;
+ if( pSrc->notIndexed==0 ){
+ sPk.pNext = pFirst;
+ }
+ /* The aiRowEstPk[0] is an estimate of the total number of rows in the
+ ** table. Get this information from the ANALYZE information if it is
+ ** available. If not available, assume the table 1 million rows in size.
+ */
+ if( pFirst ){
+ assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
+ aiRowEstPk[0] = pFirst->aiRowEst[0];
+ }else{
+ aiRowEstPk[0] = 1000000;
+ }
+ pProbe = &sPk;
+ wsFlagMask = ~(
+ WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
+ );
+ eqTermMask = WO_EQ|WO_IN;
+ pIdx = 0;
+ }
- /* Count the number of columns in the index that are satisfied
- ** by x=EXPR constraints or x IN (...) constraints.
+ /* Loop over all indices looking for the best one to use
+ */
+ for(; pProbe; pIdx=pProbe=pProbe->pNext){
+ const unsigned int * const aiRowEst = pProbe->aiRowEst;
+ double cost; /* Cost of using pProbe */
+ double nRow; /* Estimated number of rows in result set */
+ int rev; /* True to scan in reverse order */
+ int wsFlags = 0;
+ Bitmask used = 0;
+
+ /* The following variables are populated based on the properties of
+ ** scan being evaluated. They are then used to determine the expected
+ ** cost and number of rows returned.
+ **
+ ** nEq:
+ ** Number of equality terms that can be implemented using the index.
+ **
+ ** nInMul:
+ ** The "in-multiplier". This is an estimate of how many seek operations
+ ** SQLite must perform on the index in question. For example, if the
+ ** WHERE clause is:
+ **
+ ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
+ **
+ ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
+ ** set to 9. Given the same schema and either of the following WHERE
+ ** clauses:
+ **
+ ** WHERE a = 1
+ ** WHERE a >= 2
+ **
+ ** nInMul is set to 1.
+ **
+ ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
+ ** the sub-select is assumed to return 25 rows for the purposes of
+ ** determining nInMul.
+ **
+ ** bInEst:
+ ** Set to true if there was at least one "x IN (SELECT ...)" term used
+ ** in determining the value of nInMul.
+ **
+ ** nBound:
+ ** An estimate on the amount of the table that must be searched. A
+ ** value of 100 means the entire table is searched. Range constraints
+ ** might reduce this to a value less than 100 to indicate that only
+ ** a fraction of the table needs searching. In the absence of
+ ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
+ ** space to 1/3rd its original size. So an x>? constraint reduces
+ ** nBound to 33. Two constraints (x>? AND x<?) reduce nBound to 11.
+ **
+ ** bSort:
+ ** Boolean. True if there is an ORDER BY clause that will require an
+ ** external sort (i.e. scanning the index being evaluated will not
+ ** correctly order records).
+ **
+ ** bLookup:
+ ** Boolean. True if for each index entry visited a lookup on the
+ ** corresponding table b-tree is required. This is always false
+ ** for the rowid index. For other indexes, it is true unless all the
+ ** columns of the table used by the SELECT statement are present in
+ ** the index (such an index is sometimes described as a covering index).
+ ** For example, given the index on (a, b), the second of the following
+ ** two queries requires table b-tree lookups, but the first does not.
+ **
+ ** SELECT a, b FROM tbl WHERE a = 1;
+ ** SELECT a, b, c FROM tbl WHERE a = 1;
*/
- flags = 0;
- for(i=0; i<pProbe->nColumn; i++){
- int j = pProbe->aiColumn[i];
- pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
+ int nEq;
+ int bInEst = 0;
+ int nInMul = 1;
+ int nBound = 100;
+ int bSort = 0;
+ int bLookup = 0;
+
+ /* Determine the values of nEq and nInMul */
+ for(nEq=0; nEq<pProbe->nColumn; nEq++){
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ int j = pProbe->aiColumn[nEq];
+ pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
if( pTerm==0 ) break;
- flags |= WHERE_COLUMN_EQ;
+ wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
if( pTerm->eOperator & WO_IN ){
Expr *pExpr = pTerm->pExpr;
- flags |= WHERE_COLUMN_IN;
- if( pExpr->pSelect!=0 ){
- inMultiplier *= 25;
- }else if( pExpr->pList!=0 ){
- inMultiplier *= pExpr->pList->nExpr + 1;
+ wsFlags |= WHERE_COLUMN_IN;
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){
+ nInMul *= 25;
+ bInEst = 1;
+ }else if( pExpr->x.pList ){
+ nInMul *= pExpr->x.pList->nExpr + 1;
}
+ }else if( pTerm->eOperator & WO_ISNULL ){
+ wsFlags |= WHERE_COLUMN_NULL;
}
+ used |= pTerm->prereqRight;
}
- cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
- nEq = i;
- if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
- && nEq==pProbe->nColumn ){
- flags |= WHERE_UNIQUE;
- }
- WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
- /* Look for range constraints
- */
+ /* Determine the value of nBound. */
if( nEq<pProbe->nColumn ){
int j = pProbe->aiColumn[nEq];
- pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
- if( pTerm ){
- flags |= WHERE_COLUMN_RANGE;
- if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
- flags |= WHERE_TOP_LIMIT;
- cost /= 3;
+ if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
+ WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
+ WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
+ whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound);
+ if( pTop ){
+ wsFlags |= WHERE_TOP_LIMIT;
+ used |= pTop->prereqRight;
}
- if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
- flags |= WHERE_BTM_LIMIT;
- cost /= 3;
+ if( pBtm ){
+ wsFlags |= WHERE_BTM_LIMIT;
+ used |= pBtm->prereqRight;
}
- WHERETRACE(("...... range reduces cost to %.9g\n", cost));
+ wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
+ }
+ }else if( pProbe->onError!=OE_None ){
+ testcase( wsFlags & WHERE_COLUMN_IN );
+ testcase( wsFlags & WHERE_COLUMN_NULL );
+ if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
+ wsFlags |= WHERE_UNIQUE;
}
}
- /* Add the additional cost of sorting if that is a factor.
- */
+ /* If there is an ORDER BY clause and the index being considered will
+ ** naturally scan rows in the required order, set the appropriate flags
+ ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
+ ** will scan rows in a different order, set the bSort variable. */
if( pOrderBy ){
- if( (flags & WHERE_COLUMN_IN)==0 &&
- isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
- if( flags==0 ){
- flags = WHERE_COLUMN_RANGE;
- }
- flags |= WHERE_ORDERBY;
- if( rev ){
- flags |= WHERE_REVERSE;
- }
+ if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
+ && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
+ ){
+ wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
+ wsFlags |= (rev ? WHERE_REVERSE : 0);
}else{
- cost += cost*estLog(cost);
- WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
+ bSort = 1;
}
}
- /* Check to see if we can get away with using just the index without
- ** ever reading the table. If that is the case, then halve the
- ** cost of this index.
- */
- if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
+ /* If currently calculating the cost of using an index (not the IPK
+ ** index), determine if all required column data may be obtained without
+ ** seeking to entries in the main table (i.e. if the index is a covering
+ ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
+ ** wsFlags. Otherwise, set the bLookup variable to true. */
+ if( pIdx && wsFlags ){
Bitmask m = pSrc->colUsed;
int j;
- for(j=0; j<pProbe->nColumn; j++){
- int x = pProbe->aiColumn[j];
+ for(j=0; j<pIdx->nColumn; j++){
+ int x = pIdx->aiColumn[j];
if( x<BMS-1 ){
m &= ~(((Bitmask)1)<<x);
}
}
if( m==0 ){
- flags |= WHERE_IDX_ONLY;
- cost /= 2;
- WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
+ wsFlags |= WHERE_IDX_ONLY;
+ }else{
+ bLookup = 1;
}
}
- /* If this index has achieved the lowest cost so far, then use it.
+ /**** Begin adding up the cost of using this index (Needs improvements)
+ **
+ ** Estimate the number of rows of output. For an IN operator,
+ ** do not let the estimate exceed half the rows in the table.
*/
- if( cost < lowestCost ){
- bestIdx = pProbe;
- lowestCost = cost;
- assert( flags!=0 );
- bestFlags = flags;
- bestNEq = nEq;
+ nRow = (double)(aiRowEst[nEq] * nInMul);
+ if( bInEst && nRow*2>aiRowEst[0] ){
+ nRow = aiRowEst[0]/2;
+ nInMul = (int)(nRow / aiRowEst[nEq]);
}
- }
- /* Report the best result
- */
- *ppIndex = bestIdx;
- WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
- bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
- *pFlags = bestFlags | eqTermMask;
- *pnEq = bestNEq;
- return lowestCost;
+ /* Assume constant cost to access a row and logarithmic cost to
+ ** do a binary search. Hence, the initial cost is the number of output
+ ** rows plus log2(table-size) times the number of binary searches.
+ */
+ cost = nRow + nInMul*estLog(aiRowEst[0]);
+
+ /* Adjust the number of rows and the cost downward to reflect rows
+ ** that are excluded by range constraints.
+ */
+ nRow = (nRow * (double)nBound) / (double)100;
+ cost = (cost * (double)nBound) / (double)100;
+
+ /* Add in the estimated cost of sorting the result
+ */
+ if( bSort ){
+ cost += cost*estLog(cost);
+ }
+
+ /* If all information can be taken directly from the index, we avoid
+ ** doing table lookups. This reduces the cost by half. (Not really -
+ ** this needs to be fixed.)
+ */
+ if( pIdx && bLookup==0 ){
+ cost /= (double)2;
+ }
+ /**** Cost of using this index has now been computed ****/
+
+ WHERETRACE((
+ "tbl=%s idx=%s nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d"
+ " wsFlags=%d (nRow=%.2f cost=%.2f)\n",
+ pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
+ nEq, nInMul, nBound, bSort, bLookup, wsFlags, nRow, cost
+ ));
+
+ /* If this index is the best we have seen so far, then record this
+ ** index and its cost in the pCost structure.
+ */
+ if( (!pIdx || wsFlags) && cost<pCost->rCost ){
+ pCost->rCost = cost;
+ pCost->nRow = nRow;
+ pCost->used = used;
+ pCost->plan.wsFlags = (wsFlags&wsFlagMask);
+ pCost->plan.nEq = nEq;
+ pCost->plan.u.pIdx = pIdx;
+ }
+
+ /* If there was an INDEXED BY clause, then only that one index is
+ ** considered. */
+ if( pSrc->pIndex ) break;
+
+ /* Reset masks for the next index in the loop */
+ wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
+ eqTermMask = idxEqTermMask;
+ }
+
+ /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
+ ** is set, then reverse the order that the index will be scanned
+ ** in. This is used for application testing, to help find cases
+ ** where application behaviour depends on the (undefined) order that
+ ** SQLite outputs rows in in the absence of an ORDER BY clause. */
+ if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
+ pCost->plan.wsFlags |= WHERE_REVERSE;
+ }
+
+ assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
+ assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
+ assert( pSrc->pIndex==0
+ || pCost->plan.u.pIdx==0
+ || pCost->plan.u.pIdx==pSrc->pIndex
+ );
+
+ WHERETRACE(("best index is: %s\n",
+ (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
+ ));
+
+ bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
+ pCost->plan.wsFlags |= eqTermMask;
}
+/*
+** Find the query plan for accessing table pSrc->pTab. Write the
+** best query plan and its cost into the WhereCost object supplied
+** as the last parameter. This function may calculate the cost of
+** both real and virtual table scans.
+*/
+static void bestIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors that are not available */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ WhereCost *pCost /* Lowest cost query plan */
+){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pSrc->pTab) ){
+ sqlite3_index_info *p = 0;
+ bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
+ if( p->needToFreeIdxStr ){
+ sqlite3_free(p->idxStr);
+ }
+ sqlite3DbFree(pParse->db, p);
+ }else
+#endif
+ {
+ bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
+ }
+}
/*
** Disable a term in the WHERE clause. Except, do not disable the term
@@ -58694,10 +86682,10 @@ static double bestIndex(
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
if( pTerm
- && (pTerm->flags & TERM_CODED)==0
+ && ALWAYS((pTerm->wtFlags & TERM_CODED)==0)
&& (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
){
- pTerm->flags |= TERM_CODED;
+ pTerm->wtFlags |= TERM_CODED;
if( pTerm->iParent>=0 ){
WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
if( (--pOther->nChild)==0 ){
@@ -58708,20 +86696,19 @@ static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
}
/*
-** Generate code that builds a probe for an index.
+** Code an OP_Affinity opcode to apply the column affinity string zAff
+** to the n registers starting at base.
**
-** There should be nColumn values on the stack. The index
-** to be probed is pIdx. Pop the values from the stack and
-** replace them all with a single record that is the index
-** problem.
+** Buffer zAff was allocated using sqlite3DbMalloc(). It is the
+** responsibility of this function to arrange for it to be eventually
+** freed using sqlite3DbFree().
*/
-static void buildIndexProbe(
- Vdbe *v, /* Generate code into this VM */
- int nColumn, /* The number of columns to check for NULL */
- Index *pIdx /* Index that we will be searching */
-){
- sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
- sqlite3IndexAffinityStr(v, pIdx);
+static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
+ Vdbe *v = pParse->pVdbe;
+ assert( v!=0 );
+ sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
+ sqlite3VdbeChangeP4(v, -1, zAff, P4_DYNAMIC);
+ sqlite3ExprCacheAffinityChange(pParse, base, n);
}
@@ -58730,51 +86717,64 @@ static void buildIndexProbe(
** term can be either X=expr or X IN (...). pTerm is the term to be
** coded.
**
-** The current value for the constraint is left on the top of the stack.
+** The current value for the constraint is left in register iReg.
**
** For a constraint of the form X=expr, the expression is evaluated and its
** result is left on the stack. For constraints of the form X IN (...)
** this routine sets up a loop that will iterate over all values of X.
*/
-static void codeEqualityTerm(
+static int codeEqualityTerm(
Parse *pParse, /* The parsing context */
WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
- WhereLevel *pLevel /* When level of the FROM clause we are working on */
+ WhereLevel *pLevel, /* When level of the FROM clause we are working on */
+ int iTarget /* Attempt to leave results in this register */
){
Expr *pX = pTerm->pExpr;
Vdbe *v = pParse->pVdbe;
+ int iReg; /* Register holding results */
+
+ assert( iTarget>0 );
if( pX->op==TK_EQ ){
- sqlite3ExprCode(pParse, pX->pRight);
+ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
}else if( pX->op==TK_ISNULL ){
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+ iReg = iTarget;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
}else{
+ int eType;
int iTab;
struct InLoop *pIn;
assert( pX->op==TK_IN );
- sqlite3CodeSubselect(pParse, pX);
+ iReg = iTarget;
+ eType = sqlite3FindInIndex(pParse, pX, 0);
iTab = pX->iTable;
- sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
- VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
- if( pLevel->nIn==0 ){
- pLevel->nxt = sqlite3VdbeMakeLabel(v);
- }
- pLevel->nIn++;
- pLevel->aInLoop = sqliteReallocOrFree(pLevel->aInLoop,
- sizeof(pLevel->aInLoop[0])*pLevel->nIn);
- pIn = pLevel->aInLoop;
+ sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
+ assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
+ if( pLevel->u.in.nIn==0 ){
+ pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
+ }
+ pLevel->u.in.nIn++;
+ pLevel->u.in.aInLoop =
+ sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
+ sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
+ pIn = pLevel->u.in.aInLoop;
if( pIn ){
- pIn += pLevel->nIn - 1;
+ pIn += pLevel->u.in.nIn - 1;
pIn->iCur = iTab;
- pIn->topAddr = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
- sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
+ if( eType==IN_INDEX_ROWID ){
+ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
+ }else{
+ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
+ }
+ sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
}else{
- pLevel->nIn = 0;
+ pLevel->u.in.nIn = 0;
}
#endif
}
disableTerm(pLevel, pTerm);
+ return iReg;
}
/*
@@ -58786,69 +86786,686 @@ static void codeEqualityTerm(
** The index has as many as three equality constraints, but in this
** example, the third "c" value is an inequality. So only two
** constraints are coded. This routine will generate code to evaluate
-** a==5 and b IN (1,2,3). The current values for a and b will be left
-** on the stack - a is the deepest and b the shallowest.
+** a==5 and b IN (1,2,3). The current values for a and b will be stored
+** in consecutive registers and the index of the first register is returned.
**
** In the example above nEq==2. But this subroutine works for any value
** of nEq including 0. If nEq==0, this routine is nearly a no-op.
** The only thing it does is allocate the pLevel->iMem memory cell.
**
-** This routine always allocates at least one memory cell and puts
-** the address of that memory cell in pLevel->iMem. The code that
-** calls this routine will use pLevel->iMem to store the termination
+** This routine always allocates at least one memory cell and returns
+** the index of that memory cell. The code that
+** calls this routine will use that memory cell to store the termination
** key value of the loop. If one or more IN operators appear, then
** this routine allocates an additional nEq memory cells for internal
** use.
+**
+** Before returning, *pzAff is set to point to a buffer containing a
+** copy of the column affinity string of the index allocated using
+** sqlite3DbMalloc(). Except, entries in the copy of the string associated
+** with equality constraints that use NONE affinity are set to
+** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
+**
+** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
+** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
+**
+** In the example above, the index on t1(a) has TEXT affinity. But since
+** the right hand side of the equality constraint (t2.b) has NONE affinity,
+** no conversion should be attempted before using a t2.b value as part of
+** a key to search the index. Hence the first byte in the returned affinity
+** string in this example would be set to SQLITE_AFF_NONE.
*/
-static void codeAllEqualityTerms(
+static int codeAllEqualityTerms(
Parse *pParse, /* Parsing context */
WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
WhereClause *pWC, /* The WHERE clause */
- Bitmask notReady /* Which parts of FROM have not yet been coded */
+ Bitmask notReady, /* Which parts of FROM have not yet been coded */
+ int nExtraReg, /* Number of extra registers to allocate */
+ char **pzAff /* OUT: Set to point to affinity string */
){
- int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
- int termsInMem = 0; /* If true, store value in mem[] cells */
- Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
- Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
+ int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
+ Vdbe *v = pParse->pVdbe; /* The vm under construction */
+ Index *pIdx; /* The index being used for this loop */
int iCur = pLevel->iTabCur; /* The cursor of the table */
WhereTerm *pTerm; /* A single constraint term */
int j; /* Loop counter */
+ int regBase; /* Base register */
+ int nReg; /* Number of registers to allocate */
+ char *zAff; /* Affinity string to return */
+
+ /* This module is only called on query plans that use an index. */
+ assert( pLevel->plan.wsFlags & WHERE_INDEXED );
+ pIdx = pLevel->plan.u.pIdx;
/* Figure out how many memory cells we will need then allocate them.
- ** We always need at least one used to store the loop terminator
- ** value. If there are IN operators we'll need one for each == or
- ** IN constraint.
*/
- pLevel->iMem = pParse->nMem++;
- if( pLevel->flags & WHERE_COLUMN_IN ){
- pParse->nMem += pLevel->nEq;
- termsInMem = 1;
+ regBase = pParse->nMem + 1;
+ nReg = pLevel->plan.nEq + nExtraReg;
+ pParse->nMem += nReg;
+
+ zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
+ if( !zAff ){
+ pParse->db->mallocFailed = 1;
}
/* Evaluate the equality constraints
*/
assert( pIdx->nColumn>=nEq );
for(j=0; j<nEq; j++){
+ int r1;
int k = pIdx->aiColumn[j];
- pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
- if( pTerm==0 ) break;
- assert( (pTerm->flags & TERM_CODED)==0 );
- codeEqualityTerm(pParse, pTerm, pLevel);
+ pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
+ if( NEVER(pTerm==0) ) break;
+ assert( (pTerm->wtFlags & TERM_CODED)==0 );
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
+ if( r1!=regBase+j ){
+ if( nReg==1 ){
+ sqlite3ReleaseTempReg(pParse, regBase);
+ regBase = r1;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
+ }
+ }
+ testcase( pTerm->eOperator & WO_ISNULL );
+ testcase( pTerm->eOperator & WO_IN );
if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
- sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
+ if( zAff
+ && sqlite3CompareAffinity(pTerm->pExpr->pRight, zAff[j])==SQLITE_AFF_NONE
+ ){
+ zAff[j] = SQLITE_AFF_NONE;
+ }
+ }
+ }
+ *pzAff = zAff;
+ return regBase;
+}
+
+/*
+** Generate code for the start of the iLevel-th loop in the WHERE clause
+** implementation described by pWInfo.
+*/
+static Bitmask codeOneLoopStart(
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */
+ int iLevel, /* Which level of pWInfo->a[] should be coded */
+ u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
+ Bitmask notReady /* Which tables are currently available */
+){
+ int j, k; /* Loop counters */
+ int iCur; /* The VDBE cursor for the table */
+ int addrNxt; /* Where to jump to continue with the next IN case */
+ int omitTable; /* True if we use the index only */
+ int bRev; /* True if we need to scan in reverse order */
+ WhereLevel *pLevel; /* The where level to be coded */
+ WhereClause *pWC; /* Decomposition of the entire WHERE clause */
+ WhereTerm *pTerm; /* A WHERE clause term */
+ Parse *pParse; /* Parsing context */
+ Vdbe *v; /* The prepared stmt under constructions */
+ struct SrcList_item *pTabItem; /* FROM clause term being coded */
+ int addrBrk; /* Jump here to break out of the loop */
+ int addrCont; /* Jump here to continue with next cycle */
+ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
+ int iReleaseReg = 0; /* Temp register to free before returning */
+
+ pParse = pWInfo->pParse;
+ v = pParse->pVdbe;
+ pWC = pWInfo->pWC;
+ pLevel = &pWInfo->a[iLevel];
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ iCur = pTabItem->iCursor;
+ bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
+ omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
+ && (wctrlFlags & WHERE_FORCE_TABLE)==0;
+
+ /* Create labels for the "break" and "continue" instructions
+ ** for the current loop. Jump to addrBrk to break out of a loop.
+ ** Jump to cont to go immediately to the next iteration of the
+ ** loop.
+ **
+ ** When there is an IN operator, we also have a "addrNxt" label that
+ ** means to continue with the next IN value combination. When
+ ** there are no IN operators in the constraints, the "addrNxt" label
+ ** is the same as "addrBrk".
+ */
+ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
+ addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
+
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
+ ** initialize a memory cell that records if this table matches any
+ ** row of the left table of the join.
+ */
+ if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
+ pLevel->iLeftJoin = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
+ VdbeComment((v, "init LEFT JOIN no-match flag"));
+ }
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ /* Case 0: The table is a virtual-table. Use the VFilter and VNext
+ ** to access the data.
+ */
+ int iReg; /* P3 Value for OP_VFilter */
+ sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
+ int nConstraint = pVtabIdx->nConstraint;
+ struct sqlite3_index_constraint_usage *aUsage =
+ pVtabIdx->aConstraintUsage;
+ const struct sqlite3_index_constraint *aConstraint =
+ pVtabIdx->aConstraint;
+
+ iReg = sqlite3GetTempRange(pParse, nConstraint+2);
+ for(j=1; j<=nConstraint; j++){
+ for(k=0; k<nConstraint; k++){
+ if( aUsage[k].argvIndex==j ){
+ int iTerm = aConstraint[k].iTermOffset;
+ sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
+ break;
+ }
+ }
+ if( k==nConstraint ) break;
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
+ sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
+ sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
+ pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
+ pVtabIdx->needToFreeIdxStr = 0;
+ for(j=0; j<nConstraint; j++){
+ if( aUsage[j].omit ){
+ int iTerm = aConstraint[j].iTermOffset;
+ disableTerm(pLevel, &pWC->a[iTerm]);
+ }
+ }
+ pLevel->op = OP_VNext;
+ pLevel->p1 = iCur;
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+ sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
+ }else
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
+ /* Case 1: We can directly reference a single row using an
+ ** equality comparison against the ROWID field. Or
+ ** we reference multiple rows using a "rowid IN (...)"
+ ** construct.
+ */
+ iReleaseReg = sqlite3GetTempReg(pParse);
+ pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
+ assert( pTerm!=0 );
+ assert( pTerm->pExpr!=0 );
+ assert( pTerm->leftCursor==iCur );
+ assert( omitTable==0 );
+ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
+ addrNxt = pLevel->addrNxt;
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
+ VdbeComment((v, "pk"));
+ pLevel->op = OP_Noop;
+ }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
+ /* Case 2: We have an inequality comparison against the ROWID field.
+ */
+ int testOp = OP_Noop;
+ int start;
+ int memEndValue = 0;
+ WhereTerm *pStart, *pEnd;
+
+ assert( omitTable==0 );
+ pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
+ pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
+ if( bRev ){
+ pTerm = pStart;
+ pStart = pEnd;
+ pEnd = pTerm;
+ }
+ if( pStart ){
+ Expr *pX; /* The expression that defines the start bound */
+ int r1, rTemp; /* Registers for holding the start boundary */
+
+ /* The following constant maps TK_xx codes into corresponding
+ ** seek opcodes. It depends on a particular ordering of TK_xx
+ */
+ const u8 aMoveOp[] = {
+ /* TK_GT */ OP_SeekGt,
+ /* TK_LE */ OP_SeekLe,
+ /* TK_LT */ OP_SeekLt,
+ /* TK_GE */ OP_SeekGe
+ };
+ assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
+ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
+ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
+
+ pX = pStart->pExpr;
+ assert( pX!=0 );
+ assert( pStart->leftCursor==iCur );
+ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
+ sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
+ VdbeComment((v, "pk"));
+ sqlite3ExprCacheAffinityChange(pParse, r1, 1);
+ sqlite3ReleaseTempReg(pParse, rTemp);
+ disableTerm(pLevel, pStart);
+ }else{
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
}
- if( termsInMem ){
- sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
+ if( pEnd ){
+ Expr *pX;
+ pX = pEnd->pExpr;
+ assert( pX!=0 );
+ assert( pEnd->leftCursor==iCur );
+ memEndValue = ++pParse->nMem;
+ sqlite3ExprCode(pParse, pX->pRight, memEndValue);
+ if( pX->op==TK_LT || pX->op==TK_GT ){
+ testOp = bRev ? OP_Le : OP_Ge;
+ }else{
+ testOp = bRev ? OP_Lt : OP_Gt;
+ }
+ disableTerm(pLevel, pEnd);
+ }
+ start = sqlite3VdbeCurrentAddr(v);
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ pLevel->p5 = (pStart==0 && pEnd==0) ?1:0;
+ if( testOp!=OP_Noop ){
+ iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
+ sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
+ }
+ }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
+ /* Case 3: A scan using an index.
+ **
+ ** The WHERE clause may contain zero or more equality
+ ** terms ("==" or "IN" operators) that refer to the N
+ ** left-most columns of the index. It may also contain
+ ** inequality constraints (>, <, >= or <=) on the indexed
+ ** column that immediately follows the N equalities. Only
+ ** the right-most column can be an inequality - the rest must
+ ** use the "==" and "IN" operators. For example, if the
+ ** index is on (x,y,z), then the following clauses are all
+ ** optimized:
+ **
+ ** x=5
+ ** x=5 AND y=10
+ ** x=5 AND y<10
+ ** x=5 AND y>5 AND y<10
+ ** x=5 AND y=5 AND z<=10
+ **
+ ** The z<10 term of the following cannot be used, only
+ ** the x=5 term:
+ **
+ ** x=5 AND z<10
+ **
+ ** N may be zero if there are inequality constraints.
+ ** If there are no inequality constraints, then N is at
+ ** least one.
+ **
+ ** This case is also used when there are no WHERE clause
+ ** constraints but an index is selected anyway, in order
+ ** to force the output order to conform to an ORDER BY.
+ */
+ int aStartOp[] = {
+ 0,
+ 0,
+ OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
+ OP_Last, /* 3: (!start_constraints && startEq && bRev) */
+ OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
+ OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
+ OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
+ OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
+ };
+ int aEndOp[] = {
+ OP_Noop, /* 0: (!end_constraints) */
+ OP_IdxGE, /* 1: (end_constraints && !bRev) */
+ OP_IdxLT /* 2: (end_constraints && bRev) */
+ };
+ int nEq = pLevel->plan.nEq;
+ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
+ int regBase; /* Base register holding constraint values */
+ int r1; /* Temp register */
+ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
+ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
+ int startEq; /* True if range start uses ==, >= or <= */
+ int endEq; /* True if range end uses ==, >= or <= */
+ int start_constraints; /* Start of range is constrained */
+ int nConstraint; /* Number of constraint terms */
+ Index *pIdx; /* The index we will be using */
+ int iIdxCur; /* The VDBE cursor for the index */
+ int nExtraReg = 0; /* Number of extra registers needed */
+ int op; /* Instruction opcode */
+ char *zAff;
+
+ pIdx = pLevel->plan.u.pIdx;
+ iIdxCur = pLevel->iIdxCur;
+ k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
+
+ /* If this loop satisfies a sort order (pOrderBy) request that
+ ** was passed to this function to implement a "SELECT min(x) ..."
+ ** query, then the caller will only allow the loop to run for
+ ** a single iteration. This means that the first row returned
+ ** should not have a NULL value stored in 'x'. If column 'x' is
+ ** the first one after the nEq equality constraints in the index,
+ ** this requires some special handling.
+ */
+ if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
+ && (pLevel->plan.wsFlags&WHERE_ORDERBY)
+ && (pIdx->nColumn>nEq)
+ ){
+ /* assert( pOrderBy->nExpr==1 ); */
+ /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
+ isMinQuery = 1;
+ nExtraReg = 1;
+ }
+
+ /* Find any inequality constraint terms for the start and end
+ ** of the range.
+ */
+ if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
+ pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
+ nExtraReg = 1;
+ }
+ if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
+ pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
+ nExtraReg = 1;
+ }
+
+ /* Generate code to evaluate all constraint terms using == or IN
+ ** and store the values of those terms in an array of registers
+ ** starting at regBase.
+ */
+ regBase = codeAllEqualityTerms(
+ pParse, pLevel, pWC, notReady, nExtraReg, &zAff
+ );
+ addrNxt = pLevel->addrNxt;
+
+ /* If we are doing a reverse order scan on an ascending index, or
+ ** a forward order scan on a descending index, interchange the
+ ** start and end terms (pRangeStart and pRangeEnd).
+ */
+ if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
+ SWAP(WhereTerm *, pRangeEnd, pRangeStart);
+ }
+
+ testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
+ testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
+ testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
+ testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
+ startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
+ endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
+ start_constraints = pRangeStart || nEq>0;
+
+ /* Seek the index cursor to the start of the range. */
+ nConstraint = nEq;
+ if( pRangeStart ){
+ Expr *pRight = pRangeStart->pExpr->pRight;
+ sqlite3ExprCode(pParse, pRight, regBase+nEq);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
+ if( zAff
+ && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
+ ){
+ /* Since the comparison is to be performed with no conversions applied
+ ** to the operands, set the affinity to apply to pRight to
+ ** SQLITE_AFF_NONE. */
+ zAff[nConstraint] = SQLITE_AFF_NONE;
+ }
+ nConstraint++;
+ }else if( isMinQuery ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ nConstraint++;
+ startEq = 0;
+ start_constraints = 1;
+ }
+ codeApplyAffinity(pParse, regBase, nConstraint, zAff);
+ op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
+ assert( op!=0 );
+ testcase( op==OP_Rewind );
+ testcase( op==OP_Last );
+ testcase( op==OP_SeekGt );
+ testcase( op==OP_SeekGe );
+ testcase( op==OP_SeekLe );
+ testcase( op==OP_SeekLt );
+ sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase,
+ SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
+
+ /* Load the value for the inequality constraint at the end of the
+ ** range (if any).
+ */
+ nConstraint = nEq;
+ if( pRangeEnd ){
+ Expr *pRight = pRangeEnd->pExpr->pRight;
+ sqlite3ExprCacheRemove(pParse, regBase+nEq);
+ sqlite3ExprCode(pParse, pRight, regBase+nEq);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
+ zAff = sqlite3DbStrDup(pParse->db, zAff);
+ if( zAff
+ && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
+ ){
+ /* Since the comparison is to be performed with no conversions applied
+ ** to the operands, set the affinity to apply to pRight to
+ ** SQLITE_AFF_NONE. */
+ zAff[nConstraint] = SQLITE_AFF_NONE;
+ }
+ codeApplyAffinity(pParse, regBase, nEq+1, zAff);
+ nConstraint++;
}
+
+ /* Top of the loop body */
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+
+ /* Check if the index cursor is past the end of the range. */
+ op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
+ testcase( op==OP_Noop );
+ testcase( op==OP_IdxGE );
+ testcase( op==OP_IdxLT );
+ if( op!=OP_Noop ){
+ sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase,
+ SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
+ sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
+ }
+
+ /* If there are inequality constraints, check that the value
+ ** of the table column that the inequality contrains is not NULL.
+ ** If it is, jump to the next iteration of the loop.
+ */
+ r1 = sqlite3GetTempReg(pParse);
+ testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
+ testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
+ if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
+ sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
+ }
+ sqlite3ReleaseTempReg(pParse, r1);
+
+ /* Seek the table cursor, if required */
+ disableTerm(pLevel, pRangeStart);
+ disableTerm(pLevel, pRangeEnd);
+ if( !omitTable ){
+ iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
+ sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
+ }
+
+ /* Record the instruction used to terminate the loop. Disable
+ ** WHERE clause terms made redundant by the index range scan.
+ */
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iIdxCur;
+ }else
+
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION
+ if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
+ /* Case 4: Two or more separately indexed terms connected by OR
+ **
+ ** Example:
+ **
+ ** CREATE TABLE t1(a,b,c,d);
+ ** CREATE INDEX i1 ON t1(a);
+ ** CREATE INDEX i2 ON t1(b);
+ ** CREATE INDEX i3 ON t1(c);
+ **
+ ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
+ **
+ ** In the example, there are three indexed terms connected by OR.
+ ** The top of the loop looks like this:
+ **
+ ** Null 1 # Zero the rowset in reg 1
+ **
+ ** Then, for each indexed term, the following. The arguments to
+ ** RowSetTest are such that the rowid of the current row is inserted
+ ** into the RowSet. If it is already present, control skips the
+ ** Gosub opcode and jumps straight to the code generated by WhereEnd().
+ **
+ ** sqlite3WhereBegin(<term>)
+ ** RowSetTest # Insert rowid into rowset
+ ** Gosub 2 A
+ ** sqlite3WhereEnd()
+ **
+ ** Following the above, code to terminate the loop. Label A, the target
+ ** of the Gosub above, jumps to the instruction right after the Goto.
+ **
+ ** Null 1 # Zero the rowset in reg 1
+ ** Goto B # The loop is finished.
+ **
+ ** A: <loop body> # Return data, whatever.
+ **
+ ** Return 2 # Jump back to the Gosub
+ **
+ ** B: <after the loop>
+ **
+ */
+ WhereClause *pOrWc; /* The OR-clause broken out into subterms */
+ WhereTerm *pFinal; /* Final subterm within the OR-clause. */
+ SrcList oneTab; /* Shortened table list */
+
+ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
+ int regRowset = 0; /* Register for RowSet object */
+ int regRowid = 0; /* Register holding rowid */
+ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
+ int iRetInit; /* Address of regReturn init */
+ int ii;
+
+ pTerm = pLevel->plan.u.pTerm;
+ assert( pTerm!=0 );
+ assert( pTerm->eOperator==WO_OR );
+ assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
+ pOrWc = &pTerm->u.pOrInfo->wc;
+ pFinal = &pOrWc->a[pOrWc->nTerm-1];
+
+ /* Set up a SrcList containing just the table being scanned by this loop. */
+ oneTab.nSrc = 1;
+ oneTab.nAlloc = 1;
+ oneTab.a[0] = *pTabItem;
+
+ /* Initialize the rowset register to contain NULL. An SQL NULL is
+ ** equivalent to an empty rowset.
+ **
+ ** Also initialize regReturn to contain the address of the instruction
+ ** immediately following the OP_Return at the bottom of the loop. This
+ ** is required in a few obscure LEFT JOIN cases where control jumps
+ ** over the top of the loop into the body of it. In this case the
+ ** correct response for the end-of-loop code (the OP_Return) is to
+ ** fall through to the next instruction, just as an OP_Next does if
+ ** called on an uninitialized cursor.
+ */
+ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
+ regRowset = ++pParse->nMem;
+ regRowid = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
+ }
+ iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
+
+ for(ii=0; ii<pOrWc->nTerm; ii++){
+ WhereTerm *pOrTerm = &pOrWc->a[ii];
+ if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
+ WhereInfo *pSubWInfo; /* Info for single OR-term scan */
+ /* Loop through table entries that match term pOrTerm. */
+ pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0,
+ WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE);
+ if( pSubWInfo ){
+ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
+ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
+ int r;
+ r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
+ regRowid, 0);
+ sqlite3VdbeAddOp4(v, OP_RowSetTest, regRowset,
+ sqlite3VdbeCurrentAddr(v)+2,
+ r, SQLITE_INT_TO_PTR(iSet), P4_INT32);
+ }
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
+
+ /* Finish the loop through table entries that match term pOrTerm. */
+ sqlite3WhereEnd(pSubWInfo);
+ }
+ }
+ }
+ sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
+ /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
+ sqlite3VdbeResolveLabel(v, iLoopBody);
+
+ pLevel->op = OP_Return;
+ pLevel->p1 = regReturn;
+ disableTerm(pLevel, pTerm);
+ }else
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+
+ {
+ /* Case 5: There is no usable index. We must do a complete
+ ** scan of the entire table.
+ */
+ static const u8 aStep[] = { OP_Next, OP_Prev };
+ static const u8 aStart[] = { OP_Rewind, OP_Last };
+ assert( bRev==0 || bRev==1 );
+ assert( omitTable==0 );
+ pLevel->op = aStep[bRev];
+ pLevel->p1 = iCur;
+ pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
+ }
+ notReady &= ~getMask(pWC->pMaskSet, iCur);
+
+ /* Insert code to test every subexpression that can be completely
+ ** computed using the current set of tables.
+ */
+ k = 0;
+ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
+ Expr *pE;
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ testcase( pTerm->wtFlags & TERM_CODED );
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & notReady)!=0 ) continue;
+ pE = pTerm->pExpr;
+ assert( pE!=0 );
+ if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
+ continue;
+ }
+ sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
+ k = 1;
+ pTerm->wtFlags |= TERM_CODED;
}
- /* Make sure all the constraint values are on the top of the stack
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
+ ** at least one row of the right table has matched the left table.
*/
- if( termsInMem ){
- for(j=0; j<nEq; j++){
- sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
+ if( pLevel->iLeftJoin ){
+ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
+ VdbeComment((v, "record LEFT JOIN hit"));
+ sqlite3ExprCacheClear(pParse);
+ for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ testcase( pTerm->wtFlags & TERM_CODED );
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & notReady)!=0 ) continue;
+ assert( pTerm->pExpr );
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
+ pTerm->wtFlags |= TERM_CODED;
}
}
+ sqlite3ReleaseTempReg(pParse, iReleaseReg);
+
+ return notReady;
}
#if defined(SQLITE_TEST)
@@ -58858,7 +87475,7 @@ static void codeAllEqualityTerms(
** overwrites the previous. This information is used for testing and
** analysis only.
*/
-char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
+SQLITE_API char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
static int nQPlan = 0; /* Next free slow in _query_plan[] */
#endif /* SQLITE_TEST */
@@ -58867,23 +87484,21 @@ static int nQPlan = 0; /* Next free slow in _query_plan[] */
/*
** Free a WhereInfo structure
*/
-static void whereInfoFree(WhereInfo *pWInfo){
+static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
if( pWInfo ){
int i;
for(i=0; i<pWInfo->nLevel; i++){
sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
if( pInfo ){
+ /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
if( pInfo->needToFreeIdxStr ){
- /* Coverage: Don't think this can be reached. By the time this
- ** function is called, the index-strings have been passed
- ** to the vdbe layer for deletion.
- */
sqlite3_free(pInfo->idxStr);
}
- sqliteFree(pInfo);
+ sqlite3DbFree(db, pInfo);
}
}
- sqliteFree(pWInfo);
+ whereClauseClear(pWInfo->pWC);
+ sqlite3DbFree(db, pWInfo);
}
}
@@ -58976,24 +87591,25 @@ static void whereInfoFree(WhereInfo *pWInfo){
** If the where clause loops cannot be arranged to provide the correct
** output order, then the *ppOrderBy is unchanged.
*/
-WhereInfo *sqlite3WhereBegin(
+SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* A list of all tables to be scanned */
Expr *pWhere, /* The WHERE clause */
- ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
+ ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
+ u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
){
int i; /* Loop counter */
+ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
- int brk, cont = 0; /* Addresses used during code generation */
Bitmask notReady; /* Cursors that are not yet positioned */
- WhereTerm *pTerm; /* A single term in the WHERE clause */
- ExprMaskSet maskSet; /* The expression mask set */
- WhereClause wc; /* The WHERE clause is divided into these terms */
+ WhereMaskSet *pMaskSet; /* The expression mask set */
+ WhereClause *pWC; /* Decomposition of the WHERE clause */
struct SrcList_item *pTabItem; /* A single entry from pTabList */
WhereLevel *pLevel; /* A single level in the pWInfo list */
int iFrom; /* First unused FROM clause element */
- int andFlags; /* AND-ed combination of all wc.a[].flags */
+ int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
+ sqlite3 *db; /* Database connection */
/* The number of tables in the FROM clause is limited by the number of
** bits in a Bitmask
@@ -59003,44 +87619,91 @@ WhereInfo *sqlite3WhereBegin(
return 0;
}
- /* Split the WHERE clause into separate subexpressions where each
- ** subexpression is separated by an AND operator.
- */
- initMaskSet(&maskSet);
- whereClauseInit(&wc, pParse, &maskSet);
- whereSplit(&wc, pWhere, TK_AND);
-
/* Allocate and initialize the WhereInfo structure that will become the
- ** return value.
+ ** return value. A single allocation is used to store the WhereInfo
+ ** struct, the contents of WhereInfo.a[], the WhereClause structure
+ ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
+ ** field (type Bitmask) it must be aligned on an 8-byte boundary on
+ ** some architectures. Hence the ROUND8() below.
*/
- pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
- if( sqlite3MallocFailed() ){
- goto whereBeginNoMem;
+ db = pParse->db;
+ nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel));
+ pWInfo = sqlite3DbMallocZero(db,
+ nByteWInfo +
+ sizeof(WhereClause) +
+ sizeof(WhereMaskSet)
+ );
+ if( db->mallocFailed ){
+ goto whereBeginError;
}
pWInfo->nLevel = pTabList->nSrc;
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
+ pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
+ pWInfo->wctrlFlags = wctrlFlags;
+ pMaskSet = (WhereMaskSet*)&pWC[1];
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator.
+ */
+ initMaskSet(pMaskSet);
+ whereClauseInit(pWC, pParse, pMaskSet);
+ sqlite3ExprCodeConstants(pParse, pWhere);
+ whereSplit(pWC, pWhere, TK_AND);
/* Special case: a WHERE clause that is constant. Evaluate the
** expression and either jump over all of the code or fall thru.
*/
- if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
- sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
+ if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
+ sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
pWhere = 0;
}
+ /* Assign a bit from the bitmask to every term in the FROM clause.
+ **
+ ** When assigning bitmask values to FROM clause cursors, it must be
+ ** the case that if X is the bitmask for the N-th FROM clause term then
+ ** the bitmask for all FROM clause terms to the left of the N-th term
+ ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
+ ** its Expr.iRightJoinTable value to find the bitmask of the right table
+ ** of the join. Subtracting one from the right table bitmask gives a
+ ** bitmask for all tables to the left of the join. Knowing the bitmask
+ ** for all tables to the left of a left join is important. Ticket #3015.
+ **
+ ** Configure the WhereClause.vmask variable so that bits that correspond
+ ** to virtual table cursors are set. This is used to selectively disable
+ ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
+ ** with virtual tables.
+ */
+ assert( pWC->vmask==0 && pMaskSet->n==0 );
+ for(i=0; i<pTabList->nSrc; i++){
+ createMask(pMaskSet, pTabList->a[i].iCursor);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
+ pWC->vmask |= ((Bitmask)1 << i);
+ }
+#endif
+ }
+#ifndef NDEBUG
+ {
+ Bitmask toTheLeft = 0;
+ for(i=0; i<pTabList->nSrc; i++){
+ Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
+ assert( (m-1)==toTheLeft );
+ toTheLeft |= m;
+ }
+ }
+#endif
+
/* Analyze all of the subexpressions. Note that exprAnalyze() might
** add new virtual terms onto the end of the WHERE clause. We do not
** want to analyze these virtual terms, so start analyzing at the end
** and work forward so that the added virtual terms are never processed.
*/
- for(i=0; i<pTabList->nSrc; i++){
- createMask(&maskSet, pTabList->a[i].iCursor);
- }
- exprAnalyzeAll(pTabList, &wc);
- if( sqlite3MallocFailed() ){
- goto whereBeginNoMem;
+ exprAnalyzeAll(pTabList, pWC);
+ if( db->mallocFailed ){
+ goto whereBeginError;
}
/* Chose the best index to use for each table in the FROM clause.
@@ -59048,11 +87711,12 @@ WhereInfo *sqlite3WhereBegin(
** This loop fills in the following fields:
**
** pWInfo->a[].pIdx The index to use for this level of the loop.
- ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
+ ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
** pWInfo->a[].nEq The number of == and IN constraints
- ** pWInfo->a[].iFrom When term of the FROM clause is being coded
+ ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
** pWInfo->a[].iTabCur The VDBE cursor for the database table
** pWInfo->a[].iIdxCur The VDBE cursor for the index
+ ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
**
** This loop also figures out the nesting order of tables in the FROM
** clause.
@@ -59063,92 +87727,125 @@ WhereInfo *sqlite3WhereBegin(
andFlags = ~0;
WHERETRACE(("*** Optimizer Start ***\n"));
for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
+ WhereCost bestPlan; /* Most efficient plan seen so far */
Index *pIdx; /* Index for FROM table at pTabItem */
- int flags; /* Flags asssociated with pIdx */
- int nEq; /* Number of == or IN constraints */
- double cost; /* The cost for pIdx */
int j; /* For looping over FROM tables */
- Index *pBest = 0; /* The best index seen so far */
- int bestFlags = 0; /* Flags associated with pBest */
- int bestNEq = 0; /* nEq associated with pBest */
- double lowestCost; /* Cost of the pBest */
- int bestJ = 0; /* The value of j */
+ int bestJ = -1; /* The value of j */
Bitmask m; /* Bitmask value for j or bestJ */
- int once = 0; /* True when first table is seen */
- sqlite3_index_info *pIndex; /* Current virtual index */
-
- lowestCost = SQLITE_BIG_DBL;
- for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
- int doNotReorder; /* True if this table should not be reordered */
-
- doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
- if( once && doNotReorder ) break;
- m = getMask(&maskSet, pTabItem->iCursor);
- if( (m & notReady)==0 ){
- if( j==iFrom ) iFrom++;
- continue;
- }
- assert( pTabItem->pTab );
+ int isOptimal; /* Iterator for optimal/non-optimal search */
+
+ memset(&bestPlan, 0, sizeof(bestPlan));
+ bestPlan.rCost = SQLITE_BIG_DBL;
+
+ /* Loop through the remaining entries in the FROM clause to find the
+ ** next nested loop. The FROM clause entries may be iterated through
+ ** either once or twice.
+ **
+ ** The first iteration, which is always performed, searches for the
+ ** FROM clause entry that permits the lowest-cost, "optimal" scan. In
+ ** this context an optimal scan is one that uses the same strategy
+ ** for the given FROM clause entry as would be selected if the entry
+ ** were used as the innermost nested loop. In other words, a table
+ ** is chosen such that the cost of running that table cannot be reduced
+ ** by waiting for other tables to run first.
+ **
+ ** The second iteration is only performed if no optimal scan strategies
+ ** were found by the first. This iteration is used to search for the
+ ** lowest cost scan overall.
+ **
+ ** Previous versions of SQLite performed only the second iteration -
+ ** the next outermost loop was always that with the lowest overall
+ ** cost. However, this meant that SQLite could select the wrong plan
+ ** for scripts such as the following:
+ **
+ ** CREATE TABLE t1(a, b);
+ ** CREATE TABLE t2(c, d);
+ ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
+ **
+ ** The best strategy is to iterate through table t1 first. However it
+ ** is not possible to determine this with a simple greedy algorithm.
+ ** However, since the cost of a linear scan through table t2 is the same
+ ** as the cost of a linear scan through table t1, a simple greedy
+ ** algorithm may choose to use t2 for the outer loop, which is a much
+ ** costlier approach.
+ */
+ for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
+ Bitmask mask = (isOptimal ? 0 : notReady);
+ assert( (pTabList->nSrc-iFrom)>1 || isOptimal );
+ for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
+ int doNotReorder; /* True if this table should not be reordered */
+ WhereCost sCost; /* Cost information from best[Virtual]Index() */
+ ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
+
+ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
+ if( j!=iFrom && doNotReorder ) break;
+ m = getMask(pMaskSet, pTabItem->iCursor);
+ if( (m & notReady)==0 ){
+ if( j==iFrom ) iFrom++;
+ continue;
+ }
+ pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
+
+ assert( pTabItem->pTab );
#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTabItem->pTab) ){
- sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
- cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
- ppOrderBy ? *ppOrderBy : 0, i==0,
- ppIdxInfo);
- flags = WHERE_VIRTUALTABLE;
- pIndex = *ppIdxInfo;
- if( pIndex && pIndex->orderByConsumed ){
- flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
- }
- pIdx = 0;
- nEq = 0;
- if( (SQLITE_BIG_DBL/2.0)<cost ){
- /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
- ** inital value of lowestCost in this loop. If it is, then
- ** the (cost<lowestCost) test below will never be true and
- ** pLevel->pBestIdx never set.
- */
- cost = (SQLITE_BIG_DBL/2.0);
- }
- }else
+ if( IsVirtual(pTabItem->pTab) ){
+ sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
+ bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
+ }else
#endif
- {
- cost = bestIndex(pParse, &wc, pTabItem, notReady,
- (i==0 && ppOrderBy) ? *ppOrderBy : 0,
- &pIdx, &flags, &nEq);
- pIndex = 0;
- }
- if( cost<lowestCost ){
- once = 1;
- lowestCost = cost;
- pBest = pIdx;
- bestFlags = flags;
- bestNEq = nEq;
- bestJ = j;
- pLevel->pBestIdx = pIndex;
- }
- if( doNotReorder ) break;
- }
- WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
+ {
+ bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
+ }
+ assert( isOptimal || (sCost.used&notReady)==0 );
+
+ if( (sCost.used&notReady)==0
+ && (j==iFrom || sCost.rCost<bestPlan.rCost)
+ ){
+ bestPlan = sCost;
+ bestJ = j;
+ }
+ if( doNotReorder ) break;
+ }
+ }
+ assert( bestJ>=0 );
+ assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
+ WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
pLevel-pWInfo->a));
- if( (bestFlags & WHERE_ORDERBY)!=0 ){
+ if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
*ppOrderBy = 0;
}
- andFlags &= bestFlags;
- pLevel->flags = bestFlags;
- pLevel->pIdx = pBest;
- pLevel->nEq = bestNEq;
- pLevel->aInLoop = 0;
- pLevel->nIn = 0;
- if( pBest ){
+ andFlags &= bestPlan.plan.wsFlags;
+ pLevel->plan = bestPlan.plan;
+ if( bestPlan.plan.wsFlags & WHERE_INDEXED ){
pLevel->iIdxCur = pParse->nTab++;
}else{
pLevel->iIdxCur = -1;
}
- notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
- pLevel->iFrom = bestJ;
+ notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
+ pLevel->iFrom = (u8)bestJ;
+
+ /* Check that if the table scanned by this loop iteration had an
+ ** INDEXED BY clause attached to it, that the named index is being
+ ** used for the scan. If not, then query compilation has failed.
+ ** Return an error.
+ */
+ pIdx = pTabList->a[bestJ].pIndex;
+ if( pIdx ){
+ if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
+ sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
+ goto whereBeginError;
+ }else{
+ /* If an INDEXED BY clause is used, the bestIndex() function is
+ ** guaranteed to find the index specified in the INDEXED BY clause
+ ** if it find an index at all. */
+ assert( bestPlan.plan.u.pIdx==pIdx );
+ }
+ }
}
WHERETRACE(("*** Optimizer Finished ***\n"));
+ if( pParse->nErr || db->mallocFailed ){
+ goto whereBeginError;
+ }
/* If the total query only selects a single row, then the ORDER BY
** clause is irrelevant.
@@ -59157,77 +87854,89 @@ WhereInfo *sqlite3WhereBegin(
*ppOrderBy = 0;
}
+ /* If the caller is an UPDATE or DELETE statement that is requesting
+ ** to use a one-pass algorithm, determine if this is appropriate.
+ ** The one-pass algorithm only works if the WHERE clause constraints
+ ** the statement to update a single row.
+ */
+ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
+ if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
+ pWInfo->okOnePass = 1;
+ pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
+ }
+
/* Open all tables in the pTabList and any indices selected for
** searching those tables.
*/
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
Table *pTab; /* Table to open */
- Index *pIx; /* Index used to access pTab (if any) */
int iDb; /* Index of database containing table/index */
- int iIdxCur = pLevel->iIdxCur;
#ifndef SQLITE_OMIT_EXPLAIN
if( pParse->explain==2 ){
char *zMsg;
struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
- zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
+ zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
if( pItem->zAlias ){
- zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
+ zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
}
- if( (pIx = pLevel->pIdx)!=0 ){
- zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
- }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
- zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
+ if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
+ zMsg, pLevel->plan.u.pIdx->zName);
+ }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
+ }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
- else if( pLevel->pBestIdx ){
- sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
- zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg,
- pBestIdx->idxNum, pBestIdx->idxStr);
+ else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
+ zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
+ pVtabIdx->idxNum, pVtabIdx->idxStr);
}
#endif
- if( pLevel->flags & WHERE_ORDERBY ){
- zMsg = sqlite3MPrintf("%z ORDER BY", zMsg);
+ if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
+ zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
}
- sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
+ sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
}
#endif /* SQLITE_OMIT_EXPLAIN */
pTabItem = &pTabList->a[pLevel->iFrom];
pTab = pTabItem->pTab;
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- if( pTab->isEphem || pTab->pSelect ) continue;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pLevel->pBestIdx ){
+ if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
int iCur = pTabItem->iCursor;
- sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
+ sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
}else
#endif
- if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
- sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
- if( pTab->nCol<(sizeof(Bitmask)*8) ){
+ if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
+ && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
+ int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
+ sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
+ if( !pWInfo->okOnePass && pTab->nCol<BMS ){
Bitmask b = pTabItem->colUsed;
int n = 0;
for(; b; b=b>>1, n++){}
- sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
+ sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32);
assert( n<=pTab->nCol );
}
}else{
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
}
pLevel->iTabCur = pTabItem->iCursor;
- if( (pIx = pLevel->pIdx)!=0 ){
+ if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
+ Index *pIx = pLevel->plan.u.pIdx;
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
+ int iIdxCur = pLevel->iIdxCur;
assert( pIx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- VdbeComment((v, "# %s", pIx->zName));
- sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
- (char*)pKey, P3_KEYINFO_HANDOFF);
- }
- if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){
- /* Only call OP_SetNumColumns on the index if we might later use
- ** OP_Column on the index. */
- sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
+ assert( iIdxCur>=0 );
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIx->zName));
}
sqlite3CodeVerifySchema(pParse, iDb);
}
@@ -59238,394 +87947,9 @@ WhereInfo *sqlite3WhereBegin(
** program.
*/
notReady = ~(Bitmask)0;
- for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
- int j;
- int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
- Index *pIdx; /* The index we will be using */
- int nxt; /* Where to jump to continue with the next IN case */
- int iIdxCur; /* The VDBE cursor for the index */
- int omitTable; /* True if we use the index only */
- int bRev; /* True if we need to scan in reverse order */
-
- pTabItem = &pTabList->a[pLevel->iFrom];
- iCur = pTabItem->iCursor;
- pIdx = pLevel->pIdx;
- iIdxCur = pLevel->iIdxCur;
- bRev = (pLevel->flags & WHERE_REVERSE)!=0;
- omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
-
- /* Create labels for the "break" and "continue" instructions
- ** for the current loop. Jump to brk to break out of a loop.
- ** Jump to cont to go immediately to the next iteration of the
- ** loop.
- **
- ** When there is an IN operator, we also have a "nxt" label that
- ** means to continue with the next IN value combination. When
- ** there are no IN operators in the constraints, the "nxt" label
- ** is the same as "brk".
- */
- brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
- cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
-
- /* If this is the right table of a LEFT OUTER JOIN, allocate and
- ** initialize a memory cell that records if this table matches any
- ** row of the left table of the join.
- */
- if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
- if( !pParse->nMem ) pParse->nMem++;
- pLevel->iLeftJoin = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
- VdbeComment((v, "# init LEFT JOIN no-match flag"));
- }
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pLevel->pBestIdx ){
- /* Case 0: The table is a virtual-table. Use the VFilter and VNext
- ** to access the data.
- */
- int j;
- sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
- int nConstraint = pBestIdx->nConstraint;
- struct sqlite3_index_constraint_usage *aUsage =
- pBestIdx->aConstraintUsage;
- const struct sqlite3_index_constraint *aConstraint =
- pBestIdx->aConstraint;
-
- for(j=1; j<=nConstraint; j++){
- int k;
- for(k=0; k<nConstraint; k++){
- if( aUsage[k].argvIndex==j ){
- int iTerm = aConstraint[k].iTermOffset;
- sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
- break;
- }
- }
- if( k==nConstraint ) break;
- }
- sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
- sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
- sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
- pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
- pBestIdx->needToFreeIdxStr = 0;
- for(j=0; j<pBestIdx->nConstraint; j++){
- if( aUsage[j].omit ){
- int iTerm = aConstraint[j].iTermOffset;
- disableTerm(pLevel, &wc.a[iTerm]);
- }
- }
- pLevel->op = OP_VNext;
- pLevel->p1 = iCur;
- pLevel->p2 = sqlite3VdbeCurrentAddr(v);
- }else
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
- if( pLevel->flags & WHERE_ROWID_EQ ){
- /* Case 1: We can directly reference a single row using an
- ** equality comparison against the ROWID field. Or
- ** we reference multiple rows using a "rowid IN (...)"
- ** construct.
- */
- pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
- assert( pTerm!=0 );
- assert( pTerm->pExpr!=0 );
- assert( pTerm->leftCursor==iCur );
- assert( omitTable==0 );
- codeEqualityTerm(pParse, pTerm, pLevel);
- nxt = pLevel->nxt;
- sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt);
- sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt);
- VdbeComment((v, "pk"));
- pLevel->op = OP_Noop;
- }else if( pLevel->flags & WHERE_ROWID_RANGE ){
- /* Case 2: We have an inequality comparison against the ROWID field.
- */
- int testOp = OP_Noop;
- int start;
- WhereTerm *pStart, *pEnd;
-
- assert( omitTable==0 );
- pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
- pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
- if( bRev ){
- pTerm = pStart;
- pStart = pEnd;
- pEnd = pTerm;
- }
- if( pStart ){
- Expr *pX;
- pX = pStart->pExpr;
- assert( pX!=0 );
- assert( pStart->leftCursor==iCur );
- sqlite3ExprCode(pParse, pX->pRight);
- sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
- sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
- VdbeComment((v, "pk"));
- disableTerm(pLevel, pStart);
- }else{
- sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
- }
- if( pEnd ){
- Expr *pX;
- pX = pEnd->pExpr;
- assert( pX!=0 );
- assert( pEnd->leftCursor==iCur );
- sqlite3ExprCode(pParse, pX->pRight);
- pLevel->iMem = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
- if( pX->op==TK_LT || pX->op==TK_GT ){
- testOp = bRev ? OP_Le : OP_Ge;
- }else{
- testOp = bRev ? OP_Lt : OP_Gt;
- }
- disableTerm(pLevel, pEnd);
- }
- start = sqlite3VdbeCurrentAddr(v);
- pLevel->op = bRev ? OP_Prev : OP_Next;
- pLevel->p1 = iCur;
- pLevel->p2 = start;
- if( testOp!=OP_Noop ){
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
- sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk);
- }
- }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
- /* Case 3: The WHERE clause term that refers to the right-most
- ** column of the index is an inequality. For example, if
- ** the index is on (x,y,z) and the WHERE clause is of the
- ** form "x=5 AND y<10" then this case is used. Only the
- ** right-most column can be an inequality - the rest must
- ** use the "==" and "IN" operators.
- **
- ** This case is also used when there are no WHERE clause
- ** constraints but an index is selected anyway, in order
- ** to force the output order to conform to an ORDER BY.
- */
- int start;
- int nEq = pLevel->nEq;
- int topEq=0; /* True if top limit uses ==. False is strictly < */
- int btmEq=0; /* True if btm limit uses ==. False if strictly > */
- int topOp, btmOp; /* Operators for the top and bottom search bounds */
- int testOp;
- int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
- int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
-
- /* Generate code to evaluate all constraint terms using == or IN
- ** and level the values of those terms on the stack.
- */
- codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
-
- /* Duplicate the equality term values because they will all be
- ** used twice: once to make the termination key and once to make the
- ** start key.
- */
- for(j=0; j<nEq; j++){
- sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
- }
-
- /* Figure out what comparison operators to use for top and bottom
- ** search bounds. For an ascending index, the bottom bound is a > or >=
- ** operator and the top bound is a < or <= operator. For a descending
- ** index the operators are reversed.
- */
- if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
- topOp = WO_LT|WO_LE;
- btmOp = WO_GT|WO_GE;
- }else{
- topOp = WO_GT|WO_GE;
- btmOp = WO_LT|WO_LE;
- SWAP(int, topLimit, btmLimit);
- }
-
- /* Generate the termination key. This is the key value that
- ** will end the search. There is no termination key if there
- ** are no equality terms and no "X<..." term.
- **
- ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
- ** key computed here really ends up being the start key.
- */
- nxt = pLevel->nxt;
- if( topLimit ){
- Expr *pX;
- int k = pIdx->aiColumn[j];
- pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
- assert( pTerm!=0 );
- pX = pTerm->pExpr;
- assert( (pTerm->flags & TERM_CODED)==0 );
- sqlite3ExprCode(pParse, pX->pRight);
- sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
- topEq = pTerm->eOperator & (WO_LE|WO_GE);
- disableTerm(pLevel, pTerm);
- testOp = OP_IdxGE;
- }else{
- testOp = nEq>0 ? OP_IdxGE : OP_Noop;
- topEq = 1;
- }
- if( testOp!=OP_Noop ){
- int nCol = nEq + topLimit;
- pLevel->iMem = pParse->nMem++;
- buildIndexProbe(v, nCol, pIdx);
- if( bRev ){
- int op = topEq ? OP_MoveLe : OP_MoveLt;
- sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
- }else{
- sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
- }
- }else if( bRev ){
- sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
- }
-
- /* Generate the start key. This is the key that defines the lower
- ** bound on the search. There is no start key if there are no
- ** equality terms and if there is no "X>..." term. In
- ** that case, generate a "Rewind" instruction in place of the
- ** start key search.
- **
- ** 2002-Dec-04: In the case of a reverse-order search, the so-called
- ** "start" key really ends up being used as the termination key.
- */
- if( btmLimit ){
- Expr *pX;
- int k = pIdx->aiColumn[j];
- pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
- assert( pTerm!=0 );
- pX = pTerm->pExpr;
- assert( (pTerm->flags & TERM_CODED)==0 );
- sqlite3ExprCode(pParse, pX->pRight);
- sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
- btmEq = pTerm->eOperator & (WO_LE|WO_GE);
- disableTerm(pLevel, pTerm);
- }else{
- btmEq = 1;
- }
- if( nEq>0 || btmLimit ){
- int nCol = nEq + btmLimit;
- buildIndexProbe(v, nCol, pIdx);
- if( bRev ){
- pLevel->iMem = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
- testOp = OP_IdxLT;
- }else{
- int op = btmEq ? OP_MoveGe : OP_MoveGt;
- sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
- }
- }else if( bRev ){
- testOp = OP_Noop;
- }else{
- sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
- }
-
- /* Generate the the top of the loop. If there is a termination
- ** key we have to test for that key and abort at the top of the
- ** loop.
- */
- start = sqlite3VdbeCurrentAddr(v);
- if( testOp!=OP_Noop ){
- sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
- sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt);
- if( (topEq && !bRev) || (!btmEq && bRev) ){
- sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
- }
- }
- if( topLimit | btmLimit ){
- sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
- sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
- }
- if( !omitTable ){
- sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
- sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
- }
-
- /* Record the instruction used to terminate the loop.
- */
- pLevel->op = bRev ? OP_Prev : OP_Next;
- pLevel->p1 = iIdxCur;
- pLevel->p2 = start;
- }else if( pLevel->flags & WHERE_COLUMN_EQ ){
- /* Case 4: There is an index and all terms of the WHERE clause that
- ** refer to the index using the "==" or "IN" operators.
- */
- int start;
- int nEq = pLevel->nEq;
-
- /* Generate code to evaluate all constraint terms using == or IN
- ** and leave the values of those terms on the stack.
- */
- codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
- nxt = pLevel->nxt;
-
- /* Generate a single key that will be used to both start and terminate
- ** the search
- */
- buildIndexProbe(v, nEq, pIdx);
- sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
-
- /* Generate code (1) to move to the first matching element of the table.
- ** Then generate code (2) that jumps to "nxt" after the cursor is past
- ** the last matching element of the table. The code (1) is executed
- ** once to initialize the search, the code (2) is executed before each
- ** iteration of the scan to see if the scan has finished. */
- if( bRev ){
- /* Scan in reverse order */
- sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt);
- start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
- sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt);
- pLevel->op = OP_Prev;
- }else{
- /* Scan in the forward order */
- sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt);
- start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
- sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC);
- pLevel->op = OP_Next;
- }
- if( !omitTable ){
- sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
- sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
- }
- pLevel->p1 = iIdxCur;
- pLevel->p2 = start;
- }else{
- /* Case 5: There is no usable index. We must do a complete
- ** scan of the entire table.
- */
- assert( omitTable==0 );
- assert( bRev==0 );
- pLevel->op = OP_Next;
- pLevel->p1 = iCur;
- pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
- }
- notReady &= ~getMask(&maskSet, iCur);
-
- /* Insert code to test every subexpression that can be completely
- ** computed using the current set of tables.
- */
- for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
- Expr *pE;
- if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
- if( (pTerm->prereqAll & notReady)!=0 ) continue;
- pE = pTerm->pExpr;
- assert( pE!=0 );
- if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
- continue;
- }
- sqlite3ExprIfFalse(pParse, pE, cont, 1);
- pTerm->flags |= TERM_CODED;
- }
-
- /* For a LEFT OUTER JOIN, generate code that will record the fact that
- ** at least one row of the right table has matched the left table.
- */
- if( pLevel->iLeftJoin ){
- pLevel->top = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
- VdbeComment((v, "# record LEFT JOIN hit"));
- for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
- if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
- if( (pTerm->prereqAll & notReady)!=0 ) continue;
- assert( pTerm->pExpr );
- sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
- pTerm->flags |= TERM_CODED;
- }
- }
+ for(i=0; i<pTabList->nSrc; i++){
+ notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
+ pWInfo->iContinue = pWInfo->a[i].addrCont;
}
#ifdef SQLITE_TEST /* For testing and debugging use only */
@@ -59642,30 +87966,32 @@ WhereInfo *sqlite3WhereBegin(
pTabItem = &pTabList->a[pLevel->iFrom];
z = pTabItem->zAlias;
if( z==0 ) z = pTabItem->pTab->zName;
- n = strlen(z);
+ n = sqlite3Strlen30(z);
if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
- if( pLevel->flags & WHERE_IDX_ONLY ){
- strcpy(&sqlite3_query_plan[nQPlan], "{}");
+ if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
+ memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
nQPlan += 2;
}else{
- strcpy(&sqlite3_query_plan[nQPlan], z);
+ memcpy(&sqlite3_query_plan[nQPlan], z, n);
nQPlan += n;
}
sqlite3_query_plan[nQPlan++] = ' ';
}
- if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
- strcpy(&sqlite3_query_plan[nQPlan], "* ");
+ testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
+ testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
+ if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
+ memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
nQPlan += 2;
- }else if( pLevel->pIdx==0 ){
- strcpy(&sqlite3_query_plan[nQPlan], "{} ");
- nQPlan += 3;
- }else{
- n = strlen(pLevel->pIdx->zName);
+ }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
+ n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
- strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName);
+ memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
nQPlan += n;
sqlite3_query_plan[nQPlan++] = ' ';
}
+ }else{
+ memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
+ nQPlan += 3;
}
}
while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
@@ -59678,14 +88004,11 @@ WhereInfo *sqlite3WhereBegin(
/* Record the continuation address in the WhereInfo structure. Then
** clean up and return.
*/
- pWInfo->iContinue = cont;
- whereClauseClear(&wc);
return pWInfo;
/* Jump here if malloc fails */
-whereBeginNoMem:
- whereClauseClear(&wc);
- whereInfoFree(pWInfo);
+whereBeginError:
+ whereInfoFree(db, pWInfo);
return 0;
}
@@ -59693,40 +88016,48 @@ whereBeginNoMem:
** Generate the end of the WHERE loop. See comments on
** sqlite3WhereBegin() for additional information.
*/
-void sqlite3WhereEnd(WhereInfo *pWInfo){
- Vdbe *v = pWInfo->pParse->pVdbe;
+SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
+ Parse *pParse = pWInfo->pParse;
+ Vdbe *v = pParse->pVdbe;
int i;
WhereLevel *pLevel;
SrcList *pTabList = pWInfo->pTabList;
+ sqlite3 *db = pParse->db;
/* Generate loop termination code.
*/
+ sqlite3ExprCacheClear(pParse);
for(i=pTabList->nSrc-1; i>=0; i--){
pLevel = &pWInfo->a[i];
- sqlite3VdbeResolveLabel(v, pLevel->cont);
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont);
if( pLevel->op!=OP_Noop ){
- sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
+ sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
+ sqlite3VdbeChangeP5(v, pLevel->p5);
}
- if( pLevel->nIn ){
+ if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
struct InLoop *pIn;
int j;
- sqlite3VdbeResolveLabel(v, pLevel->nxt);
- for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
- sqlite3VdbeJumpHere(v, pIn->topAddr+1);
- sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr);
- sqlite3VdbeJumpHere(v, pIn->topAddr-1);
+ sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
+ for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
+ sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
+ sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
}
- sqliteFree(pLevel->aInLoop);
+ sqlite3DbFree(db, pLevel->u.in.aInLoop);
}
- sqlite3VdbeResolveLabel(v, pLevel->brk);
+ sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
if( pLevel->iLeftJoin ){
int addr;
- addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
- sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
+ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
if( pLevel->iIdxCur>=0 ){
- sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
+ }
+ if( pLevel->op==OP_Return ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
}
- sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
sqlite3VdbeJumpHere(v, addr);
}
}
@@ -59742,16 +88073,22 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
Table *pTab = pTabItem->pTab;
assert( pTab!=0 );
- if( pTab->isEphem || pTab->pSelect ) continue;
- if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
- sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
- }
- if( pLevel->pIdx!=0 ){
- sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
+ if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){
+ if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
+ sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
+ }
+ if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
+ sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
+ }
}
- /* Make cursor substitutions for cases where we want to use
- ** just the index and never reference the table.
+ /* If this scan uses an index, make code substitutions to read data
+ ** from the index in preference to the table. Sometimes, this means
+ ** the table need never be read from. This is a performance boost,
+ ** as the vdbe level waits until the table is read before actually
+ ** seeking the table cursor to the record corresponding to the current
+ ** position in the index.
**
** Calls to the code generator in between sqlite3WhereBegin and
** sqlite3WhereEnd will have created code that references the table
@@ -59759,10 +88096,11 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
** that reference the table and converts them into opcodes that
** reference the index.
*/
- if( pLevel->flags & WHERE_IDX_ONLY ){
+ if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
int k, j, last;
VdbeOp *pOp;
- Index *pIdx = pLevel->pIdx;
+ Index *pIdx = pLevel->plan.u.pIdx;
+ int useIndexOnly = pLevel->plan.wsFlags & WHERE_IDX_ONLY;
assert( pIdx!=0 );
pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
@@ -59770,17 +88108,18 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
for(k=pWInfo->iTop; k<last; k++, pOp++){
if( pOp->p1!=pLevel->iTabCur ) continue;
if( pOp->opcode==OP_Column ){
- pOp->p1 = pLevel->iIdxCur;
for(j=0; j<pIdx->nColumn; j++){
if( pOp->p2==pIdx->aiColumn[j] ){
pOp->p2 = j;
+ pOp->p1 = pLevel->iIdxCur;
break;
}
}
+ assert(!useIndexOnly || j<pIdx->nColumn);
}else if( pOp->opcode==OP_Rowid ){
pOp->p1 = pLevel->iIdxCur;
pOp->opcode = OP_IdxRowid;
- }else if( pOp->opcode==OP_NullRow ){
+ }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
pOp->opcode = OP_Noop;
}
}
@@ -59789,7 +88128,7 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
/* Final cleanup
*/
- whereInfoFree(pWInfo);
+ whereInfoFree(db, pWInfo);
return;
}
@@ -59797,12 +88136,29 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
/************** Begin file parse.c *******************************************/
/* Driver template for the LEMON parser generator.
** The author disclaims copyright to this source code.
+**
+** This version of "lempar.c" is modified, slightly, for use by SQLite.
+** The only modifications are the addition of a couple of NEVER()
+** macros to disable tests that are needed in the case of a general
+** LALR(1) grammar but which are always false in the
+** specific grammar used by SQLite.
*/
-/* First off, code is include which follows the "include" declaration
-** in the input file. */
+/* First off, code is included that follows the "include" declaration
+** in the input grammar file. */
/*
+** Disable all error recovery processing in the parser push-down
+** automaton.
+*/
+#define YYNOERRORRECOVERY 1
+
+/*
+** Make yytestcase() the same as testcase()
+*/
+#define yytestcase(X) testcase(X)
+
+/*
** An instance of this structure holds information about the
** LIMIT clause of a SELECT statement.
*/
@@ -59836,6 +88192,68 @@ struct TrigEvent { int a; IdList * b; };
*/
struct AttachKey { int type; Token key; };
+
+ /* This is a utility routine used to set the ExprSpan.zStart and
+ ** ExprSpan.zEnd values of pOut so that the span covers the complete
+ ** range of text beginning with pStart and going to the end of pEnd.
+ */
+ static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
+ pOut->zStart = pStart->z;
+ pOut->zEnd = &pEnd->z[pEnd->n];
+ }
+
+ /* Construct a new Expr object from a single identifier. Use the
+ ** new Expr to populate pOut. Set the span of pOut to be the identifier
+ ** that created the expression.
+ */
+ static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
+ pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
+ pOut->zStart = pValue->z;
+ pOut->zEnd = &pValue->z[pValue->n];
+ }
+
+ /* This routine constructs a binary expression node out of two ExprSpan
+ ** objects and uses the result to populate a new ExprSpan object.
+ */
+ static void spanBinaryExpr(
+ ExprSpan *pOut, /* Write the result here */
+ Parse *pParse, /* The parsing context. Errors accumulate here */
+ int op, /* The binary operation */
+ ExprSpan *pLeft, /* The left operand */
+ ExprSpan *pRight /* The right operand */
+ ){
+ pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
+ pOut->zStart = pLeft->zStart;
+ pOut->zEnd = pRight->zEnd;
+ }
+
+ /* Construct an expression node for a unary postfix operator
+ */
+ static void spanUnaryPostfix(
+ ExprSpan *pOut, /* Write the new expression node here */
+ Parse *pParse, /* Parsing context to record errors */
+ int op, /* The operator */
+ ExprSpan *pOperand, /* The operand */
+ Token *pPostOp /* The operand token for setting the span */
+ ){
+ pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
+ pOut->zStart = pOperand->zStart;
+ pOut->zEnd = &pPostOp->z[pPostOp->n];
+ }
+
+ /* Construct an expression node for a unary prefix operator
+ */
+ static void spanUnaryPrefix(
+ ExprSpan *pOut, /* Write the new expression node here */
+ Parse *pParse, /* Parsing context to record errors */
+ int op, /* The operator */
+ ExprSpan *pOperand, /* The operand */
+ Token *pPreOp /* The operand token for setting the span */
+ ){
+ pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
+ pOut->zStart = pPreOp->z;
+ pOut->zEnd = pOperand->zEnd;
+ }
/* Next is all token values, in a form suitable for use by makeheaders.
** This section will be null unless lemon is run with the -m switch.
*/
@@ -59886,26 +88304,26 @@ struct AttachKey { int type; Token key; };
** defined, then do no error processing.
*/
#define YYCODETYPE unsigned char
-#define YYNOCODE 248
+#define YYNOCODE 254
#define YYACTIONTYPE unsigned short int
-#define YYWILDCARD 59
+#define YYWILDCARD 65
#define sqlite3ParserTOKENTYPE Token
typedef union {
+ int yyinit;
sqlite3ParserTOKENTYPE yy0;
- int yy46;
- struct LikeOp yy72;
- Expr* yy172;
- ExprList* yy174;
- Select* yy219;
- struct LimitVal yy234;
- TriggerStep* yy243;
- struct TrigEvent yy370;
- SrcList* yy373;
- Expr * yy386;
- struct {int value; int mask;} yy405;
- Token yy410;
- IdList* yy432;
- int yy495;
+ Select* yy3;
+ ExprList* yy14;
+ SrcList* yy65;
+ struct LikeOp yy96;
+ Expr* yy132;
+ u8 yy186;
+ int yy328;
+ ExprSpan yy346;
+ struct TrigEvent yy378;
+ IdList* yy408;
+ struct {int value; int mask;} yy429;
+ TriggerStep* yy473;
+ struct LimitVal yy476;
} YYMINORTYPE;
#ifndef YYSTACKDEPTH
#define YYSTACKDEPTH 100
@@ -59914,16 +88332,31 @@ typedef union {
#define sqlite3ParserARG_PDECL ,Parse *pParse
#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
#define sqlite3ParserARG_STORE yypParser->pParse = pParse
-#define YYNSTATE 586
-#define YYNRULE 311
-#define YYERRORSYMBOL 138
-#define YYERRSYMDT yy495
+#define YYNSTATE 629
+#define YYNRULE 329
#define YYFALLBACK 1
#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
-/* Next are that tables used to determine what action to take based on the
+/* The yyzerominor constant is used to initialize instances of
+** YYMINORTYPE objects to zero. */
+static const YYMINORTYPE yyzerominor = { 0 };
+
+/* Define the yytestcase() macro to be a no-op if is not already defined
+** otherwise.
+**
+** Applications can choose to define yytestcase() in the %include section
+** to a macro that can assist in verifying code coverage. For production
+** code the yytestcase() macro should be turned off. But it is useful
+** for testing.
+*/
+#ifndef yytestcase
+# define yytestcase(X)
+#endif
+
+
+/* Next are the tables used to determine what action to take based on the
** current state and lookahead token. These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
@@ -59971,415 +88404,458 @@ typedef union {
** yy_default[] Default action for each state.
*/
static const YYACTIONTYPE yy_action[] = {
- /* 0 */ 289, 898, 121, 585, 405, 169, 2, 435, 61, 61,
- /* 10 */ 61, 61, 517, 63, 63, 63, 63, 64, 64, 65,
- /* 20 */ 65, 65, 66, 230, 387, 384, 420, 426, 68, 63,
- /* 30 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 230,
- /* 40 */ 443, 208, 392, 447, 60, 59, 294, 430, 431, 427,
- /* 50 */ 427, 62, 62, 61, 61, 61, 61, 205, 63, 63,
- /* 60 */ 63, 63, 64, 64, 65, 65, 65, 66, 230, 289,
- /* 70 */ 368, 316, 435, 487, 205, 80, 67, 415, 69, 151,
- /* 80 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
- /* 90 */ 230, 515, 162, 410, 35, 420, 426, 443, 571, 58,
- /* 100 */ 64, 64, 65, 65, 65, 66, 230, 393, 394, 417,
- /* 110 */ 417, 417, 289, 60, 59, 294, 430, 431, 427, 427,
- /* 120 */ 62, 62, 61, 61, 61, 61, 302, 63, 63, 63,
- /* 130 */ 63, 64, 64, 65, 65, 65, 66, 230, 420, 426,
- /* 140 */ 92, 65, 65, 65, 66, 230, 392, 456, 472, 67,
- /* 150 */ 56, 69, 151, 169, 406, 435, 60, 59, 294, 430,
- /* 160 */ 431, 427, 427, 62, 62, 61, 61, 61, 61, 247,
- /* 170 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
- /* 180 */ 230, 289, 569, 522, 292, 620, 111, 478, 515, 447,
- /* 190 */ 230, 316, 403, 21, 67, 460, 69, 151, 66, 230,
- /* 200 */ 568, 443, 208, 67, 224, 69, 151, 420, 426, 146,
- /* 210 */ 147, 393, 394, 410, 41, 386, 148, 531, 2, 487,
- /* 220 */ 435, 566, 232, 415, 289, 60, 59, 294, 430, 431,
- /* 230 */ 427, 427, 62, 62, 61, 61, 61, 61, 316, 63,
- /* 240 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 230,
- /* 250 */ 420, 426, 486, 330, 211, 417, 417, 417, 359, 270,
- /* 260 */ 410, 41, 378, 207, 362, 542, 245, 289, 60, 59,
- /* 270 */ 294, 430, 431, 427, 427, 62, 62, 61, 61, 61,
- /* 280 */ 61, 392, 63, 63, 63, 63, 64, 64, 65, 65,
- /* 290 */ 65, 66, 230, 420, 426, 260, 299, 273, 522, 271,
- /* 300 */ 522, 210, 370, 319, 223, 433, 433, 532, 21, 576,
- /* 310 */ 21, 60, 59, 294, 430, 431, 427, 427, 62, 62,
- /* 320 */ 61, 61, 61, 61, 191, 63, 63, 63, 63, 64,
- /* 330 */ 64, 65, 65, 65, 66, 230, 261, 316, 239, 76,
- /* 340 */ 289, 544, 299, 149, 482, 150, 393, 394, 178, 240,
- /* 350 */ 569, 341, 344, 345, 404, 520, 445, 322, 165, 410,
- /* 360 */ 28, 540, 346, 517, 248, 539, 420, 426, 568, 567,
- /* 370 */ 161, 115, 238, 339, 243, 340, 173, 358, 272, 411,
- /* 380 */ 821, 488, 79, 249, 60, 59, 294, 430, 431, 427,
- /* 390 */ 427, 62, 62, 61, 61, 61, 61, 530, 63, 63,
- /* 400 */ 63, 63, 64, 64, 65, 65, 65, 66, 230, 289,
- /* 410 */ 248, 178, 465, 485, 341, 344, 345, 115, 238, 339,
- /* 420 */ 243, 340, 173, 82, 316, 346, 316, 491, 492, 249,
- /* 430 */ 565, 207, 152, 523, 489, 420, 426, 178, 529, 503,
- /* 440 */ 341, 344, 345, 407, 472, 528, 410, 35, 410, 35,
- /* 450 */ 171, 346, 198, 60, 59, 294, 430, 431, 427, 427,
- /* 460 */ 62, 62, 61, 61, 61, 61, 411, 63, 63, 63,
- /* 470 */ 63, 64, 64, 65, 65, 65, 66, 230, 289, 548,
- /* 480 */ 579, 288, 502, 234, 411, 316, 411, 316, 296, 283,
- /* 490 */ 298, 316, 445, 521, 165, 476, 172, 157, 421, 422,
- /* 500 */ 457, 335, 457, 144, 420, 426, 366, 410, 35, 410,
- /* 510 */ 36, 435, 1, 410, 49, 327, 392, 547, 193, 424,
- /* 520 */ 425, 156, 60, 59, 294, 430, 431, 427, 427, 62,
- /* 530 */ 62, 61, 61, 61, 61, 333, 63, 63, 63, 63,
- /* 540 */ 64, 64, 65, 65, 65, 66, 230, 289, 423, 332,
- /* 550 */ 452, 252, 411, 295, 438, 439, 297, 316, 349, 307,
- /* 560 */ 231, 457, 453, 321, 438, 439, 392, 369, 266, 265,
- /* 570 */ 189, 217, 392, 420, 426, 454, 435, 493, 205, 410,
- /* 580 */ 49, 393, 394, 583, 889, 174, 889, 494, 545, 492,
- /* 590 */ 392, 60, 59, 294, 430, 431, 427, 427, 62, 62,
- /* 600 */ 61, 61, 61, 61, 411, 63, 63, 63, 63, 64,
- /* 610 */ 64, 65, 65, 65, 66, 230, 289, 207, 586, 387,
- /* 620 */ 384, 91, 10, 580, 336, 308, 392, 207, 367, 480,
- /* 630 */ 316, 393, 394, 583, 888, 219, 888, 393, 394, 476,
- /* 640 */ 291, 233, 420, 426, 481, 249, 410, 3, 434, 260,
- /* 650 */ 317, 363, 410, 29, 448, 393, 394, 468, 260, 289,
- /* 660 */ 60, 59, 294, 430, 431, 427, 427, 62, 62, 61,
- /* 670 */ 61, 61, 61, 580, 63, 63, 63, 63, 64, 64,
- /* 680 */ 65, 65, 65, 66, 230, 420, 426, 391, 312, 388,
- /* 690 */ 555, 393, 394, 75, 204, 77, 395, 396, 397, 557,
- /* 700 */ 357, 197, 289, 60, 59, 294, 430, 431, 427, 427,
- /* 710 */ 62, 62, 61, 61, 61, 61, 316, 63, 63, 63,
- /* 720 */ 63, 64, 64, 65, 65, 65, 66, 230, 420, 426,
- /* 730 */ 319, 116, 433, 433, 319, 411, 433, 433, 410, 24,
- /* 740 */ 319, 515, 433, 433, 515, 289, 60, 70, 294, 430,
- /* 750 */ 431, 427, 427, 62, 62, 61, 61, 61, 61, 375,
- /* 760 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
- /* 770 */ 230, 420, 426, 538, 356, 538, 216, 260, 472, 303,
- /* 780 */ 175, 176, 177, 254, 476, 515, 260, 383, 289, 5,
- /* 790 */ 59, 294, 430, 431, 427, 427, 62, 62, 61, 61,
- /* 800 */ 61, 61, 316, 63, 63, 63, 63, 64, 64, 65,
- /* 810 */ 65, 65, 66, 230, 420, 426, 392, 236, 380, 247,
- /* 820 */ 304, 258, 247, 256, 410, 33, 260, 558, 125, 467,
- /* 830 */ 515, 416, 168, 157, 294, 430, 431, 427, 427, 62,
- /* 840 */ 62, 61, 61, 61, 61, 306, 63, 63, 63, 63,
- /* 850 */ 64, 64, 65, 65, 65, 66, 230, 72, 323, 452,
- /* 860 */ 4, 153, 22, 247, 293, 305, 435, 559, 316, 382,
- /* 870 */ 316, 453, 320, 72, 323, 316, 4, 366, 316, 180,
- /* 880 */ 293, 393, 394, 20, 454, 141, 326, 316, 320, 325,
- /* 890 */ 410, 53, 410, 52, 316, 411, 155, 410, 96, 447,
- /* 900 */ 410, 94, 316, 500, 316, 325, 328, 469, 247, 410,
- /* 910 */ 99, 444, 260, 411, 318, 447, 410, 100, 316, 74,
- /* 920 */ 73, 467, 183, 260, 410, 110, 410, 112, 72, 314,
- /* 930 */ 315, 435, 337, 415, 458, 74, 73, 479, 316, 377,
- /* 940 */ 410, 17, 218, 19, 72, 314, 315, 72, 323, 415,
- /* 950 */ 4, 205, 316, 274, 293, 316, 411, 466, 205, 409,
- /* 960 */ 410, 97, 320, 408, 374, 417, 417, 417, 418, 419,
- /* 970 */ 12, 376, 316, 206, 410, 34, 174, 410, 95, 325,
- /* 980 */ 55, 417, 417, 417, 418, 419, 12, 310, 120, 447,
- /* 990 */ 428, 159, 9, 260, 410, 25, 220, 221, 222, 102,
- /* 1000 */ 441, 441, 316, 471, 409, 316, 475, 316, 408, 74,
- /* 1010 */ 73, 436, 202, 23, 278, 455, 244, 13, 72, 314,
- /* 1020 */ 315, 279, 316, 415, 410, 54, 316, 410, 113, 410,
- /* 1030 */ 114, 291, 581, 200, 276, 547, 462, 497, 498, 199,
- /* 1040 */ 316, 504, 201, 463, 410, 26, 316, 524, 410, 37,
- /* 1050 */ 316, 474, 316, 170, 253, 417, 417, 417, 418, 419,
- /* 1060 */ 12, 505, 410, 38, 510, 483, 316, 13, 410, 27,
- /* 1070 */ 508, 582, 410, 39, 410, 40, 316, 255, 507, 506,
- /* 1080 */ 512, 316, 125, 316, 511, 373, 275, 265, 410, 42,
- /* 1090 */ 509, 290, 316, 251, 316, 125, 205, 257, 410, 43,
- /* 1100 */ 316, 259, 316, 410, 44, 410, 30, 348, 316, 125,
- /* 1110 */ 316, 353, 186, 316, 410, 31, 410, 45, 316, 543,
- /* 1120 */ 379, 125, 410, 46, 410, 47, 316, 551, 264, 170,
- /* 1130 */ 410, 48, 410, 32, 401, 410, 11, 552, 440, 89,
- /* 1140 */ 410, 50, 301, 562, 578, 89, 287, 361, 410, 51,
- /* 1150 */ 364, 365, 267, 268, 269, 554, 143, 564, 277, 324,
- /* 1160 */ 280, 281, 575, 225, 442, 461, 464, 503, 241, 513,
- /* 1170 */ 516, 550, 343, 160, 561, 390, 8, 313, 398, 399,
- /* 1180 */ 400, 412, 82, 226, 331, 329, 81, 406, 57, 78,
- /* 1190 */ 209, 167, 83, 459, 122, 414, 227, 334, 228, 338,
- /* 1200 */ 300, 500, 103, 496, 246, 519, 514, 490, 495, 242,
- /* 1210 */ 214, 518, 499, 229, 501, 413, 350, 533, 284, 525,
- /* 1220 */ 526, 527, 235, 181, 473, 237, 285, 477, 182, 354,
- /* 1230 */ 352, 184, 86, 185, 118, 535, 187, 546, 360, 190,
- /* 1240 */ 129, 553, 139, 371, 372, 130, 215, 309, 560, 131,
- /* 1250 */ 132, 133, 572, 577, 135, 573, 98, 574, 389, 262,
- /* 1260 */ 402, 621, 536, 213, 101, 622, 432, 163, 164, 429,
- /* 1270 */ 138, 71, 449, 437, 446, 140, 470, 154, 6, 450,
- /* 1280 */ 7, 158, 166, 451, 14, 123, 13, 124, 484, 212,
- /* 1290 */ 84, 342, 104, 105, 90, 250, 85, 117, 106, 347,
- /* 1300 */ 179, 240, 351, 142, 534, 126, 18, 170, 93, 263,
- /* 1310 */ 188, 107, 355, 286, 109, 127, 549, 541, 128, 119,
- /* 1320 */ 537, 192, 15, 194, 195, 136, 196, 134, 556, 563,
- /* 1330 */ 311, 137, 16, 108, 570, 203, 145, 385, 381, 282,
- /* 1340 */ 584, 899, 899, 899, 899, 899, 87, 899, 88,
+ /* 0 */ 309, 959, 178, 628, 2, 153, 216, 448, 24, 24,
+ /* 10 */ 24, 24, 497, 26, 26, 26, 26, 27, 27, 28,
+ /* 20 */ 28, 28, 29, 218, 422, 423, 214, 422, 423, 455,
+ /* 30 */ 461, 31, 26, 26, 26, 26, 27, 27, 28, 28,
+ /* 40 */ 28, 29, 218, 30, 492, 32, 137, 23, 22, 315,
+ /* 50 */ 465, 466, 462, 462, 25, 25, 24, 24, 24, 24,
+ /* 60 */ 445, 26, 26, 26, 26, 27, 27, 28, 28, 28,
+ /* 70 */ 29, 218, 309, 218, 318, 448, 521, 499, 45, 26,
+ /* 80 */ 26, 26, 26, 27, 27, 28, 28, 28, 29, 218,
+ /* 90 */ 422, 423, 425, 426, 159, 425, 426, 366, 369, 370,
+ /* 100 */ 318, 455, 461, 394, 523, 21, 188, 504, 371, 27,
+ /* 110 */ 27, 28, 28, 28, 29, 218, 422, 423, 424, 23,
+ /* 120 */ 22, 315, 465, 466, 462, 462, 25, 25, 24, 24,
+ /* 130 */ 24, 24, 564, 26, 26, 26, 26, 27, 27, 28,
+ /* 140 */ 28, 28, 29, 218, 309, 230, 513, 138, 477, 220,
+ /* 150 */ 557, 148, 135, 260, 364, 265, 365, 156, 425, 426,
+ /* 160 */ 245, 610, 337, 30, 269, 32, 137, 448, 608, 609,
+ /* 170 */ 233, 230, 499, 455, 461, 57, 515, 334, 135, 260,
+ /* 180 */ 364, 265, 365, 156, 425, 426, 444, 78, 417, 414,
+ /* 190 */ 269, 23, 22, 315, 465, 466, 462, 462, 25, 25,
+ /* 200 */ 24, 24, 24, 24, 348, 26, 26, 26, 26, 27,
+ /* 210 */ 27, 28, 28, 28, 29, 218, 309, 216, 543, 556,
+ /* 220 */ 486, 130, 498, 607, 30, 337, 32, 137, 351, 396,
+ /* 230 */ 438, 63, 337, 361, 424, 448, 487, 337, 424, 544,
+ /* 240 */ 334, 217, 195, 606, 605, 455, 461, 334, 18, 444,
+ /* 250 */ 85, 488, 334, 347, 192, 565, 444, 78, 316, 472,
+ /* 260 */ 473, 444, 85, 23, 22, 315, 465, 466, 462, 462,
+ /* 270 */ 25, 25, 24, 24, 24, 24, 445, 26, 26, 26,
+ /* 280 */ 26, 27, 27, 28, 28, 28, 29, 218, 309, 353,
+ /* 290 */ 223, 320, 607, 193, 238, 337, 481, 16, 351, 185,
+ /* 300 */ 330, 419, 222, 350, 604, 219, 215, 424, 112, 337,
+ /* 310 */ 334, 157, 606, 408, 213, 563, 538, 455, 461, 444,
+ /* 320 */ 79, 219, 562, 524, 334, 576, 522, 629, 417, 414,
+ /* 330 */ 450, 581, 441, 444, 78, 23, 22, 315, 465, 466,
+ /* 340 */ 462, 462, 25, 25, 24, 24, 24, 24, 445, 26,
+ /* 350 */ 26, 26, 26, 27, 27, 28, 28, 28, 29, 218,
+ /* 360 */ 309, 452, 452, 452, 159, 399, 311, 366, 369, 370,
+ /* 370 */ 337, 251, 404, 407, 219, 355, 556, 4, 371, 422,
+ /* 380 */ 423, 397, 286, 285, 244, 334, 540, 566, 63, 455,
+ /* 390 */ 461, 424, 216, 478, 444, 93, 28, 28, 28, 29,
+ /* 400 */ 218, 413, 477, 220, 578, 40, 545, 23, 22, 315,
+ /* 410 */ 465, 466, 462, 462, 25, 25, 24, 24, 24, 24,
+ /* 420 */ 582, 26, 26, 26, 26, 27, 27, 28, 28, 28,
+ /* 430 */ 29, 218, 309, 546, 337, 30, 517, 32, 137, 378,
+ /* 440 */ 326, 337, 874, 153, 194, 448, 1, 425, 426, 334,
+ /* 450 */ 422, 423, 422, 423, 29, 218, 334, 613, 444, 71,
+ /* 460 */ 210, 455, 461, 66, 581, 444, 93, 422, 423, 626,
+ /* 470 */ 949, 303, 949, 500, 479, 555, 202, 43, 445, 23,
+ /* 480 */ 22, 315, 465, 466, 462, 462, 25, 25, 24, 24,
+ /* 490 */ 24, 24, 436, 26, 26, 26, 26, 27, 27, 28,
+ /* 500 */ 28, 28, 29, 218, 309, 187, 211, 360, 520, 440,
+ /* 510 */ 246, 327, 622, 448, 397, 286, 285, 551, 425, 426,
+ /* 520 */ 425, 426, 334, 159, 337, 216, 366, 369, 370, 494,
+ /* 530 */ 556, 444, 9, 455, 461, 425, 426, 371, 495, 334,
+ /* 540 */ 445, 618, 63, 504, 198, 424, 501, 449, 444, 72,
+ /* 550 */ 474, 23, 22, 315, 465, 466, 462, 462, 25, 25,
+ /* 560 */ 24, 24, 24, 24, 395, 26, 26, 26, 26, 27,
+ /* 570 */ 27, 28, 28, 28, 29, 218, 309, 486, 445, 337,
+ /* 580 */ 537, 60, 224, 479, 343, 202, 398, 337, 439, 554,
+ /* 590 */ 199, 140, 337, 487, 334, 526, 527, 551, 516, 508,
+ /* 600 */ 456, 457, 334, 444, 67, 455, 461, 334, 488, 476,
+ /* 610 */ 528, 444, 76, 39, 424, 41, 444, 97, 579, 527,
+ /* 620 */ 529, 459, 460, 23, 22, 315, 465, 466, 462, 462,
+ /* 630 */ 25, 25, 24, 24, 24, 24, 337, 26, 26, 26,
+ /* 640 */ 26, 27, 27, 28, 28, 28, 29, 218, 309, 337,
+ /* 650 */ 458, 334, 272, 621, 307, 337, 312, 337, 374, 64,
+ /* 660 */ 444, 96, 317, 448, 334, 342, 472, 473, 469, 337,
+ /* 670 */ 334, 508, 334, 444, 101, 359, 252, 455, 461, 444,
+ /* 680 */ 99, 444, 104, 358, 334, 345, 424, 340, 157, 468,
+ /* 690 */ 468, 424, 493, 444, 105, 23, 22, 315, 465, 466,
+ /* 700 */ 462, 462, 25, 25, 24, 24, 24, 24, 337, 26,
+ /* 710 */ 26, 26, 26, 27, 27, 28, 28, 28, 29, 218,
+ /* 720 */ 309, 337, 181, 334, 499, 56, 139, 337, 219, 268,
+ /* 730 */ 384, 448, 444, 129, 382, 387, 334, 168, 337, 389,
+ /* 740 */ 508, 424, 334, 311, 424, 444, 131, 496, 269, 455,
+ /* 750 */ 461, 444, 59, 334, 424, 424, 391, 340, 8, 468,
+ /* 760 */ 468, 263, 444, 102, 390, 290, 321, 23, 22, 315,
+ /* 770 */ 465, 466, 462, 462, 25, 25, 24, 24, 24, 24,
+ /* 780 */ 337, 26, 26, 26, 26, 27, 27, 28, 28, 28,
+ /* 790 */ 29, 218, 309, 337, 138, 334, 416, 2, 268, 337,
+ /* 800 */ 389, 337, 443, 325, 444, 77, 442, 293, 334, 291,
+ /* 810 */ 7, 482, 337, 424, 334, 424, 334, 444, 100, 499,
+ /* 820 */ 339, 455, 461, 444, 68, 444, 98, 334, 254, 504,
+ /* 830 */ 232, 626, 948, 504, 948, 231, 444, 132, 47, 23,
+ /* 840 */ 22, 315, 465, 466, 462, 462, 25, 25, 24, 24,
+ /* 850 */ 24, 24, 337, 26, 26, 26, 26, 27, 27, 28,
+ /* 860 */ 28, 28, 29, 218, 309, 337, 280, 334, 256, 538,
+ /* 870 */ 362, 337, 258, 268, 622, 549, 444, 133, 203, 140,
+ /* 880 */ 334, 424, 548, 337, 180, 158, 334, 292, 424, 444,
+ /* 890 */ 134, 287, 552, 455, 461, 444, 69, 443, 334, 463,
+ /* 900 */ 340, 442, 468, 468, 427, 428, 429, 444, 80, 281,
+ /* 910 */ 322, 23, 33, 315, 465, 466, 462, 462, 25, 25,
+ /* 920 */ 24, 24, 24, 24, 337, 26, 26, 26, 26, 27,
+ /* 930 */ 27, 28, 28, 28, 29, 218, 309, 337, 406, 334,
+ /* 940 */ 212, 268, 550, 337, 268, 389, 329, 177, 444, 81,
+ /* 950 */ 542, 541, 334, 475, 475, 337, 424, 216, 334, 424,
+ /* 960 */ 424, 444, 70, 535, 368, 455, 461, 444, 82, 405,
+ /* 970 */ 334, 261, 392, 340, 445, 468, 468, 587, 323, 444,
+ /* 980 */ 83, 324, 262, 288, 22, 315, 465, 466, 462, 462,
+ /* 990 */ 25, 25, 24, 24, 24, 24, 337, 26, 26, 26,
+ /* 1000 */ 26, 27, 27, 28, 28, 28, 29, 218, 309, 337,
+ /* 1010 */ 211, 334, 294, 356, 340, 337, 468, 468, 532, 533,
+ /* 1020 */ 444, 84, 403, 144, 334, 574, 600, 337, 424, 573,
+ /* 1030 */ 334, 337, 420, 444, 86, 253, 234, 455, 461, 444,
+ /* 1040 */ 87, 430, 334, 383, 445, 431, 334, 274, 196, 331,
+ /* 1050 */ 424, 444, 88, 432, 145, 444, 73, 315, 465, 466,
+ /* 1060 */ 462, 462, 25, 25, 24, 24, 24, 24, 395, 26,
+ /* 1070 */ 26, 26, 26, 27, 27, 28, 28, 28, 29, 218,
+ /* 1080 */ 35, 344, 445, 3, 337, 394, 337, 333, 423, 278,
+ /* 1090 */ 388, 276, 280, 207, 147, 35, 344, 341, 3, 334,
+ /* 1100 */ 424, 334, 333, 423, 308, 623, 280, 424, 444, 74,
+ /* 1110 */ 444, 89, 341, 337, 6, 346, 338, 337, 421, 337,
+ /* 1120 */ 470, 424, 65, 332, 280, 481, 446, 445, 334, 247,
+ /* 1130 */ 346, 424, 334, 424, 334, 594, 280, 444, 90, 424,
+ /* 1140 */ 481, 444, 91, 444, 92, 38, 37, 625, 337, 410,
+ /* 1150 */ 47, 424, 237, 280, 36, 335, 336, 354, 248, 450,
+ /* 1160 */ 38, 37, 514, 334, 572, 381, 572, 596, 424, 36,
+ /* 1170 */ 335, 336, 444, 75, 450, 200, 506, 216, 154, 597,
+ /* 1180 */ 239, 240, 241, 146, 243, 249, 547, 593, 158, 433,
+ /* 1190 */ 452, 452, 452, 453, 454, 10, 598, 280, 20, 46,
+ /* 1200 */ 174, 412, 298, 337, 424, 452, 452, 452, 453, 454,
+ /* 1210 */ 10, 299, 424, 35, 344, 352, 3, 250, 334, 434,
+ /* 1220 */ 333, 423, 337, 172, 280, 581, 208, 444, 17, 171,
+ /* 1230 */ 341, 19, 173, 447, 424, 422, 423, 334, 337, 424,
+ /* 1240 */ 235, 280, 204, 205, 206, 42, 444, 94, 346, 435,
+ /* 1250 */ 136, 451, 221, 334, 308, 624, 424, 349, 481, 490,
+ /* 1260 */ 445, 152, 444, 95, 424, 424, 424, 236, 503, 491,
+ /* 1270 */ 507, 179, 424, 481, 424, 402, 295, 285, 38, 37,
+ /* 1280 */ 271, 310, 158, 424, 296, 424, 216, 36, 335, 336,
+ /* 1290 */ 509, 266, 450, 190, 191, 539, 267, 625, 558, 273,
+ /* 1300 */ 275, 48, 277, 522, 279, 424, 424, 450, 255, 409,
+ /* 1310 */ 424, 424, 257, 424, 424, 424, 284, 424, 386, 424,
+ /* 1320 */ 357, 584, 585, 452, 452, 452, 453, 454, 10, 259,
+ /* 1330 */ 393, 424, 289, 424, 592, 603, 424, 424, 452, 452,
+ /* 1340 */ 452, 297, 300, 301, 505, 424, 617, 424, 363, 424,
+ /* 1350 */ 424, 373, 577, 158, 158, 511, 424, 424, 424, 525,
+ /* 1360 */ 588, 424, 154, 589, 601, 54, 54, 620, 512, 306,
+ /* 1370 */ 319, 530, 531, 535, 264, 107, 228, 536, 534, 375,
+ /* 1380 */ 559, 304, 560, 561, 305, 227, 229, 553, 567, 161,
+ /* 1390 */ 162, 379, 377, 163, 51, 209, 569, 282, 164, 570,
+ /* 1400 */ 385, 143, 580, 116, 119, 183, 400, 590, 401, 121,
+ /* 1410 */ 122, 123, 124, 126, 599, 328, 614, 55, 58, 615,
+ /* 1420 */ 616, 619, 62, 418, 103, 226, 111, 176, 242, 182,
+ /* 1430 */ 437, 313, 201, 314, 670, 671, 672, 149, 150, 467,
+ /* 1440 */ 464, 34, 483, 471, 480, 184, 197, 502, 484, 5,
+ /* 1450 */ 485, 151, 489, 44, 141, 11, 106, 160, 225, 518,
+ /* 1460 */ 519, 49, 510, 108, 367, 270, 12, 155, 109, 50,
+ /* 1470 */ 110, 262, 376, 186, 568, 113, 142, 154, 165, 115,
+ /* 1480 */ 15, 283, 583, 166, 167, 380, 586, 117, 13, 120,
+ /* 1490 */ 372, 52, 53, 118, 591, 169, 114, 170, 595, 125,
+ /* 1500 */ 127, 571, 575, 602, 14, 128, 611, 612, 61, 175,
+ /* 1510 */ 189, 415, 302, 627, 960, 960, 960, 960, 411,
};
static const YYCODETYPE yy_lookahead[] = {
- /* 0 */ 16, 139, 140, 141, 168, 21, 144, 23, 69, 70,
- /* 10 */ 71, 72, 176, 74, 75, 76, 77, 78, 79, 80,
- /* 20 */ 81, 82, 83, 84, 1, 2, 42, 43, 73, 74,
- /* 30 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
- /* 40 */ 78, 79, 23, 58, 60, 61, 62, 63, 64, 65,
- /* 50 */ 66, 67, 68, 69, 70, 71, 72, 110, 74, 75,
- /* 60 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
- /* 70 */ 123, 147, 88, 88, 110, 22, 216, 92, 218, 219,
- /* 80 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
- /* 90 */ 84, 147, 19, 169, 170, 42, 43, 78, 238, 46,
- /* 100 */ 78, 79, 80, 81, 82, 83, 84, 88, 89, 124,
- /* 110 */ 125, 126, 16, 60, 61, 62, 63, 64, 65, 66,
- /* 120 */ 67, 68, 69, 70, 71, 72, 182, 74, 75, 76,
- /* 130 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
- /* 140 */ 44, 80, 81, 82, 83, 84, 23, 223, 161, 216,
- /* 150 */ 19, 218, 219, 21, 23, 23, 60, 61, 62, 63,
- /* 160 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 225,
- /* 170 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
- /* 180 */ 84, 16, 147, 147, 150, 112, 21, 200, 147, 58,
- /* 190 */ 84, 147, 156, 157, 216, 217, 218, 219, 83, 84,
- /* 200 */ 165, 78, 79, 216, 190, 218, 219, 42, 43, 78,
- /* 210 */ 79, 88, 89, 169, 170, 141, 180, 181, 144, 88,
- /* 220 */ 88, 98, 147, 92, 16, 60, 61, 62, 63, 64,
- /* 230 */ 65, 66, 67, 68, 69, 70, 71, 72, 147, 74,
- /* 240 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
- /* 250 */ 42, 43, 169, 209, 210, 124, 125, 126, 224, 14,
- /* 260 */ 169, 170, 227, 228, 230, 18, 225, 16, 60, 61,
- /* 270 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
- /* 280 */ 72, 23, 74, 75, 76, 77, 78, 79, 80, 81,
- /* 290 */ 82, 83, 84, 42, 43, 147, 16, 52, 147, 54,
- /* 300 */ 147, 210, 55, 106, 153, 108, 109, 156, 157, 156,
- /* 310 */ 157, 60, 61, 62, 63, 64, 65, 66, 67, 68,
- /* 320 */ 69, 70, 71, 72, 22, 74, 75, 76, 77, 78,
- /* 330 */ 79, 80, 81, 82, 83, 84, 188, 147, 92, 131,
- /* 340 */ 16, 94, 16, 22, 20, 155, 88, 89, 90, 103,
- /* 350 */ 147, 93, 94, 95, 167, 168, 161, 162, 163, 169,
- /* 360 */ 170, 25, 104, 176, 84, 29, 42, 43, 165, 166,
- /* 370 */ 90, 91, 92, 93, 94, 95, 96, 41, 133, 189,
- /* 380 */ 133, 169, 131, 103, 60, 61, 62, 63, 64, 65,
- /* 390 */ 66, 67, 68, 69, 70, 71, 72, 181, 74, 75,
- /* 400 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
- /* 410 */ 84, 90, 22, 20, 93, 94, 95, 91, 92, 93,
- /* 420 */ 94, 95, 96, 121, 147, 104, 147, 185, 186, 103,
- /* 430 */ 227, 228, 155, 181, 160, 42, 43, 90, 176, 177,
- /* 440 */ 93, 94, 95, 169, 161, 183, 169, 170, 169, 170,
- /* 450 */ 155, 104, 155, 60, 61, 62, 63, 64, 65, 66,
- /* 460 */ 67, 68, 69, 70, 71, 72, 189, 74, 75, 76,
- /* 470 */ 77, 78, 79, 80, 81, 82, 83, 84, 16, 11,
- /* 480 */ 244, 245, 20, 200, 189, 147, 189, 147, 211, 158,
- /* 490 */ 211, 147, 161, 162, 163, 147, 201, 202, 42, 43,
- /* 500 */ 223, 206, 223, 113, 42, 43, 147, 169, 170, 169,
- /* 510 */ 170, 23, 19, 169, 170, 186, 23, 49, 155, 63,
- /* 520 */ 64, 147, 60, 61, 62, 63, 64, 65, 66, 67,
- /* 530 */ 68, 69, 70, 71, 72, 147, 74, 75, 76, 77,
- /* 540 */ 78, 79, 80, 81, 82, 83, 84, 16, 92, 211,
- /* 550 */ 12, 20, 189, 164, 165, 166, 208, 147, 16, 215,
- /* 560 */ 220, 223, 24, 164, 165, 166, 23, 99, 100, 101,
- /* 570 */ 155, 212, 23, 42, 43, 37, 88, 39, 110, 169,
- /* 580 */ 170, 88, 89, 19, 20, 43, 22, 49, 185, 186,
- /* 590 */ 23, 60, 61, 62, 63, 64, 65, 66, 67, 68,
- /* 600 */ 69, 70, 71, 72, 189, 74, 75, 76, 77, 78,
- /* 610 */ 79, 80, 81, 82, 83, 84, 16, 228, 0, 1,
- /* 620 */ 2, 21, 19, 59, 147, 215, 23, 228, 213, 80,
- /* 630 */ 147, 88, 89, 19, 20, 145, 22, 88, 89, 147,
- /* 640 */ 98, 147, 42, 43, 20, 103, 169, 170, 20, 147,
- /* 650 */ 147, 236, 169, 170, 20, 88, 89, 114, 147, 16,
- /* 660 */ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- /* 670 */ 70, 71, 72, 59, 74, 75, 76, 77, 78, 79,
- /* 680 */ 80, 81, 82, 83, 84, 42, 43, 147, 142, 143,
- /* 690 */ 188, 88, 89, 130, 148, 132, 7, 8, 9, 188,
- /* 700 */ 208, 155, 16, 60, 61, 62, 63, 64, 65, 66,
- /* 710 */ 67, 68, 69, 70, 71, 72, 147, 74, 75, 76,
- /* 720 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
- /* 730 */ 106, 147, 108, 109, 106, 189, 108, 109, 169, 170,
- /* 740 */ 106, 147, 108, 109, 147, 16, 60, 61, 62, 63,
- /* 750 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 213,
- /* 760 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
- /* 770 */ 84, 42, 43, 99, 100, 101, 182, 147, 161, 182,
- /* 780 */ 99, 100, 101, 14, 147, 147, 147, 241, 16, 191,
- /* 790 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
- /* 800 */ 71, 72, 147, 74, 75, 76, 77, 78, 79, 80,
- /* 810 */ 81, 82, 83, 84, 42, 43, 23, 200, 188, 225,
- /* 820 */ 182, 52, 225, 54, 169, 170, 147, 188, 22, 22,
- /* 830 */ 147, 147, 201, 202, 62, 63, 64, 65, 66, 67,
- /* 840 */ 68, 69, 70, 71, 72, 208, 74, 75, 76, 77,
- /* 850 */ 78, 79, 80, 81, 82, 83, 84, 16, 17, 12,
- /* 860 */ 19, 155, 19, 225, 23, 182, 23, 188, 147, 239,
- /* 870 */ 147, 24, 31, 16, 17, 147, 19, 147, 147, 155,
- /* 880 */ 23, 88, 89, 19, 37, 21, 39, 147, 31, 48,
- /* 890 */ 169, 170, 169, 170, 147, 189, 89, 169, 170, 58,
- /* 900 */ 169, 170, 147, 97, 147, 48, 147, 114, 225, 169,
- /* 910 */ 170, 161, 147, 189, 16, 58, 169, 170, 147, 78,
- /* 920 */ 79, 114, 155, 147, 169, 170, 169, 170, 87, 88,
- /* 930 */ 89, 88, 80, 92, 147, 78, 79, 80, 147, 91,
- /* 940 */ 169, 170, 212, 19, 87, 88, 89, 16, 17, 92,
- /* 950 */ 19, 110, 147, 188, 23, 147, 189, 203, 110, 107,
- /* 960 */ 169, 170, 31, 111, 188, 124, 125, 126, 127, 128,
- /* 970 */ 129, 123, 147, 192, 169, 170, 43, 169, 170, 48,
- /* 980 */ 199, 124, 125, 126, 127, 128, 129, 242, 243, 58,
- /* 990 */ 92, 5, 68, 147, 169, 170, 10, 11, 12, 13,
- /* 1000 */ 124, 125, 147, 147, 107, 147, 147, 147, 111, 78,
- /* 1010 */ 79, 20, 26, 22, 28, 20, 147, 22, 87, 88,
- /* 1020 */ 89, 35, 147, 92, 169, 170, 147, 169, 170, 169,
- /* 1030 */ 170, 98, 20, 47, 188, 49, 27, 7, 8, 53,
- /* 1040 */ 147, 147, 56, 34, 169, 170, 147, 147, 169, 170,
- /* 1050 */ 147, 20, 147, 22, 147, 124, 125, 126, 127, 128,
- /* 1060 */ 129, 178, 169, 170, 178, 20, 147, 22, 169, 170,
- /* 1070 */ 30, 59, 169, 170, 169, 170, 147, 147, 91, 92,
- /* 1080 */ 20, 147, 22, 147, 178, 99, 100, 101, 169, 170,
- /* 1090 */ 50, 105, 147, 20, 147, 22, 110, 147, 169, 170,
- /* 1100 */ 147, 147, 147, 169, 170, 169, 170, 20, 147, 22,
- /* 1110 */ 147, 233, 232, 147, 169, 170, 169, 170, 147, 20,
- /* 1120 */ 134, 22, 169, 170, 169, 170, 147, 20, 147, 22,
- /* 1130 */ 169, 170, 169, 170, 149, 169, 170, 20, 229, 22,
- /* 1140 */ 169, 170, 102, 20, 20, 22, 22, 147, 169, 170,
- /* 1150 */ 147, 147, 147, 147, 147, 147, 191, 147, 147, 222,
- /* 1160 */ 147, 147, 147, 193, 229, 172, 172, 177, 172, 172,
- /* 1170 */ 172, 194, 173, 6, 194, 146, 22, 154, 146, 146,
- /* 1180 */ 146, 189, 121, 194, 118, 116, 119, 23, 120, 130,
- /* 1190 */ 221, 112, 98, 152, 152, 160, 195, 115, 196, 98,
- /* 1200 */ 40, 97, 19, 179, 84, 179, 160, 171, 171, 171,
- /* 1210 */ 226, 160, 173, 197, 171, 198, 15, 152, 174, 171,
- /* 1220 */ 171, 171, 204, 151, 205, 204, 174, 205, 151, 38,
- /* 1230 */ 152, 151, 130, 152, 60, 152, 151, 184, 152, 184,
- /* 1240 */ 19, 194, 214, 152, 15, 187, 226, 152, 194, 187,
- /* 1250 */ 187, 187, 33, 137, 184, 152, 159, 152, 1, 234,
- /* 1260 */ 20, 112, 235, 175, 175, 112, 107, 112, 112, 92,
- /* 1270 */ 214, 19, 11, 20, 20, 19, 114, 19, 117, 20,
- /* 1280 */ 117, 112, 22, 20, 22, 19, 22, 20, 20, 44,
- /* 1290 */ 19, 44, 19, 19, 237, 20, 19, 32, 19, 44,
- /* 1300 */ 96, 103, 16, 21, 17, 98, 231, 22, 237, 133,
- /* 1310 */ 98, 19, 36, 5, 240, 45, 1, 45, 102, 243,
- /* 1320 */ 51, 122, 19, 113, 14, 102, 115, 113, 17, 123,
- /* 1330 */ 246, 122, 19, 14, 20, 135, 19, 3, 57, 136,
- /* 1340 */ 4, 247, 247, 247, 247, 247, 68, 247, 68,
+ /* 0 */ 19, 142, 143, 144, 145, 24, 116, 26, 75, 76,
+ /* 10 */ 77, 78, 25, 80, 81, 82, 83, 84, 85, 86,
+ /* 20 */ 87, 88, 89, 90, 26, 27, 160, 26, 27, 48,
+ /* 30 */ 49, 79, 80, 81, 82, 83, 84, 85, 86, 87,
+ /* 40 */ 88, 89, 90, 222, 223, 224, 225, 66, 67, 68,
+ /* 50 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ /* 60 */ 194, 80, 81, 82, 83, 84, 85, 86, 87, 88,
+ /* 70 */ 89, 90, 19, 90, 19, 94, 174, 25, 25, 80,
+ /* 80 */ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ /* 90 */ 26, 27, 94, 95, 96, 94, 95, 99, 100, 101,
+ /* 100 */ 19, 48, 49, 150, 174, 52, 119, 166, 110, 84,
+ /* 110 */ 85, 86, 87, 88, 89, 90, 26, 27, 165, 66,
+ /* 120 */ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ /* 130 */ 77, 78, 186, 80, 81, 82, 83, 84, 85, 86,
+ /* 140 */ 87, 88, 89, 90, 19, 90, 205, 95, 84, 85,
+ /* 150 */ 186, 96, 97, 98, 99, 100, 101, 102, 94, 95,
+ /* 160 */ 195, 97, 150, 222, 109, 224, 225, 26, 104, 105,
+ /* 170 */ 217, 90, 120, 48, 49, 50, 86, 165, 97, 98,
+ /* 180 */ 99, 100, 101, 102, 94, 95, 174, 175, 1, 2,
+ /* 190 */ 109, 66, 67, 68, 69, 70, 71, 72, 73, 74,
+ /* 200 */ 75, 76, 77, 78, 191, 80, 81, 82, 83, 84,
+ /* 210 */ 85, 86, 87, 88, 89, 90, 19, 116, 35, 150,
+ /* 220 */ 12, 24, 208, 150, 222, 150, 224, 225, 216, 128,
+ /* 230 */ 161, 162, 150, 221, 165, 94, 28, 150, 165, 56,
+ /* 240 */ 165, 197, 160, 170, 171, 48, 49, 165, 204, 174,
+ /* 250 */ 175, 43, 165, 45, 185, 186, 174, 175, 169, 170,
+ /* 260 */ 171, 174, 175, 66, 67, 68, 69, 70, 71, 72,
+ /* 270 */ 73, 74, 75, 76, 77, 78, 194, 80, 81, 82,
+ /* 280 */ 83, 84, 85, 86, 87, 88, 89, 90, 19, 214,
+ /* 290 */ 215, 108, 150, 25, 148, 150, 64, 22, 216, 24,
+ /* 300 */ 146, 147, 215, 221, 231, 232, 152, 165, 154, 150,
+ /* 310 */ 165, 49, 170, 171, 160, 181, 182, 48, 49, 174,
+ /* 320 */ 175, 232, 188, 165, 165, 21, 94, 0, 1, 2,
+ /* 330 */ 98, 55, 174, 174, 175, 66, 67, 68, 69, 70,
+ /* 340 */ 71, 72, 73, 74, 75, 76, 77, 78, 194, 80,
+ /* 350 */ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ /* 360 */ 19, 129, 130, 131, 96, 61, 104, 99, 100, 101,
+ /* 370 */ 150, 226, 218, 231, 232, 216, 150, 196, 110, 26,
+ /* 380 */ 27, 105, 106, 107, 158, 165, 183, 161, 162, 48,
+ /* 390 */ 49, 165, 116, 166, 174, 175, 86, 87, 88, 89,
+ /* 400 */ 90, 247, 84, 85, 100, 136, 183, 66, 67, 68,
+ /* 410 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ /* 420 */ 11, 80, 81, 82, 83, 84, 85, 86, 87, 88,
+ /* 430 */ 89, 90, 19, 183, 150, 222, 23, 224, 225, 237,
+ /* 440 */ 220, 150, 138, 24, 160, 26, 22, 94, 95, 165,
+ /* 450 */ 26, 27, 26, 27, 89, 90, 165, 244, 174, 175,
+ /* 460 */ 236, 48, 49, 22, 55, 174, 175, 26, 27, 22,
+ /* 470 */ 23, 163, 25, 120, 166, 167, 168, 136, 194, 66,
+ /* 480 */ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ /* 490 */ 77, 78, 153, 80, 81, 82, 83, 84, 85, 86,
+ /* 500 */ 87, 88, 89, 90, 19, 196, 160, 150, 23, 173,
+ /* 510 */ 198, 220, 65, 94, 105, 106, 107, 181, 94, 95,
+ /* 520 */ 94, 95, 165, 96, 150, 116, 99, 100, 101, 31,
+ /* 530 */ 150, 174, 175, 48, 49, 94, 95, 110, 40, 165,
+ /* 540 */ 194, 161, 162, 166, 160, 165, 120, 166, 174, 175,
+ /* 550 */ 233, 66, 67, 68, 69, 70, 71, 72, 73, 74,
+ /* 560 */ 75, 76, 77, 78, 218, 80, 81, 82, 83, 84,
+ /* 570 */ 85, 86, 87, 88, 89, 90, 19, 12, 194, 150,
+ /* 580 */ 23, 235, 205, 166, 167, 168, 240, 150, 172, 173,
+ /* 590 */ 206, 207, 150, 28, 165, 190, 191, 181, 23, 150,
+ /* 600 */ 48, 49, 165, 174, 175, 48, 49, 165, 43, 233,
+ /* 610 */ 45, 174, 175, 135, 165, 137, 174, 175, 190, 191,
+ /* 620 */ 55, 69, 70, 66, 67, 68, 69, 70, 71, 72,
+ /* 630 */ 73, 74, 75, 76, 77, 78, 150, 80, 81, 82,
+ /* 640 */ 83, 84, 85, 86, 87, 88, 89, 90, 19, 150,
+ /* 650 */ 98, 165, 23, 250, 251, 150, 155, 150, 19, 22,
+ /* 660 */ 174, 175, 213, 26, 165, 169, 170, 171, 23, 150,
+ /* 670 */ 165, 150, 165, 174, 175, 19, 150, 48, 49, 174,
+ /* 680 */ 175, 174, 175, 27, 165, 228, 165, 112, 49, 114,
+ /* 690 */ 115, 165, 177, 174, 175, 66, 67, 68, 69, 70,
+ /* 700 */ 71, 72, 73, 74, 75, 76, 77, 78, 150, 80,
+ /* 710 */ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ /* 720 */ 19, 150, 23, 165, 25, 24, 150, 150, 232, 150,
+ /* 730 */ 229, 94, 174, 175, 213, 234, 165, 25, 150, 150,
+ /* 740 */ 150, 165, 165, 104, 165, 174, 175, 177, 109, 48,
+ /* 750 */ 49, 174, 175, 165, 165, 165, 19, 112, 22, 114,
+ /* 760 */ 115, 177, 174, 175, 27, 16, 187, 66, 67, 68,
+ /* 770 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ /* 780 */ 150, 80, 81, 82, 83, 84, 85, 86, 87, 88,
+ /* 790 */ 89, 90, 19, 150, 95, 165, 144, 145, 150, 150,
+ /* 800 */ 150, 150, 113, 213, 174, 175, 117, 58, 165, 60,
+ /* 810 */ 74, 23, 150, 165, 165, 165, 165, 174, 175, 120,
+ /* 820 */ 19, 48, 49, 174, 175, 174, 175, 165, 209, 166,
+ /* 830 */ 241, 22, 23, 166, 25, 187, 174, 175, 126, 66,
+ /* 840 */ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ /* 850 */ 77, 78, 150, 80, 81, 82, 83, 84, 85, 86,
+ /* 860 */ 87, 88, 89, 90, 19, 150, 150, 165, 205, 182,
+ /* 870 */ 86, 150, 205, 150, 65, 166, 174, 175, 206, 207,
+ /* 880 */ 165, 165, 177, 150, 23, 25, 165, 138, 165, 174,
+ /* 890 */ 175, 241, 166, 48, 49, 174, 175, 113, 165, 98,
+ /* 900 */ 112, 117, 114, 115, 7, 8, 9, 174, 175, 193,
+ /* 910 */ 187, 66, 67, 68, 69, 70, 71, 72, 73, 74,
+ /* 920 */ 75, 76, 77, 78, 150, 80, 81, 82, 83, 84,
+ /* 930 */ 85, 86, 87, 88, 89, 90, 19, 150, 97, 165,
+ /* 940 */ 160, 150, 177, 150, 150, 150, 248, 249, 174, 175,
+ /* 950 */ 97, 98, 165, 129, 130, 150, 165, 116, 165, 165,
+ /* 960 */ 165, 174, 175, 103, 178, 48, 49, 174, 175, 128,
+ /* 970 */ 165, 98, 242, 112, 194, 114, 115, 199, 187, 174,
+ /* 980 */ 175, 187, 109, 242, 67, 68, 69, 70, 71, 72,
+ /* 990 */ 73, 74, 75, 76, 77, 78, 150, 80, 81, 82,
+ /* 1000 */ 83, 84, 85, 86, 87, 88, 89, 90, 19, 150,
+ /* 1010 */ 160, 165, 209, 150, 112, 150, 114, 115, 7, 8,
+ /* 1020 */ 174, 175, 209, 6, 165, 29, 199, 150, 165, 33,
+ /* 1030 */ 165, 150, 149, 174, 175, 150, 241, 48, 49, 174,
+ /* 1040 */ 175, 149, 165, 47, 194, 149, 165, 16, 160, 149,
+ /* 1050 */ 165, 174, 175, 13, 151, 174, 175, 68, 69, 70,
+ /* 1060 */ 71, 72, 73, 74, 75, 76, 77, 78, 218, 80,
+ /* 1070 */ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ /* 1080 */ 19, 20, 194, 22, 150, 150, 150, 26, 27, 58,
+ /* 1090 */ 240, 60, 150, 160, 151, 19, 20, 36, 22, 165,
+ /* 1100 */ 165, 165, 26, 27, 22, 23, 150, 165, 174, 175,
+ /* 1110 */ 174, 175, 36, 150, 25, 54, 150, 150, 150, 150,
+ /* 1120 */ 23, 165, 25, 159, 150, 64, 194, 194, 165, 199,
+ /* 1130 */ 54, 165, 165, 165, 165, 193, 150, 174, 175, 165,
+ /* 1140 */ 64, 174, 175, 174, 175, 84, 85, 65, 150, 193,
+ /* 1150 */ 126, 165, 217, 150, 93, 94, 95, 123, 200, 98,
+ /* 1160 */ 84, 85, 86, 165, 105, 106, 107, 193, 165, 93,
+ /* 1170 */ 94, 95, 174, 175, 98, 5, 23, 116, 25, 193,
+ /* 1180 */ 10, 11, 12, 13, 14, 201, 23, 17, 25, 150,
+ /* 1190 */ 129, 130, 131, 132, 133, 134, 193, 150, 125, 124,
+ /* 1200 */ 30, 245, 32, 150, 165, 129, 130, 131, 132, 133,
+ /* 1210 */ 134, 41, 165, 19, 20, 122, 22, 202, 165, 150,
+ /* 1220 */ 26, 27, 150, 53, 150, 55, 160, 174, 175, 59,
+ /* 1230 */ 36, 22, 62, 203, 165, 26, 27, 165, 150, 165,
+ /* 1240 */ 193, 150, 105, 106, 107, 135, 174, 175, 54, 150,
+ /* 1250 */ 150, 150, 227, 165, 22, 23, 165, 150, 64, 150,
+ /* 1260 */ 194, 118, 174, 175, 165, 165, 165, 193, 150, 157,
+ /* 1270 */ 150, 157, 165, 64, 165, 105, 106, 107, 84, 85,
+ /* 1280 */ 23, 111, 25, 165, 193, 165, 116, 93, 94, 95,
+ /* 1290 */ 150, 150, 98, 84, 85, 150, 150, 65, 150, 150,
+ /* 1300 */ 150, 104, 150, 94, 150, 165, 165, 98, 210, 139,
+ /* 1310 */ 165, 165, 210, 165, 165, 165, 150, 165, 150, 165,
+ /* 1320 */ 121, 150, 150, 129, 130, 131, 132, 133, 134, 210,
+ /* 1330 */ 150, 165, 150, 165, 150, 150, 165, 165, 129, 130,
+ /* 1340 */ 131, 150, 150, 150, 211, 165, 150, 165, 104, 165,
+ /* 1350 */ 165, 23, 23, 25, 25, 211, 165, 165, 165, 176,
+ /* 1360 */ 23, 165, 25, 23, 23, 25, 25, 23, 211, 25,
+ /* 1370 */ 46, 176, 184, 103, 176, 22, 90, 176, 178, 18,
+ /* 1380 */ 176, 179, 176, 176, 179, 230, 230, 184, 157, 156,
+ /* 1390 */ 156, 44, 157, 156, 135, 157, 157, 238, 156, 239,
+ /* 1400 */ 157, 66, 189, 189, 22, 219, 157, 199, 18, 192,
+ /* 1410 */ 192, 192, 192, 189, 199, 157, 39, 243, 243, 157,
+ /* 1420 */ 157, 37, 246, 1, 164, 180, 180, 249, 15, 219,
+ /* 1430 */ 23, 252, 22, 252, 118, 118, 118, 118, 118, 113,
+ /* 1440 */ 98, 22, 11, 23, 23, 22, 22, 120, 23, 34,
+ /* 1450 */ 23, 25, 23, 25, 118, 25, 22, 102, 50, 23,
+ /* 1460 */ 23, 22, 27, 22, 50, 23, 34, 34, 22, 22,
+ /* 1470 */ 22, 109, 19, 24, 20, 104, 38, 25, 104, 22,
+ /* 1480 */ 5, 138, 1, 118, 34, 42, 27, 108, 22, 119,
+ /* 1490 */ 50, 74, 74, 127, 1, 16, 51, 121, 20, 119,
+ /* 1500 */ 108, 57, 51, 128, 22, 127, 23, 23, 16, 15,
+ /* 1510 */ 22, 3, 140, 4, 253, 253, 253, 253, 63,
};
-#define YY_SHIFT_USE_DFLT (-62)
-#define YY_SHIFT_MAX 385
+#define YY_SHIFT_USE_DFLT (-111)
+#define YY_SHIFT_MAX 415
static const short yy_shift_ofst[] = {
- /* 0 */ 23, 841, 986, -16, 841, 931, 931, 931, 258, 123,
- /* 10 */ -36, 96, 931, 931, 931, 931, 931, -45, 468, 19,
- /* 20 */ 567, 488, -38, -38, 53, 165, 208, 251, 324, 393,
- /* 30 */ 462, 531, 600, 643, 686, 643, 643, 643, 643, 643,
- /* 40 */ 643, 643, 643, 643, 643, 643, 643, 643, 643, 643,
- /* 50 */ 643, 643, 729, 772, 772, 857, 931, 931, 931, 931,
- /* 60 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
- /* 70 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
- /* 80 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
- /* 90 */ 931, 931, 931, 931, -61, -61, 6, 6, 280, 22,
- /* 100 */ 61, 542, 247, 567, 567, 567, 567, 567, 567, 567,
- /* 110 */ 115, 488, 106, -62, -62, 131, 326, 538, 538, 564,
- /* 120 */ 614, 618, 132, 567, 132, 567, 567, 567, 567, 567,
- /* 130 */ 567, 567, 567, 567, 567, 567, 567, 567, 848, -53,
- /* 140 */ -36, -36, -36, -62, -62, -62, -15, -15, 321, 347,
- /* 150 */ 624, 493, 628, 634, 847, 543, 793, 603, 549, 689,
- /* 160 */ 567, 567, 852, 567, 567, 843, 567, 567, 807, 567,
- /* 170 */ 567, 197, 807, 567, 567, 1040, 1040, 1040, 567, 567,
- /* 180 */ 197, 567, 567, 197, 567, 336, 674, 567, 567, 197,
- /* 190 */ 567, 567, 567, 197, 567, 567, 567, 197, 197, 567,
- /* 200 */ 567, 567, 567, 567, 864, 897, 390, 876, 876, 563,
- /* 210 */ 1009, 1009, 1009, 933, 1009, 1009, 806, 302, 302, 1167,
- /* 220 */ 1167, 1167, 1167, 1154, -36, 1061, 1066, 1067, 1069, 1068,
- /* 230 */ 1164, 1059, 1079, 1079, 1094, 1082, 1094, 1082, 1101, 1101,
- /* 240 */ 1160, 1101, 1104, 1101, 1183, 1120, 1164, 1120, 1164, 1160,
- /* 250 */ 1101, 1101, 1101, 1183, 1201, 1079, 1201, 1079, 1201, 1079,
- /* 260 */ 1079, 1191, 1102, 1201, 1079, 1174, 1174, 1221, 1061, 1079,
- /* 270 */ 1229, 1229, 1229, 1229, 1061, 1174, 1221, 1079, 1219, 1219,
- /* 280 */ 1079, 1079, 1116, -62, -62, -62, -62, -62, -62, 456,
- /* 290 */ 245, 681, 769, 73, 898, 991, 995, 1031, 1045, 246,
- /* 300 */ 1030, 987, 1060, 1073, 1087, 1099, 1107, 1117, 1123, 924,
- /* 310 */ 1124, 1012, 1257, 1240, 1149, 1153, 1155, 1156, 1177, 1159,
- /* 320 */ 1252, 1253, 1254, 1256, 1261, 1258, 1259, 1260, 1263, 1161,
- /* 330 */ 1262, 1163, 1264, 1162, 1266, 1267, 1169, 1268, 1265, 1245,
- /* 340 */ 1271, 1247, 1273, 1275, 1274, 1277, 1255, 1279, 1204, 1198,
- /* 350 */ 1286, 1287, 1282, 1207, 1276, 1269, 1270, 1285, 1272, 1176,
- /* 360 */ 1212, 1292, 1308, 1315, 1216, 1278, 1280, 1199, 1303, 1210,
- /* 370 */ 1310, 1211, 1311, 1214, 1223, 1209, 1313, 1206, 1314, 1319,
- /* 380 */ 1281, 1200, 1203, 1317, 1334, 1336,
+ /* 0 */ 187, 1061, 1170, 1061, 1194, 1194, -2, 64, 64, -19,
+ /* 10 */ 1194, 1194, 1194, 1194, 1194, 276, 1, 125, 1076, 1194,
+ /* 20 */ 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194,
+ /* 30 */ 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194,
+ /* 40 */ 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194,
+ /* 50 */ 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194, 1194, -48,
+ /* 60 */ 409, 1, 1, 141, 318, 318, -110, 53, 197, 269,
+ /* 70 */ 341, 413, 485, 557, 629, 701, 773, 845, 773, 773,
+ /* 80 */ 773, 773, 773, 773, 773, 773, 773, 773, 773, 773,
+ /* 90 */ 773, 773, 773, 773, 773, 773, 917, 989, 989, -67,
+ /* 100 */ -67, -1, -1, 55, 25, 310, 1, 1, 1, 1,
+ /* 110 */ 1, 639, 304, 1, 1, 1, 1, 1, 1, 1,
+ /* 120 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 365,
+ /* 130 */ 141, -17, -111, -111, -111, 1209, 81, 424, 353, 426,
+ /* 140 */ 441, 90, 565, 565, 1, 1, 1, 1, 1, 1,
+ /* 150 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ /* 160 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ /* 170 */ 1, 1, 1, 1, 1, 1, 447, 809, 327, 419,
+ /* 180 */ 419, 419, 841, 101, -110, -110, -110, -111, -111, -111,
+ /* 190 */ 232, 232, 268, 427, 575, 645, 788, 208, 861, 699,
+ /* 200 */ 897, 784, 637, 52, 183, 183, 183, 902, 902, 996,
+ /* 210 */ 1059, 902, 902, 902, 902, 275, 689, -13, 141, 824,
+ /* 220 */ 824, 478, 498, 498, 656, 498, 262, 498, 141, 498,
+ /* 230 */ 141, 860, 737, 712, 737, 656, 656, 712, 1017, 1017,
+ /* 240 */ 1017, 1017, 1040, 1040, 1089, -110, 1024, 1034, 1075, 1093,
+ /* 250 */ 1073, 1110, 1143, 1143, 1197, 1199, 1197, 1199, 1197, 1199,
+ /* 260 */ 1244, 1244, 1324, 1244, 1270, 1244, 1353, 1286, 1286, 1324,
+ /* 270 */ 1244, 1244, 1244, 1353, 1361, 1143, 1361, 1143, 1361, 1143,
+ /* 280 */ 1143, 1347, 1259, 1361, 1143, 1335, 1335, 1382, 1024, 1143,
+ /* 290 */ 1390, 1390, 1390, 1390, 1024, 1335, 1382, 1143, 1377, 1377,
+ /* 300 */ 1143, 1143, 1384, -111, -111, -111, -111, -111, -111, 552,
+ /* 310 */ 749, 1137, 1031, 1082, 1232, 801, 1097, 1153, 873, 1011,
+ /* 320 */ 853, 1163, 1257, 1328, 1329, 1337, 1340, 1341, 736, 1344,
+ /* 330 */ 1422, 1413, 1407, 1410, 1316, 1317, 1318, 1319, 1320, 1342,
+ /* 340 */ 1326, 1419, 1420, 1421, 1423, 1431, 1424, 1425, 1426, 1427,
+ /* 350 */ 1429, 1428, 1415, 1430, 1432, 1428, 1327, 1434, 1433, 1435,
+ /* 360 */ 1336, 1436, 1437, 1438, 1408, 1439, 1414, 1441, 1442, 1446,
+ /* 370 */ 1447, 1440, 1448, 1355, 1362, 1453, 1454, 1449, 1371, 1443,
+ /* 380 */ 1444, 1445, 1452, 1451, 1343, 1374, 1457, 1475, 1481, 1365,
+ /* 390 */ 1450, 1459, 1379, 1417, 1418, 1366, 1466, 1370, 1493, 1479,
+ /* 400 */ 1376, 1478, 1380, 1392, 1378, 1482, 1375, 1483, 1484, 1492,
+ /* 410 */ 1455, 1494, 1372, 1488, 1508, 1509,
};
-#define YY_REDUCE_USE_DFLT (-165)
-#define YY_REDUCE_MAX 288
+#define YY_REDUCE_USE_DFLT (-180)
+#define YY_REDUCE_MAX 308
static const short yy_reduce_ofst[] = {
- /* 0 */ -138, 277, 546, -13, 190, 279, 44, 338, 36, 203,
- /* 10 */ 295, -140, 340, -76, 91, 344, 410, -22, 415, 35,
- /* 20 */ 151, 331, 389, 399, -67, -67, -67, -67, -67, -67,
- /* 30 */ -67, -67, -67, -67, -67, -67, -67, -67, -67, -67,
- /* 40 */ -67, -67, -67, -67, -67, -67, -67, -67, -67, -67,
- /* 50 */ -67, -67, -67, -67, -67, 477, 483, 569, 655, 721,
- /* 60 */ 723, 728, 731, 740, 747, 755, 757, 771, 791, 805,
- /* 70 */ 808, 825, 855, 858, 860, 875, 879, 893, 899, 903,
- /* 80 */ 905, 919, 929, 934, 936, 945, 947, 953, 955, 961,
- /* 90 */ 963, 966, 971, 979, -67, -67, -67, -67, 187, -67,
- /* 100 */ -67, 262, 34, -56, 594, 597, 638, 683, 630, 153,
- /* 110 */ -67, 195, -67, -67, -67, 274, -164, 242, 403, 236,
- /* 120 */ 236, 74, 283, 348, 617, 41, 148, 492, 359, 637,
- /* 130 */ 502, 511, 639, 679, 765, 776, 730, 846, 297, 363,
- /* 140 */ 706, 724, 767, 781, 631, 745, 83, 212, 216, 252,
- /* 150 */ 14, 75, 14, 14, 329, 374, 388, 494, 503, 490,
- /* 160 */ 540, 584, 598, 503, 684, 750, 759, 787, 754, 856,
- /* 170 */ 859, 14, 754, 869, 894, 883, 886, 906, 900, 907,
- /* 180 */ 14, 930, 950, 14, 954, 880, 878, 981, 1000, 14,
- /* 190 */ 1003, 1004, 1005, 14, 1006, 1007, 1008, 14, 14, 1010,
- /* 200 */ 1011, 1013, 1014, 1015, 985, 965, 970, 909, 935, 937,
- /* 210 */ 993, 994, 996, 990, 997, 998, 999, 977, 980, 1029,
- /* 220 */ 1032, 1033, 1034, 1023, 992, 989, 1001, 1002, 1016, 1017,
- /* 230 */ 1035, 969, 1041, 1042, 1018, 1019, 1021, 1022, 1036, 1037,
- /* 240 */ 1024, 1038, 1039, 1043, 1044, 984, 1046, 1020, 1051, 1026,
- /* 250 */ 1048, 1049, 1050, 1052, 1072, 1065, 1077, 1078, 1080, 1081,
- /* 260 */ 1083, 1025, 1027, 1085, 1086, 1053, 1055, 1028, 1047, 1091,
- /* 270 */ 1058, 1062, 1063, 1064, 1054, 1070, 1056, 1095, 1057, 1071,
- /* 280 */ 1103, 1105, 1074, 1097, 1088, 1089, 1075, 1076, 1084,
+ /* 0 */ -141, 82, 154, 284, 12, 75, 69, 73, 142, -59,
+ /* 10 */ 145, 87, 159, 220, 291, 346, 226, 213, 357, 374,
+ /* 20 */ 429, 437, 442, 486, 499, 505, 507, 519, 558, 571,
+ /* 30 */ 577, 588, 630, 643, 649, 651, 662, 702, 715, 721,
+ /* 40 */ 733, 774, 787, 793, 805, 846, 859, 865, 877, 881,
+ /* 50 */ 934, 936, 963, 967, 969, 998, 1053, 1072, 1088, -179,
+ /* 60 */ 850, 956, 380, 308, 89, 496, 384, 2, 2, 2,
+ /* 70 */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ /* 80 */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ /* 90 */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ /* 100 */ 2, 2, 2, 416, 2, 2, 449, 579, 648, 723,
+ /* 110 */ 791, 134, 501, 716, 521, 794, 589, -47, 650, 590,
+ /* 120 */ 795, 942, 974, 986, 1003, 1047, 1074, 935, 1091, 2,
+ /* 130 */ 417, 2, 2, 2, 2, 158, 336, 526, 576, 863,
+ /* 140 */ 885, 966, 405, 428, 968, 1039, 1069, 1099, 1100, 966,
+ /* 150 */ 1101, 1107, 1109, 1118, 1120, 1140, 1141, 1145, 1146, 1148,
+ /* 160 */ 1149, 1150, 1152, 1154, 1166, 1168, 1171, 1172, 1180, 1182,
+ /* 170 */ 1184, 1185, 1191, 1192, 1193, 1196, 403, 403, 652, 377,
+ /* 180 */ 663, 667, -134, 780, 888, 933, 1066, 44, 672, 698,
+ /* 190 */ -98, -70, -54, -36, -35, -35, -35, 13, -35, 14,
+ /* 200 */ 146, 181, 227, 14, 203, 223, 250, -35, -35, 224,
+ /* 210 */ 202, -35, -35, -35, -35, 339, 309, 312, 381, 317,
+ /* 220 */ 376, 457, 515, 570, 619, 584, 687, 705, 709, 765,
+ /* 230 */ 726, 786, 730, 778, 741, 803, 813, 827, 883, 892,
+ /* 240 */ 896, 900, 903, 943, 964, 932, 930, 958, 984, 1015,
+ /* 250 */ 1030, 1025, 1112, 1114, 1098, 1133, 1102, 1144, 1119, 1157,
+ /* 260 */ 1183, 1195, 1188, 1198, 1200, 1201, 1202, 1155, 1156, 1203,
+ /* 270 */ 1204, 1206, 1207, 1205, 1233, 1231, 1234, 1235, 1237, 1238,
+ /* 280 */ 1239, 1159, 1160, 1242, 1243, 1213, 1214, 1186, 1208, 1249,
+ /* 290 */ 1217, 1218, 1219, 1220, 1215, 1224, 1210, 1258, 1174, 1175,
+ /* 300 */ 1262, 1263, 1176, 1260, 1245, 1246, 1178, 1179, 1181,
};
static const YYACTIONTYPE yy_default[] = {
- /* 0 */ 592, 818, 897, 707, 897, 818, 897, 818, 897, 843,
- /* 10 */ 711, 872, 814, 818, 897, 897, 897, 789, 897, 843,
- /* 20 */ 897, 623, 843, 843, 740, 897, 897, 897, 897, 897,
- /* 30 */ 897, 897, 897, 741, 897, 817, 813, 809, 811, 810,
- /* 40 */ 742, 731, 738, 745, 723, 856, 747, 748, 754, 755,
- /* 50 */ 873, 871, 777, 776, 795, 897, 897, 897, 897, 897,
- /* 60 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 897,
- /* 70 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 897,
- /* 80 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 897,
- /* 90 */ 897, 897, 897, 897, 779, 800, 778, 788, 616, 780,
- /* 100 */ 781, 676, 611, 897, 897, 897, 897, 897, 897, 897,
- /* 110 */ 782, 897, 783, 796, 797, 897, 897, 897, 897, 897,
- /* 120 */ 897, 592, 707, 897, 707, 897, 897, 897, 897, 897,
- /* 130 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 897,
- /* 140 */ 897, 897, 897, 701, 711, 890, 897, 897, 667, 897,
- /* 150 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 599,
- /* 160 */ 597, 897, 699, 897, 897, 625, 897, 897, 709, 897,
- /* 170 */ 897, 714, 715, 897, 897, 897, 897, 897, 897, 897,
- /* 180 */ 613, 897, 897, 688, 897, 849, 897, 897, 897, 863,
- /* 190 */ 897, 897, 897, 861, 897, 897, 897, 690, 750, 830,
- /* 200 */ 897, 876, 878, 897, 897, 699, 708, 897, 897, 812,
- /* 210 */ 734, 734, 734, 646, 734, 734, 649, 744, 744, 596,
- /* 220 */ 596, 596, 596, 666, 897, 744, 735, 737, 727, 739,
- /* 230 */ 897, 897, 716, 716, 724, 726, 724, 726, 678, 678,
- /* 240 */ 663, 678, 649, 678, 822, 827, 897, 827, 897, 663,
- /* 250 */ 678, 678, 678, 822, 608, 716, 608, 716, 608, 716,
- /* 260 */ 716, 853, 855, 608, 716, 680, 680, 756, 744, 716,
- /* 270 */ 687, 687, 687, 687, 744, 680, 756, 716, 875, 875,
- /* 280 */ 716, 716, 883, 633, 651, 651, 858, 890, 895, 897,
- /* 290 */ 897, 897, 897, 763, 897, 897, 897, 897, 897, 897,
- /* 300 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 836,
- /* 310 */ 897, 897, 897, 897, 768, 764, 897, 765, 897, 693,
- /* 320 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 897,
- /* 330 */ 728, 897, 736, 897, 897, 897, 897, 897, 897, 897,
- /* 340 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 897,
- /* 350 */ 897, 897, 897, 897, 897, 897, 851, 852, 897, 897,
- /* 360 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 897,
- /* 370 */ 897, 897, 897, 897, 897, 897, 897, 897, 897, 897,
- /* 380 */ 882, 897, 897, 885, 593, 897, 587, 590, 589, 591,
- /* 390 */ 595, 598, 620, 621, 622, 600, 601, 602, 603, 604,
- /* 400 */ 605, 606, 612, 614, 632, 634, 618, 636, 697, 698,
- /* 410 */ 760, 691, 692, 696, 771, 762, 766, 767, 769, 770,
- /* 420 */ 784, 785, 787, 793, 799, 802, 786, 791, 792, 794,
- /* 430 */ 798, 801, 694, 695, 805, 619, 626, 627, 630, 631,
- /* 440 */ 839, 841, 840, 842, 629, 628, 772, 775, 807, 808,
- /* 450 */ 864, 865, 866, 867, 868, 803, 815, 816, 717, 806,
- /* 460 */ 790, 729, 732, 733, 730, 700, 710, 719, 720, 721,
- /* 470 */ 722, 705, 706, 712, 725, 758, 759, 713, 702, 703,
- /* 480 */ 704, 804, 761, 773, 774, 637, 638, 768, 639, 640,
- /* 490 */ 641, 679, 682, 683, 684, 642, 661, 664, 665, 643,
- /* 500 */ 650, 644, 645, 652, 653, 654, 657, 658, 659, 660,
- /* 510 */ 655, 656, 823, 824, 828, 826, 825, 647, 648, 662,
- /* 520 */ 635, 624, 617, 668, 671, 672, 673, 674, 675, 677,
- /* 530 */ 669, 670, 615, 607, 609, 718, 845, 854, 850, 846,
- /* 540 */ 847, 848, 610, 819, 820, 681, 752, 753, 844, 857,
- /* 550 */ 859, 757, 860, 862, 887, 685, 686, 689, 829, 869,
- /* 560 */ 743, 746, 749, 751, 831, 832, 833, 834, 837, 838,
- /* 570 */ 835, 870, 874, 877, 879, 880, 881, 884, 886, 891,
- /* 580 */ 892, 893, 896, 894, 594, 588,
+ /* 0 */ 634, 869, 958, 958, 869, 958, 958, 898, 898, 757,
+ /* 10 */ 867, 958, 958, 958, 958, 958, 958, 932, 958, 958,
+ /* 20 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 30 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 40 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 50 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 841,
+ /* 60 */ 958, 958, 958, 673, 898, 898, 761, 792, 958, 958,
+ /* 70 */ 958, 958, 958, 958, 958, 958, 793, 958, 871, 866,
+ /* 80 */ 862, 864, 863, 870, 794, 783, 790, 797, 772, 911,
+ /* 90 */ 799, 800, 806, 807, 933, 931, 829, 828, 847, 831,
+ /* 100 */ 853, 830, 840, 665, 832, 833, 958, 958, 958, 958,
+ /* 110 */ 958, 726, 660, 958, 958, 958, 958, 958, 958, 958,
+ /* 120 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 834,
+ /* 130 */ 958, 835, 848, 849, 850, 958, 958, 958, 958, 958,
+ /* 140 */ 958, 958, 958, 958, 640, 958, 958, 958, 958, 958,
+ /* 150 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 160 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 170 */ 958, 882, 958, 936, 938, 958, 958, 958, 634, 757,
+ /* 180 */ 757, 757, 958, 958, 958, 958, 958, 751, 761, 950,
+ /* 190 */ 958, 958, 717, 958, 958, 958, 958, 958, 958, 958,
+ /* 200 */ 642, 749, 675, 759, 958, 958, 958, 662, 738, 904,
+ /* 210 */ 958, 923, 921, 740, 802, 958, 749, 758, 958, 958,
+ /* 220 */ 958, 865, 786, 786, 774, 786, 696, 786, 958, 786,
+ /* 230 */ 958, 699, 916, 796, 916, 774, 774, 796, 639, 639,
+ /* 240 */ 639, 639, 650, 650, 716, 958, 796, 787, 789, 779,
+ /* 250 */ 791, 958, 765, 765, 773, 778, 773, 778, 773, 778,
+ /* 260 */ 728, 728, 713, 728, 699, 728, 875, 879, 879, 713,
+ /* 270 */ 728, 728, 728, 875, 657, 765, 657, 765, 657, 765,
+ /* 280 */ 765, 908, 910, 657, 765, 730, 730, 808, 796, 765,
+ /* 290 */ 737, 737, 737, 737, 796, 730, 808, 765, 935, 935,
+ /* 300 */ 765, 765, 943, 683, 701, 701, 950, 955, 955, 958,
+ /* 310 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 320 */ 958, 958, 958, 958, 958, 958, 958, 958, 884, 958,
+ /* 330 */ 958, 648, 958, 667, 815, 820, 816, 958, 817, 958,
+ /* 340 */ 743, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 350 */ 958, 868, 958, 780, 958, 788, 958, 958, 958, 958,
+ /* 360 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 370 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 380 */ 958, 906, 907, 958, 958, 958, 958, 958, 958, 914,
+ /* 390 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 400 */ 958, 958, 958, 958, 958, 958, 958, 958, 958, 958,
+ /* 410 */ 942, 958, 958, 945, 635, 958, 630, 632, 633, 637,
+ /* 420 */ 638, 641, 667, 668, 670, 671, 672, 643, 644, 645,
+ /* 430 */ 646, 647, 649, 653, 651, 652, 654, 661, 663, 682,
+ /* 440 */ 684, 686, 747, 748, 812, 741, 742, 746, 669, 823,
+ /* 450 */ 814, 818, 819, 821, 822, 836, 837, 839, 845, 852,
+ /* 460 */ 855, 838, 843, 844, 846, 851, 854, 744, 745, 858,
+ /* 470 */ 676, 677, 680, 681, 894, 896, 895, 897, 679, 678,
+ /* 480 */ 824, 827, 860, 861, 924, 925, 926, 927, 928, 856,
+ /* 490 */ 766, 859, 842, 781, 784, 785, 782, 750, 760, 768,
+ /* 500 */ 769, 770, 771, 755, 756, 762, 777, 810, 811, 775,
+ /* 510 */ 776, 763, 764, 752, 753, 754, 857, 813, 825, 826,
+ /* 520 */ 687, 688, 820, 689, 690, 691, 729, 732, 733, 734,
+ /* 530 */ 692, 711, 714, 715, 693, 700, 694, 695, 702, 703,
+ /* 540 */ 704, 707, 708, 709, 710, 705, 706, 876, 877, 880,
+ /* 550 */ 878, 697, 698, 712, 685, 674, 666, 718, 721, 722,
+ /* 560 */ 723, 724, 725, 727, 719, 720, 664, 655, 658, 767,
+ /* 570 */ 900, 909, 905, 901, 902, 903, 659, 872, 873, 731,
+ /* 580 */ 804, 805, 899, 912, 915, 917, 918, 919, 809, 920,
+ /* 590 */ 922, 913, 947, 656, 735, 736, 739, 881, 929, 795,
+ /* 600 */ 798, 801, 803, 883, 885, 887, 889, 890, 891, 892,
+ /* 610 */ 893, 886, 888, 930, 934, 937, 939, 940, 941, 944,
+ /* 620 */ 946, 951, 952, 953, 956, 957, 954, 636, 631,
};
#define YY_SZ_ACTTAB (int)(sizeof(yy_action)/sizeof(yy_action[0]))
@@ -60388,7 +88864,7 @@ static const YYACTIONTYPE yy_default[] = {
**
** %fallback ID X Y Z.
**
-** appears in the grammer, then ID becomes a fallback token for X, Y,
+** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
@@ -60397,142 +88873,69 @@ static const YYACTIONTYPE yy_default[] = {
static const YYCODETYPE yyFallback[] = {
0, /* $ => nothing */
0, /* SEMI => nothing */
- 23, /* EXPLAIN => ID */
- 23, /* QUERY => ID */
- 23, /* PLAN => ID */
- 23, /* BEGIN => ID */
+ 26, /* EXPLAIN => ID */
+ 26, /* QUERY => ID */
+ 26, /* PLAN => ID */
+ 26, /* BEGIN => ID */
0, /* TRANSACTION => nothing */
- 23, /* DEFERRED => ID */
- 23, /* IMMEDIATE => ID */
- 23, /* EXCLUSIVE => ID */
+ 26, /* DEFERRED => ID */
+ 26, /* IMMEDIATE => ID */
+ 26, /* EXCLUSIVE => ID */
0, /* COMMIT => nothing */
- 23, /* END => ID */
- 0, /* ROLLBACK => nothing */
- 0, /* CREATE => nothing */
+ 26, /* END => ID */
+ 26, /* ROLLBACK => ID */
+ 26, /* SAVEPOINT => ID */
+ 26, /* RELEASE => ID */
+ 0, /* TO => nothing */
0, /* TABLE => nothing */
- 23, /* IF => ID */
+ 0, /* CREATE => nothing */
+ 26, /* IF => ID */
0, /* NOT => nothing */
0, /* EXISTS => nothing */
- 23, /* TEMP => ID */
+ 26, /* TEMP => ID */
0, /* LP => nothing */
0, /* RP => nothing */
0, /* AS => nothing */
0, /* COMMA => nothing */
0, /* ID => nothing */
- 23, /* ABORT => ID */
- 23, /* AFTER => ID */
- 23, /* ANALYZE => ID */
- 23, /* ASC => ID */
- 23, /* ATTACH => ID */
- 23, /* BEFORE => ID */
- 23, /* CASCADE => ID */
- 23, /* CAST => ID */
- 23, /* CONFLICT => ID */
- 23, /* DATABASE => ID */
- 23, /* DESC => ID */
- 23, /* DETACH => ID */
- 23, /* EACH => ID */
- 23, /* FAIL => ID */
- 23, /* FOR => ID */
- 23, /* IGNORE => ID */
- 23, /* INITIALLY => ID */
- 23, /* INSTEAD => ID */
- 23, /* LIKE_KW => ID */
- 23, /* MATCH => ID */
- 23, /* KEY => ID */
- 23, /* OF => ID */
- 23, /* OFFSET => ID */
- 23, /* PRAGMA => ID */
- 23, /* RAISE => ID */
- 23, /* REPLACE => ID */
- 23, /* RESTRICT => ID */
- 23, /* ROW => ID */
- 23, /* TRIGGER => ID */
- 23, /* VACUUM => ID */
- 23, /* VIEW => ID */
- 23, /* VIRTUAL => ID */
- 23, /* REINDEX => ID */
- 23, /* RENAME => ID */
- 23, /* CTIME_KW => ID */
- 0, /* ANY => nothing */
- 0, /* OR => nothing */
- 0, /* AND => nothing */
- 0, /* IS => nothing */
- 0, /* BETWEEN => nothing */
- 0, /* IN => nothing */
- 0, /* ISNULL => nothing */
- 0, /* NOTNULL => nothing */
- 0, /* NE => nothing */
- 0, /* EQ => nothing */
- 0, /* GT => nothing */
- 0, /* LE => nothing */
- 0, /* LT => nothing */
- 0, /* GE => nothing */
- 0, /* ESCAPE => nothing */
- 0, /* BITAND => nothing */
- 0, /* BITOR => nothing */
- 0, /* LSHIFT => nothing */
- 0, /* RSHIFT => nothing */
- 0, /* PLUS => nothing */
- 0, /* MINUS => nothing */
- 0, /* STAR => nothing */
- 0, /* SLASH => nothing */
- 0, /* REM => nothing */
- 0, /* CONCAT => nothing */
- 0, /* COLLATE => nothing */
- 0, /* UMINUS => nothing */
- 0, /* UPLUS => nothing */
- 0, /* BITNOT => nothing */
- 0, /* STRING => nothing */
- 0, /* JOIN_KW => nothing */
- 0, /* CONSTRAINT => nothing */
- 0, /* DEFAULT => nothing */
- 0, /* NULL => nothing */
- 0, /* PRIMARY => nothing */
- 0, /* UNIQUE => nothing */
- 0, /* CHECK => nothing */
- 0, /* REFERENCES => nothing */
- 0, /* AUTOINCR => nothing */
- 0, /* ON => nothing */
- 0, /* DELETE => nothing */
- 0, /* UPDATE => nothing */
- 0, /* INSERT => nothing */
- 0, /* SET => nothing */
- 0, /* DEFERRABLE => nothing */
- 0, /* FOREIGN => nothing */
- 0, /* DROP => nothing */
- 0, /* UNION => nothing */
- 0, /* ALL => nothing */
- 0, /* EXCEPT => nothing */
- 0, /* INTERSECT => nothing */
- 0, /* SELECT => nothing */
- 0, /* DISTINCT => nothing */
- 0, /* DOT => nothing */
- 0, /* FROM => nothing */
- 0, /* JOIN => nothing */
- 0, /* USING => nothing */
- 0, /* ORDER => nothing */
- 0, /* BY => nothing */
- 0, /* GROUP => nothing */
- 0, /* HAVING => nothing */
- 0, /* LIMIT => nothing */
- 0, /* WHERE => nothing */
- 0, /* INTO => nothing */
- 0, /* VALUES => nothing */
- 0, /* INTEGER => nothing */
- 0, /* FLOAT => nothing */
- 0, /* BLOB => nothing */
- 0, /* REGISTER => nothing */
- 0, /* VARIABLE => nothing */
- 0, /* CASE => nothing */
- 0, /* WHEN => nothing */
- 0, /* THEN => nothing */
- 0, /* ELSE => nothing */
- 0, /* INDEX => nothing */
- 0, /* ALTER => nothing */
- 0, /* TO => nothing */
- 0, /* ADD => nothing */
- 0, /* COLUMNKW => nothing */
+ 0, /* INDEXED => nothing */
+ 26, /* ABORT => ID */
+ 26, /* AFTER => ID */
+ 26, /* ANALYZE => ID */
+ 26, /* ASC => ID */
+ 26, /* ATTACH => ID */
+ 26, /* BEFORE => ID */
+ 26, /* BY => ID */
+ 26, /* CASCADE => ID */
+ 26, /* CAST => ID */
+ 26, /* COLUMNKW => ID */
+ 26, /* CONFLICT => ID */
+ 26, /* DATABASE => ID */
+ 26, /* DESC => ID */
+ 26, /* DETACH => ID */
+ 26, /* EACH => ID */
+ 26, /* FAIL => ID */
+ 26, /* FOR => ID */
+ 26, /* IGNORE => ID */
+ 26, /* INITIALLY => ID */
+ 26, /* INSTEAD => ID */
+ 26, /* LIKE_KW => ID */
+ 26, /* MATCH => ID */
+ 26, /* KEY => ID */
+ 26, /* OF => ID */
+ 26, /* OFFSET => ID */
+ 26, /* PRAGMA => ID */
+ 26, /* RAISE => ID */
+ 26, /* REPLACE => ID */
+ 26, /* RESTRICT => ID */
+ 26, /* ROW => ID */
+ 26, /* TRIGGER => ID */
+ 26, /* VACUUM => ID */
+ 26, /* VIEW => ID */
+ 26, /* VIRTUAL => ID */
+ 26, /* REINDEX => ID */
+ 26, /* RENAME => ID */
+ 26, /* CTIME_KW => ID */
};
#endif /* YYFALLBACK */
@@ -60549,11 +88952,11 @@ static const YYCODETYPE yyFallback[] = {
** It is sometimes called the "minor" token.
*/
struct yyStackEntry {
- int stateno; /* The state-number */
- int major; /* The major token value. This is the code
- ** number for the token at this stack level */
- YYMINORTYPE minor; /* The user-supplied minor token value. This
- ** is the value of the token */
+ YYACTIONTYPE stateno; /* The state-number */
+ YYCODETYPE major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
};
typedef struct yyStackEntry yyStackEntry;
@@ -60561,6 +88964,9 @@ typedef struct yyStackEntry yyStackEntry;
** the following structure */
struct yyParser {
int yyidx; /* Index of top element in stack */
+#ifdef YYTRACKMAXSTACKDEPTH
+ int yyidxMax; /* Maximum value of yyidx */
+#endif
int yyerrcnt; /* Shifts left before out of the error */
sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
#if YYSTACKDEPTH<=0
@@ -60595,7 +89001,7 @@ static char *yyTracePrompt = 0;
** Outputs:
** None.
*/
-void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
+SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
yyTraceFILE = TraceFILE;
yyTracePrompt = zTracePrompt;
if( yyTraceFILE==0 ) yyTracePrompt = 0;
@@ -60610,65 +89016,67 @@ static const char *const yyTokenName[] = {
"$", "SEMI", "EXPLAIN", "QUERY",
"PLAN", "BEGIN", "TRANSACTION", "DEFERRED",
"IMMEDIATE", "EXCLUSIVE", "COMMIT", "END",
- "ROLLBACK", "CREATE", "TABLE", "IF",
- "NOT", "EXISTS", "TEMP", "LP",
- "RP", "AS", "COMMA", "ID",
+ "ROLLBACK", "SAVEPOINT", "RELEASE", "TO",
+ "TABLE", "CREATE", "IF", "NOT",
+ "EXISTS", "TEMP", "LP", "RP",
+ "AS", "COMMA", "ID", "INDEXED",
"ABORT", "AFTER", "ANALYZE", "ASC",
- "ATTACH", "BEFORE", "CASCADE", "CAST",
- "CONFLICT", "DATABASE", "DESC", "DETACH",
- "EACH", "FAIL", "FOR", "IGNORE",
- "INITIALLY", "INSTEAD", "LIKE_KW", "MATCH",
- "KEY", "OF", "OFFSET", "PRAGMA",
- "RAISE", "REPLACE", "RESTRICT", "ROW",
- "TRIGGER", "VACUUM", "VIEW", "VIRTUAL",
- "REINDEX", "RENAME", "CTIME_KW", "ANY",
- "OR", "AND", "IS", "BETWEEN",
- "IN", "ISNULL", "NOTNULL", "NE",
- "EQ", "GT", "LE", "LT",
- "GE", "ESCAPE", "BITAND", "BITOR",
- "LSHIFT", "RSHIFT", "PLUS", "MINUS",
- "STAR", "SLASH", "REM", "CONCAT",
- "COLLATE", "UMINUS", "UPLUS", "BITNOT",
- "STRING", "JOIN_KW", "CONSTRAINT", "DEFAULT",
- "NULL", "PRIMARY", "UNIQUE", "CHECK",
- "REFERENCES", "AUTOINCR", "ON", "DELETE",
- "UPDATE", "INSERT", "SET", "DEFERRABLE",
- "FOREIGN", "DROP", "UNION", "ALL",
- "EXCEPT", "INTERSECT", "SELECT", "DISTINCT",
- "DOT", "FROM", "JOIN", "USING",
- "ORDER", "BY", "GROUP", "HAVING",
- "LIMIT", "WHERE", "INTO", "VALUES",
- "INTEGER", "FLOAT", "BLOB", "REGISTER",
- "VARIABLE", "CASE", "WHEN", "THEN",
- "ELSE", "INDEX", "ALTER", "TO",
- "ADD", "COLUMNKW", "error", "input",
- "cmdlist", "ecmd", "cmdx", "cmd",
- "explain", "transtype", "trans_opt", "nm",
- "create_table", "create_table_args", "temp", "ifnotexists",
- "dbnm", "columnlist", "conslist_opt", "select",
- "column", "columnid", "type", "carglist",
- "id", "ids", "typetoken", "typename",
- "signed", "plus_num", "minus_num", "carg",
- "ccons", "term", "expr", "onconf",
- "sortorder", "autoinc", "idxlist_opt", "refargs",
- "defer_subclause", "refarg", "refact", "init_deferred_pred_opt",
- "conslist", "tcons", "idxlist", "defer_subclause_opt",
- "orconf", "resolvetype", "raisetype", "ifexists",
- "fullname", "oneselect", "multiselect_op", "distinct",
- "selcollist", "from", "where_opt", "groupby_opt",
- "having_opt", "orderby_opt", "limit_opt", "sclp",
- "as", "seltablist", "stl_prefix", "joinop",
- "on_opt", "using_opt", "seltablist_paren", "joinop2",
- "inscollist", "sortlist", "sortitem", "exprlist",
- "setlist", "insert_cmd", "inscollist_opt", "itemlist",
- "likeop", "escape", "between_op", "in_op",
- "case_operand", "case_exprlist", "case_else", "expritem",
- "uniqueflag", "idxitem", "collate", "nmnum",
+ "ATTACH", "BEFORE", "BY", "CASCADE",
+ "CAST", "COLUMNKW", "CONFLICT", "DATABASE",
+ "DESC", "DETACH", "EACH", "FAIL",
+ "FOR", "IGNORE", "INITIALLY", "INSTEAD",
+ "LIKE_KW", "MATCH", "KEY", "OF",
+ "OFFSET", "PRAGMA", "RAISE", "REPLACE",
+ "RESTRICT", "ROW", "TRIGGER", "VACUUM",
+ "VIEW", "VIRTUAL", "REINDEX", "RENAME",
+ "CTIME_KW", "ANY", "OR", "AND",
+ "IS", "BETWEEN", "IN", "ISNULL",
+ "NOTNULL", "NE", "EQ", "GT",
+ "LE", "LT", "GE", "ESCAPE",
+ "BITAND", "BITOR", "LSHIFT", "RSHIFT",
+ "PLUS", "MINUS", "STAR", "SLASH",
+ "REM", "CONCAT", "COLLATE", "UMINUS",
+ "UPLUS", "BITNOT", "STRING", "JOIN_KW",
+ "CONSTRAINT", "DEFAULT", "NULL", "PRIMARY",
+ "UNIQUE", "CHECK", "REFERENCES", "AUTOINCR",
+ "ON", "DELETE", "UPDATE", "INSERT",
+ "SET", "DEFERRABLE", "FOREIGN", "DROP",
+ "UNION", "ALL", "EXCEPT", "INTERSECT",
+ "SELECT", "DISTINCT", "DOT", "FROM",
+ "JOIN", "USING", "ORDER", "GROUP",
+ "HAVING", "LIMIT", "WHERE", "INTO",
+ "VALUES", "INTEGER", "FLOAT", "BLOB",
+ "REGISTER", "VARIABLE", "CASE", "WHEN",
+ "THEN", "ELSE", "INDEX", "ALTER",
+ "ADD", "error", "input", "cmdlist",
+ "ecmd", "explain", "cmdx", "cmd",
+ "transtype", "trans_opt", "nm", "savepoint_opt",
+ "create_table", "create_table_args", "createkw", "temp",
+ "ifnotexists", "dbnm", "columnlist", "conslist_opt",
+ "select", "column", "columnid", "type",
+ "carglist", "id", "ids", "typetoken",
+ "typename", "signed", "plus_num", "minus_num",
+ "carg", "ccons", "term", "expr",
+ "onconf", "sortorder", "autoinc", "idxlist_opt",
+ "refargs", "defer_subclause", "refarg", "refact",
+ "init_deferred_pred_opt", "conslist", "tcons", "idxlist",
+ "defer_subclause_opt", "orconf", "resolvetype", "raisetype",
+ "ifexists", "fullname", "oneselect", "multiselect_op",
+ "distinct", "selcollist", "from", "where_opt",
+ "groupby_opt", "having_opt", "orderby_opt", "limit_opt",
+ "sclp", "as", "seltablist", "stl_prefix",
+ "joinop", "indexed_opt", "on_opt", "using_opt",
+ "joinop2", "inscollist", "sortlist", "sortitem",
+ "nexprlist", "setlist", "insert_cmd", "inscollist_opt",
+ "itemlist", "exprlist", "likeop", "escape",
+ "between_op", "in_op", "case_operand", "case_exprlist",
+ "case_else", "uniqueflag", "collate", "nmnum",
"plus_opt", "number", "trigger_decl", "trigger_cmd_list",
"trigger_time", "trigger_event", "foreach_clause", "when_clause",
- "trigger_cmd", "database_kw_opt", "key_opt", "add_column_fullname",
- "kwcolumn_opt", "create_vtab", "vtabarglist", "vtabarg",
- "vtabargtoken", "lp", "anylist",
+ "trigger_cmd", "trnm", "tridxby", "database_kw_opt",
+ "key_opt", "add_column_fullname", "kwcolumn_opt", "create_vtab",
+ "vtabarglist", "vtabarg", "vtabargtoken", "lp",
+ "anylist",
};
#endif /* NDEBUG */
@@ -60679,12 +89087,12 @@ static const char *const yyRuleName[] = {
/* 0 */ "input ::= cmdlist",
/* 1 */ "cmdlist ::= cmdlist ecmd",
/* 2 */ "cmdlist ::= ecmd",
- /* 3 */ "cmdx ::= cmd",
- /* 4 */ "ecmd ::= SEMI",
- /* 5 */ "ecmd ::= explain cmdx SEMI",
- /* 6 */ "explain ::=",
- /* 7 */ "explain ::= EXPLAIN",
- /* 8 */ "explain ::= EXPLAIN QUERY PLAN",
+ /* 3 */ "ecmd ::= SEMI",
+ /* 4 */ "ecmd ::= explain cmdx SEMI",
+ /* 5 */ "explain ::=",
+ /* 6 */ "explain ::= EXPLAIN",
+ /* 7 */ "explain ::= EXPLAIN QUERY PLAN",
+ /* 8 */ "cmdx ::= cmd",
/* 9 */ "cmd ::= BEGIN transtype trans_opt",
/* 10 */ "trans_opt ::=",
/* 11 */ "trans_opt ::= TRANSACTION",
@@ -60696,297 +89104,315 @@ static const char *const yyRuleName[] = {
/* 17 */ "cmd ::= COMMIT trans_opt",
/* 18 */ "cmd ::= END trans_opt",
/* 19 */ "cmd ::= ROLLBACK trans_opt",
- /* 20 */ "cmd ::= create_table create_table_args",
- /* 21 */ "create_table ::= CREATE temp TABLE ifnotexists nm dbnm",
- /* 22 */ "ifnotexists ::=",
- /* 23 */ "ifnotexists ::= IF NOT EXISTS",
- /* 24 */ "temp ::= TEMP",
- /* 25 */ "temp ::=",
- /* 26 */ "create_table_args ::= LP columnlist conslist_opt RP",
- /* 27 */ "create_table_args ::= AS select",
- /* 28 */ "columnlist ::= columnlist COMMA column",
- /* 29 */ "columnlist ::= column",
- /* 30 */ "column ::= columnid type carglist",
- /* 31 */ "columnid ::= nm",
- /* 32 */ "id ::= ID",
- /* 33 */ "ids ::= ID|STRING",
- /* 34 */ "nm ::= ID",
- /* 35 */ "nm ::= STRING",
- /* 36 */ "nm ::= JOIN_KW",
- /* 37 */ "type ::=",
- /* 38 */ "type ::= typetoken",
- /* 39 */ "typetoken ::= typename",
- /* 40 */ "typetoken ::= typename LP signed RP",
- /* 41 */ "typetoken ::= typename LP signed COMMA signed RP",
- /* 42 */ "typename ::= ids",
- /* 43 */ "typename ::= typename ids",
- /* 44 */ "signed ::= plus_num",
- /* 45 */ "signed ::= minus_num",
- /* 46 */ "carglist ::= carglist carg",
- /* 47 */ "carglist ::=",
- /* 48 */ "carg ::= CONSTRAINT nm ccons",
- /* 49 */ "carg ::= ccons",
- /* 50 */ "ccons ::= DEFAULT term",
- /* 51 */ "ccons ::= DEFAULT LP expr RP",
- /* 52 */ "ccons ::= DEFAULT PLUS term",
- /* 53 */ "ccons ::= DEFAULT MINUS term",
- /* 54 */ "ccons ::= DEFAULT id",
- /* 55 */ "ccons ::= NULL onconf",
- /* 56 */ "ccons ::= NOT NULL onconf",
- /* 57 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
- /* 58 */ "ccons ::= UNIQUE onconf",
- /* 59 */ "ccons ::= CHECK LP expr RP",
- /* 60 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
- /* 61 */ "ccons ::= defer_subclause",
- /* 62 */ "ccons ::= COLLATE id",
- /* 63 */ "autoinc ::=",
- /* 64 */ "autoinc ::= AUTOINCR",
- /* 65 */ "refargs ::=",
- /* 66 */ "refargs ::= refargs refarg",
- /* 67 */ "refarg ::= MATCH nm",
- /* 68 */ "refarg ::= ON DELETE refact",
- /* 69 */ "refarg ::= ON UPDATE refact",
- /* 70 */ "refarg ::= ON INSERT refact",
- /* 71 */ "refact ::= SET NULL",
- /* 72 */ "refact ::= SET DEFAULT",
- /* 73 */ "refact ::= CASCADE",
- /* 74 */ "refact ::= RESTRICT",
- /* 75 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
- /* 76 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
- /* 77 */ "init_deferred_pred_opt ::=",
- /* 78 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
- /* 79 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
- /* 80 */ "conslist_opt ::=",
- /* 81 */ "conslist_opt ::= COMMA conslist",
- /* 82 */ "conslist ::= conslist COMMA tcons",
- /* 83 */ "conslist ::= conslist tcons",
- /* 84 */ "conslist ::= tcons",
- /* 85 */ "tcons ::= CONSTRAINT nm",
- /* 86 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
- /* 87 */ "tcons ::= UNIQUE LP idxlist RP onconf",
- /* 88 */ "tcons ::= CHECK LP expr RP onconf",
- /* 89 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
- /* 90 */ "defer_subclause_opt ::=",
- /* 91 */ "defer_subclause_opt ::= defer_subclause",
- /* 92 */ "onconf ::=",
- /* 93 */ "onconf ::= ON CONFLICT resolvetype",
- /* 94 */ "orconf ::=",
- /* 95 */ "orconf ::= OR resolvetype",
- /* 96 */ "resolvetype ::= raisetype",
- /* 97 */ "resolvetype ::= IGNORE",
- /* 98 */ "resolvetype ::= REPLACE",
- /* 99 */ "cmd ::= DROP TABLE ifexists fullname",
- /* 100 */ "ifexists ::= IF EXISTS",
- /* 101 */ "ifexists ::=",
- /* 102 */ "cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select",
- /* 103 */ "cmd ::= DROP VIEW ifexists fullname",
- /* 104 */ "cmd ::= select",
- /* 105 */ "select ::= oneselect",
- /* 106 */ "select ::= select multiselect_op oneselect",
- /* 107 */ "multiselect_op ::= UNION",
- /* 108 */ "multiselect_op ::= UNION ALL",
- /* 109 */ "multiselect_op ::= EXCEPT|INTERSECT",
- /* 110 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
- /* 111 */ "distinct ::= DISTINCT",
- /* 112 */ "distinct ::= ALL",
- /* 113 */ "distinct ::=",
- /* 114 */ "sclp ::= selcollist COMMA",
- /* 115 */ "sclp ::=",
- /* 116 */ "selcollist ::= sclp expr as",
- /* 117 */ "selcollist ::= sclp STAR",
- /* 118 */ "selcollist ::= sclp nm DOT STAR",
- /* 119 */ "as ::= AS nm",
- /* 120 */ "as ::= ids",
- /* 121 */ "as ::=",
- /* 122 */ "from ::=",
- /* 123 */ "from ::= FROM seltablist",
- /* 124 */ "stl_prefix ::= seltablist joinop",
- /* 125 */ "stl_prefix ::=",
- /* 126 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
- /* 127 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
- /* 128 */ "seltablist_paren ::= select",
- /* 129 */ "seltablist_paren ::= seltablist",
- /* 130 */ "dbnm ::=",
- /* 131 */ "dbnm ::= DOT nm",
- /* 132 */ "fullname ::= nm dbnm",
- /* 133 */ "joinop ::= COMMA|JOIN",
- /* 134 */ "joinop ::= JOIN_KW JOIN",
- /* 135 */ "joinop ::= JOIN_KW nm JOIN",
- /* 136 */ "joinop ::= JOIN_KW nm nm JOIN",
- /* 137 */ "on_opt ::= ON expr",
- /* 138 */ "on_opt ::=",
- /* 139 */ "using_opt ::= USING LP inscollist RP",
- /* 140 */ "using_opt ::=",
- /* 141 */ "orderby_opt ::=",
- /* 142 */ "orderby_opt ::= ORDER BY sortlist",
- /* 143 */ "sortlist ::= sortlist COMMA sortitem sortorder",
- /* 144 */ "sortlist ::= sortitem sortorder",
- /* 145 */ "sortitem ::= expr",
- /* 146 */ "sortorder ::= ASC",
- /* 147 */ "sortorder ::= DESC",
- /* 148 */ "sortorder ::=",
- /* 149 */ "groupby_opt ::=",
- /* 150 */ "groupby_opt ::= GROUP BY exprlist",
- /* 151 */ "having_opt ::=",
- /* 152 */ "having_opt ::= HAVING expr",
- /* 153 */ "limit_opt ::=",
- /* 154 */ "limit_opt ::= LIMIT expr",
- /* 155 */ "limit_opt ::= LIMIT expr OFFSET expr",
- /* 156 */ "limit_opt ::= LIMIT expr COMMA expr",
- /* 157 */ "cmd ::= DELETE FROM fullname where_opt",
- /* 158 */ "where_opt ::=",
- /* 159 */ "where_opt ::= WHERE expr",
- /* 160 */ "cmd ::= UPDATE orconf fullname SET setlist where_opt",
- /* 161 */ "setlist ::= setlist COMMA nm EQ expr",
- /* 162 */ "setlist ::= nm EQ expr",
- /* 163 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP",
- /* 164 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select",
- /* 165 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
- /* 166 */ "insert_cmd ::= INSERT orconf",
- /* 167 */ "insert_cmd ::= REPLACE",
- /* 168 */ "itemlist ::= itemlist COMMA expr",
- /* 169 */ "itemlist ::= expr",
- /* 170 */ "inscollist_opt ::=",
- /* 171 */ "inscollist_opt ::= LP inscollist RP",
- /* 172 */ "inscollist ::= inscollist COMMA nm",
- /* 173 */ "inscollist ::= nm",
- /* 174 */ "expr ::= term",
- /* 175 */ "expr ::= LP expr RP",
- /* 176 */ "term ::= NULL",
- /* 177 */ "expr ::= ID",
- /* 178 */ "expr ::= JOIN_KW",
- /* 179 */ "expr ::= nm DOT nm",
- /* 180 */ "expr ::= nm DOT nm DOT nm",
- /* 181 */ "term ::= INTEGER|FLOAT|BLOB",
- /* 182 */ "term ::= STRING",
- /* 183 */ "expr ::= REGISTER",
- /* 184 */ "expr ::= VARIABLE",
- /* 185 */ "expr ::= expr COLLATE id",
- /* 186 */ "expr ::= CAST LP expr AS typetoken RP",
- /* 187 */ "expr ::= ID LP distinct exprlist RP",
- /* 188 */ "expr ::= ID LP STAR RP",
- /* 189 */ "term ::= CTIME_KW",
- /* 190 */ "expr ::= expr AND expr",
- /* 191 */ "expr ::= expr OR expr",
- /* 192 */ "expr ::= expr LT|GT|GE|LE expr",
- /* 193 */ "expr ::= expr EQ|NE expr",
- /* 194 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
- /* 195 */ "expr ::= expr PLUS|MINUS expr",
- /* 196 */ "expr ::= expr STAR|SLASH|REM expr",
- /* 197 */ "expr ::= expr CONCAT expr",
- /* 198 */ "likeop ::= LIKE_KW",
- /* 199 */ "likeop ::= NOT LIKE_KW",
- /* 200 */ "likeop ::= MATCH",
- /* 201 */ "likeop ::= NOT MATCH",
- /* 202 */ "escape ::= ESCAPE expr",
- /* 203 */ "escape ::=",
- /* 204 */ "expr ::= expr likeop expr escape",
- /* 205 */ "expr ::= expr ISNULL|NOTNULL",
- /* 206 */ "expr ::= expr IS NULL",
- /* 207 */ "expr ::= expr NOT NULL",
- /* 208 */ "expr ::= expr IS NOT NULL",
- /* 209 */ "expr ::= NOT|BITNOT expr",
- /* 210 */ "expr ::= MINUS expr",
- /* 211 */ "expr ::= PLUS expr",
- /* 212 */ "between_op ::= BETWEEN",
- /* 213 */ "between_op ::= NOT BETWEEN",
- /* 214 */ "expr ::= expr between_op expr AND expr",
- /* 215 */ "in_op ::= IN",
- /* 216 */ "in_op ::= NOT IN",
- /* 217 */ "expr ::= expr in_op LP exprlist RP",
- /* 218 */ "expr ::= LP select RP",
- /* 219 */ "expr ::= expr in_op LP select RP",
- /* 220 */ "expr ::= expr in_op nm dbnm",
- /* 221 */ "expr ::= EXISTS LP select RP",
- /* 222 */ "expr ::= CASE case_operand case_exprlist case_else END",
- /* 223 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
- /* 224 */ "case_exprlist ::= WHEN expr THEN expr",
- /* 225 */ "case_else ::= ELSE expr",
- /* 226 */ "case_else ::=",
- /* 227 */ "case_operand ::= expr",
- /* 228 */ "case_operand ::=",
- /* 229 */ "exprlist ::= exprlist COMMA expritem",
- /* 230 */ "exprlist ::= expritem",
- /* 231 */ "expritem ::= expr",
- /* 232 */ "expritem ::=",
- /* 233 */ "cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP",
- /* 234 */ "uniqueflag ::= UNIQUE",
- /* 235 */ "uniqueflag ::=",
- /* 236 */ "idxlist_opt ::=",
- /* 237 */ "idxlist_opt ::= LP idxlist RP",
- /* 238 */ "idxlist ::= idxlist COMMA idxitem collate sortorder",
- /* 239 */ "idxlist ::= idxitem collate sortorder",
- /* 240 */ "idxitem ::= nm",
- /* 241 */ "collate ::=",
- /* 242 */ "collate ::= COLLATE id",
- /* 243 */ "cmd ::= DROP INDEX ifexists fullname",
- /* 244 */ "cmd ::= VACUUM",
- /* 245 */ "cmd ::= VACUUM nm",
- /* 246 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
- /* 247 */ "cmd ::= PRAGMA nm dbnm EQ ON",
- /* 248 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
- /* 249 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
- /* 250 */ "cmd ::= PRAGMA nm dbnm",
- /* 251 */ "nmnum ::= plus_num",
- /* 252 */ "nmnum ::= nm",
- /* 253 */ "plus_num ::= plus_opt number",
- /* 254 */ "minus_num ::= MINUS number",
- /* 255 */ "number ::= INTEGER|FLOAT",
- /* 256 */ "plus_opt ::= PLUS",
- /* 257 */ "plus_opt ::=",
- /* 258 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
- /* 259 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
- /* 260 */ "trigger_time ::= BEFORE",
- /* 261 */ "trigger_time ::= AFTER",
- /* 262 */ "trigger_time ::= INSTEAD OF",
- /* 263 */ "trigger_time ::=",
- /* 264 */ "trigger_event ::= DELETE|INSERT",
- /* 265 */ "trigger_event ::= UPDATE",
- /* 266 */ "trigger_event ::= UPDATE OF inscollist",
- /* 267 */ "foreach_clause ::=",
- /* 268 */ "foreach_clause ::= FOR EACH ROW",
- /* 269 */ "when_clause ::=",
- /* 270 */ "when_clause ::= WHEN expr",
- /* 271 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
- /* 272 */ "trigger_cmd_list ::=",
- /* 273 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
- /* 274 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
- /* 275 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
- /* 276 */ "trigger_cmd ::= DELETE FROM nm where_opt",
- /* 277 */ "trigger_cmd ::= select",
- /* 278 */ "expr ::= RAISE LP IGNORE RP",
- /* 279 */ "expr ::= RAISE LP raisetype COMMA nm RP",
- /* 280 */ "raisetype ::= ROLLBACK",
- /* 281 */ "raisetype ::= ABORT",
- /* 282 */ "raisetype ::= FAIL",
- /* 283 */ "cmd ::= DROP TRIGGER ifexists fullname",
- /* 284 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
- /* 285 */ "cmd ::= DETACH database_kw_opt expr",
- /* 286 */ "key_opt ::=",
- /* 287 */ "key_opt ::= KEY expr",
- /* 288 */ "database_kw_opt ::= DATABASE",
- /* 289 */ "database_kw_opt ::=",
- /* 290 */ "cmd ::= REINDEX",
- /* 291 */ "cmd ::= REINDEX nm dbnm",
- /* 292 */ "cmd ::= ANALYZE",
- /* 293 */ "cmd ::= ANALYZE nm dbnm",
- /* 294 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
- /* 295 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
- /* 296 */ "add_column_fullname ::= fullname",
- /* 297 */ "kwcolumn_opt ::=",
- /* 298 */ "kwcolumn_opt ::= COLUMNKW",
- /* 299 */ "cmd ::= create_vtab",
- /* 300 */ "cmd ::= create_vtab LP vtabarglist RP",
- /* 301 */ "create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm",
- /* 302 */ "vtabarglist ::= vtabarg",
- /* 303 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
- /* 304 */ "vtabarg ::=",
- /* 305 */ "vtabarg ::= vtabarg vtabargtoken",
- /* 306 */ "vtabargtoken ::= ANY",
- /* 307 */ "vtabargtoken ::= lp anylist RP",
- /* 308 */ "lp ::= LP",
- /* 309 */ "anylist ::=",
- /* 310 */ "anylist ::= anylist ANY",
+ /* 20 */ "savepoint_opt ::= SAVEPOINT",
+ /* 21 */ "savepoint_opt ::=",
+ /* 22 */ "cmd ::= SAVEPOINT nm",
+ /* 23 */ "cmd ::= RELEASE savepoint_opt nm",
+ /* 24 */ "cmd ::= ROLLBACK trans_opt TO savepoint_opt nm",
+ /* 25 */ "cmd ::= create_table create_table_args",
+ /* 26 */ "create_table ::= createkw temp TABLE ifnotexists nm dbnm",
+ /* 27 */ "createkw ::= CREATE",
+ /* 28 */ "ifnotexists ::=",
+ /* 29 */ "ifnotexists ::= IF NOT EXISTS",
+ /* 30 */ "temp ::= TEMP",
+ /* 31 */ "temp ::=",
+ /* 32 */ "create_table_args ::= LP columnlist conslist_opt RP",
+ /* 33 */ "create_table_args ::= AS select",
+ /* 34 */ "columnlist ::= columnlist COMMA column",
+ /* 35 */ "columnlist ::= column",
+ /* 36 */ "column ::= columnid type carglist",
+ /* 37 */ "columnid ::= nm",
+ /* 38 */ "id ::= ID",
+ /* 39 */ "id ::= INDEXED",
+ /* 40 */ "ids ::= ID|STRING",
+ /* 41 */ "nm ::= id",
+ /* 42 */ "nm ::= STRING",
+ /* 43 */ "nm ::= JOIN_KW",
+ /* 44 */ "type ::=",
+ /* 45 */ "type ::= typetoken",
+ /* 46 */ "typetoken ::= typename",
+ /* 47 */ "typetoken ::= typename LP signed RP",
+ /* 48 */ "typetoken ::= typename LP signed COMMA signed RP",
+ /* 49 */ "typename ::= ids",
+ /* 50 */ "typename ::= typename ids",
+ /* 51 */ "signed ::= plus_num",
+ /* 52 */ "signed ::= minus_num",
+ /* 53 */ "carglist ::= carglist carg",
+ /* 54 */ "carglist ::=",
+ /* 55 */ "carg ::= CONSTRAINT nm ccons",
+ /* 56 */ "carg ::= ccons",
+ /* 57 */ "ccons ::= DEFAULT term",
+ /* 58 */ "ccons ::= DEFAULT LP expr RP",
+ /* 59 */ "ccons ::= DEFAULT PLUS term",
+ /* 60 */ "ccons ::= DEFAULT MINUS term",
+ /* 61 */ "ccons ::= DEFAULT id",
+ /* 62 */ "ccons ::= NULL onconf",
+ /* 63 */ "ccons ::= NOT NULL onconf",
+ /* 64 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
+ /* 65 */ "ccons ::= UNIQUE onconf",
+ /* 66 */ "ccons ::= CHECK LP expr RP",
+ /* 67 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
+ /* 68 */ "ccons ::= defer_subclause",
+ /* 69 */ "ccons ::= COLLATE ids",
+ /* 70 */ "autoinc ::=",
+ /* 71 */ "autoinc ::= AUTOINCR",
+ /* 72 */ "refargs ::=",
+ /* 73 */ "refargs ::= refargs refarg",
+ /* 74 */ "refarg ::= MATCH nm",
+ /* 75 */ "refarg ::= ON DELETE refact",
+ /* 76 */ "refarg ::= ON UPDATE refact",
+ /* 77 */ "refarg ::= ON INSERT refact",
+ /* 78 */ "refact ::= SET NULL",
+ /* 79 */ "refact ::= SET DEFAULT",
+ /* 80 */ "refact ::= CASCADE",
+ /* 81 */ "refact ::= RESTRICT",
+ /* 82 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
+ /* 83 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
+ /* 84 */ "init_deferred_pred_opt ::=",
+ /* 85 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
+ /* 86 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
+ /* 87 */ "conslist_opt ::=",
+ /* 88 */ "conslist_opt ::= COMMA conslist",
+ /* 89 */ "conslist ::= conslist COMMA tcons",
+ /* 90 */ "conslist ::= conslist tcons",
+ /* 91 */ "conslist ::= tcons",
+ /* 92 */ "tcons ::= CONSTRAINT nm",
+ /* 93 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
+ /* 94 */ "tcons ::= UNIQUE LP idxlist RP onconf",
+ /* 95 */ "tcons ::= CHECK LP expr RP onconf",
+ /* 96 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
+ /* 97 */ "defer_subclause_opt ::=",
+ /* 98 */ "defer_subclause_opt ::= defer_subclause",
+ /* 99 */ "onconf ::=",
+ /* 100 */ "onconf ::= ON CONFLICT resolvetype",
+ /* 101 */ "orconf ::=",
+ /* 102 */ "orconf ::= OR resolvetype",
+ /* 103 */ "resolvetype ::= raisetype",
+ /* 104 */ "resolvetype ::= IGNORE",
+ /* 105 */ "resolvetype ::= REPLACE",
+ /* 106 */ "cmd ::= DROP TABLE ifexists fullname",
+ /* 107 */ "ifexists ::= IF EXISTS",
+ /* 108 */ "ifexists ::=",
+ /* 109 */ "cmd ::= createkw temp VIEW ifnotexists nm dbnm AS select",
+ /* 110 */ "cmd ::= DROP VIEW ifexists fullname",
+ /* 111 */ "cmd ::= select",
+ /* 112 */ "select ::= oneselect",
+ /* 113 */ "select ::= select multiselect_op oneselect",
+ /* 114 */ "multiselect_op ::= UNION",
+ /* 115 */ "multiselect_op ::= UNION ALL",
+ /* 116 */ "multiselect_op ::= EXCEPT|INTERSECT",
+ /* 117 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
+ /* 118 */ "distinct ::= DISTINCT",
+ /* 119 */ "distinct ::= ALL",
+ /* 120 */ "distinct ::=",
+ /* 121 */ "sclp ::= selcollist COMMA",
+ /* 122 */ "sclp ::=",
+ /* 123 */ "selcollist ::= sclp expr as",
+ /* 124 */ "selcollist ::= sclp STAR",
+ /* 125 */ "selcollist ::= sclp nm DOT STAR",
+ /* 126 */ "as ::= AS nm",
+ /* 127 */ "as ::= ids",
+ /* 128 */ "as ::=",
+ /* 129 */ "from ::=",
+ /* 130 */ "from ::= FROM seltablist",
+ /* 131 */ "stl_prefix ::= seltablist joinop",
+ /* 132 */ "stl_prefix ::=",
+ /* 133 */ "seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt",
+ /* 134 */ "seltablist ::= stl_prefix LP select RP as on_opt using_opt",
+ /* 135 */ "seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt",
+ /* 136 */ "dbnm ::=",
+ /* 137 */ "dbnm ::= DOT nm",
+ /* 138 */ "fullname ::= nm dbnm",
+ /* 139 */ "joinop ::= COMMA|JOIN",
+ /* 140 */ "joinop ::= JOIN_KW JOIN",
+ /* 141 */ "joinop ::= JOIN_KW nm JOIN",
+ /* 142 */ "joinop ::= JOIN_KW nm nm JOIN",
+ /* 143 */ "on_opt ::= ON expr",
+ /* 144 */ "on_opt ::=",
+ /* 145 */ "indexed_opt ::=",
+ /* 146 */ "indexed_opt ::= INDEXED BY nm",
+ /* 147 */ "indexed_opt ::= NOT INDEXED",
+ /* 148 */ "using_opt ::= USING LP inscollist RP",
+ /* 149 */ "using_opt ::=",
+ /* 150 */ "orderby_opt ::=",
+ /* 151 */ "orderby_opt ::= ORDER BY sortlist",
+ /* 152 */ "sortlist ::= sortlist COMMA sortitem sortorder",
+ /* 153 */ "sortlist ::= sortitem sortorder",
+ /* 154 */ "sortitem ::= expr",
+ /* 155 */ "sortorder ::= ASC",
+ /* 156 */ "sortorder ::= DESC",
+ /* 157 */ "sortorder ::=",
+ /* 158 */ "groupby_opt ::=",
+ /* 159 */ "groupby_opt ::= GROUP BY nexprlist",
+ /* 160 */ "having_opt ::=",
+ /* 161 */ "having_opt ::= HAVING expr",
+ /* 162 */ "limit_opt ::=",
+ /* 163 */ "limit_opt ::= LIMIT expr",
+ /* 164 */ "limit_opt ::= LIMIT expr OFFSET expr",
+ /* 165 */ "limit_opt ::= LIMIT expr COMMA expr",
+ /* 166 */ "cmd ::= DELETE FROM fullname indexed_opt where_opt",
+ /* 167 */ "where_opt ::=",
+ /* 168 */ "where_opt ::= WHERE expr",
+ /* 169 */ "cmd ::= UPDATE orconf fullname indexed_opt SET setlist where_opt",
+ /* 170 */ "setlist ::= setlist COMMA nm EQ expr",
+ /* 171 */ "setlist ::= nm EQ expr",
+ /* 172 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP",
+ /* 173 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select",
+ /* 174 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
+ /* 175 */ "insert_cmd ::= INSERT orconf",
+ /* 176 */ "insert_cmd ::= REPLACE",
+ /* 177 */ "itemlist ::= itemlist COMMA expr",
+ /* 178 */ "itemlist ::= expr",
+ /* 179 */ "inscollist_opt ::=",
+ /* 180 */ "inscollist_opt ::= LP inscollist RP",
+ /* 181 */ "inscollist ::= inscollist COMMA nm",
+ /* 182 */ "inscollist ::= nm",
+ /* 183 */ "expr ::= term",
+ /* 184 */ "expr ::= LP expr RP",
+ /* 185 */ "term ::= NULL",
+ /* 186 */ "expr ::= id",
+ /* 187 */ "expr ::= JOIN_KW",
+ /* 188 */ "expr ::= nm DOT nm",
+ /* 189 */ "expr ::= nm DOT nm DOT nm",
+ /* 190 */ "term ::= INTEGER|FLOAT|BLOB",
+ /* 191 */ "term ::= STRING",
+ /* 192 */ "expr ::= REGISTER",
+ /* 193 */ "expr ::= VARIABLE",
+ /* 194 */ "expr ::= expr COLLATE ids",
+ /* 195 */ "expr ::= CAST LP expr AS typetoken RP",
+ /* 196 */ "expr ::= ID LP distinct exprlist RP",
+ /* 197 */ "expr ::= ID LP STAR RP",
+ /* 198 */ "term ::= CTIME_KW",
+ /* 199 */ "expr ::= expr AND expr",
+ /* 200 */ "expr ::= expr OR expr",
+ /* 201 */ "expr ::= expr LT|GT|GE|LE expr",
+ /* 202 */ "expr ::= expr EQ|NE expr",
+ /* 203 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
+ /* 204 */ "expr ::= expr PLUS|MINUS expr",
+ /* 205 */ "expr ::= expr STAR|SLASH|REM expr",
+ /* 206 */ "expr ::= expr CONCAT expr",
+ /* 207 */ "likeop ::= LIKE_KW",
+ /* 208 */ "likeop ::= NOT LIKE_KW",
+ /* 209 */ "likeop ::= MATCH",
+ /* 210 */ "likeop ::= NOT MATCH",
+ /* 211 */ "escape ::= ESCAPE expr",
+ /* 212 */ "escape ::=",
+ /* 213 */ "expr ::= expr likeop expr escape",
+ /* 214 */ "expr ::= expr ISNULL|NOTNULL",
+ /* 215 */ "expr ::= expr IS NULL",
+ /* 216 */ "expr ::= expr NOT NULL",
+ /* 217 */ "expr ::= expr IS NOT NULL",
+ /* 218 */ "expr ::= NOT expr",
+ /* 219 */ "expr ::= BITNOT expr",
+ /* 220 */ "expr ::= MINUS expr",
+ /* 221 */ "expr ::= PLUS expr",
+ /* 222 */ "between_op ::= BETWEEN",
+ /* 223 */ "between_op ::= NOT BETWEEN",
+ /* 224 */ "expr ::= expr between_op expr AND expr",
+ /* 225 */ "in_op ::= IN",
+ /* 226 */ "in_op ::= NOT IN",
+ /* 227 */ "expr ::= expr in_op LP exprlist RP",
+ /* 228 */ "expr ::= LP select RP",
+ /* 229 */ "expr ::= expr in_op LP select RP",
+ /* 230 */ "expr ::= expr in_op nm dbnm",
+ /* 231 */ "expr ::= EXISTS LP select RP",
+ /* 232 */ "expr ::= CASE case_operand case_exprlist case_else END",
+ /* 233 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
+ /* 234 */ "case_exprlist ::= WHEN expr THEN expr",
+ /* 235 */ "case_else ::= ELSE expr",
+ /* 236 */ "case_else ::=",
+ /* 237 */ "case_operand ::= expr",
+ /* 238 */ "case_operand ::=",
+ /* 239 */ "exprlist ::= nexprlist",
+ /* 240 */ "exprlist ::=",
+ /* 241 */ "nexprlist ::= nexprlist COMMA expr",
+ /* 242 */ "nexprlist ::= expr",
+ /* 243 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP",
+ /* 244 */ "uniqueflag ::= UNIQUE",
+ /* 245 */ "uniqueflag ::=",
+ /* 246 */ "idxlist_opt ::=",
+ /* 247 */ "idxlist_opt ::= LP idxlist RP",
+ /* 248 */ "idxlist ::= idxlist COMMA nm collate sortorder",
+ /* 249 */ "idxlist ::= nm collate sortorder",
+ /* 250 */ "collate ::=",
+ /* 251 */ "collate ::= COLLATE ids",
+ /* 252 */ "cmd ::= DROP INDEX ifexists fullname",
+ /* 253 */ "cmd ::= VACUUM",
+ /* 254 */ "cmd ::= VACUUM nm",
+ /* 255 */ "cmd ::= PRAGMA nm dbnm",
+ /* 256 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
+ /* 257 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
+ /* 258 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
+ /* 259 */ "cmd ::= PRAGMA nm dbnm LP minus_num RP",
+ /* 260 */ "nmnum ::= plus_num",
+ /* 261 */ "nmnum ::= nm",
+ /* 262 */ "nmnum ::= ON",
+ /* 263 */ "nmnum ::= DELETE",
+ /* 264 */ "nmnum ::= DEFAULT",
+ /* 265 */ "plus_num ::= plus_opt number",
+ /* 266 */ "minus_num ::= MINUS number",
+ /* 267 */ "number ::= INTEGER|FLOAT",
+ /* 268 */ "plus_opt ::= PLUS",
+ /* 269 */ "plus_opt ::=",
+ /* 270 */ "cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END",
+ /* 271 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
+ /* 272 */ "trigger_time ::= BEFORE",
+ /* 273 */ "trigger_time ::= AFTER",
+ /* 274 */ "trigger_time ::= INSTEAD OF",
+ /* 275 */ "trigger_time ::=",
+ /* 276 */ "trigger_event ::= DELETE|INSERT",
+ /* 277 */ "trigger_event ::= UPDATE",
+ /* 278 */ "trigger_event ::= UPDATE OF inscollist",
+ /* 279 */ "foreach_clause ::=",
+ /* 280 */ "foreach_clause ::= FOR EACH ROW",
+ /* 281 */ "when_clause ::=",
+ /* 282 */ "when_clause ::= WHEN expr",
+ /* 283 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
+ /* 284 */ "trigger_cmd_list ::= trigger_cmd SEMI",
+ /* 285 */ "trnm ::= nm",
+ /* 286 */ "trnm ::= nm DOT nm",
+ /* 287 */ "tridxby ::=",
+ /* 288 */ "tridxby ::= INDEXED BY nm",
+ /* 289 */ "tridxby ::= NOT INDEXED",
+ /* 290 */ "trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt",
+ /* 291 */ "trigger_cmd ::= insert_cmd INTO trnm inscollist_opt VALUES LP itemlist RP",
+ /* 292 */ "trigger_cmd ::= insert_cmd INTO trnm inscollist_opt select",
+ /* 293 */ "trigger_cmd ::= DELETE FROM trnm tridxby where_opt",
+ /* 294 */ "trigger_cmd ::= select",
+ /* 295 */ "expr ::= RAISE LP IGNORE RP",
+ /* 296 */ "expr ::= RAISE LP raisetype COMMA nm RP",
+ /* 297 */ "raisetype ::= ROLLBACK",
+ /* 298 */ "raisetype ::= ABORT",
+ /* 299 */ "raisetype ::= FAIL",
+ /* 300 */ "cmd ::= DROP TRIGGER ifexists fullname",
+ /* 301 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
+ /* 302 */ "cmd ::= DETACH database_kw_opt expr",
+ /* 303 */ "key_opt ::=",
+ /* 304 */ "key_opt ::= KEY expr",
+ /* 305 */ "database_kw_opt ::= DATABASE",
+ /* 306 */ "database_kw_opt ::=",
+ /* 307 */ "cmd ::= REINDEX",
+ /* 308 */ "cmd ::= REINDEX nm dbnm",
+ /* 309 */ "cmd ::= ANALYZE",
+ /* 310 */ "cmd ::= ANALYZE nm dbnm",
+ /* 311 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
+ /* 312 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
+ /* 313 */ "add_column_fullname ::= fullname",
+ /* 314 */ "kwcolumn_opt ::=",
+ /* 315 */ "kwcolumn_opt ::= COLUMNKW",
+ /* 316 */ "cmd ::= create_vtab",
+ /* 317 */ "cmd ::= create_vtab LP vtabarglist RP",
+ /* 318 */ "create_vtab ::= createkw VIRTUAL TABLE nm dbnm USING nm",
+ /* 319 */ "vtabarglist ::= vtabarg",
+ /* 320 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
+ /* 321 */ "vtabarg ::=",
+ /* 322 */ "vtabarg ::= vtabarg vtabargtoken",
+ /* 323 */ "vtabargtoken ::= ANY",
+ /* 324 */ "vtabargtoken ::= lp anylist RP",
+ /* 325 */ "lp ::= LP",
+ /* 326 */ "anylist ::=",
+ /* 327 */ "anylist ::= anylist LP anylist RP",
+ /* 328 */ "anylist ::= anylist ANY",
};
#endif /* NDEBUG */
@@ -61026,12 +89452,17 @@ static void yyGrowStack(yyParser *p){
** A pointer to a parser. This pointer is used in subsequent calls
** to sqlite3Parser and sqlite3ParserFree.
*/
-void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
+SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
yyParser *pParser;
pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
if( pParser ){
pParser->yyidx = -1;
+#ifdef YYTRACKMAXSTACKDEPTH
+ pParser->yyidxMax = 0;
+#endif
#if YYSTACKDEPTH<=0
+ pParser->yystack = NULL;
+ pParser->yystksz = 0;
yyGrowStack(pParser);
#endif
}
@@ -61043,7 +89474,12 @@ void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
** "yymajor" is the symbol code, and "yypminor" is a pointer to
** the value.
*/
-static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
+static void yy_destructor(
+ yyParser *yypParser, /* The parser */
+ YYCODETYPE yymajor, /* Type code for object to destroy */
+ YYMINORTYPE *yypminor /* The object to be destroyed */
+){
+ sqlite3ParserARG_FETCH;
switch( yymajor ){
/* Here is inserted the actions which take place when a
** terminal or non-terminal is destroyed. This can happen
@@ -61055,57 +89491,72 @@ static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
** which appear on the RHS of the rule, but which are not used
** inside the C code.
*/
- case 155:
- case 189:
- case 206:
-{sqlite3SelectDelete((yypminor->yy219));}
+ case 160: /* select */
+ case 194: /* oneselect */
+{
+sqlite3SelectDelete(pParse->db, (yypminor->yy3));
+}
break;
- case 169:
- case 170:
- case 194:
- case 196:
- case 204:
- case 210:
- case 217:
- case 220:
- case 222:
- case 223:
- case 235:
-{sqlite3ExprDelete((yypminor->yy172));}
+ case 174: /* term */
+ case 175: /* expr */
+ case 223: /* escape */
+{
+sqlite3ExprDelete(pParse->db, (yypminor->yy346).pExpr);
+}
break;
- case 174:
- case 182:
- case 192:
- case 195:
- case 197:
- case 199:
- case 209:
- case 211:
- case 212:
- case 215:
- case 221:
-{sqlite3ExprListDelete((yypminor->yy174));}
+ case 179: /* idxlist_opt */
+ case 187: /* idxlist */
+ case 197: /* selcollist */
+ case 200: /* groupby_opt */
+ case 202: /* orderby_opt */
+ case 204: /* sclp */
+ case 214: /* sortlist */
+ case 216: /* nexprlist */
+ case 217: /* setlist */
+ case 220: /* itemlist */
+ case 221: /* exprlist */
+ case 227: /* case_exprlist */
+{
+sqlite3ExprListDelete(pParse->db, (yypminor->yy14));
+}
break;
- case 188:
- case 193:
- case 201:
- case 202:
-{sqlite3SrcListDelete((yypminor->yy373));}
+ case 193: /* fullname */
+ case 198: /* from */
+ case 206: /* seltablist */
+ case 207: /* stl_prefix */
+{
+sqlite3SrcListDelete(pParse->db, (yypminor->yy65));
+}
break;
- case 205:
- case 208:
- case 214:
-{sqlite3IdListDelete((yypminor->yy432));}
+ case 199: /* where_opt */
+ case 201: /* having_opt */
+ case 210: /* on_opt */
+ case 215: /* sortitem */
+ case 226: /* case_operand */
+ case 228: /* case_else */
+ case 239: /* when_clause */
+ case 244: /* key_opt */
+{
+sqlite3ExprDelete(pParse->db, (yypminor->yy132));
+}
break;
- case 231:
- case 236:
-{sqlite3DeleteTriggerStep((yypminor->yy243));}
+ case 211: /* using_opt */
+ case 213: /* inscollist */
+ case 219: /* inscollist_opt */
+{
+sqlite3IdListDelete(pParse->db, (yypminor->yy408));
+}
break;
- case 233:
-{sqlite3IdListDelete((yypminor->yy370).b);}
+ case 235: /* trigger_cmd_list */
+ case 240: /* trigger_cmd */
+{
+sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy473));
+}
break;
- case 238:
-{sqlite3ExprDelete((yypminor->yy386));}
+ case 237: /* trigger_event */
+{
+sqlite3IdListDelete(pParse->db, (yypminor->yy378).b);
+}
break;
default: break; /* If no destructor action specified: do nothing */
}
@@ -61123,7 +89574,9 @@ static int yy_pop_parser_stack(yyParser *pParser){
YYCODETYPE yymajor;
yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
- if( pParser->yyidx<0 ) return 0;
+ /* There is no mechanism by which the parser stack can be popped below
+ ** empty in SQLite. */
+ if( NEVER(pParser->yyidx<0) ) return 0;
#ifndef NDEBUG
if( yyTraceFILE && pParser->yyidx>=0 ){
fprintf(yyTraceFILE,"%sPopping %s\n",
@@ -61132,7 +89585,7 @@ static int yy_pop_parser_stack(yyParser *pParser){
}
#endif
yymajor = yytos->major;
- yy_destructor( yymajor, &yytos->minor);
+ yy_destructor(pParser, yymajor, &yytos->minor);
pParser->yyidx--;
return yymajor;
}
@@ -61149,12 +89602,14 @@ static int yy_pop_parser_stack(yyParser *pParser){
** from malloc.
** </ul>
*/
-void sqlite3ParserFree(
+SQLITE_PRIVATE void sqlite3ParserFree(
void *p, /* The parser to be deleted */
void (*freeProc)(void*) /* Function used to reclaim memory */
){
yyParser *pParser = (yyParser*)p;
- if( pParser==0 ) return;
+ /* In SQLite, we never try to destroy a parser that was not successfully
+ ** created in the first place. */
+ if( NEVER(pParser==0) ) return;
while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
#if YYSTACKDEPTH<=0
free(pParser->yystack);
@@ -61163,6 +89618,16 @@ void sqlite3ParserFree(
}
/*
+** Return the peak depth of the stack for a parser.
+*/
+#ifdef YYTRACKMAXSTACKDEPTH
+SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
+ yyParser *pParser = (yyParser*)p;
+ return pParser->yyidxMax;
+}
+#endif
+
+/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
**
@@ -61180,14 +89645,14 @@ static int yy_find_shift_action(
if( stateno>YY_SHIFT_MAX || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
return yy_default[stateno];
}
- if( iLookAhead==YYNOCODE ){
- return YY_NO_ACTION;
- }
+ assert( iLookAhead!=YYNOCODE );
i += iLookAhead;
if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
+ /* The user of ";" instead of "\000" as a statement terminator in SQLite
+ ** means that we always have a look-ahead token. */
if( iLookAhead>0 ){
#ifdef YYFALLBACK
- int iFallback; /* Fallback token */
+ YYCODETYPE iFallback; /* Fallback token */
if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
&& (iFallback = yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
@@ -61233,21 +89698,26 @@ static int yy_find_reduce_action(
YYCODETYPE iLookAhead /* The look-ahead token */
){
int i;
- /* int stateno = pParser->yystack[pParser->yyidx].stateno; */
-
- if( stateno>YY_REDUCE_MAX ||
- (i = yy_reduce_ofst[stateno])==YY_REDUCE_USE_DFLT ){
+#ifdef YYERRORSYMBOL
+ if( stateno>YY_REDUCE_MAX ){
return yy_default[stateno];
}
- if( iLookAhead==YYNOCODE ){
- return YY_NO_ACTION;
- }
+#else
+ assert( stateno<=YY_REDUCE_MAX );
+#endif
+ i = yy_reduce_ofst[stateno];
+ assert( i!=YY_REDUCE_USE_DFLT );
+ assert( iLookAhead!=YYNOCODE );
i += iLookAhead;
+#ifdef YYERRORSYMBOL
if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
return yy_default[stateno];
- }else{
- return yy_action[i];
}
+#else
+ assert( i>=0 && i<YY_SZ_ACTTAB );
+ assert( yy_lookahead[i]==iLookAhead );
+#endif
+ return yy_action[i];
}
/*
@@ -61265,6 +89735,7 @@ static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
/* Here code is inserted which will execute if the parser
** stack every overflows */
+ UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
sqlite3ErrorMsg(pParse, "parser stack overflow");
pParse->parseError = 1;
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
@@ -61277,10 +89748,15 @@ static void yy_shift(
yyParser *yypParser, /* The parser to be shifted */
int yyNewState, /* The new state to shift in */
int yyMajor, /* The major token to shift in */
- YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */
+ YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */
){
yyStackEntry *yytos;
yypParser->yyidx++;
+#ifdef YYTRACKMAXSTACKDEPTH
+ if( yypParser->yyidx>yypParser->yyidxMax ){
+ yypParser->yyidxMax = yypParser->yyidx;
+ }
+#endif
#if YYSTACKDEPTH>0
if( yypParser->yyidx>=YYSTACKDEPTH ){
yyStackOverflow(yypParser, yypMinor);
@@ -61296,8 +89772,8 @@ static void yy_shift(
}
#endif
yytos = &yypParser->yystack[yypParser->yyidx];
- yytos->stateno = yyNewState;
- yytos->major = yyMajor;
+ yytos->stateno = (YYACTIONTYPE)yyNewState;
+ yytos->major = (YYCODETYPE)yyMajor;
yytos->minor = *yypMinor;
#ifndef NDEBUG
if( yyTraceFILE && yypParser->yyidx>0 ){
@@ -61318,317 +89794,335 @@ static const struct {
YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
unsigned char nrhs; /* Number of right-hand side symbols in the rule */
} yyRuleInfo[] = {
- { 139, 1 },
- { 140, 2 },
- { 140, 1 },
{ 142, 1 },
- { 141, 1 },
- { 141, 3 },
- { 144, 0 },
+ { 143, 2 },
+ { 143, 1 },
{ 144, 1 },
{ 144, 3 },
- { 143, 3 },
- { 146, 0 },
- { 146, 1 },
- { 146, 2 },
{ 145, 0 },
{ 145, 1 },
- { 145, 1 },
- { 145, 1 },
- { 143, 2 },
- { 143, 2 },
- { 143, 2 },
- { 143, 2 },
- { 148, 6 },
- { 151, 0 },
- { 151, 3 },
- { 150, 1 },
- { 150, 0 },
- { 149, 4 },
+ { 145, 3 },
+ { 146, 1 },
+ { 147, 3 },
+ { 149, 0 },
+ { 149, 1 },
{ 149, 2 },
- { 153, 3 },
- { 153, 1 },
+ { 148, 0 },
+ { 148, 1 },
+ { 148, 1 },
+ { 148, 1 },
+ { 147, 2 },
+ { 147, 2 },
+ { 147, 2 },
+ { 151, 1 },
+ { 151, 0 },
+ { 147, 2 },
+ { 147, 3 },
+ { 147, 5 },
+ { 147, 2 },
+ { 152, 6 },
+ { 154, 1 },
+ { 156, 0 },
{ 156, 3 },
- { 157, 1 },
- { 160, 1 },
- { 161, 1 },
- { 147, 1 },
- { 147, 1 },
- { 147, 1 },
- { 158, 0 },
+ { 155, 1 },
+ { 155, 0 },
+ { 153, 4 },
+ { 153, 2 },
+ { 158, 3 },
{ 158, 1 },
+ { 161, 3 },
{ 162, 1 },
- { 162, 4 },
- { 162, 6 },
+ { 165, 1 },
+ { 165, 1 },
+ { 166, 1 },
+ { 150, 1 },
+ { 150, 1 },
+ { 150, 1 },
+ { 163, 0 },
{ 163, 1 },
- { 163, 2 },
- { 164, 1 },
- { 164, 1 },
- { 159, 2 },
- { 159, 0 },
- { 167, 3 },
{ 167, 1 },
- { 168, 2 },
- { 168, 4 },
- { 168, 3 },
- { 168, 3 },
- { 168, 2 },
- { 168, 2 },
- { 168, 3 },
- { 168, 5 },
- { 168, 2 },
- { 168, 4 },
- { 168, 4 },
+ { 167, 4 },
+ { 167, 6 },
{ 168, 1 },
{ 168, 2 },
- { 173, 0 },
+ { 169, 1 },
+ { 169, 1 },
+ { 164, 2 },
+ { 164, 0 },
+ { 172, 3 },
+ { 172, 1 },
+ { 173, 2 },
+ { 173, 4 },
+ { 173, 3 },
+ { 173, 3 },
+ { 173, 2 },
+ { 173, 2 },
+ { 173, 3 },
+ { 173, 5 },
+ { 173, 2 },
+ { 173, 4 },
+ { 173, 4 },
{ 173, 1 },
- { 175, 0 },
- { 175, 2 },
- { 177, 2 },
- { 177, 3 },
- { 177, 3 },
- { 177, 3 },
- { 178, 2 },
- { 178, 2 },
- { 178, 1 },
+ { 173, 2 },
+ { 178, 0 },
{ 178, 1 },
- { 176, 3 },
- { 176, 2 },
- { 179, 0 },
- { 179, 2 },
- { 179, 2 },
- { 154, 0 },
- { 154, 2 },
- { 180, 3 },
+ { 180, 0 },
{ 180, 2 },
- { 180, 1 },
- { 181, 2 },
- { 181, 7 },
- { 181, 5 },
- { 181, 5 },
- { 181, 10 },
- { 183, 0 },
+ { 182, 2 },
+ { 182, 3 },
+ { 182, 3 },
+ { 182, 3 },
+ { 183, 2 },
+ { 183, 2 },
+ { 183, 1 },
{ 183, 1 },
- { 171, 0 },
- { 171, 3 },
+ { 181, 3 },
+ { 181, 2 },
{ 184, 0 },
{ 184, 2 },
+ { 184, 2 },
+ { 159, 0 },
+ { 159, 2 },
+ { 185, 3 },
+ { 185, 2 },
{ 185, 1 },
- { 185, 1 },
- { 185, 1 },
- { 143, 4 },
- { 187, 2 },
- { 187, 0 },
- { 143, 8 },
- { 143, 4 },
- { 143, 1 },
- { 155, 1 },
- { 155, 3 },
+ { 186, 2 },
+ { 186, 7 },
+ { 186, 5 },
+ { 186, 5 },
+ { 186, 10 },
+ { 188, 0 },
+ { 188, 1 },
+ { 176, 0 },
+ { 176, 3 },
+ { 189, 0 },
+ { 189, 2 },
{ 190, 1 },
- { 190, 2 },
{ 190, 1 },
- { 189, 9 },
- { 191, 1 },
- { 191, 1 },
- { 191, 0 },
- { 199, 2 },
- { 199, 0 },
- { 192, 3 },
+ { 190, 1 },
+ { 147, 4 },
{ 192, 2 },
- { 192, 4 },
- { 200, 2 },
- { 200, 1 },
- { 200, 0 },
- { 193, 0 },
- { 193, 2 },
- { 202, 2 },
- { 202, 0 },
- { 201, 6 },
- { 201, 7 },
- { 206, 1 },
- { 206, 1 },
- { 152, 0 },
- { 152, 2 },
- { 188, 2 },
- { 203, 1 },
- { 203, 2 },
- { 203, 3 },
- { 203, 4 },
+ { 192, 0 },
+ { 147, 8 },
+ { 147, 4 },
+ { 147, 1 },
+ { 160, 1 },
+ { 160, 3 },
+ { 195, 1 },
+ { 195, 2 },
+ { 195, 1 },
+ { 194, 9 },
+ { 196, 1 },
+ { 196, 1 },
+ { 196, 0 },
{ 204, 2 },
{ 204, 0 },
- { 205, 4 },
- { 205, 0 },
- { 197, 0 },
{ 197, 3 },
- { 209, 4 },
- { 209, 2 },
- { 210, 1 },
- { 172, 1 },
- { 172, 1 },
- { 172, 0 },
- { 195, 0 },
- { 195, 3 },
- { 196, 0 },
- { 196, 2 },
+ { 197, 2 },
+ { 197, 4 },
+ { 205, 2 },
+ { 205, 1 },
+ { 205, 0 },
{ 198, 0 },
{ 198, 2 },
- { 198, 4 },
- { 198, 4 },
- { 143, 4 },
- { 194, 0 },
- { 194, 2 },
- { 143, 6 },
- { 212, 5 },
- { 212, 3 },
- { 143, 8 },
- { 143, 5 },
- { 143, 6 },
- { 213, 2 },
- { 213, 1 },
- { 215, 3 },
- { 215, 1 },
- { 214, 0 },
- { 214, 3 },
- { 208, 3 },
+ { 207, 2 },
+ { 207, 0 },
+ { 206, 7 },
+ { 206, 7 },
+ { 206, 7 },
+ { 157, 0 },
+ { 157, 2 },
+ { 193, 2 },
{ 208, 1 },
- { 170, 1 },
- { 170, 3 },
- { 169, 1 },
- { 170, 1 },
- { 170, 1 },
- { 170, 3 },
- { 170, 5 },
- { 169, 1 },
- { 169, 1 },
- { 170, 1 },
- { 170, 1 },
- { 170, 3 },
- { 170, 6 },
- { 170, 5 },
- { 170, 4 },
- { 169, 1 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 216, 1 },
- { 216, 2 },
- { 216, 1 },
- { 216, 2 },
- { 217, 2 },
- { 217, 0 },
- { 170, 4 },
- { 170, 2 },
- { 170, 3 },
- { 170, 3 },
- { 170, 4 },
- { 170, 2 },
- { 170, 2 },
- { 170, 2 },
- { 218, 1 },
+ { 208, 2 },
+ { 208, 3 },
+ { 208, 4 },
+ { 210, 2 },
+ { 210, 0 },
+ { 209, 0 },
+ { 209, 3 },
+ { 209, 2 },
+ { 211, 4 },
+ { 211, 0 },
+ { 202, 0 },
+ { 202, 3 },
+ { 214, 4 },
+ { 214, 2 },
+ { 215, 1 },
+ { 177, 1 },
+ { 177, 1 },
+ { 177, 0 },
+ { 200, 0 },
+ { 200, 3 },
+ { 201, 0 },
+ { 201, 2 },
+ { 203, 0 },
+ { 203, 2 },
+ { 203, 4 },
+ { 203, 4 },
+ { 147, 5 },
+ { 199, 0 },
+ { 199, 2 },
+ { 147, 7 },
+ { 217, 5 },
+ { 217, 3 },
+ { 147, 8 },
+ { 147, 5 },
+ { 147, 6 },
{ 218, 2 },
- { 170, 5 },
- { 219, 1 },
- { 219, 2 },
- { 170, 5 },
- { 170, 3 },
- { 170, 5 },
- { 170, 4 },
- { 170, 4 },
- { 170, 5 },
- { 221, 5 },
- { 221, 4 },
- { 222, 2 },
- { 222, 0 },
+ { 218, 1 },
+ { 220, 3 },
{ 220, 1 },
- { 220, 0 },
- { 211, 3 },
- { 211, 1 },
- { 223, 1 },
+ { 219, 0 },
+ { 219, 3 },
+ { 213, 3 },
+ { 213, 1 },
+ { 175, 1 },
+ { 175, 3 },
+ { 174, 1 },
+ { 175, 1 },
+ { 175, 1 },
+ { 175, 3 },
+ { 175, 5 },
+ { 174, 1 },
+ { 174, 1 },
+ { 175, 1 },
+ { 175, 1 },
+ { 175, 3 },
+ { 175, 6 },
+ { 175, 5 },
+ { 175, 4 },
+ { 174, 1 },
+ { 175, 3 },
+ { 175, 3 },
+ { 175, 3 },
+ { 175, 3 },
+ { 175, 3 },
+ { 175, 3 },
+ { 175, 3 },
+ { 175, 3 },
+ { 222, 1 },
+ { 222, 2 },
+ { 222, 1 },
+ { 222, 2 },
+ { 223, 2 },
{ 223, 0 },
- { 143, 11 },
+ { 175, 4 },
+ { 175, 2 },
+ { 175, 3 },
+ { 175, 3 },
+ { 175, 4 },
+ { 175, 2 },
+ { 175, 2 },
+ { 175, 2 },
+ { 175, 2 },
{ 224, 1 },
- { 224, 0 },
- { 174, 0 },
- { 174, 3 },
- { 182, 5 },
- { 182, 3 },
+ { 224, 2 },
+ { 175, 5 },
{ 225, 1 },
+ { 225, 2 },
+ { 175, 5 },
+ { 175, 3 },
+ { 175, 5 },
+ { 175, 4 },
+ { 175, 4 },
+ { 175, 5 },
+ { 227, 5 },
+ { 227, 4 },
+ { 228, 2 },
+ { 228, 0 },
+ { 226, 1 },
{ 226, 0 },
- { 226, 2 },
- { 143, 4 },
- { 143, 1 },
- { 143, 2 },
- { 143, 5 },
- { 143, 5 },
- { 143, 5 },
- { 143, 6 },
- { 143, 3 },
- { 227, 1 },
- { 227, 1 },
- { 165, 2 },
- { 166, 2 },
+ { 221, 1 },
+ { 221, 0 },
+ { 216, 3 },
+ { 216, 1 },
+ { 147, 11 },
{ 229, 1 },
- { 228, 1 },
- { 228, 0 },
- { 143, 5 },
- { 230, 11 },
- { 232, 1 },
+ { 229, 0 },
+ { 179, 0 },
+ { 179, 3 },
+ { 187, 5 },
+ { 187, 3 },
+ { 230, 0 },
+ { 230, 2 },
+ { 147, 4 },
+ { 147, 1 },
+ { 147, 2 },
+ { 147, 3 },
+ { 147, 5 },
+ { 147, 6 },
+ { 147, 5 },
+ { 147, 6 },
+ { 231, 1 },
+ { 231, 1 },
+ { 231, 1 },
+ { 231, 1 },
+ { 231, 1 },
+ { 170, 2 },
+ { 171, 2 },
+ { 233, 1 },
{ 232, 1 },
- { 232, 2 },
{ 232, 0 },
- { 233, 1 },
- { 233, 1 },
- { 233, 3 },
- { 234, 0 },
- { 234, 3 },
- { 235, 0 },
- { 235, 2 },
- { 231, 3 },
- { 231, 0 },
- { 236, 6 },
- { 236, 8 },
- { 236, 5 },
- { 236, 4 },
+ { 147, 5 },
+ { 234, 11 },
{ 236, 1 },
- { 170, 4 },
- { 170, 6 },
- { 186, 1 },
- { 186, 1 },
- { 186, 1 },
- { 143, 4 },
- { 143, 6 },
- { 143, 3 },
- { 238, 0 },
- { 238, 2 },
+ { 236, 1 },
+ { 236, 2 },
+ { 236, 0 },
{ 237, 1 },
- { 237, 0 },
- { 143, 1 },
- { 143, 3 },
- { 143, 1 },
- { 143, 3 },
- { 143, 6 },
- { 143, 6 },
- { 239, 1 },
- { 240, 0 },
- { 240, 1 },
- { 143, 1 },
- { 143, 4 },
- { 241, 7 },
- { 242, 1 },
+ { 237, 1 },
+ { 237, 3 },
+ { 238, 0 },
+ { 238, 3 },
+ { 239, 0 },
+ { 239, 2 },
+ { 235, 3 },
+ { 235, 2 },
+ { 241, 1 },
+ { 241, 3 },
+ { 242, 0 },
{ 242, 3 },
+ { 242, 2 },
+ { 240, 7 },
+ { 240, 8 },
+ { 240, 5 },
+ { 240, 5 },
+ { 240, 1 },
+ { 175, 4 },
+ { 175, 6 },
+ { 191, 1 },
+ { 191, 1 },
+ { 191, 1 },
+ { 147, 4 },
+ { 147, 6 },
+ { 147, 3 },
+ { 244, 0 },
+ { 244, 2 },
+ { 243, 1 },
{ 243, 0 },
- { 243, 2 },
- { 244, 1 },
- { 244, 3 },
+ { 147, 1 },
+ { 147, 3 },
+ { 147, 1 },
+ { 147, 3 },
+ { 147, 6 },
+ { 147, 6 },
{ 245, 1 },
{ 246, 0 },
- { 246, 2 },
+ { 246, 1 },
+ { 147, 1 },
+ { 147, 4 },
+ { 247, 7 },
+ { 248, 1 },
+ { 248, 3 },
+ { 249, 0 },
+ { 249, 2 },
+ { 250, 1 },
+ { 250, 3 },
+ { 251, 1 },
+ { 252, 0 },
+ { 252, 4 },
+ { 252, 2 },
};
static void yy_accept(yyParser*); /* Forward Declaration */
@@ -61670,7 +90164,8 @@ static void yy_reduce(
** from wireshark this week. Clearly they are stressing Lemon in ways
** that it has not been previously stressed... (SQLite ticket #2172)
*/
- memset(&yygotominor, 0, sizeof(yygotominor));
+ /*memset(&yygotominor, 0, sizeof(yygotominor));*/
+ yygotominor = yyzerominor;
switch( yyruleno ){
@@ -61682,969 +90177,1084 @@ static void yy_reduce(
** #line <lineno> <thisfile>
** break;
*/
- case 0:
- case 1:
- case 2:
- case 4:
- case 5:
- case 10:
- case 11:
- case 12:
- case 20:
- case 28:
- case 29:
- case 37:
- case 44:
- case 45:
- case 46:
- case 47:
- case 48:
- case 49:
- case 55:
- case 82:
- case 83:
- case 84:
- case 85:
- case 256:
- case 257:
- case 267:
- case 268:
- case 288:
- case 289:
- case 297:
- case 298:
- case 302:
- case 303:
- case 305:
- case 309:
-{
-}
- break;
- case 3:
-{ sqlite3FinishCoding(pParse); }
- break;
- case 6:
+ case 5: /* explain ::= */
{ sqlite3BeginParse(pParse, 0); }
break;
- case 7:
+ case 6: /* explain ::= EXPLAIN */
{ sqlite3BeginParse(pParse, 1); }
break;
- case 8:
+ case 7: /* explain ::= EXPLAIN QUERY PLAN */
{ sqlite3BeginParse(pParse, 2); }
break;
- case 9:
-{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy46);}
+ case 8: /* cmdx ::= cmd */
+{ sqlite3FinishCoding(pParse); }
+ break;
+ case 9: /* cmd ::= BEGIN transtype trans_opt */
+{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy328);}
break;
- case 13:
-{yygotominor.yy46 = TK_DEFERRED;}
+ case 13: /* transtype ::= */
+{yygotominor.yy328 = TK_DEFERRED;}
break;
- case 14:
- case 15:
- case 16:
- case 107:
- case 109:
-{yygotominor.yy46 = yymsp[0].major;}
+ case 14: /* transtype ::= DEFERRED */
+ case 15: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==15);
+ case 16: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==16);
+ case 114: /* multiselect_op ::= UNION */ yytestcase(yyruleno==114);
+ case 116: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==116);
+{yygotominor.yy328 = yymsp[0].major;}
break;
- case 17:
- case 18:
+ case 17: /* cmd ::= COMMIT trans_opt */
+ case 18: /* cmd ::= END trans_opt */ yytestcase(yyruleno==18);
{sqlite3CommitTransaction(pParse);}
break;
- case 19:
+ case 19: /* cmd ::= ROLLBACK trans_opt */
{sqlite3RollbackTransaction(pParse);}
break;
- case 21:
+ case 22: /* cmd ::= SAVEPOINT nm */
{
- sqlite3StartTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,yymsp[-4].minor.yy46,0,0,yymsp[-2].minor.yy46);
-}
- break;
- case 22:
- case 25:
- case 63:
- case 77:
- case 79:
- case 90:
- case 101:
- case 112:
- case 113:
- case 212:
- case 215:
-{yygotominor.yy46 = 0;}
- break;
- case 23:
- case 24:
- case 64:
- case 78:
- case 100:
- case 111:
- case 213:
- case 216:
-{yygotominor.yy46 = 1;}
- break;
- case 26:
+ sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &yymsp[0].minor.yy0);
+}
+ break;
+ case 23: /* cmd ::= RELEASE savepoint_opt nm */
{
- sqlite3EndTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy0,0);
+ sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &yymsp[0].minor.yy0);
}
break;
- case 27:
+ case 24: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
{
- sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy219);
- sqlite3SelectDelete(yymsp[0].minor.yy219);
+ sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0);
}
break;
- case 30:
+ case 26: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
{
- yygotominor.yy410.z = yymsp[-2].minor.yy410.z;
- yygotominor.yy410.n = (pParse->sLastToken.z-yymsp[-2].minor.yy410.z) + pParse->sLastToken.n;
+ sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy328,0,0,yymsp[-2].minor.yy328);
}
break;
- case 31:
+ case 27: /* createkw ::= CREATE */
{
- sqlite3AddColumn(pParse,&yymsp[0].minor.yy410);
- yygotominor.yy410 = yymsp[0].minor.yy410;
-}
- break;
- case 32:
- case 33:
- case 34:
- case 35:
- case 36:
- case 255:
-{yygotominor.yy410 = yymsp[0].minor.yy0;}
- break;
- case 38:
-{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy410);}
- break;
- case 39:
- case 42:
- case 119:
- case 120:
- case 131:
- case 240:
- case 242:
- case 251:
- case 252:
- case 253:
- case 254:
-{yygotominor.yy410 = yymsp[0].minor.yy410;}
- break;
- case 40:
+ pParse->db->lookaside.bEnabled = 0;
+ yygotominor.yy0 = yymsp[0].minor.yy0;
+}
+ break;
+ case 28: /* ifnotexists ::= */
+ case 31: /* temp ::= */ yytestcase(yyruleno==31);
+ case 70: /* autoinc ::= */ yytestcase(yyruleno==70);
+ case 84: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==84);
+ case 86: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==86);
+ case 97: /* defer_subclause_opt ::= */ yytestcase(yyruleno==97);
+ case 108: /* ifexists ::= */ yytestcase(yyruleno==108);
+ case 119: /* distinct ::= ALL */ yytestcase(yyruleno==119);
+ case 120: /* distinct ::= */ yytestcase(yyruleno==120);
+ case 222: /* between_op ::= BETWEEN */ yytestcase(yyruleno==222);
+ case 225: /* in_op ::= IN */ yytestcase(yyruleno==225);
+{yygotominor.yy328 = 0;}
+ break;
+ case 29: /* ifnotexists ::= IF NOT EXISTS */
+ case 30: /* temp ::= TEMP */ yytestcase(yyruleno==30);
+ case 71: /* autoinc ::= AUTOINCR */ yytestcase(yyruleno==71);
+ case 85: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==85);
+ case 107: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==107);
+ case 118: /* distinct ::= DISTINCT */ yytestcase(yyruleno==118);
+ case 223: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==223);
+ case 226: /* in_op ::= NOT IN */ yytestcase(yyruleno==226);
+{yygotominor.yy328 = 1;}
+ break;
+ case 32: /* create_table_args ::= LP columnlist conslist_opt RP */
{
- yygotominor.yy410.z = yymsp[-3].minor.yy410.z;
- yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy410.z;
+ sqlite3EndTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0);
}
break;
- case 41:
+ case 33: /* create_table_args ::= AS select */
{
- yygotominor.yy410.z = yymsp[-5].minor.yy410.z;
- yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy410.z;
+ sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy3);
+ sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3);
}
break;
- case 43:
-{yygotominor.yy410.z=yymsp[-1].minor.yy410.z; yygotominor.yy410.n=yymsp[0].minor.yy410.n+(yymsp[0].minor.yy410.z-yymsp[-1].minor.yy410.z);}
+ case 36: /* column ::= columnid type carglist */
+{
+ yygotominor.yy0.z = yymsp[-2].minor.yy0.z;
+ yygotominor.yy0.n = (int)(pParse->sLastToken.z-yymsp[-2].minor.yy0.z) + pParse->sLastToken.n;
+}
break;
- case 50:
- case 52:
-{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy172);}
+ case 37: /* columnid ::= nm */
+{
+ sqlite3AddColumn(pParse,&yymsp[0].minor.yy0);
+ yygotominor.yy0 = yymsp[0].minor.yy0;
+}
break;
- case 51:
-{sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy172);}
+ case 38: /* id ::= ID */
+ case 39: /* id ::= INDEXED */ yytestcase(yyruleno==39);
+ case 40: /* ids ::= ID|STRING */ yytestcase(yyruleno==40);
+ case 41: /* nm ::= id */ yytestcase(yyruleno==41);
+ case 42: /* nm ::= STRING */ yytestcase(yyruleno==42);
+ case 43: /* nm ::= JOIN_KW */ yytestcase(yyruleno==43);
+ case 46: /* typetoken ::= typename */ yytestcase(yyruleno==46);
+ case 49: /* typename ::= ids */ yytestcase(yyruleno==49);
+ case 126: /* as ::= AS nm */ yytestcase(yyruleno==126);
+ case 127: /* as ::= ids */ yytestcase(yyruleno==127);
+ case 137: /* dbnm ::= DOT nm */ yytestcase(yyruleno==137);
+ case 146: /* indexed_opt ::= INDEXED BY nm */ yytestcase(yyruleno==146);
+ case 251: /* collate ::= COLLATE ids */ yytestcase(yyruleno==251);
+ case 260: /* nmnum ::= plus_num */ yytestcase(yyruleno==260);
+ case 261: /* nmnum ::= nm */ yytestcase(yyruleno==261);
+ case 262: /* nmnum ::= ON */ yytestcase(yyruleno==262);
+ case 263: /* nmnum ::= DELETE */ yytestcase(yyruleno==263);
+ case 264: /* nmnum ::= DEFAULT */ yytestcase(yyruleno==264);
+ case 265: /* plus_num ::= plus_opt number */ yytestcase(yyruleno==265);
+ case 266: /* minus_num ::= MINUS number */ yytestcase(yyruleno==266);
+ case 267: /* number ::= INTEGER|FLOAT */ yytestcase(yyruleno==267);
+ case 285: /* trnm ::= nm */ yytestcase(yyruleno==285);
+{yygotominor.yy0 = yymsp[0].minor.yy0;}
break;
- case 53:
+ case 45: /* type ::= typetoken */
+{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy0);}
+ break;
+ case 47: /* typetoken ::= typename LP signed RP */
{
- Expr *p = sqlite3Expr(TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
- sqlite3AddDefaultValue(pParse,p);
+ yygotominor.yy0.z = yymsp[-3].minor.yy0.z;
+ yygotominor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z);
}
break;
- case 54:
+ case 48: /* typetoken ::= typename LP signed COMMA signed RP */
{
- Expr *p = sqlite3Expr(TK_STRING, 0, 0, &yymsp[0].minor.yy410);
- sqlite3AddDefaultValue(pParse,p);
+ yygotominor.yy0.z = yymsp[-5].minor.yy0.z;
+ yygotominor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z);
}
break;
- case 56:
-{sqlite3AddNotNull(pParse, yymsp[0].minor.yy46);}
+ case 50: /* typename ::= typename ids */
+{yygotominor.yy0.z=yymsp[-1].minor.yy0.z; yygotominor.yy0.n=yymsp[0].minor.yy0.n+(int)(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);}
+ break;
+ case 57: /* ccons ::= DEFAULT term */
+ case 59: /* ccons ::= DEFAULT PLUS term */ yytestcase(yyruleno==59);
+{sqlite3AddDefaultValue(pParse,&yymsp[0].minor.yy346);}
break;
- case 57:
-{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy46,yymsp[0].minor.yy46,yymsp[-2].minor.yy46);}
+ case 58: /* ccons ::= DEFAULT LP expr RP */
+{sqlite3AddDefaultValue(pParse,&yymsp[-1].minor.yy346);}
break;
- case 58:
-{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy46,0,0,0,0);}
+ case 60: /* ccons ::= DEFAULT MINUS term */
+{
+ ExprSpan v;
+ v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy346.pExpr, 0, 0);
+ v.zStart = yymsp[-1].minor.yy0.z;
+ v.zEnd = yymsp[0].minor.yy346.zEnd;
+ sqlite3AddDefaultValue(pParse,&v);
+}
break;
- case 59:
-{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy172);}
+ case 61: /* ccons ::= DEFAULT id */
+{
+ ExprSpan v;
+ spanExpr(&v, pParse, TK_STRING, &yymsp[0].minor.yy0);
+ sqlite3AddDefaultValue(pParse,&v);
+}
break;
- case 60:
-{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy410,yymsp[-1].minor.yy174,yymsp[0].minor.yy46);}
+ case 63: /* ccons ::= NOT NULL onconf */
+{sqlite3AddNotNull(pParse, yymsp[0].minor.yy328);}
break;
- case 61:
-{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy46);}
+ case 64: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
+{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy328,yymsp[0].minor.yy328,yymsp[-2].minor.yy328);}
break;
- case 62:
-{sqlite3AddCollateType(pParse, (char*)yymsp[0].minor.yy410.z, yymsp[0].minor.yy410.n);}
+ case 65: /* ccons ::= UNIQUE onconf */
+{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy328,0,0,0,0);}
break;
- case 65:
-{ yygotominor.yy46 = OE_Restrict * 0x010101; }
+ case 66: /* ccons ::= CHECK LP expr RP */
+{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy346.pExpr);}
break;
- case 66:
-{ yygotominor.yy46 = (yymsp[-1].minor.yy46 & yymsp[0].minor.yy405.mask) | yymsp[0].minor.yy405.value; }
+ case 67: /* ccons ::= REFERENCES nm idxlist_opt refargs */
+{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy14,yymsp[0].minor.yy328);}
break;
- case 67:
-{ yygotominor.yy405.value = 0; yygotominor.yy405.mask = 0x000000; }
+ case 68: /* ccons ::= defer_subclause */
+{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy328);}
break;
- case 68:
-{ yygotominor.yy405.value = yymsp[0].minor.yy46; yygotominor.yy405.mask = 0x0000ff; }
+ case 69: /* ccons ::= COLLATE ids */
+{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);}
break;
- case 69:
-{ yygotominor.yy405.value = yymsp[0].minor.yy46<<8; yygotominor.yy405.mask = 0x00ff00; }
+ case 72: /* refargs ::= */
+{ yygotominor.yy328 = OE_Restrict * 0x010101; }
break;
- case 70:
-{ yygotominor.yy405.value = yymsp[0].minor.yy46<<16; yygotominor.yy405.mask = 0xff0000; }
+ case 73: /* refargs ::= refargs refarg */
+{ yygotominor.yy328 = (yymsp[-1].minor.yy328 & ~yymsp[0].minor.yy429.mask) | yymsp[0].minor.yy429.value; }
break;
- case 71:
-{ yygotominor.yy46 = OE_SetNull; }
+ case 74: /* refarg ::= MATCH nm */
+{ yygotominor.yy429.value = 0; yygotominor.yy429.mask = 0x000000; }
break;
- case 72:
-{ yygotominor.yy46 = OE_SetDflt; }
+ case 75: /* refarg ::= ON DELETE refact */
+{ yygotominor.yy429.value = yymsp[0].minor.yy328; yygotominor.yy429.mask = 0x0000ff; }
break;
- case 73:
-{ yygotominor.yy46 = OE_Cascade; }
+ case 76: /* refarg ::= ON UPDATE refact */
+{ yygotominor.yy429.value = yymsp[0].minor.yy328<<8; yygotominor.yy429.mask = 0x00ff00; }
break;
- case 74:
-{ yygotominor.yy46 = OE_Restrict; }
+ case 77: /* refarg ::= ON INSERT refact */
+{ yygotominor.yy429.value = yymsp[0].minor.yy328<<16; yygotominor.yy429.mask = 0xff0000; }
break;
- case 75:
- case 76:
- case 91:
- case 93:
- case 95:
- case 96:
- case 166:
-{yygotominor.yy46 = yymsp[0].minor.yy46;}
+ case 78: /* refact ::= SET NULL */
+{ yygotominor.yy328 = OE_SetNull; }
break;
- case 80:
-{yygotominor.yy410.n = 0; yygotominor.yy410.z = 0;}
+ case 79: /* refact ::= SET DEFAULT */
+{ yygotominor.yy328 = OE_SetDflt; }
break;
- case 81:
-{yygotominor.yy410 = yymsp[-1].minor.yy0;}
+ case 80: /* refact ::= CASCADE */
+{ yygotominor.yy328 = OE_Cascade; }
break;
- case 86:
-{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy174,yymsp[0].minor.yy46,yymsp[-2].minor.yy46,0);}
+ case 81: /* refact ::= RESTRICT */
+{ yygotominor.yy328 = OE_Restrict; }
break;
- case 87:
-{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy174,yymsp[0].minor.yy46,0,0,0,0);}
+ case 82: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
+ case 83: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==83);
+ case 98: /* defer_subclause_opt ::= defer_subclause */ yytestcase(yyruleno==98);
+ case 100: /* onconf ::= ON CONFLICT resolvetype */ yytestcase(yyruleno==100);
+ case 103: /* resolvetype ::= raisetype */ yytestcase(yyruleno==103);
+{yygotominor.yy328 = yymsp[0].minor.yy328;}
break;
- case 88:
-{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy172);}
+ case 87: /* conslist_opt ::= */
+{yygotominor.yy0.n = 0; yygotominor.yy0.z = 0;}
break;
- case 89:
+ case 88: /* conslist_opt ::= COMMA conslist */
+{yygotominor.yy0 = yymsp[-1].minor.yy0;}
+ break;
+ case 93: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
+{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy14,yymsp[0].minor.yy328,yymsp[-2].minor.yy328,0);}
+ break;
+ case 94: /* tcons ::= UNIQUE LP idxlist RP onconf */
+{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy14,yymsp[0].minor.yy328,0,0,0,0);}
+ break;
+ case 95: /* tcons ::= CHECK LP expr RP onconf */
+{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy346.pExpr);}
+ break;
+ case 96: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
{
- sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174, &yymsp[-3].minor.yy410, yymsp[-2].minor.yy174, yymsp[-1].minor.yy46);
- sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46);
+ sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy14, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy14, yymsp[-1].minor.yy328);
+ sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy328);
}
break;
- case 92:
- case 94:
-{yygotominor.yy46 = OE_Default;}
+ case 99: /* onconf ::= */
+{yygotominor.yy328 = OE_Default;}
break;
- case 97:
-{yygotominor.yy46 = OE_Ignore;}
+ case 101: /* orconf ::= */
+{yygotominor.yy186 = OE_Default;}
break;
- case 98:
- case 167:
-{yygotominor.yy46 = OE_Replace;}
+ case 102: /* orconf ::= OR resolvetype */
+{yygotominor.yy186 = (u8)yymsp[0].minor.yy328;}
break;
- case 99:
+ case 104: /* resolvetype ::= IGNORE */
+{yygotominor.yy328 = OE_Ignore;}
+ break;
+ case 105: /* resolvetype ::= REPLACE */
+{yygotominor.yy328 = OE_Replace;}
+ break;
+ case 106: /* cmd ::= DROP TABLE ifexists fullname */
{
- sqlite3DropTable(pParse, yymsp[0].minor.yy373, 0, yymsp[-1].minor.yy46);
+ sqlite3DropTable(pParse, yymsp[0].minor.yy65, 0, yymsp[-1].minor.yy328);
}
break;
- case 102:
+ case 109: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm AS select */
{
- sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, yymsp[0].minor.yy219, yymsp[-6].minor.yy46, yymsp[-4].minor.yy46);
+ sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, yymsp[0].minor.yy3, yymsp[-6].minor.yy328, yymsp[-4].minor.yy328);
}
break;
- case 103:
+ case 110: /* cmd ::= DROP VIEW ifexists fullname */
{
- sqlite3DropTable(pParse, yymsp[0].minor.yy373, 1, yymsp[-1].minor.yy46);
+ sqlite3DropTable(pParse, yymsp[0].minor.yy65, 1, yymsp[-1].minor.yy328);
}
break;
- case 104:
+ case 111: /* cmd ::= select */
{
- sqlite3Select(pParse, yymsp[0].minor.yy219, SRT_Callback, 0, 0, 0, 0, 0);
- sqlite3SelectDelete(yymsp[0].minor.yy219);
+ SelectDest dest = {SRT_Output, 0, 0, 0, 0};
+ sqlite3Select(pParse, yymsp[0].minor.yy3, &dest);
+ sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3);
}
break;
- case 105:
- case 128:
-{yygotominor.yy219 = yymsp[0].minor.yy219;}
+ case 112: /* select ::= oneselect */
+{yygotominor.yy3 = yymsp[0].minor.yy3;}
break;
- case 106:
+ case 113: /* select ::= select multiselect_op oneselect */
{
- if( yymsp[0].minor.yy219 ){
- yymsp[0].minor.yy219->op = yymsp[-1].minor.yy46;
- yymsp[0].minor.yy219->pPrior = yymsp[-2].minor.yy219;
+ if( yymsp[0].minor.yy3 ){
+ yymsp[0].minor.yy3->op = (u8)yymsp[-1].minor.yy328;
+ yymsp[0].minor.yy3->pPrior = yymsp[-2].minor.yy3;
+ }else{
+ sqlite3SelectDelete(pParse->db, yymsp[-2].minor.yy3);
}
- yygotominor.yy219 = yymsp[0].minor.yy219;
+ yygotominor.yy3 = yymsp[0].minor.yy3;
}
break;
- case 108:
-{yygotominor.yy46 = TK_ALL;}
+ case 115: /* multiselect_op ::= UNION ALL */
+{yygotominor.yy328 = TK_ALL;}
break;
- case 110:
+ case 117: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
{
- yygotominor.yy219 = sqlite3SelectNew(yymsp[-6].minor.yy174,yymsp[-5].minor.yy373,yymsp[-4].minor.yy172,yymsp[-3].minor.yy174,yymsp[-2].minor.yy172,yymsp[-1].minor.yy174,yymsp[-7].minor.yy46,yymsp[0].minor.yy234.pLimit,yymsp[0].minor.yy234.pOffset);
+ yygotominor.yy3 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy14,yymsp[-5].minor.yy65,yymsp[-4].minor.yy132,yymsp[-3].minor.yy14,yymsp[-2].minor.yy132,yymsp[-1].minor.yy14,yymsp[-7].minor.yy328,yymsp[0].minor.yy476.pLimit,yymsp[0].minor.yy476.pOffset);
}
break;
- case 114:
- case 237:
-{yygotominor.yy174 = yymsp[-1].minor.yy174;}
+ case 121: /* sclp ::= selcollist COMMA */
+ case 247: /* idxlist_opt ::= LP idxlist RP */ yytestcase(yyruleno==247);
+{yygotominor.yy14 = yymsp[-1].minor.yy14;}
break;
- case 115:
- case 141:
- case 149:
- case 236:
-{yygotominor.yy174 = 0;}
+ case 122: /* sclp ::= */
+ case 150: /* orderby_opt ::= */ yytestcase(yyruleno==150);
+ case 158: /* groupby_opt ::= */ yytestcase(yyruleno==158);
+ case 240: /* exprlist ::= */ yytestcase(yyruleno==240);
+ case 246: /* idxlist_opt ::= */ yytestcase(yyruleno==246);
+{yygotominor.yy14 = 0;}
break;
- case 116:
+ case 123: /* selcollist ::= sclp expr as */
{
- yygotominor.yy174 = sqlite3ExprListAppend(yymsp[-2].minor.yy174,yymsp[-1].minor.yy172,yymsp[0].minor.yy410.n?&yymsp[0].minor.yy410:0);
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy14, yymsp[-1].minor.yy346.pExpr);
+ if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[0].minor.yy0, 1);
+ sqlite3ExprListSetSpan(pParse,yygotominor.yy14,&yymsp[-1].minor.yy346);
}
break;
- case 117:
+ case 124: /* selcollist ::= sclp STAR */
{
- yygotominor.yy174 = sqlite3ExprListAppend(yymsp[-1].minor.yy174, sqlite3Expr(TK_ALL, 0, 0, 0), 0);
+ Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy14, p);
}
break;
- case 118:
+ case 125: /* selcollist ::= sclp nm DOT STAR */
{
- Expr *pRight = sqlite3Expr(TK_ALL, 0, 0, 0);
- Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, &yymsp[-2].minor.yy410);
- yygotominor.yy174 = sqlite3ExprListAppend(yymsp[-3].minor.yy174, sqlite3Expr(TK_DOT, pLeft, pRight, 0), 0);
+ Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &yymsp[0].minor.yy0);
+ Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
+ Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy14, pDot);
}
break;
- case 121:
-{yygotominor.yy410.n = 0;}
+ case 128: /* as ::= */
+{yygotominor.yy0.n = 0;}
break;
- case 122:
-{yygotominor.yy373 = sqliteMalloc(sizeof(*yygotominor.yy373));}
+ case 129: /* from ::= */
+{yygotominor.yy65 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy65));}
break;
- case 123:
+ case 130: /* from ::= FROM seltablist */
{
- yygotominor.yy373 = yymsp[0].minor.yy373;
- sqlite3SrcListShiftJoinType(yygotominor.yy373);
+ yygotominor.yy65 = yymsp[0].minor.yy65;
+ sqlite3SrcListShiftJoinType(yygotominor.yy65);
}
break;
- case 124:
+ case 131: /* stl_prefix ::= seltablist joinop */
{
- yygotominor.yy373 = yymsp[-1].minor.yy373;
- if( yygotominor.yy373 && yygotominor.yy373->nSrc>0 ) yygotominor.yy373->a[yygotominor.yy373->nSrc-1].jointype = yymsp[0].minor.yy46;
+ yygotominor.yy65 = yymsp[-1].minor.yy65;
+ if( ALWAYS(yygotominor.yy65 && yygotominor.yy65->nSrc>0) ) yygotominor.yy65->a[yygotominor.yy65->nSrc-1].jointype = (u8)yymsp[0].minor.yy328;
}
break;
- case 125:
-{yygotominor.yy373 = 0;}
+ case 132: /* stl_prefix ::= */
+{yygotominor.yy65 = 0;}
break;
- case 126:
+ case 133: /* seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt */
{
- yygotominor.yy373 = sqlite3SrcListAppendFromTerm(yymsp[-5].minor.yy373,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,0,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
+ yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,&yymsp[-5].minor.yy0,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,0,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
+ sqlite3SrcListIndexedBy(pParse, yygotominor.yy65, &yymsp[-2].minor.yy0);
}
break;
- case 127:
+ case 134: /* seltablist ::= stl_prefix LP select RP as on_opt using_opt */
{
- yygotominor.yy373 = sqlite3SrcListAppendFromTerm(yymsp[-6].minor.yy373,0,0,&yymsp[-2].minor.yy410,yymsp[-4].minor.yy219,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
+ yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy3,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
}
break;
- case 129:
+ case 135: /* seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt */
{
- sqlite3SrcListShiftJoinType(yymsp[0].minor.yy373);
- yygotominor.yy219 = sqlite3SelectNew(0,yymsp[0].minor.yy373,0,0,0,0,0,0,0);
+ if( yymsp[-6].minor.yy65==0 && yymsp[-2].minor.yy0.n==0 && yymsp[-1].minor.yy132==0 && yymsp[0].minor.yy408==0 ){
+ yygotominor.yy65 = yymsp[-4].minor.yy65;
+ }else{
+ Select *pSubquery;
+ sqlite3SrcListShiftJoinType(yymsp[-4].minor.yy65);
+ pSubquery = sqlite3SelectNew(pParse,0,yymsp[-4].minor.yy65,0,0,0,0,0,0,0);
+ yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,0,0,&yymsp[-2].minor.yy0,pSubquery,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
+ }
}
break;
- case 130:
-{yygotominor.yy410.z=0; yygotominor.yy410.n=0;}
+ case 136: /* dbnm ::= */
+ case 145: /* indexed_opt ::= */ yytestcase(yyruleno==145);
+{yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
break;
- case 132:
-{yygotominor.yy373 = sqlite3SrcListAppend(0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);}
+ case 138: /* fullname ::= nm dbnm */
+{yygotominor.yy65 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);}
break;
- case 133:
-{ yygotominor.yy46 = JT_INNER; }
+ case 139: /* joinop ::= COMMA|JOIN */
+{ yygotominor.yy328 = JT_INNER; }
break;
- case 134:
-{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
+ case 140: /* joinop ::= JOIN_KW JOIN */
+{ yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
break;
- case 135:
-{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy410,0); }
+ case 141: /* joinop ::= JOIN_KW nm JOIN */
+{ yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); }
break;
- case 136:
-{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy410,&yymsp[-1].minor.yy410); }
+ case 142: /* joinop ::= JOIN_KW nm nm JOIN */
+{ yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); }
break;
- case 137:
- case 145:
- case 152:
- case 159:
- case 174:
- case 202:
- case 225:
- case 227:
- case 231:
-{yygotominor.yy172 = yymsp[0].minor.yy172;}
+ case 143: /* on_opt ::= ON expr */
+ case 154: /* sortitem ::= expr */ yytestcase(yyruleno==154);
+ case 161: /* having_opt ::= HAVING expr */ yytestcase(yyruleno==161);
+ case 168: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==168);
+ case 235: /* case_else ::= ELSE expr */ yytestcase(yyruleno==235);
+ case 237: /* case_operand ::= expr */ yytestcase(yyruleno==237);
+{yygotominor.yy132 = yymsp[0].minor.yy346.pExpr;}
break;
- case 138:
- case 151:
- case 158:
- case 203:
- case 226:
- case 228:
- case 232:
-{yygotominor.yy172 = 0;}
+ case 144: /* on_opt ::= */
+ case 160: /* having_opt ::= */ yytestcase(yyruleno==160);
+ case 167: /* where_opt ::= */ yytestcase(yyruleno==167);
+ case 236: /* case_else ::= */ yytestcase(yyruleno==236);
+ case 238: /* case_operand ::= */ yytestcase(yyruleno==238);
+{yygotominor.yy132 = 0;}
break;
- case 139:
- case 171:
-{yygotominor.yy432 = yymsp[-1].minor.yy432;}
+ case 147: /* indexed_opt ::= NOT INDEXED */
+{yygotominor.yy0.z=0; yygotominor.yy0.n=1;}
break;
- case 140:
- case 170:
-{yygotominor.yy432 = 0;}
+ case 148: /* using_opt ::= USING LP inscollist RP */
+ case 180: /* inscollist_opt ::= LP inscollist RP */ yytestcase(yyruleno==180);
+{yygotominor.yy408 = yymsp[-1].minor.yy408;}
break;
- case 142:
- case 150:
-{yygotominor.yy174 = yymsp[0].minor.yy174;}
+ case 149: /* using_opt ::= */
+ case 179: /* inscollist_opt ::= */ yytestcase(yyruleno==179);
+{yygotominor.yy408 = 0;}
break;
- case 143:
+ case 151: /* orderby_opt ::= ORDER BY sortlist */
+ case 159: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==159);
+ case 239: /* exprlist ::= nexprlist */ yytestcase(yyruleno==239);
+{yygotominor.yy14 = yymsp[0].minor.yy14;}
+ break;
+ case 152: /* sortlist ::= sortlist COMMA sortitem sortorder */
{
- yygotominor.yy174 = sqlite3ExprListAppend(yymsp[-3].minor.yy174,yymsp[-1].minor.yy172,0);
- if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy14,yymsp[-1].minor.yy132);
+ if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
}
break;
- case 144:
+ case 153: /* sortlist ::= sortitem sortorder */
{
- yygotominor.yy174 = sqlite3ExprListAppend(0,yymsp[-1].minor.yy172,0);
- if( yygotominor.yy174 && yygotominor.yy174->a ) yygotominor.yy174->a[0].sortOrder = yymsp[0].minor.yy46;
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy132);
+ if( yygotominor.yy14 && ALWAYS(yygotominor.yy14->a) ) yygotominor.yy14->a[0].sortOrder = (u8)yymsp[0].minor.yy328;
}
break;
- case 146:
- case 148:
-{yygotominor.yy46 = SQLITE_SO_ASC;}
+ case 155: /* sortorder ::= ASC */
+ case 157: /* sortorder ::= */ yytestcase(yyruleno==157);
+{yygotominor.yy328 = SQLITE_SO_ASC;}
break;
- case 147:
-{yygotominor.yy46 = SQLITE_SO_DESC;}
+ case 156: /* sortorder ::= DESC */
+{yygotominor.yy328 = SQLITE_SO_DESC;}
break;
- case 153:
-{yygotominor.yy234.pLimit = 0; yygotominor.yy234.pOffset = 0;}
+ case 162: /* limit_opt ::= */
+{yygotominor.yy476.pLimit = 0; yygotominor.yy476.pOffset = 0;}
break;
- case 154:
-{yygotominor.yy234.pLimit = yymsp[0].minor.yy172; yygotominor.yy234.pOffset = 0;}
+ case 163: /* limit_opt ::= LIMIT expr */
+{yygotominor.yy476.pLimit = yymsp[0].minor.yy346.pExpr; yygotominor.yy476.pOffset = 0;}
break;
- case 155:
-{yygotominor.yy234.pLimit = yymsp[-2].minor.yy172; yygotominor.yy234.pOffset = yymsp[0].minor.yy172;}
+ case 164: /* limit_opt ::= LIMIT expr OFFSET expr */
+{yygotominor.yy476.pLimit = yymsp[-2].minor.yy346.pExpr; yygotominor.yy476.pOffset = yymsp[0].minor.yy346.pExpr;}
break;
- case 156:
-{yygotominor.yy234.pOffset = yymsp[-2].minor.yy172; yygotominor.yy234.pLimit = yymsp[0].minor.yy172;}
+ case 165: /* limit_opt ::= LIMIT expr COMMA expr */
+{yygotominor.yy476.pOffset = yymsp[-2].minor.yy346.pExpr; yygotominor.yy476.pLimit = yymsp[0].minor.yy346.pExpr;}
break;
- case 157:
-{sqlite3DeleteFrom(pParse,yymsp[-1].minor.yy373,yymsp[0].minor.yy172);}
+ case 166: /* cmd ::= DELETE FROM fullname indexed_opt where_opt */
+{
+ sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy65, &yymsp[-1].minor.yy0);
+ sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy65,yymsp[0].minor.yy132);
+}
break;
- case 160:
-{sqlite3Update(pParse,yymsp[-3].minor.yy373,yymsp[-1].minor.yy174,yymsp[0].minor.yy172,yymsp[-4].minor.yy46);}
+ case 169: /* cmd ::= UPDATE orconf fullname indexed_opt SET setlist where_opt */
+{
+ sqlite3SrcListIndexedBy(pParse, yymsp[-4].minor.yy65, &yymsp[-3].minor.yy0);
+ sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy14,"set list");
+ sqlite3Update(pParse,yymsp[-4].minor.yy65,yymsp[-1].minor.yy14,yymsp[0].minor.yy132,yymsp[-5].minor.yy186);
+}
break;
- case 161:
-{yygotominor.yy174 = sqlite3ExprListAppend(yymsp[-4].minor.yy174,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
+ case 170: /* setlist ::= setlist COMMA nm EQ expr */
+{
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy14, yymsp[0].minor.yy346.pExpr);
+ sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
+}
+ break;
+ case 171: /* setlist ::= nm EQ expr */
+{
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy346.pExpr);
+ sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
+}
+ break;
+ case 172: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */
+{sqlite3Insert(pParse, yymsp[-5].minor.yy65, yymsp[-1].minor.yy14, 0, yymsp[-4].minor.yy408, yymsp[-7].minor.yy186);}
+ break;
+ case 173: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */
+{sqlite3Insert(pParse, yymsp[-2].minor.yy65, 0, yymsp[0].minor.yy3, yymsp[-1].minor.yy408, yymsp[-4].minor.yy186);}
break;
- case 162:
-{yygotominor.yy174 = sqlite3ExprListAppend(0,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
+ case 174: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */
+{sqlite3Insert(pParse, yymsp[-3].minor.yy65, 0, 0, yymsp[-2].minor.yy408, yymsp[-5].minor.yy186);}
break;
- case 163:
-{sqlite3Insert(pParse, yymsp[-5].minor.yy373, yymsp[-1].minor.yy174, 0, yymsp[-4].minor.yy432, yymsp[-7].minor.yy46);}
+ case 175: /* insert_cmd ::= INSERT orconf */
+{yygotominor.yy186 = yymsp[0].minor.yy186;}
break;
- case 164:
-{sqlite3Insert(pParse, yymsp[-2].minor.yy373, 0, yymsp[0].minor.yy219, yymsp[-1].minor.yy432, yymsp[-4].minor.yy46);}
+ case 176: /* insert_cmd ::= REPLACE */
+{yygotominor.yy186 = OE_Replace;}
break;
- case 165:
-{sqlite3Insert(pParse, yymsp[-3].minor.yy373, 0, 0, yymsp[-2].minor.yy432, yymsp[-5].minor.yy46);}
+ case 177: /* itemlist ::= itemlist COMMA expr */
+ case 241: /* nexprlist ::= nexprlist COMMA expr */ yytestcase(yyruleno==241);
+{yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy14,yymsp[0].minor.yy346.pExpr);}
break;
- case 168:
- case 229:
-{yygotominor.yy174 = sqlite3ExprListAppend(yymsp[-2].minor.yy174,yymsp[0].minor.yy172,0);}
+ case 178: /* itemlist ::= expr */
+ case 242: /* nexprlist ::= expr */ yytestcase(yyruleno==242);
+{yygotominor.yy14 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy346.pExpr);}
break;
- case 169:
- case 230:
-{yygotominor.yy174 = sqlite3ExprListAppend(0,yymsp[0].minor.yy172,0);}
+ case 181: /* inscollist ::= inscollist COMMA nm */
+{yygotominor.yy408 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy408,&yymsp[0].minor.yy0);}
break;
- case 172:
-{yygotominor.yy432 = sqlite3IdListAppend(yymsp[-2].minor.yy432,&yymsp[0].minor.yy410);}
+ case 182: /* inscollist ::= nm */
+{yygotominor.yy408 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy0);}
break;
- case 173:
-{yygotominor.yy432 = sqlite3IdListAppend(0,&yymsp[0].minor.yy410);}
+ case 183: /* expr ::= term */
+ case 211: /* escape ::= ESCAPE expr */ yytestcase(yyruleno==211);
+{yygotominor.yy346 = yymsp[0].minor.yy346;}
break;
- case 175:
-{yygotominor.yy172 = yymsp[-1].minor.yy172; sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
+ case 184: /* expr ::= LP expr RP */
+{yygotominor.yy346.pExpr = yymsp[-1].minor.yy346.pExpr; spanSet(&yygotominor.yy346,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);}
break;
- case 176:
- case 181:
- case 182:
-{yygotominor.yy172 = sqlite3Expr(yymsp[0].major, 0, 0, &yymsp[0].minor.yy0);}
+ case 185: /* term ::= NULL */
+ case 190: /* term ::= INTEGER|FLOAT|BLOB */ yytestcase(yyruleno==190);
+ case 191: /* term ::= STRING */ yytestcase(yyruleno==191);
+{spanExpr(&yygotominor.yy346, pParse, yymsp[0].major, &yymsp[0].minor.yy0);}
break;
- case 177:
- case 178:
-{yygotominor.yy172 = sqlite3Expr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
+ case 186: /* expr ::= id */
+ case 187: /* expr ::= JOIN_KW */ yytestcase(yyruleno==187);
+{spanExpr(&yygotominor.yy346, pParse, TK_ID, &yymsp[0].minor.yy0);}
break;
- case 179:
+ case 188: /* expr ::= nm DOT nm */
{
- Expr *temp1 = sqlite3Expr(TK_ID, 0, 0, &yymsp[-2].minor.yy410);
- Expr *temp2 = sqlite3Expr(TK_ID, 0, 0, &yymsp[0].minor.yy410);
- yygotominor.yy172 = sqlite3Expr(TK_DOT, temp1, temp2, 0);
+ Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
+ Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
+ spanSet(&yygotominor.yy346,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
}
break;
- case 180:
+ case 189: /* expr ::= nm DOT nm DOT nm */
{
- Expr *temp1 = sqlite3Expr(TK_ID, 0, 0, &yymsp[-4].minor.yy410);
- Expr *temp2 = sqlite3Expr(TK_ID, 0, 0, &yymsp[-2].minor.yy410);
- Expr *temp3 = sqlite3Expr(TK_ID, 0, 0, &yymsp[0].minor.yy410);
- Expr *temp4 = sqlite3Expr(TK_DOT, temp2, temp3, 0);
- yygotominor.yy172 = sqlite3Expr(TK_DOT, temp1, temp4, 0);
+ Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy0);
+ Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
+ Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
+ Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
+ spanSet(&yygotominor.yy346,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
}
break;
- case 183:
-{yygotominor.yy172 = sqlite3RegisterExpr(pParse, &yymsp[0].minor.yy0);}
+ case 192: /* expr ::= REGISTER */
+{
+ /* When doing a nested parse, one can include terms in an expression
+ ** that look like this: #1 #2 ... These terms refer to registers
+ ** in the virtual machine. #N is the N-th register. */
+ if( pParse->nested==0 ){
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &yymsp[0].minor.yy0);
+ yygotominor.yy346.pExpr = 0;
+ }else{
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &yymsp[0].minor.yy0);
+ if( yygotominor.yy346.pExpr ) sqlite3GetInt32(&yymsp[0].minor.yy0.z[1], &yygotominor.yy346.pExpr->iTable);
+ }
+ spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
+}
break;
- case 184:
+ case 193: /* expr ::= VARIABLE */
{
- Token *pToken = &yymsp[0].minor.yy0;
- Expr *pExpr = yygotominor.yy172 = sqlite3Expr(TK_VARIABLE, 0, 0, pToken);
- sqlite3ExprAssignVarNumber(pParse, pExpr);
+ spanExpr(&yygotominor.yy346, pParse, TK_VARIABLE, &yymsp[0].minor.yy0);
+ sqlite3ExprAssignVarNumber(pParse, yygotominor.yy346.pExpr);
+ spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
}
break;
- case 185:
+ case 194: /* expr ::= expr COLLATE ids */
{
- yygotominor.yy172 = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172, &yymsp[0].minor.yy410);
+ yygotominor.yy346.pExpr = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy346.pExpr, &yymsp[0].minor.yy0);
+ yygotominor.yy346.zStart = yymsp[-2].minor.yy346.zStart;
+ yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
break;
- case 186:
+ case 195: /* expr ::= CAST LP expr AS typetoken RP */
{
- yygotominor.yy172 = sqlite3Expr(TK_CAST, yymsp[-3].minor.yy172, 0, &yymsp[-1].minor.yy410);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy346.pExpr, 0, &yymsp[-1].minor.yy0);
+ spanSet(&yygotominor.yy346,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
}
break;
- case 187:
+ case 196: /* expr ::= ID LP distinct exprlist RP */
{
- yygotominor.yy172 = sqlite3ExprFunction(yymsp[-1].minor.yy174, &yymsp[-4].minor.yy0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
- if( yymsp[-2].minor.yy46 && yygotominor.yy172 ){
- yygotominor.yy172->flags |= EP_Distinct;
+ if( yymsp[-1].minor.yy14 && yymsp[-1].minor.yy14->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
+ sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
+ }
+ yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy14, &yymsp[-4].minor.yy0);
+ spanSet(&yygotominor.yy346,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
+ if( yymsp[-2].minor.yy328 && yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->flags |= EP_Distinct;
}
}
break;
- case 188:
+ case 197: /* expr ::= ID LP STAR RP */
{
- yygotominor.yy172 = sqlite3ExprFunction(0, &yymsp[-3].minor.yy0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
+ yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
+ spanSet(&yygotominor.yy346,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
}
break;
- case 189:
+ case 198: /* term ::= CTIME_KW */
{
/* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
** treated as functions that return constants */
- yygotominor.yy172 = sqlite3ExprFunction(0,&yymsp[0].minor.yy0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->op = TK_CONST_FUNC;
- yygotominor.yy172->span = yymsp[0].minor.yy0;
+ yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, 0,&yymsp[0].minor.yy0);
+ if( yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->op = TK_CONST_FUNC;
}
+ spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
}
break;
- case 190:
- case 191:
- case 192:
- case 193:
- case 194:
- case 195:
- case 196:
- case 197:
-{yygotominor.yy172 = sqlite3Expr(yymsp[-1].major, yymsp[-2].minor.yy172, yymsp[0].minor.yy172, 0);}
+ case 199: /* expr ::= expr AND expr */
+ case 200: /* expr ::= expr OR expr */ yytestcase(yyruleno==200);
+ case 201: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==201);
+ case 202: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==202);
+ case 203: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==203);
+ case 204: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==204);
+ case 205: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==205);
+ case 206: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==206);
+{spanBinaryExpr(&yygotominor.yy346,pParse,yymsp[-1].major,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy346);}
break;
- case 198:
- case 200:
-{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 0;}
+ case 207: /* likeop ::= LIKE_KW */
+ case 209: /* likeop ::= MATCH */ yytestcase(yyruleno==209);
+{yygotominor.yy96.eOperator = yymsp[0].minor.yy0; yygotominor.yy96.not = 0;}
break;
- case 199:
- case 201:
-{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 1;}
+ case 208: /* likeop ::= NOT LIKE_KW */
+ case 210: /* likeop ::= NOT MATCH */ yytestcase(yyruleno==210);
+{yygotominor.yy96.eOperator = yymsp[0].minor.yy0; yygotominor.yy96.not = 1;}
break;
- case 204:
+ case 212: /* escape ::= */
+{memset(&yygotominor.yy346,0,sizeof(yygotominor.yy346));}
+ break;
+ case 213: /* expr ::= expr likeop expr escape */
{
ExprList *pList;
- pList = sqlite3ExprListAppend(0, yymsp[-1].minor.yy172, 0);
- pList = sqlite3ExprListAppend(pList, yymsp[-3].minor.yy172, 0);
- if( yymsp[0].minor.yy172 ){
- pList = sqlite3ExprListAppend(pList, yymsp[0].minor.yy172, 0);
+ pList = sqlite3ExprListAppend(pParse,0, yymsp[-1].minor.yy346.pExpr);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[-3].minor.yy346.pExpr);
+ if( yymsp[0].minor.yy346.pExpr ){
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy346.pExpr);
}
- yygotominor.yy172 = sqlite3ExprFunction(pList, &yymsp[-2].minor.yy72.eOperator);
- if( yymsp[-2].minor.yy72.not ) yygotominor.yy172 = sqlite3Expr(TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span, &yymsp[-1].minor.yy172->span);
- if( yygotominor.yy172 ) yygotominor.yy172->flags |= EP_InfixFunc;
+ yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-2].minor.yy96.eOperator);
+ if( yymsp[-2].minor.yy96.not ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
+ yygotominor.yy346.zStart = yymsp[-3].minor.yy346.zStart;
+ yygotominor.yy346.zEnd = yymsp[-1].minor.yy346.zEnd;
+ if( yygotominor.yy346.pExpr ) yygotominor.yy346.pExpr->flags |= EP_InfixFunc;
}
break;
- case 205:
-{
- yygotominor.yy172 = sqlite3Expr(yymsp[0].major, yymsp[-1].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy172->span,&yymsp[0].minor.yy0);
-}
+ case 214: /* expr ::= expr ISNULL|NOTNULL */
+{spanUnaryPostfix(&yygotominor.yy346,pParse,yymsp[0].major,&yymsp[-1].minor.yy346,&yymsp[0].minor.yy0);}
break;
- case 206:
-{
- yygotominor.yy172 = sqlite3Expr(TK_ISNULL, yymsp[-2].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
-}
+ case 215: /* expr ::= expr IS NULL */
+{spanUnaryPostfix(&yygotominor.yy346,pParse,TK_ISNULL,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy0);}
break;
- case 207:
-{
- yygotominor.yy172 = sqlite3Expr(TK_NOTNULL, yymsp[-2].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
-}
+ case 216: /* expr ::= expr NOT NULL */
+{spanUnaryPostfix(&yygotominor.yy346,pParse,TK_NOTNULL,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy0);}
break;
- case 208:
-{
- yygotominor.yy172 = sqlite3Expr(TK_NOTNULL, yymsp[-3].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,&yymsp[0].minor.yy0);
-}
+ case 217: /* expr ::= expr IS NOT NULL */
+{spanUnaryPostfix(&yygotominor.yy346,pParse,TK_NOTNULL,&yymsp[-3].minor.yy346,&yymsp[0].minor.yy0);}
break;
- case 209:
-{
- yygotominor.yy172 = sqlite3Expr(yymsp[-1].major, yymsp[0].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
-}
+ case 218: /* expr ::= NOT expr */
+ case 219: /* expr ::= BITNOT expr */ yytestcase(yyruleno==219);
+{spanUnaryPrefix(&yygotominor.yy346,pParse,yymsp[-1].major,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
break;
- case 210:
-{
- yygotominor.yy172 = sqlite3Expr(TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
-}
+ case 220: /* expr ::= MINUS expr */
+{spanUnaryPrefix(&yygotominor.yy346,pParse,TK_UMINUS,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
break;
- case 211:
-{
- yygotominor.yy172 = sqlite3Expr(TK_UPLUS, yymsp[0].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
-}
+ case 221: /* expr ::= PLUS expr */
+{spanUnaryPrefix(&yygotominor.yy346,pParse,TK_UPLUS,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
break;
- case 214:
+ case 224: /* expr ::= expr between_op expr AND expr */
{
- ExprList *pList = sqlite3ExprListAppend(0, yymsp[-2].minor.yy172, 0);
- pList = sqlite3ExprListAppend(pList, yymsp[0].minor.yy172, 0);
- yygotominor.yy172 = sqlite3Expr(TK_BETWEEN, yymsp[-4].minor.yy172, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pList = pList;
+ ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy346.pExpr);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy346.pExpr);
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy346.pExpr, 0, 0);
+ if( yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->x.pList = pList;
}else{
- sqlite3ExprListDelete(pList);
+ sqlite3ExprListDelete(pParse->db, pList);
}
- if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3Expr(TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy172->span);
+ if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
+ yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
+ yygotominor.yy346.zEnd = yymsp[0].minor.yy346.zEnd;
}
break;
- case 217:
+ case 227: /* expr ::= expr in_op LP exprlist RP */
{
- yygotominor.yy172 = sqlite3Expr(TK_IN, yymsp[-4].minor.yy172, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pList = yymsp[-1].minor.yy174;
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
+ if( yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy14;
+ sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
}else{
- sqlite3ExprListDelete(yymsp[-1].minor.yy174);
+ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy14);
}
- if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3Expr(TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
+ if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
+ yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
+ yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
break;
- case 218:
+ case 228: /* expr ::= LP select RP */
{
- yygotominor.yy172 = sqlite3Expr(TK_SELECT, 0, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
+ if( yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
+ ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
}else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
}
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
+ yygotominor.yy346.zStart = yymsp[-2].minor.yy0.z;
+ yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
break;
- case 219:
+ case 229: /* expr ::= expr in_op LP select RP */
{
- yygotominor.yy172 = sqlite3Expr(TK_IN, yymsp[-4].minor.yy172, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
+ if( yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
+ ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
}else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
}
- if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3Expr(TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
+ if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
+ yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
+ yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
break;
- case 220:
+ case 230: /* expr ::= expr in_op nm dbnm */
{
- SrcList *pSrc = sqlite3SrcListAppend(0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);
- yygotominor.yy172 = sqlite3Expr(TK_IN, yymsp[-3].minor.yy172, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pSelect = sqlite3SelectNew(0,pSrc,0,0,0,0,0,0,0);
+ SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy346.pExpr, 0, 0);
+ if( yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
+ ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
+ sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
}else{
- sqlite3SrcListDelete(pSrc);
+ sqlite3SrcListDelete(pParse->db, pSrc);
}
- if( yymsp[-2].minor.yy46 ) yygotominor.yy172 = sqlite3Expr(TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,yymsp[0].minor.yy410.z?&yymsp[0].minor.yy410:&yymsp[-1].minor.yy410);
+ if( yymsp[-2].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
+ yygotominor.yy346.zStart = yymsp[-3].minor.yy346.zStart;
+ yygotominor.yy346.zEnd = yymsp[0].minor.yy0.z ? &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] : &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n];
}
break;
- case 221:
+ case 231: /* expr ::= EXISTS LP select RP */
{
- Expr *p = yygotominor.yy172 = sqlite3Expr(TK_EXISTS, 0, 0, 0);
+ Expr *p = yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
if( p ){
- p->pSelect = yymsp[-1].minor.yy219;
- sqlite3ExprSpan(p,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
+ p->x.pSelect = yymsp[-1].minor.yy3;
+ ExprSetProperty(p, EP_xIsSelect);
+ sqlite3ExprSetHeight(pParse, p);
}else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
}
+ yygotominor.yy346.zStart = yymsp[-3].minor.yy0.z;
+ yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
break;
- case 222:
+ case 232: /* expr ::= CASE case_operand case_exprlist case_else END */
{
- yygotominor.yy172 = sqlite3Expr(TK_CASE, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pList = yymsp[-2].minor.yy174;
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy132, yymsp[-1].minor.yy132, 0);
+ if( yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->x.pList = yymsp[-2].minor.yy14;
+ sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
}else{
- sqlite3ExprListDelete(yymsp[-2].minor.yy174);
+ sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy14);
}
- sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
+ yygotominor.yy346.zStart = yymsp[-4].minor.yy0.z;
+ yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
break;
- case 223:
+ case 233: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
{
- yygotominor.yy174 = sqlite3ExprListAppend(yymsp[-4].minor.yy174, yymsp[-2].minor.yy172, 0);
- yygotominor.yy174 = sqlite3ExprListAppend(yygotominor.yy174, yymsp[0].minor.yy172, 0);
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy14, yymsp[-2].minor.yy346.pExpr);
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,yygotominor.yy14, yymsp[0].minor.yy346.pExpr);
}
break;
- case 224:
+ case 234: /* case_exprlist ::= WHEN expr THEN expr */
{
- yygotominor.yy174 = sqlite3ExprListAppend(0, yymsp[-2].minor.yy172, 0);
- yygotominor.yy174 = sqlite3ExprListAppend(yygotominor.yy174, yymsp[0].minor.yy172, 0);
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy346.pExpr);
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,yygotominor.yy14, yymsp[0].minor.yy346.pExpr);
}
break;
- case 233:
+ case 243: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */
{
- sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy410, &yymsp[-5].minor.yy410, sqlite3SrcListAppend(0,&yymsp[-3].minor.yy410,0), yymsp[-1].minor.yy174, yymsp[-9].minor.yy46,
- &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy46);
+ sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy0, &yymsp[-5].minor.yy0,
+ sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy0,0), yymsp[-1].minor.yy14, yymsp[-9].minor.yy328,
+ &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy328);
}
break;
- case 234:
- case 281:
-{yygotominor.yy46 = OE_Abort;}
+ case 244: /* uniqueflag ::= UNIQUE */
+ case 298: /* raisetype ::= ABORT */ yytestcase(yyruleno==298);
+{yygotominor.yy328 = OE_Abort;}
break;
- case 235:
-{yygotominor.yy46 = OE_None;}
+ case 245: /* uniqueflag ::= */
+{yygotominor.yy328 = OE_None;}
break;
- case 238:
+ case 248: /* idxlist ::= idxlist COMMA nm collate sortorder */
{
Expr *p = 0;
- if( yymsp[-1].minor.yy410.n>0 ){
- p = sqlite3Expr(TK_COLUMN, 0, 0, 0);
- if( p ) p->pColl = sqlite3LocateCollSeq(pParse, (char*)yymsp[-1].minor.yy410.z, yymsp[-1].minor.yy410.n);
+ if( yymsp[-1].minor.yy0.n>0 ){
+ p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
+ sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy0);
}
- yygotominor.yy174 = sqlite3ExprListAppend(yymsp[-4].minor.yy174, p, &yymsp[-2].minor.yy410);
- if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy14, p);
+ sqlite3ExprListSetName(pParse,yygotominor.yy14,&yymsp[-2].minor.yy0,1);
+ sqlite3ExprListCheckLength(pParse, yygotominor.yy14, "index");
+ if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
}
break;
- case 239:
+ case 249: /* idxlist ::= nm collate sortorder */
{
Expr *p = 0;
- if( yymsp[-1].minor.yy410.n>0 ){
- p = sqlite3Expr(TK_COLUMN, 0, 0, 0);
- if( p ) p->pColl = sqlite3LocateCollSeq(pParse, (char*)yymsp[-1].minor.yy410.z, yymsp[-1].minor.yy410.n);
+ if( yymsp[-1].minor.yy0.n>0 ){
+ p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
+ sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy0);
}
- yygotominor.yy174 = sqlite3ExprListAppend(0, p, &yymsp[-2].minor.yy410);
- if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
+ yygotominor.yy14 = sqlite3ExprListAppend(pParse,0, p);
+ sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
+ sqlite3ExprListCheckLength(pParse, yygotominor.yy14, "index");
+ if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
}
break;
- case 241:
-{yygotominor.yy410.z = 0; yygotominor.yy410.n = 0;}
+ case 250: /* collate ::= */
+{yygotominor.yy0.z = 0; yygotominor.yy0.n = 0;}
break;
- case 243:
-{sqlite3DropIndex(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);}
+ case 252: /* cmd ::= DROP INDEX ifexists fullname */
+{sqlite3DropIndex(pParse, yymsp[0].minor.yy65, yymsp[-1].minor.yy328);}
break;
- case 244:
- case 245:
+ case 253: /* cmd ::= VACUUM */
+ case 254: /* cmd ::= VACUUM nm */ yytestcase(yyruleno==254);
{sqlite3Vacuum(pParse);}
break;
- case 246:
-{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,0);}
+ case 255: /* cmd ::= PRAGMA nm dbnm */
+{sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);}
break;
- case 247:
-{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy0,0);}
+ case 256: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);}
break;
- case 248:
-{
- sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,1);
-}
+ case 257: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
+{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);}
break;
- case 249:
-{sqlite3Pragma(pParse,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-1].minor.yy410,0);}
+ case 258: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);}
break;
- case 250:
-{sqlite3Pragma(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,0,0);}
+ case 259: /* cmd ::= PRAGMA nm dbnm LP minus_num RP */
+{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);}
break;
- case 258:
+ case 270: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
{
Token all;
- all.z = yymsp[-3].minor.yy410.z;
- all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy410.z) + yymsp[0].minor.yy0.n;
- sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy243, &all);
+ all.z = yymsp[-3].minor.yy0.z;
+ all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n;
+ sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy473, &all);
}
break;
- case 259:
+ case 271: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
{
- sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy410, &yymsp[-6].minor.yy410, yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a, yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373, yymsp[0].minor.yy172, yymsp[-10].minor.yy46, yymsp[-8].minor.yy46);
- yygotominor.yy410 = (yymsp[-6].minor.yy410.n==0?yymsp[-7].minor.yy410:yymsp[-6].minor.yy410);
+ sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy328, yymsp[-4].minor.yy378.a, yymsp[-4].minor.yy378.b, yymsp[-2].minor.yy65, yymsp[0].minor.yy132, yymsp[-10].minor.yy328, yymsp[-8].minor.yy328);
+ yygotominor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0);
}
break;
- case 260:
- case 263:
-{ yygotominor.yy46 = TK_BEFORE; }
+ case 272: /* trigger_time ::= BEFORE */
+ case 275: /* trigger_time ::= */ yytestcase(yyruleno==275);
+{ yygotominor.yy328 = TK_BEFORE; }
break;
- case 261:
-{ yygotominor.yy46 = TK_AFTER; }
+ case 273: /* trigger_time ::= AFTER */
+{ yygotominor.yy328 = TK_AFTER; }
break;
- case 262:
-{ yygotominor.yy46 = TK_INSTEAD;}
+ case 274: /* trigger_time ::= INSTEAD OF */
+{ yygotominor.yy328 = TK_INSTEAD;}
break;
- case 264:
- case 265:
-{yygotominor.yy370.a = yymsp[0].major; yygotominor.yy370.b = 0;}
+ case 276: /* trigger_event ::= DELETE|INSERT */
+ case 277: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==277);
+{yygotominor.yy378.a = yymsp[0].major; yygotominor.yy378.b = 0;}
break;
- case 266:
-{yygotominor.yy370.a = TK_UPDATE; yygotominor.yy370.b = yymsp[0].minor.yy432;}
+ case 278: /* trigger_event ::= UPDATE OF inscollist */
+{yygotominor.yy378.a = TK_UPDATE; yygotominor.yy378.b = yymsp[0].minor.yy408;}
break;
- case 269:
-{ yygotominor.yy172 = 0; }
+ case 281: /* when_clause ::= */
+ case 303: /* key_opt ::= */ yytestcase(yyruleno==303);
+{ yygotominor.yy132 = 0; }
break;
- case 270:
-{ yygotominor.yy172 = yymsp[0].minor.yy172; }
+ case 282: /* when_clause ::= WHEN expr */
+ case 304: /* key_opt ::= KEY expr */ yytestcase(yyruleno==304);
+{ yygotominor.yy132 = yymsp[0].minor.yy346.pExpr; }
break;
- case 271:
+ case 283: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
{
- if( yymsp[-2].minor.yy243 ){
- yymsp[-2].minor.yy243->pLast->pNext = yymsp[-1].minor.yy243;
- }else{
- yymsp[-2].minor.yy243 = yymsp[-1].minor.yy243;
- }
- yymsp[-2].minor.yy243->pLast = yymsp[-1].minor.yy243;
- yygotominor.yy243 = yymsp[-2].minor.yy243;
+ assert( yymsp[-2].minor.yy473!=0 );
+ yymsp[-2].minor.yy473->pLast->pNext = yymsp[-1].minor.yy473;
+ yymsp[-2].minor.yy473->pLast = yymsp[-1].minor.yy473;
+ yygotominor.yy473 = yymsp[-2].minor.yy473;
+}
+ break;
+ case 284: /* trigger_cmd_list ::= trigger_cmd SEMI */
+{
+ assert( yymsp[-1].minor.yy473!=0 );
+ yymsp[-1].minor.yy473->pLast = yymsp[-1].minor.yy473;
+ yygotominor.yy473 = yymsp[-1].minor.yy473;
+}
+ break;
+ case 286: /* trnm ::= nm DOT nm */
+{
+ yygotominor.yy0 = yymsp[0].minor.yy0;
+ sqlite3ErrorMsg(pParse,
+ "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
+ "statements within triggers");
+}
+ break;
+ case 288: /* tridxby ::= INDEXED BY nm */
+{
+ sqlite3ErrorMsg(pParse,
+ "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
+ "within triggers");
}
break;
- case 272:
-{ yygotominor.yy243 = 0; }
+ case 289: /* tridxby ::= NOT INDEXED */
+{
+ sqlite3ErrorMsg(pParse,
+ "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
+ "within triggers");
+}
break;
- case 273:
-{ yygotominor.yy243 = sqlite3TriggerUpdateStep(&yymsp[-3].minor.yy410, yymsp[-1].minor.yy174, yymsp[0].minor.yy172, yymsp[-4].minor.yy46); }
+ case 290: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt */
+{ yygotominor.yy473 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-4].minor.yy0, yymsp[-1].minor.yy14, yymsp[0].minor.yy132, yymsp[-5].minor.yy186); }
break;
- case 274:
-{yygotominor.yy243 = sqlite3TriggerInsertStep(&yymsp[-5].minor.yy410, yymsp[-4].minor.yy432, yymsp[-1].minor.yy174, 0, yymsp[-7].minor.yy46);}
+ case 291: /* trigger_cmd ::= insert_cmd INTO trnm inscollist_opt VALUES LP itemlist RP */
+{yygotominor.yy473 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy408, yymsp[-1].minor.yy14, 0, yymsp[-7].minor.yy186);}
break;
- case 275:
-{yygotominor.yy243 = sqlite3TriggerInsertStep(&yymsp[-2].minor.yy410, yymsp[-1].minor.yy432, 0, yymsp[0].minor.yy219, yymsp[-4].minor.yy46);}
+ case 292: /* trigger_cmd ::= insert_cmd INTO trnm inscollist_opt select */
+{yygotominor.yy473 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy408, 0, yymsp[0].minor.yy3, yymsp[-4].minor.yy186);}
break;
- case 276:
-{yygotominor.yy243 = sqlite3TriggerDeleteStep(&yymsp[-1].minor.yy410, yymsp[0].minor.yy172);}
+ case 293: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt */
+{yygotominor.yy473 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[0].minor.yy132);}
break;
- case 277:
-{yygotominor.yy243 = sqlite3TriggerSelectStep(yymsp[0].minor.yy219); }
+ case 294: /* trigger_cmd ::= select */
+{yygotominor.yy473 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy3); }
break;
- case 278:
+ case 295: /* expr ::= RAISE LP IGNORE RP */
{
- yygotominor.yy172 = sqlite3Expr(TK_RAISE, 0, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->iColumn = OE_Ignore;
- sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
+ if( yygotominor.yy346.pExpr ){
+ yygotominor.yy346.pExpr->affinity = OE_Ignore;
}
+ yygotominor.yy346.zStart = yymsp[-3].minor.yy0.z;
+ yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
break;
- case 279:
+ case 296: /* expr ::= RAISE LP raisetype COMMA nm RP */
{
- yygotominor.yy172 = sqlite3Expr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy410);
- if( yygotominor.yy172 ) {
- yygotominor.yy172->iColumn = yymsp[-3].minor.yy46;
- sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
+ yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
+ if( yygotominor.yy346.pExpr ) {
+ yygotominor.yy346.pExpr->affinity = (char)yymsp[-3].minor.yy328;
}
+ yygotominor.yy346.zStart = yymsp[-5].minor.yy0.z;
+ yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
break;
- case 280:
-{yygotominor.yy46 = OE_Rollback;}
+ case 297: /* raisetype ::= ROLLBACK */
+{yygotominor.yy328 = OE_Rollback;}
break;
- case 282:
-{yygotominor.yy46 = OE_Fail;}
+ case 299: /* raisetype ::= FAIL */
+{yygotominor.yy328 = OE_Fail;}
break;
- case 283:
+ case 300: /* cmd ::= DROP TRIGGER ifexists fullname */
{
- sqlite3DropTrigger(pParse,yymsp[0].minor.yy373,yymsp[-1].minor.yy46);
+ sqlite3DropTrigger(pParse,yymsp[0].minor.yy65,yymsp[-1].minor.yy328);
}
break;
- case 284:
+ case 301: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
{
- sqlite3Attach(pParse, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, yymsp[0].minor.yy386);
+ sqlite3Attach(pParse, yymsp[-3].minor.yy346.pExpr, yymsp[-1].minor.yy346.pExpr, yymsp[0].minor.yy132);
}
break;
- case 285:
+ case 302: /* cmd ::= DETACH database_kw_opt expr */
{
- sqlite3Detach(pParse, yymsp[0].minor.yy172);
+ sqlite3Detach(pParse, yymsp[0].minor.yy346.pExpr);
}
break;
- case 286:
-{ yygotominor.yy386 = 0; }
- break;
- case 287:
-{ yygotominor.yy386 = yymsp[0].minor.yy172; }
- break;
- case 290:
+ case 307: /* cmd ::= REINDEX */
{sqlite3Reindex(pParse, 0, 0);}
break;
- case 291:
-{sqlite3Reindex(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
+ case 308: /* cmd ::= REINDEX nm dbnm */
+{sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
break;
- case 292:
+ case 309: /* cmd ::= ANALYZE */
{sqlite3Analyze(pParse, 0, 0);}
break;
- case 293:
-{sqlite3Analyze(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
+ case 310: /* cmd ::= ANALYZE nm dbnm */
+{sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
break;
- case 294:
+ case 311: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
{
- sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy373,&yymsp[0].minor.yy410);
+ sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy65,&yymsp[0].minor.yy0);
}
break;
- case 295:
+ case 312: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
{
- sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy410);
+ sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0);
}
break;
- case 296:
+ case 313: /* add_column_fullname ::= fullname */
{
- sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy373);
+ pParse->db->lookaside.bEnabled = 0;
+ sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy65);
}
break;
- case 299:
+ case 316: /* cmd ::= create_vtab */
{sqlite3VtabFinishParse(pParse,0);}
break;
- case 300:
+ case 317: /* cmd ::= create_vtab LP vtabarglist RP */
{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
break;
- case 301:
+ case 318: /* create_vtab ::= createkw VIRTUAL TABLE nm dbnm USING nm */
{
- sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, &yymsp[0].minor.yy410);
+ sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0);
}
break;
- case 304:
+ case 321: /* vtabarg ::= */
{sqlite3VtabArgInit(pParse);}
break;
- case 306:
- case 307:
- case 308:
- case 310:
+ case 323: /* vtabargtoken ::= ANY */
+ case 324: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==324);
+ case 325: /* lp ::= LP */ yytestcase(yyruleno==325);
{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
break;
+ default:
+ /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
+ /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
+ /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
+ /* (3) ecmd ::= SEMI */ yytestcase(yyruleno==3);
+ /* (4) ecmd ::= explain cmdx SEMI */ yytestcase(yyruleno==4);
+ /* (10) trans_opt ::= */ yytestcase(yyruleno==10);
+ /* (11) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==11);
+ /* (12) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==12);
+ /* (20) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==20);
+ /* (21) savepoint_opt ::= */ yytestcase(yyruleno==21);
+ /* (25) cmd ::= create_table create_table_args */ yytestcase(yyruleno==25);
+ /* (34) columnlist ::= columnlist COMMA column */ yytestcase(yyruleno==34);
+ /* (35) columnlist ::= column */ yytestcase(yyruleno==35);
+ /* (44) type ::= */ yytestcase(yyruleno==44);
+ /* (51) signed ::= plus_num */ yytestcase(yyruleno==51);
+ /* (52) signed ::= minus_num */ yytestcase(yyruleno==52);
+ /* (53) carglist ::= carglist carg */ yytestcase(yyruleno==53);
+ /* (54) carglist ::= */ yytestcase(yyruleno==54);
+ /* (55) carg ::= CONSTRAINT nm ccons */ yytestcase(yyruleno==55);
+ /* (56) carg ::= ccons */ yytestcase(yyruleno==56);
+ /* (62) ccons ::= NULL onconf */ yytestcase(yyruleno==62);
+ /* (89) conslist ::= conslist COMMA tcons */ yytestcase(yyruleno==89);
+ /* (90) conslist ::= conslist tcons */ yytestcase(yyruleno==90);
+ /* (91) conslist ::= tcons */ yytestcase(yyruleno==91);
+ /* (92) tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==92);
+ /* (268) plus_opt ::= PLUS */ yytestcase(yyruleno==268);
+ /* (269) plus_opt ::= */ yytestcase(yyruleno==269);
+ /* (279) foreach_clause ::= */ yytestcase(yyruleno==279);
+ /* (280) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==280);
+ /* (287) tridxby ::= */ yytestcase(yyruleno==287);
+ /* (305) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==305);
+ /* (306) database_kw_opt ::= */ yytestcase(yyruleno==306);
+ /* (314) kwcolumn_opt ::= */ yytestcase(yyruleno==314);
+ /* (315) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==315);
+ /* (319) vtabarglist ::= vtabarg */ yytestcase(yyruleno==319);
+ /* (320) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==320);
+ /* (322) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==322);
+ /* (326) anylist ::= */ yytestcase(yyruleno==326);
+ /* (327) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==327);
+ /* (328) anylist ::= anylist ANY */ yytestcase(yyruleno==328);
+ break;
};
yygoto = yyRuleInfo[yyruleno].lhs;
yysize = yyRuleInfo[yyruleno].nrhs;
yypParser->yyidx -= yysize;
- yyact = yy_find_reduce_action(yymsp[-yysize].stateno,yygoto);
+ yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
if( yyact < YYNSTATE ){
#ifdef NDEBUG
/* If we are not debugging and the reduce action popped at least
@@ -62654,15 +91264,16 @@ static void yy_reduce(
if( yysize ){
yypParser->yyidx++;
yymsp -= yysize-1;
- yymsp->stateno = yyact;
- yymsp->major = yygoto;
+ yymsp->stateno = (YYACTIONTYPE)yyact;
+ yymsp->major = (YYCODETYPE)yygoto;
yymsp->minor = yygotominor;
}else
#endif
{
yy_shift(yypParser,yyact,yygoto,&yygotominor);
}
- }else if( yyact == YYNSTATE + YYNRULE + 1 ){
+ }else{
+ assert( yyact == YYNSTATE + YYNRULE + 1 );
yy_accept(yypParser);
}
}
@@ -62670,6 +91281,7 @@ static void yy_reduce(
/*
** The following code executes when the parse fails
*/
+#ifndef YYNOERRORRECOVERY
static void yy_parse_failed(
yyParser *yypParser /* The parser */
){
@@ -62684,6 +91296,7 @@ static void yy_parse_failed(
** parser fails */
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
+#endif /* YYNOERRORRECOVERY */
/*
** The following code executes when a syntax error first occurs.
@@ -62696,14 +91309,10 @@ static void yy_syntax_error(
sqlite3ParserARG_FETCH;
#define TOKEN (yyminor.yy0)
- if( !pParse->parseError ){
- if( TOKEN.z[0] ){
- sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
- }else{
- sqlite3ErrorMsg(pParse, "incomplete SQL statement");
- }
- pParse->parseError = 1;
- }
+ UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
+ assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
+ pParse->parseError = 1;
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
@@ -62744,7 +91353,7 @@ static void yy_accept(
** Outputs:
** None.
*/
-void sqlite3Parser(
+SQLITE_PRIVATE void sqlite3Parser(
void *yyp, /* The parser */
int yymajor, /* The major token code number */
sqlite3ParserTOKENTYPE yyminor /* The value for the token */
@@ -62753,7 +91362,9 @@ void sqlite3Parser(
YYMINORTYPE yyminorunion;
int yyact; /* The parser action. */
int yyendofinput; /* True if we are at the end of input */
+#ifdef YYERRORSYMBOL
int yyerrorhit = 0; /* True if yymajor has invoked an error */
+#endif
yyParser *yypParser; /* The parser */
/* (re)initialize the parser, if necessary */
@@ -62761,7 +91372,8 @@ void sqlite3Parser(
if( yypParser->yyidx<0 ){
#if YYSTACKDEPTH<=0
if( yypParser->yystksz <=0 ){
- memset(&yyminorunion, 0, sizeof(yyminorunion));
+ /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
+ yyminorunion = yyzerominor;
yyStackOverflow(yypParser, &yyminorunion);
return;
}
@@ -62782,19 +91394,19 @@ void sqlite3Parser(
#endif
do{
- yyact = yy_find_shift_action(yypParser,yymajor);
+ yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
if( yyact<YYNSTATE ){
+ assert( !yyendofinput ); /* Impossible to shift the $ token */
yy_shift(yypParser,yyact,yymajor,&yyminorunion);
yypParser->yyerrcnt--;
- if( yyendofinput && yypParser->yyidx>=0 ){
- yymajor = 0;
- }else{
- yymajor = YYNOCODE;
- }
+ yymajor = YYNOCODE;
}else if( yyact < YYNSTATE + YYNRULE ){
yy_reduce(yypParser,yyact-YYNSTATE);
- }else if( yyact == YY_ERROR_ACTION ){
+ }else{
+ assert( yyact == YY_ERROR_ACTION );
+#ifdef YYERRORSYMBOL
int yymx;
+#endif
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
@@ -62831,7 +91443,7 @@ void sqlite3Parser(
yyTracePrompt,yyTokenName[yymajor]);
}
#endif
- yy_destructor(yymajor,&yyminorunion);
+ yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion);
yymajor = YYNOCODE;
}else{
while(
@@ -62844,7 +91456,7 @@ void sqlite3Parser(
yy_pop_parser_stack(yypParser);
}
if( yypParser->yyidx < 0 || yymajor==0 ){
- yy_destructor(yymajor,&yyminorunion);
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
yy_parse_failed(yypParser);
yymajor = YYNOCODE;
}else if( yymx!=YYERRORSYMBOL ){
@@ -62855,6 +91467,18 @@ void sqlite3Parser(
}
yypParser->yyerrcnt = 3;
yyerrorhit = 1;
+#elif defined(YYNOERRORRECOVERY)
+ /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
+ ** do any kind of error recovery. Instead, simply invoke the syntax
+ ** error routine and continue going as if nothing had happened.
+ **
+ ** Applications can set this macro (for example inside %include) if
+ ** they intend to abandon the parse upon the first syntax error seen.
+ */
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ yymajor = YYNOCODE;
+
#else /* YYERRORSYMBOL is not defined */
/* This is what we do if the grammar does not define ERROR:
**
@@ -62869,15 +91493,12 @@ void sqlite3Parser(
yy_syntax_error(yypParser,yymajor,yyminorunion);
}
yypParser->yyerrcnt = 3;
- yy_destructor(yymajor,&yyminorunion);
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
if( yyendofinput ){
yy_parse_failed(yypParser);
}
yymajor = YYNOCODE;
#endif
- }else{
- yy_accept(yypParser);
- yymajor = YYNOCODE;
}
}while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
return;
@@ -62902,7 +91523,7 @@ void sqlite3Parser(
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
**
-** $Id: tokenize.c,v 1.126 2007/04/16 15:06:25 danielk1977 Exp $
+** $Id: tokenize.c,v 1.163 2009/07/03 22:54:37 drh Exp $
*/
/*
@@ -62955,7 +91576,7 @@ const unsigned char ebcdicToAscii[] = {
**
** The code in this file has been automatically generated by
**
-** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.27 2007/04/06 11:26:00 drh Exp $
+** $Header: /home/drh/sqlite/trans/cvs/sqlite/sqlite/tool/mkkeywordhash.c,v 1.38 2009/06/09 14:27:41 drh Exp $
**
** The code in this file implements a function that determines whether
** or not a given identifier is really an SQL keyword. The same thing
@@ -62964,88 +91585,124 @@ const unsigned char ebcdicToAscii[] = {
** is substantially reduced. This is important for embedded applications
** on platforms with limited memory.
*/
-/* Hash score: 165 */
+/* Hash score: 171 */
static int keywordCode(const char *z, int n){
- static const char zText[536] =
- "ABORTABLEFTEMPORARYADDATABASELECTHENDEFAULTRANSACTIONATURALTER"
- "AISEACHECKEYAFTEREFERENCESCAPELSEXCEPTRIGGEREGEXPLAINITIALLYANALYZE"
- "XCLUSIVEXISTSANDEFERRABLEATTACHAVINGLOBEFOREIGNOREINDEXAUTOINCREMENT"
- "BEGINNERENAMEBETWEENOTNULLIKEBYCASCADEFERREDELETECASECASTCOLLATE"
- "COLUMNCOMMITCONFLICTCONSTRAINTERSECTCREATECROSSCURRENT_DATECURRENT_TIMESTAMP"
- "LANDESCDETACHDISTINCTDROPRAGMATCHFAILIMITFROMFULLGROUPDATEIFIMMEDIATE"
- "INSERTINSTEADINTOFFSETISNULLJOINORDEREPLACEOUTERESTRICTPRIMARY"
- "QUERYRIGHTROLLBACKROWHENUNIONUNIQUEUSINGVACUUMVALUESVIEWHEREVIRTUAL"
- ;
+ /* zText[] encodes 801 bytes of keywords in 541 bytes */
+ /* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */
+ /* ABLEFTHENDEFERRABLELSEXCEPTRANSACTIONATURALTERAISEXCLUSIVE */
+ /* XISTSAVEPOINTERSECTRIGGEREFERENCESCONSTRAINTOFFSETEMPORARY */
+ /* UNIQUERYATTACHAVINGROUPDATEBEGINNERELEASEBETWEENOTNULLIKE */
+ /* CASCADELETECASECOLLATECREATECURRENT_DATEDETACHIMMEDIATEJOIN */
+ /* SERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHENWHERENAME */
+ /* AFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICTCROSS */
+ /* CURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOBYIF */
+ /* ISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUMVIEW */
+ /* INITIALLY */
+ static const char zText[540] = {
+ 'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H',
+ 'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G',
+ 'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A',
+ 'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F',
+ 'E','R','R','A','B','L','E','L','S','E','X','C','E','P','T','R','A','N',
+ 'S','A','C','T','I','O','N','A','T','U','R','A','L','T','E','R','A','I',
+ 'S','E','X','C','L','U','S','I','V','E','X','I','S','T','S','A','V','E',
+ 'P','O','I','N','T','E','R','S','E','C','T','R','I','G','G','E','R','E',
+ 'F','E','R','E','N','C','E','S','C','O','N','S','T','R','A','I','N','T',
+ 'O','F','F','S','E','T','E','M','P','O','R','A','R','Y','U','N','I','Q',
+ 'U','E','R','Y','A','T','T','A','C','H','A','V','I','N','G','R','O','U',
+ 'P','D','A','T','E','B','E','G','I','N','N','E','R','E','L','E','A','S',
+ 'E','B','E','T','W','E','E','N','O','T','N','U','L','L','I','K','E','C',
+ 'A','S','C','A','D','E','L','E','T','E','C','A','S','E','C','O','L','L',
+ 'A','T','E','C','R','E','A','T','E','C','U','R','R','E','N','T','_','D',
+ 'A','T','E','D','E','T','A','C','H','I','M','M','E','D','I','A','T','E',
+ 'J','O','I','N','S','E','R','T','M','A','T','C','H','P','L','A','N','A',
+ 'L','Y','Z','E','P','R','A','G','M','A','B','O','R','T','V','A','L','U',
+ 'E','S','V','I','R','T','U','A','L','I','M','I','T','W','H','E','N','W',
+ 'H','E','R','E','N','A','M','E','A','F','T','E','R','E','P','L','A','C',
+ 'E','A','N','D','E','F','A','U','L','T','A','U','T','O','I','N','C','R',
+ 'E','M','E','N','T','C','A','S','T','C','O','L','U','M','N','C','O','M',
+ 'M','I','T','C','O','N','F','L','I','C','T','C','R','O','S','S','C','U',
+ 'R','R','E','N','T','_','T','I','M','E','S','T','A','M','P','R','I','M',
+ 'A','R','Y','D','E','F','E','R','R','E','D','I','S','T','I','N','C','T',
+ 'D','R','O','P','F','A','I','L','F','R','O','M','F','U','L','L','G','L',
+ 'O','B','Y','I','F','I','S','N','U','L','L','O','R','D','E','R','E','S',
+ 'T','R','I','C','T','O','U','T','E','R','I','G','H','T','R','O','L','L',
+ 'B','A','C','K','R','O','W','U','N','I','O','N','U','S','I','N','G','V',
+ 'A','C','U','U','M','V','I','E','W','I','N','I','T','I','A','L','L','Y',
+ };
static const unsigned char aHash[127] = {
- 91, 79, 106, 90, 0, 4, 0, 0, 113, 0, 82, 0, 0,
- 94, 43, 75, 92, 0, 105, 108, 96, 89, 0, 10, 0, 0,
- 112, 0, 116, 102, 0, 28, 47, 0, 40, 0, 0, 64, 70,
- 0, 62, 19, 0, 104, 35, 103, 0, 107, 73, 0, 0, 33,
- 0, 60, 36, 0, 8, 0, 114, 37, 12, 0, 76, 39, 25,
- 65, 0, 0, 31, 80, 52, 30, 49, 20, 87, 0, 34, 0,
- 74, 26, 0, 71, 0, 0, 0, 63, 46, 66, 22, 86, 29,
- 68, 85, 0, 1, 0, 9, 100, 57, 18, 0, 111, 81, 98,
- 53, 6, 84, 0, 0, 48, 93, 0, 101, 0, 69, 0, 0,
- 15, 0, 115, 50, 55, 0, 2, 54, 0, 110,
+ 70, 99, 112, 68, 0, 43, 0, 0, 76, 0, 71, 0, 0,
+ 41, 12, 72, 15, 0, 111, 79, 49, 106, 0, 19, 0, 0,
+ 116, 0, 114, 109, 0, 22, 87, 0, 9, 0, 0, 64, 65,
+ 0, 63, 6, 0, 47, 84, 96, 0, 113, 95, 0, 0, 44,
+ 0, 97, 24, 0, 17, 0, 117, 48, 23, 0, 5, 104, 25,
+ 90, 0, 0, 119, 100, 55, 118, 52, 7, 50, 0, 85, 0,
+ 94, 26, 0, 93, 0, 0, 0, 89, 86, 91, 82, 103, 14,
+ 38, 102, 0, 75, 0, 18, 83, 105, 31, 0, 115, 74, 107,
+ 57, 45, 78, 0, 0, 88, 39, 0, 110, 0, 35, 0, 0,
+ 28, 0, 80, 53, 58, 0, 20, 56, 0, 51,
};
- static const unsigned char aNext[116] = {
- 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0,
- 0, 11, 0, 0, 0, 0, 5, 13, 7, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0,
- 0, 16, 0, 23, 51, 0, 0, 0, 0, 44, 0, 58, 0,
- 0, 0, 0, 0, 0, 0, 0, 72, 41, 0, 24, 59, 21,
- 0, 78, 0, 0, 67, 0, 0, 83, 45, 0, 0, 0, 0,
- 0, 0, 0, 0, 38, 95, 97, 0, 0, 99, 0, 32, 0,
- 14, 27, 77, 0, 56, 88, 0, 0, 0, 61, 0, 109,
+ static const unsigned char aNext[119] = {
+ 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 32, 21, 0, 0, 0, 42, 3, 46, 0,
+ 0, 0, 0, 29, 0, 0, 37, 0, 0, 0, 1, 60, 0,
+ 0, 61, 0, 40, 0, 0, 0, 0, 0, 0, 0, 59, 0,
+ 0, 0, 0, 30, 54, 16, 33, 10, 0, 0, 0, 0, 0,
+ 0, 0, 11, 66, 73, 0, 8, 0, 98, 92, 0, 101, 0,
+ 81, 0, 69, 0, 0, 108, 27, 36, 67, 77, 0, 34, 62,
+ 0, 0,
};
- static const unsigned char aLen[116] = {
- 5, 5, 4, 4, 9, 2, 3, 8, 2, 6, 4, 3, 7,
- 11, 2, 7, 5, 5, 4, 5, 3, 5, 10, 6, 4, 6,
- 7, 6, 7, 9, 3, 7, 9, 6, 3, 10, 6, 6, 4,
- 6, 3, 7, 6, 7, 5, 13, 2, 2, 5, 5, 6, 7,
- 3, 7, 4, 4, 2, 7, 3, 8, 6, 4, 4, 7, 6,
- 6, 8, 10, 9, 6, 5, 12, 12, 17, 4, 4, 6, 8,
- 2, 4, 6, 5, 4, 5, 4, 4, 5, 6, 2, 9, 6,
- 7, 4, 2, 6, 3, 6, 4, 5, 7, 5, 8, 7, 5,
- 5, 8, 3, 4, 5, 6, 5, 6, 6, 4, 5, 7,
+ static const unsigned char aLen[119] = {
+ 7, 7, 5, 4, 6, 4, 5, 3, 6, 7, 3, 6, 6,
+ 7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 6,
+ 11, 2, 7, 5, 5, 9, 6, 9, 9, 7, 10, 10, 4,
+ 6, 2, 3, 4, 9, 2, 6, 5, 6, 6, 5, 6, 5,
+ 5, 7, 7, 7, 3, 4, 4, 7, 3, 6, 4, 7, 6,
+ 12, 6, 9, 4, 6, 5, 4, 7, 6, 5, 6, 7, 5,
+ 4, 5, 6, 5, 7, 3, 7, 13, 2, 2, 4, 6, 6,
+ 8, 5, 17, 12, 7, 8, 8, 2, 4, 4, 4, 4, 4,
+ 2, 2, 6, 5, 8, 5, 5, 8, 3, 5, 5, 6, 4,
+ 9, 3,
};
- static const unsigned short int aOffset[116] = {
- 0, 4, 7, 10, 10, 14, 19, 21, 26, 27, 32, 34, 36,
- 42, 51, 52, 57, 61, 65, 67, 71, 74, 78, 86, 91, 94,
- 99, 105, 108, 113, 118, 122, 128, 136, 142, 144, 154, 159, 164,
- 167, 169, 169, 173, 177, 179, 184, 186, 188, 197, 200, 204, 210,
- 216, 216, 219, 222, 226, 228, 229, 233, 240, 246, 250, 254, 261,
- 267, 273, 281, 288, 297, 303, 308, 320, 320, 336, 340, 344, 350,
- 351, 358, 361, 365, 370, 373, 378, 382, 386, 389, 395, 397, 406,
- 412, 419, 422, 422, 425, 428, 434, 438, 442, 449, 453, 461, 468,
- 473, 478, 486, 488, 492, 497, 503, 508, 514, 520, 523, 528,
+ static const unsigned short int aOffset[119] = {
+ 0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33,
+ 36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81,
+ 86, 95, 96, 101, 105, 109, 117, 122, 128, 136, 142, 152, 159,
+ 162, 162, 165, 167, 167, 171, 176, 179, 184, 189, 194, 197, 203,
+ 206, 210, 217, 223, 223, 226, 229, 233, 234, 238, 244, 248, 255,
+ 261, 273, 279, 288, 290, 296, 301, 303, 310, 315, 320, 326, 332,
+ 337, 341, 344, 350, 354, 361, 363, 370, 372, 374, 383, 387, 393,
+ 399, 407, 412, 412, 428, 435, 442, 443, 450, 454, 458, 462, 466,
+ 469, 471, 473, 479, 483, 491, 495, 500, 508, 511, 516, 521, 527,
+ 531, 536,
};
- static const unsigned char aCode[116] = {
- TK_ABORT, TK_TABLE, TK_JOIN_KW, TK_TEMP, TK_TEMP,
- TK_OR, TK_ADD, TK_DATABASE, TK_AS, TK_SELECT,
- TK_THEN, TK_END, TK_DEFAULT, TK_TRANSACTION,TK_ON,
- TK_JOIN_KW, TK_ALTER, TK_RAISE, TK_EACH, TK_CHECK,
- TK_KEY, TK_AFTER, TK_REFERENCES, TK_ESCAPE, TK_ELSE,
- TK_EXCEPT, TK_TRIGGER, TK_LIKE_KW, TK_EXPLAIN, TK_INITIALLY,
- TK_ALL, TK_ANALYZE, TK_EXCLUSIVE, TK_EXISTS, TK_AND,
- TK_DEFERRABLE, TK_ATTACH, TK_HAVING, TK_LIKE_KW, TK_BEFORE,
- TK_FOR, TK_FOREIGN, TK_IGNORE, TK_REINDEX, TK_INDEX,
- TK_AUTOINCR, TK_TO, TK_IN, TK_BEGIN, TK_JOIN_KW,
- TK_RENAME, TK_BETWEEN, TK_NOT, TK_NOTNULL, TK_NULL,
- TK_LIKE_KW, TK_BY, TK_CASCADE, TK_ASC, TK_DEFERRED,
- TK_DELETE, TK_CASE, TK_CAST, TK_COLLATE, TK_COLUMNKW,
- TK_COMMIT, TK_CONFLICT, TK_CONSTRAINT, TK_INTERSECT, TK_CREATE,
- TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_CTIME_KW, TK_PLAN,
- TK_DESC, TK_DETACH, TK_DISTINCT, TK_IS, TK_DROP,
- TK_PRAGMA, TK_MATCH, TK_FAIL, TK_LIMIT, TK_FROM,
- TK_JOIN_KW, TK_GROUP, TK_UPDATE, TK_IF, TK_IMMEDIATE,
- TK_INSERT, TK_INSTEAD, TK_INTO, TK_OF, TK_OFFSET,
- TK_SET, TK_ISNULL, TK_JOIN, TK_ORDER, TK_REPLACE,
- TK_JOIN_KW, TK_RESTRICT, TK_PRIMARY, TK_QUERY, TK_JOIN_KW,
- TK_ROLLBACK, TK_ROW, TK_WHEN, TK_UNION, TK_UNIQUE,
- TK_USING, TK_VACUUM, TK_VALUES, TK_VIEW, TK_WHERE,
- TK_VIRTUAL,
+ static const unsigned char aCode[119] = {
+ TK_REINDEX, TK_INDEXED, TK_INDEX, TK_DESC, TK_ESCAPE,
+ TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOREIGN,
+ TK_FOR, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD,
+ TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE,
+ TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE,
+ TK_EXCEPT, TK_TRANSACTION,TK_ON, TK_JOIN_KW, TK_ALTER,
+ TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_SAVEPOINT, TK_INTERSECT,
+ TK_TRIGGER, TK_REFERENCES, TK_CONSTRAINT, TK_INTO, TK_OFFSET,
+ TK_OF, TK_SET, TK_TEMP, TK_TEMP, TK_OR,
+ TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING, TK_GROUP,
+ TK_UPDATE, TK_BEGIN, TK_JOIN_KW, TK_RELEASE, TK_BETWEEN,
+ TK_NOTNULL, TK_NOT, TK_NULL, TK_LIKE_KW, TK_CASCADE,
+ TK_ASC, TK_DELETE, TK_CASE, TK_COLLATE, TK_CREATE,
+ TK_CTIME_KW, TK_DETACH, TK_IMMEDIATE, TK_JOIN, TK_INSERT,
+ TK_MATCH, TK_PLAN, TK_ANALYZE, TK_PRAGMA, TK_ABORT,
+ TK_VALUES, TK_VIRTUAL, TK_LIMIT, TK_WHEN, TK_WHERE,
+ TK_RENAME, TK_AFTER, TK_REPLACE, TK_AND, TK_DEFAULT,
+ TK_AUTOINCR, TK_TO, TK_IN, TK_CAST, TK_COLUMNKW,
+ TK_COMMIT, TK_CONFLICT, TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW,
+ TK_PRIMARY, TK_DEFERRED, TK_DISTINCT, TK_IS, TK_DROP,
+ TK_FAIL, TK_FROM, TK_JOIN_KW, TK_LIKE_KW, TK_BY,
+ TK_IF, TK_ISNULL, TK_ORDER, TK_RESTRICT, TK_JOIN_KW,
+ TK_JOIN_KW, TK_ROLLBACK, TK_ROW, TK_UNION, TK_USING,
+ TK_VACUUM, TK_VIEW, TK_INITIALLY, TK_ALL,
};
int h, i;
if( n<2 ) return TK_ID;
@@ -63054,12 +91711,131 @@ static int keywordCode(const char *z, int n){
n) % 127;
for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
+ testcase( i==0 ); /* REINDEX */
+ testcase( i==1 ); /* INDEXED */
+ testcase( i==2 ); /* INDEX */
+ testcase( i==3 ); /* DESC */
+ testcase( i==4 ); /* ESCAPE */
+ testcase( i==5 ); /* EACH */
+ testcase( i==6 ); /* CHECK */
+ testcase( i==7 ); /* KEY */
+ testcase( i==8 ); /* BEFORE */
+ testcase( i==9 ); /* FOREIGN */
+ testcase( i==10 ); /* FOR */
+ testcase( i==11 ); /* IGNORE */
+ testcase( i==12 ); /* REGEXP */
+ testcase( i==13 ); /* EXPLAIN */
+ testcase( i==14 ); /* INSTEAD */
+ testcase( i==15 ); /* ADD */
+ testcase( i==16 ); /* DATABASE */
+ testcase( i==17 ); /* AS */
+ testcase( i==18 ); /* SELECT */
+ testcase( i==19 ); /* TABLE */
+ testcase( i==20 ); /* LEFT */
+ testcase( i==21 ); /* THEN */
+ testcase( i==22 ); /* END */
+ testcase( i==23 ); /* DEFERRABLE */
+ testcase( i==24 ); /* ELSE */
+ testcase( i==25 ); /* EXCEPT */
+ testcase( i==26 ); /* TRANSACTION */
+ testcase( i==27 ); /* ON */
+ testcase( i==28 ); /* NATURAL */
+ testcase( i==29 ); /* ALTER */
+ testcase( i==30 ); /* RAISE */
+ testcase( i==31 ); /* EXCLUSIVE */
+ testcase( i==32 ); /* EXISTS */
+ testcase( i==33 ); /* SAVEPOINT */
+ testcase( i==34 ); /* INTERSECT */
+ testcase( i==35 ); /* TRIGGER */
+ testcase( i==36 ); /* REFERENCES */
+ testcase( i==37 ); /* CONSTRAINT */
+ testcase( i==38 ); /* INTO */
+ testcase( i==39 ); /* OFFSET */
+ testcase( i==40 ); /* OF */
+ testcase( i==41 ); /* SET */
+ testcase( i==42 ); /* TEMP */
+ testcase( i==43 ); /* TEMPORARY */
+ testcase( i==44 ); /* OR */
+ testcase( i==45 ); /* UNIQUE */
+ testcase( i==46 ); /* QUERY */
+ testcase( i==47 ); /* ATTACH */
+ testcase( i==48 ); /* HAVING */
+ testcase( i==49 ); /* GROUP */
+ testcase( i==50 ); /* UPDATE */
+ testcase( i==51 ); /* BEGIN */
+ testcase( i==52 ); /* INNER */
+ testcase( i==53 ); /* RELEASE */
+ testcase( i==54 ); /* BETWEEN */
+ testcase( i==55 ); /* NOTNULL */
+ testcase( i==56 ); /* NOT */
+ testcase( i==57 ); /* NULL */
+ testcase( i==58 ); /* LIKE */
+ testcase( i==59 ); /* CASCADE */
+ testcase( i==60 ); /* ASC */
+ testcase( i==61 ); /* DELETE */
+ testcase( i==62 ); /* CASE */
+ testcase( i==63 ); /* COLLATE */
+ testcase( i==64 ); /* CREATE */
+ testcase( i==65 ); /* CURRENT_DATE */
+ testcase( i==66 ); /* DETACH */
+ testcase( i==67 ); /* IMMEDIATE */
+ testcase( i==68 ); /* JOIN */
+ testcase( i==69 ); /* INSERT */
+ testcase( i==70 ); /* MATCH */
+ testcase( i==71 ); /* PLAN */
+ testcase( i==72 ); /* ANALYZE */
+ testcase( i==73 ); /* PRAGMA */
+ testcase( i==74 ); /* ABORT */
+ testcase( i==75 ); /* VALUES */
+ testcase( i==76 ); /* VIRTUAL */
+ testcase( i==77 ); /* LIMIT */
+ testcase( i==78 ); /* WHEN */
+ testcase( i==79 ); /* WHERE */
+ testcase( i==80 ); /* RENAME */
+ testcase( i==81 ); /* AFTER */
+ testcase( i==82 ); /* REPLACE */
+ testcase( i==83 ); /* AND */
+ testcase( i==84 ); /* DEFAULT */
+ testcase( i==85 ); /* AUTOINCREMENT */
+ testcase( i==86 ); /* TO */
+ testcase( i==87 ); /* IN */
+ testcase( i==88 ); /* CAST */
+ testcase( i==89 ); /* COLUMN */
+ testcase( i==90 ); /* COMMIT */
+ testcase( i==91 ); /* CONFLICT */
+ testcase( i==92 ); /* CROSS */
+ testcase( i==93 ); /* CURRENT_TIMESTAMP */
+ testcase( i==94 ); /* CURRENT_TIME */
+ testcase( i==95 ); /* PRIMARY */
+ testcase( i==96 ); /* DEFERRED */
+ testcase( i==97 ); /* DISTINCT */
+ testcase( i==98 ); /* IS */
+ testcase( i==99 ); /* DROP */
+ testcase( i==100 ); /* FAIL */
+ testcase( i==101 ); /* FROM */
+ testcase( i==102 ); /* FULL */
+ testcase( i==103 ); /* GLOB */
+ testcase( i==104 ); /* BY */
+ testcase( i==105 ); /* IF */
+ testcase( i==106 ); /* ISNULL */
+ testcase( i==107 ); /* ORDER */
+ testcase( i==108 ); /* RESTRICT */
+ testcase( i==109 ); /* OUTER */
+ testcase( i==110 ); /* RIGHT */
+ testcase( i==111 ); /* ROLLBACK */
+ testcase( i==112 ); /* ROW */
+ testcase( i==113 ); /* UNION */
+ testcase( i==114 ); /* USING */
+ testcase( i==115 ); /* VACUUM */
+ testcase( i==116 ); /* VIEW */
+ testcase( i==117 ); /* INITIALLY */
+ testcase( i==118 ); /* ALL */
return aCode[i];
}
}
return TK_ID;
}
-int sqlite3KeywordCode(const unsigned char *z, int n){
+SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
return keywordCode((char*)z, n);
}
@@ -63084,7 +91860,7 @@ int sqlite3KeywordCode(const unsigned char *z, int n){
** But the feature is undocumented.
*/
#ifdef SQLITE_ASCII
-const char sqlite3IsIdChar[] = {
+SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
@@ -63093,10 +91869,10 @@ const char sqlite3IsIdChar[] = {
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
};
-#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsIdChar[c-0x20]))
+#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
#endif
#ifdef SQLITE_EBCDIC
-const char sqlite3IsIdChar[] = {
+SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
@@ -63111,7 +91887,7 @@ const char sqlite3IsIdChar[] = {
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
};
-#define IdChar(C) (((c=C)>=0x42 && sqlite3IsIdChar[c-0x40]))
+#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
#endif
@@ -63119,18 +91895,23 @@ const char sqlite3IsIdChar[] = {
** Return the length of the token that begins at z[0].
** Store the token type in *tokenType before returning.
*/
-static int getToken(const unsigned char *z, int *tokenType){
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
int i, c;
switch( *z ){
case ' ': case '\t': case '\n': case '\f': case '\r': {
- for(i=1; isspace(z[i]); i++){}
+ testcase( z[0]==' ' );
+ testcase( z[0]=='\t' );
+ testcase( z[0]=='\n' );
+ testcase( z[0]=='\f' );
+ testcase( z[0]=='\r' );
+ for(i=1; sqlite3Isspace(z[i]); i++){}
*tokenType = TK_SPACE;
return i;
}
case '-': {
if( z[1]=='-' ){
for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
- *tokenType = TK_COMMENT;
+ *tokenType = TK_SPACE;
return i;
}
*tokenType = TK_MINUS;
@@ -63163,7 +91944,7 @@ static int getToken(const unsigned char *z, int *tokenType){
}
for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
if( c ) i++;
- *tokenType = TK_COMMENT;
+ *tokenType = TK_SPACE;
return i;
}
case '%': {
@@ -63235,6 +92016,9 @@ static int getToken(const unsigned char *z, int *tokenType){
case '\'':
case '"': {
int delim = z[0];
+ testcase( delim=='`' );
+ testcase( delim=='\'' );
+ testcase( delim=='"' );
for(i=1; (c=z[i])!=0; i++){
if( c==delim ){
if( z[i+1]==delim ){
@@ -63244,9 +92028,12 @@ static int getToken(const unsigned char *z, int *tokenType){
}
}
}
- if( c ){
+ if( c=='\'' ){
*tokenType = TK_STRING;
return i+1;
+ }else if( c!=0 ){
+ *tokenType = TK_ID;
+ return i+1;
}else{
*tokenType = TK_ILLEGAL;
return i;
@@ -63254,7 +92041,7 @@ static int getToken(const unsigned char *z, int *tokenType){
}
case '.': {
#ifndef SQLITE_OMIT_FLOATING_POINT
- if( !isdigit(z[1]) )
+ if( !sqlite3Isdigit(z[1]) )
#endif
{
*tokenType = TK_DOT;
@@ -63265,21 +92052,25 @@ static int getToken(const unsigned char *z, int *tokenType){
}
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {
+ testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' );
+ testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' );
+ testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' );
+ testcase( z[0]=='9' );
*tokenType = TK_INTEGER;
- for(i=0; isdigit(z[i]); i++){}
+ for(i=0; sqlite3Isdigit(z[i]); i++){}
#ifndef SQLITE_OMIT_FLOATING_POINT
if( z[i]=='.' ){
i++;
- while( isdigit(z[i]) ){ i++; }
+ while( sqlite3Isdigit(z[i]) ){ i++; }
*tokenType = TK_FLOAT;
}
if( (z[i]=='e' || z[i]=='E') &&
- ( isdigit(z[i+1])
- || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
+ ( sqlite3Isdigit(z[i+1])
+ || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2]))
)
){
i += 2;
- while( isdigit(z[i]) ){ i++; }
+ while( sqlite3Isdigit(z[i]) ){ i++; }
*tokenType = TK_FLOAT;
}
#endif
@@ -63291,16 +92082,16 @@ static int getToken(const unsigned char *z, int *tokenType){
}
case '[': {
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
- *tokenType = TK_ID;
+ *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
return i;
}
case '?': {
*tokenType = TK_VARIABLE;
- for(i=1; isdigit(z[i]); i++){}
+ for(i=1; sqlite3Isdigit(z[i]); i++){}
return i;
}
case '#': {
- for(i=1; isdigit(z[i]); i++){}
+ for(i=1; sqlite3Isdigit(z[i]); i++){}
if( i>1 ){
/* Parameters of the form #NNN (where NNN is a number) are used
** internally by sqlite3NestedParse. */
@@ -63316,6 +92107,7 @@ static int getToken(const unsigned char *z, int *tokenType){
case '@': /* For compatibility with MS SQL Server */
case ':': {
int n = 0;
+ testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' );
*tokenType = TK_VARIABLE;
for(i=1; (c=z[i])!=0; i++){
if( IdChar(c) ){
@@ -63324,7 +92116,7 @@ static int getToken(const unsigned char *z, int *tokenType){
}else if( c=='(' && n>0 ){
do{
i++;
- }while( (c=z[i])!=0 && !isspace(c) && c!=')' );
+ }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' );
if( c==')' ){
i++;
}else{
@@ -63343,19 +92135,15 @@ static int getToken(const unsigned char *z, int *tokenType){
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
case 'x': case 'X': {
- if( (c=z[1])=='\'' || c=='"' ){
- int delim = c;
+ testcase( z[0]=='x' ); testcase( z[0]=='X' );
+ if( z[1]=='\'' ){
*tokenType = TK_BLOB;
- for(i=2; (c=z[i])!=0; i++){
- if( c==delim ){
- if( i%2 ) *tokenType = TK_ILLEGAL;
- break;
- }
- if( !isxdigit(c) ){
+ for(i=2; (c=z[i])!=0 && c!='\''; i++){
+ if( !sqlite3Isxdigit(c) ){
*tokenType = TK_ILLEGAL;
- return i;
}
}
+ if( i%2 || !c ) *tokenType = TK_ILLEGAL;
if( c ) i++;
return i;
}
@@ -63374,67 +92162,68 @@ static int getToken(const unsigned char *z, int *tokenType){
*tokenType = TK_ILLEGAL;
return 1;
}
-int sqlite3GetToken(const unsigned char *z, int *tokenType){
- return getToken(z, tokenType);
-}
/*
** Run the parser on the given SQL string. The parser structure is
** passed in. An SQLITE_ status code is returned. If an error occurs
-** and pzErrMsg!=NULL then an error message might be written into
-** memory obtained from malloc() and *pzErrMsg made to point to that
-** error message. Or maybe not.
-*/
-int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
- int nErr = 0;
- int i;
- void *pEngine;
- int tokenType;
- int lastTokenParsed = -1;
- sqlite3 *db = pParse->db;
- extern void *sqlite3ParserAlloc(void*(*)(size_t));
- extern void sqlite3ParserFree(void*, void(*)(void*));
- extern void sqlite3Parser(void*, int, Token, Parse*);
-
+** then an and attempt is made to write an error message into
+** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
+** error message.
+*/
+SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
+ int nErr = 0; /* Number of errors encountered */
+ int i; /* Loop counter */
+ void *pEngine; /* The LEMON-generated LALR(1) parser */
+ int tokenType; /* type of the next token */
+ int lastTokenParsed = -1; /* type of the previous token */
+ u8 enableLookaside; /* Saved value of db->lookaside.bEnabled */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int mxSqlLen; /* Max length of an SQL string */
+
+
+ mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
if( db->activeVdbeCnt==0 ){
db->u1.isInterrupted = 0;
}
pParse->rc = SQLITE_OK;
+ pParse->zTail = zSql;
i = 0;
- pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3MallocX);
+ assert( pzErrMsg!=0 );
+ pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
if( pEngine==0 ){
+ db->mallocFailed = 1;
return SQLITE_NOMEM;
}
- assert( pParse->sLastToken.dyn==0 );
assert( pParse->pNewTable==0 );
assert( pParse->pNewTrigger==0 );
assert( pParse->nVar==0 );
assert( pParse->nVarExpr==0 );
assert( pParse->nVarExprAlloc==0 );
assert( pParse->apVarExpr==0 );
- pParse->zTail = pParse->zSql = zSql;
- while( !sqlite3MallocFailed() && zSql[i]!=0 ){
+ enableLookaside = db->lookaside.bEnabled;
+ if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
+ while( !db->mallocFailed && zSql[i]!=0 ){
assert( i>=0 );
- pParse->sLastToken.z = (u8*)&zSql[i];
- assert( pParse->sLastToken.dyn==0 );
- pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
+ pParse->sLastToken.z = &zSql[i];
+ pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
i += pParse->sLastToken.n;
+ if( i>mxSqlLen ){
+ pParse->rc = SQLITE_TOOBIG;
+ break;
+ }
switch( tokenType ){
- case TK_SPACE:
- case TK_COMMENT: {
+ case TK_SPACE: {
if( db->u1.isInterrupted ){
+ sqlite3ErrorMsg(pParse, "interrupt");
pParse->rc = SQLITE_INTERRUPT;
- sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
goto abort_parse;
}
break;
}
case TK_ILLEGAL: {
- if( pzErrMsg ){
- sqliteFree(*pzErrMsg);
- *pzErrMsg = sqlite3MPrintf("unrecognized token: \"%T\"",
- &pParse->sLastToken);
- }
+ sqlite3DbFree(db, *pzErrMsg);
+ *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
+ &pParse->sLastToken);
nErr++;
goto abort_parse;
}
@@ -63460,21 +92249,24 @@ abort_parse:
}
sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
}
- sqlite3ParserFree(pEngine, sqlite3FreeX);
- if( sqlite3MallocFailed() ){
+#ifdef YYTRACKMAXSTACKDEPTH
+ sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
+ sqlite3ParserStackPeak(pEngine)
+ );
+#endif /* YYDEBUG */
+ sqlite3ParserFree(pEngine, sqlite3_free);
+ db->lookaside.bEnabled = enableLookaside;
+ if( db->mallocFailed ){
pParse->rc = SQLITE_NOMEM;
}
if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
- sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
+ sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc));
}
+ assert( pzErrMsg!=0 );
if( pParse->zErrMsg ){
- if( pzErrMsg && *pzErrMsg==0 ){
- *pzErrMsg = pParse->zErrMsg;
- }else{
- sqliteFree(pParse->zErrMsg);
- }
+ *pzErrMsg = pParse->zErrMsg;
pParse->zErrMsg = 0;
- if( !nErr ) nErr++;
+ nErr++;
}
if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
sqlite3VdbeDelete(pParse->pVdbe);
@@ -63482,11 +92274,14 @@ abort_parse:
}
#ifndef SQLITE_OMIT_SHARED_CACHE
if( pParse->nested==0 ){
- sqliteFree(pParse->aTableLock);
+ sqlite3DbFree(db, pParse->aTableLock);
pParse->aTableLock = 0;
pParse->nTableLock = 0;
}
#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3DbFree(db, pParse->apVtabLock);
+#endif
if( !IN_DECLARE_VTAB ){
/* If the pParse->declareVtab flag is set, do not delete any table
@@ -63496,15 +92291,305 @@ abort_parse:
sqlite3DeleteTable(pParse->pNewTable);
}
- sqlite3DeleteTrigger(pParse->pNewTrigger);
- sqliteFree(pParse->apVarExpr);
- if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
+ sqlite3DeleteTrigger(db, pParse->pNewTrigger);
+ sqlite3DbFree(db, pParse->apVarExpr);
+ sqlite3DbFree(db, pParse->aAlias);
+ while( pParse->pAinc ){
+ AutoincInfo *p = pParse->pAinc;
+ pParse->pAinc = p->pNext;
+ sqlite3DbFree(db, p);
+ }
+ while( pParse->pZombieTab ){
+ Table *p = pParse->pZombieTab;
+ pParse->pZombieTab = p->pNextZombie;
+ sqlite3DeleteTable(p);
+ }
+ if( nErr>0 && pParse->rc==SQLITE_OK ){
pParse->rc = SQLITE_ERROR;
}
return nErr;
}
/************** End of tokenize.c ********************************************/
+/************** Begin file complete.c ****************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that implements the sqlite3_complete() API.
+** This code used to be part of the tokenizer.c source file. But by
+** separating it out, the code will be automatically omitted from
+** static links that do not use it.
+**
+** $Id: complete.c,v 1.8 2009/04/28 04:46:42 drh Exp $
+*/
+#ifndef SQLITE_OMIT_COMPLETE
+
+/*
+** This is defined in tokenize.c. We just have to import the definition.
+*/
+#ifndef SQLITE_AMALGAMATION
+#ifdef SQLITE_ASCII
+SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[];
+#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
+#endif
+#ifdef SQLITE_EBCDIC
+SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
+#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
+#endif
+#endif /* SQLITE_AMALGAMATION */
+
+
+/*
+** Token types used by the sqlite3_complete() routine. See the header
+** comments on that procedure for additional information.
+*/
+#define tkSEMI 0
+#define tkWS 1
+#define tkOTHER 2
+#define tkEXPLAIN 3
+#define tkCREATE 4
+#define tkTEMP 5
+#define tkTRIGGER 6
+#define tkEND 7
+
+/*
+** Return TRUE if the given SQL string ends in a semicolon.
+**
+** Special handling is require for CREATE TRIGGER statements.
+** Whenever the CREATE TRIGGER keywords are seen, the statement
+** must end with ";END;".
+**
+** This implementation uses a state machine with 7 states:
+**
+** (0) START At the beginning or end of an SQL statement. This routine
+** returns 1 if it ends in the START state and 0 if it ends
+** in any other state.
+**
+** (1) NORMAL We are in the middle of statement which ends with a single
+** semicolon.
+**
+** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
+** a statement.
+**
+** (3) CREATE The keyword CREATE has been seen at the beginning of a
+** statement, possibly preceeded by EXPLAIN and/or followed by
+** TEMP or TEMPORARY
+**
+** (4) TRIGGER We are in the middle of a trigger definition that must be
+** ended by a semicolon, the keyword END, and another semicolon.
+**
+** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
+** the end of a trigger definition.
+**
+** (6) END We've seen the ";END" of the ";END;" that occurs at the end
+** of a trigger difinition.
+**
+** Transitions between states above are determined by tokens extracted
+** from the input. The following tokens are significant:
+**
+** (0) tkSEMI A semicolon.
+** (1) tkWS Whitespace
+** (2) tkOTHER Any other SQL token.
+** (3) tkEXPLAIN The "explain" keyword.
+** (4) tkCREATE The "create" keyword.
+** (5) tkTEMP The "temp" or "temporary" keyword.
+** (6) tkTRIGGER The "trigger" keyword.
+** (7) tkEND The "end" keyword.
+**
+** Whitespace never causes a state transition and is always ignored.
+**
+** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
+** to recognize the end of a trigger can be omitted. All we have to do
+** is look for a semicolon that is not part of an string or comment.
+*/
+SQLITE_API int sqlite3_complete(const char *zSql){
+ u8 state = 0; /* Current state, using numbers defined in header comment */
+ u8 token; /* Value of the next token */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ /* A complex statement machine used to detect the end of a CREATE TRIGGER
+ ** statement. This is the normal case.
+ */
+ static const u8 trans[7][8] = {
+ /* Token: */
+ /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
+ /* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, },
+ /* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, },
+ /* 2 EXPLAIN: */ { 0, 2, 2, 1, 3, 1, 1, 1, },
+ /* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, },
+ /* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, },
+ /* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, },
+ /* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, },
+ };
+#else
+ /* If triggers are not suppored by this compile then the statement machine
+ ** used to detect the end of a statement is much simplier
+ */
+ static const u8 trans[2][3] = {
+ /* Token: */
+ /* State: ** SEMI WS OTHER */
+ /* 0 START: */ { 0, 0, 1, },
+ /* 1 NORMAL: */ { 0, 1, 1, },
+ };
+#endif /* SQLITE_OMIT_TRIGGER */
+
+ while( *zSql ){
+ switch( *zSql ){
+ case ';': { /* A semicolon */
+ token = tkSEMI;
+ break;
+ }
+ case ' ':
+ case '\r':
+ case '\t':
+ case '\n':
+ case '\f': { /* White space is ignored */
+ token = tkWS;
+ break;
+ }
+ case '/': { /* C-style comments */
+ if( zSql[1]!='*' ){
+ token = tkOTHER;
+ break;
+ }
+ zSql += 2;
+ while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
+ if( zSql[0]==0 ) return 0;
+ zSql++;
+ token = tkWS;
+ break;
+ }
+ case '-': { /* SQL-style comments from "--" to end of line */
+ if( zSql[1]!='-' ){
+ token = tkOTHER;
+ break;
+ }
+ while( *zSql && *zSql!='\n' ){ zSql++; }
+ if( *zSql==0 ) return state==0;
+ token = tkWS;
+ break;
+ }
+ case '[': { /* Microsoft-style identifiers in [...] */
+ zSql++;
+ while( *zSql && *zSql!=']' ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ case '`': /* Grave-accent quoted symbols used by MySQL */
+ case '"': /* single- and double-quoted strings */
+ case '\'': {
+ int c = *zSql;
+ zSql++;
+ while( *zSql && *zSql!=c ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ default: {
+ int c;
+ if( IdChar((u8)*zSql) ){
+ /* Keywords and unquoted identifiers */
+ int nId;
+ for(nId=1; IdChar(zSql[nId]); nId++){}
+#ifdef SQLITE_OMIT_TRIGGER
+ token = tkOTHER;
+#else
+ switch( *zSql ){
+ case 'c': case 'C': {
+ if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
+ token = tkCREATE;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 't': case 'T': {
+ if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
+ token = tkTRIGGER;
+ }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
+ token = tkTEMP;
+ }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
+ token = tkTEMP;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 'e': case 'E': {
+ if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
+ token = tkEND;
+ }else
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
+ token = tkEXPLAIN;
+ }else
+#endif
+ {
+ token = tkOTHER;
+ }
+ break;
+ }
+ default: {
+ token = tkOTHER;
+ break;
+ }
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+ zSql += nId-1;
+ }else{
+ /* Operators and special symbols */
+ token = tkOTHER;
+ }
+ break;
+ }
+ }
+ state = trans[state][token];
+ zSql++;
+ }
+ return state==0;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine is the same as the sqlite3_complete() routine described
+** above, except that the parameter is required to be UTF-16 encoded, not
+** UTF-8.
+*/
+SQLITE_API int sqlite3_complete16(const void *zSql){
+ sqlite3_value *pVal;
+ char const *zSql8;
+ int rc = SQLITE_NOMEM;
+
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ pVal = sqlite3ValueNew(0);
+ sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
+ zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
+ if( zSql8 ){
+ rc = sqlite3_complete(zSql8);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3ValueFree(pVal);
+ return sqlite3ApiExit(0, rc);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_OMIT_COMPLETE */
+
+/************** End of complete.c ********************************************/
/************** Begin file main.c ********************************************/
/*
** 2001 September 15
@@ -63521,24 +92606,126 @@ abort_parse:
** implement the programmer interface to the library. Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
+*/
+
+#ifdef SQLITE_ENABLE_FTS3
+/************** Include fts3.h in the middle of main.c ***********************/
+/************** Begin file fts3.h ********************************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
**
-** $Id: main.c,v 1.370 2007/04/18 14:24:33 danielk1977 Exp $
+** This header file is used by programs that want to link against the
+** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
*/
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of fts3.h ************************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+#ifdef SQLITE_ENABLE_RTREE
+/************** Include rtree.h in the middle of main.c **********************/
+/************** Begin file rtree.h *******************************************/
+/*
+** 2008 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** RTREE library. All it does is declare the sqlite3RtreeInit() interface.
+*/
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of rtree.h ***********************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+#ifdef SQLITE_ENABLE_ICU
+/************** Include sqliteicu.h in the middle of main.c ******************/
+/************** Begin file sqliteicu.h ***************************************/
+/*
+** 2008 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** ICU extension. All it does is declare the sqlite3IcuInit() interface.
+*/
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+
+/************** End of sqliteicu.h *******************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+
/*
** The version of the library
*/
-const char sqlite3_version[] = SQLITE_VERSION;
-const char *sqlite3_libversion(void){ return sqlite3_version; }
-int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
+#ifndef SQLITE_AMALGAMATION
+SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
+#endif
+SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
+SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
+SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
+SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
** I/O active are written using this function. These messages
** are intended for debugging activity only.
*/
-void (*sqlite3_io_trace)(const char*, ...) = 0;
+SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0;
+#endif
/*
** If the following global variable points to a string which is the
@@ -63547,15 +92734,453 @@ void (*sqlite3_io_trace)(const char*, ...) = 0;
**
** See also the "PRAGMA temp_store_directory" SQL command.
*/
-char *sqlite3_temp_directory = 0;
+SQLITE_API char *sqlite3_temp_directory = 0;
+
+/*
+** Initialize SQLite.
+**
+** This routine must be called to initialize the memory allocation,
+** VFS, and mutex subsystems prior to doing any serious work with
+** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT
+** this routine will be called automatically by key routines such as
+** sqlite3_open().
+**
+** This routine is a no-op except on its very first call for the process,
+** or for the first call after a call to sqlite3_shutdown.
+**
+** The first thread to call this routine runs the initialization to
+** completion. If subsequent threads call this routine before the first
+** thread has finished the initialization process, then the subsequent
+** threads must block until the first thread finishes with the initialization.
+**
+** The first thread might call this routine recursively. Recursive
+** calls to this routine should not block, of course. Otherwise the
+** initialization process would never complete.
+**
+** Let X be the first thread to enter this routine. Let Y be some other
+** thread. Then while the initial invocation of this routine by X is
+** incomplete, it is required that:
+**
+** * Calls to this routine from Y must block until the outer-most
+** call by X completes.
+**
+** * Recursive calls to this routine from thread X return immediately
+** without blocking.
+*/
+SQLITE_API int sqlite3_initialize(void){
+ sqlite3_mutex *pMaster; /* The main static mutex */
+ int rc; /* Result code */
+
+#ifdef SQLITE_OMIT_WSD
+ rc = sqlite3_wsd_init(4096, 24);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+#endif
+
+ /* If SQLite is already completely initialized, then this call
+ ** to sqlite3_initialize() should be a no-op. But the initialization
+ ** must be complete. So isInit must not be set until the very end
+ ** of this routine.
+ */
+ if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
+
+ /* Make sure the mutex subsystem is initialized. If unable to
+ ** initialize the mutex subsystem, return early with the error.
+ ** If the system is so sick that we are unable to allocate a mutex,
+ ** there is not much SQLite is going to be able to do.
+ **
+ ** The mutex subsystem must take care of serializing its own
+ ** initialization.
+ */
+ rc = sqlite3MutexInit();
+ if( rc ) return rc;
+
+ /* Initialize the malloc() system and the recursive pInitMutex mutex.
+ ** This operation is protected by the STATIC_MASTER mutex. Note that
+ ** MutexAlloc() is called for a static mutex prior to initializing the
+ ** malloc subsystem - this implies that the allocation of a static
+ ** mutex must not require support from the malloc subsystem.
+ */
+ pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex_enter(pMaster);
+ sqlite3GlobalConfig.isMutexInit = 1;
+ if( !sqlite3GlobalConfig.isMallocInit ){
+ rc = sqlite3MallocInit();
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.isMallocInit = 1;
+ if( !sqlite3GlobalConfig.pInitMutex ){
+ sqlite3GlobalConfig.pInitMutex =
+ sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
+ if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.nRefInitMutex++;
+ }
+ sqlite3_mutex_leave(pMaster);
+
+ /* If rc is not SQLITE_OK at this point, then either the malloc
+ ** subsystem could not be initialized or the system failed to allocate
+ ** the pInitMutex mutex. Return an error in either case. */
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Do the rest of the initialization under the recursive mutex so
+ ** that we will be able to handle recursive calls into
+ ** sqlite3_initialize(). The recursive calls normally come through
+ ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
+ ** recursive calls might also be possible.
+ */
+ sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
+ if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
+ FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
+ sqlite3GlobalConfig.inProgress = 1;
+ memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
+ sqlite3RegisterGlobalFunctions();
+ if( sqlite3GlobalConfig.isPCacheInit==0 ){
+ rc = sqlite3PcacheInitialize();
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.isPCacheInit = 1;
+ rc = sqlite3OsInit();
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
+ sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
+ sqlite3GlobalConfig.isInit = 1;
+ }
+ sqlite3GlobalConfig.inProgress = 0;
+ }
+ sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
+
+ /* Go back under the static mutex and clean up the recursive
+ ** mutex to prevent a resource leak.
+ */
+ sqlite3_mutex_enter(pMaster);
+ sqlite3GlobalConfig.nRefInitMutex--;
+ if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
+ assert( sqlite3GlobalConfig.nRefInitMutex==0 );
+ sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
+ sqlite3GlobalConfig.pInitMutex = 0;
+ }
+ sqlite3_mutex_leave(pMaster);
+
+ /* The following is just a sanity check to make sure SQLite has
+ ** been compiled correctly. It is important to run this code, but
+ ** we don't want to run it too often and soak up CPU cycles for no
+ ** reason. So we run it once during initialization.
+ */
+#ifndef NDEBUG
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ /* This section of code's only "output" is via assert() statements. */
+ if ( rc==SQLITE_OK ){
+ u64 x = (((u64)1)<<63)-1;
+ double y;
+ assert(sizeof(x)==8);
+ assert(sizeof(x)==sizeof(y));
+ memcpy(&y, &x, 8);
+ assert( sqlite3IsNaN(y) );
+ }
+#endif
+#endif
+
+ return rc;
+}
+
+/*
+** Undo the effects of sqlite3_initialize(). Must not be called while
+** there are outstanding database connections or memory allocations or
+** while any part of SQLite is otherwise in use in any thread. This
+** routine is not threadsafe. But it is safe to invoke this routine
+** on when SQLite is already shut down. If SQLite is already shut down
+** when this routine is invoked, then this routine is a harmless no-op.
+*/
+SQLITE_API int sqlite3_shutdown(void){
+ if( sqlite3GlobalConfig.isInit ){
+ sqlite3_os_end();
+ sqlite3_reset_auto_extension();
+ sqlite3GlobalConfig.isInit = 0;
+ }
+ if( sqlite3GlobalConfig.isPCacheInit ){
+ sqlite3PcacheShutdown();
+ sqlite3GlobalConfig.isPCacheInit = 0;
+ }
+ if( sqlite3GlobalConfig.isMallocInit ){
+ sqlite3MallocEnd();
+ sqlite3GlobalConfig.isMallocInit = 0;
+ }
+ if( sqlite3GlobalConfig.isMutexInit ){
+ sqlite3MutexEnd();
+ sqlite3GlobalConfig.isMutexInit = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This API allows applications to modify the global configuration of
+** the SQLite library at run-time.
+**
+** This routine should only be called when there are no outstanding
+** database connections or memory allocations. This routine is not
+** threadsafe. Failure to heed these warnings can lead to unpredictable
+** behavior.
+*/
+SQLITE_API int sqlite3_config(int op, ...){
+ va_list ap;
+ int rc = SQLITE_OK;
+
+ /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
+ ** the SQLite library is in use. */
+ if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE;
+
+ va_start(ap, op);
+ switch( op ){
+
+ /* Mutex configuration options are only available in a threadsafe
+ ** compile.
+ */
+#if SQLITE_THREADSAFE
+ case SQLITE_CONFIG_SINGLETHREAD: {
+ /* Disable all mutexing */
+ sqlite3GlobalConfig.bCoreMutex = 0;
+ sqlite3GlobalConfig.bFullMutex = 0;
+ break;
+ }
+ case SQLITE_CONFIG_MULTITHREAD: {
+ /* Disable mutexing of database connections */
+ /* Enable mutexing of core data structures */
+ sqlite3GlobalConfig.bCoreMutex = 1;
+ sqlite3GlobalConfig.bFullMutex = 0;
+ break;
+ }
+ case SQLITE_CONFIG_SERIALIZED: {
+ /* Enable all mutexing */
+ sqlite3GlobalConfig.bCoreMutex = 1;
+ sqlite3GlobalConfig.bFullMutex = 1;
+ break;
+ }
+ case SQLITE_CONFIG_MUTEX: {
+ /* Specify an alternative mutex implementation */
+ sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
+ break;
+ }
+ case SQLITE_CONFIG_GETMUTEX: {
+ /* Retrieve the current mutex implementation */
+ *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
+ break;
+ }
+#endif
+
+
+ case SQLITE_CONFIG_MALLOC: {
+ /* Specify an alternative malloc implementation */
+ sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
+ break;
+ }
+ case SQLITE_CONFIG_GETMALLOC: {
+ /* Retrieve the current malloc() implementation */
+ if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
+ *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
+ break;
+ }
+ case SQLITE_CONFIG_MEMSTATUS: {
+ /* Enable or disable the malloc status collection */
+ sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_SCRATCH: {
+ /* Designate a buffer for scratch memory space */
+ sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
+ sqlite3GlobalConfig.szScratch = va_arg(ap, int);
+ sqlite3GlobalConfig.nScratch = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_PAGECACHE: {
+ /* Designate a buffer for page cache memory space */
+ sqlite3GlobalConfig.pPage = va_arg(ap, void*);
+ sqlite3GlobalConfig.szPage = va_arg(ap, int);
+ sqlite3GlobalConfig.nPage = va_arg(ap, int);
+ break;
+ }
+
+ case SQLITE_CONFIG_PCACHE: {
+ /* Specify an alternative page cache implementation */
+ sqlite3GlobalConfig.pcache = *va_arg(ap, sqlite3_pcache_methods*);
+ break;
+ }
+
+ case SQLITE_CONFIG_GETPCACHE: {
+ if( sqlite3GlobalConfig.pcache.xInit==0 ){
+ sqlite3PCacheSetDefault();
+ }
+ *va_arg(ap, sqlite3_pcache_methods*) = sqlite3GlobalConfig.pcache;
+ break;
+ }
+
+#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
+ case SQLITE_CONFIG_HEAP: {
+ /* Designate a buffer for heap memory space */
+ sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
+ sqlite3GlobalConfig.nHeap = va_arg(ap, int);
+ sqlite3GlobalConfig.mnReq = va_arg(ap, int);
+
+ if( sqlite3GlobalConfig.pHeap==0 ){
+ /* If the heap pointer is NULL, then restore the malloc implementation
+ ** back to NULL pointers too. This will cause the malloc to go
+ ** back to its default implementation when sqlite3_initialize() is
+ ** run.
+ */
+ memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
+ }else{
+ /* The heap pointer is not NULL, then install one of the
+ ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor
+ ** ENABLE_MEMSYS5 is defined, return an error.
+ */
+#ifdef SQLITE_ENABLE_MEMSYS3
+ sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS5
+ sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
+#endif
+ }
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_LOOKASIDE: {
+ sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
+ sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
+ break;
+ }
+
+ default: {
+ rc = SQLITE_ERROR;
+ break;
+ }
+ }
+ va_end(ap);
+ return rc;
+}
+
+/*
+** Set up the lookaside buffers for a database connection.
+** Return SQLITE_OK on success.
+** If lookaside is already active, return SQLITE_BUSY.
+**
+** The sz parameter is the number of bytes in each lookaside slot.
+** The cnt parameter is the number of slots. If pStart is NULL the
+** space for the lookaside memory is obtained from sqlite3_malloc().
+** If pStart is not NULL then it is sz*cnt bytes of memory to use for
+** the lookaside memory.
+*/
+static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
+ void *pStart;
+ if( db->lookaside.nOut ){
+ return SQLITE_BUSY;
+ }
+ /* Free any existing lookaside buffer for this handle before
+ ** allocating a new one so we don't have to have space for
+ ** both at the same time.
+ */
+ if( db->lookaside.bMalloced ){
+ sqlite3_free(db->lookaside.pStart);
+ }
+ /* The size of a lookaside slot needs to be larger than a pointer
+ ** to be useful.
+ */
+ if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
+ if( cnt<0 ) cnt = 0;
+ if( sz==0 || cnt==0 ){
+ sz = 0;
+ pStart = 0;
+ }else if( pBuf==0 ){
+ sz = ROUND8(sz);
+ sqlite3BeginBenignMalloc();
+ pStart = sqlite3Malloc( sz*cnt );
+ sqlite3EndBenignMalloc();
+ }else{
+ sz = ROUNDDOWN8(sz);
+ pStart = pBuf;
+ }
+ db->lookaside.pStart = pStart;
+ db->lookaside.pFree = 0;
+ db->lookaside.sz = (u16)sz;
+ if( pStart ){
+ int i;
+ LookasideSlot *p;
+ assert( sz > (int)sizeof(LookasideSlot*) );
+ p = (LookasideSlot*)pStart;
+ for(i=cnt-1; i>=0; i--){
+ p->pNext = db->lookaside.pFree;
+ db->lookaside.pFree = p;
+ p = (LookasideSlot*)&((u8*)p)[sz];
+ }
+ db->lookaside.pEnd = p;
+ db->lookaside.bEnabled = 1;
+ db->lookaside.bMalloced = pBuf==0 ?1:0;
+ }else{
+ db->lookaside.pEnd = 0;
+ db->lookaside.bEnabled = 0;
+ db->lookaside.bMalloced = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return the mutex associated with a database connection.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
+ return db->mutex;
+}
+
+/*
+** Configuration settings for an individual database connection
+*/
+SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
+ va_list ap;
+ int rc;
+ va_start(ap, op);
+ switch( op ){
+ case SQLITE_DBCONFIG_LOOKASIDE: {
+ void *pBuf = va_arg(ap, void*);
+ int sz = va_arg(ap, int);
+ int cnt = va_arg(ap, int);
+ rc = setupLookaside(db, pBuf, sz, cnt);
+ break;
+ }
+ default: {
+ rc = SQLITE_ERROR;
+ break;
+ }
+ }
+ va_end(ap);
+ return rc;
+}
+
+
+/*
+** Return true if the buffer z[0..n-1] contains all spaces.
+*/
+static int allSpaces(const char *z, int n){
+ while( n>0 && z[n-1]==' ' ){ n--; }
+ return n==0;
+}
/*
** This is the default collating function named "BINARY" which is always
** available.
+**
+** If the padFlag argument is not NULL then space padding at the end
+** of strings is ignored. This implements the RTRIM collation.
*/
static int binCollFunc(
- void *NotUsed,
+ void *padFlag,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
@@ -63563,7 +93188,14 @@ static int binCollFunc(
n = nKey1<nKey2 ? nKey1 : nKey2;
rc = memcmp(pKey1, pKey2, n);
if( rc==0 ){
- rc = nKey1 - nKey2;
+ if( padFlag
+ && allSpaces(((char*)pKey1)+n, nKey1-n)
+ && allSpaces(((char*)pKey2)+n, nKey2-n)
+ ){
+ /* Leave rc unchanged at 0 */
+ }else{
+ rc = nKey1 - nKey2;
+ }
}
return rc;
}
@@ -63584,6 +93216,7 @@ static int nocaseCollatingFunc(
){
int r = sqlite3StrNICmp(
(const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
+ UNUSED_PARAMETER(NotUsed);
if( 0==r ){
r = nKey1-nKey2;
}
@@ -63593,44 +93226,54 @@ static int nocaseCollatingFunc(
/*
** Return the ROWID of the most recent insert
*/
-sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
+SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
return db->lastRowid;
}
/*
** Return the number of changes in the most recent call to sqlite3_exec().
*/
-int sqlite3_changes(sqlite3 *db){
+SQLITE_API int sqlite3_changes(sqlite3 *db){
return db->nChange;
}
/*
** Return the number of changes since the database handle was opened.
*/
-int sqlite3_total_changes(sqlite3 *db){
+SQLITE_API int sqlite3_total_changes(sqlite3 *db){
return db->nTotalChange;
}
/*
+** Close all open savepoints. This function only manipulates fields of the
+** database handle object, it does not close any savepoints that may be open
+** at the b-tree/pager level.
+*/
+SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *db){
+ while( db->pSavepoint ){
+ Savepoint *pTmp = db->pSavepoint;
+ db->pSavepoint = pTmp->pNext;
+ sqlite3DbFree(db, pTmp);
+ }
+ db->nSavepoint = 0;
+ db->nStatement = 0;
+ db->isTransactionSavepoint = 0;
+}
+
+/*
** Close an existing SQLite database
*/
-int sqlite3_close(sqlite3 *db){
+SQLITE_API int sqlite3_close(sqlite3 *db){
HashElem *i;
int j;
if( !db ){
return SQLITE_OK;
}
- if( sqlite3SafetyCheck(db) ){
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
return SQLITE_MISUSE;
}
-
-#ifdef SQLITE_SSE
- {
- extern void sqlite3SseCleanup(sqlite3*);
- sqlite3SseCleanup(db);
- }
-#endif
+ sqlite3_mutex_enter(db->mutex);
sqlite3ResetInternalSchema(db, 0);
@@ -63646,24 +93289,25 @@ int sqlite3_close(sqlite3 *db){
/* If there are any outstanding VMs, return SQLITE_BUSY. */
if( db->pVdbe ){
sqlite3Error(db, SQLITE_BUSY,
- "Unable to close due to unfinalised statements");
+ "unable to close due to unfinalised statements");
+ sqlite3_mutex_leave(db->mutex);
return SQLITE_BUSY;
}
- assert( !sqlite3SafetyCheck(db) );
+ assert( sqlite3SafetyCheckSickOrOk(db) );
- /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database
- ** cannot be opened for some reason. So this routine needs to run in
- ** that case. But maybe there should be an extra magic value for the
- ** "failed to open" state.
- **
- ** TODO: Coverage tests do not test the case where this condition is
- ** true. It's hard to see how to cause it without messing with threads.
- */
- if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){
- /* printf("DID NOT CLOSE\n"); fflush(stdout); */
- return SQLITE_ERROR;
+ for(j=0; j<db->nDb; j++){
+ Btree *pBt = db->aDb[j].pBt;
+ if( pBt && sqlite3BtreeIsInBackup(pBt) ){
+ sqlite3Error(db, SQLITE_BUSY,
+ "unable to close due to unfinished backup operation");
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_BUSY;
+ }
}
+ /* Free any outstanding Savepoint structures. */
+ sqlite3CloseSavepoints(db);
+
for(j=0; j<db->nDb; j++){
struct Db *pDb = &db->aDb[j];
if( pDb->pBt ){
@@ -63675,30 +93319,47 @@ int sqlite3_close(sqlite3 *db){
}
}
sqlite3ResetInternalSchema(db, 0);
+
+ /* Tell the code in notify.c that the connection no longer holds any
+ ** locks and does not require any further unlock-notify callbacks.
+ */
+ sqlite3ConnectionClosed(db);
+
assert( db->nDb<=2 );
assert( db->aDb==db->aDbStatic );
- for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
- FuncDef *pFunc, *pNext;
- for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
- pNext = pFunc->pNext;
- sqliteFree(pFunc);
+ for(j=0; j<ArraySize(db->aFunc.a); j++){
+ FuncDef *pNext, *pHash, *p;
+ for(p=db->aFunc.a[j]; p; p=pHash){
+ pHash = p->pHash;
+ while( p ){
+ pNext = p->pNext;
+ sqlite3DbFree(db, p);
+ p = pNext;
+ }
}
}
-
for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
CollSeq *pColl = (CollSeq *)sqliteHashData(i);
- sqliteFree(pColl);
+ /* Invoke any destructors registered for collation sequence user data. */
+ for(j=0; j<3; j++){
+ if( pColl[j].xDel ){
+ pColl[j].xDel(pColl[j].pUser);
+ }
+ }
+ sqlite3DbFree(db, pColl);
}
sqlite3HashClear(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
Module *pMod = (Module *)sqliteHashData(i);
- sqliteFree(pMod);
+ if( pMod->xDestroy ){
+ pMod->xDestroy(pMod->pAux);
+ }
+ sqlite3DbFree(db, pMod);
}
sqlite3HashClear(&db->aModule);
#endif
- sqlite3HashClear(&db->aFunc);
sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
if( db->pErr ){
sqlite3ValueFree(db->pErr);
@@ -63713,18 +93374,26 @@ int sqlite3_close(sqlite3 *db){
** the same sqliteMalloc() as the one that allocates the database
** structure?
*/
- sqliteFree(db->aDb[1].pSchema);
- sqliteFree(db);
- sqlite3ReleaseThreadData();
+ sqlite3DbFree(db, db->aDb[1].pSchema);
+ sqlite3_mutex_leave(db->mutex);
+ db->magic = SQLITE_MAGIC_CLOSED;
+ sqlite3_mutex_free(db->mutex);
+ assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */
+ if( db->lookaside.bMalloced ){
+ sqlite3_free(db->lookaside.pStart);
+ }
+ sqlite3_free(db);
return SQLITE_OK;
}
/*
** Rollback all database files.
*/
-void sqlite3RollbackAll(sqlite3 *db){
+SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db){
int i;
int inTrans = 0;
+ assert( sqlite3_mutex_held(db->mutex) );
+ sqlite3BeginBenignMalloc();
for(i=0; i<db->nDb; i++){
if( db->aDb[i].pBt ){
if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
@@ -63735,7 +93404,10 @@ void sqlite3RollbackAll(sqlite3 *db){
}
}
sqlite3VtabRollback(db);
+ sqlite3EndBenignMalloc();
+
if( db->flags&SQLITE_InternChanges ){
+ sqlite3ExpirePreparedStatements(db);
sqlite3ResetInternalSchema(db, 0);
}
@@ -63749,37 +93421,42 @@ void sqlite3RollbackAll(sqlite3 *db){
** Return a static string that describes the kind of error specified in the
** argument.
*/
-const char *sqlite3ErrStr(int rc){
- const char *z;
- switch( rc & 0xff ){
- case SQLITE_ROW:
- case SQLITE_DONE:
- case SQLITE_OK: z = "not an error"; break;
- case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
- case SQLITE_PERM: z = "access permission denied"; break;
- case SQLITE_ABORT: z = "callback requested query abort"; break;
- case SQLITE_BUSY: z = "database is locked"; break;
- case SQLITE_LOCKED: z = "database table is locked"; break;
- case SQLITE_NOMEM: z = "out of memory"; break;
- case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
- case SQLITE_INTERRUPT: z = "interrupted"; break;
- case SQLITE_IOERR: z = "disk I/O error"; break;
- case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
- case SQLITE_FULL: z = "database or disk is full"; break;
- case SQLITE_CANTOPEN: z = "unable to open database file"; break;
- case SQLITE_EMPTY: z = "table contains no data"; break;
- case SQLITE_SCHEMA: z = "database schema has changed"; break;
- case SQLITE_CONSTRAINT: z = "constraint failed"; break;
- case SQLITE_MISMATCH: z = "datatype mismatch"; break;
- case SQLITE_MISUSE: z = "library routine called out of sequence";break;
- case SQLITE_NOLFS: z = "kernel lacks large file support"; break;
- case SQLITE_AUTH: z = "authorization denied"; break;
- case SQLITE_FORMAT: z = "auxiliary database format error"; break;
- case SQLITE_RANGE: z = "bind or column index out of range"; break;
- case SQLITE_NOTADB: z = "file is encrypted or is not a database";break;
- default: z = "unknown error"; break;
+SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
+ static const char* const aMsg[] = {
+ /* SQLITE_OK */ "not an error",
+ /* SQLITE_ERROR */ "SQL logic error or missing database",
+ /* SQLITE_INTERNAL */ 0,
+ /* SQLITE_PERM */ "access permission denied",
+ /* SQLITE_ABORT */ "callback requested query abort",
+ /* SQLITE_BUSY */ "database is locked",
+ /* SQLITE_LOCKED */ "database table is locked",
+ /* SQLITE_NOMEM */ "out of memory",
+ /* SQLITE_READONLY */ "attempt to write a readonly database",
+ /* SQLITE_INTERRUPT */ "interrupted",
+ /* SQLITE_IOERR */ "disk I/O error",
+ /* SQLITE_CORRUPT */ "database disk image is malformed",
+ /* SQLITE_NOTFOUND */ 0,
+ /* SQLITE_FULL */ "database or disk is full",
+ /* SQLITE_CANTOPEN */ "unable to open database file",
+ /* SQLITE_PROTOCOL */ 0,
+ /* SQLITE_EMPTY */ "table contains no data",
+ /* SQLITE_SCHEMA */ "database schema has changed",
+ /* SQLITE_TOOBIG */ "string or blob too big",
+ /* SQLITE_CONSTRAINT */ "constraint failed",
+ /* SQLITE_MISMATCH */ "datatype mismatch",
+ /* SQLITE_MISUSE */ "library routine called out of sequence",
+ /* SQLITE_NOLFS */ "large file support is disabled",
+ /* SQLITE_AUTH */ "authorization denied",
+ /* SQLITE_FORMAT */ "auxiliary database format error",
+ /* SQLITE_RANGE */ "bind or column index out of range",
+ /* SQLITE_NOTADB */ "file is encrypted or is not a database",
+ };
+ rc &= 0xff;
+ if( ALWAYS(rc>=0) && rc<(int)(sizeof(aMsg)/sizeof(aMsg[0])) && aMsg[rc]!=0 ){
+ return aMsg[rc];
+ }else{
+ return "unknown error";
}
- return z;
}
/*
@@ -63792,13 +93469,14 @@ static int sqliteDefaultBusyCallback(
void *ptr, /* Database connection */
int count /* Number of times table has been busy */
){
-#if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
+#if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
static const u8 delays[] =
{ 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
static const u8 totals[] =
{ 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
# define NDELAY (sizeof(delays)/sizeof(delays[0]))
- int timeout = ((sqlite3 *)ptr)->busyTimeout;
+ sqlite3 *db = (sqlite3 *)ptr;
+ int timeout = db->busyTimeout;
int delay, prior;
assert( count>=0 );
@@ -63813,14 +93491,15 @@ static int sqliteDefaultBusyCallback(
delay = timeout - prior;
if( delay<=0 ) return 0;
}
- sqlite3OsSleep(delay);
+ sqlite3OsSleep(db->pVfs, delay*1000);
return 1;
#else
+ sqlite3 *db = (sqlite3 *)ptr;
int timeout = ((sqlite3 *)ptr)->busyTimeout;
if( (count+1)*1000 > timeout ){
return 0;
}
- sqlite3OsSleep(1000);
+ sqlite3OsSleep(db->pVfs, 1000000);
return 1;
#endif
}
@@ -63832,9 +93511,9 @@ static int sqliteDefaultBusyCallback(
** If this routine returns non-zero, the lock is retried. If it
** returns 0, the operation aborts with an SQLITE_BUSY error.
*/
-int sqlite3InvokeBusyHandler(BusyHandler *p){
+SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
int rc;
- if( p==0 || p->xFunc==0 || p->nBusy<0 ) return 0;
+ if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0;
rc = p->xFunc(p->pArg, p->nBusy);
if( rc==0 ){
p->nBusy = -1;
@@ -63848,17 +93527,16 @@ int sqlite3InvokeBusyHandler(BusyHandler *p){
** This routine sets the busy callback for an Sqlite database to the
** given callback function with the given argument.
*/
-int sqlite3_busy_handler(
+SQLITE_API int sqlite3_busy_handler(
sqlite3 *db,
int (*xBusy)(void*,int),
void *pArg
){
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
+ sqlite3_mutex_enter(db->mutex);
db->busyHandler.xFunc = xBusy;
db->busyHandler.pArg = pArg;
db->busyHandler.nBusy = 0;
+ sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
@@ -63868,23 +93546,23 @@ int sqlite3_busy_handler(
** given callback function with the given argument. The progress callback will
** be invoked every nOps opcodes.
*/
-void sqlite3_progress_handler(
+SQLITE_API void sqlite3_progress_handler(
sqlite3 *db,
int nOps,
int (*xProgress)(void*),
void *pArg
){
- if( !sqlite3SafetyCheck(db) ){
- if( nOps>0 ){
- db->xProgress = xProgress;
- db->nProgressOps = nOps;
- db->pProgressArg = pArg;
- }else{
- db->xProgress = 0;
- db->nProgressOps = 0;
- db->pProgressArg = 0;
- }
+ sqlite3_mutex_enter(db->mutex);
+ if( nOps>0 ){
+ db->xProgress = xProgress;
+ db->nProgressOps = nOps;
+ db->pProgressArg = pArg;
+ }else{
+ db->xProgress = 0;
+ db->nProgressOps = 0;
+ db->pProgressArg = 0;
}
+ sqlite3_mutex_leave(db->mutex);
}
#endif
@@ -63893,10 +93571,7 @@ void sqlite3_progress_handler(
** This routine installs a default busy handler that waits for the
** specified number of milliseconds before returning 0.
*/
-int sqlite3_busy_timeout(sqlite3 *db, int ms){
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
+SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
if( ms>0 ){
db->busyTimeout = ms;
sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
@@ -63909,36 +93584,10 @@ int sqlite3_busy_timeout(sqlite3 *db, int ms){
/*
** Cause any pending operation to stop at its earliest opportunity.
*/
-void sqlite3_interrupt(sqlite3 *db){
- if( db && (db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_BUSY) ){
- db->u1.isInterrupted = 1;
- }
+SQLITE_API void sqlite3_interrupt(sqlite3 *db){
+ db->u1.isInterrupted = 1;
}
-/*
-** Memory allocation routines that use SQLites internal memory
-** memory allocator. Depending on how SQLite is compiled, the
-** internal memory allocator might be just an alias for the
-** system default malloc/realloc/free. Or the built-in allocator
-** might do extra stuff like put sentinals around buffers to
-** check for overruns or look for memory leaks.
-**
-** Use sqlite3_free() to free memory returned by sqlite3_mprintf().
-*/
-void sqlite3_free(void *p){ if( p ) sqlite3OsFree(p); }
-void *sqlite3_malloc(int nByte){ return nByte>0 ? sqlite3OsMalloc(nByte) : 0; }
-void *sqlite3_realloc(void *pOld, int nByte){
- if( pOld ){
- if( nByte>0 ){
- return sqlite3OsRealloc(pOld, nByte);
- }else{
- sqlite3OsFree(pOld);
- return 0;
- }
- }else{
- return sqlite3_malloc(nByte);
- }
-}
/*
** This function is exactly the same as sqlite3_create_function(), except
@@ -63946,7 +93595,7 @@ void *sqlite3_realloc(void *pOld, int nByte){
** that if a malloc() fails in sqlite3_create_function(), an error code
** is returned and the mallocFailed flag cleared.
*/
-int sqlite3CreateFunc(
+SQLITE_PRIVATE int sqlite3CreateFunc(
sqlite3 *db,
const char *zFunctionName,
int nArg,
@@ -63959,17 +93608,14 @@ int sqlite3CreateFunc(
FuncDef *p;
int nName;
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
+ assert( sqlite3_mutex_held(db->mutex) );
if( zFunctionName==0 ||
(xFunc && (xFinal || xStep)) ||
(!xFunc && (xFinal && !xStep)) ||
(!xFunc && (!xFinal && xStep)) ||
- (nArg<-1 || nArg>127) ||
- (255<(nName = strlen(zFunctionName))) ){
- sqlite3Error(db, SQLITE_ERROR, "bad parameters");
- return SQLITE_ERROR;
+ (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
+ (255<(nName = sqlite3Strlen30( zFunctionName))) ){
+ return SQLITE_MISUSE;
}
#ifndef SQLITE_OMIT_UTF16
@@ -63986,10 +93632,13 @@ int sqlite3CreateFunc(
int rc;
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
pUserData, xFunc, xStep, xFinal);
- if( rc!=SQLITE_OK ) return rc;
- rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
- pUserData, xFunc, xStep, xFinal);
- if( rc!=SQLITE_OK ) return rc;
+ if( rc==SQLITE_OK ){
+ rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
+ pUserData, xFunc, xStep, xFinal);
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
enc = SQLITE_UTF16BE;
}
#else
@@ -64001,34 +93650,36 @@ int sqlite3CreateFunc(
** is being overridden/deleted but there are no active VMs, allow the
** operation to continue but invalidate all precompiled statements.
*/
- p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0);
+ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
if( p && p->iPrefEnc==enc && p->nArg==nArg ){
if( db->activeVdbeCnt ){
sqlite3Error(db, SQLITE_BUSY,
- "Unable to delete/modify user-function due to active statements");
- assert( !sqlite3MallocFailed() );
+ "unable to delete/modify user-function due to active statements");
+ assert( !db->mallocFailed );
return SQLITE_BUSY;
}else{
sqlite3ExpirePreparedStatements(db);
}
}
- p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1);
- if( p ){
- p->flags = 0;
- p->xFunc = xFunc;
- p->xStep = xStep;
- p->xFinalize = xFinal;
- p->pUserData = pUserData;
- p->nArg = nArg;
+ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1);
+ assert(p || db->mallocFailed);
+ if( !p ){
+ return SQLITE_NOMEM;
}
+ p->flags = 0;
+ p->xFunc = xFunc;
+ p->xStep = xStep;
+ p->xFinalize = xFinal;
+ p->pUserData = pUserData;
+ p->nArg = (u16)nArg;
return SQLITE_OK;
}
/*
** Create new user functions.
*/
-int sqlite3_create_function(
+SQLITE_API int sqlite3_create_function(
sqlite3 *db,
const char *zFunctionName,
int nArg,
@@ -64039,14 +93690,15 @@ int sqlite3_create_function(
void (*xFinal)(sqlite3_context*)
){
int rc;
- assert( !sqlite3MallocFailed() );
+ sqlite3_mutex_enter(db->mutex);
rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal);
-
- return sqlite3ApiExit(db, rc);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
#ifndef SQLITE_OMIT_UTF16
-int sqlite3_create_function16(
+SQLITE_API int sqlite3_create_function16(
sqlite3 *db,
const void *zFunctionName,
int nArg,
@@ -64058,13 +93710,14 @@ int sqlite3_create_function16(
){
int rc;
char *zFunc8;
- assert( !sqlite3MallocFailed() );
-
- zFunc8 = sqlite3utf16to8(zFunctionName, -1);
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1);
rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
- sqliteFree(zFunc8);
-
- return sqlite3ApiExit(db, rc);
+ sqlite3DbFree(db, zFunc8);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
#endif
@@ -64081,17 +93734,21 @@ int sqlite3_create_function16(
** A global function must exist in order for name resolution to work
** properly.
*/
-int sqlite3_overload_function(
+SQLITE_API int sqlite3_overload_function(
sqlite3 *db,
const char *zName,
int nArg
){
- int nName = strlen(zName);
+ int nName = sqlite3Strlen30(zName);
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
0, sqlite3InvalidFunction, 0, 0);
}
- return sqlite3ApiExit(db, SQLITE_OK);
+ rc = sqlite3ApiExit(db, SQLITE_OK);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
#ifndef SQLITE_OMIT_TRACE
@@ -64103,10 +93760,13 @@ int sqlite3_overload_function(
** trace is a pointer to a function that is invoked at the start of each
** SQL statement.
*/
-void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
- void *pOld = db->pTraceArg;
+SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
+ void *pOld;
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pTraceArg;
db->xTrace = xTrace;
db->pTraceArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
return pOld;
}
/*
@@ -64117,14 +93777,17 @@ void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
** profile is a pointer to a function that is invoked at the conclusion of
** each SQL statement that is run.
*/
-void *sqlite3_profile(
+SQLITE_API void *sqlite3_profile(
sqlite3 *db,
void (*xProfile)(void*,const char*,sqlite_uint64),
void *pArg
){
- void *pOld = db->pProfileArg;
+ void *pOld;
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pProfileArg;
db->xProfile = xProfile;
db->pProfileArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
return pOld;
}
#endif /* SQLITE_OMIT_TRACE */
@@ -64135,14 +93798,17 @@ void *sqlite3_profile(
** If the invoked function returns non-zero, then the commit becomes a
** rollback.
*/
-void *sqlite3_commit_hook(
+SQLITE_API void *sqlite3_commit_hook(
sqlite3 *db, /* Attach the hook to this database */
int (*xCallback)(void*), /* Function to invoke on each commit */
void *pArg /* Argument to the function */
){
- void *pOld = db->pCommitArg;
+ void *pOld;
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pCommitArg;
db->xCommitCallback = xCallback;
db->pCommitArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
return pOld;
}
@@ -64150,14 +93816,17 @@ void *sqlite3_commit_hook(
** Register a callback to be invoked each time a row is updated,
** inserted or deleted using this database connection.
*/
-void *sqlite3_update_hook(
+SQLITE_API void *sqlite3_update_hook(
sqlite3 *db, /* Attach the hook to this database */
void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
void *pArg /* Argument to the function */
){
- void *pRet = db->pUpdateArg;
+ void *pRet;
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pUpdateArg;
db->xUpdateCallback = xCallback;
db->pUpdateArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
return pRet;
}
@@ -64165,18 +93834,55 @@ void *sqlite3_update_hook(
** Register a callback to be invoked each time a transaction is rolled
** back by this database connection.
*/
-void *sqlite3_rollback_hook(
+SQLITE_API void *sqlite3_rollback_hook(
sqlite3 *db, /* Attach the hook to this database */
void (*xCallback)(void*), /* Callback function */
void *pArg /* Argument to the function */
){
- void *pRet = db->pRollbackArg;
+ void *pRet;
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pRollbackArg;
db->xRollbackCallback = xCallback;
db->pRollbackArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
return pRet;
}
/*
+** This function returns true if main-memory should be used instead of
+** a temporary file for transient pager files and statement journals.
+** The value returned depends on the value of db->temp_store (runtime
+** parameter) and the compile time value of SQLITE_TEMP_STORE. The
+** following table describes the relationship between these two values
+** and this functions return value.
+**
+** SQLITE_TEMP_STORE db->temp_store Location of temporary database
+** ----------------- -------------- ------------------------------
+** 0 any file (return 0)
+** 1 1 file (return 0)
+** 1 2 memory (return 1)
+** 1 0 file (return 0)
+** 2 1 file (return 0)
+** 2 2 memory (return 1)
+** 2 0 memory (return 1)
+** 3 any memory (return 1)
+*/
+SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3 *db){
+#if SQLITE_TEMP_STORE==1
+ return ( db->temp_store==2 );
+#endif
+#if SQLITE_TEMP_STORE==2
+ return ( db->temp_store!=1 );
+#endif
+#if SQLITE_TEMP_STORE==3
+ return 1;
+#endif
+#if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
+ return 0;
+#endif
+}
+
+/*
** This routine is called to create a connection to a database BTree
** driver. If zFilename is the name of a file, then that file is
** opened and used. If zFilename is the magic name ":memory:" then
@@ -64186,58 +93892,45 @@ void *sqlite3_rollback_hook(
** soon as the connection is closed.
**
** A virtual database can be either a disk file (that is automatically
-** deleted when the file is closed) or it an be held entirely in memory,
-** depending on the values of the TEMP_STORE compile-time macro and the
-** db->temp_store variable, according to the following chart:
-**
-** TEMP_STORE db->temp_store Location of temporary database
-** ---------- -------------- ------------------------------
-** 0 any file
-** 1 1 file
-** 1 2 memory
-** 1 0 file
-** 2 1 file
-** 2 2 memory
-** 2 0 memory
-** 3 any memory
-*/
-int sqlite3BtreeFactory(
+** deleted when the file is closed) or it an be held entirely in memory.
+** The sqlite3TempInMemory() function is used to determine which.
+*/
+SQLITE_PRIVATE int sqlite3BtreeFactory(
const sqlite3 *db, /* Main database when opening aux otherwise 0 */
const char *zFilename, /* Name of the file containing the BTree database */
int omitJournal, /* if TRUE then do not journal this file */
int nCache, /* How many pages in the page cache */
+ int vfsFlags, /* Flags passed through to vfsOpen */
Btree **ppBtree /* Pointer to new Btree object written here */
){
- int btree_flags = 0;
+ int btFlags = 0;
int rc;
+ assert( sqlite3_mutex_held(db->mutex) );
assert( ppBtree != 0);
if( omitJournal ){
- btree_flags |= BTREE_OMIT_JOURNAL;
+ btFlags |= BTREE_OMIT_JOURNAL;
}
if( db->flags & SQLITE_NoReadlock ){
- btree_flags |= BTREE_NO_READLOCK;
+ btFlags |= BTREE_NO_READLOCK;
}
- if( zFilename==0 ){
-#if TEMP_STORE==0
- /* Do nothing */
-#endif
#ifndef SQLITE_OMIT_MEMORYDB
-#if TEMP_STORE==1
- if( db->temp_store==2 ) zFilename = ":memory:";
-#endif
-#if TEMP_STORE==2
- if( db->temp_store!=1 ) zFilename = ":memory:";
-#endif
-#if TEMP_STORE==3
+ if( zFilename==0 && sqlite3TempInMemory(db) ){
zFilename = ":memory:";
+ }
#endif
-#endif /* SQLITE_OMIT_MEMORYDB */
+
+ if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){
+ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
}
+ rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags);
- rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btree_flags);
- if( rc==SQLITE_OK ){
- sqlite3BtreeSetBusyHandler(*ppBtree, (void*)&db->busyHandler);
+ /* If the B-Tree was successfully opened, set the pager-cache size to the
+ ** default value. Except, if the call to BtreeOpen() returned a handle
+ ** open on an existing shared pager-cache, do not change the pager-cache
+ ** size.
+ */
+ if( rc==SQLITE_OK && 0==sqlite3BtreeSchema(*ppBtree, 0, 0) ){
sqlite3BtreeSetCacheSize(*ppBtree, nCache);
}
return rc;
@@ -64247,19 +93940,25 @@ int sqlite3BtreeFactory(
** Return UTF-8 encoded English language explanation of the most recent
** error.
*/
-const char *sqlite3_errmsg(sqlite3 *db){
+SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
const char *z;
- assert( !sqlite3MallocFailed() );
if( !db ){
return sqlite3ErrStr(SQLITE_NOMEM);
}
- if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
return sqlite3ErrStr(SQLITE_MISUSE);
}
- z = (char*)sqlite3_value_text(db->pErr);
- if( z==0 ){
- z = sqlite3ErrStr(db->errCode);
+ sqlite3_mutex_enter(db->mutex);
+ if( db->mallocFailed ){
+ z = sqlite3ErrStr(SQLITE_NOMEM);
+ }else{
+ z = (char*)sqlite3_value_text(db->pErr);
+ assert( !db->mallocFailed );
+ if( z==0 ){
+ z = sqlite3ErrStr(db->errCode);
+ }
}
+ sqlite3_mutex_leave(db->mutex);
return z;
}
@@ -64268,41 +93967,44 @@ const char *sqlite3_errmsg(sqlite3 *db){
** Return UTF-16 encoded English language explanation of the most recent
** error.
*/
-const void *sqlite3_errmsg16(sqlite3 *db){
- /* Because all the characters in the string are in the unicode
- ** range 0x00-0xFF, if we pad the big-endian string with a
- ** zero byte, we can obtain the little-endian string with
- ** &big_endian[1].
- */
- static const char outOfMemBe[] = {
- 0, 'o', 0, 'u', 0, 't', 0, ' ',
- 0, 'o', 0, 'f', 0, ' ',
- 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0
+SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
+ static const u16 outOfMem[] = {
+ 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
};
- static const char misuseBe [] = {
- 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ',
- 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ',
- 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ',
- 0, 'o', 0, 'u', 0, 't', 0, ' ',
- 0, 'o', 0, 'f', 0, ' ',
- 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0
+ static const u16 misuse[] = {
+ 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ',
+ 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ',
+ 'c', 'a', 'l', 'l', 'e', 'd', ' ',
+ 'o', 'u', 't', ' ',
+ 'o', 'f', ' ',
+ 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0
};
const void *z;
- assert( !sqlite3MallocFailed() );
if( !db ){
- return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
+ return (void *)outOfMem;
}
- if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){
- return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
+ return (void *)misuse;
}
- z = sqlite3_value_text16(db->pErr);
- if( z==0 ){
- sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
- SQLITE_UTF8, SQLITE_STATIC);
+ sqlite3_mutex_enter(db->mutex);
+ if( db->mallocFailed ){
+ z = (void *)outOfMem;
+ }else{
z = sqlite3_value_text16(db->pErr);
+ if( z==0 ){
+ sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
+ SQLITE_UTF8, SQLITE_STATIC);
+ z = sqlite3_value_text16(db->pErr);
+ }
+ /* A malloc() may have failed within the call to sqlite3_value_text16()
+ ** above. If this is the case, then the db->mallocFailed flag needs to
+ ** be cleared before returning. Do this directly, instead of via
+ ** sqlite3ApiExit(), to avoid setting the database handle error message.
+ */
+ db->mallocFailed = 0;
}
- sqlite3ApiExit(0, 0);
+ sqlite3_mutex_leave(db->mutex);
return z;
}
#endif /* SQLITE_OMIT_UTF16 */
@@ -64311,14 +94013,23 @@ const void *sqlite3_errmsg16(sqlite3 *db){
** Return the most recent error code generated by an SQLite routine. If NULL is
** passed to this function, we assume a malloc() failed during sqlite3_open().
*/
-int sqlite3_errcode(sqlite3 *db){
- if( !db || sqlite3MallocFailed() ){
+SQLITE_API int sqlite3_errcode(sqlite3 *db){
+ if( db && !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE;
+ }
+ if( !db || db->mallocFailed ){
return SQLITE_NOMEM;
}
- if( sqlite3SafetyCheck(db) ){
+ return db->errCode & db->errMask;
+}
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){
+ if( db && !sqlite3SafetyCheckSickOrOk(db) ){
return SQLITE_MISUSE;
}
- return db->errCode & db->errMask;
+ if( !db || db->mallocFailed ){
+ return SQLITE_NOMEM;
+ }
+ return db->errCode;
}
/*
@@ -64326,52 +94037,75 @@ int sqlite3_errcode(sqlite3 *db){
** and the encoding is enc.
*/
static int createCollation(
- sqlite3* db,
+ sqlite3* db,
const char *zName,
- int enc,
+ u8 enc,
+ u8 collType,
void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*)
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDel)(void*)
){
CollSeq *pColl;
int enc2;
+ int nName = sqlite3Strlen30(zName);
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
+ assert( sqlite3_mutex_held(db->mutex) );
/* If SQLITE_UTF16 is specified as the encoding type, transform this
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
*/
- enc2 = enc & ~SQLITE_UTF16_ALIGNED;
- if( enc2==SQLITE_UTF16 ){
+ enc2 = enc;
+ testcase( enc2==SQLITE_UTF16 );
+ testcase( enc2==SQLITE_UTF16_ALIGNED );
+ if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
enc2 = SQLITE_UTF16NATIVE;
}
-
- if( (enc2&~3)!=0 ){
- sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
- return SQLITE_ERROR;
+ if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
+ return SQLITE_MISUSE;
}
/* Check if this call is removing or replacing an existing collation
** sequence. If so, and there are active VMs, return busy. If there
** are no active VMs, invalidate any pre-compiled statements.
*/
- pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
if( pColl && pColl->xCmp ){
if( db->activeVdbeCnt ){
sqlite3Error(db, SQLITE_BUSY,
- "Unable to delete/modify collation sequence due to active statements");
+ "unable to delete/modify collation sequence due to active statements");
return SQLITE_BUSY;
}
sqlite3ExpirePreparedStatements(db);
+
+ /* If collation sequence pColl was created directly by a call to
+ ** sqlite3_create_collation, and not generated by synthCollSeq(),
+ ** then any copies made by synthCollSeq() need to be invalidated.
+ ** Also, collation destructor - CollSeq.xDel() - function may need
+ ** to be called.
+ */
+ if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
+ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
+ int j;
+ for(j=0; j<3; j++){
+ CollSeq *p = &aColl[j];
+ if( p->enc==pColl->enc ){
+ if( p->xDel ){
+ p->xDel(p->pUser);
+ }
+ p->xCmp = 0;
+ }
+ }
+ }
}
- pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
if( pColl ){
pColl->xCmp = xCompare;
pColl->pUser = pCtx;
- pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
+ pColl->xDel = xDel;
+ pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
+ pColl->type = collType;
}
sqlite3Error(db, SQLITE_OK, 0);
return SQLITE_OK;
@@ -64379,29 +94113,166 @@ static int createCollation(
/*
+** This array defines hard upper bounds on limit values. The
+** initializer must be kept in sync with the SQLITE_LIMIT_*
+** #defines in sqlite3.h.
+*/
+static const int aHardLimit[] = {
+ SQLITE_MAX_LENGTH,
+ SQLITE_MAX_SQL_LENGTH,
+ SQLITE_MAX_COLUMN,
+ SQLITE_MAX_EXPR_DEPTH,
+ SQLITE_MAX_COMPOUND_SELECT,
+ SQLITE_MAX_VDBE_OP,
+ SQLITE_MAX_FUNCTION_ARG,
+ SQLITE_MAX_ATTACHED,
+ SQLITE_MAX_LIKE_PATTERN_LENGTH,
+ SQLITE_MAX_VARIABLE_NUMBER,
+ SQLITE_MAX_TRIGGER_DEPTH,
+};
+
+/*
+** Make sure the hard limits are set to reasonable values
+*/
+#if SQLITE_MAX_LENGTH<100
+# error SQLITE_MAX_LENGTH must be at least 100
+#endif
+#if SQLITE_MAX_SQL_LENGTH<100
+# error SQLITE_MAX_SQL_LENGTH must be at least 100
+#endif
+#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
+# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
+#endif
+#if SQLITE_MAX_COMPOUND_SELECT<2
+# error SQLITE_MAX_COMPOUND_SELECT must be at least 2
+#endif
+#if SQLITE_MAX_VDBE_OP<40
+# error SQLITE_MAX_VDBE_OP must be at least 40
+#endif
+#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
+# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
+#endif
+#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>30
+# error SQLITE_MAX_ATTACHED must be between 0 and 30
+#endif
+#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
+# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
+#endif
+#if SQLITE_MAX_VARIABLE_NUMBER<1
+# error SQLITE_MAX_VARIABLE_NUMBER must be at least 1
+#endif
+#if SQLITE_MAX_COLUMN>32767
+# error SQLITE_MAX_COLUMN must not exceed 32767
+#endif
+#if SQLITE_MAX_TRIGGER_DEPTH<1
+# error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
+#endif
+
+
+/*
+** Change the value of a limit. Report the old value.
+** If an invalid limit index is supplied, report -1.
+** Make no changes but still report the old value if the
+** new limit is negative.
+**
+** A new lower limit does not shrink existing constructs.
+** It merely prevents new constructs that exceed the limit
+** from forming.
+*/
+SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
+ int oldLimit;
+ if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
+ return -1;
+ }
+ oldLimit = db->aLimit[limitId];
+ if( newLimit>=0 ){
+ if( newLimit>aHardLimit[limitId] ){
+ newLimit = aHardLimit[limitId];
+ }
+ db->aLimit[limitId] = newLimit;
+ }
+ return oldLimit;
+}
+
+/*
** This routine does the work of opening a database on behalf of
** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
** is UTF-8 encoded.
*/
static int openDatabase(
const char *zFilename, /* Database filename UTF-8 encoded */
- sqlite3 **ppDb /* OUT: Returned database handle */
+ sqlite3 **ppDb, /* OUT: Returned database handle */
+ unsigned flags, /* Operational flags */
+ const char *zVfs /* Name of the VFS to use */
){
sqlite3 *db;
int rc;
- CollSeq *pColl;
+ int isThreadsafe;
- assert( !sqlite3MallocFailed() );
+ *ppDb = 0;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+
+ if( sqlite3GlobalConfig.bCoreMutex==0 ){
+ isThreadsafe = 0;
+ }else if( flags & SQLITE_OPEN_NOMUTEX ){
+ isThreadsafe = 0;
+ }else if( flags & SQLITE_OPEN_FULLMUTEX ){
+ isThreadsafe = 1;
+ }else{
+ isThreadsafe = sqlite3GlobalConfig.bFullMutex;
+ }
+ if( flags & SQLITE_OPEN_PRIVATECACHE ){
+ flags &= ~SQLITE_OPEN_SHAREDCACHE;
+ }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
+ flags |= SQLITE_OPEN_SHAREDCACHE;
+ }
+
+ /* Remove harmful bits from the flags parameter
+ **
+ ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
+ ** dealt with in the previous code block. Besides these, the only
+ ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
+ ** SQLITE_OPEN_READWRITE, and SQLITE_OPEN_CREATE. Silently mask
+ ** off all other flags.
+ */
+ flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_MAIN_DB |
+ SQLITE_OPEN_TEMP_DB |
+ SQLITE_OPEN_TRANSIENT_DB |
+ SQLITE_OPEN_MAIN_JOURNAL |
+ SQLITE_OPEN_TEMP_JOURNAL |
+ SQLITE_OPEN_SUBJOURNAL |
+ SQLITE_OPEN_MASTER_JOURNAL |
+ SQLITE_OPEN_NOMUTEX |
+ SQLITE_OPEN_FULLMUTEX
+ );
/* Allocate the sqlite data structure */
- db = sqliteMalloc( sizeof(sqlite3) );
+ db = sqlite3MallocZero( sizeof(sqlite3) );
if( db==0 ) goto opendb_out;
+ if( isThreadsafe ){
+ db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
+ if( db->mutex==0 ){
+ sqlite3_free(db);
+ db = 0;
+ goto opendb_out;
+ }
+ }
+ sqlite3_mutex_enter(db->mutex);
db->errMask = 0xff;
- db->priorNewRowid = 0;
- db->magic = SQLITE_MAGIC_BUSY;
db->nDb = 2;
+ db->magic = SQLITE_MAGIC_BUSY;
db->aDb = db->aDbStatic;
+
+ assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
+ memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
db->autoCommit = 1;
+ db->nextAutovac = -1;
+ db->nextPagesize = 0;
db->flags |= SQLITE_ShortColNames
#if SQLITE_DEFAULT_FILE_FORMAT<4
| SQLITE_LegacyFileFmt
@@ -64409,46 +94280,58 @@ static int openDatabase(
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
| SQLITE_LoadExtension
#endif
+#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+ | SQLITE_RecTriggers
+#endif
;
- sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
+ sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
- sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0);
+ sqlite3HashInit(&db->aModule);
#endif
+ db->pVfs = sqlite3_vfs_find(zVfs);
+ if( !db->pVfs ){
+ rc = SQLITE_ERROR;
+ sqlite3Error(db, rc, "no such vfs: %s", zVfs);
+ goto opendb_out;
+ }
+
/* Add the default collation sequence BINARY. BINARY works for both UTF-8
** and UTF-16, so add a version for each to avoid any unnecessary
** conversions. The only error that can occur here is a malloc() failure.
*/
- if( createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc) ||
- createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc) ||
- createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc) ||
- (db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0))==0
- ){
- assert( sqlite3MallocFailed() );
- db->magic = SQLITE_MAGIC_CLOSED;
+ createCollation(db, "BINARY", SQLITE_UTF8, SQLITE_COLL_BINARY, 0,
+ binCollFunc, 0);
+ createCollation(db, "BINARY", SQLITE_UTF16BE, SQLITE_COLL_BINARY, 0,
+ binCollFunc, 0);
+ createCollation(db, "BINARY", SQLITE_UTF16LE, SQLITE_COLL_BINARY, 0,
+ binCollFunc, 0);
+ createCollation(db, "RTRIM", SQLITE_UTF8, SQLITE_COLL_USER, (void*)1,
+ binCollFunc, 0);
+ if( db->mallocFailed ){
goto opendb_out;
}
+ db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
+ assert( db->pDfltColl!=0 );
/* Also add a UTF-8 case-insensitive collation sequence. */
- createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc);
-
- /* Set flags on the built-in collating sequences */
- db->pDfltColl->type = SQLITE_COLL_BINARY;
- pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0);
- if( pColl ){
- pColl->type = SQLITE_COLL_NOCASE;
- }
+ createCollation(db, "NOCASE", SQLITE_UTF8, SQLITE_COLL_NOCASE, 0,
+ nocaseCollatingFunc, 0);
/* Open the backend database driver */
- rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
+ db->openFlags = flags;
+ rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE,
+ flags | SQLITE_OPEN_MAIN_DB,
+ &db->aDb[0].pBt);
if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_IOERR_NOMEM ){
+ rc = SQLITE_NOMEM;
+ }
sqlite3Error(db, rc, 0);
- db->magic = SQLITE_MAGIC_CLOSED;
goto opendb_out;
}
- db->aDb[0].pSchema = sqlite3SchemaGet(db->aDb[0].pBt);
- db->aDb[1].pSchema = sqlite3SchemaGet(0);
+ db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
+ db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
/* The default safety_level for the main database is 'full'; for the temp
@@ -64456,40 +94339,64 @@ static int openDatabase(
*/
db->aDb[0].zName = "main";
db->aDb[0].safety_level = 3;
-#ifndef SQLITE_OMIT_TEMPDB
db->aDb[1].zName = "temp";
db->aDb[1].safety_level = 1;
-#endif
+
+ db->magic = SQLITE_MAGIC_OPEN;
+ if( db->mallocFailed ){
+ goto opendb_out;
+ }
/* Register all built-in functions, but do not attempt to read the
** database schema yet. This is delayed until the first time the database
** is accessed.
*/
- if( !sqlite3MallocFailed() ){
- sqlite3Error(db, SQLITE_OK, 0);
- sqlite3RegisterBuiltinFunctions(db);
- }
- db->magic = SQLITE_MAGIC_OPEN;
+ sqlite3Error(db, SQLITE_OK, 0);
+ sqlite3RegisterBuiltinFunctions(db);
/* Load automatic extensions - extensions that have been registered
** using the sqlite3_automatic_extension() API.
*/
- (void)sqlite3AutoLoadExtensions(db);
+ sqlite3AutoLoadExtensions(db);
+ rc = sqlite3_errcode(db);
+ if( rc!=SQLITE_OK ){
+ goto opendb_out;
+ }
#ifdef SQLITE_ENABLE_FTS1
- {
+ if( !db->mallocFailed ){
extern int sqlite3Fts1Init(sqlite3*);
- sqlite3Fts1Init(db);
+ rc = sqlite3Fts1Init(db);
}
#endif
#ifdef SQLITE_ENABLE_FTS2
- {
+ if( !db->mallocFailed && rc==SQLITE_OK ){
extern int sqlite3Fts2Init(sqlite3*);
- sqlite3Fts2Init(db);
+ rc = sqlite3Fts2Init(db);
}
#endif
+#ifdef SQLITE_ENABLE_FTS3
+ if( !db->mallocFailed && rc==SQLITE_OK ){
+ rc = sqlite3Fts3Init(db);
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_ICU
+ if( !db->mallocFailed && rc==SQLITE_OK ){
+ rc = sqlite3IcuInit(db);
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_RTREE
+ if( !db->mallocFailed && rc==SQLITE_OK){
+ rc = sqlite3RtreeInit(db);
+ }
+#endif
+
+ sqlite3Error(db, rc, 0);
+
/* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
** mode. Doing nothing at all also makes NORMAL the default.
@@ -64500,10 +94407,21 @@ static int openDatabase(
SQLITE_DEFAULT_LOCKING_MODE);
#endif
+ /* Enable the lookaside-malloc subsystem */
+ setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
+ sqlite3GlobalConfig.nLookaside);
+
opendb_out:
- if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){
+ if( db ){
+ assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 );
+ sqlite3_mutex_leave(db->mutex);
+ }
+ rc = sqlite3_errcode(db);
+ if( rc==SQLITE_NOMEM ){
sqlite3_close(db);
db = 0;
+ }else if( rc!=SQLITE_OK ){
+ db->magic = SQLITE_MAGIC_SICK;
}
*ppDb = db;
return sqlite3ApiExit(0, rc);
@@ -64512,40 +94430,53 @@ opendb_out:
/*
** Open a new database handle.
*/
-int sqlite3_open(
+SQLITE_API int sqlite3_open(
const char *zFilename,
sqlite3 **ppDb
){
- return openDatabase(zFilename, ppDb);
+ return openDatabase(zFilename, ppDb,
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
+}
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+){
+ return openDatabase(filename, ppDb, flags, zVfs);
}
#ifndef SQLITE_OMIT_UTF16
/*
** Open a new database handle.
*/
-int sqlite3_open16(
+SQLITE_API int sqlite3_open16(
const void *zFilename,
sqlite3 **ppDb
){
char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
- int rc = SQLITE_OK;
sqlite3_value *pVal;
+ int rc;
assert( zFilename );
assert( ppDb );
*ppDb = 0;
- pVal = sqlite3ValueNew();
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ pVal = sqlite3ValueNew(0);
sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
if( zFilename8 ){
- rc = openDatabase(zFilename8, ppDb);
- if( rc==SQLITE_OK && *ppDb ){
- rc = sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0);
- if( rc!=SQLITE_OK ){
- sqlite3_close(*ppDb);
- *ppDb = 0;
- }
+ rc = openDatabase(zFilename8, ppDb,
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
+ assert( *ppDb || rc==SQLITE_NOMEM );
+ if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
+ ENC(*ppDb) = SQLITE_UTF16NATIVE;
}
+ }else{
+ rc = SQLITE_NOMEM;
}
sqlite3ValueFree(pVal);
@@ -64554,80 +94485,67 @@ int sqlite3_open16(
#endif /* SQLITE_OMIT_UTF16 */
/*
-** The following routine destroys a virtual machine that is created by
-** the sqlite3_compile() routine. The integer returned is an SQLITE_
-** success/failure code that describes the result of executing the virtual
-** machine.
-**
-** This routine sets the error code and string returned by
-** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
-*/
-int sqlite3_finalize(sqlite3_stmt *pStmt){
- int rc;
- if( pStmt==0 ){
- rc = SQLITE_OK;
- }else{
- rc = sqlite3VdbeFinalize((Vdbe*)pStmt);
- }
- return rc;
-}
-
-/*
-** Terminate the current execution of an SQL statement and reset it
-** back to its starting state so that it can be reused. A success code from
-** the prior execution is returned.
-**
-** This routine sets the error code and string returned by
-** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+** Register a new collation sequence with the database handle db.
*/
-int sqlite3_reset(sqlite3_stmt *pStmt){
+SQLITE_API int sqlite3_create_collation(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+){
int rc;
- if( pStmt==0 ){
- rc = SQLITE_OK;
- }else{
- rc = sqlite3VdbeReset((Vdbe*)pStmt);
- sqlite3VdbeMakeReady((Vdbe*)pStmt, -1, 0, 0, 0);
- assert( (rc & (sqlite3_db_handle(pStmt)->errMask))==rc );
- }
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Register a new collation sequence with the database handle db.
*/
-int sqlite3_create_collation(
+SQLITE_API int sqlite3_create_collation_v2(
sqlite3* db,
const char *zName,
int enc,
void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*)
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDel)(void*)
){
int rc;
- assert( !sqlite3MallocFailed() );
- rc = createCollation(db, zName, enc, pCtx, xCompare);
- return sqlite3ApiExit(db, rc);
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, xDel);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Register a new collation sequence with the database handle db.
*/
-int sqlite3_create_collation16(
+SQLITE_API int sqlite3_create_collation16(
sqlite3* db,
- const char *zName,
+ const void *zName,
int enc,
void* pCtx,
int(*xCompare)(void*,int,const void*,int,const void*)
){
int rc = SQLITE_OK;
- char *zName8;
- assert( !sqlite3MallocFailed() );
- zName8 = sqlite3utf16to8(zName, -1);
+ char *zName8;
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ zName8 = sqlite3Utf16to8(db, zName, -1);
if( zName8 ){
- rc = createCollation(db, zName8, enc, pCtx, xCompare);
- sqliteFree(zName8);
+ rc = createCollation(db, zName8, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0);
+ sqlite3DbFree(db, zName8);
}
- return sqlite3ApiExit(db, rc);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
#endif /* SQLITE_OMIT_UTF16 */
@@ -64635,17 +94553,16 @@ int sqlite3_create_collation16(
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
-int sqlite3_collation_needed(
+SQLITE_API int sqlite3_collation_needed(
sqlite3 *db,
void *pCollNeededArg,
void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
){
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
+ sqlite3_mutex_enter(db->mutex);
db->xCollNeeded = xCollNeeded;
db->xCollNeeded16 = 0;
db->pCollNeededArg = pCollNeededArg;
+ sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
@@ -64654,30 +94571,31 @@ int sqlite3_collation_needed(
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
-int sqlite3_collation_needed16(
+SQLITE_API int sqlite3_collation_needed16(
sqlite3 *db,
void *pCollNeededArg,
void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
){
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
+ sqlite3_mutex_enter(db->mutex);
db->xCollNeeded = 0;
db->xCollNeeded16 = xCollNeeded16;
db->pCollNeededArg = pCollNeededArg;
+ sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_UTF16 */
#ifndef SQLITE_OMIT_GLOBALRECOVER
+#ifndef SQLITE_OMIT_DEPRECATED
/*
** This function is now an anachronism. It used to be used to recover from a
** malloc() failure, but SQLite now does this automatically.
*/
-int sqlite3_global_recover(){
+SQLITE_API int sqlite3_global_recover(void){
return SQLITE_OK;
}
#endif
+#endif
/*
** Test to see whether or not the database connection is in autocommit
@@ -64687,7 +94605,7 @@ int sqlite3_global_recover(){
**
******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
*/
-int sqlite3_get_autocommit(sqlite3 *db){
+SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
return db->autoCommit;
}
@@ -64697,58 +94615,29 @@ int sqlite3_get_autocommit(sqlite3 *db){
** debugging builds. This provides a way to set a breakpoint for when
** corruption is first detected.
*/
-int sqlite3Corrupt(void){
+SQLITE_PRIVATE int sqlite3Corrupt(void){
return SQLITE_CORRUPT;
}
#endif
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Enable or disable the shared pager and schema features for the
-** current thread.
-**
-** This routine should only be called when there are no open
-** database connections.
-*/
-int sqlite3_enable_shared_cache(int enable){
- ThreadData *pTd = sqlite3ThreadData();
- if( pTd ){
- /* It is only legal to call sqlite3_enable_shared_cache() when there
- ** are no currently open b-trees that were opened by the calling thread.
- ** This condition is only easy to detect if the shared-cache were
- ** previously enabled (and is being disabled).
- */
- if( pTd->pBtree && !enable ){
- assert( pTd->useSharedData );
- return SQLITE_MISUSE;
- }
-
- pTd->useSharedData = enable;
- sqlite3ReleaseThreadData();
- }
- return sqlite3ApiExit(0, SQLITE_OK);
-}
-#endif
-
+#ifndef SQLITE_OMIT_DEPRECATED
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.
+**
+** SQLite no longer uses thread-specific data so this routine is now a
+** no-op. It is retained for historical compatibility.
*/
-void sqlite3_thread_cleanup(void){
- ThreadData *pTd = sqlite3OsThreadSpecificData(0);
- if( pTd ){
- memset(pTd, 0, sizeof(*pTd));
- sqlite3OsThreadSpecificData(-1);
- }
+SQLITE_API void sqlite3_thread_cleanup(void){
}
+#endif
/*
** Return meta information about a specific column of a database table.
** See comment in sqlite3.h (sqlite.h.in) for details.
*/
#ifdef SQLITE_ENABLE_COLUMN_METADATA
-int sqlite3_table_column_metadata(
+SQLITE_API int sqlite3_table_column_metadata(
sqlite3 *db, /* Connection handle */
const char *zDbName, /* Database name or NULL */
const char *zTableName, /* Table name */
@@ -64757,7 +94646,7 @@ int sqlite3_table_column_metadata(
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if colums is auto-increment */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
){
int rc;
char *zErrMsg = 0;
@@ -64772,9 +94661,9 @@ int sqlite3_table_column_metadata(
int autoinc = 0;
/* Ensure the database schema has been loaded */
- if( sqlite3SafetyOn(db) ){
- return SQLITE_MISUSE;
- }
+ sqlite3_mutex_enter(db->mutex);
+ (void)sqlite3SafetyOn(db);
+ sqlite3BtreeEnterAll(db);
rc = sqlite3Init(db, &zErrMsg);
if( SQLITE_OK!=rc ){
goto error_out;
@@ -64819,9 +94708,9 @@ int sqlite3_table_column_metadata(
if( pCol ){
zDataType = pCol->zType;
zCollSeq = pCol->zColl;
- notnull = (pCol->notNull?1:0);
- primarykey = (pCol->isPrimKey?1:0);
- autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0);
+ notnull = pCol->notNull!=0;
+ primarykey = pCol->isPrimKey!=0;
+ autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
}else{
zDataType = "INTEGER";
primarykey = 1;
@@ -64831,9 +94720,8 @@ int sqlite3_table_column_metadata(
}
error_out:
- if( sqlite3SafetyOff(db) ){
- rc = SQLITE_MISUSE;
- }
+ sqlite3BtreeLeaveAll(db);
+ (void)sqlite3SafetyOff(db);
/* Whether the function call succeeded or failed, set the output parameters
** to whatever their local counterparts contain. If an error did occur,
@@ -64846,41 +94734,14073 @@ error_out:
if( pAutoinc ) *pAutoinc = autoinc;
if( SQLITE_OK==rc && !pTab ){
- sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".",
- zColumnName, 0);
+ sqlite3DbFree(db, zErrMsg);
+ zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
+ zColumnName);
rc = SQLITE_ERROR;
}
sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
- sqliteFree(zErrMsg);
- return sqlite3ApiExit(db, rc);
+ sqlite3DbFree(db, zErrMsg);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
}
#endif
/*
-** Set all the parameters in the compiled SQL statement to NULL.
+** Sleep for a little while. Return the amount of time slept.
+*/
+SQLITE_API int sqlite3_sleep(int ms){
+ sqlite3_vfs *pVfs;
+ int rc;
+ pVfs = sqlite3_vfs_find(0);
+ if( pVfs==0 ) return 0;
+
+ /* This function works in milliseconds, but the underlying OsSleep()
+ ** API uses microseconds. Hence the 1000's.
+ */
+ rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
+ return rc;
+}
+
+/*
+** Enable or disable the extended result codes.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
+ sqlite3_mutex_enter(db->mutex);
+ db->errMask = onoff ? 0xffffffff : 0xff;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Invoke the xFileControl method on a particular database.
+*/
+SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
+ int rc = SQLITE_ERROR;
+ int iDb;
+ sqlite3_mutex_enter(db->mutex);
+ if( zDbName==0 ){
+ iDb = 0;
+ }else{
+ for(iDb=0; iDb<db->nDb; iDb++){
+ if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
+ }
+ }
+ if( iDb<db->nDb ){
+ Btree *pBtree = db->aDb[iDb].pBt;
+ if( pBtree ){
+ Pager *pPager;
+ sqlite3_file *fd;
+ sqlite3BtreeEnter(pBtree);
+ pPager = sqlite3BtreePager(pBtree);
+ assert( pPager!=0 );
+ fd = sqlite3PagerFile(pPager);
+ assert( fd!=0 );
+ if( fd->pMethods ){
+ rc = sqlite3OsFileControl(fd, op, pArg);
+ }
+ sqlite3BtreeLeave(pBtree);
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Interface to the testing logic.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...){
+ int rc = 0;
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+ va_list ap;
+ va_start(ap, op);
+ switch( op ){
+
+ /*
+ ** Save the current state of the PRNG.
+ */
+ case SQLITE_TESTCTRL_PRNG_SAVE: {
+ sqlite3PrngSaveState();
+ break;
+ }
+
+ /*
+ ** Restore the state of the PRNG to the last state saved using
+ ** PRNG_SAVE. If PRNG_SAVE has never before been called, then
+ ** this verb acts like PRNG_RESET.
+ */
+ case SQLITE_TESTCTRL_PRNG_RESTORE: {
+ sqlite3PrngRestoreState();
+ break;
+ }
+
+ /*
+ ** Reset the PRNG back to its uninitialized state. The next call
+ ** to sqlite3_randomness() will reseed the PRNG using a single call
+ ** to the xRandomness method of the default VFS.
+ */
+ case SQLITE_TESTCTRL_PRNG_RESET: {
+ sqlite3PrngResetState();
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(BITVEC_TEST, size, program)
+ **
+ ** Run a test against a Bitvec object of size. The program argument
+ ** is an array of integers that defines the test. Return -1 on a
+ ** memory allocation error, 0 on success, or non-zero for an error.
+ ** See the sqlite3BitvecBuiltinTest() for additional information.
+ */
+ case SQLITE_TESTCTRL_BITVEC_TEST: {
+ int sz = va_arg(ap, int);
+ int *aProg = va_arg(ap, int*);
+ rc = sqlite3BitvecBuiltinTest(sz, aProg);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
+ **
+ ** Register hooks to call to indicate which malloc() failures
+ ** are benign.
+ */
+ case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
+ typedef void (*void_function)(void);
+ void_function xBenignBegin;
+ void_function xBenignEnd;
+ xBenignBegin = va_arg(ap, void_function);
+ xBenignEnd = va_arg(ap, void_function);
+ sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
+ **
+ ** Set the PENDING byte to the value in the argument, if X>0.
+ ** Make no changes if X==0. Return the value of the pending byte
+ ** as it existing before this routine was called.
+ **
+ ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in
+ ** an incompatible database file format. Changing the PENDING byte
+ ** while any database connection is open results in undefined and
+ ** dileterious behavior.
+ */
+ case SQLITE_TESTCTRL_PENDING_BYTE: {
+ unsigned int newVal = va_arg(ap, unsigned int);
+ rc = sqlite3PendingByte;
+ if( newVal ) sqlite3PendingByte = newVal;
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
+ **
+ ** This action provides a run-time test to see whether or not
+ ** assert() was enabled at compile-time. If X is true and assert()
+ ** is enabled, then the return value is true. If X is true and
+ ** assert() is disabled, then the return value is zero. If X is
+ ** false and assert() is enabled, then the assertion fires and the
+ ** process aborts. If X is false and assert() is disabled, then the
+ ** return value is zero.
+ */
+ case SQLITE_TESTCTRL_ASSERT: {
+ volatile int x = 0;
+ assert( (x = va_arg(ap,int))!=0 );
+ rc = x;
+ break;
+ }
+
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
+ **
+ ** This action provides a run-time test to see how the ALWAYS and
+ ** NEVER macros were defined at compile-time.
+ **
+ ** The return value is ALWAYS(X).
+ **
+ ** The recommended test is X==2. If the return value is 2, that means
+ ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
+ ** default setting. If the return value is 1, then ALWAYS() is either
+ ** hard-coded to true or else it asserts if its argument is false.
+ ** The first behavior (hard-coded to true) is the case if
+ ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
+ ** behavior (assert if the argument to ALWAYS() is false) is the case if
+ ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
+ **
+ ** The run-time test procedure might look something like this:
+ **
+ ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
+ ** // ALWAYS() and NEVER() are no-op pass-through macros
+ ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
+ ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
+ ** }else{
+ ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0.
+ ** }
+ */
+ case SQLITE_TESTCTRL_ALWAYS: {
+ int x = va_arg(ap,int);
+ rc = ALWAYS(x);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N)
+ **
+ ** Set the nReserve size to N for the main database on the database
+ ** connection db.
+ */
+ case SQLITE_TESTCTRL_RESERVE: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ int x = va_arg(ap,int);
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0);
+ sqlite3_mutex_leave(db->mutex);
+ break;
+ }
+
+ }
+ va_end(ap);
+#endif /* SQLITE_OMIT_BUILTIN_TEST */
+ return rc;
+}
+
+/************** End of main.c ************************************************/
+/************** Begin file notify.c ******************************************/
+/*
+** 2009 March 3
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the implementation of the sqlite3_unlock_notify()
+** API method and its associated functionality.
+**
+** $Id: notify.c,v 1.4 2009/04/07 22:06:57 drh Exp $
+*/
+
+/* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+
+/*
+** Public interfaces:
+**
+** sqlite3ConnectionBlocked()
+** sqlite3ConnectionUnlocked()
+** sqlite3ConnectionClosed()
+** sqlite3_unlock_notify()
+*/
+
+#define assertMutexHeld() \
+ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) )
+
+/*
+** Head of a linked list of all sqlite3 objects created by this process
+** for which either sqlite3.pBlockingConnection or sqlite3.pUnlockConnection
+** is not NULL. This variable may only accessed while the STATIC_MASTER
+** mutex is held.
+*/
+static sqlite3 *SQLITE_WSD sqlite3BlockedList = 0;
+
+#ifndef NDEBUG
+/*
+** This function is a complex assert() that verifies the following
+** properties of the blocked connections list:
+**
+** 1) Each entry in the list has a non-NULL value for either
+** pUnlockConnection or pBlockingConnection, or both.
+**
+** 2) All entries in the list that share a common value for
+** xUnlockNotify are grouped together.
+**
+** 3) If the argument db is not NULL, then none of the entries in the
+** blocked connections list have pUnlockConnection or pBlockingConnection
+** set to db. This is used when closing connection db.
+*/
+static void checkListProperties(sqlite3 *db){
+ sqlite3 *p;
+ for(p=sqlite3BlockedList; p; p=p->pNextBlocked){
+ int seen = 0;
+ sqlite3 *p2;
+
+ /* Verify property (1) */
+ assert( p->pUnlockConnection || p->pBlockingConnection );
+
+ /* Verify property (2) */
+ for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){
+ if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1;
+ assert( p2->xUnlockNotify==p->xUnlockNotify || !seen );
+ assert( db==0 || p->pUnlockConnection!=db );
+ assert( db==0 || p->pBlockingConnection!=db );
+ }
+ }
+}
+#else
+# define checkListProperties(x)
+#endif
+
+/*
+** Remove connection db from the blocked connections list. If connection
+** db is not currently a part of the list, this function is a no-op.
+*/
+static void removeFromBlockedList(sqlite3 *db){
+ sqlite3 **pp;
+ assertMutexHeld();
+ for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){
+ if( *pp==db ){
+ *pp = (*pp)->pNextBlocked;
+ break;
+ }
+ }
+}
+
+/*
+** Add connection db to the blocked connections list. It is assumed
+** that it is not already a part of the list.
+*/
+static void addToBlockedList(sqlite3 *db){
+ sqlite3 **pp;
+ assertMutexHeld();
+ for(
+ pp=&sqlite3BlockedList;
+ *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify;
+ pp=&(*pp)->pNextBlocked
+ );
+ db->pNextBlocked = *pp;
+ *pp = db;
+}
+
+/*
+** Obtain the STATIC_MASTER mutex.
+*/
+static void enterMutex(void){
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
+ checkListProperties(0);
+}
+
+/*
+** Release the STATIC_MASTER mutex.
+*/
+static void leaveMutex(void){
+ assertMutexHeld();
+ checkListProperties(0);
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
+}
+
+/*
+** Register an unlock-notify callback.
+**
+** This is called after connection "db" has attempted some operation
+** but has received an SQLITE_LOCKED error because another connection
+** (call it pOther) in the same process was busy using the same shared
+** cache. pOther is found by looking at db->pBlockingConnection.
+**
+** If there is no blocking connection, the callback is invoked immediately,
+** before this routine returns.
+**
+** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate
+** a deadlock.
+**
+** Otherwise, make arrangements to invoke xNotify when pOther drops
+** its locks.
+**
+** Each call to this routine overrides any prior callbacks registered
+** on the same "db". If xNotify==0 then any prior callbacks are immediately
+** cancelled.
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *db,
+ void (*xNotify)(void **, int),
+ void *pArg
+){
+ int rc = SQLITE_OK;
+
+ sqlite3_mutex_enter(db->mutex);
+ enterMutex();
+
+ if( xNotify==0 ){
+ removeFromBlockedList(db);
+ db->pUnlockConnection = 0;
+ db->xUnlockNotify = 0;
+ db->pUnlockArg = 0;
+ }else if( 0==db->pBlockingConnection ){
+ /* The blocking transaction has been concluded. Or there never was a
+ ** blocking transaction. In either case, invoke the notify callback
+ ** immediately.
+ */
+ xNotify(&pArg, 1);
+ }else{
+ sqlite3 *p;
+
+ for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){}
+ if( p ){
+ rc = SQLITE_LOCKED; /* Deadlock detected. */
+ }else{
+ db->pUnlockConnection = db->pBlockingConnection;
+ db->xUnlockNotify = xNotify;
+ db->pUnlockArg = pArg;
+ removeFromBlockedList(db);
+ addToBlockedList(db);
+ }
+ }
+
+ leaveMutex();
+ assert( !db->mallocFailed );
+ sqlite3Error(db, rc, (rc?"database is deadlocked":0));
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** This function is called while stepping or preparing a statement
+** associated with connection db. The operation will return SQLITE_LOCKED
+** to the user because it requires a lock that will not be available
+** until connection pBlocker concludes its current transaction.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){
+ enterMutex();
+ if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){
+ addToBlockedList(db);
+ }
+ db->pBlockingConnection = pBlocker;
+ leaveMutex();
+}
+
+/*
+** This function is called when
+** the transaction opened by database db has just finished. Locks held
+** by database connection db have been released.
+**
+** This function loops through each entry in the blocked connections
+** list and does the following:
+**
+** 1) If the sqlite3.pBlockingConnection member of a list entry is
+** set to db, then set pBlockingConnection=0.
+**
+** 2) If the sqlite3.pUnlockConnection member of a list entry is
+** set to db, then invoke the configured unlock-notify callback and
+** set pUnlockConnection=0.
+**
+** 3) If the two steps above mean that pBlockingConnection==0 and
+** pUnlockConnection==0, remove the entry from the blocked connections
+** list.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db){
+ void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */
+ int nArg = 0; /* Number of entries in aArg[] */
+ sqlite3 **pp; /* Iterator variable */
+ void **aArg; /* Arguments to the unlock callback */
+ void **aDyn = 0; /* Dynamically allocated space for aArg[] */
+ void *aStatic[16]; /* Starter space for aArg[]. No malloc required */
+
+ aArg = aStatic;
+ enterMutex(); /* Enter STATIC_MASTER mutex */
+
+ /* This loop runs once for each entry in the blocked-connections list. */
+ for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){
+ sqlite3 *p = *pp;
+
+ /* Step 1. */
+ if( p->pBlockingConnection==db ){
+ p->pBlockingConnection = 0;
+ }
+
+ /* Step 2. */
+ if( p->pUnlockConnection==db ){
+ assert( p->xUnlockNotify );
+ if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){
+ xUnlockNotify(aArg, nArg);
+ nArg = 0;
+ }
+
+ sqlite3BeginBenignMalloc();
+ assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) );
+ assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn );
+ if( (!aDyn && nArg==(int)ArraySize(aStatic))
+ || (aDyn && nArg==(int)(sqlite3DbMallocSize(db, aDyn)/sizeof(void*)))
+ ){
+ /* The aArg[] array needs to grow. */
+ void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2);
+ if( pNew ){
+ memcpy(pNew, aArg, nArg*sizeof(void *));
+ sqlite3_free(aDyn);
+ aDyn = aArg = pNew;
+ }else{
+ /* This occurs when the array of context pointers that need to
+ ** be passed to the unlock-notify callback is larger than the
+ ** aStatic[] array allocated on the stack and the attempt to
+ ** allocate a larger array from the heap has failed.
+ **
+ ** This is a difficult situation to handle. Returning an error
+ ** code to the caller is insufficient, as even if an error code
+ ** is returned the transaction on connection db will still be
+ ** closed and the unlock-notify callbacks on blocked connections
+ ** will go unissued. This might cause the application to wait
+ ** indefinitely for an unlock-notify callback that will never
+ ** arrive.
+ **
+ ** Instead, invoke the unlock-notify callback with the context
+ ** array already accumulated. We can then clear the array and
+ ** begin accumulating any further context pointers without
+ ** requiring any dynamic allocation. This is sub-optimal because
+ ** it means that instead of one callback with a large array of
+ ** context pointers the application will receive two or more
+ ** callbacks with smaller arrays of context pointers, which will
+ ** reduce the applications ability to prioritize multiple
+ ** connections. But it is the best that can be done under the
+ ** circumstances.
+ */
+ xUnlockNotify(aArg, nArg);
+ nArg = 0;
+ }
+ }
+ sqlite3EndBenignMalloc();
+
+ aArg[nArg++] = p->pUnlockArg;
+ xUnlockNotify = p->xUnlockNotify;
+ p->pUnlockConnection = 0;
+ p->xUnlockNotify = 0;
+ p->pUnlockArg = 0;
+ }
+
+ /* Step 3. */
+ if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){
+ /* Remove connection p from the blocked connections list. */
+ *pp = p->pNextBlocked;
+ p->pNextBlocked = 0;
+ }else{
+ pp = &p->pNextBlocked;
+ }
+ }
+
+ if( nArg!=0 ){
+ xUnlockNotify(aArg, nArg);
+ }
+ sqlite3_free(aDyn);
+ leaveMutex(); /* Leave STATIC_MASTER mutex */
+}
+
+/*
+** This is called when the database connection passed as an argument is
+** being closed. The connection is removed from the blocked list.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db){
+ sqlite3ConnectionUnlocked(db);
+ enterMutex();
+ removeFromBlockedList(db);
+ checkListProperties(db);
+ leaveMutex();
+}
+#endif
+
+/************** End of notify.c **********************************************/
+/************** Begin file fts3.c ********************************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+
+/* TODO(shess) Consider exporting this comment to an HTML file or the
+** wiki.
+*/
+/* The full-text index is stored in a series of b+tree (-like)
+** structures called segments which map terms to doclists. The
+** structures are like b+trees in layout, but are constructed from the
+** bottom up in optimal fashion and are not updatable. Since trees
+** are built from the bottom up, things will be described from the
+** bottom up.
+**
+**
+**** Varints ****
+** The basic unit of encoding is a variable-length integer called a
+** varint. We encode variable-length integers in little-endian order
+** using seven bits * per byte as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** and so on.
+**
+** This is identical to how sqlite encodes varints (see util.c).
+**
+**
+**** Document lists ****
+** A doclist (document list) holds a docid-sorted list of hits for a
+** given term. Doclists hold docids, and can optionally associate
+** token positions and offsets with docids.
+**
+** A DL_POSITIONS_OFFSETS doclist is stored like this:
+**
+** array {
+** varint docid;
+** array { (position list for column 0)
+** varint position; (delta from previous position plus POS_BASE)
+** varint startOffset; (delta from previous startOffset)
+** varint endOffset; (delta from startOffset)
+** }
+** array {
+** varint POS_COLUMN; (marks start of position list for new column)
+** varint column; (index of new column)
+** array {
+** varint position; (delta from previous position plus POS_BASE)
+** varint startOffset;(delta from previous startOffset)
+** varint endOffset; (delta from startOffset)
+** }
+** }
+** varint POS_END; (marks end of positions for this document.
+** }
+**
+** Here, array { X } means zero or more occurrences of X, adjacent in
+** memory. A "position" is an index of a token in the token stream
+** generated by the tokenizer, while an "offset" is a byte offset,
+** both based at 0. Note that POS_END and POS_COLUMN occur in the
+** same logical place as the position element, and act as sentinals
+** ending a position list array.
+**
+** A DL_POSITIONS doclist omits the startOffset and endOffset
+** information. A DL_DOCIDS doclist omits both the position and
+** offset information, becoming an array of varint-encoded docids.
+**
+** On-disk data is stored as type DL_DEFAULT, so we don't serialize
+** the type. Due to how deletion is implemented in the segmentation
+** system, on-disk doclists MUST store at least positions.
+**
+**
+**** Segment leaf nodes ****
+** Segment leaf nodes store terms and doclists, ordered by term. Leaf
+** nodes are written using LeafWriter, and read using LeafReader (to
+** iterate through a single leaf node's data) and LeavesReader (to
+** iterate through a segment's entire leaf layer). Leaf nodes have
+** the format:
+**
+** varint iHeight; (height from leaf level, always 0)
+** varint nTerm; (length of first term)
+** char pTerm[nTerm]; (content of first term)
+** varint nDoclist; (length of term's associated doclist)
+** char pDoclist[nDoclist]; (content of doclist)
+** array {
+** (further terms are delta-encoded)
+** varint nPrefix; (length of prefix shared with previous term)
+** varint nSuffix; (length of unshared suffix)
+** char pTermSuffix[nSuffix];(unshared suffix of next term)
+** varint nDoclist; (length of term's associated doclist)
+** char pDoclist[nDoclist]; (content of doclist)
+** }
+**
+** Here, array { X } means zero or more occurrences of X, adjacent in
+** memory.
+**
+** Leaf nodes are broken into blocks which are stored contiguously in
+** the %_segments table in sorted order. This means that when the end
+** of a node is reached, the next term is in the node with the next
+** greater node id.
+**
+** New data is spilled to a new leaf node when the current node
+** exceeds LEAF_MAX bytes (default 2048). New data which itself is
+** larger than STANDALONE_MIN (default 1024) is placed in a standalone
+** node (a leaf node with a single term and doclist). The goal of
+** these settings is to pack together groups of small doclists while
+** making it efficient to directly access large doclists. The
+** assumption is that large doclists represent terms which are more
+** likely to be query targets.
+**
+** TODO(shess) It may be useful for blocking decisions to be more
+** dynamic. For instance, it may make more sense to have a 2.5k leaf
+** node rather than splitting into 2k and .5k nodes. My intuition is
+** that this might extend through 2x or 4x the pagesize.
+**
+**
+**** Segment interior nodes ****
+** Segment interior nodes store blockids for subtree nodes and terms
+** to describe what data is stored by the each subtree. Interior
+** nodes are written using InteriorWriter, and read using
+** InteriorReader. InteriorWriters are created as needed when
+** SegmentWriter creates new leaf nodes, or when an interior node
+** itself grows too big and must be split. The format of interior
+** nodes:
+**
+** varint iHeight; (height from leaf level, always >0)
+** varint iBlockid; (block id of node's leftmost subtree)
+** optional {
+** varint nTerm; (length of first term)
+** char pTerm[nTerm]; (content of first term)
+** array {
+** (further terms are delta-encoded)
+** varint nPrefix; (length of shared prefix with previous term)
+** varint nSuffix; (length of unshared suffix)
+** char pTermSuffix[nSuffix]; (unshared suffix of next term)
+** }
+** }
+**
+** Here, optional { X } means an optional element, while array { X }
+** means zero or more occurrences of X, adjacent in memory.
+**
+** An interior node encodes n terms separating n+1 subtrees. The
+** subtree blocks are contiguous, so only the first subtree's blockid
+** is encoded. The subtree at iBlockid will contain all terms less
+** than the first term encoded (or all terms if no term is encoded).
+** Otherwise, for terms greater than or equal to pTerm[i] but less
+** than pTerm[i+1], the subtree for that term will be rooted at
+** iBlockid+i. Interior nodes only store enough term data to
+** distinguish adjacent children (if the rightmost term of the left
+** child is "something", and the leftmost term of the right child is
+** "wicked", only "w" is stored).
+**
+** New data is spilled to a new interior node at the same height when
+** the current node exceeds INTERIOR_MAX bytes (default 2048).
+** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
+** interior nodes and making the tree too skinny. The interior nodes
+** at a given height are naturally tracked by interior nodes at
+** height+1, and so on.
+**
+**
+**** Segment directory ****
+** The segment directory in table %_segdir stores meta-information for
+** merging and deleting segments, and also the root node of the
+** segment's tree.
+**
+** The root node is the top node of the segment's tree after encoding
+** the entire segment, restricted to ROOT_MAX bytes (default 1024).
+** This could be either a leaf node or an interior node. If the top
+** node requires more than ROOT_MAX bytes, it is flushed to %_segments
+** and a new root interior node is generated (which should always fit
+** within ROOT_MAX because it only needs space for 2 varints, the
+** height and the blockid of the previous root).
+**
+** The meta-information in the segment directory is:
+** level - segment level (see below)
+** idx - index within level
+** - (level,idx uniquely identify a segment)
+** start_block - first leaf node
+** leaves_end_block - last leaf node
+** end_block - last block (including interior nodes)
+** root - contents of root node
+**
+** If the root node is a leaf node, then start_block,
+** leaves_end_block, and end_block are all 0.
+**
+**
+**** Segment merging ****
+** To amortize update costs, segments are grouped into levels and
+** merged in batches. Each increase in level represents exponentially
+** more documents.
+**
+** New documents (actually, document updates) are tokenized and
+** written individually (using LeafWriter) to a level 0 segment, with
+** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
+** level 0 segments are merged into a single level 1 segment. Level 1
+** is populated like level 0, and eventually MERGE_COUNT level 1
+** segments are merged to a single level 2 segment (representing
+** MERGE_COUNT^2 updates), and so on.
+**
+** A segment merge traverses all segments at a given level in
+** parallel, performing a straightforward sorted merge. Since segment
+** leaf nodes are written in to the %_segments table in order, this
+** merge traverses the underlying sqlite disk structures efficiently.
+** After the merge, all segment blocks from the merged level are
+** deleted.
+**
+** MERGE_COUNT controls how often we merge segments. 16 seems to be
+** somewhat of a sweet spot for insertion performance. 32 and 64 show
+** very similar performance numbers to 16 on insertion, though they're
+** a tiny bit slower (perhaps due to more overhead in merge-time
+** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
+** 16, 2 about 66% slower than 16.
+**
+** At query time, high MERGE_COUNT increases the number of segments
+** which need to be scanned and merged. For instance, with 100k docs
+** inserted:
+**
+** MERGE_COUNT segments
+** 16 25
+** 8 12
+** 4 10
+** 2 6
+**
+** This appears to have only a moderate impact on queries for very
+** frequent terms (which are somewhat dominated by segment merge
+** costs), and infrequent and non-existent terms still seem to be fast
+** even with many segments.
+**
+** TODO(shess) That said, it would be nice to have a better query-side
+** argument for MERGE_COUNT of 16. Also, it is possible/likely that
+** optimizations to things like doclist merging will swing the sweet
+** spot around.
+**
+**
+**
+**** Handling of deletions and updates ****
+** Since we're using a segmented structure, with no docid-oriented
+** index into the term index, we clearly cannot simply update the term
+** index when a document is deleted or updated. For deletions, we
+** write an empty doclist (varint(docid) varint(POS_END)), for updates
+** we simply write the new doclist. Segment merges overwrite older
+** data for a particular docid with newer data, so deletes or updates
+** will eventually overtake the earlier data and knock it out. The
+** query logic likewise merges doclists so that newer data knocks out
+** older data.
+**
+** TODO(shess) Provide a VACUUM type operation to clear out all
+** deletions and duplications. This would basically be a forced merge
+** into a single segment.
+*/
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
+# define SQLITE_CORE 1
+#endif
+
+
+/************** Include fts3_expr.h in the middle of fts3.c ******************/
+/************** Begin file fts3_expr.h ***************************************/
+/*
+** 2008 Nov 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+/************** Include fts3_tokenizer.h in the middle of fts3_expr.h ********/
+/************** Begin file fts3_tokenizer.h **********************************/
+/*
+** 2006 July 10
+**
+** The author disclaims copyright to this source code.
+**
+*************************************************************************
+** Defines the interface to tokenizers used by fulltext-search. There
+** are three basic components:
+**
+** sqlite3_tokenizer_module is a singleton defining the tokenizer
+** interface functions. This is essentially the class structure for
+** tokenizers.
+**
+** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
+** including customization information defined at creation time.
+**
+** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
+** tokens from a particular input.
+*/
+#ifndef _FTS3_TOKENIZER_H_
+#define _FTS3_TOKENIZER_H_
+
+/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
+** If tokenizers are to be allowed to call sqlite3_*() functions, then
+** we will need a way to register the API consistently.
+*/
+
+/*
+** Structures used by the tokenizer interface. When a new tokenizer
+** implementation is registered, the caller provides a pointer to
+** an sqlite3_tokenizer_module containing pointers to the callback
+** functions that make up an implementation.
+**
+** When an fts3 table is created, it passes any arguments passed to
+** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
+** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
+** implementation. The xCreate() function in turn returns an
+** sqlite3_tokenizer structure representing the specific tokenizer to
+** be used for the fts3 table (customized by the tokenizer clause arguments).
+**
+** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
+** method is called. It returns an sqlite3_tokenizer_cursor object
+** that may be used to tokenize a specific input buffer based on
+** the tokenization rules supplied by a specific sqlite3_tokenizer
+** object.
+*/
+typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
+typedef struct sqlite3_tokenizer sqlite3_tokenizer;
+typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
+
+struct sqlite3_tokenizer_module {
+
+ /*
+ ** Structure version. Should always be set to 0.
+ */
+ int iVersion;
+
+ /*
+ ** Create a new tokenizer. The values in the argv[] array are the
+ ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
+ ** TABLE statement that created the fts3 table. For example, if
+ ** the following SQL is executed:
+ **
+ ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
+ **
+ ** then argc is set to 2, and the argv[] array contains pointers
+ ** to the strings "arg1" and "arg2".
+ **
+ ** This method should return either SQLITE_OK (0), or an SQLite error
+ ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
+ ** to point at the newly created tokenizer structure. The generic
+ ** sqlite3_tokenizer.pModule variable should not be initialised by
+ ** this callback. The caller will do so.
+ */
+ int (*xCreate)(
+ int argc, /* Size of argv array */
+ const char *const*argv, /* Tokenizer argument strings */
+ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
+ );
+
+ /*
+ ** Destroy an existing tokenizer. The fts3 module calls this method
+ ** exactly once for each successful call to xCreate().
+ */
+ int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
+
+ /*
+ ** Create a tokenizer cursor to tokenize an input buffer. The caller
+ ** is responsible for ensuring that the input buffer remains valid
+ ** until the cursor is closed (using the xClose() method).
+ */
+ int (*xOpen)(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
+ const char *pInput, int nBytes, /* Input buffer */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
+ );
+
+ /*
+ ** Destroy an existing tokenizer cursor. The fts3 module calls this
+ ** method exactly once for each successful call to xOpen().
+ */
+ int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
+
+ /*
+ ** Retrieve the next token from the tokenizer cursor pCursor. This
+ ** method should either return SQLITE_OK and set the values of the
+ ** "OUT" variables identified below, or SQLITE_DONE to indicate that
+ ** the end of the buffer has been reached, or an SQLite error code.
+ **
+ ** *ppToken should be set to point at a buffer containing the
+ ** normalized version of the token (i.e. after any case-folding and/or
+ ** stemming has been performed). *pnBytes should be set to the length
+ ** of this buffer in bytes. The input text that generated the token is
+ ** identified by the byte offsets returned in *piStartOffset and
+ ** *piEndOffset. *piStartOffset should be set to the index of the first
+ ** byte of the token in the input buffer. *piEndOffset should be set
+ ** to the index of the first byte just past the end of the token in
+ ** the input buffer.
+ **
+ ** The buffer *ppToken is set to point at is managed by the tokenizer
+ ** implementation. It is only required to be valid until the next call
+ ** to xNext() or xClose().
+ */
+ /* TODO(shess) current implementation requires pInput to be
+ ** nul-terminated. This should either be fixed, or pInput/nBytes
+ ** should be converted to zInput.
+ */
+ int (*xNext)(
+ sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
+ const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
+ int *piStartOffset, /* OUT: Byte offset of token in input buffer */
+ int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
+ int *piPosition /* OUT: Number of tokens returned before this one */
+ );
+};
+
+struct sqlite3_tokenizer {
+ const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
+ /* Tokenizer implementations will typically add additional fields */
+};
+
+struct sqlite3_tokenizer_cursor {
+ sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
+ /* Tokenizer implementations will typically add additional fields */
+};
+
+#endif /* _FTS3_TOKENIZER_H_ */
+
+/************** End of fts3_tokenizer.h **************************************/
+/************** Continuing where we left off in fts3_expr.h ******************/
+
+/*
+** The following describes the syntax supported by the fts3 MATCH
+** operator in a similar format to that used by the lemon parser
+** generator. This module does not use actually lemon, it uses a
+** custom parser.
+**
+** query ::= andexpr (OR andexpr)*.
+**
+** andexpr ::= notexpr (AND? notexpr)*.
+**
+** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
+** notexpr ::= LP query RP.
+**
+** nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
+**
+** distance_opt ::= .
+** distance_opt ::= / INTEGER.
+**
+** phrase ::= TOKEN.
+** phrase ::= COLUMN:TOKEN.
+** phrase ::= "TOKEN TOKEN TOKEN...".
+*/
+
+typedef struct Fts3Expr Fts3Expr;
+typedef struct Fts3Phrase Fts3Phrase;
+
+/*
+** A "phrase" is a sequence of one or more tokens that must match in
+** sequence. A single token is the base case and the most common case.
+** For a sequence of tokens contained in "...", nToken will be the number
+** of tokens in the string.
+*/
+struct Fts3Phrase {
+ int nToken; /* Number of tokens in the phrase */
+ int iColumn; /* Index of column this phrase must match */
+ int isNot; /* Phrase prefixed by unary not (-) operator */
+ struct PhraseToken {
+ char *z; /* Text of the token */
+ int n; /* Number of bytes in buffer pointed to by z */
+ int isPrefix; /* True if token ends in with a "*" character */
+ } aToken[1]; /* One entry for each token in the phrase */
+};
+
+/*
+** A tree of these objects forms the RHS of a MATCH operator.
+*/
+struct Fts3Expr {
+ int eType; /* One of the FTSQUERY_XXX values defined below */
+ int nNear; /* Valid if eType==FTSQUERY_NEAR */
+ Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */
+ Fts3Expr *pLeft; /* Left operand */
+ Fts3Expr *pRight; /* Right operand */
+ Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */
+};
+
+SQLITE_PRIVATE int sqlite3Fts3ExprParse(sqlite3_tokenizer *, char **, int, int,
+ const char *, int, Fts3Expr **);
+SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *);
+
+/*
+** Candidate values for Fts3Query.eType. Note that the order of the first
+** four values is in order of precedence when parsing expressions. For
+** example, the following:
+**
+** "a OR b AND c NOT d NEAR e"
+**
+** is equivalent to:
+**
+** "a OR (b AND (c NOT (d NEAR e)))"
+*/
+#define FTSQUERY_NEAR 1
+#define FTSQUERY_NOT 2
+#define FTSQUERY_AND 3
+#define FTSQUERY_OR 4
+#define FTSQUERY_PHRASE 5
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE void sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
+#endif
+
+/************** End of fts3_expr.h *******************************************/
+/************** Continuing where we left off in fts3.c ***********************/
+/************** Include fts3_hash.h in the middle of fts3.c ******************/
+/************** Begin file fts3_hash.h ***************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implemenation
+** used in SQLite. We've modified it slightly to serve as a standalone
+** hash table implementation for the full-text indexing module.
+**
+*/
+#ifndef _FTS3_HASH_H_
+#define _FTS3_HASH_H_
+
+/* Forward declarations of structures. */
+typedef struct fts3Hash fts3Hash;
+typedef struct fts3HashElem fts3HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, many of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+*/
+struct fts3Hash {
+ char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
+ char copyKey; /* True if copy of key made on insert */
+ int count; /* Number of entries in this table */
+ fts3HashElem *first; /* The first element of the array */
+ int htsize; /* Number of buckets in the hash table */
+ struct _fts3ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ fts3HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct fts3HashElem {
+ fts3HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ void *pKey; int nKey; /* Key associated with this element */
+};
+
+/*
+** There are 2 different modes of operation for a hash table:
+**
+** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
+** (including the null-terminator, if any). Case
+** is respected in comparisons.
+**
+** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
+** memcmp() is used to compare keys.
+**
+** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
+*/
+#define FTS3_HASH_STRING 1
+#define FTS3_HASH_BINARY 2
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey);
+SQLITE_PRIVATE void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData);
+SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey);
+SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash*);
+
+/*
+** Shorthand for the functions above
+*/
+#define fts3HashInit sqlite3Fts3HashInit
+#define fts3HashInsert sqlite3Fts3HashInsert
+#define fts3HashFind sqlite3Fts3HashFind
+#define fts3HashClear sqlite3Fts3HashClear
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** fts3Hash h;
+** fts3HashElem *p;
+** ...
+** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
+** SomeStructure *pData = fts3HashData(p);
+** // do something with pData
+** }
+*/
+#define fts3HashFirst(H) ((H)->first)
+#define fts3HashNext(E) ((E)->next)
+#define fts3HashData(E) ((E)->data)
+#define fts3HashKey(E) ((E)->pKey)
+#define fts3HashKeysize(E) ((E)->nKey)
+
+/*
+** Number of entries in a hash table
+*/
+#define fts3HashCount(H) ((H)->count)
+
+#endif /* _FTS3_HASH_H_ */
+
+/************** End of fts3_hash.h *******************************************/
+/************** Continuing where we left off in fts3.c ***********************/
+#ifndef SQLITE_CORE
+ SQLITE_EXTENSION_INIT1
+#endif
+
+
+/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
+** would be nice to order the file better, perhaps something along the
+** lines of:
+**
+** - utility functions
+** - table setup functions
+** - table update functions
+** - table query functions
+**
+** Put the query functions last because they're likely to reference
+** typedefs or functions from the table update section.
+*/
+
+#if 0
+# define FTSTRACE(A) printf A; fflush(stdout)
+#else
+# define FTSTRACE(A)
+#endif
+
+/* It is not safe to call isspace(), tolower(), or isalnum() on
+** hi-bit-set characters. This is the same solution used in the
+** tokenizer.
+*/
+/* TODO(shess) The snippet-generation code should be using the
+** tokenizer-generated tokens rather than doing its own local
+** tokenization.
+*/
+/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
+static int safe_isspace(char c){
+ return (c&0x80)==0 ? isspace(c) : 0;
+}
+static int safe_tolower(char c){
+ return (c&0x80)==0 ? tolower(c) : c;
+}
+static int safe_isalnum(char c){
+ return (c&0x80)==0 ? isalnum(c) : 0;
+}
+
+typedef enum DocListType {
+ DL_DOCIDS, /* docids only */
+ DL_POSITIONS, /* docids + positions */
+ DL_POSITIONS_OFFSETS /* docids + positions + offsets */
+} DocListType;
+
+/*
+** By default, only positions and not offsets are stored in the doclists.
+** To change this so that offsets are stored too, compile with
+**
+** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
+**
+** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
+** into (no deletes or updates).
+*/
+#ifndef DL_DEFAULT
+# define DL_DEFAULT DL_POSITIONS
+#endif
+
+enum {
+ POS_END = 0, /* end of this position list */
+ POS_COLUMN, /* followed by new column number */
+ POS_BASE
+};
+
+/* MERGE_COUNT controls how often we merge segments (see comment at
+** top of file).
+*/
+#define MERGE_COUNT 16
+
+/* utility functions */
+
+/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
+** record to prevent errors of the form:
+**
+** my_function(SomeType *b){
+** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
+** }
+*/
+/* TODO(shess) Obvious candidates for a header file. */
+#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
+
+#ifndef NDEBUG
+# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
+#else
+# define SCRAMBLE(b)
+#endif
+
+/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
+#define VARINT_MAX 10
+
+/* Write a 64-bit variable-length integer to memory starting at p[0].
+ * The length of data written will be between 1 and VARINT_MAX bytes.
+ * The number of bytes written is returned. */
+static int fts3PutVarint(char *p, sqlite_int64 v){
+ unsigned char *q = (unsigned char *) p;
+ sqlite_uint64 vu = v;
+ do{
+ *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
+ vu >>= 7;
+ }while( vu!=0 );
+ q[-1] &= 0x7f; /* turn off high bit in final byte */
+ assert( q - (unsigned char *)p <= VARINT_MAX );
+ return (int) (q - (unsigned char *)p);
+}
+
+/* Read a 64-bit variable-length integer from memory starting at p[0].
+ * Return the number of bytes read, or 0 on error.
+ * The value is stored in *v. */
+static int fts3GetVarint(const char *p, sqlite_int64 *v){
+ const unsigned char *q = (const unsigned char *) p;
+ sqlite_uint64 x = 0, y = 1;
+ while( (*q & 0x80) == 0x80 ){
+ x += y * (*q++ & 0x7f);
+ y <<= 7;
+ if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */
+ assert( 0 );
+ return 0;
+ }
+ }
+ x += y * (*q++);
+ *v = (sqlite_int64) x;
+ return (int) (q - (unsigned char *)p);
+}
+
+static int fts3GetVarint32(const char *p, int *pi){
+ sqlite_int64 i;
+ int ret = fts3GetVarint(p, &i);
+ *pi = (int) i;
+ assert( *pi==i );
+ return ret;
+}
+
+/*******************************************************************/
+/* DataBuffer is used to collect data into a buffer in piecemeal
+** fashion. It implements the usual distinction between amount of
+** data currently stored (nData) and buffer capacity (nCapacity).
+**
+** dataBufferInit - create a buffer with given initial capacity.
+** dataBufferReset - forget buffer's data, retaining capacity.
+** dataBufferDestroy - free buffer's data.
+** dataBufferSwap - swap contents of two buffers.
+** dataBufferExpand - expand capacity without adding data.
+** dataBufferAppend - append data.
+** dataBufferAppend2 - append two pieces of data at once.
+** dataBufferReplace - replace buffer's data.
+*/
+typedef struct DataBuffer {
+ char *pData; /* Pointer to malloc'ed buffer. */
+ int nCapacity; /* Size of pData buffer. */
+ int nData; /* End of data loaded into pData. */
+} DataBuffer;
+
+static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
+ assert( nCapacity>=0 );
+ pBuffer->nData = 0;
+ pBuffer->nCapacity = nCapacity;
+ pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
+}
+static void dataBufferReset(DataBuffer *pBuffer){
+ pBuffer->nData = 0;
+}
+static void dataBufferDestroy(DataBuffer *pBuffer){
+ if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
+ SCRAMBLE(pBuffer);
+}
+static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
+ DataBuffer tmp = *pBuffer1;
+ *pBuffer1 = *pBuffer2;
+ *pBuffer2 = tmp;
+}
+static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
+ assert( nAddCapacity>0 );
+ /* TODO(shess) Consider expanding more aggressively. Note that the
+ ** underlying malloc implementation may take care of such things for
+ ** us already.
+ */
+ if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
+ pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
+ pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
+ }
+}
+static void dataBufferAppend(DataBuffer *pBuffer,
+ const char *pSource, int nSource){
+ assert( nSource>0 && pSource!=NULL );
+ dataBufferExpand(pBuffer, nSource);
+ memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
+ pBuffer->nData += nSource;
+}
+static void dataBufferAppend2(DataBuffer *pBuffer,
+ const char *pSource1, int nSource1,
+ const char *pSource2, int nSource2){
+ assert( nSource1>0 && pSource1!=NULL );
+ assert( nSource2>0 && pSource2!=NULL );
+ dataBufferExpand(pBuffer, nSource1+nSource2);
+ memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
+ memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
+ pBuffer->nData += nSource1+nSource2;
+}
+static void dataBufferReplace(DataBuffer *pBuffer,
+ const char *pSource, int nSource){
+ dataBufferReset(pBuffer);
+ dataBufferAppend(pBuffer, pSource, nSource);
+}
+
+/* StringBuffer is a null-terminated version of DataBuffer. */
+typedef struct StringBuffer {
+ DataBuffer b; /* Includes null terminator. */
+} StringBuffer;
+
+static void initStringBuffer(StringBuffer *sb){
+ dataBufferInit(&sb->b, 100);
+ dataBufferReplace(&sb->b, "", 1);
+}
+static int stringBufferLength(StringBuffer *sb){
+ return sb->b.nData-1;
+}
+static char *stringBufferData(StringBuffer *sb){
+ return sb->b.pData;
+}
+static void stringBufferDestroy(StringBuffer *sb){
+ dataBufferDestroy(&sb->b);
+}
+
+static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
+ assert( sb->b.nData>0 );
+ if( nFrom>0 ){
+ sb->b.nData--;
+ dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
+ }
+}
+static void append(StringBuffer *sb, const char *zFrom){
+ nappend(sb, zFrom, strlen(zFrom));
+}
+
+/* Append a list of strings separated by commas. */
+static void appendList(StringBuffer *sb, int nString, char **azString){
+ int i;
+ for(i=0; i<nString; ++i){
+ if( i>0 ) append(sb, ", ");
+ append(sb, azString[i]);
+ }
+}
+
+static int endsInWhiteSpace(StringBuffer *p){
+ return stringBufferLength(p)>0 &&
+ safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
+}
+
+/* If the StringBuffer ends in something other than white space, add a
+** single space character to the end.
+*/
+static void appendWhiteSpace(StringBuffer *p){
+ if( stringBufferLength(p)==0 ) return;
+ if( !endsInWhiteSpace(p) ) append(p, " ");
+}
+
+/* Remove white space from the end of the StringBuffer */
+static void trimWhiteSpace(StringBuffer *p){
+ while( endsInWhiteSpace(p) ){
+ p->b.pData[--p->b.nData-1] = '\0';
+ }
+}
+
+/*******************************************************************/
+/* DLReader is used to read document elements from a doclist. The
+** current docid is cached, so dlrDocid() is fast. DLReader does not
+** own the doclist buffer.
+**
+** dlrAtEnd - true if there's no more data to read.
+** dlrDocid - docid of current document.
+** dlrDocData - doclist data for current document (including docid).
+** dlrDocDataBytes - length of same.
+** dlrAllDataBytes - length of all remaining data.
+** dlrPosData - position data for current document.
+** dlrPosDataLen - length of pos data for current document (incl POS_END).
+** dlrStep - step to current document.
+** dlrInit - initial for doclist of given type against given data.
+** dlrDestroy - clean up.
+**
+** Expected usage is something like:
+**
+** DLReader reader;
+** dlrInit(&reader, pData, nData);
+** while( !dlrAtEnd(&reader) ){
+** // calls to dlrDocid() and kin.
+** dlrStep(&reader);
+** }
+** dlrDestroy(&reader);
+*/
+typedef struct DLReader {
+ DocListType iType;
+ const char *pData;
+ int nData;
+
+ sqlite_int64 iDocid;
+ int nElement;
+} DLReader;
+
+static int dlrAtEnd(DLReader *pReader){
+ assert( pReader->nData>=0 );
+ return pReader->nData==0;
+}
+static sqlite_int64 dlrDocid(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+ return pReader->iDocid;
+}
+static const char *dlrDocData(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+ return pReader->pData;
+}
+static int dlrDocDataBytes(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+ return pReader->nElement;
+}
+static int dlrAllDataBytes(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+ return pReader->nData;
+}
+/* TODO(shess) Consider adding a field to track iDocid varint length
+** to make these two functions faster. This might matter (a tiny bit)
+** for queries.
+*/
+static const char *dlrPosData(DLReader *pReader){
+ sqlite_int64 iDummy;
+ int n = fts3GetVarint(pReader->pData, &iDummy);
+ assert( !dlrAtEnd(pReader) );
+ return pReader->pData+n;
+}
+static int dlrPosDataLen(DLReader *pReader){
+ sqlite_int64 iDummy;
+ int n = fts3GetVarint(pReader->pData, &iDummy);
+ assert( !dlrAtEnd(pReader) );
+ return pReader->nElement-n;
+}
+static void dlrStep(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+
+ /* Skip past current doclist element. */
+ assert( pReader->nElement<=pReader->nData );
+ pReader->pData += pReader->nElement;
+ pReader->nData -= pReader->nElement;
+
+ /* If there is more data, read the next doclist element. */
+ if( pReader->nData!=0 ){
+ sqlite_int64 iDocidDelta;
+ int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
+ pReader->iDocid += iDocidDelta;
+ if( pReader->iType>=DL_POSITIONS ){
+ assert( n<pReader->nData );
+ while( 1 ){
+ n += fts3GetVarint32(pReader->pData+n, &iDummy);
+ assert( n<=pReader->nData );
+ if( iDummy==POS_END ) break;
+ if( iDummy==POS_COLUMN ){
+ n += fts3GetVarint32(pReader->pData+n, &iDummy);
+ assert( n<pReader->nData );
+ }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
+ n += fts3GetVarint32(pReader->pData+n, &iDummy);
+ n += fts3GetVarint32(pReader->pData+n, &iDummy);
+ assert( n<pReader->nData );
+ }
+ }
+ }
+ pReader->nElement = n;
+ assert( pReader->nElement<=pReader->nData );
+ }
+}
+static void dlrInit(DLReader *pReader, DocListType iType,
+ const char *pData, int nData){
+ assert( pData!=NULL && nData!=0 );
+ pReader->iType = iType;
+ pReader->pData = pData;
+ pReader->nData = nData;
+ pReader->nElement = 0;
+ pReader->iDocid = 0;
+
+ /* Load the first element's data. There must be a first element. */
+ dlrStep(pReader);
+}
+static void dlrDestroy(DLReader *pReader){
+ SCRAMBLE(pReader);
+}
+
+#ifndef NDEBUG
+/* Verify that the doclist can be validly decoded. Also returns the
+** last docid found because it is convenient in other assertions for
+** DLWriter.
+*/
+static void docListValidate(DocListType iType, const char *pData, int nData,
+ sqlite_int64 *pLastDocid){
+ sqlite_int64 iPrevDocid = 0;
+ assert( nData>0 );
+ assert( pData!=0 );
+ assert( pData+nData>pData );
+ while( nData!=0 ){
+ sqlite_int64 iDocidDelta;
+ int n = fts3GetVarint(pData, &iDocidDelta);
+ iPrevDocid += iDocidDelta;
+ if( iType>DL_DOCIDS ){
+ int iDummy;
+ while( 1 ){
+ n += fts3GetVarint32(pData+n, &iDummy);
+ if( iDummy==POS_END ) break;
+ if( iDummy==POS_COLUMN ){
+ n += fts3GetVarint32(pData+n, &iDummy);
+ }else if( iType>DL_POSITIONS ){
+ n += fts3GetVarint32(pData+n, &iDummy);
+ n += fts3GetVarint32(pData+n, &iDummy);
+ }
+ assert( n<=nData );
+ }
+ }
+ assert( n<=nData );
+ pData += n;
+ nData -= n;
+ }
+ if( pLastDocid ) *pLastDocid = iPrevDocid;
+}
+#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
+#else
+#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
+#endif
+
+/*******************************************************************/
+/* DLWriter is used to write doclist data to a DataBuffer. DLWriter
+** always appends to the buffer and does not own it.
+**
+** dlwInit - initialize to write a given type doclistto a buffer.
+** dlwDestroy - clear the writer's memory. Does not free buffer.
+** dlwAppend - append raw doclist data to buffer.
+** dlwCopy - copy next doclist from reader to writer.
+** dlwAdd - construct doclist element and append to buffer.
+** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
+*/
+typedef struct DLWriter {
+ DocListType iType;
+ DataBuffer *b;
+ sqlite_int64 iPrevDocid;
+#ifndef NDEBUG
+ int has_iPrevDocid;
+#endif
+} DLWriter;
+
+static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
+ pWriter->b = b;
+ pWriter->iType = iType;
+ pWriter->iPrevDocid = 0;
+#ifndef NDEBUG
+ pWriter->has_iPrevDocid = 0;
+#endif
+}
+static void dlwDestroy(DLWriter *pWriter){
+ SCRAMBLE(pWriter);
+}
+/* iFirstDocid is the first docid in the doclist in pData. It is
+** needed because pData may point within a larger doclist, in which
+** case the first item would be delta-encoded.
+**
+** iLastDocid is the final docid in the doclist in pData. It is
+** needed to create the new iPrevDocid for future delta-encoding. The
+** code could decode the passed doclist to recreate iLastDocid, but
+** the only current user (docListMerge) already has decoded this
+** information.
+*/
+/* TODO(shess) This has become just a helper for docListMerge.
+** Consider a refactor to make this cleaner.
+*/
+static void dlwAppend(DLWriter *pWriter,
+ const char *pData, int nData,
+ sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
+ sqlite_int64 iDocid = 0;
+ char c[VARINT_MAX];
+ int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
+#ifndef NDEBUG
+ sqlite_int64 iLastDocidDelta;
+#endif
+
+ /* Recode the initial docid as delta from iPrevDocid. */
+ nFirstOld = fts3GetVarint(pData, &iDocid);
+ assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
+ nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
+
+ /* Verify that the incoming doclist is valid AND that it ends with
+ ** the expected docid. This is essential because we'll trust this
+ ** docid in future delta-encoding.
+ */
+ ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
+ assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
+
+ /* Append recoded initial docid and everything else. Rest of docids
+ ** should have been delta-encoded from previous initial docid.
+ */
+ if( nFirstOld<nData ){
+ dataBufferAppend2(pWriter->b, c, nFirstNew,
+ pData+nFirstOld, nData-nFirstOld);
+ }else{
+ dataBufferAppend(pWriter->b, c, nFirstNew);
+ }
+ pWriter->iPrevDocid = iLastDocid;
+}
+static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
+ dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
+ dlrDocid(pReader), dlrDocid(pReader));
+}
+static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
+ char c[VARINT_MAX];
+ int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
+
+ /* Docids must ascend. */
+ assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
+ assert( pWriter->iType==DL_DOCIDS );
+
+ dataBufferAppend(pWriter->b, c, n);
+ pWriter->iPrevDocid = iDocid;
+#ifndef NDEBUG
+ pWriter->has_iPrevDocid = 1;
+#endif
+}
+
+/*******************************************************************/
+/* PLReader is used to read data from a document's position list. As
+** the caller steps through the list, data is cached so that varints
+** only need to be decoded once.
+**
+** plrInit, plrDestroy - create/destroy a reader.
+** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
+** plrAtEnd - at end of stream, only call plrDestroy once true.
+** plrStep - step to the next element.
+*/
+typedef struct PLReader {
+ /* These refer to the next position's data. nData will reach 0 when
+ ** reading the last position, so plrStep() signals EOF by setting
+ ** pData to NULL.
+ */
+ const char *pData;
+ int nData;
+
+ DocListType iType;
+ int iColumn; /* the last column read */
+ int iPosition; /* the last position read */
+ int iStartOffset; /* the last start offset read */
+ int iEndOffset; /* the last end offset read */
+} PLReader;
+
+static int plrAtEnd(PLReader *pReader){
+ return pReader->pData==NULL;
+}
+static int plrColumn(PLReader *pReader){
+ assert( !plrAtEnd(pReader) );
+ return pReader->iColumn;
+}
+static int plrPosition(PLReader *pReader){
+ assert( !plrAtEnd(pReader) );
+ return pReader->iPosition;
+}
+static int plrStartOffset(PLReader *pReader){
+ assert( !plrAtEnd(pReader) );
+ return pReader->iStartOffset;
+}
+static int plrEndOffset(PLReader *pReader){
+ assert( !plrAtEnd(pReader) );
+ return pReader->iEndOffset;
+}
+static void plrStep(PLReader *pReader){
+ int i, n;
+
+ assert( !plrAtEnd(pReader) );
+
+ if( pReader->nData==0 ){
+ pReader->pData = NULL;
+ return;
+ }
+
+ n = fts3GetVarint32(pReader->pData, &i);
+ if( i==POS_COLUMN ){
+ n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn);
+ pReader->iPosition = 0;
+ pReader->iStartOffset = 0;
+ n += fts3GetVarint32(pReader->pData+n, &i);
+ }
+ /* Should never see adjacent column changes. */
+ assert( i!=POS_COLUMN );
+
+ if( i==POS_END ){
+ pReader->nData = 0;
+ pReader->pData = NULL;
+ return;
+ }
+
+ pReader->iPosition += i-POS_BASE;
+ if( pReader->iType==DL_POSITIONS_OFFSETS ){
+ n += fts3GetVarint32(pReader->pData+n, &i);
+ pReader->iStartOffset += i;
+ n += fts3GetVarint32(pReader->pData+n, &i);
+ pReader->iEndOffset = pReader->iStartOffset+i;
+ }
+ assert( n<=pReader->nData );
+ pReader->pData += n;
+ pReader->nData -= n;
+}
+
+static void plrInit(PLReader *pReader, DLReader *pDLReader){
+ pReader->pData = dlrPosData(pDLReader);
+ pReader->nData = dlrPosDataLen(pDLReader);
+ pReader->iType = pDLReader->iType;
+ pReader->iColumn = 0;
+ pReader->iPosition = 0;
+ pReader->iStartOffset = 0;
+ pReader->iEndOffset = 0;
+ plrStep(pReader);
+}
+static void plrDestroy(PLReader *pReader){
+ SCRAMBLE(pReader);
+}
+
+/*******************************************************************/
+/* PLWriter is used in constructing a document's position list. As a
+** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
+** PLWriter writes to the associated DLWriter's buffer.
+**
+** plwInit - init for writing a document's poslist.
+** plwDestroy - clear a writer.
+** plwAdd - append position and offset information.
+** plwCopy - copy next position's data from reader to writer.
+** plwTerminate - add any necessary doclist terminator.
+**
+** Calling plwAdd() after plwTerminate() may result in a corrupt
+** doclist.
+*/
+/* TODO(shess) Until we've written the second item, we can cache the
+** first item's information. Then we'd have three states:
+**
+** - initialized with docid, no positions.
+** - docid and one position.
+** - docid and multiple positions.
+**
+** Only the last state needs to actually write to dlw->b, which would
+** be an improvement in the DLCollector case.
+*/
+typedef struct PLWriter {
+ DLWriter *dlw;
+
+ int iColumn; /* the last column written */
+ int iPos; /* the last position written */
+ int iOffset; /* the last start offset written */
+} PLWriter;
+
+/* TODO(shess) In the case where the parent is reading these values
+** from a PLReader, we could optimize to a copy if that PLReader has
+** the same type as pWriter.
+*/
+static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
+ int iStartOffset, int iEndOffset){
+ /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
+ ** iStartOffsetDelta, and iEndOffsetDelta.
+ */
+ char c[5*VARINT_MAX];
+ int n = 0;
+
+ /* Ban plwAdd() after plwTerminate(). */
+ assert( pWriter->iPos!=-1 );
+
+ if( pWriter->dlw->iType==DL_DOCIDS ) return;
+
+ if( iColumn!=pWriter->iColumn ){
+ n += fts3PutVarint(c+n, POS_COLUMN);
+ n += fts3PutVarint(c+n, iColumn);
+ pWriter->iColumn = iColumn;
+ pWriter->iPos = 0;
+ pWriter->iOffset = 0;
+ }
+ assert( iPos>=pWriter->iPos );
+ n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
+ pWriter->iPos = iPos;
+ if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
+ assert( iStartOffset>=pWriter->iOffset );
+ n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
+ pWriter->iOffset = iStartOffset;
+ assert( iEndOffset>=iStartOffset );
+ n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
+ }
+ dataBufferAppend(pWriter->dlw->b, c, n);
+}
+static void plwCopy(PLWriter *pWriter, PLReader *pReader){
+ plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
+ plrStartOffset(pReader), plrEndOffset(pReader));
+}
+static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
+ char c[VARINT_MAX];
+ int n;
+
+ pWriter->dlw = dlw;
+
+ /* Docids must ascend. */
+ assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
+ n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
+ dataBufferAppend(pWriter->dlw->b, c, n);
+ pWriter->dlw->iPrevDocid = iDocid;
+#ifndef NDEBUG
+ pWriter->dlw->has_iPrevDocid = 1;
+#endif
+
+ pWriter->iColumn = 0;
+ pWriter->iPos = 0;
+ pWriter->iOffset = 0;
+}
+/* TODO(shess) Should plwDestroy() also terminate the doclist? But
+** then plwDestroy() would no longer be just a destructor, it would
+** also be doing work, which isn't consistent with the overall idiom.
+** Another option would be for plwAdd() to always append any necessary
+** terminator, so that the output is always correct. But that would
+** add incremental work to the common case with the only benefit being
+** API elegance. Punt for now.
+*/
+static void plwTerminate(PLWriter *pWriter){
+ if( pWriter->dlw->iType>DL_DOCIDS ){
+ char c[VARINT_MAX];
+ int n = fts3PutVarint(c, POS_END);
+ dataBufferAppend(pWriter->dlw->b, c, n);
+ }
+#ifndef NDEBUG
+ /* Mark as terminated for assert in plwAdd(). */
+ pWriter->iPos = -1;
+#endif
+}
+static void plwDestroy(PLWriter *pWriter){
+ SCRAMBLE(pWriter);
+}
+
+/*******************************************************************/
+/* DLCollector wraps PLWriter and DLWriter to provide a
+** dynamically-allocated doclist area to use during tokenization.
+**
+** dlcNew - malloc up and initialize a collector.
+** dlcDelete - destroy a collector and all contained items.
+** dlcAddPos - append position and offset information.
+** dlcAddDoclist - add the collected doclist to the given buffer.
+** dlcNext - terminate the current document and open another.
+*/
+typedef struct DLCollector {
+ DataBuffer b;
+ DLWriter dlw;
+ PLWriter plw;
+} DLCollector;
+
+/* TODO(shess) This could also be done by calling plwTerminate() and
+** dataBufferAppend(). I tried that, expecting nominal performance
+** differences, but it seemed to pretty reliably be worth 1% to code
+** it this way. I suspect it is the incremental malloc overhead (some
+** percentage of the plwTerminate() calls will cause a realloc), so
+** this might be worth revisiting if the DataBuffer implementation
+** changes.
+*/
+static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
+ if( pCollector->dlw.iType>DL_DOCIDS ){
+ char c[VARINT_MAX];
+ int n = fts3PutVarint(c, POS_END);
+ dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
+ }else{
+ dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
+ }
+}
+static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
+ plwTerminate(&pCollector->plw);
+ plwDestroy(&pCollector->plw);
+ plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
+}
+static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
+ int iStartOffset, int iEndOffset){
+ plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
+}
+
+static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
+ DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
+ dataBufferInit(&pCollector->b, 0);
+ dlwInit(&pCollector->dlw, iType, &pCollector->b);
+ plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
+ return pCollector;
+}
+static void dlcDelete(DLCollector *pCollector){
+ plwDestroy(&pCollector->plw);
+ dlwDestroy(&pCollector->dlw);
+ dataBufferDestroy(&pCollector->b);
+ SCRAMBLE(pCollector);
+ sqlite3_free(pCollector);
+}
+
+
+/* Copy the doclist data of iType in pData/nData into *out, trimming
+** unnecessary data as we go. Only columns matching iColumn are
+** copied, all columns copied if iColumn is -1. Elements with no
+** matching columns are dropped. The output is an iOutType doclist.
+*/
+/* NOTE(shess) This code is only valid after all doclists are merged.
+** If this is run before merges, then doclist items which represent
+** deletion will be trimmed, and will thus not effect a deletion
+** during the merge.
+*/
+static void docListTrim(DocListType iType, const char *pData, int nData,
+ int iColumn, DocListType iOutType, DataBuffer *out){
+ DLReader dlReader;
+ DLWriter dlWriter;
+
+ assert( iOutType<=iType );
+
+ dlrInit(&dlReader, iType, pData, nData);
+ dlwInit(&dlWriter, iOutType, out);
+
+ while( !dlrAtEnd(&dlReader) ){
+ PLReader plReader;
+ PLWriter plWriter;
+ int match = 0;
+
+ plrInit(&plReader, &dlReader);
+
+ while( !plrAtEnd(&plReader) ){
+ if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
+ if( !match ){
+ plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
+ match = 1;
+ }
+ plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
+ plrStartOffset(&plReader), plrEndOffset(&plReader));
+ }
+ plrStep(&plReader);
+ }
+ if( match ){
+ plwTerminate(&plWriter);
+ plwDestroy(&plWriter);
+ }
+
+ plrDestroy(&plReader);
+ dlrStep(&dlReader);
+ }
+ dlwDestroy(&dlWriter);
+ dlrDestroy(&dlReader);
+}
+
+/* Used by docListMerge() to keep doclists in the ascending order by
+** docid, then ascending order by age (so the newest comes first).
+*/
+typedef struct OrderedDLReader {
+ DLReader *pReader;
+
+ /* TODO(shess) If we assume that docListMerge pReaders is ordered by
+ ** age (which we do), then we could use pReader comparisons to break
+ ** ties.
+ */
+ int idx;
+} OrderedDLReader;
+
+/* Order eof to end, then by docid asc, idx desc. */
+static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
+ if( dlrAtEnd(r1->pReader) ){
+ if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
+ return 1; /* Only r1 atEnd(). */
+ }
+ if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
+
+ if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
+ if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
+
+ /* Descending on idx. */
+ return r2->idx-r1->idx;
+}
+
+/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
+** p[1..n-1] is already sorted.
+*/
+/* TODO(shess) Is this frequent enough to warrant a binary search?
+** Before implementing that, instrument the code to check. In most
+** current usage, I expect that p[0] will be less than p[1] a very
+** high proportion of the time.
+*/
+static void orderedDLReaderReorder(OrderedDLReader *p, int n){
+ while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
+ OrderedDLReader tmp = p[0];
+ p[0] = p[1];
+ p[1] = tmp;
+ n--;
+ p++;
+ }
+}
+
+/* Given an array of doclist readers, merge their doclist elements
+** into out in sorted order (by docid), dropping elements from older
+** readers when there is a duplicate docid. pReaders is assumed to be
+** ordered by age, oldest first.
+*/
+/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
+** be fixed.
+*/
+static void docListMerge(DataBuffer *out,
+ DLReader *pReaders, int nReaders){
+ OrderedDLReader readers[MERGE_COUNT];
+ DLWriter writer;
+ int i, n;
+ const char *pStart = 0;
+ int nStart = 0;
+ sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
+
+ assert( nReaders>0 );
+ if( nReaders==1 ){
+ dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
+ return;
+ }
+
+ assert( nReaders<=MERGE_COUNT );
+ n = 0;
+ for(i=0; i<nReaders; i++){
+ assert( pReaders[i].iType==pReaders[0].iType );
+ readers[i].pReader = pReaders+i;
+ readers[i].idx = i;
+ n += dlrAllDataBytes(&pReaders[i]);
+ }
+ /* Conservatively size output to sum of inputs. Output should end
+ ** up strictly smaller than input.
+ */
+ dataBufferExpand(out, n);
+
+ /* Get the readers into sorted order. */
+ while( i-->0 ){
+ orderedDLReaderReorder(readers+i, nReaders-i);
+ }
+
+ dlwInit(&writer, pReaders[0].iType, out);
+ while( !dlrAtEnd(readers[0].pReader) ){
+ sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
+
+ /* If this is a continuation of the current buffer to copy, extend
+ ** that buffer. memcpy() seems to be more efficient if it has a
+ ** lots of data to copy.
+ */
+ if( dlrDocData(readers[0].pReader)==pStart+nStart ){
+ nStart += dlrDocDataBytes(readers[0].pReader);
+ }else{
+ if( pStart!=0 ){
+ dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
+ }
+ pStart = dlrDocData(readers[0].pReader);
+ nStart = dlrDocDataBytes(readers[0].pReader);
+ iFirstDocid = iDocid;
+ }
+ iLastDocid = iDocid;
+ dlrStep(readers[0].pReader);
+
+ /* Drop all of the older elements with the same docid. */
+ for(i=1; i<nReaders &&
+ !dlrAtEnd(readers[i].pReader) &&
+ dlrDocid(readers[i].pReader)==iDocid; i++){
+ dlrStep(readers[i].pReader);
+ }
+
+ /* Get the readers back into order. */
+ while( i-->0 ){
+ orderedDLReaderReorder(readers+i, nReaders-i);
+ }
+ }
+
+ /* Copy over any remaining elements. */
+ if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
+ dlwDestroy(&writer);
+}
+
+/* Helper function for posListUnion(). Compares the current position
+** between left and right, returning as standard C idiom of <0 if
+** left<right, >0 if left>right, and 0 if left==right. "End" always
+** compares greater.
+*/
+static int posListCmp(PLReader *pLeft, PLReader *pRight){
+ assert( pLeft->iType==pRight->iType );
+ if( pLeft->iType==DL_DOCIDS ) return 0;
+
+ if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
+ if( plrAtEnd(pRight) ) return -1;
+
+ if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
+ if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
+
+ if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
+ if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
+ if( pLeft->iType==DL_POSITIONS ) return 0;
+
+ if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
+ if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
+
+ if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
+ if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
+
+ return 0;
+}
+
+/* Write the union of position lists in pLeft and pRight to pOut.
+** "Union" in this case meaning "All unique position tuples". Should
+** work with any doclist type, though both inputs and the output
+** should be the same type.
+*/
+static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
+ PLReader left, right;
+ PLWriter writer;
+
+ assert( dlrDocid(pLeft)==dlrDocid(pRight) );
+ assert( pLeft->iType==pRight->iType );
+ assert( pLeft->iType==pOut->iType );
+
+ plrInit(&left, pLeft);
+ plrInit(&right, pRight);
+ plwInit(&writer, pOut, dlrDocid(pLeft));
+
+ while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
+ int c = posListCmp(&left, &right);
+ if( c<0 ){
+ plwCopy(&writer, &left);
+ plrStep(&left);
+ }else if( c>0 ){
+ plwCopy(&writer, &right);
+ plrStep(&right);
+ }else{
+ plwCopy(&writer, &left);
+ plrStep(&left);
+ plrStep(&right);
+ }
+ }
+
+ plwTerminate(&writer);
+ plwDestroy(&writer);
+ plrDestroy(&left);
+ plrDestroy(&right);
+}
+
+/* Write the union of doclists in pLeft and pRight to pOut. For
+** docids in common between the inputs, the union of the position
+** lists is written. Inputs and outputs are always type DL_DEFAULT.
+*/
+static void docListUnion(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 ){
+ if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
+ return;
+ }
+ if( nRight==0 ){
+ dataBufferAppend(pOut, pLeft, nLeft);
+ return;
+ }
+
+ dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
+ dlrInit(&right, DL_DEFAULT, pRight, nRight);
+ dlwInit(&writer, DL_DEFAULT, pOut);
+
+ while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
+ if( dlrAtEnd(&right) ){
+ dlwCopy(&writer, &left);
+ dlrStep(&left);
+ }else if( dlrAtEnd(&left) ){
+ dlwCopy(&writer, &right);
+ dlrStep(&right);
+ }else if( dlrDocid(&left)<dlrDocid(&right) ){
+ dlwCopy(&writer, &left);
+ dlrStep(&left);
+ }else if( dlrDocid(&left)>dlrDocid(&right) ){
+ dlwCopy(&writer, &right);
+ dlrStep(&right);
+ }else{
+ posListUnion(&left, &right, &writer);
+ dlrStep(&left);
+ dlrStep(&right);
+ }
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+/*
+** This function is used as part of the implementation of phrase and
+** NEAR matching.
+**
+** pLeft and pRight are DLReaders positioned to the same docid in
+** lists of type DL_POSITION. This function writes an entry to the
+** DLWriter pOut for each position in pRight that is less than
+** (nNear+1) greater (but not equal to or smaller) than a position
+** in pLeft. For example, if nNear is 0, and the positions contained
+** by pLeft and pRight are:
+**
+** pLeft: 5 10 15 20
+** pRight: 6 9 17 21
+**
+** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
+** then a positionids "6" and "21" are also added to pOut.
+**
+** If boolean argument isSaveLeft is true, then positionids are copied
+** from pLeft instead of pRight. In the example above, the positions "5"
+** and "20" would be added instead of "6" and "21".
+*/
+static void posListPhraseMerge(
+ DLReader *pLeft,
+ DLReader *pRight,
+ int nNear,
+ int isSaveLeft,
+ DLWriter *pOut
+){
+ PLReader left, right;
+ PLWriter writer;
+ int match = 0;
+
+ assert( dlrDocid(pLeft)==dlrDocid(pRight) );
+ assert( pOut->iType!=DL_POSITIONS_OFFSETS );
+
+ plrInit(&left, pLeft);
+ plrInit(&right, pRight);
+
+ while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
+ if( plrColumn(&left)<plrColumn(&right) ){
+ plrStep(&left);
+ }else if( plrColumn(&left)>plrColumn(&right) ){
+ plrStep(&right);
+ }else if( plrPosition(&left)>=plrPosition(&right) ){
+ plrStep(&right);
+ }else{
+ if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
+ if( !match ){
+ plwInit(&writer, pOut, dlrDocid(pLeft));
+ match = 1;
+ }
+ if( !isSaveLeft ){
+ plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
+ }else{
+ plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
+ }
+ plrStep(&right);
+ }else{
+ plrStep(&left);
+ }
+ }
+ }
+
+ if( match ){
+ plwTerminate(&writer);
+ plwDestroy(&writer);
+ }
+
+ plrDestroy(&left);
+ plrDestroy(&right);
+}
+
+/*
+** Compare the values pointed to by the PLReaders passed as arguments.
+** Return -1 if the value pointed to by pLeft is considered less than
+** the value pointed to by pRight, +1 if it is considered greater
+** than it, or 0 if it is equal. i.e.
+**
+** (*pLeft - *pRight)
+**
+** A PLReader that is in the EOF condition is considered greater than
+** any other. If neither argument is in EOF state, the return value of
+** plrColumn() is used. If the plrColumn() values are equal, the
+** comparison is on the basis of plrPosition().
+*/
+static int plrCompare(PLReader *pLeft, PLReader *pRight){
+ assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
+
+ if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
+ return (plrAtEnd(pRight) ? -1 : 1);
+ }
+ if( plrColumn(pLeft)!=plrColumn(pRight) ){
+ return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
+ }
+ if( plrPosition(pLeft)!=plrPosition(pRight) ){
+ return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
+ }
+ return 0;
+}
+
+/* We have two doclists with positions: pLeft and pRight. Depending
+** on the value of the nNear parameter, perform either a phrase
+** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
+** and write the results into pOut.
+**
+** A phrase intersection means that two documents only match
+** if pLeft.iPos+1==pRight.iPos.
+**
+** A NEAR intersection means that two documents only match if
+** (abs(pLeft.iPos-pRight.iPos)<nNear).
+**
+** If a NEAR intersection is requested, then the nPhrase argument should
+** be passed the number of tokens in the two operands to the NEAR operator
+** combined. For example:
+**
+** Query syntax nPhrase
+** ------------------------------------
+** "A B C" NEAR "D E" 5
+** A NEAR B 2
+**
+** iType controls the type of data written to pOut. If iType is
+** DL_POSITIONS, the positions are those from pRight.
+*/
+static void docListPhraseMerge(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */
+ int nPhrase, /* Number of tokens in left+right operands to NEAR */
+ DocListType iType, /* Type of doclist to write to pOut */
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 || nRight==0 ) return;
+
+ assert( iType!=DL_POSITIONS_OFFSETS );
+
+ dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
+ dlrInit(&right, DL_POSITIONS, pRight, nRight);
+ dlwInit(&writer, iType, pOut);
+
+ while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
+ if( dlrDocid(&left)<dlrDocid(&right) ){
+ dlrStep(&left);
+ }else if( dlrDocid(&right)<dlrDocid(&left) ){
+ dlrStep(&right);
+ }else{
+ if( nNear==0 ){
+ posListPhraseMerge(&left, &right, 0, 0, &writer);
+ }else{
+ /* This case occurs when two terms (simple terms or phrases) are
+ * connected by a NEAR operator, span (nNear+1). i.e.
+ *
+ * '"terrible company" NEAR widget'
+ */
+ DataBuffer one = {0, 0, 0};
+ DataBuffer two = {0, 0, 0};
+
+ DLWriter dlwriter2;
+ DLReader dr1 = {0, 0, 0, 0, 0};
+ DLReader dr2 = {0, 0, 0, 0, 0};
+
+ dlwInit(&dlwriter2, iType, &one);
+ posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
+ dlwInit(&dlwriter2, iType, &two);
+ posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
+
+ if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData);
+ if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData);
+
+ if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
+ PLReader pr1 = {0};
+ PLReader pr2 = {0};
+
+ PLWriter plwriter;
+ plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
+
+ if( one.nData ) plrInit(&pr1, &dr1);
+ if( two.nData ) plrInit(&pr2, &dr2);
+ while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
+ int iCompare = plrCompare(&pr1, &pr2);
+ switch( iCompare ){
+ case -1:
+ plwCopy(&plwriter, &pr1);
+ plrStep(&pr1);
+ break;
+ case 1:
+ plwCopy(&plwriter, &pr2);
+ plrStep(&pr2);
+ break;
+ case 0:
+ plwCopy(&plwriter, &pr1);
+ plrStep(&pr1);
+ plrStep(&pr2);
+ break;
+ }
+ }
+ plwTerminate(&plwriter);
+ }
+ dataBufferDestroy(&one);
+ dataBufferDestroy(&two);
+ }
+ dlrStep(&left);
+ dlrStep(&right);
+ }
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+/* We have two DL_DOCIDS doclists: pLeft and pRight.
+** Write the intersection of these two doclists into pOut as a
+** DL_DOCIDS doclist.
+*/
+static void docListAndMerge(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 || nRight==0 ) return;
+
+ dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
+ dlrInit(&right, DL_DOCIDS, pRight, nRight);
+ dlwInit(&writer, DL_DOCIDS, pOut);
+
+ while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
+ if( dlrDocid(&left)<dlrDocid(&right) ){
+ dlrStep(&left);
+ }else if( dlrDocid(&right)<dlrDocid(&left) ){
+ dlrStep(&right);
+ }else{
+ dlwAdd(&writer, dlrDocid(&left));
+ dlrStep(&left);
+ dlrStep(&right);
+ }
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+/* We have two DL_DOCIDS doclists: pLeft and pRight.
+** Write the union of these two doclists into pOut as a
+** DL_DOCIDS doclist.
+*/
+static void docListOrMerge(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 ){
+ if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
+ return;
+ }
+ if( nRight==0 ){
+ dataBufferAppend(pOut, pLeft, nLeft);
+ return;
+ }
+
+ dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
+ dlrInit(&right, DL_DOCIDS, pRight, nRight);
+ dlwInit(&writer, DL_DOCIDS, pOut);
+
+ while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
+ if( dlrAtEnd(&right) ){
+ dlwAdd(&writer, dlrDocid(&left));
+ dlrStep(&left);
+ }else if( dlrAtEnd(&left) ){
+ dlwAdd(&writer, dlrDocid(&right));
+ dlrStep(&right);
+ }else if( dlrDocid(&left)<dlrDocid(&right) ){
+ dlwAdd(&writer, dlrDocid(&left));
+ dlrStep(&left);
+ }else if( dlrDocid(&right)<dlrDocid(&left) ){
+ dlwAdd(&writer, dlrDocid(&right));
+ dlrStep(&right);
+ }else{
+ dlwAdd(&writer, dlrDocid(&left));
+ dlrStep(&left);
+ dlrStep(&right);
+ }
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+/* We have two DL_DOCIDS doclists: pLeft and pRight.
+** Write into pOut as DL_DOCIDS doclist containing all documents that
+** occur in pLeft but not in pRight.
+*/
+static void docListExceptMerge(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 ) return;
+ if( nRight==0 ){
+ dataBufferAppend(pOut, pLeft, nLeft);
+ return;
+ }
+
+ dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
+ dlrInit(&right, DL_DOCIDS, pRight, nRight);
+ dlwInit(&writer, DL_DOCIDS, pOut);
+
+ while( !dlrAtEnd(&left) ){
+ while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
+ dlrStep(&right);
+ }
+ if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
+ dlwAdd(&writer, dlrDocid(&left));
+ }
+ dlrStep(&left);
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+static char *string_dup_n(const char *s, int n){
+ char *str = sqlite3_malloc(n + 1);
+ memcpy(str, s, n);
+ str[n] = '\0';
+ return str;
+}
+
+/* Duplicate a string; the caller must free() the returned string.
+ * (We don't use strdup() since it is not part of the standard C library and
+ * may not be available everywhere.) */
+static char *string_dup(const char *s){
+ return string_dup_n(s, strlen(s));
+}
+
+/* Format a string, replacing each occurrence of the % character with
+ * zDb.zName. This may be more convenient than sqlite_mprintf()
+ * when one string is used repeatedly in a format string.
+ * The caller must free() the returned string. */
+static char *string_format(const char *zFormat,
+ const char *zDb, const char *zName){
+ const char *p;
+ size_t len = 0;
+ size_t nDb = strlen(zDb);
+ size_t nName = strlen(zName);
+ size_t nFullTableName = nDb+1+nName;
+ char *result;
+ char *r;
+
+ /* first compute length needed */
+ for(p = zFormat ; *p ; ++p){
+ len += (*p=='%' ? nFullTableName : 1);
+ }
+ len += 1; /* for null terminator */
+
+ r = result = sqlite3_malloc(len);
+ for(p = zFormat; *p; ++p){
+ if( *p=='%' ){
+ memcpy(r, zDb, nDb);
+ r += nDb;
+ *r++ = '.';
+ memcpy(r, zName, nName);
+ r += nName;
+ } else {
+ *r++ = *p;
+ }
+ }
+ *r++ = '\0';
+ assert( r == result + len );
+ return result;
+}
+
+static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
+ const char *zFormat){
+ char *zCommand = string_format(zFormat, zDb, zName);
+ int rc;
+ FTSTRACE(("FTS3 sql: %s\n", zCommand));
+ rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
+ sqlite3_free(zCommand);
+ return rc;
+}
+
+static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
+ sqlite3_stmt **ppStmt, const char *zFormat){
+ char *zCommand = string_format(zFormat, zDb, zName);
+ int rc;
+ FTSTRACE(("FTS3 prepare: %s\n", zCommand));
+ rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
+ sqlite3_free(zCommand);
+ return rc;
+}
+
+/* end utility functions */
+
+/* Forward reference */
+typedef struct fulltext_vtab fulltext_vtab;
+
+/*
+** An instance of the following structure keeps track of generated
+** matching-word offset information and snippets.
+*/
+typedef struct Snippet {
+ int nMatch; /* Total number of matches */
+ int nAlloc; /* Space allocated for aMatch[] */
+ struct snippetMatch { /* One entry for each matching term */
+ char snStatus; /* Status flag for use while constructing snippets */
+ short int iCol; /* The column that contains the match */
+ short int iTerm; /* The index in Query.pTerms[] of the matching term */
+ int iToken; /* The index of the matching document token */
+ short int nByte; /* Number of bytes in the term */
+ int iStart; /* The offset to the first character of the term */
+ } *aMatch; /* Points to space obtained from malloc */
+ char *zOffset; /* Text rendering of aMatch[] */
+ int nOffset; /* strlen(zOffset) */
+ char *zSnippet; /* Snippet text */
+ int nSnippet; /* strlen(zSnippet) */
+} Snippet;
+
+
+typedef enum QueryType {
+ QUERY_GENERIC, /* table scan */
+ QUERY_DOCID, /* lookup by docid */
+ QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
+} QueryType;
+
+typedef enum fulltext_statement {
+ CONTENT_INSERT_STMT,
+ CONTENT_SELECT_STMT,
+ CONTENT_UPDATE_STMT,
+ CONTENT_DELETE_STMT,
+ CONTENT_EXISTS_STMT,
+
+ BLOCK_INSERT_STMT,
+ BLOCK_SELECT_STMT,
+ BLOCK_DELETE_STMT,
+ BLOCK_DELETE_ALL_STMT,
+
+ SEGDIR_MAX_INDEX_STMT,
+ SEGDIR_SET_STMT,
+ SEGDIR_SELECT_LEVEL_STMT,
+ SEGDIR_SPAN_STMT,
+ SEGDIR_DELETE_STMT,
+ SEGDIR_SELECT_SEGMENT_STMT,
+ SEGDIR_SELECT_ALL_STMT,
+ SEGDIR_DELETE_ALL_STMT,
+ SEGDIR_COUNT_STMT,
+
+ MAX_STMT /* Always at end! */
+} fulltext_statement;
+
+/* These must exactly match the enum above. */
+/* TODO(shess): Is there some risk that a statement will be used in two
+** cursors at once, e.g. if a query joins a virtual table to itself?
+** If so perhaps we should move some of these to the cursor object.
+*/
+static const char *const fulltext_zStatement[MAX_STMT] = {
+ /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
+ /* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */
+ /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
+ /* CONTENT_DELETE */ "delete from %_content where docid = ?",
+ /* CONTENT_EXISTS */ "select docid from %_content limit 1",
+
+ /* BLOCK_INSERT */
+ "insert into %_segments (blockid, block) values (null, ?)",
+ /* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
+ /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
+ /* BLOCK_DELETE_ALL */ "delete from %_segments",
+
+ /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
+ /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
+ /* SEGDIR_SELECT_LEVEL */
+ "select start_block, leaves_end_block, root from %_segdir "
+ " where level = ? order by idx",
+ /* SEGDIR_SPAN */
+ "select min(start_block), max(end_block) from %_segdir "
+ " where level = ? and start_block <> 0",
+ /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
+
+ /* NOTE(shess): The first three results of the following two
+ ** statements must match.
+ */
+ /* SEGDIR_SELECT_SEGMENT */
+ "select start_block, leaves_end_block, root from %_segdir "
+ " where level = ? and idx = ?",
+ /* SEGDIR_SELECT_ALL */
+ "select start_block, leaves_end_block, root from %_segdir "
+ " order by level desc, idx asc",
+ /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
+ /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
+};
+
+/*
+** A connection to a fulltext index is an instance of the following
+** structure. The xCreate and xConnect methods create an instance
+** of this structure and xDestroy and xDisconnect free that instance.
+** All other methods receive a pointer to the structure as one of their
+** arguments.
+*/
+struct fulltext_vtab {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ sqlite3 *db; /* The database connection */
+ const char *zDb; /* logical database name */
+ const char *zName; /* virtual table name */
+ int nColumn; /* number of columns in virtual table */
+ char **azColumn; /* column names. malloced */
+ char **azContentColumn; /* column names in content table; malloced */
+ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
+
+ /* Precompiled statements which we keep as long as the table is
+ ** open.
+ */
+ sqlite3_stmt *pFulltextStatements[MAX_STMT];
+
+ /* Precompiled statements used for segment merges. We run a
+ ** separate select across the leaf level of each tree being merged.
+ */
+ sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
+ /* The statement used to prepare pLeafSelectStmts. */
+#define LEAF_SELECT \
+ "select block from %_segments where blockid between ? and ? order by blockid"
+
+ /* These buffer pending index updates during transactions.
+ ** nPendingData estimates the memory size of the pending data. It
+ ** doesn't include the hash-bucket overhead, nor any malloc
+ ** overhead. When nPendingData exceeds kPendingThreshold, the
+ ** buffer is flushed even before the transaction closes.
+ ** pendingTerms stores the data, and is only valid when nPendingData
+ ** is >=0 (nPendingData<0 means pendingTerms has not been
+ ** initialized). iPrevDocid is the last docid written, used to make
+ ** certain we're inserting in sorted order.
+ */
+ int nPendingData;
+#define kPendingThreshold (1*1024*1024)
+ sqlite_int64 iPrevDocid;
+ fts3Hash pendingTerms;
+};
+
+/*
+** When the core wants to do a query, it create a cursor using a
+** call to xOpen. This structure is an instance of a cursor. It
+** is destroyed by xClose.
+*/
+typedef struct fulltext_cursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
+ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
+ int eof; /* True if at End Of Results */
+ Fts3Expr *pExpr; /* Parsed MATCH query string */
+ Snippet snippet; /* Cached snippet for the current row */
+ int iColumn; /* Column being searched */
+ DataBuffer result; /* Doclist results from fulltextQuery */
+ DLReader reader; /* Result reader if result not empty */
+} fulltext_cursor;
+
+static fulltext_vtab *cursor_vtab(fulltext_cursor *c){
+ return (fulltext_vtab *) c->base.pVtab;
+}
+
+static const sqlite3_module fts3Module; /* forward declaration */
+
+/* Return a dynamically generated statement of the form
+ * insert into %_content (docid, ...) values (?, ...)
+ */
+static const char *contentInsertStatement(fulltext_vtab *v){
+ StringBuffer sb;
+ int i;
+
+ initStringBuffer(&sb);
+ append(&sb, "insert into %_content (docid, ");
+ appendList(&sb, v->nColumn, v->azContentColumn);
+ append(&sb, ") values (?");
+ for(i=0; i<v->nColumn; ++i)
+ append(&sb, ", ?");
+ append(&sb, ")");
+ return stringBufferData(&sb);
+}
+
+/* Return a dynamically generated statement of the form
+ * select <content columns> from %_content where docid = ?
+ */
+static const char *contentSelectStatement(fulltext_vtab *v){
+ StringBuffer sb;
+ initStringBuffer(&sb);
+ append(&sb, "SELECT ");
+ appendList(&sb, v->nColumn, v->azContentColumn);
+ append(&sb, " FROM %_content WHERE docid = ?");
+ return stringBufferData(&sb);
+}
+
+/* Return a dynamically generated statement of the form
+ * update %_content set [col_0] = ?, [col_1] = ?, ...
+ * where docid = ?
+ */
+static const char *contentUpdateStatement(fulltext_vtab *v){
+ StringBuffer sb;
+ int i;
+
+ initStringBuffer(&sb);
+ append(&sb, "update %_content set ");
+ for(i=0; i<v->nColumn; ++i) {
+ if( i>0 ){
+ append(&sb, ", ");
+ }
+ append(&sb, v->azContentColumn[i]);
+ append(&sb, " = ?");
+ }
+ append(&sb, " where docid = ?");
+ return stringBufferData(&sb);
+}
+
+/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
+** If the indicated statement has never been prepared, it is prepared
+** and cached, otherwise the cached version is reset.
+*/
+static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
+ sqlite3_stmt **ppStmt){
+ assert( iStmt<MAX_STMT );
+ if( v->pFulltextStatements[iStmt]==NULL ){
+ const char *zStmt;
+ int rc;
+ switch( iStmt ){
+ case CONTENT_INSERT_STMT:
+ zStmt = contentInsertStatement(v); break;
+ case CONTENT_SELECT_STMT:
+ zStmt = contentSelectStatement(v); break;
+ case CONTENT_UPDATE_STMT:
+ zStmt = contentUpdateStatement(v); break;
+ default:
+ zStmt = fulltext_zStatement[iStmt];
+ }
+ rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
+ zStmt);
+ if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
+ if( rc!=SQLITE_OK ) return rc;
+ } else {
+ int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ *ppStmt = v->pFulltextStatements[iStmt];
+ return SQLITE_OK;
+}
+
+/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
+** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
+** where we expect no results.
+*/
+static int sql_single_step(sqlite3_stmt *s){
+ int rc = sqlite3_step(s);
+ return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
+}
+
+/* Like sql_get_statement(), but for special replicated LEAF_SELECT
+** statements. idx -1 is a special case for an uncached version of
+** the statement (used in the optimize implementation).
+*/
+/* TODO(shess) Write version for generic statements and then share
+** that between the cached-statement functions.
+*/
+static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
+ sqlite3_stmt **ppStmt){
+ assert( idx>=-1 && idx<MERGE_COUNT );
+ if( idx==-1 ){
+ return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
+ }else if( v->pLeafSelectStmts[idx]==NULL ){
+ int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
+ LEAF_SELECT);
+ if( rc!=SQLITE_OK ) return rc;
+ }else{
+ int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ *ppStmt = v->pLeafSelectStmts[idx];
+ return SQLITE_OK;
+}
+
+/* insert into %_content (docid, ...) values ([docid], [pValues])
+** If the docid contains SQL NULL, then a unique docid will be
+** generated.
+*/
+static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
+ sqlite3_value **pValues){
+ sqlite3_stmt *s;
+ int i;
+ int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_value(s, 1, docid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ for(i=0; i<v->nColumn; ++i){
+ rc = sqlite3_bind_value(s, 2+i, pValues[i]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ return sql_single_step(s);
+}
+
+/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
+ * where docid = [iDocid] */
+static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
+ sqlite_int64 iDocid){
+ sqlite3_stmt *s;
+ int i;
+ int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ for(i=0; i<v->nColumn; ++i){
+ rc = sqlite3_bind_value(s, 1+i, pValues[i]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+static void freeStringArray(int nString, const char **pString){
+ int i;
+
+ for (i=0 ; i < nString ; ++i) {
+ if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
+ }
+ sqlite3_free((void *) pString);
+}
+
+/* select * from %_content where docid = [iDocid]
+ * The caller must delete the returned array and all strings in it.
+ * null fields will be NULL in the returned array.
+ *
+ * TODO: Perhaps we should return pointer/length strings here for consistency
+ * with other code which uses pointer/length. */
+static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
+ const char ***pValues){
+ sqlite3_stmt *s;
+ const char **values;
+ int i;
+ int rc;
+
+ *pValues = NULL;
+
+ rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iDocid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc!=SQLITE_ROW ) return rc;
+
+ values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
+ for(i=0; i<v->nColumn; ++i){
+ if( sqlite3_column_type(s, i)==SQLITE_NULL ){
+ values[i] = NULL;
+ }else{
+ values[i] = string_dup((char*)sqlite3_column_text(s, i));
+ }
+ }
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ){
+ *pValues = values;
+ return SQLITE_OK;
+ }
+
+ freeStringArray(v->nColumn, values);
+ return rc;
+}
+
+/* delete from %_content where docid = [iDocid ] */
+static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iDocid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
+** no rows exist, and any error in case of failure.
+*/
+static int content_exists(fulltext_vtab *v){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc!=SQLITE_ROW ) return rc;
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ) return SQLITE_ROW;
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ return rc;
+}
+
+/* insert into %_segments values ([pData])
+** returns assigned blockid in *piBlockid
+*/
+static int block_insert(fulltext_vtab *v, const char *pData, int nData,
+ sqlite_int64 *piBlockid){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ if( rc!=SQLITE_DONE ) return rc;
+
+ /* blockid column is an alias for rowid. */
+ *piBlockid = sqlite3_last_insert_rowid(v->db);
+ return SQLITE_OK;
+}
+
+/* delete from %_segments
+** where blockid between [iStartBlockid] and [iEndBlockid]
+**
+** Deletes the range of blocks, inclusive, used to delete the blocks
+** which form a segment.
+*/
+static int block_delete(fulltext_vtab *v,
+ sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iStartBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 2, iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
+** at iLevel. Returns SQLITE_DONE if there are no segments at
+** iLevel. Otherwise returns an error.
+*/
+static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ /* Should always get at least one row due to how max() works. */
+ if( rc==SQLITE_DONE ) return SQLITE_DONE;
+ if( rc!=SQLITE_ROW ) return rc;
+
+ /* NULL means that there were no inputs to max(). */
+ if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ return rc;
+ }
+
+ *pidx = sqlite3_column_int(s, 0);
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ if( rc!=SQLITE_DONE ) return rc;
+ return SQLITE_ROW;
+}
+
+/* insert into %_segdir values (
+** [iLevel], [idx],
+** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
+** [pRootData]
+** )
+*/
+static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
+ sqlite_int64 iStartBlockid,
+ sqlite_int64 iLeavesEndBlockid,
+ sqlite_int64 iEndBlockid,
+ const char *pRootData, int nRootData){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 2, idx);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 3, iStartBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 5, iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* Queries %_segdir for the block span of the segments in level
+** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
+** SQLITE_ROW if there are blocks, else an error.
+*/
+static int segdir_span(fulltext_vtab *v, int iLevel,
+ sqlite_int64 *piStartBlockid,
+ sqlite_int64 *piEndBlockid){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
+ if( rc!=SQLITE_ROW ) return rc;
+
+ /* This happens if all segments at this level are entirely inline. */
+ if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ int rc2 = sqlite3_step(s);
+ if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
+ return rc2;
+ }
+
+ *piStartBlockid = sqlite3_column_int64(s, 0);
+ *piEndBlockid = sqlite3_column_int64(s, 1);
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ if( rc!=SQLITE_DONE ) return rc;
+ return SQLITE_ROW;
+}
+
+/* Delete the segment blocks and segment directory records for all
+** segments at iLevel.
+*/
+static int segdir_delete(fulltext_vtab *v, int iLevel){
+ sqlite3_stmt *s;
+ sqlite_int64 iStartBlockid, iEndBlockid;
+ int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
+ if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
+
+ if( rc==SQLITE_ROW ){
+ rc = block_delete(v, iStartBlockid, iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ /* Delete the segment directory itself. */
+ rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* Delete entire fts index, SQLITE_OK on success, relevant error on
+** failure.
+*/
+static int segdir_delete_all(fulltext_vtab *v){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sql_single_step(s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* Returns SQLITE_OK with *pnSegments set to the number of entries in
+** %_segdir and *piMaxLevel set to the highest level which has a
+** segment. Otherwise returns the SQLite error which caused failure.
+*/
+static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ /* TODO(shess): This case should not be possible? Should stronger
+ ** measures be taken if it happens?
+ */
+ if( rc==SQLITE_DONE ){
+ *pnSegments = 0;
+ *piMaxLevel = 0;
+ return SQLITE_OK;
+ }
+ if( rc!=SQLITE_ROW ) return rc;
+
+ *pnSegments = sqlite3_column_int(s, 0);
+ *piMaxLevel = sqlite3_column_int(s, 1);
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ) return SQLITE_OK;
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ return rc;
+}
+
+/* TODO(shess) clearPendingTerms() is far down the file because
+** writeZeroSegment() is far down the file because LeafWriter is far
+** down the file. Consider refactoring the code to move the non-vtab
+** code above the vtab code so that we don't need this forward
+** reference.
+*/
+static int clearPendingTerms(fulltext_vtab *v);
+
+/*
+** Free the memory used to contain a fulltext_vtab structure.
+*/
+static void fulltext_vtab_destroy(fulltext_vtab *v){
+ int iStmt, i;
+
+ FTSTRACE(("FTS3 Destroy %p\n", v));
+ for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
+ if( v->pFulltextStatements[iStmt]!=NULL ){
+ sqlite3_finalize(v->pFulltextStatements[iStmt]);
+ v->pFulltextStatements[iStmt] = NULL;
+ }
+ }
+
+ for( i=0; i<MERGE_COUNT; i++ ){
+ if( v->pLeafSelectStmts[i]!=NULL ){
+ sqlite3_finalize(v->pLeafSelectStmts[i]);
+ v->pLeafSelectStmts[i] = NULL;
+ }
+ }
+
+ if( v->pTokenizer!=NULL ){
+ v->pTokenizer->pModule->xDestroy(v->pTokenizer);
+ v->pTokenizer = NULL;
+ }
+
+ clearPendingTerms(v);
+
+ sqlite3_free(v->azColumn);
+ for(i = 0; i < v->nColumn; ++i) {
+ sqlite3_free(v->azContentColumn[i]);
+ }
+ sqlite3_free(v->azContentColumn);
+ sqlite3_free(v);
+}
+
+/*
+** Token types for parsing the arguments to xConnect or xCreate.
+*/
+#define TOKEN_EOF 0 /* End of file */
+#define TOKEN_SPACE 1 /* Any kind of whitespace */
+#define TOKEN_ID 2 /* An identifier */
+#define TOKEN_STRING 3 /* A string literal */
+#define TOKEN_PUNCT 4 /* A single punctuation character */
+
+/*
+** If X is a character that can be used in an identifier then
+** ftsIdChar(X) will be true. Otherwise it is false.
+**
+** For ASCII, any character with the high-order bit set is
+** allowed in an identifier. For 7-bit characters,
+** isFtsIdChar[X] must be 1.
+**
+** Ticket #1066. the SQL standard does not allow '$' in the
+** middle of identfiers. But many SQL implementations do.
+** SQLite will allow '$' in identifiers for compatibility.
+** But the feature is undocumented.
+*/
+static const char isFtsIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+};
+#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
+
+
+/*
+** Return the length of the token that begins at z[0].
+** Store the token type in *tokenType before returning.
+*/
+static int ftsGetToken(const char *z, int *tokenType){
+ int i, c;
+ switch( *z ){
+ case 0: {
+ *tokenType = TOKEN_EOF;
+ return 0;
+ }
+ case ' ': case '\t': case '\n': case '\f': case '\r': {
+ for(i=1; safe_isspace(z[i]); i++){}
+ *tokenType = TOKEN_SPACE;
+ return i;
+ }
+ case '`':
+ case '\'':
+ case '"': {
+ int delim = z[0];
+ for(i=1; (c=z[i])!=0; i++){
+ if( c==delim ){
+ if( z[i+1]==delim ){
+ i++;
+ }else{
+ break;
+ }
+ }
+ }
+ *tokenType = TOKEN_STRING;
+ return i + (c!=0);
+ }
+ case '[': {
+ for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
+ *tokenType = TOKEN_ID;
+ return i;
+ }
+ default: {
+ if( !ftsIdChar(*z) ){
+ break;
+ }
+ for(i=1; ftsIdChar(z[i]); i++){}
+ *tokenType = TOKEN_ID;
+ return i;
+ }
+ }
+ *tokenType = TOKEN_PUNCT;
+ return 1;
+}
+
+/*
+** A token extracted from a string is an instance of the following
+** structure.
+*/
+typedef struct FtsToken {
+ const char *z; /* Pointer to token text. Not '\000' terminated */
+ short int n; /* Length of the token text in bytes. */
+} FtsToken;
+
+/*
+** Given a input string (which is really one of the argv[] parameters
+** passed into xConnect or xCreate) split the string up into tokens.
+** Return an array of pointers to '\000' terminated strings, one string
+** for each non-whitespace token.
+**
+** The returned array is terminated by a single NULL pointer.
+**
+** Space to hold the returned array is obtained from a single
+** malloc and should be freed by passing the return value to free().
+** The individual strings within the token list are all a part of
+** the single memory allocation and will all be freed at once.
+*/
+static char **tokenizeString(const char *z, int *pnToken){
+ int nToken = 0;
+ FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
+ int n = 1;
+ int e, i;
+ int totalSize = 0;
+ char **azToken;
+ char *zCopy;
+ while( n>0 ){
+ n = ftsGetToken(z, &e);
+ if( e!=TOKEN_SPACE ){
+ aToken[nToken].z = z;
+ aToken[nToken].n = n;
+ nToken++;
+ totalSize += n+1;
+ }
+ z += n;
+ }
+ azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
+ zCopy = (char*)&azToken[nToken];
+ nToken--;
+ for(i=0; i<nToken; i++){
+ azToken[i] = zCopy;
+ n = aToken[i].n;
+ memcpy(zCopy, aToken[i].z, n);
+ zCopy[n] = 0;
+ zCopy += n+1;
+ }
+ azToken[nToken] = 0;
+ sqlite3_free(aToken);
+ *pnToken = nToken;
+ return azToken;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** Examples:
+**
+** "abc" becomes abc
+** 'xyz' becomes xyz
+** [pqr] becomes pqr
+** `mno` becomes mno
+*/
+static void dequoteString(char *z){
+ int quote;
+ int i, j;
+ if( z==0 ) return;
+ quote = z[0];
+ switch( quote ){
+ case '\'': break;
+ case '"': break;
+ case '`': break; /* For MySQL compatibility */
+ case '[': quote = ']'; break; /* For MS SqlServer compatibility */
+ default: return;
+ }
+ for(i=1, j=0; z[i]; i++){
+ if( z[i]==quote ){
+ if( z[i+1]==quote ){
+ z[j++] = quote;
+ i++;
+ }else{
+ z[j++] = 0;
+ break;
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+}
+
+/*
+** The input azIn is a NULL-terminated list of tokens. Remove the first
+** token and all punctuation tokens. Remove the quotes from
+** around string literal tokens.
+**
+** Example:
+**
+** input: tokenize chinese ( 'simplifed' , 'mixed' )
+** output: chinese simplifed mixed
+**
+** Another example:
+**
+** input: delimiters ( '[' , ']' , '...' )
+** output: [ ] ...
+*/
+static void tokenListToIdList(char **azIn){
+ int i, j;
+ if( azIn ){
+ for(i=0, j=-1; azIn[i]; i++){
+ if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
+ dequoteString(azIn[i]);
+ if( j>=0 ){
+ azIn[j] = azIn[i];
+ }
+ j++;
+ }
+ }
+ azIn[j] = 0;
+ }
+}
+
+
+/*
+** Find the first alphanumeric token in the string zIn. Null-terminate
+** this token. Remove any quotation marks. And return a pointer to
+** the result.
+*/
+static char *firstToken(char *zIn, char **pzTail){
+ int n, ttype;
+ while(1){
+ n = ftsGetToken(zIn, &ttype);
+ if( ttype==TOKEN_SPACE ){
+ zIn += n;
+ }else if( ttype==TOKEN_EOF ){
+ *pzTail = zIn;
+ return 0;
+ }else{
+ zIn[n] = 0;
+ *pzTail = &zIn[1];
+ dequoteString(zIn);
+ return zIn;
+ }
+ }
+ /*NOTREACHED*/
+}
+
+/* Return true if...
+**
+** * s begins with the string t, ignoring case
+** * s is longer than t
+** * The first character of s beyond t is not a alphanumeric
+**
+** Ignore leading space in *s.
+**
+** To put it another way, return true if the first token of
+** s[] is t[].
+*/
+static int startsWith(const char *s, const char *t){
+ while( safe_isspace(*s) ){ s++; }
+ while( *t ){
+ if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
+ }
+ return *s!='_' && !safe_isalnum(*s);
+}
+
+/*
+** An instance of this structure defines the "spec" of a
+** full text index. This structure is populated by parseSpec
+** and use by fulltextConnect and fulltextCreate.
+*/
+typedef struct TableSpec {
+ const char *zDb; /* Logical database name */
+ const char *zName; /* Name of the full-text index */
+ int nColumn; /* Number of columns to be indexed */
+ char **azColumn; /* Original names of columns to be indexed */
+ char **azContentColumn; /* Column names for %_content */
+ char **azTokenizer; /* Name of tokenizer and its arguments */
+} TableSpec;
+
+/*
+** Reclaim all of the memory used by a TableSpec
+*/
+static void clearTableSpec(TableSpec *p) {
+ sqlite3_free(p->azColumn);
+ sqlite3_free(p->azContentColumn);
+ sqlite3_free(p->azTokenizer);
+}
+
+/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
+ *
+ * CREATE VIRTUAL TABLE email
+ * USING fts3(subject, body, tokenize mytokenizer(myarg))
+ *
+ * We return parsed information in a TableSpec structure.
+ *
+ */
+static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
+ char**pzErr){
+ int i, n;
+ char *z, *zDummy;
+ char **azArg;
+ const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
+
+ assert( argc>=3 );
+ /* Current interface:
+ ** argv[0] - module name
+ ** argv[1] - database name
+ ** argv[2] - table name
+ ** argv[3..] - columns, optionally followed by tokenizer specification
+ ** and snippet delimiters specification.
+ */
+
+ /* Make a copy of the complete argv[][] array in a single allocation.
+ ** The argv[][] array is read-only and transient. We can write to the
+ ** copy in order to modify things and the copy is persistent.
+ */
+ CLEAR(pSpec);
+ for(i=n=0; i<argc; i++){
+ n += strlen(argv[i]) + 1;
+ }
+ azArg = sqlite3_malloc( sizeof(char*)*argc + n );
+ if( azArg==0 ){
+ return SQLITE_NOMEM;
+ }
+ z = (char*)&azArg[argc];
+ for(i=0; i<argc; i++){
+ azArg[i] = z;
+ strcpy(z, argv[i]);
+ z += strlen(z)+1;
+ }
+
+ /* Identify the column names and the tokenizer and delimiter arguments
+ ** in the argv[][] array.
+ */
+ pSpec->zDb = azArg[1];
+ pSpec->zName = azArg[2];
+ pSpec->nColumn = 0;
+ pSpec->azColumn = azArg;
+ zTokenizer = "tokenize simple";
+ for(i=3; i<argc; ++i){
+ if( startsWith(azArg[i],"tokenize") ){
+ zTokenizer = azArg[i];
+ }else{
+ z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
+ pSpec->nColumn++;
+ }
+ }
+ if( pSpec->nColumn==0 ){
+ azArg[0] = "content";
+ pSpec->nColumn = 1;
+ }
+
+ /*
+ ** Construct the list of content column names.
+ **
+ ** Each content column name will be of the form cNNAAAA
+ ** where NN is the column number and AAAA is the sanitized
+ ** column name. "sanitized" means that special characters are
+ ** converted to "_". The cNN prefix guarantees that all column
+ ** names are unique.
+ **
+ ** The AAAA suffix is not strictly necessary. It is included
+ ** for the convenience of people who might examine the generated
+ ** %_content table and wonder what the columns are used for.
+ */
+ pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
+ if( pSpec->azContentColumn==0 ){
+ clearTableSpec(pSpec);
+ return SQLITE_NOMEM;
+ }
+ for(i=0; i<pSpec->nColumn; i++){
+ char *p;
+ pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
+ for (p = pSpec->azContentColumn[i]; *p ; ++p) {
+ if( !safe_isalnum(*p) ) *p = '_';
+ }
+ }
+
+ /*
+ ** Parse the tokenizer specification string.
+ */
+ pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
+ tokenListToIdList(pSpec->azTokenizer);
+
+ return SQLITE_OK;
+}
+
+/*
+** Generate a CREATE TABLE statement that describes the schema of
+** the virtual table. Return a pointer to this schema string.
+**
+** Space is obtained from sqlite3_mprintf() and should be freed
+** using sqlite3_free().
+*/
+static char *fulltextSchema(
+ int nColumn, /* Number of columns */
+ const char *const* azColumn, /* List of columns */
+ const char *zTableName /* Name of the table */
+){
+ int i;
+ char *zSchema, *zNext;
+ const char *zSep = "(";
+ zSchema = sqlite3_mprintf("CREATE TABLE x");
+ for(i=0; i<nColumn; i++){
+ zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
+ sqlite3_free(zSchema);
+ zSchema = zNext;
+ zSep = ",";
+ }
+ zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
+ sqlite3_free(zSchema);
+ zSchema = zNext;
+ zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
+ sqlite3_free(zSchema);
+ return zNext;
+}
+
+/*
+** Build a new sqlite3_vtab structure that will describe the
+** fulltext index defined by spec.
+*/
+static int constructVtab(
+ sqlite3 *db, /* The SQLite database connection */
+ fts3Hash *pHash, /* Hash table containing tokenizers */
+ TableSpec *spec, /* Parsed spec information from parseSpec() */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ int rc;
+ int n;
+ fulltext_vtab *v = 0;
+ const sqlite3_tokenizer_module *m = NULL;
+ char *schema;
+
+ char const *zTok; /* Name of tokenizer to use for this fts table */
+ int nTok; /* Length of zTok, including nul terminator */
+
+ v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
+ if( v==0 ) return SQLITE_NOMEM;
+ CLEAR(v);
+ /* sqlite will initialize v->base */
+ v->db = db;
+ v->zDb = spec->zDb; /* Freed when azColumn is freed */
+ v->zName = spec->zName; /* Freed when azColumn is freed */
+ v->nColumn = spec->nColumn;
+ v->azContentColumn = spec->azContentColumn;
+ spec->azContentColumn = 0;
+ v->azColumn = spec->azColumn;
+ spec->azColumn = 0;
+
+ if( spec->azTokenizer==0 ){
+ return SQLITE_NOMEM;
+ }
+
+ zTok = spec->azTokenizer[0];
+ if( !zTok ){
+ zTok = "simple";
+ }
+ nTok = strlen(zTok)+1;
+
+ m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
+ if( !m ){
+ *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
+ rc = SQLITE_ERROR;
+ goto err;
+ }
+
+ for(n=0; spec->azTokenizer[n]; n++){}
+ if( n ){
+ rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
+ &v->pTokenizer);
+ }else{
+ rc = m->xCreate(0, 0, &v->pTokenizer);
+ }
+ if( rc!=SQLITE_OK ) goto err;
+ v->pTokenizer->pModule = m;
+
+ /* TODO: verify the existence of backing tables foo_content, foo_term */
+
+ schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
+ spec->zName);
+ rc = sqlite3_declare_vtab(db, schema);
+ sqlite3_free(schema);
+ if( rc!=SQLITE_OK ) goto err;
+
+ memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
+
+ /* Indicate that the buffer is not live. */
+ v->nPendingData = -1;
+
+ *ppVTab = &v->base;
+ FTSTRACE(("FTS3 Connect %p\n", v));
+
+ return rc;
+
+err:
+ fulltext_vtab_destroy(v);
+ return rc;
+}
+
+static int fulltextConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab,
+ char **pzErr
+){
+ TableSpec spec;
+ int rc = parseSpec(&spec, argc, argv, pzErr);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
+ clearTableSpec(&spec);
+ return rc;
+}
+
+/* The %_content table holds the text of each document, with
+** the docid column exposed as the SQLite rowid for the table.
+*/
+/* TODO(shess) This comment needs elaboration to match the updated
+** code. Work it into the top-of-file comment at that time.
+*/
+static int fulltextCreate(sqlite3 *db, void *pAux,
+ int argc, const char * const *argv,
+ sqlite3_vtab **ppVTab, char **pzErr){
+ int rc;
+ TableSpec spec;
+ StringBuffer schema;
+ FTSTRACE(("FTS3 Create\n"));
+
+ rc = parseSpec(&spec, argc, argv, pzErr);
+ if( rc!=SQLITE_OK ) return rc;
+
+ initStringBuffer(&schema);
+ append(&schema, "CREATE TABLE %_content(");
+ append(&schema, " docid INTEGER PRIMARY KEY,");
+ appendList(&schema, spec.nColumn, spec.azContentColumn);
+ append(&schema, ")");
+ rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
+ stringBufferDestroy(&schema);
+ if( rc!=SQLITE_OK ) goto out;
+
+ rc = sql_exec(db, spec.zDb, spec.zName,
+ "create table %_segments("
+ " blockid INTEGER PRIMARY KEY,"
+ " block blob"
+ ");"
+ );
+ if( rc!=SQLITE_OK ) goto out;
+
+ rc = sql_exec(db, spec.zDb, spec.zName,
+ "create table %_segdir("
+ " level integer,"
+ " idx integer,"
+ " start_block integer,"
+ " leaves_end_block integer,"
+ " end_block integer,"
+ " root blob,"
+ " primary key(level, idx)"
+ ");");
+ if( rc!=SQLITE_OK ) goto out;
+
+ rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
+
+out:
+ clearTableSpec(&spec);
+ return rc;
+}
+
+/* Decide how to handle an SQL query. */
+static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
+ fulltext_vtab *v = (fulltext_vtab *)pVTab;
+ int i;
+ FTSTRACE(("FTS3 BestIndex\n"));
+
+ for(i=0; i<pInfo->nConstraint; ++i){
+ const struct sqlite3_index_constraint *pConstraint;
+ pConstraint = &pInfo->aConstraint[i];
+ if( pConstraint->usable ) {
+ if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
+ pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ pInfo->idxNum = QUERY_DOCID; /* lookup by docid */
+ FTSTRACE(("FTS3 QUERY_DOCID\n"));
+ } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
+ pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
+ /* full-text search */
+ pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
+ FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
+ } else continue;
+
+ pInfo->aConstraintUsage[i].argvIndex = 1;
+ pInfo->aConstraintUsage[i].omit = 1;
+
+ /* An arbitrary value for now.
+ * TODO: Perhaps docid matches should be considered cheaper than
+ * full-text searches. */
+ pInfo->estimatedCost = 1.0;
+
+ return SQLITE_OK;
+ }
+ }
+ pInfo->idxNum = QUERY_GENERIC;
+ return SQLITE_OK;
+}
+
+static int fulltextDisconnect(sqlite3_vtab *pVTab){
+ FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
+ fulltext_vtab_destroy((fulltext_vtab *)pVTab);
+ return SQLITE_OK;
+}
+
+static int fulltextDestroy(sqlite3_vtab *pVTab){
+ fulltext_vtab *v = (fulltext_vtab *)pVTab;
+ int rc;
+
+ FTSTRACE(("FTS3 Destroy %p\n", pVTab));
+ rc = sql_exec(v->db, v->zDb, v->zName,
+ "drop table if exists %_content;"
+ "drop table if exists %_segments;"
+ "drop table if exists %_segdir;"
+ );
+ if( rc!=SQLITE_OK ) return rc;
+
+ fulltext_vtab_destroy((fulltext_vtab *)pVTab);
+ return SQLITE_OK;
+}
+
+static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ fulltext_cursor *c;
+
+ c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
+ if( c ){
+ memset(c, 0, sizeof(fulltext_cursor));
+ /* sqlite will initialize c->base */
+ *ppCursor = &c->base;
+ FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
+ return SQLITE_OK;
+ }else{
+ return SQLITE_NOMEM;
+ }
+}
+
+/* Free all of the dynamically allocated memory held by the
+** Snippet
+*/
+static void snippetClear(Snippet *p){
+ sqlite3_free(p->aMatch);
+ sqlite3_free(p->zOffset);
+ sqlite3_free(p->zSnippet);
+ CLEAR(p);
+}
+
+/*
+** Append a single entry to the p->aMatch[] log.
+*/
+static void snippetAppendMatch(
+ Snippet *p, /* Append the entry to this snippet */
+ int iCol, int iTerm, /* The column and query term */
+ int iToken, /* Matching token in document */
+ int iStart, int nByte /* Offset and size of the match */
+){
+ int i;
+ struct snippetMatch *pMatch;
+ if( p->nMatch+1>=p->nAlloc ){
+ p->nAlloc = p->nAlloc*2 + 10;
+ p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
+ if( p->aMatch==0 ){
+ p->nMatch = 0;
+ p->nAlloc = 0;
+ return;
+ }
+ }
+ i = p->nMatch++;
+ pMatch = &p->aMatch[i];
+ pMatch->iCol = iCol;
+ pMatch->iTerm = iTerm;
+ pMatch->iToken = iToken;
+ pMatch->iStart = iStart;
+ pMatch->nByte = nByte;
+}
+
+/*
+** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
+*/
+#define FTS3_ROTOR_SZ (32)
+#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
+
+/*
+** Function to iterate through the tokens of a compiled expression.
+**
+** Except, skip all tokens on the right-hand side of a NOT operator.
+** This function is used to find tokens as part of snippet and offset
+** generation and we do nt want snippets and offsets to report matches
+** for tokens on the RHS of a NOT.
+*/
+static int fts3NextExprToken(Fts3Expr **ppExpr, int *piToken){
+ Fts3Expr *p = *ppExpr;
+ int iToken = *piToken;
+ if( iToken<0 ){
+ /* In this case the expression p is the root of an expression tree.
+ ** Move to the first token in the expression tree.
+ */
+ while( p->pLeft ){
+ p = p->pLeft;
+ }
+ iToken = 0;
+ }else{
+ assert(p && p->eType==FTSQUERY_PHRASE );
+ if( iToken<(p->pPhrase->nToken-1) ){
+ iToken++;
+ }else{
+ iToken = 0;
+ while( p->pParent && p->pParent->pLeft!=p ){
+ assert( p->pParent->pRight==p );
+ p = p->pParent;
+ }
+ p = p->pParent;
+ if( p ){
+ assert( p->pRight!=0 );
+ p = p->pRight;
+ while( p->pLeft ){
+ p = p->pLeft;
+ }
+ }
+ }
+ }
+
+ *ppExpr = p;
+ *piToken = iToken;
+ return p?1:0;
+}
+
+/*
+** Return TRUE if the expression node pExpr is located beneath the
+** RHS of a NOT operator.
+*/
+static int fts3ExprBeneathNot(Fts3Expr *p){
+ Fts3Expr *pParent;
+ while( p ){
+ pParent = p->pParent;
+ if( pParent && pParent->eType==FTSQUERY_NOT && pParent->pRight==p ){
+ return 1;
+ }
+ p = pParent;
+ }
+ return 0;
+}
+
+/*
+** Add entries to pSnippet->aMatch[] for every match that occurs against
+** document zDoc[0..nDoc-1] which is stored in column iColumn.
+*/
+static void snippetOffsetsOfColumn(
+ fulltext_cursor *pCur, /* The fulltest search cursor */
+ Snippet *pSnippet, /* The Snippet object to be filled in */
+ int iColumn, /* Index of fulltext table column */
+ const char *zDoc, /* Text of the fulltext table column */
+ int nDoc /* Length of zDoc in bytes */
+){
+ const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
+ sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
+ sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
+ fulltext_vtab *pVtab; /* The full text index */
+ int nColumn; /* Number of columns in the index */
+ int i, j; /* Loop counters */
+ int rc; /* Return code */
+ unsigned int match, prevMatch; /* Phrase search bitmasks */
+ const char *zToken; /* Next token from the tokenizer */
+ int nToken; /* Size of zToken */
+ int iBegin, iEnd, iPos; /* Offsets of beginning and end */
+
+ /* The following variables keep a circular buffer of the last
+ ** few tokens */
+ unsigned int iRotor = 0; /* Index of current token */
+ int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */
+ int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */
+
+ pVtab = cursor_vtab(pCur);
+ nColumn = pVtab->nColumn;
+ pTokenizer = pVtab->pTokenizer;
+ pTModule = pTokenizer->pModule;
+ rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
+ if( rc ) return;
+ pTCursor->pTokenizer = pTokenizer;
+
+ prevMatch = 0;
+ while( !pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos) ){
+ Fts3Expr *pIter = pCur->pExpr;
+ int iIter = -1;
+ iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
+ iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
+ match = 0;
+ for(i=0; i<(FTS3_ROTOR_SZ-1) && fts3NextExprToken(&pIter, &iIter); i++){
+ int nPhrase; /* Number of tokens in current phrase */
+ struct PhraseToken *pToken; /* Current token */
+ int iCol; /* Column index */
+
+ if( fts3ExprBeneathNot(pIter) ) continue;
+ nPhrase = pIter->pPhrase->nToken;
+ pToken = &pIter->pPhrase->aToken[iIter];
+ iCol = pIter->pPhrase->iColumn;
+ if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
+ if( pToken->n>nToken ) continue;
+ if( !pToken->isPrefix && pToken->n<nToken ) continue;
+ assert( pToken->n<=nToken );
+ if( memcmp(pToken->z, zToken, pToken->n) ) continue;
+ if( iIter>0 && (prevMatch & (1<<i))==0 ) continue;
+ match |= 1<<i;
+ if( i==(FTS3_ROTOR_SZ-2) || nPhrase==iIter+1 ){
+ for(j=nPhrase-1; j>=0; j--){
+ int k = (iRotor-j) & FTS3_ROTOR_MASK;
+ snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
+ iRotorBegin[k], iRotorLen[k]);
+ }
+ }
+ }
+ prevMatch = match<<1;
+ iRotor++;
+ }
+ pTModule->xClose(pTCursor);
+}
+
+/*
+** Remove entries from the pSnippet structure to account for the NEAR
+** operator. When this is called, pSnippet contains the list of token
+** offsets produced by treating all NEAR operators as AND operators.
+** This function removes any entries that should not be present after
+** accounting for the NEAR restriction. For example, if the queried
+** document is:
+**
+** "A B C D E A"
+**
+** and the query is:
+**
+** A NEAR/0 E
+**
+** then when this function is called the Snippet contains token offsets
+** 0, 4 and 5. This function removes the "0" entry (because the first A
+** is not near enough to an E).
+**
+** When this function is called, the value pointed to by parameter piLeft is
+** the integer id of the left-most token in the expression tree headed by
+** pExpr. This function increments *piLeft by the total number of tokens
+** in the expression tree headed by pExpr.
+**
+** Return 1 if any trimming occurs. Return 0 if no trimming is required.
+*/
+static int trimSnippetOffsets(
+ Fts3Expr *pExpr, /* The search expression */
+ Snippet *pSnippet, /* The set of snippet offsets to be trimmed */
+ int *piLeft /* Index of left-most token in pExpr */
+){
+ if( pExpr ){
+ if( trimSnippetOffsets(pExpr->pLeft, pSnippet, piLeft) ){
+ return 1;
+ }
+
+ switch( pExpr->eType ){
+ case FTSQUERY_PHRASE:
+ *piLeft += pExpr->pPhrase->nToken;
+ break;
+ case FTSQUERY_NEAR: {
+ /* The right-hand-side of a NEAR operator is always a phrase. The
+ ** left-hand-side is either a phrase or an expression tree that is
+ ** itself headed by a NEAR operator. The following initializations
+ ** set local variable iLeft to the token number of the left-most
+ ** token in the right-hand phrase, and iRight to the right most
+ ** token in the same phrase. For example, if we had:
+ **
+ ** <col> MATCH '"abc def" NEAR/2 "ghi jkl"'
+ **
+ ** then iLeft will be set to 2 (token number of ghi) and nToken will
+ ** be set to 4.
+ */
+ Fts3Expr *pLeft = pExpr->pLeft;
+ Fts3Expr *pRight = pExpr->pRight;
+ int iLeft = *piLeft;
+ int nNear = pExpr->nNear;
+ int nToken = pRight->pPhrase->nToken;
+ int jj, ii;
+ if( pLeft->eType==FTSQUERY_NEAR ){
+ pLeft = pLeft->pRight;
+ }
+ assert( pRight->eType==FTSQUERY_PHRASE );
+ assert( pLeft->eType==FTSQUERY_PHRASE );
+ nToken += pLeft->pPhrase->nToken;
+
+ for(ii=0; ii<pSnippet->nMatch; ii++){
+ struct snippetMatch *p = &pSnippet->aMatch[ii];
+ if( p->iTerm==iLeft ){
+ int isOk = 0;
+ /* Snippet ii is an occurence of query term iLeft in the document.
+ ** It occurs at position (p->iToken) of the document. We now
+ ** search for an instance of token (iLeft-1) somewhere in the
+ ** range (p->iToken - nNear)...(p->iToken + nNear + nToken) within
+ ** the set of snippetMatch structures. If one is found, proceed.
+ ** If one cannot be found, then remove snippets ii..(ii+N-1)
+ ** from the matching snippets, where N is the number of tokens
+ ** in phrase pRight->pPhrase.
+ */
+ for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
+ struct snippetMatch *p2 = &pSnippet->aMatch[jj];
+ if( p2->iTerm==(iLeft-1) ){
+ if( p2->iToken>=(p->iToken-nNear-1)
+ && p2->iToken<(p->iToken+nNear+nToken)
+ ){
+ isOk = 1;
+ }
+ }
+ }
+ if( !isOk ){
+ int kk;
+ for(kk=0; kk<pRight->pPhrase->nToken; kk++){
+ pSnippet->aMatch[kk+ii].iTerm = -2;
+ }
+ return 1;
+ }
+ }
+ if( p->iTerm==(iLeft-1) ){
+ int isOk = 0;
+ for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
+ struct snippetMatch *p2 = &pSnippet->aMatch[jj];
+ if( p2->iTerm==iLeft ){
+ if( p2->iToken<=(p->iToken+nNear+1)
+ && p2->iToken>(p->iToken-nNear-nToken)
+ ){
+ isOk = 1;
+ }
+ }
+ }
+ if( !isOk ){
+ int kk;
+ for(kk=0; kk<pLeft->pPhrase->nToken; kk++){
+ pSnippet->aMatch[ii-kk].iTerm = -2;
+ }
+ return 1;
+ }
+ }
+ }
+ break;
+ }
+ }
+
+ if( trimSnippetOffsets(pExpr->pRight, pSnippet, piLeft) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Compute all offsets for the current row of the query.
+** If the offsets have already been computed, this routine is a no-op.
+*/
+static void snippetAllOffsets(fulltext_cursor *p){
+ int nColumn;
+ int iColumn, i;
+ int iFirst, iLast;
+ int iTerm = 0;
+ fulltext_vtab *pFts = cursor_vtab(p);
+
+ if( p->snippet.nMatch || p->pExpr==0 ){
+ return;
+ }
+ nColumn = pFts->nColumn;
+ iColumn = (p->iCursorType - QUERY_FULLTEXT);
+ if( iColumn<0 || iColumn>=nColumn ){
+ /* Look for matches over all columns of the full-text index */
+ iFirst = 0;
+ iLast = nColumn-1;
+ }else{
+ /* Look for matches in the iColumn-th column of the index only */
+ iFirst = iColumn;
+ iLast = iColumn;
+ }
+ for(i=iFirst; i<=iLast; i++){
+ const char *zDoc;
+ int nDoc;
+ zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
+ nDoc = sqlite3_column_bytes(p->pStmt, i+1);
+ snippetOffsetsOfColumn(p, &p->snippet, i, zDoc, nDoc);
+ }
+
+ while( trimSnippetOffsets(p->pExpr, &p->snippet, &iTerm) ){
+ iTerm = 0;
+ }
+}
+
+/*
+** Convert the information in the aMatch[] array of the snippet
+** into the string zOffset[0..nOffset-1]. This string is used as
+** the return of the SQL offsets() function.
+*/
+static void snippetOffsetText(Snippet *p){
+ int i;
+ int cnt = 0;
+ StringBuffer sb;
+ char zBuf[200];
+ if( p->zOffset ) return;
+ initStringBuffer(&sb);
+ for(i=0; i<p->nMatch; i++){
+ struct snippetMatch *pMatch = &p->aMatch[i];
+ if( pMatch->iTerm>=0 ){
+ /* If snippetMatch.iTerm is less than 0, then the match was
+ ** discarded as part of processing the NEAR operator (see the
+ ** trimSnippetOffsetsForNear() function for details). Ignore
+ ** it in this case
+ */
+ zBuf[0] = ' ';
+ sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
+ pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
+ append(&sb, zBuf);
+ cnt++;
+ }
+ }
+ p->zOffset = stringBufferData(&sb);
+ p->nOffset = stringBufferLength(&sb);
+}
+
+/*
+** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
+** of matching words some of which might be in zDoc. zDoc is column
+** number iCol.
+**
+** iBreak is suggested spot in zDoc where we could begin or end an
+** excerpt. Return a value similar to iBreak but possibly adjusted
+** to be a little left or right so that the break point is better.
+*/
+static int wordBoundary(
+ int iBreak, /* The suggested break point */
+ const char *zDoc, /* Document text */
+ int nDoc, /* Number of bytes in zDoc[] */
+ struct snippetMatch *aMatch, /* Matching words */
+ int nMatch, /* Number of entries in aMatch[] */
+ int iCol /* The column number for zDoc[] */
+){
+ int i;
+ if( iBreak<=10 ){
+ return 0;
+ }
+ if( iBreak>=nDoc-10 ){
+ return nDoc;
+ }
+ for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
+ while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
+ if( i<nMatch ){
+ if( aMatch[i].iStart<iBreak+10 ){
+ return aMatch[i].iStart;
+ }
+ if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
+ return aMatch[i-1].iStart;
+ }
+ }
+ for(i=1; i<=10; i++){
+ if( safe_isspace(zDoc[iBreak-i]) ){
+ return iBreak - i + 1;
+ }
+ if( safe_isspace(zDoc[iBreak+i]) ){
+ return iBreak + i + 1;
+ }
+ }
+ return iBreak;
+}
+
+
+
+/*
+** Allowed values for Snippet.aMatch[].snStatus
+*/
+#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
+#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
+
+/*
+** Generate the text of a snippet.
+*/
+static void snippetText(
+ fulltext_cursor *pCursor, /* The cursor we need the snippet for */
+ const char *zStartMark, /* Markup to appear before each match */
+ const char *zEndMark, /* Markup to appear after each match */
+ const char *zEllipsis /* Ellipsis mark */
+){
+ int i, j;
+ struct snippetMatch *aMatch;
+ int nMatch;
+ int nDesired;
+ StringBuffer sb;
+ int tailCol;
+ int tailOffset;
+ int iCol;
+ int nDoc;
+ const char *zDoc;
+ int iStart, iEnd;
+ int tailEllipsis = 0;
+ int iMatch;
+
+
+ sqlite3_free(pCursor->snippet.zSnippet);
+ pCursor->snippet.zSnippet = 0;
+ aMatch = pCursor->snippet.aMatch;
+ nMatch = pCursor->snippet.nMatch;
+ initStringBuffer(&sb);
+
+ for(i=0; i<nMatch; i++){
+ aMatch[i].snStatus = SNIPPET_IGNORE;
+ }
+ nDesired = 0;
+ for(i=0; i<FTS3_ROTOR_SZ; i++){
+ for(j=0; j<nMatch; j++){
+ if( aMatch[j].iTerm==i ){
+ aMatch[j].snStatus = SNIPPET_DESIRED;
+ nDesired++;
+ break;
+ }
+ }
+ }
+
+ iMatch = 0;
+ tailCol = -1;
+ tailOffset = 0;
+ for(i=0; i<nMatch && nDesired>0; i++){
+ if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
+ nDesired--;
+ iCol = aMatch[i].iCol;
+ zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
+ nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
+ iStart = aMatch[i].iStart - 40;
+ iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
+ if( iStart<=10 ){
+ iStart = 0;
+ }
+ if( iCol==tailCol && iStart<=tailOffset+20 ){
+ iStart = tailOffset;
+ }
+ if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
+ trimWhiteSpace(&sb);
+ appendWhiteSpace(&sb);
+ append(&sb, zEllipsis);
+ appendWhiteSpace(&sb);
+ }
+ iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
+ iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
+ if( iEnd>=nDoc-10 ){
+ iEnd = nDoc;
+ tailEllipsis = 0;
+ }else{
+ tailEllipsis = 1;
+ }
+ while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
+ while( iStart<iEnd ){
+ while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
+ && aMatch[iMatch].iCol<=iCol ){
+ iMatch++;
+ }
+ if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
+ && aMatch[iMatch].iCol==iCol ){
+ nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
+ iStart = aMatch[iMatch].iStart;
+ append(&sb, zStartMark);
+ nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
+ append(&sb, zEndMark);
+ iStart += aMatch[iMatch].nByte;
+ for(j=iMatch+1; j<nMatch; j++){
+ if( aMatch[j].iTerm==aMatch[iMatch].iTerm
+ && aMatch[j].snStatus==SNIPPET_DESIRED ){
+ nDesired--;
+ aMatch[j].snStatus = SNIPPET_IGNORE;
+ }
+ }
+ }else{
+ nappend(&sb, &zDoc[iStart], iEnd - iStart);
+ iStart = iEnd;
+ }
+ }
+ tailCol = iCol;
+ tailOffset = iEnd;
+ }
+ trimWhiteSpace(&sb);
+ if( tailEllipsis ){
+ appendWhiteSpace(&sb);
+ append(&sb, zEllipsis);
+ }
+ pCursor->snippet.zSnippet = stringBufferData(&sb);
+ pCursor->snippet.nSnippet = stringBufferLength(&sb);
+}
+
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
*/
-int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
+static int fulltextClose(sqlite3_vtab_cursor *pCursor){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ FTSTRACE(("FTS3 Close %p\n", c));
+ sqlite3_finalize(c->pStmt);
+ sqlite3Fts3ExprFree(c->pExpr);
+ snippetClear(&c->snippet);
+ if( c->result.nData!=0 ){
+ dlrDestroy(&c->reader);
+ }
+ dataBufferDestroy(&c->result);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+
+static int fulltextNext(sqlite3_vtab_cursor *pCursor){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ int rc;
+
+ FTSTRACE(("FTS3 Next %p\n", pCursor));
+ snippetClear(&c->snippet);
+ if( c->iCursorType < QUERY_FULLTEXT ){
+ /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
+ rc = sqlite3_step(c->pStmt);
+ switch( rc ){
+ case SQLITE_ROW:
+ c->eof = 0;
+ return SQLITE_OK;
+ case SQLITE_DONE:
+ c->eof = 1;
+ return SQLITE_OK;
+ default:
+ c->eof = 1;
+ return rc;
+ }
+ } else { /* full-text query */
+ rc = sqlite3_reset(c->pStmt);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
+ c->eof = 1;
+ return SQLITE_OK;
+ }
+ rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
+ dlrStep(&c->reader);
+ if( rc!=SQLITE_OK ) return rc;
+ /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
+ rc = sqlite3_step(c->pStmt);
+ if( rc==SQLITE_ROW ){ /* the case we expect */
+ c->eof = 0;
+ return SQLITE_OK;
+ }
+ /* an error occurred; abort */
+ return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
+ }
+}
+
+
+/* TODO(shess) If we pushed LeafReader to the top of the file, or to
+** another file, term_select() could be pushed above
+** docListOfTerm().
+*/
+static int termSelect(fulltext_vtab *v, int iColumn,
+ const char *pTerm, int nTerm, int isPrefix,
+ DocListType iType, DataBuffer *out);
+
+/*
+** Return a DocList corresponding to the phrase *pPhrase.
+**
+** The resulting DL_DOCIDS doclist is stored in pResult, which is
+** overwritten.
+*/
+static int docListOfPhrase(
+ fulltext_vtab *pTab, /* The full text index */
+ Fts3Phrase *pPhrase, /* Phrase to return a doclist corresponding to */
+ DocListType eListType, /* Either DL_DOCIDS or DL_POSITIONS */
+ DataBuffer *pResult /* Write the result here */
+){
+ int ii;
+ int rc = SQLITE_OK;
+ int iCol = pPhrase->iColumn;
+ DocListType eType = eListType;
+ assert( eType==DL_POSITIONS || eType==DL_DOCIDS );
+ if( pPhrase->nToken>1 ){
+ eType = DL_POSITIONS;
+ }
+
+ /* This code should never be called with buffered updates. */
+ assert( pTab->nPendingData<0 );
+
+ for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
+ DataBuffer tmp;
+ struct PhraseToken *p = &pPhrase->aToken[ii];
+ rc = termSelect(pTab, iCol, p->z, p->n, p->isPrefix, eType, &tmp);
+ if( rc==SQLITE_OK ){
+ if( ii==0 ){
+ *pResult = tmp;
+ }else{
+ DataBuffer res = *pResult;
+ dataBufferInit(pResult, 0);
+ if( ii==(pPhrase->nToken-1) ){
+ eType = eListType;
+ }
+ docListPhraseMerge(
+ res.pData, res.nData, tmp.pData, tmp.nData, 0, 0, eType, pResult
+ );
+ dataBufferDestroy(&res);
+ dataBufferDestroy(&tmp);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Evaluate the full-text expression pExpr against fts3 table pTab. Write
+** the results into pRes.
+*/
+static int evalFts3Expr(
+ fulltext_vtab *pTab, /* Fts3 Virtual table object */
+ Fts3Expr *pExpr, /* Parsed fts3 expression */
+ DataBuffer *pRes /* OUT: Write results of the expression here */
+){
+ int rc = SQLITE_OK;
+
+ /* Initialize the output buffer. If this is an empty query (pExpr==0),
+ ** this is all that needs to be done. Empty queries produce empty
+ ** result sets.
+ */
+ dataBufferInit(pRes, 0);
+
+ if( pExpr ){
+ if( pExpr->eType==FTSQUERY_PHRASE ){
+ DocListType eType = DL_DOCIDS;
+ if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
+ eType = DL_POSITIONS;
+ }
+ rc = docListOfPhrase(pTab, pExpr->pPhrase, eType, pRes);
+ }else{
+ DataBuffer lhs;
+ DataBuffer rhs;
+
+ dataBufferInit(&rhs, 0);
+ if( SQLITE_OK==(rc = evalFts3Expr(pTab, pExpr->pLeft, &lhs))
+ && SQLITE_OK==(rc = evalFts3Expr(pTab, pExpr->pRight, &rhs))
+ ){
+ switch( pExpr->eType ){
+ case FTSQUERY_NEAR: {
+ int nToken;
+ Fts3Expr *pLeft;
+ DocListType eType = DL_DOCIDS;
+ if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
+ eType = DL_POSITIONS;
+ }
+ pLeft = pExpr->pLeft;
+ while( pLeft->eType==FTSQUERY_NEAR ){
+ pLeft=pLeft->pRight;
+ }
+ assert( pExpr->pRight->eType==FTSQUERY_PHRASE );
+ assert( pLeft->eType==FTSQUERY_PHRASE );
+ nToken = pLeft->pPhrase->nToken + pExpr->pRight->pPhrase->nToken;
+ docListPhraseMerge(lhs.pData, lhs.nData, rhs.pData, rhs.nData,
+ pExpr->nNear+1, nToken, eType, pRes
+ );
+ break;
+ }
+ case FTSQUERY_NOT: {
+ docListExceptMerge(lhs.pData, lhs.nData, rhs.pData, rhs.nData,pRes);
+ break;
+ }
+ case FTSQUERY_AND: {
+ docListAndMerge(lhs.pData, lhs.nData, rhs.pData, rhs.nData, pRes);
+ break;
+ }
+ case FTSQUERY_OR: {
+ docListOrMerge(lhs.pData, lhs.nData, rhs.pData, rhs.nData, pRes);
+ break;
+ }
+ }
+ }
+ dataBufferDestroy(&lhs);
+ dataBufferDestroy(&rhs);
+ }
+ }
+
+ return rc;
+}
+
+/* TODO(shess) Refactor the code to remove this forward decl. */
+static int flushPendingTerms(fulltext_vtab *v);
+
+/* Perform a full-text query using the search expression in
+** zInput[0..nInput-1]. Return a list of matching documents
+** in pResult.
+**
+** Queries must match column iColumn. Or if iColumn>=nColumn
+** they are allowed to match against any column.
+*/
+static int fulltextQuery(
+ fulltext_vtab *v, /* The full text index */
+ int iColumn, /* Match against this column by default */
+ const char *zInput, /* The query string */
+ int nInput, /* Number of bytes in zInput[] */
+ DataBuffer *pResult, /* Write the result doclist here */
+ Fts3Expr **ppExpr /* Put parsed query string here */
+){
+ int rc;
+
+ /* TODO(shess) Instead of flushing pendingTerms, we could query for
+ ** the relevant term and merge the doclist into what we receive from
+ ** the database. Wait and see if this is a common issue, first.
+ **
+ ** A good reason not to flush is to not generate update-related
+ ** error codes from here.
+ */
+
+ /* Flush any buffered updates before executing the query. */
+ rc = flushPendingTerms(v);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Parse the query passed to the MATCH operator. */
+ rc = sqlite3Fts3ExprParse(v->pTokenizer,
+ v->azColumn, v->nColumn, iColumn, zInput, nInput, ppExpr
+ );
+ if( rc!=SQLITE_OK ){
+ assert( 0==(*ppExpr) );
+ return rc;
+ }
+
+ return evalFts3Expr(v, *ppExpr, pResult);
+}
+
+/*
+** This is the xFilter interface for the virtual table. See
+** the virtual table xFilter method documentation for additional
+** information.
+**
+** If idxNum==QUERY_GENERIC then do a full table scan against
+** the %_content table.
+**
+** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
+** in the %_content table.
+**
+** If idxNum>=QUERY_FULLTEXT then use the full text index. The
+** column on the left-hand side of the MATCH operator is column
+** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
+** side of the MATCH operator.
+*/
+/* TODO(shess) Upgrade the cursor initialization and destruction to
+** account for fulltextFilter() being called multiple times on the
+** same cursor. The current solution is very fragile. Apply fix to
+** fts3 as appropriate.
+*/
+static int fulltextFilter(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, const char *idxStr, /* Which indexing scheme to use */
+ int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
+){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ fulltext_vtab *v = cursor_vtab(c);
+ int rc;
+
+ FTSTRACE(("FTS3 Filter %p\n",pCursor));
+
+ /* If the cursor has a statement that was not prepared according to
+ ** idxNum, clear it. I believe all calls to fulltextFilter with a
+ ** given cursor will have the same idxNum , but in this case it's
+ ** easy to be safe.
+ */
+ if( c->pStmt && c->iCursorType!=idxNum ){
+ sqlite3_finalize(c->pStmt);
+ c->pStmt = NULL;
+ }
+
+ /* Get a fresh statement appropriate to idxNum. */
+ /* TODO(shess): Add a prepared-statement cache in the vt structure.
+ ** The cache must handle multiple open cursors. Easier to cache the
+ ** statement variants at the vt to reduce malloc/realloc/free here.
+ ** Or we could have a StringBuffer variant which allowed stack
+ ** construction for small values.
+ */
+ if( !c->pStmt ){
+ StringBuffer sb;
+ initStringBuffer(&sb);
+ append(&sb, "SELECT docid, ");
+ appendList(&sb, v->nColumn, v->azContentColumn);
+ append(&sb, " FROM %_content");
+ if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
+ rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt,
+ stringBufferData(&sb));
+ stringBufferDestroy(&sb);
+ if( rc!=SQLITE_OK ) return rc;
+ c->iCursorType = idxNum;
+ }else{
+ sqlite3_reset(c->pStmt);
+ assert( c->iCursorType==idxNum );
+ }
+
+ switch( idxNum ){
+ case QUERY_GENERIC:
+ break;
+
+ case QUERY_DOCID:
+ rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
+ if( rc!=SQLITE_OK ) return rc;
+ break;
+
+ default: /* full-text search */
+ {
+ int iCol = idxNum-QUERY_FULLTEXT;
+ const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
+ assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
+ assert( argc==1 );
+ if( c->result.nData!=0 ){
+ /* This case happens if the same cursor is used repeatedly. */
+ dlrDestroy(&c->reader);
+ dataBufferReset(&c->result);
+ }else{
+ dataBufferInit(&c->result, 0);
+ }
+ rc = fulltextQuery(v, iCol, zQuery, -1, &c->result, &c->pExpr);
+ if( rc!=SQLITE_OK ) return rc;
+ if( c->result.nData!=0 ){
+ dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
+ }
+ break;
+ }
+ }
+
+ return fulltextNext(pCursor);
+}
+
+/* This is the xEof method of the virtual table. The SQLite core
+** calls this routine to find out if it has reached the end of
+** a query's results set.
+*/
+static int fulltextEof(sqlite3_vtab_cursor *pCursor){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ return c->eof;
+}
+
+/* This is the xColumn method of the virtual table. The SQLite
+** core calls this method during a query when it needs the value
+** of a column from the virtual table. This method needs to use
+** one of the sqlite3_result_*() routines to store the requested
+** value back in the pContext.
+*/
+static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
+ sqlite3_context *pContext, int idxCol){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ fulltext_vtab *v = cursor_vtab(c);
+
+ if( idxCol<v->nColumn ){
+ sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
+ sqlite3_result_value(pContext, pVal);
+ }else if( idxCol==v->nColumn ){
+ /* The extra column whose name is the same as the table.
+ ** Return a blob which is a pointer to the cursor
+ */
+ sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
+ }else if( idxCol==v->nColumn+1 ){
+ /* The docid column, which is an alias for rowid. */
+ sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
+ sqlite3_result_value(pContext, pVal);
+ }
+ return SQLITE_OK;
+}
+
+/* This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. fts3
+** exposes %_content.docid as the rowid for the virtual table. The
+** rowid should be written to *pRowid.
+*/
+static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+
+ *pRowid = sqlite3_column_int64(c->pStmt, 0);
+ return SQLITE_OK;
+}
+
+/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
+** we also store positions and offsets in the hash table using that
+** column number.
+*/
+static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
+ const char *zText, int iColumn){
+ sqlite3_tokenizer *pTokenizer = v->pTokenizer;
+ sqlite3_tokenizer_cursor *pCursor;
+ const char *pToken;
+ int nTokenBytes;
+ int iStartOffset, iEndOffset, iPosition;
+ int rc;
+
+ rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
+ if( rc!=SQLITE_OK ) return rc;
+
+ pCursor->pTokenizer = pTokenizer;
+ while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
+ &pToken, &nTokenBytes,
+ &iStartOffset, &iEndOffset,
+ &iPosition)) ){
+ DLCollector *p;
+ int nData; /* Size of doclist before our update. */
+
+ /* Positions can't be negative; we use -1 as a terminator
+ * internally. Token can't be NULL or empty. */
+ if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
+ if( p==NULL ){
+ nData = 0;
+ p = dlcNew(iDocid, DL_DEFAULT);
+ fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
+
+ /* Overhead for our hash table entry, the key, and the value. */
+ v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
+ }else{
+ nData = p->b.nData;
+ if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
+ }
+ if( iColumn>=0 ){
+ dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
+ }
+
+ /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
+ v->nPendingData += p->b.nData-nData;
+ }
+
+ /* TODO(shess) Check return? Should this be able to cause errors at
+ ** this point? Actually, same question about sqlite3_finalize(),
+ ** though one could argue that failure there means that the data is
+ ** not durable. *ponder*
+ */
+ pTokenizer->pModule->xClose(pCursor);
+ if( SQLITE_DONE == rc ) return SQLITE_OK;
+ return rc;
+}
+
+/* Add doclists for all terms in [pValues] to pendingTerms table. */
+static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
+ sqlite3_value **pValues){
int i;
+ for(i = 0; i < v->nColumn ; ++i){
+ char *zText = (char*)sqlite3_value_text(pValues[i]);
+ int rc = buildTerms(v, iDocid, zText, i);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ return SQLITE_OK;
+}
+
+/* Add empty doclists for all terms in the given row's content to
+** pendingTerms.
+*/
+static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
+ const char **pValues;
+ int i, rc;
+
+ /* TODO(shess) Should we allow such tables at all? */
+ if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
+
+ rc = content_select(v, iDocid, &pValues);
+ if( rc!=SQLITE_OK ) return rc;
+
+ for(i = 0 ; i < v->nColumn; ++i) {
+ rc = buildTerms(v, iDocid, pValues[i], -1);
+ if( rc!=SQLITE_OK ) break;
+ }
+
+ freeStringArray(v->nColumn, pValues);
+ return SQLITE_OK;
+}
+
+/* TODO(shess) Refactor the code to remove this forward decl. */
+static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
+
+/* Insert a row into the %_content table; set *piDocid to be the ID of the
+** new row. Add doclists for terms to pendingTerms.
+*/
+static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
+ sqlite3_value **pValues, sqlite_int64 *piDocid){
+ int rc;
+
+ rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* docid column is an alias for rowid. */
+ *piDocid = sqlite3_last_insert_rowid(v->db);
+ rc = initPendingTerms(v, *piDocid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return insertTerms(v, *piDocid, pValues);
+}
+
+/* Delete a row from the %_content table; add empty doclists for terms
+** to pendingTerms.
+*/
+static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
+ int rc = initPendingTerms(v, iRow);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = deleteTerms(v, iRow);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return content_delete(v, iRow); /* execute an SQL DELETE */
+}
+
+/* Update a row in the %_content table; add delete doclists to
+** pendingTerms for old terms not in the new data, add insert doclists
+** to pendingTerms for terms in the new data.
+*/
+static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
+ sqlite3_value **pValues){
+ int rc = initPendingTerms(v, iRow);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Generate an empty doclist for each term that previously appeared in this
+ * row. */
+ rc = deleteTerms(v, iRow);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Now add positions for terms which appear in the updated row. */
+ return insertTerms(v, iRow, pValues);
+}
+
+/*******************************************************************/
+/* InteriorWriter is used to collect terms and block references into
+** interior nodes in %_segments. See commentary at top of file for
+** format.
+*/
+
+/* How large interior nodes can grow. */
+#define INTERIOR_MAX 2048
+
+/* Minimum number of terms per interior node (except the root). This
+** prevents large terms from making the tree too skinny - must be >0
+** so that the tree always makes progress. Note that the min tree
+** fanout will be INTERIOR_MIN_TERMS+1.
+*/
+#define INTERIOR_MIN_TERMS 7
+#if INTERIOR_MIN_TERMS<1
+# error INTERIOR_MIN_TERMS must be greater than 0.
+#endif
+
+/* ROOT_MAX controls how much data is stored inline in the segment
+** directory.
+*/
+/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
+** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
+** can both see it, but if the caller passed it in, we wouldn't even
+** need a define.
+*/
+#define ROOT_MAX 1024
+#if ROOT_MAX<VARINT_MAX*2
+# error ROOT_MAX must have enough space for a header.
+#endif
+
+/* InteriorBlock stores a linked-list of interior blocks while a lower
+** layer is being constructed.
+*/
+typedef struct InteriorBlock {
+ DataBuffer term; /* Leftmost term in block's subtree. */
+ DataBuffer data; /* Accumulated data for the block. */
+ struct InteriorBlock *next;
+} InteriorBlock;
+
+static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
+ const char *pTerm, int nTerm){
+ InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
+ char c[VARINT_MAX+VARINT_MAX];
+ int n;
+
+ if( block ){
+ memset(block, 0, sizeof(*block));
+ dataBufferInit(&block->term, 0);
+ dataBufferReplace(&block->term, pTerm, nTerm);
+
+ n = fts3PutVarint(c, iHeight);
+ n += fts3PutVarint(c+n, iChildBlock);
+ dataBufferInit(&block->data, INTERIOR_MAX);
+ dataBufferReplace(&block->data, c, n);
+ }
+ return block;
+}
+
+#ifndef NDEBUG
+/* Verify that the data is readable as an interior node. */
+static void interiorBlockValidate(InteriorBlock *pBlock){
+ const char *pData = pBlock->data.pData;
+ int nData = pBlock->data.nData;
+ int n, iDummy;
+ sqlite_int64 iBlockid;
+
+ assert( nData>0 );
+ assert( pData!=0 );
+ assert( pData+nData>pData );
+
+ /* Must lead with height of node as a varint(n), n>0 */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n<nData );
+ pData += n;
+ nData -= n;
+
+ /* Must contain iBlockid. */
+ n = fts3GetVarint(pData, &iBlockid);
+ assert( n>0 );
+ assert( n<=nData );
+ pData += n;
+ nData -= n;
+
+ /* Zero or more terms of positive length */
+ if( nData!=0 ){
+ /* First term is not delta-encoded. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0);
+ assert( n+iDummy<=nData );
+ pData += n+iDummy;
+ nData -= n+iDummy;
+
+ /* Following terms delta-encoded. */
+ while( nData!=0 ){
+ /* Length of shared prefix. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>=0 );
+ assert( n<nData );
+ pData += n;
+ nData -= n;
+
+ /* Length and data of distinct suffix. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0);
+ assert( n+iDummy<=nData );
+ pData += n+iDummy;
+ nData -= n+iDummy;
+ }
+ }
+}
+#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
+#else
+#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
+#endif
+
+typedef struct InteriorWriter {
+ int iHeight; /* from 0 at leaves. */
+ InteriorBlock *first, *last;
+ struct InteriorWriter *parentWriter;
+
+ DataBuffer term; /* Last term written to block "last". */
+ sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
+#ifndef NDEBUG
+ sqlite_int64 iLastChildBlock; /* for consistency checks. */
+#endif
+} InteriorWriter;
+
+/* Initialize an interior node where pTerm[nTerm] marks the leftmost
+** term in the tree. iChildBlock is the leftmost child block at the
+** next level down the tree.
+*/
+static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
+ sqlite_int64 iChildBlock,
+ InteriorWriter *pWriter){
+ InteriorBlock *block;
+ assert( iHeight>0 );
+ CLEAR(pWriter);
+
+ pWriter->iHeight = iHeight;
+ pWriter->iOpeningChildBlock = iChildBlock;
+#ifndef NDEBUG
+ pWriter->iLastChildBlock = iChildBlock;
+#endif
+ block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
+ pWriter->last = pWriter->first = block;
+ ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
+ dataBufferInit(&pWriter->term, 0);
+}
+
+/* Append the child node rooted at iChildBlock to the interior node,
+** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
+*/
+static void interiorWriterAppend(InteriorWriter *pWriter,
+ const char *pTerm, int nTerm,
+ sqlite_int64 iChildBlock){
+ char c[VARINT_MAX+VARINT_MAX];
+ int n, nPrefix = 0;
+
+ ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
+
+ /* The first term written into an interior node is actually
+ ** associated with the second child added (the first child was added
+ ** in interiorWriterInit, or in the if clause at the bottom of this
+ ** function). That term gets encoded straight up, with nPrefix left
+ ** at 0.
+ */
+ if( pWriter->term.nData==0 ){
+ n = fts3PutVarint(c, nTerm);
+ }else{
+ while( nPrefix<pWriter->term.nData &&
+ pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
+ nPrefix++;
+ }
+
+ n = fts3PutVarint(c, nPrefix);
+ n += fts3PutVarint(c+n, nTerm-nPrefix);
+ }
+
+#ifndef NDEBUG
+ pWriter->iLastChildBlock++;
+#endif
+ assert( pWriter->iLastChildBlock==iChildBlock );
+
+ /* Overflow to a new block if the new term makes the current block
+ ** too big, and the current block already has enough terms.
+ */
+ if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
+ iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
+ pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
+ pTerm, nTerm);
+ pWriter->last = pWriter->last->next;
+ pWriter->iOpeningChildBlock = iChildBlock;
+ dataBufferReset(&pWriter->term);
+ }else{
+ dataBufferAppend2(&pWriter->last->data, c, n,
+ pTerm+nPrefix, nTerm-nPrefix);
+ dataBufferReplace(&pWriter->term, pTerm, nTerm);
+ }
+ ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
+}
+
+/* Free the space used by pWriter, including the linked-list of
+** InteriorBlocks, and parentWriter, if present.
+*/
+static int interiorWriterDestroy(InteriorWriter *pWriter){
+ InteriorBlock *block = pWriter->first;
+
+ while( block!=NULL ){
+ InteriorBlock *b = block;
+ block = block->next;
+ dataBufferDestroy(&b->term);
+ dataBufferDestroy(&b->data);
+ sqlite3_free(b);
+ }
+ if( pWriter->parentWriter!=NULL ){
+ interiorWriterDestroy(pWriter->parentWriter);
+ sqlite3_free(pWriter->parentWriter);
+ }
+ dataBufferDestroy(&pWriter->term);
+ SCRAMBLE(pWriter);
+ return SQLITE_OK;
+}
+
+/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
+** directly, leaving *piEndBlockid unchanged. Otherwise, flush
+** pWriter to %_segments, building a new layer of interior nodes, and
+** recursively ask for their root into.
+*/
+static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
+ char **ppRootInfo, int *pnRootInfo,
+ sqlite_int64 *piEndBlockid){
+ InteriorBlock *block = pWriter->first;
+ sqlite_int64 iBlockid = 0;
+ int rc;
+
+ /* If we can fit the segment inline */
+ if( block==pWriter->last && block->data.nData<ROOT_MAX ){
+ *ppRootInfo = block->data.pData;
+ *pnRootInfo = block->data.nData;
+ return SQLITE_OK;
+ }
+
+ /* Flush the first block to %_segments, and create a new level of
+ ** interior node.
+ */
+ ASSERT_VALID_INTERIOR_BLOCK(block);
+ rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+ *piEndBlockid = iBlockid;
+
+ pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
+ interiorWriterInit(pWriter->iHeight+1,
+ block->term.pData, block->term.nData,
+ iBlockid, pWriter->parentWriter);
+
+ /* Flush additional blocks and append to the higher interior
+ ** node.
+ */
+ for(block=block->next; block!=NULL; block=block->next){
+ ASSERT_VALID_INTERIOR_BLOCK(block);
+ rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+ *piEndBlockid = iBlockid;
+
+ interiorWriterAppend(pWriter->parentWriter,
+ block->term.pData, block->term.nData, iBlockid);
+ }
+
+ /* Parent node gets the chance to be the root. */
+ return interiorWriterRootInfo(v, pWriter->parentWriter,
+ ppRootInfo, pnRootInfo, piEndBlockid);
+}
+
+/****************************************************************/
+/* InteriorReader is used to read off the data from an interior node
+** (see comment at top of file for the format).
+*/
+typedef struct InteriorReader {
+ const char *pData;
+ int nData;
+
+ DataBuffer term; /* previous term, for decoding term delta. */
+
+ sqlite_int64 iBlockid;
+} InteriorReader;
+
+static void interiorReaderDestroy(InteriorReader *pReader){
+ dataBufferDestroy(&pReader->term);
+ SCRAMBLE(pReader);
+}
+
+/* TODO(shess) The assertions are great, but what if we're in NDEBUG
+** and the blob is empty or otherwise contains suspect data?
+*/
+static void interiorReaderInit(const char *pData, int nData,
+ InteriorReader *pReader){
+ int n, nTerm;
+
+ /* Require at least the leading flag byte */
+ assert( nData>0 );
+ assert( pData[0]!='\0' );
+
+ CLEAR(pReader);
+
+ /* Decode the base blockid, and set the cursor to the first term. */
+ n = fts3GetVarint(pData+1, &pReader->iBlockid);
+ assert( 1+n<=nData );
+ pReader->pData = pData+1+n;
+ pReader->nData = nData-(1+n);
+
+ /* A single-child interior node (such as when a leaf node was too
+ ** large for the segment directory) won't have any terms.
+ ** Otherwise, decode the first term.
+ */
+ if( pReader->nData==0 ){
+ dataBufferInit(&pReader->term, 0);
+ }else{
+ n = fts3GetVarint32(pReader->pData, &nTerm);
+ dataBufferInit(&pReader->term, nTerm);
+ dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
+ assert( n+nTerm<=pReader->nData );
+ pReader->pData += n+nTerm;
+ pReader->nData -= n+nTerm;
+ }
+}
+
+static int interiorReaderAtEnd(InteriorReader *pReader){
+ return pReader->term.nData==0;
+}
+
+static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
+ return pReader->iBlockid;
+}
+
+static int interiorReaderTermBytes(InteriorReader *pReader){
+ assert( !interiorReaderAtEnd(pReader) );
+ return pReader->term.nData;
+}
+static const char *interiorReaderTerm(InteriorReader *pReader){
+ assert( !interiorReaderAtEnd(pReader) );
+ return pReader->term.pData;
+}
+
+/* Step forward to the next term in the node. */
+static void interiorReaderStep(InteriorReader *pReader){
+ assert( !interiorReaderAtEnd(pReader) );
+
+ /* If the last term has been read, signal eof, else construct the
+ ** next term.
+ */
+ if( pReader->nData==0 ){
+ dataBufferReset(&pReader->term);
+ }else{
+ int n, nPrefix, nSuffix;
+
+ n = fts3GetVarint32(pReader->pData, &nPrefix);
+ n += fts3GetVarint32(pReader->pData+n, &nSuffix);
+
+ /* Truncate the current term and append suffix data. */
+ pReader->term.nData = nPrefix;
+ dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
+
+ assert( n+nSuffix<=pReader->nData );
+ pReader->pData += n+nSuffix;
+ pReader->nData -= n+nSuffix;
+ }
+ pReader->iBlockid++;
+}
+
+/* Compare the current term to pTerm[nTerm], returning strcmp-style
+** results. If isPrefix, equality means equal through nTerm bytes.
+*/
+static int interiorReaderTermCmp(InteriorReader *pReader,
+ const char *pTerm, int nTerm, int isPrefix){
+ const char *pReaderTerm = interiorReaderTerm(pReader);
+ int nReaderTerm = interiorReaderTermBytes(pReader);
+ int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
+
+ if( n==0 ){
+ if( nReaderTerm>0 ) return -1;
+ if( nTerm>0 ) return 1;
+ return 0;
+ }
+
+ c = memcmp(pReaderTerm, pTerm, n);
+ if( c!=0 ) return c;
+ if( isPrefix && n==nTerm ) return 0;
+ return nReaderTerm - nTerm;
+}
+
+/****************************************************************/
+/* LeafWriter is used to collect terms and associated doclist data
+** into leaf blocks in %_segments (see top of file for format info).
+** Expected usage is:
+**
+** LeafWriter writer;
+** leafWriterInit(0, 0, &writer);
+** while( sorted_terms_left_to_process ){
+** // data is doclist data for that term.
+** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
+** if( rc!=SQLITE_OK ) goto err;
+** }
+** rc = leafWriterFinalize(v, &writer);
+**err:
+** leafWriterDestroy(&writer);
+** return rc;
+**
+** leafWriterStep() may write a collected leaf out to %_segments.
+** leafWriterFinalize() finishes writing any buffered data and stores
+** a root node in %_segdir. leafWriterDestroy() frees all buffers and
+** InteriorWriters allocated as part of writing this segment.
+**
+** TODO(shess) Document leafWriterStepMerge().
+*/
+
+/* Put terms with data this big in their own block. */
+#define STANDALONE_MIN 1024
+
+/* Keep leaf blocks below this size. */
+#define LEAF_MAX 2048
+
+typedef struct LeafWriter {
+ int iLevel;
+ int idx;
+ sqlite_int64 iStartBlockid; /* needed to create the root info */
+ sqlite_int64 iEndBlockid; /* when we're done writing. */
+
+ DataBuffer term; /* previous encoded term */
+ DataBuffer data; /* encoding buffer */
+
+ /* bytes of first term in the current node which distinguishes that
+ ** term from the last term of the previous node.
+ */
+ int nTermDistinct;
+
+ InteriorWriter parentWriter; /* if we overflow */
+ int has_parent;
+} LeafWriter;
+
+static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
+ CLEAR(pWriter);
+ pWriter->iLevel = iLevel;
+ pWriter->idx = idx;
+
+ dataBufferInit(&pWriter->term, 32);
+
+ /* Start out with a reasonably sized block, though it can grow. */
+ dataBufferInit(&pWriter->data, LEAF_MAX);
+}
+
+#ifndef NDEBUG
+/* Verify that the data is readable as a leaf node. */
+static void leafNodeValidate(const char *pData, int nData){
+ int n, iDummy;
+
+ if( nData==0 ) return;
+ assert( nData>0 );
+ assert( pData!=0 );
+ assert( pData+nData>pData );
+
+ /* Must lead with a varint(0) */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( iDummy==0 );
+ assert( n>0 );
+ assert( n<nData );
+ pData += n;
+ nData -= n;
+
+ /* Leading term length and data must fit in buffer. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0 );
+ assert( n+iDummy<nData );
+ pData += n+iDummy;
+ nData -= n+iDummy;
+
+ /* Leading term's doclist length and data must fit. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0 );
+ assert( n+iDummy<=nData );
+ ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
+ pData += n+iDummy;
+ nData -= n+iDummy;
+
+ /* Verify that trailing terms and doclists also are readable. */
+ while( nData!=0 ){
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>=0 );
+ assert( n<nData );
+ pData += n;
+ nData -= n;
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0 );
+ assert( n+iDummy<nData );
+ pData += n+iDummy;
+ nData -= n+iDummy;
+
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0 );
+ assert( n+iDummy<=nData );
+ ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
+ pData += n+iDummy;
+ nData -= n+iDummy;
+ }
+}
+#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
+#else
+#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
+#endif
+
+/* Flush the current leaf node to %_segments, and adding the resulting
+** blockid and the starting term to the interior node which will
+** contain it.
+*/
+static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
+ int iData, int nData){
+ sqlite_int64 iBlockid = 0;
+ const char *pStartingTerm;
+ int nStartingTerm, rc, n;
+
+ /* Must have the leading varint(0) flag, plus at least some
+ ** valid-looking data.
+ */
+ assert( nData>2 );
+ assert( iData>=0 );
+ assert( iData+nData<=pWriter->data.nData );
+ ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
+
+ rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( iBlockid!=0 );
+
+ /* Reconstruct the first term in the leaf for purposes of building
+ ** the interior node.
+ */
+ n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
+ pStartingTerm = pWriter->data.pData+iData+1+n;
+ assert( pWriter->data.nData>iData+1+n+nStartingTerm );
+ assert( pWriter->nTermDistinct>0 );
+ assert( pWriter->nTermDistinct<=nStartingTerm );
+ nStartingTerm = pWriter->nTermDistinct;
+
+ if( pWriter->has_parent ){
+ interiorWriterAppend(&pWriter->parentWriter,
+ pStartingTerm, nStartingTerm, iBlockid);
+ }else{
+ interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
+ &pWriter->parentWriter);
+ pWriter->has_parent = 1;
+ }
+
+ /* Track the span of this segment's leaf nodes. */
+ if( pWriter->iEndBlockid==0 ){
+ pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
+ }else{
+ pWriter->iEndBlockid++;
+ assert( iBlockid==pWriter->iEndBlockid );
+ }
+
+ return SQLITE_OK;
+}
+static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
+ int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Re-initialize the output buffer. */
+ dataBufferReset(&pWriter->data);
+
+ return SQLITE_OK;
+}
+
+/* Fetch the root info for the segment. If the entire leaf fits
+** within ROOT_MAX, then it will be returned directly, otherwise it
+** will be flushed and the root info will be returned from the
+** interior node. *piEndBlockid is set to the blockid of the last
+** interior or leaf node written to disk (0 if none are written at
+** all).
+*/
+static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
+ char **ppRootInfo, int *pnRootInfo,
+ sqlite_int64 *piEndBlockid){
+ /* we can fit the segment entirely inline */
+ if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
+ *ppRootInfo = pWriter->data.pData;
+ *pnRootInfo = pWriter->data.nData;
+ *piEndBlockid = 0;
+ return SQLITE_OK;
+ }
+
+ /* Flush remaining leaf data. */
+ if( pWriter->data.nData>0 ){
+ int rc = leafWriterFlush(v, pWriter);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ /* We must have flushed a leaf at some point. */
+ assert( pWriter->has_parent );
+
+ /* Tenatively set the end leaf blockid as the end blockid. If the
+ ** interior node can be returned inline, this will be the final
+ ** blockid, otherwise it will be overwritten by
+ ** interiorWriterRootInfo().
+ */
+ *piEndBlockid = pWriter->iEndBlockid;
+
+ return interiorWriterRootInfo(v, &pWriter->parentWriter,
+ ppRootInfo, pnRootInfo, piEndBlockid);
+}
+
+/* Collect the rootInfo data and store it into the segment directory.
+** This has the effect of flushing the segment's leaf data to
+** %_segments, and also flushing any interior nodes to %_segments.
+*/
+static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
+ sqlite_int64 iEndBlockid;
+ char *pRootInfo;
+ int rc, nRootInfo;
+
+ rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Don't bother storing an entirely empty segment. */
+ if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
+
+ return segdir_set(v, pWriter->iLevel, pWriter->idx,
+ pWriter->iStartBlockid, pWriter->iEndBlockid,
+ iEndBlockid, pRootInfo, nRootInfo);
+}
+
+static void leafWriterDestroy(LeafWriter *pWriter){
+ if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
+ dataBufferDestroy(&pWriter->term);
+ dataBufferDestroy(&pWriter->data);
+}
+
+/* Encode a term into the leafWriter, delta-encoding as appropriate.
+** Returns the length of the new term which distinguishes it from the
+** previous term, which can be used to set nTermDistinct when a node
+** boundary is crossed.
+*/
+static int leafWriterEncodeTerm(LeafWriter *pWriter,
+ const char *pTerm, int nTerm){
+ char c[VARINT_MAX+VARINT_MAX];
+ int n, nPrefix = 0;
+
+ assert( nTerm>0 );
+ while( nPrefix<pWriter->term.nData &&
+ pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
+ nPrefix++;
+ /* Failing this implies that the terms weren't in order. */
+ assert( nPrefix<nTerm );
+ }
+
+ if( pWriter->data.nData==0 ){
+ /* Encode the node header and leading term as:
+ ** varint(0)
+ ** varint(nTerm)
+ ** char pTerm[nTerm]
+ */
+ n = fts3PutVarint(c, '\0');
+ n += fts3PutVarint(c+n, nTerm);
+ dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
+ }else{
+ /* Delta-encode the term as:
+ ** varint(nPrefix)
+ ** varint(nSuffix)
+ ** char pTermSuffix[nSuffix]
+ */
+ n = fts3PutVarint(c, nPrefix);
+ n += fts3PutVarint(c+n, nTerm-nPrefix);
+ dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
+ }
+ dataBufferReplace(&pWriter->term, pTerm, nTerm);
+
+ return nPrefix+1;
+}
+
+/* Used to avoid a memmove when a large amount of doclist data is in
+** the buffer. This constructs a node and term header before
+** iDoclistData and flushes the resulting complete node using
+** leafWriterInternalFlush().
+*/
+static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
+ const char *pTerm, int nTerm,
+ int iDoclistData){
+ char c[VARINT_MAX+VARINT_MAX];
+ int iData, n = fts3PutVarint(c, 0);
+ n += fts3PutVarint(c+n, nTerm);
+
+ /* There should always be room for the header. Even if pTerm shared
+ ** a substantial prefix with the previous term, the entire prefix
+ ** could be constructed from earlier data in the doclist, so there
+ ** should be room.
+ */
+ assert( iDoclistData>=n+nTerm );
+
+ iData = iDoclistData-(n+nTerm);
+ memcpy(pWriter->data.pData+iData, c, n);
+ memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
+
+ return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
+}
+
+/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
+** %_segments.
+*/
+static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
+ const char *pTerm, int nTerm,
+ DLReader *pReaders, int nReaders){
+ char c[VARINT_MAX+VARINT_MAX];
+ int iTermData = pWriter->data.nData, iDoclistData;
+ int i, nData, n, nActualData, nActual, rc, nTermDistinct;
+
+ ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
+ nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
+
+ /* Remember nTermDistinct if opening a new node. */
+ if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
+
+ iDoclistData = pWriter->data.nData;
+
+ /* Estimate the length of the merged doclist so we can leave space
+ ** to encode it.
+ */
+ for(i=0, nData=0; i<nReaders; i++){
+ nData += dlrAllDataBytes(&pReaders[i]);
+ }
+ n = fts3PutVarint(c, nData);
+ dataBufferAppend(&pWriter->data, c, n);
+
+ docListMerge(&pWriter->data, pReaders, nReaders);
+ ASSERT_VALID_DOCLIST(DL_DEFAULT,
+ pWriter->data.pData+iDoclistData+n,
+ pWriter->data.nData-iDoclistData-n, NULL);
+
+ /* The actual amount of doclist data at this point could be smaller
+ ** than the length we encoded. Additionally, the space required to
+ ** encode this length could be smaller. For small doclists, this is
+ ** not a big deal, we can just use memmove() to adjust things.
+ */
+ nActualData = pWriter->data.nData-(iDoclistData+n);
+ nActual = fts3PutVarint(c, nActualData);
+ assert( nActualData<=nData );
+ assert( nActual<=n );
+
+ /* If the new doclist is big enough for force a standalone leaf
+ ** node, we can immediately flush it inline without doing the
+ ** memmove().
+ */
+ /* TODO(shess) This test matches leafWriterStep(), which does this
+ ** test before it knows the cost to varint-encode the term and
+ ** doclist lengths. At some point, change to
+ ** pWriter->data.nData-iTermData>STANDALONE_MIN.
+ */
+ if( nTerm+nActualData>STANDALONE_MIN ){
+ /* Push leaf node from before this term. */
+ if( iTermData>0 ){
+ rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
+ if( rc!=SQLITE_OK ) return rc;
+
+ pWriter->nTermDistinct = nTermDistinct;
+ }
+
+ /* Fix the encoded doclist length. */
+ iDoclistData += n - nActual;
+ memcpy(pWriter->data.pData+iDoclistData, c, nActual);
+
+ /* Push the standalone leaf node. */
+ rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Leave the node empty. */
+ dataBufferReset(&pWriter->data);
+
+ return rc;
+ }
+
+ /* At this point, we know that the doclist was small, so do the
+ ** memmove if indicated.
+ */
+ if( nActual<n ){
+ memmove(pWriter->data.pData+iDoclistData+nActual,
+ pWriter->data.pData+iDoclistData+n,
+ pWriter->data.nData-(iDoclistData+n));
+ pWriter->data.nData -= n-nActual;
+ }
+
+ /* Replace written length with actual length. */
+ memcpy(pWriter->data.pData+iDoclistData, c, nActual);
+
+ /* If the node is too large, break things up. */
+ /* TODO(shess) This test matches leafWriterStep(), which does this
+ ** test before it knows the cost to varint-encode the term and
+ ** doclist lengths. At some point, change to
+ ** pWriter->data.nData>LEAF_MAX.
+ */
+ if( iTermData+nTerm+nActualData>LEAF_MAX ){
+ /* Flush out the leading data as a node */
+ rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
+ if( rc!=SQLITE_OK ) return rc;
+
+ pWriter->nTermDistinct = nTermDistinct;
+
+ /* Rebuild header using the current term */
+ n = fts3PutVarint(pWriter->data.pData, 0);
+ n += fts3PutVarint(pWriter->data.pData+n, nTerm);
+ memcpy(pWriter->data.pData+n, pTerm, nTerm);
+ n += nTerm;
+
+ /* There should always be room, because the previous encoding
+ ** included all data necessary to construct the term.
+ */
+ assert( n<iDoclistData );
+ /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
+ ** following memcpy() is safe (as opposed to needing a memmove).
+ */
+ assert( 2*STANDALONE_MIN<=LEAF_MAX );
+ assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
+ memcpy(pWriter->data.pData+n,
+ pWriter->data.pData+iDoclistData,
+ pWriter->data.nData-iDoclistData);
+ pWriter->data.nData -= iDoclistData-n;
+ }
+ ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
+
+ return SQLITE_OK;
+}
+
+/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
+** %_segments.
+*/
+/* TODO(shess) Revise writeZeroSegment() so that doclists are
+** constructed directly in pWriter->data.
+*/
+static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
+ const char *pTerm, int nTerm,
+ const char *pData, int nData){
+ int rc;
+ DLReader reader;
+
+ dlrInit(&reader, DL_DEFAULT, pData, nData);
+ rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
+ dlrDestroy(&reader);
+
+ return rc;
+}
+
+
+/****************************************************************/
+/* LeafReader is used to iterate over an individual leaf node. */
+typedef struct LeafReader {
+ DataBuffer term; /* copy of current term. */
+
+ const char *pData; /* data for current term. */
+ int nData;
+} LeafReader;
+
+static void leafReaderDestroy(LeafReader *pReader){
+ dataBufferDestroy(&pReader->term);
+ SCRAMBLE(pReader);
+}
+
+static int leafReaderAtEnd(LeafReader *pReader){
+ return pReader->nData<=0;
+}
+
+/* Access the current term. */
+static int leafReaderTermBytes(LeafReader *pReader){
+ return pReader->term.nData;
+}
+static const char *leafReaderTerm(LeafReader *pReader){
+ assert( pReader->term.nData>0 );
+ return pReader->term.pData;
+}
+
+/* Access the doclist data for the current term. */
+static int leafReaderDataBytes(LeafReader *pReader){
+ int nData;
+ assert( pReader->term.nData>0 );
+ fts3GetVarint32(pReader->pData, &nData);
+ return nData;
+}
+static const char *leafReaderData(LeafReader *pReader){
+ int n, nData;
+ assert( pReader->term.nData>0 );
+ n = fts3GetVarint32(pReader->pData, &nData);
+ return pReader->pData+n;
+}
+
+static void leafReaderInit(const char *pData, int nData,
+ LeafReader *pReader){
+ int nTerm, n;
+
+ assert( nData>0 );
+ assert( pData[0]=='\0' );
+
+ CLEAR(pReader);
+
+ /* Read the first term, skipping the header byte. */
+ n = fts3GetVarint32(pData+1, &nTerm);
+ dataBufferInit(&pReader->term, nTerm);
+ dataBufferReplace(&pReader->term, pData+1+n, nTerm);
+
+ /* Position after the first term. */
+ assert( 1+n+nTerm<nData );
+ pReader->pData = pData+1+n+nTerm;
+ pReader->nData = nData-1-n-nTerm;
+}
+
+/* Step the reader forward to the next term. */
+static void leafReaderStep(LeafReader *pReader){
+ int n, nData, nPrefix, nSuffix;
+ assert( !leafReaderAtEnd(pReader) );
+
+ /* Skip previous entry's data block. */
+ n = fts3GetVarint32(pReader->pData, &nData);
+ assert( n+nData<=pReader->nData );
+ pReader->pData += n+nData;
+ pReader->nData -= n+nData;
+
+ if( !leafReaderAtEnd(pReader) ){
+ /* Construct the new term using a prefix from the old term plus a
+ ** suffix from the leaf data.
+ */
+ n = fts3GetVarint32(pReader->pData, &nPrefix);
+ n += fts3GetVarint32(pReader->pData+n, &nSuffix);
+ assert( n+nSuffix<pReader->nData );
+ pReader->term.nData = nPrefix;
+ dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
+
+ pReader->pData += n+nSuffix;
+ pReader->nData -= n+nSuffix;
+ }
+}
+
+/* strcmp-style comparison of pReader's current term against pTerm.
+** If isPrefix, equality means equal through nTerm bytes.
+*/
+static int leafReaderTermCmp(LeafReader *pReader,
+ const char *pTerm, int nTerm, int isPrefix){
+ int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
+ if( n==0 ){
+ if( pReader->term.nData>0 ) return -1;
+ if(nTerm>0 ) return 1;
+ return 0;
+ }
+
+ c = memcmp(pReader->term.pData, pTerm, n);
+ if( c!=0 ) return c;
+ if( isPrefix && n==nTerm ) return 0;
+ return pReader->term.nData - nTerm;
+}
+
+
+/****************************************************************/
+/* LeavesReader wraps LeafReader to allow iterating over the entire
+** leaf layer of the tree.
+*/
+typedef struct LeavesReader {
+ int idx; /* Index within the segment. */
+
+ sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
+ int eof; /* we've seen SQLITE_DONE from pStmt. */
+
+ LeafReader leafReader; /* reader for the current leaf. */
+ DataBuffer rootData; /* root data for inline. */
+} LeavesReader;
+
+/* Access the current term. */
+static int leavesReaderTermBytes(LeavesReader *pReader){
+ assert( !pReader->eof );
+ return leafReaderTermBytes(&pReader->leafReader);
+}
+static const char *leavesReaderTerm(LeavesReader *pReader){
+ assert( !pReader->eof );
+ return leafReaderTerm(&pReader->leafReader);
+}
+
+/* Access the doclist data for the current term. */
+static int leavesReaderDataBytes(LeavesReader *pReader){
+ assert( !pReader->eof );
+ return leafReaderDataBytes(&pReader->leafReader);
+}
+static const char *leavesReaderData(LeavesReader *pReader){
+ assert( !pReader->eof );
+ return leafReaderData(&pReader->leafReader);
+}
+
+static int leavesReaderAtEnd(LeavesReader *pReader){
+ return pReader->eof;
+}
+
+/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
+** leaving the statement handle open, which locks the table.
+*/
+/* TODO(shess) This "solution" is not satisfactory. Really, there
+** should be check-in function for all statement handles which
+** arranges to call sqlite3_reset(). This most likely will require
+** modification to control flow all over the place, though, so for now
+** just punt.
+**
+** Note the the current system assumes that segment merges will run to
+** completion, which is why this particular probably hasn't arisen in
+** this case. Probably a brittle assumption.
+*/
+static int leavesReaderReset(LeavesReader *pReader){
+ return sqlite3_reset(pReader->pStmt);
+}
+
+static void leavesReaderDestroy(LeavesReader *pReader){
+ /* If idx is -1, that means we're using a non-cached statement
+ ** handle in the optimize() case, so we need to release it.
+ */
+ if( pReader->pStmt!=NULL && pReader->idx==-1 ){
+ sqlite3_finalize(pReader->pStmt);
+ }
+ leafReaderDestroy(&pReader->leafReader);
+ dataBufferDestroy(&pReader->rootData);
+ SCRAMBLE(pReader);
+}
+
+/* Initialize pReader with the given root data (if iStartBlockid==0
+** the leaf data was entirely contained in the root), or from the
+** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
+*/
+static int leavesReaderInit(fulltext_vtab *v,
+ int idx,
+ sqlite_int64 iStartBlockid,
+ sqlite_int64 iEndBlockid,
+ const char *pRootData, int nRootData,
+ LeavesReader *pReader){
+ CLEAR(pReader);
+ pReader->idx = idx;
+
+ dataBufferInit(&pReader->rootData, 0);
+ if( iStartBlockid==0 ){
+ /* Entire leaf level fit in root data. */
+ dataBufferReplace(&pReader->rootData, pRootData, nRootData);
+ leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
+ &pReader->leafReader);
+ }else{
+ sqlite3_stmt *s;
+ int rc = sql_get_leaf_statement(v, idx, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iStartBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 2, iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ){
+ pReader->eof = 1;
+ return SQLITE_OK;
+ }
+ if( rc!=SQLITE_ROW ) return rc;
+
+ pReader->pStmt = s;
+ leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
+ sqlite3_column_bytes(pReader->pStmt, 0),
+ &pReader->leafReader);
+ }
+ return SQLITE_OK;
+}
+
+/* Step the current leaf forward to the next term. If we reach the
+** end of the current leaf, step forward to the next leaf block.
+*/
+static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
+ assert( !leavesReaderAtEnd(pReader) );
+ leafReaderStep(&pReader->leafReader);
+
+ if( leafReaderAtEnd(&pReader->leafReader) ){
+ int rc;
+ if( pReader->rootData.pData ){
+ pReader->eof = 1;
+ return SQLITE_OK;
+ }
+ rc = sqlite3_step(pReader->pStmt);
+ if( rc!=SQLITE_ROW ){
+ pReader->eof = 1;
+ return rc==SQLITE_DONE ? SQLITE_OK : rc;
+ }
+ leafReaderDestroy(&pReader->leafReader);
+ leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
+ sqlite3_column_bytes(pReader->pStmt, 0),
+ &pReader->leafReader);
+ }
+ return SQLITE_OK;
+}
+
+/* Order LeavesReaders by their term, ignoring idx. Readers at eof
+** always sort to the end.
+*/
+static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
+ if( leavesReaderAtEnd(lr1) ){
+ if( leavesReaderAtEnd(lr2) ) return 0;
+ return 1;
+ }
+ if( leavesReaderAtEnd(lr2) ) return -1;
+
+ return leafReaderTermCmp(&lr1->leafReader,
+ leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
+ 0);
+}
+
+/* Similar to leavesReaderTermCmp(), with additional ordering by idx
+** so that older segments sort before newer segments.
+*/
+static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
+ int c = leavesReaderTermCmp(lr1, lr2);
+ if( c!=0 ) return c;
+ return lr1->idx-lr2->idx;
+}
+
+/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
+** sorted position.
+*/
+static void leavesReaderReorder(LeavesReader *pLr, int nLr){
+ while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
+ LeavesReader tmp = pLr[0];
+ pLr[0] = pLr[1];
+ pLr[1] = tmp;
+ nLr--;
+ pLr++;
+ }
+}
+
+/* Initializes pReaders with the segments from level iLevel, returning
+** the number of segments in *piReaders. Leaves pReaders in sorted
+** order.
+*/
+static int leavesReadersInit(fulltext_vtab *v, int iLevel,
+ LeavesReader *pReaders, int *piReaders){
+ sqlite3_stmt *s;
+ int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ i = 0;
+ while( (rc = sqlite3_step(s))==SQLITE_ROW ){
+ sqlite_int64 iStart = sqlite3_column_int64(s, 0);
+ sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
+ const char *pRootData = sqlite3_column_blob(s, 2);
+ int nRootData = sqlite3_column_bytes(s, 2);
+
+ assert( i<MERGE_COUNT );
+ rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
+ &pReaders[i]);
+ if( rc!=SQLITE_OK ) break;
+
+ i++;
+ }
+ if( rc!=SQLITE_DONE ){
+ while( i-->0 ){
+ leavesReaderDestroy(&pReaders[i]);
+ }
+ return rc;
+ }
+
+ *piReaders = i;
+
+ /* Leave our results sorted by term, then age. */
+ while( i-- ){
+ leavesReaderReorder(pReaders+i, *piReaders-i);
+ }
+ return SQLITE_OK;
+}
+
+/* Merge doclists from pReaders[nReaders] into a single doclist, which
+** is written to pWriter. Assumes pReaders is ordered oldest to
+** newest.
+*/
+/* TODO(shess) Consider putting this inline in segmentMerge(). */
+static int leavesReadersMerge(fulltext_vtab *v,
+ LeavesReader *pReaders, int nReaders,
+ LeafWriter *pWriter){
+ DLReader dlReaders[MERGE_COUNT];
+ const char *pTerm = leavesReaderTerm(pReaders);
+ int i, nTerm = leavesReaderTermBytes(pReaders);
+
+ assert( nReaders<=MERGE_COUNT );
+
+ for(i=0; i<nReaders; i++){
+ dlrInit(&dlReaders[i], DL_DEFAULT,
+ leavesReaderData(pReaders+i),
+ leavesReaderDataBytes(pReaders+i));
+ }
+
+ return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
+}
+
+/* Forward ref due to mutual recursion with segdirNextIndex(). */
+static int segmentMerge(fulltext_vtab *v, int iLevel);
+
+/* Put the next available index at iLevel into *pidx. If iLevel
+** already has MERGE_COUNT segments, they are merged to a higher
+** level to make room.
+*/
+static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
+ int rc = segdir_max_index(v, iLevel, pidx);
+ if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
+ *pidx = 0;
+ }else if( rc==SQLITE_ROW ){
+ if( *pidx==(MERGE_COUNT-1) ){
+ rc = segmentMerge(v, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+ *pidx = 0;
+ }else{
+ (*pidx)++;
+ }
+ }else{
+ return rc;
+ }
+ return SQLITE_OK;
+}
+
+/* Merge MERGE_COUNT segments at iLevel into a new segment at
+** iLevel+1. If iLevel+1 is already full of segments, those will be
+** merged to make room.
+*/
+static int segmentMerge(fulltext_vtab *v, int iLevel){
+ LeafWriter writer;
+ LeavesReader lrs[MERGE_COUNT];
+ int i, rc, idx = 0;
+
+ /* Determine the next available segment index at the next level,
+ ** merging as necessary.
+ */
+ rc = segdirNextIndex(v, iLevel+1, &idx);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* TODO(shess) This assumes that we'll always see exactly
+ ** MERGE_COUNT segments to merge at a given level. That will be
+ ** broken if we allow the developer to request preemptive or
+ ** deferred merging.
+ */
+ memset(&lrs, '\0', sizeof(lrs));
+ rc = leavesReadersInit(v, iLevel, lrs, &i);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( i==MERGE_COUNT );
+
+ leafWriterInit(iLevel+1, idx, &writer);
+
+ /* Since leavesReaderReorder() pushes readers at eof to the end,
+ ** when the first reader is empty, all will be empty.
+ */
+ while( !leavesReaderAtEnd(lrs) ){
+ /* Figure out how many readers share their next term. */
+ for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
+ if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
+ }
+
+ rc = leavesReadersMerge(v, lrs, i, &writer);
+ if( rc!=SQLITE_OK ) goto err;
+
+ /* Step forward those that were merged. */
+ while( i-->0 ){
+ rc = leavesReaderStep(v, lrs+i);
+ if( rc!=SQLITE_OK ) goto err;
+
+ /* Reorder by term, then by age. */
+ leavesReaderReorder(lrs+i, MERGE_COUNT-i);
+ }
+ }
+
+ for(i=0; i<MERGE_COUNT; i++){
+ leavesReaderDestroy(&lrs[i]);
+ }
+
+ rc = leafWriterFinalize(v, &writer);
+ leafWriterDestroy(&writer);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Delete the merged segment data. */
+ return segdir_delete(v, iLevel);
+
+ err:
+ for(i=0; i<MERGE_COUNT; i++){
+ leavesReaderDestroy(&lrs[i]);
+ }
+ leafWriterDestroy(&writer);
+ return rc;
+}
+
+/* Accumulate the union of *acc and *pData into *acc. */
+static void docListAccumulateUnion(DataBuffer *acc,
+ const char *pData, int nData) {
+ DataBuffer tmp = *acc;
+ dataBufferInit(acc, tmp.nData+nData);
+ docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
+ dataBufferDestroy(&tmp);
+}
+
+/* TODO(shess) It might be interesting to explore different merge
+** strategies, here. For instance, since this is a sorted merge, we
+** could easily merge many doclists in parallel. With some
+** comprehension of the storage format, we could merge all of the
+** doclists within a leaf node directly from the leaf node's storage.
+** It may be worthwhile to merge smaller doclists before larger
+** doclists, since they can be traversed more quickly - but the
+** results may have less overlap, making them more expensive in a
+** different way.
+*/
+
+/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
+** *out (any doclists with duplicate docids overwrite those in *out).
+** Internal function for loadSegmentLeaf().
+*/
+static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ /* doclist data is accumulated into pBuffers similar to how one does
+ ** increment in binary arithmetic. If index 0 is empty, the data is
+ ** stored there. If there is data there, it is merged and the
+ ** results carried into position 1, with further merge-and-carry
+ ** until an empty position is found.
+ */
+ DataBuffer *pBuffers = NULL;
+ int nBuffers = 0, nMaxBuffers = 0, rc;
+
+ assert( nTerm>0 );
+
+ for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
+ rc=leavesReaderStep(v, pReader)){
+ /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
+ ** already taken to compare the terms of two LeavesReaders. Think
+ ** on a better name. [Meanwhile, break encapsulation rather than
+ ** use a confusing name.]
+ */
+ int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
+ if( c>0 ) break; /* Past any possible matches. */
+ if( c==0 ){
+ const char *pData = leavesReaderData(pReader);
+ int iBuffer, nData = leavesReaderDataBytes(pReader);
+
+ /* Find the first empty buffer. */
+ for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
+ if( 0==pBuffers[iBuffer].nData ) break;
+ }
+
+ /* Out of buffers, add an empty one. */
+ if( iBuffer==nBuffers ){
+ if( nBuffers==nMaxBuffers ){
+ DataBuffer *p;
+ nMaxBuffers += 20;
+
+ /* Manual realloc so we can handle NULL appropriately. */
+ p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
+ if( p==NULL ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+
+ if( nBuffers>0 ){
+ assert(pBuffers!=NULL);
+ memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
+ sqlite3_free(pBuffers);
+ }
+ pBuffers = p;
+ }
+ dataBufferInit(&(pBuffers[nBuffers]), 0);
+ nBuffers++;
+ }
+
+ /* At this point, must have an empty at iBuffer. */
+ assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
+
+ /* If empty was first buffer, no need for merge logic. */
+ if( iBuffer==0 ){
+ dataBufferReplace(&(pBuffers[0]), pData, nData);
+ }else{
+ /* pAcc is the empty buffer the merged data will end up in. */
+ DataBuffer *pAcc = &(pBuffers[iBuffer]);
+ DataBuffer *p = &(pBuffers[0]);
+
+ /* Handle position 0 specially to avoid need to prime pAcc
+ ** with pData/nData.
+ */
+ dataBufferSwap(p, pAcc);
+ docListAccumulateUnion(pAcc, pData, nData);
+
+ /* Accumulate remaining doclists into pAcc. */
+ for(++p; p<pAcc; ++p){
+ docListAccumulateUnion(pAcc, p->pData, p->nData);
+
+ /* dataBufferReset() could allow a large doclist to blow up
+ ** our memory requirements.
+ */
+ if( p->nCapacity<1024 ){
+ dataBufferReset(p);
+ }else{
+ dataBufferDestroy(p);
+ dataBufferInit(p, 0);
+ }
+ }
+ }
+ }
+ }
+
+ /* Union all the doclists together into *out. */
+ /* TODO(shess) What if *out is big? Sigh. */
+ if( rc==SQLITE_OK && nBuffers>0 ){
+ int iBuffer;
+ for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
+ if( pBuffers[iBuffer].nData>0 ){
+ if( out->nData==0 ){
+ dataBufferSwap(out, &(pBuffers[iBuffer]));
+ }else{
+ docListAccumulateUnion(out, pBuffers[iBuffer].pData,
+ pBuffers[iBuffer].nData);
+ }
+ }
+ }
+ }
+
+ while( nBuffers-- ){
+ dataBufferDestroy(&(pBuffers[nBuffers]));
+ }
+ if( pBuffers!=NULL ) sqlite3_free(pBuffers);
+
+ return rc;
+}
+
+/* Call loadSegmentLeavesInt() with pData/nData as input. */
+static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ LeavesReader reader;
+ int rc;
+
+ assert( nData>1 );
+ assert( *pData=='\0' );
+ rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
+ leavesReaderReset(&reader);
+ leavesReaderDestroy(&reader);
+ return rc;
+}
+
+/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
+** iEndLeaf (inclusive) as input, and merge the resulting doclist into
+** out.
+*/
+static int loadSegmentLeaves(fulltext_vtab *v,
+ sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ int rc;
+ LeavesReader reader;
+
+ assert( iStartLeaf<=iEndLeaf );
+ rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
+ leavesReaderReset(&reader);
+ leavesReaderDestroy(&reader);
+ return rc;
+}
+
+/* Taking pData/nData as an interior node, find the sequence of child
+** nodes which could include pTerm/nTerm/isPrefix. Note that the
+** interior node terms logically come between the blocks, so there is
+** one more blockid than there are terms (that block contains terms >=
+** the last interior-node term).
+*/
+/* TODO(shess) The calling code may already know that the end child is
+** not worth calculating, because the end may be in a later sibling
+** node. Consider whether breaking symmetry is worthwhile. I suspect
+** it is not worthwhile.
+*/
+static void getChildrenContaining(const char *pData, int nData,
+ const char *pTerm, int nTerm, int isPrefix,
+ sqlite_int64 *piStartChild,
+ sqlite_int64 *piEndChild){
+ InteriorReader reader;
+
+ assert( nData>1 );
+ assert( *pData!='\0' );
+ interiorReaderInit(pData, nData, &reader);
+
+ /* Scan for the first child which could contain pTerm/nTerm. */
+ while( !interiorReaderAtEnd(&reader) ){
+ if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
+ interiorReaderStep(&reader);
+ }
+ *piStartChild = interiorReaderCurrentBlockid(&reader);
+
+ /* Keep scanning to find a term greater than our term, using prefix
+ ** comparison if indicated. If isPrefix is false, this will be the
+ ** same blockid as the starting block.
+ */
+ while( !interiorReaderAtEnd(&reader) ){
+ if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
+ interiorReaderStep(&reader);
+ }
+ *piEndChild = interiorReaderCurrentBlockid(&reader);
+
+ interiorReaderDestroy(&reader);
+
+ /* Children must ascend, and if !prefix, both must be the same. */
+ assert( *piEndChild>=*piStartChild );
+ assert( isPrefix || *piStartChild==*piEndChild );
+}
+
+/* Read block at iBlockid and pass it with other params to
+** getChildrenContaining().
+*/
+static int loadAndGetChildrenContaining(
+ fulltext_vtab *v,
+ sqlite_int64 iBlockid,
+ const char *pTerm, int nTerm, int isPrefix,
+ sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
+){
+ sqlite3_stmt *s = NULL;
+ int rc;
+
+ assert( iBlockid!=0 );
+ assert( pTerm!=NULL );
+ assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
+ assert( piStartChild!=NULL );
+ assert( piEndChild!=NULL );
+
+ rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ) return SQLITE_ERROR;
+ if( rc!=SQLITE_ROW ) return rc;
+
+ getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
+ pTerm, nTerm, isPrefix, piStartChild, piEndChild);
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain
+ * locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ if( rc!=SQLITE_DONE ) return rc;
+
+ return SQLITE_OK;
+}
+
+/* Traverse the tree represented by pData[nData] looking for
+** pTerm[nTerm], placing its doclist into *out. This is internal to
+** loadSegment() to make error-handling cleaner.
+*/
+static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
+ sqlite_int64 iLeavesEnd,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ /* Special case where root is a leaf. */
+ if( *pData=='\0' ){
+ return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
+ }else{
+ int rc;
+ sqlite_int64 iStartChild, iEndChild;
+
+ /* Process pData as an interior node, then loop down the tree
+ ** until we find the set of leaf nodes to scan for the term.
+ */
+ getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
+ &iStartChild, &iEndChild);
+ while( iStartChild>iLeavesEnd ){
+ sqlite_int64 iNextStart, iNextEnd;
+ rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
+ &iNextStart, &iNextEnd);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* If we've branched, follow the end branch, too. */
+ if( iStartChild!=iEndChild ){
+ sqlite_int64 iDummy;
+ rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
+ &iDummy, &iNextEnd);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ assert( iNextStart<=iNextEnd );
+ iStartChild = iNextStart;
+ iEndChild = iNextEnd;
+ }
+ assert( iStartChild<=iLeavesEnd );
+ assert( iEndChild<=iLeavesEnd );
+
+ /* Scan through the leaf segments for doclists. */
+ return loadSegmentLeaves(v, iStartChild, iEndChild,
+ pTerm, nTerm, isPrefix, out);
+ }
+}
+
+/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
+** merge its doclist over *out (any duplicate doclists read from the
+** segment rooted at pData will overwrite those in *out).
+*/
+/* TODO(shess) Consider changing this to determine the depth of the
+** leaves using either the first characters of interior nodes (when
+** ==1, we're one level above the leaves), or the first character of
+** the root (which will describe the height of the tree directly).
+** Either feels somewhat tricky to me.
+*/
+/* TODO(shess) The current merge is likely to be slow for large
+** doclists (though it should process from newest/smallest to
+** oldest/largest, so it may not be that bad). It might be useful to
+** modify things to allow for N-way merging. This could either be
+** within a segment, with pairwise merges across segments, or across
+** all segments at once.
+*/
+static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
+ sqlite_int64 iLeavesEnd,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ DataBuffer result;
+ int rc;
+
+ assert( nData>1 );
+
+ /* This code should never be called with buffered updates. */
+ assert( v->nPendingData<0 );
+
+ dataBufferInit(&result, 0);
+ rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
+ pTerm, nTerm, isPrefix, &result);
+ if( rc==SQLITE_OK && result.nData>0 ){
+ if( out->nData==0 ){
+ DataBuffer tmp = *out;
+ *out = result;
+ result = tmp;
+ }else{
+ DataBuffer merged;
+ DLReader readers[2];
+
+ dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
+ dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
+ dataBufferInit(&merged, out->nData+result.nData);
+ docListMerge(&merged, readers, 2);
+ dataBufferDestroy(out);
+ *out = merged;
+ dlrDestroy(&readers[0]);
+ dlrDestroy(&readers[1]);
+ }
+ }
+ dataBufferDestroy(&result);
+ return rc;
+}
+
+/* Scan the database and merge together the posting lists for the term
+** into *out.
+*/
+static int termSelect(
+ fulltext_vtab *v,
+ int iColumn,
+ const char *pTerm, int nTerm, /* Term to query for */
+ int isPrefix, /* True for a prefix search */
+ DocListType iType,
+ DataBuffer *out /* Write results here */
+){
+ DataBuffer doclist;
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* This code should never be called with buffered updates. */
+ assert( v->nPendingData<0 );
+
+ dataBufferInit(&doclist, 0);
+ dataBufferInit(out, 0);
+
+ /* Traverse the segments from oldest to newest so that newer doclist
+ ** elements for given docids overwrite older elements.
+ */
+ while( (rc = sqlite3_step(s))==SQLITE_ROW ){
+ const char *pData = sqlite3_column_blob(s, 2);
+ const int nData = sqlite3_column_bytes(s, 2);
+ const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
+ rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
+ &doclist);
+ if( rc!=SQLITE_OK ) goto err;
+ }
+ if( rc==SQLITE_DONE ){
+ if( doclist.nData!=0 ){
+ /* TODO(shess) The old term_select_all() code applied the column
+ ** restrict as we merged segments, leading to smaller buffers.
+ ** This is probably worthwhile to bring back, once the new storage
+ ** system is checked in.
+ */
+ if( iColumn==v->nColumn) iColumn = -1;
+ docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
+ iColumn, iType, out);
+ }
+ rc = SQLITE_OK;
+ }
+
+ err:
+ dataBufferDestroy(&doclist);
+ return rc;
+}
+
+/****************************************************************/
+/* Used to hold hashtable data for sorting. */
+typedef struct TermData {
+ const char *pTerm;
+ int nTerm;
+ DLCollector *pCollector;
+} TermData;
+
+/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
+** for equal, >0 for greater-than).
+*/
+static int termDataCmp(const void *av, const void *bv){
+ const TermData *a = (const TermData *)av;
+ const TermData *b = (const TermData *)bv;
+ int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
+ int c = memcmp(a->pTerm, b->pTerm, n);
+ if( c!=0 ) return c;
+ return a->nTerm-b->nTerm;
+}
+
+/* Order pTerms data by term, then write a new level 0 segment using
+** LeafWriter.
+*/
+static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
+ fts3HashElem *e;
+ int idx, rc, i, n;
+ TermData *pData;
+ LeafWriter writer;
+ DataBuffer dl;
+
+ /* Determine the next index at level 0, merging as necessary. */
+ rc = segdirNextIndex(v, 0, &idx);
+ if( rc!=SQLITE_OK ) return rc;
+
+ n = fts3HashCount(pTerms);
+ pData = sqlite3_malloc(n*sizeof(TermData));
+
+ for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
+ assert( i<n );
+ pData[i].pTerm = fts3HashKey(e);
+ pData[i].nTerm = fts3HashKeysize(e);
+ pData[i].pCollector = fts3HashData(e);
+ }
+ assert( i==n );
+
+ /* TODO(shess) Should we allow user-defined collation sequences,
+ ** here? I think we only need that once we support prefix searches.
+ */
+ if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
+
+ /* TODO(shess) Refactor so that we can write directly to the segment
+ ** DataBuffer, as happens for segment merges.
+ */
+ leafWriterInit(0, idx, &writer);
+ dataBufferInit(&dl, 0);
+ for(i=0; i<n; i++){
+ dataBufferReset(&dl);
+ dlcAddDoclist(pData[i].pCollector, &dl);
+ rc = leafWriterStep(v, &writer,
+ pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
+ if( rc!=SQLITE_OK ) goto err;
+ }
+ rc = leafWriterFinalize(v, &writer);
+
+ err:
+ dataBufferDestroy(&dl);
+ sqlite3_free(pData);
+ leafWriterDestroy(&writer);
+ return rc;
+}
+
+/* If pendingTerms has data, free it. */
+static int clearPendingTerms(fulltext_vtab *v){
+ if( v->nPendingData>=0 ){
+ fts3HashElem *e;
+ for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
+ dlcDelete(fts3HashData(e));
+ }
+ fts3HashClear(&v->pendingTerms);
+ v->nPendingData = -1;
+ }
+ return SQLITE_OK;
+}
+
+/* If pendingTerms has data, flush it to a level-zero segment, and
+** free it.
+*/
+static int flushPendingTerms(fulltext_vtab *v){
+ if( v->nPendingData>=0 ){
+ int rc = writeZeroSegment(v, &v->pendingTerms);
+ if( rc==SQLITE_OK ) clearPendingTerms(v);
+ return rc;
+ }
+ return SQLITE_OK;
+}
+
+/* If pendingTerms is "too big", or docid is out of order, flush it.
+** Regardless, be certain that pendingTerms is initialized for use.
+*/
+static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
+ /* TODO(shess) Explore whether partially flushing the buffer on
+ ** forced-flush would provide better performance. I suspect that if
+ ** we ordered the doclists by size and flushed the largest until the
+ ** buffer was half empty, that would let the less frequent terms
+ ** generate longer doclists.
+ */
+ if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
+ int rc = flushPendingTerms(v);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ if( v->nPendingData<0 ){
+ fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
+ v->nPendingData = 0;
+ }
+ v->iPrevDocid = iDocid;
+ return SQLITE_OK;
+}
+
+/* This function implements the xUpdate callback; it is the top-level entry
+ * point for inserting, deleting or updating a row in a full-text table. */
+static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
+ sqlite_int64 *pRowid){
+ fulltext_vtab *v = (fulltext_vtab *) pVtab;
+ int rc;
+
+ FTSTRACE(("FTS3 Update %p\n", pVtab));
+
+ if( nArg<2 ){
+ rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
+ if( rc==SQLITE_OK ){
+ /* If we just deleted the last row in the table, clear out the
+ ** index data.
+ */
+ rc = content_exists(v);
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_OK;
+ }else if( rc==SQLITE_DONE ){
+ /* Clear the pending terms so we don't flush a useless level-0
+ ** segment when the transaction closes.
+ */
+ rc = clearPendingTerms(v);
+ if( rc==SQLITE_OK ){
+ rc = segdir_delete_all(v);
+ }
+ }
+ }
+ } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
+ /* An update:
+ * ppArg[0] = old rowid
+ * ppArg[1] = new rowid
+ * ppArg[2..2+v->nColumn-1] = values
+ * ppArg[2+v->nColumn] = value for magic column (we ignore this)
+ * ppArg[2+v->nColumn+1] = value for docid
+ */
+ sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
+ if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
+ sqlite3_value_int64(ppArg[1]) != rowid ){
+ rc = SQLITE_ERROR; /* we don't allow changing the rowid */
+ }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
+ sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
+ rc = SQLITE_ERROR; /* we don't allow changing the docid */
+ }else{
+ assert( nArg==2+v->nColumn+2);
+ rc = index_update(v, rowid, &ppArg[2]);
+ }
+ } else {
+ /* An insert:
+ * ppArg[1] = requested rowid
+ * ppArg[2..2+v->nColumn-1] = values
+ * ppArg[2+v->nColumn] = value for magic column (we ignore this)
+ * ppArg[2+v->nColumn+1] = value for docid
+ */
+ sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
+ assert( nArg==2+v->nColumn+2);
+ if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
+ SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
+ /* TODO(shess) Consider allowing this to work if the values are
+ ** identical. I'm inclined to discourage that usage, though,
+ ** given that both rowid and docid are special columns. Better
+ ** would be to define one or the other as the default winner,
+ ** but should it be fts3-centric (docid) or SQLite-centric
+ ** (rowid)?
+ */
+ rc = SQLITE_ERROR;
+ }else{
+ if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
+ pRequestDocid = ppArg[1];
+ }
+ rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
+ }
+ }
+
+ return rc;
+}
+
+static int fulltextSync(sqlite3_vtab *pVtab){
+ FTSTRACE(("FTS3 xSync()\n"));
+ return flushPendingTerms((fulltext_vtab *)pVtab);
+}
+
+static int fulltextBegin(sqlite3_vtab *pVtab){
+ fulltext_vtab *v = (fulltext_vtab *) pVtab;
+ FTSTRACE(("FTS3 xBegin()\n"));
+
+ /* Any buffered updates should have been cleared by the previous
+ ** transaction.
+ */
+ assert( v->nPendingData<0 );
+ return clearPendingTerms(v);
+}
+
+static int fulltextCommit(sqlite3_vtab *pVtab){
+ fulltext_vtab *v = (fulltext_vtab *) pVtab;
+ FTSTRACE(("FTS3 xCommit()\n"));
+
+ /* Buffered updates should have been cleared by fulltextSync(). */
+ assert( v->nPendingData<0 );
+ return clearPendingTerms(v);
+}
+
+static int fulltextRollback(sqlite3_vtab *pVtab){
+ FTSTRACE(("FTS3 xRollback()\n"));
+ return clearPendingTerms((fulltext_vtab *)pVtab);
+}
+
+/*
+** Implementation of the snippet() function for FTS3
+*/
+static void snippetFunc(
+ sqlite3_context *pContext,
+ int argc,
+ sqlite3_value **argv
+){
+ fulltext_cursor *pCursor;
+ if( argc<1 ) return;
+ if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
+ }else{
+ const char *zStart = "<b>";
+ const char *zEnd = "</b>";
+ const char *zEllipsis = "<b>...</b>";
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ if( argc>=2 ){
+ zStart = (const char*)sqlite3_value_text(argv[1]);
+ if( argc>=3 ){
+ zEnd = (const char*)sqlite3_value_text(argv[2]);
+ if( argc>=4 ){
+ zEllipsis = (const char*)sqlite3_value_text(argv[3]);
+ }
+ }
+ }
+ snippetAllOffsets(pCursor);
+ snippetText(pCursor, zStart, zEnd, zEllipsis);
+ sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
+ pCursor->snippet.nSnippet, SQLITE_STATIC);
+ }
+}
+
+/*
+** Implementation of the offsets() function for FTS3
+*/
+static void snippetOffsetsFunc(
+ sqlite3_context *pContext,
+ int argc,
+ sqlite3_value **argv
+){
+ fulltext_cursor *pCursor;
+ if( argc<1 ) return;
+ if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
+ }else{
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ snippetAllOffsets(pCursor);
+ snippetOffsetText(&pCursor->snippet);
+ sqlite3_result_text(pContext,
+ pCursor->snippet.zOffset, pCursor->snippet.nOffset,
+ SQLITE_STATIC);
+ }
+}
+
+/* OptLeavesReader is nearly identical to LeavesReader, except that
+** where LeavesReader is geared towards the merging of complete
+** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
+** is geared towards implementation of the optimize() function, and
+** can merge all segments simultaneously. This version may be
+** somewhat less efficient than LeavesReader because it merges into an
+** accumulator rather than doing an N-way merge, but since segment
+** size grows exponentially (so segment count logrithmically) this is
+** probably not an immediate problem.
+*/
+/* TODO(shess): Prove that assertion, or extend the merge code to
+** merge tree fashion (like the prefix-searching code does).
+*/
+/* TODO(shess): OptLeavesReader and LeavesReader could probably be
+** merged with little or no loss of performance for LeavesReader. The
+** merged code would need to handle >MERGE_COUNT segments, and would
+** also need to be able to optionally optimize away deletes.
+*/
+typedef struct OptLeavesReader {
+ /* Segment number, to order readers by age. */
+ int segment;
+ LeavesReader reader;
+} OptLeavesReader;
+
+static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
+ return leavesReaderAtEnd(&pReader->reader);
+}
+static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
+ return leavesReaderTermBytes(&pReader->reader);
+}
+static const char *optLeavesReaderData(OptLeavesReader *pReader){
+ return leavesReaderData(&pReader->reader);
+}
+static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
+ return leavesReaderDataBytes(&pReader->reader);
+}
+static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
+ return leavesReaderTerm(&pReader->reader);
+}
+static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
+ return leavesReaderStep(v, &pReader->reader);
+}
+static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
+ return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
+}
+/* Order by term ascending, segment ascending (oldest to newest), with
+** exhausted readers to the end.
+*/
+static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
+ int c = optLeavesReaderTermCmp(lr1, lr2);
+ if( c!=0 ) return c;
+ return lr1->segment-lr2->segment;
+}
+/* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that
+** pLr[1..nLr-1] is already sorted.
+*/
+static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
+ while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
+ OptLeavesReader tmp = pLr[0];
+ pLr[0] = pLr[1];
+ pLr[1] = tmp;
+ nLr--;
+ pLr++;
+ }
+}
+
+/* optimize() helper function. Put the readers in order and iterate
+** through them, merging doclists for matching terms into pWriter.
+** Returns SQLITE_OK on success, or the SQLite error code which
+** prevented success.
+*/
+static int optimizeInternal(fulltext_vtab *v,
+ OptLeavesReader *readers, int nReaders,
+ LeafWriter *pWriter){
+ int i, rc = SQLITE_OK;
+ DataBuffer doclist, merged, tmp;
+
+ /* Order the readers. */
+ i = nReaders;
+ while( i-- > 0 ){
+ optLeavesReaderReorder(&readers[i], nReaders-i);
+ }
+
+ dataBufferInit(&doclist, LEAF_MAX);
+ dataBufferInit(&merged, LEAF_MAX);
+
+ /* Exhausted readers bubble to the end, so when the first reader is
+ ** at eof, all are at eof.
+ */
+ while( !optLeavesReaderAtEnd(&readers[0]) ){
+
+ /* Figure out how many readers share the next term. */
+ for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
+ if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
+ }
+
+ /* Special-case for no merge. */
+ if( i==1 ){
+ /* Trim deletions from the doclist. */
+ dataBufferReset(&merged);
+ docListTrim(DL_DEFAULT,
+ optLeavesReaderData(&readers[0]),
+ optLeavesReaderDataBytes(&readers[0]),
+ -1, DL_DEFAULT, &merged);
+ }else{
+ DLReader dlReaders[MERGE_COUNT];
+ int iReader, nReaders;
+
+ /* Prime the pipeline with the first reader's doclist. After
+ ** one pass index 0 will reference the accumulated doclist.
+ */
+ dlrInit(&dlReaders[0], DL_DEFAULT,
+ optLeavesReaderData(&readers[0]),
+ optLeavesReaderDataBytes(&readers[0]));
+ iReader = 1;
+
+ assert( iReader<i ); /* Must execute the loop at least once. */
+ while( iReader<i ){
+ /* Merge 16 inputs per pass. */
+ for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
+ iReader++, nReaders++ ){
+ dlrInit(&dlReaders[nReaders], DL_DEFAULT,
+ optLeavesReaderData(&readers[iReader]),
+ optLeavesReaderDataBytes(&readers[iReader]));
+ }
+
+ /* Merge doclists and swap result into accumulator. */
+ dataBufferReset(&merged);
+ docListMerge(&merged, dlReaders, nReaders);
+ tmp = merged;
+ merged = doclist;
+ doclist = tmp;
+
+ while( nReaders-- > 0 ){
+ dlrDestroy(&dlReaders[nReaders]);
+ }
+
+ /* Accumulated doclist to reader 0 for next pass. */
+ dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
+ }
+
+ /* Destroy reader that was left in the pipeline. */
+ dlrDestroy(&dlReaders[0]);
+
+ /* Trim deletions from the doclist. */
+ dataBufferReset(&merged);
+ docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
+ -1, DL_DEFAULT, &merged);
+ }
+
+ /* Only pass doclists with hits (skip if all hits deleted). */
+ if( merged.nData>0 ){
+ rc = leafWriterStep(v, pWriter,
+ optLeavesReaderTerm(&readers[0]),
+ optLeavesReaderTermBytes(&readers[0]),
+ merged.pData, merged.nData);
+ if( rc!=SQLITE_OK ) goto err;
+ }
+
+ /* Step merged readers to next term and reorder. */
+ while( i-- > 0 ){
+ rc = optLeavesReaderStep(v, &readers[i]);
+ if( rc!=SQLITE_OK ) goto err;
+
+ optLeavesReaderReorder(&readers[i], nReaders-i);
+ }
+ }
+
+ err:
+ dataBufferDestroy(&doclist);
+ dataBufferDestroy(&merged);
+ return rc;
+}
+
+/* Implement optimize() function for FTS3. optimize(t) merges all
+** segments in the fts index into a single segment. 't' is the magic
+** table-named column.
+*/
+static void optimizeFunc(sqlite3_context *pContext,
+ int argc, sqlite3_value **argv){
+ fulltext_cursor *pCursor;
+ if( argc>1 ){
+ sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
+ }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
+ }else{
+ fulltext_vtab *v;
+ int i, rc, iMaxLevel;
+ OptLeavesReader *readers;
+ int nReaders;
+ LeafWriter writer;
+ sqlite3_stmt *s;
+
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ v = cursor_vtab(pCursor);
+
+ /* Flush any buffered updates before optimizing. */
+ rc = flushPendingTerms(v);
+ if( rc!=SQLITE_OK ) goto err;
+
+ rc = segdir_count(v, &nReaders, &iMaxLevel);
+ if( rc!=SQLITE_OK ) goto err;
+ if( nReaders==0 || nReaders==1 ){
+ sqlite3_result_text(pContext, "Index already optimal", -1,
+ SQLITE_STATIC);
+ return;
+ }
+
+ rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
+ if( rc!=SQLITE_OK ) goto err;
+
+ readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
+ if( readers==NULL ) goto err;
+
+ /* Note that there will already be a segment at this position
+ ** until we call segdir_delete() on iMaxLevel.
+ */
+ leafWriterInit(iMaxLevel, 0, &writer);
+
+ i = 0;
+ while( (rc = sqlite3_step(s))==SQLITE_ROW ){
+ sqlite_int64 iStart = sqlite3_column_int64(s, 0);
+ sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
+ const char *pRootData = sqlite3_column_blob(s, 2);
+ int nRootData = sqlite3_column_bytes(s, 2);
+
+ assert( i<nReaders );
+ rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
+ &readers[i].reader);
+ if( rc!=SQLITE_OK ) break;
+
+ readers[i].segment = i;
+ i++;
+ }
+
+ /* If we managed to successfully read them all, optimize them. */
+ if( rc==SQLITE_DONE ){
+ assert( i==nReaders );
+ rc = optimizeInternal(v, readers, nReaders, &writer);
+ }
+
+ while( i-- > 0 ){
+ leavesReaderDestroy(&readers[i].reader);
+ }
+ sqlite3_free(readers);
+
+ /* If we've successfully gotten to here, delete the old segments
+ ** and flush the interior structure of the new segment.
+ */
+ if( rc==SQLITE_OK ){
+ for( i=0; i<=iMaxLevel; i++ ){
+ rc = segdir_delete(v, i);
+ if( rc!=SQLITE_OK ) break;
+ }
+
+ if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
+ }
+
+ leafWriterDestroy(&writer);
+
+ if( rc!=SQLITE_OK ) goto err;
+
+ sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
+ return;
+
+ /* TODO(shess): Error-handling needs to be improved along the
+ ** lines of the dump_ functions.
+ */
+ err:
+ {
+ char buf[512];
+ sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
+ sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
+ sqlite3_result_error(pContext, buf, -1);
+ }
+ }
+}
+
+#ifdef SQLITE_TEST
+/* Generate an error of the form "<prefix>: <msg>". If msg is NULL,
+** pull the error from the context's db handle.
+*/
+static void generateError(sqlite3_context *pContext,
+ const char *prefix, const char *msg){
+ char buf[512];
+ if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
+ sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
+ sqlite3_result_error(pContext, buf, -1);
+}
+
+/* Helper function to collect the set of terms in the segment into
+** pTerms. The segment is defined by the leaf nodes between
+** iStartBlockid and iEndBlockid, inclusive, or by the contents of
+** pRootData if iStartBlockid is 0 (in which case the entire segment
+** fit in a leaf).
+*/
+static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
+ fts3Hash *pTerms){
+ const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
+ const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
+ const char *pRootData = sqlite3_column_blob(s, 2);
+ const int nRootData = sqlite3_column_bytes(s, 2);
+ LeavesReader reader;
+ int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
+ pRootData, nRootData, &reader);
+ if( rc!=SQLITE_OK ) return rc;
+
+ while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
+ const char *pTerm = leavesReaderTerm(&reader);
+ const int nTerm = leavesReaderTermBytes(&reader);
+ void *oldValue = sqlite3Fts3HashFind(pTerms, pTerm, nTerm);
+ void *newValue = (void *)((char *)oldValue+1);
+
+ /* From the comment before sqlite3Fts3HashInsert in fts3_hash.c,
+ ** the data value passed is returned in case of malloc failure.
+ */
+ if( newValue==sqlite3Fts3HashInsert(pTerms, pTerm, nTerm, newValue) ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = leavesReaderStep(v, &reader);
+ }
+ }
+
+ leavesReaderDestroy(&reader);
+ return rc;
+}
+
+/* Helper function to build the result string for dump_terms(). */
+static int generateTermsResult(sqlite3_context *pContext, fts3Hash *pTerms){
+ int iTerm, nTerms, nResultBytes, iByte;
+ char *result;
+ TermData *pData;
+ fts3HashElem *e;
+
+ /* Iterate pTerms to generate an array of terms in pData for
+ ** sorting.
+ */
+ nTerms = fts3HashCount(pTerms);
+ assert( nTerms>0 );
+ pData = sqlite3_malloc(nTerms*sizeof(TermData));
+ if( pData==NULL ) return SQLITE_NOMEM;
+
+ nResultBytes = 0;
+ for(iTerm = 0, e = fts3HashFirst(pTerms); e; iTerm++, e = fts3HashNext(e)){
+ nResultBytes += fts3HashKeysize(e)+1; /* Term plus trailing space */
+ assert( iTerm<nTerms );
+ pData[iTerm].pTerm = fts3HashKey(e);
+ pData[iTerm].nTerm = fts3HashKeysize(e);
+ pData[iTerm].pCollector = fts3HashData(e); /* unused */
+ }
+ assert( iTerm==nTerms );
+
+ assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */
+ result = sqlite3_malloc(nResultBytes);
+ if( result==NULL ){
+ sqlite3_free(pData);
+ return SQLITE_NOMEM;
+ }
+
+ if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
+
+ /* Read the terms in order to build the result. */
+ iByte = 0;
+ for(iTerm=0; iTerm<nTerms; ++iTerm){
+ memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
+ iByte += pData[iTerm].nTerm;
+ result[iByte++] = ' ';
+ }
+ assert( iByte==nResultBytes );
+ assert( result[nResultBytes-1]==' ' );
+ result[nResultBytes-1] = '\0';
+
+ /* Passes away ownership of result. */
+ sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
+ sqlite3_free(pData);
+ return SQLITE_OK;
+}
+
+/* Implements dump_terms() for use in inspecting the fts3 index from
+** tests. TEXT result containing the ordered list of terms joined by
+** spaces. dump_terms(t, level, idx) dumps the terms for the segment
+** specified by level, idx (in %_segdir), while dump_terms(t) dumps
+** all terms in the index. In both cases t is the fts table's magic
+** table-named column.
+*/
+static void dumpTermsFunc(
+ sqlite3_context *pContext,
+ int argc, sqlite3_value **argv
+){
+ fulltext_cursor *pCursor;
+ if( argc!=3 && argc!=1 ){
+ generateError(pContext, "dump_terms", "incorrect arguments");
+ }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ generateError(pContext, "dump_terms", "illegal first argument");
+ }else{
+ fulltext_vtab *v;
+ fts3Hash terms;
+ sqlite3_stmt *s = NULL;
+ int rc;
+
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ v = cursor_vtab(pCursor);
+
+ /* If passed only the cursor column, get all segments. Otherwise
+ ** get the segment described by the following two arguments.
+ */
+ if( argc==1 ){
+ rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
+ }else{
+ rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ generateError(pContext, "dump_terms", NULL);
+ return;
+ }
+
+ /* Collect the terms for each segment. */
+ sqlite3Fts3HashInit(&terms, FTS3_HASH_STRING, 1);
+ while( (rc = sqlite3_step(s))==SQLITE_ROW ){
+ rc = collectSegmentTerms(v, s, &terms);
+ if( rc!=SQLITE_OK ) break;
+ }
+
+ if( rc!=SQLITE_DONE ){
+ sqlite3_reset(s);
+ generateError(pContext, "dump_terms", NULL);
+ }else{
+ const int nTerms = fts3HashCount(&terms);
+ if( nTerms>0 ){
+ rc = generateTermsResult(pContext, &terms);
+ if( rc==SQLITE_NOMEM ){
+ generateError(pContext, "dump_terms", "out of memory");
+ }else{
+ assert( rc==SQLITE_OK );
+ }
+ }else if( argc==3 ){
+ /* The specific segment asked for could not be found. */
+ generateError(pContext, "dump_terms", "segment not found");
+ }else{
+ /* No segments found. */
+ /* TODO(shess): It should be impossible to reach this. This
+ ** case can only happen for an empty table, in which case
+ ** SQLite has no rows to call this function on.
+ */
+ sqlite3_result_null(pContext);
+ }
+ }
+ sqlite3Fts3HashClear(&terms);
+ }
+}
+
+/* Expand the DL_DEFAULT doclist in pData into a text result in
+** pContext.
+*/
+static void createDoclistResult(sqlite3_context *pContext,
+ const char *pData, int nData){
+ DataBuffer dump;
+ DLReader dlReader;
+
+ assert( pData!=NULL && nData>0 );
+
+ dataBufferInit(&dump, 0);
+ dlrInit(&dlReader, DL_DEFAULT, pData, nData);
+ for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
+ char buf[256];
+ PLReader plReader;
+
+ plrInit(&plReader, &dlReader);
+ if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
+ sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
+ dataBufferAppend(&dump, buf, strlen(buf));
+ }else{
+ int iColumn = plrColumn(&plReader);
+
+ sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
+ dlrDocid(&dlReader), iColumn);
+ dataBufferAppend(&dump, buf, strlen(buf));
+
+ for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
+ if( plrColumn(&plReader)!=iColumn ){
+ iColumn = plrColumn(&plReader);
+ sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
+ assert( dump.nData>0 );
+ dump.nData--; /* Overwrite trailing space. */
+ assert( dump.pData[dump.nData]==' ');
+ dataBufferAppend(&dump, buf, strlen(buf));
+ }
+ if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
+ sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
+ plrPosition(&plReader),
+ plrStartOffset(&plReader), plrEndOffset(&plReader));
+ }else if( DL_DEFAULT==DL_POSITIONS ){
+ sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
+ }else{
+ assert( NULL=="Unhandled DL_DEFAULT value");
+ }
+ dataBufferAppend(&dump, buf, strlen(buf));
+ }
+ plrDestroy(&plReader);
+
+ assert( dump.nData>0 );
+ dump.nData--; /* Overwrite trailing space. */
+ assert( dump.pData[dump.nData]==' ');
+ dataBufferAppend(&dump, "]] ", 3);
+ }
+ }
+ dlrDestroy(&dlReader);
+
+ assert( dump.nData>0 );
+ dump.nData--; /* Overwrite trailing space. */
+ assert( dump.pData[dump.nData]==' ');
+ dump.pData[dump.nData] = '\0';
+ assert( dump.nData>0 );
+
+ /* Passes ownership of dump's buffer to pContext. */
+ sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
+ dump.pData = NULL;
+ dump.nData = dump.nCapacity = 0;
+}
+
+/* Implements dump_doclist() for use in inspecting the fts3 index from
+** tests. TEXT result containing a string representation of the
+** doclist for the indicated term. dump_doclist(t, term, level, idx)
+** dumps the doclist for term from the segment specified by level, idx
+** (in %_segdir), while dump_doclist(t, term) dumps the logical
+** doclist for the term across all segments. The per-segment doclist
+** can contain deletions, while the full-index doclist will not
+** (deletions are omitted).
+**
+** Result formats differ with the setting of DL_DEFAULTS. Examples:
+**
+** DL_DOCIDS: [1] [3] [7]
+** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
+** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
+**
+** In each case the number after the outer '[' is the docid. In the
+** latter two cases, the number before the inner '[' is the column
+** associated with the values within. For DL_POSITIONS the numbers
+** within are the positions, for DL_POSITIONS_OFFSETS they are the
+** position, the start offset, and the end offset.
+*/
+static void dumpDoclistFunc(
+ sqlite3_context *pContext,
+ int argc, sqlite3_value **argv
+){
+ fulltext_cursor *pCursor;
+ if( argc!=2 && argc!=4 ){
+ generateError(pContext, "dump_doclist", "incorrect arguments");
+ }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ generateError(pContext, "dump_doclist", "illegal first argument");
+ }else if( sqlite3_value_text(argv[1])==NULL ||
+ sqlite3_value_text(argv[1])[0]=='\0' ){
+ generateError(pContext, "dump_doclist", "empty second argument");
+ }else{
+ const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
+ const int nTerm = strlen(pTerm);
+ fulltext_vtab *v;
+ int rc;
+ DataBuffer doclist;
+
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ v = cursor_vtab(pCursor);
+
+ dataBufferInit(&doclist, 0);
+
+ /* termSelect() yields the same logical doclist that queries are
+ ** run against.
+ */
+ if( argc==2 ){
+ rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
+ }else{
+ sqlite3_stmt *s = NULL;
+
+ /* Get our specific segment's information. */
+ rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(s);
+
+ if( rc==SQLITE_DONE ){
+ dataBufferDestroy(&doclist);
+ generateError(pContext, "dump_doclist", "segment not found");
+ return;
+ }
+
+ /* Found a segment, load it into doclist. */
+ if( rc==SQLITE_ROW ){
+ const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
+ const char *pData = sqlite3_column_blob(s, 2);
+ const int nData = sqlite3_column_bytes(s, 2);
+
+ /* loadSegment() is used by termSelect() to load each
+ ** segment's data.
+ */
+ rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
+ &doclist);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(s);
+
+ /* Should not have more than one matching segment. */
+ if( rc!=SQLITE_DONE ){
+ sqlite3_reset(s);
+ dataBufferDestroy(&doclist);
+ generateError(pContext, "dump_doclist", "invalid segdir");
+ return;
+ }
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ sqlite3_reset(s);
+ }
+
+ if( rc==SQLITE_OK ){
+ if( doclist.nData>0 ){
+ createDoclistResult(pContext, doclist.pData, doclist.nData);
+ }else{
+ /* TODO(shess): This can happen if the term is not present, or
+ ** if all instances of the term have been deleted and this is
+ ** an all-index dump. It may be interesting to distinguish
+ ** these cases.
+ */
+ sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
+ }
+ }else if( rc==SQLITE_NOMEM ){
+ /* Handle out-of-memory cases specially because if they are
+ ** generated in fts3 code they may not be reflected in the db
+ ** handle.
+ */
+ /* TODO(shess): Handle this more comprehensively.
+ ** sqlite3ErrStr() has what I need, but is internal.
+ */
+ generateError(pContext, "dump_doclist", "out of memory");
+ }else{
+ generateError(pContext, "dump_doclist", NULL);
+ }
+
+ dataBufferDestroy(&doclist);
+ }
+}
+#endif
+
+/*
+** This routine implements the xFindFunction method for the FTS3
+** virtual table.
+*/
+static int fulltextFindFunction(
+ sqlite3_vtab *pVtab,
+ int nArg,
+ const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg
+){
+ if( strcmp(zName,"snippet")==0 ){
+ *pxFunc = snippetFunc;
+ return 1;
+ }else if( strcmp(zName,"offsets")==0 ){
+ *pxFunc = snippetOffsetsFunc;
+ return 1;
+ }else if( strcmp(zName,"optimize")==0 ){
+ *pxFunc = optimizeFunc;
+ return 1;
+#ifdef SQLITE_TEST
+ /* NOTE(shess): These functions are present only for testing
+ ** purposes. No particular effort is made to optimize their
+ ** execution or how they build their results.
+ */
+ }else if( strcmp(zName,"dump_terms")==0 ){
+ /* fprintf(stderr, "Found dump_terms\n"); */
+ *pxFunc = dumpTermsFunc;
+ return 1;
+ }else if( strcmp(zName,"dump_doclist")==0 ){
+ /* fprintf(stderr, "Found dump_doclist\n"); */
+ *pxFunc = dumpDoclistFunc;
+ return 1;
+#endif
+ }
+ return 0;
+}
+
+/*
+** Rename an fts3 table.
+*/
+static int fulltextRename(
+ sqlite3_vtab *pVtab,
+ const char *zName
+){
+ fulltext_vtab *p = (fulltext_vtab *)pVtab;
+ int rc = SQLITE_NOMEM;
+ char *zSql = sqlite3_mprintf(
+ "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
+ "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
+ "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
+ , p->zDb, p->zName, zName
+ , p->zDb, p->zName, zName
+ , p->zDb, p->zName, zName
+ );
+ if( zSql ){
+ rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+static const sqlite3_module fts3Module = {
+ /* iVersion */ 0,
+ /* xCreate */ fulltextCreate,
+ /* xConnect */ fulltextConnect,
+ /* xBestIndex */ fulltextBestIndex,
+ /* xDisconnect */ fulltextDisconnect,
+ /* xDestroy */ fulltextDestroy,
+ /* xOpen */ fulltextOpen,
+ /* xClose */ fulltextClose,
+ /* xFilter */ fulltextFilter,
+ /* xNext */ fulltextNext,
+ /* xEof */ fulltextEof,
+ /* xColumn */ fulltextColumn,
+ /* xRowid */ fulltextRowid,
+ /* xUpdate */ fulltextUpdate,
+ /* xBegin */ fulltextBegin,
+ /* xSync */ fulltextSync,
+ /* xCommit */ fulltextCommit,
+ /* xRollback */ fulltextRollback,
+ /* xFindFunction */ fulltextFindFunction,
+ /* xRename */ fulltextRename,
+};
+
+static void hashDestroy(void *p){
+ fts3Hash *pHash = (fts3Hash *)p;
+ sqlite3Fts3HashClear(pHash);
+ sqlite3_free(pHash);
+}
+
+/*
+** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
+** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
+** two forward declarations are for functions declared in these files
+** used to retrieve the respective implementations.
+**
+** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
+** to by the argument to point a the "simple" tokenizer implementation.
+** Function ...PorterTokenizerModule() sets *pModule to point to the
+** porter tokenizer/stemmer implementation.
+*/
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+
+SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
+
+/*
+** Initialise the fts3 extension. If this extension is built as part
+** of the sqlite library, then this function is called directly by
+** SQLite. If fts3 is built as a dynamically loadable extension, this
+** function is called by the sqlite3_extension_init() entry point.
+*/
+SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
int rc = SQLITE_OK;
- for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){
- rc = sqlite3_bind_null(pStmt, i);
+ fts3Hash *pHash = 0;
+ const sqlite3_tokenizer_module *pSimple = 0;
+ const sqlite3_tokenizer_module *pPorter = 0;
+ const sqlite3_tokenizer_module *pIcu = 0;
+
+ sqlite3Fts3SimpleTokenizerModule(&pSimple);
+ sqlite3Fts3PorterTokenizerModule(&pPorter);
+#ifdef SQLITE_ENABLE_ICU
+ sqlite3Fts3IcuTokenizerModule(&pIcu);
+#endif
+
+ /* Allocate and initialise the hash-table used to store tokenizers. */
+ pHash = sqlite3_malloc(sizeof(fts3Hash));
+ if( !pHash ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
+ }
+
+ /* Load the built-in tokenizers into the hash table */
+ if( rc==SQLITE_OK ){
+ if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
+ || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
+ || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
+ ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+#ifdef SQLITE_TEST
+ sqlite3Fts3ExprInitTestInterface(db);
+#endif
+
+ /* Create the virtual table wrapper around the hash-table and overload
+ ** the two scalar functions. If this is successful, register the
+ ** module with sqlite.
+ */
+ if( SQLITE_OK==rc
+ && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
+#ifdef SQLITE_TEST
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
+#endif
+ ){
+ return sqlite3_create_module_v2(
+ db, "fts3", &fts3Module, (void *)pHash, hashDestroy
+ );
+ }
+
+ /* An error has occurred. Delete the hash table and return the error code. */
+ assert( rc!=SQLITE_OK );
+ if( pHash ){
+ sqlite3Fts3HashClear(pHash);
+ sqlite3_free(pHash);
}
return rc;
}
+#if !SQLITE_CORE
+SQLITE_API int sqlite3_extension_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3Fts3Init(db);
+}
+#endif
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3.c ************************************************/
+/************** Begin file fts3_expr.c ***************************************/
/*
-** Sleep for a little while. Return the amount of time slept.
+** 2008 Nov 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This module contains code that implements a parser for fts3 query strings
+** (the right-hand argument to the MATCH operator). Because the supported
+** syntax is relatively simple, the whole tokenizer/parser system is
+** hand-coded. The public interface to this module is declared in source
+** code file "fts3_expr.h".
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/*
+** By default, this module parses the legacy syntax that has been
+** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
+** is defined, then it uses the new syntax. The differences between
+** the new and the old syntaxes are:
+**
+** a) The new syntax supports parenthesis. The old does not.
+**
+** b) The new syntax supports the AND and NOT operators. The old does not.
+**
+** c) The old syntax supports the "-" token qualifier. This is not
+** supported by the new syntax (it is replaced by the NOT operator).
+**
+** d) When using the old syntax, the OR operator has a greater precedence
+** than an implicit AND. When using the new, both implicity and explicit
+** AND operators have a higher precedence than OR.
+**
+** If compiled with SQLITE_TEST defined, then this module exports the
+** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
+** to zero causes the module to use the old syntax. If it is set to
+** non-zero the new syntax is activated. This is so both syntaxes can
+** be tested using a single build of testfixture.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_fts3_enable_parentheses = 0;
+#else
+# ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
+# define sqlite3_fts3_enable_parentheses 1
+# else
+# define sqlite3_fts3_enable_parentheses 0
+# endif
+#endif
+
+/*
+** Default span for NEAR operators.
+*/
+#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
+
+
+typedef struct ParseContext ParseContext;
+struct ParseContext {
+ sqlite3_tokenizer *pTokenizer; /* Tokenizer module */
+ const char **azCol; /* Array of column names for fts3 table */
+ int nCol; /* Number of entries in azCol[] */
+ int iDefaultCol; /* Default column to query */
+ sqlite3_context *pCtx; /* Write error message here */
+ int nNest; /* Number of nested brackets */
+};
+
+/*
+** This function is equivalent to the standard isspace() function.
+**
+** The standard isspace() can be awkward to use safely, because although it
+** is defined to accept an argument of type int, its behaviour when passed
+** an integer that falls outside of the range of the unsigned char type
+** is undefined (and sometimes, "undefined" means segfault). This wrapper
+** is defined to accept an argument of type char, and always returns 0 for
+** any values that fall outside of the range of the unsigned char type (i.e.
+** negative values).
*/
-int sqlite3_sleep(int ms){
- return sqlite3OsSleep(ms);
+static int fts3isspace(char c){
+ return (c&0x80)==0 ? isspace(c) : 0;
}
/*
-** Enable or disable the extended result codes.
+** Extract the next token from buffer z (length n) using the tokenizer
+** and other information (column names etc.) in pParse. Create an Fts3Expr
+** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
+** single token and set *ppExpr to point to it. If the end of the buffer is
+** reached before a token is found, set *ppExpr to zero. It is the
+** responsibility of the caller to eventually deallocate the allocated
+** Fts3Expr structure (if any) by passing it to sqlite3_free().
+**
+** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
+** fails.
*/
-int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
- db->errMask = onoff ? 0xffffffff : 0xff;
+static int getNextToken(
+ ParseContext *pParse, /* fts3 query parse context */
+ int iCol, /* Value for Fts3Phrase.iColumn */
+ const char *z, int n, /* Input string */
+ Fts3Expr **ppExpr, /* OUT: expression */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ int rc;
+ sqlite3_tokenizer_cursor *pCursor;
+ Fts3Expr *pRet = 0;
+ int nConsumed = 0;
+
+ rc = pModule->xOpen(pTokenizer, z, n, &pCursor);
+ if( rc==SQLITE_OK ){
+ const char *zToken;
+ int nToken, iStart, iEnd, iPosition;
+ int nByte; /* total space to allocate */
+
+ pCursor->pTokenizer = pTokenizer;
+ rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
+
+ if( rc==SQLITE_OK ){
+ nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
+ pRet = (Fts3Expr *)sqlite3_malloc(nByte);
+ if( !pRet ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, nByte);
+ pRet->eType = FTSQUERY_PHRASE;
+ pRet->pPhrase = (Fts3Phrase *)&pRet[1];
+ pRet->pPhrase->nToken = 1;
+ pRet->pPhrase->iColumn = iCol;
+ pRet->pPhrase->aToken[0].n = nToken;
+ pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
+ memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
+
+ if( iEnd<n && z[iEnd]=='*' ){
+ pRet->pPhrase->aToken[0].isPrefix = 1;
+ iEnd++;
+ }
+ if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){
+ pRet->pPhrase->isNot = 1;
+ }
+ }
+ nConsumed = iEnd;
+ }
+
+ pModule->xClose(pCursor);
+ }
+
+ *pnConsumed = nConsumed;
+ *ppExpr = pRet;
+ return rc;
+}
+
+
+/*
+** Enlarge a memory allocation. If an out-of-memory allocation occurs,
+** then free the old allocation.
+*/
+void *fts3ReallocOrFree(void *pOrig, int nNew){
+ void *pRet = sqlite3_realloc(pOrig, nNew);
+ if( !pRet ){
+ sqlite3_free(pOrig);
+ }
+ return pRet;
+}
+
+/*
+** Buffer zInput, length nInput, contains the contents of a quoted string
+** that appeared as part of an fts3 query expression. Neither quote character
+** is included in the buffer. This function attempts to tokenize the entire
+** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
+** containing the results.
+**
+** If successful, SQLITE_OK is returned and *ppExpr set to point at the
+** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
+** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
+** to 0.
+*/
+static int getNextString(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *zInput, int nInput, /* Input string */
+ Fts3Expr **ppExpr /* OUT: expression */
+){
+ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ int rc;
+ Fts3Expr *p = 0;
+ sqlite3_tokenizer_cursor *pCursor = 0;
+ char *zTemp = 0;
+ int nTemp = 0;
+
+ rc = pModule->xOpen(pTokenizer, zInput, nInput, &pCursor);
+ if( rc==SQLITE_OK ){
+ int ii;
+ pCursor->pTokenizer = pTokenizer;
+ for(ii=0; rc==SQLITE_OK; ii++){
+ const char *zToken;
+ int nToken, iBegin, iEnd, iPos;
+ rc = pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
+ if( rc==SQLITE_OK ){
+ int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
+ p = fts3ReallocOrFree(p, nByte+ii*sizeof(struct PhraseToken));
+ zTemp = fts3ReallocOrFree(zTemp, nTemp + nToken);
+ if( !p || !zTemp ){
+ goto no_mem;
+ }
+ if( ii==0 ){
+ memset(p, 0, nByte);
+ p->pPhrase = (Fts3Phrase *)&p[1];
+ }
+ p->pPhrase = (Fts3Phrase *)&p[1];
+ p->pPhrase->nToken = ii+1;
+ p->pPhrase->aToken[ii].n = nToken;
+ memcpy(&zTemp[nTemp], zToken, nToken);
+ nTemp += nToken;
+ if( iEnd<nInput && zInput[iEnd]=='*' ){
+ p->pPhrase->aToken[ii].isPrefix = 1;
+ }else{
+ p->pPhrase->aToken[ii].isPrefix = 0;
+ }
+ }
+ }
+
+ pModule->xClose(pCursor);
+ pCursor = 0;
+ }
+
+ if( rc==SQLITE_DONE ){
+ int jj;
+ char *zNew;
+ int nNew = 0;
+ int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
+ nByte += (p?(p->pPhrase->nToken-1):0) * sizeof(struct PhraseToken);
+ p = fts3ReallocOrFree(p, nByte + nTemp);
+ if( !p ){
+ goto no_mem;
+ }
+ if( zTemp ){
+ zNew = &(((char *)p)[nByte]);
+ memcpy(zNew, zTemp, nTemp);
+ }else{
+ memset(p, 0, nByte+nTemp);
+ }
+ p->pPhrase = (Fts3Phrase *)&p[1];
+ for(jj=0; jj<p->pPhrase->nToken; jj++){
+ p->pPhrase->aToken[jj].z = &zNew[nNew];
+ nNew += p->pPhrase->aToken[jj].n;
+ }
+ sqlite3_free(zTemp);
+ p->eType = FTSQUERY_PHRASE;
+ p->pPhrase->iColumn = pParse->iDefaultCol;
+ rc = SQLITE_OK;
+ }
+
+ *ppExpr = p;
+ return rc;
+no_mem:
+
+ if( pCursor ){
+ pModule->xClose(pCursor);
+ }
+ sqlite3_free(zTemp);
+ sqlite3_free(p);
+ *ppExpr = 0;
+ return SQLITE_NOMEM;
+}
+
+/*
+** Function getNextNode(), which is called by fts3ExprParse(), may itself
+** call fts3ExprParse(). So this forward declaration is required.
+*/
+static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
+
+/*
+** The output variable *ppExpr is populated with an allocated Fts3Expr
+** structure, or set to 0 if the end of the input buffer is reached.
+**
+** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
+** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
+** If SQLITE_ERROR is returned, pContext is populated with an error message.
+*/
+static int getNextNode(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *z, int n, /* Input string */
+ Fts3Expr **ppExpr, /* OUT: expression */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ static const struct Fts3Keyword {
+ char z[4]; /* Keyword text */
+ unsigned char n; /* Length of the keyword */
+ unsigned char parenOnly; /* Only valid in paren mode */
+ unsigned char eType; /* Keyword code */
+ } aKeyword[] = {
+ { "OR" , 2, 0, FTSQUERY_OR },
+ { "AND", 3, 1, FTSQUERY_AND },
+ { "NOT", 3, 1, FTSQUERY_NOT },
+ { "NEAR", 4, 0, FTSQUERY_NEAR }
+ };
+ int ii;
+ int iCol;
+ int iColLen;
+ int rc;
+ Fts3Expr *pRet = 0;
+
+ const char *zInput = z;
+ int nInput = n;
+
+ /* Skip over any whitespace before checking for a keyword, an open or
+ ** close bracket, or a quoted string.
+ */
+ while( nInput>0 && fts3isspace(*zInput) ){
+ nInput--;
+ zInput++;
+ }
+ if( nInput==0 ){
+ return SQLITE_DONE;
+ }
+
+ /* See if we are dealing with a keyword. */
+ for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
+ const struct Fts3Keyword *pKey = &aKeyword[ii];
+
+ if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
+ continue;
+ }
+
+ if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
+ int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
+ int nKey = pKey->n;
+ char cNext;
+
+ /* If this is a "NEAR" keyword, check for an explicit nearness. */
+ if( pKey->eType==FTSQUERY_NEAR ){
+ assert( nKey==4 );
+ if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
+ nNear = 0;
+ for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){
+ nNear = nNear * 10 + (zInput[nKey] - '0');
+ }
+ }
+ }
+
+ /* At this point this is probably a keyword. But for that to be true,
+ ** the next byte must contain either whitespace, an open or close
+ ** parenthesis, a quote character, or EOF.
+ */
+ cNext = zInput[nKey];
+ if( fts3isspace(cNext)
+ || cNext=='"' || cNext=='(' || cNext==')' || cNext==0
+ ){
+ pRet = (Fts3Expr *)sqlite3_malloc(sizeof(Fts3Expr));
+ memset(pRet, 0, sizeof(Fts3Expr));
+ pRet->eType = pKey->eType;
+ pRet->nNear = nNear;
+ *ppExpr = pRet;
+ *pnConsumed = (zInput - z) + nKey;
+ return SQLITE_OK;
+ }
+
+ /* Turns out that wasn't a keyword after all. This happens if the
+ ** user has supplied a token such as "ORacle". Continue.
+ */
+ }
+ }
+
+ /* Check for an open bracket. */
+ if( sqlite3_fts3_enable_parentheses ){
+ if( *zInput=='(' ){
+ int nConsumed;
+ int rc;
+ pParse->nNest++;
+ rc = fts3ExprParse(pParse, &zInput[1], nInput-1, ppExpr, &nConsumed);
+ if( rc==SQLITE_OK && !*ppExpr ){
+ rc = SQLITE_DONE;
+ }
+ *pnConsumed = (zInput - z) + 1 + nConsumed;
+ return rc;
+ }
+
+ /* Check for a close bracket. */
+ if( *zInput==')' ){
+ pParse->nNest--;
+ *pnConsumed = (zInput - z) + 1;
+ return SQLITE_DONE;
+ }
+ }
+
+ /* See if we are dealing with a quoted phrase. If this is the case, then
+ ** search for the closing quote and pass the whole string to getNextString()
+ ** for processing. This is easy to do, as fts3 has no syntax for escaping
+ ** a quote character embedded in a string.
+ */
+ if( *zInput=='"' ){
+ for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
+ *pnConsumed = (zInput - z) + ii + 1;
+ if( ii==nInput ){
+ return SQLITE_ERROR;
+ }
+ return getNextString(pParse, &zInput[1], ii-1, ppExpr);
+ }
+
+
+ /* If control flows to this point, this must be a regular token, or
+ ** the end of the input. Read a regular token using the sqlite3_tokenizer
+ ** interface. Before doing so, figure out if there is an explicit
+ ** column specifier for the token.
+ **
+ ** TODO: Strangely, it is not possible to associate a column specifier
+ ** with a quoted phrase, only with a single token. Not sure if this was
+ ** an implementation artifact or an intentional decision when fts3 was
+ ** first implemented. Whichever it was, this module duplicates the
+ ** limitation.
+ */
+ iCol = pParse->iDefaultCol;
+ iColLen = 0;
+ for(ii=0; ii<pParse->nCol; ii++){
+ const char *zStr = pParse->azCol[ii];
+ int nStr = strlen(zStr);
+ if( nInput>nStr && zInput[nStr]==':'
+ && sqlite3_strnicmp(zStr, zInput, nStr)==0
+ ){
+ iCol = ii;
+ iColLen = ((zInput - z) + nStr + 1);
+ break;
+ }
+ }
+ rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
+ *pnConsumed += iColLen;
+ return rc;
+}
+
+/*
+** The argument is an Fts3Expr structure for a binary operator (any type
+** except an FTSQUERY_PHRASE). Return an integer value representing the
+** precedence of the operator. Lower values have a higher precedence (i.e.
+** group more tightly). For example, in the C language, the == operator
+** groups more tightly than ||, and would therefore have a higher precedence.
+**
+** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
+** is defined), the order of the operators in precedence from highest to
+** lowest is:
+**
+** NEAR
+** NOT
+** AND (including implicit ANDs)
+** OR
+**
+** Note that when using the old query syntax, the OR operator has a higher
+** precedence than the AND operator.
+*/
+static int opPrecedence(Fts3Expr *p){
+ assert( p->eType!=FTSQUERY_PHRASE );
+ if( sqlite3_fts3_enable_parentheses ){
+ return p->eType;
+ }else if( p->eType==FTSQUERY_NEAR ){
+ return 1;
+ }else if( p->eType==FTSQUERY_OR ){
+ return 2;
+ }
+ assert( p->eType==FTSQUERY_AND );
+ return 3;
+}
+
+/*
+** Argument ppHead contains a pointer to the current head of a query
+** expression tree being parsed. pPrev is the expression node most recently
+** inserted into the tree. This function adds pNew, which is always a binary
+** operator node, into the expression tree based on the relative precedence
+** of pNew and the existing nodes of the tree. This may result in the head
+** of the tree changing, in which case *ppHead is set to the new root node.
+*/
+static void insertBinaryOperator(
+ Fts3Expr **ppHead, /* Pointer to the root node of a tree */
+ Fts3Expr *pPrev, /* Node most recently inserted into the tree */
+ Fts3Expr *pNew /* New binary node to insert into expression tree */
+){
+ Fts3Expr *pSplit = pPrev;
+ while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
+ pSplit = pSplit->pParent;
+ }
+
+ if( pSplit->pParent ){
+ assert( pSplit->pParent->pRight==pSplit );
+ pSplit->pParent->pRight = pNew;
+ pNew->pParent = pSplit->pParent;
+ }else{
+ *ppHead = pNew;
+ }
+ pNew->pLeft = pSplit;
+ pSplit->pParent = pNew;
+}
+
+/*
+** Parse the fts3 query expression found in buffer z, length n. This function
+** returns either when the end of the buffer is reached or an unmatched
+** closing bracket - ')' - is encountered.
+**
+** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
+** parsed form of the expression and *pnConsumed is set to the number of
+** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
+** (out of memory error) or SQLITE_ERROR (parse error) is returned.
+*/
+static int fts3ExprParse(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *z, int n, /* Text of MATCH query */
+ Fts3Expr **ppExpr, /* OUT: Parsed query structure */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ Fts3Expr *pRet = 0;
+ Fts3Expr *pPrev = 0;
+ Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */
+ int nIn = n;
+ const char *zIn = z;
+ int rc = SQLITE_OK;
+ int isRequirePhrase = 1;
+
+ while( rc==SQLITE_OK ){
+ Fts3Expr *p = 0;
+ int nByte = 0;
+ rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
+ if( rc==SQLITE_OK ){
+ int isPhrase;
+
+ if( !sqlite3_fts3_enable_parentheses
+ && p->eType==FTSQUERY_PHRASE && p->pPhrase->isNot
+ ){
+ /* Create an implicit NOT operator. */
+ Fts3Expr *pNot = sqlite3_malloc(sizeof(Fts3Expr));
+ if( !pNot ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_NOMEM;
+ goto exprparse_out;
+ }
+ memset(pNot, 0, sizeof(Fts3Expr));
+ pNot->eType = FTSQUERY_NOT;
+ pNot->pRight = p;
+ if( pNotBranch ){
+ pNot->pLeft = pNotBranch;
+ }
+ pNotBranch = pNot;
+ p = pPrev;
+ }else{
+ int eType = p->eType;
+ assert( eType!=FTSQUERY_PHRASE || !p->pPhrase->isNot );
+ isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
+
+ /* The isRequirePhrase variable is set to true if a phrase or
+ ** an expression contained in parenthesis is required. If a
+ ** binary operator (AND, OR, NOT or NEAR) is encounted when
+ ** isRequirePhrase is set, this is a syntax error.
+ */
+ if( !isPhrase && isRequirePhrase ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_ERROR;
+ goto exprparse_out;
+ }
+
+ if( isPhrase && !isRequirePhrase ){
+ /* Insert an implicit AND operator. */
+ Fts3Expr *pAnd;
+ assert( pRet && pPrev );
+ pAnd = sqlite3_malloc(sizeof(Fts3Expr));
+ if( !pAnd ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_NOMEM;
+ goto exprparse_out;
+ }
+ memset(pAnd, 0, sizeof(Fts3Expr));
+ pAnd->eType = FTSQUERY_AND;
+ insertBinaryOperator(&pRet, pPrev, pAnd);
+ pPrev = pAnd;
+ }
+
+ /* This test catches attempts to make either operand of a NEAR
+ ** operator something other than a phrase. For example, either of
+ ** the following:
+ **
+ ** (bracketed expression) NEAR phrase
+ ** phrase NEAR (bracketed expression)
+ **
+ ** Return an error in either case.
+ */
+ if( pPrev && (
+ (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
+ || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
+ )){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_ERROR;
+ goto exprparse_out;
+ }
+
+ if( isPhrase ){
+ if( pRet ){
+ assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
+ pPrev->pRight = p;
+ p->pParent = pPrev;
+ }else{
+ pRet = p;
+ }
+ }else{
+ insertBinaryOperator(&pRet, pPrev, p);
+ }
+ isRequirePhrase = !isPhrase;
+ }
+ assert( nByte>0 );
+ }
+ assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
+ nIn -= nByte;
+ zIn += nByte;
+ pPrev = p;
+ }
+
+ if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
+ rc = SQLITE_ERROR;
+ }
+
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
+ if( !pRet ){
+ rc = SQLITE_ERROR;
+ }else{
+ Fts3Expr *pIter = pNotBranch;
+ while( pIter->pLeft ){
+ pIter = pIter->pLeft;
+ }
+ pIter->pLeft = pRet;
+ pRet = pNotBranch;
+ }
+ }
+ }
+ *pnConsumed = n - nIn;
+
+exprparse_out:
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(pRet);
+ sqlite3Fts3ExprFree(pNotBranch);
+ pRet = 0;
+ }
+ *ppExpr = pRet;
+ return rc;
+}
+
+/*
+** Parameters z and n contain a pointer to and length of a buffer containing
+** an fts3 query expression, respectively. This function attempts to parse the
+** query expression and create a tree of Fts3Expr structures representing the
+** parsed expression. If successful, *ppExpr is set to point to the head
+** of the parsed expression tree and SQLITE_OK is returned. If an error
+** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
+** error) is returned and *ppExpr is set to 0.
+**
+** If parameter n is a negative number, then z is assumed to point to a
+** nul-terminated string and the length is determined using strlen().
+**
+** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
+** use to normalize query tokens while parsing the expression. The azCol[]
+** array, which is assumed to contain nCol entries, should contain the names
+** of each column in the target fts3 table, in order from left to right.
+** Column names must be nul-terminated strings.
+**
+** The iDefaultCol parameter should be passed the index of the table column
+** that appears on the left-hand-side of the MATCH operator (the default
+** column to match against for tokens for which a column name is not explicitly
+** specified as part of the query string), or -1 if tokens may by default
+** match any table column.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ExprParse(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
+ char **azCol, /* Array of column names for fts3 table */
+ int nCol, /* Number of entries in azCol[] */
+ int iDefaultCol, /* Default column to query */
+ const char *z, int n, /* Text of MATCH query */
+ Fts3Expr **ppExpr /* OUT: Parsed query structure */
+){
+ int nParsed;
+ int rc;
+ ParseContext sParse;
+ sParse.pTokenizer = pTokenizer;
+ sParse.azCol = (const char **)azCol;
+ sParse.nCol = nCol;
+ sParse.iDefaultCol = iDefaultCol;
+ sParse.nNest = 0;
+ if( z==0 ){
+ *ppExpr = 0;
+ return SQLITE_OK;
+ }
+ if( n<0 ){
+ n = strlen(z);
+ }
+ rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
+
+ /* Check for mismatched parenthesis */
+ if( rc==SQLITE_OK && sParse.nNest ){
+ rc = SQLITE_ERROR;
+ sqlite3Fts3ExprFree(*ppExpr);
+ *ppExpr = 0;
+ }
+
+ return rc;
+}
+
+/*
+** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
+*/
+SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *p){
+ if( p ){
+ sqlite3Fts3ExprFree(p->pLeft);
+ sqlite3Fts3ExprFree(p->pRight);
+ sqlite3_free(p);
+ }
+}
+
+/****************************************************************************
+*****************************************************************************
+** Everything after this point is just test code.
+*/
+
+#ifdef SQLITE_TEST
+
+
+/*
+** Function to query the hash-table of tokenizers (see README.tokenizers).
+*/
+static int queryTestTokenizer(
+ sqlite3 *db,
+ const char *zName,
+ const sqlite3_tokenizer_module **pp
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?)";
+
+ *pp = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
+ memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
+ }
+ }
+
+ return sqlite3_finalize(pStmt);
+}
+
+/*
+** This function is part of the test interface for the query parser. It
+** writes a text representation of the query expression pExpr into the
+** buffer pointed to by argument zBuf. It is assumed that zBuf is large
+** enough to store the required text representation.
+*/
+static void exprToString(Fts3Expr *pExpr, char *zBuf){
+ switch( pExpr->eType ){
+ case FTSQUERY_PHRASE: {
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ int i;
+ zBuf += sprintf(zBuf, "PHRASE %d %d", pPhrase->iColumn, pPhrase->isNot);
+ for(i=0; i<pPhrase->nToken; i++){
+ zBuf += sprintf(zBuf," %.*s",pPhrase->aToken[i].n,pPhrase->aToken[i].z);
+ zBuf += sprintf(zBuf,"%s", (pPhrase->aToken[i].isPrefix?"+":""));
+ }
+ return;
+ }
+
+ case FTSQUERY_NEAR:
+ zBuf += sprintf(zBuf, "NEAR/%d ", pExpr->nNear);
+ break;
+ case FTSQUERY_NOT:
+ zBuf += sprintf(zBuf, "NOT ");
+ break;
+ case FTSQUERY_AND:
+ zBuf += sprintf(zBuf, "AND ");
+ break;
+ case FTSQUERY_OR:
+ zBuf += sprintf(zBuf, "OR ");
+ break;
+ }
+
+ zBuf += sprintf(zBuf, "{");
+ exprToString(pExpr->pLeft, zBuf);
+ zBuf += strlen(zBuf);
+ zBuf += sprintf(zBuf, "} ");
+
+ zBuf += sprintf(zBuf, "{");
+ exprToString(pExpr->pRight, zBuf);
+ zBuf += strlen(zBuf);
+ zBuf += sprintf(zBuf, "}");
+}
+
+/*
+** This is the implementation of a scalar SQL function used to test the
+** expression parser. It should be called as follows:
+**
+** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
+**
+** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
+** to parse the query expression (see README.tokenizers). The second argument
+** is the query expression to parse. Each subsequent argument is the name
+** of a column of the fts3 table that the query expression may refer to.
+** For example:
+**
+** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
+*/
+static void fts3ExprTest(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_tokenizer_module const *pModule = 0;
+ sqlite3_tokenizer *pTokenizer = 0;
+ int rc;
+ char **azCol = 0;
+ const char *zExpr;
+ int nExpr;
+ int nCol;
+ int ii;
+ Fts3Expr *pExpr;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ if( argc<3 ){
+ sqlite3_result_error(context,
+ "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
+ );
+ return;
+ }
+
+ rc = queryTestTokenizer(db,
+ (const char *)sqlite3_value_text(argv[0]), &pModule);
+ if( rc==SQLITE_NOMEM ){
+ sqlite3_result_error_nomem(context);
+ goto exprtest_out;
+ }else if( !pModule ){
+ sqlite3_result_error(context, "No such tokenizer module", -1);
+ goto exprtest_out;
+ }
+
+ rc = pModule->xCreate(0, 0, &pTokenizer);
+ assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
+ if( rc==SQLITE_NOMEM ){
+ sqlite3_result_error_nomem(context);
+ goto exprtest_out;
+ }
+ pTokenizer->pModule = pModule;
+
+ zExpr = (const char *)sqlite3_value_text(argv[1]);
+ nExpr = sqlite3_value_bytes(argv[1]);
+ nCol = argc-2;
+ azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
+ if( !azCol ){
+ sqlite3_result_error_nomem(context);
+ goto exprtest_out;
+ }
+ for(ii=0; ii<nCol; ii++){
+ azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
+ }
+
+ rc = sqlite3Fts3ExprParse(
+ pTokenizer, azCol, nCol, nCol, zExpr, nExpr, &pExpr
+ );
+ if( rc==SQLITE_NOMEM ){
+ sqlite3_result_error_nomem(context);
+ goto exprtest_out;
+ }else if( rc==SQLITE_OK ){
+ char zBuf[4096];
+ exprToString(pExpr, zBuf);
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ sqlite3Fts3ExprFree(pExpr);
+ }else{
+ sqlite3_result_error(context, "Error parsing expression", -1);
+ }
+
+exprtest_out:
+ if( pModule && pTokenizer ){
+ rc = pModule->xDestroy(pTokenizer);
+ }
+ sqlite3_free(azCol);
+}
+
+/*
+** Register the query expression parser test function fts3_exprtest()
+** with database connection db.
+*/
+SQLITE_PRIVATE void sqlite3Fts3ExprInitTestInterface(sqlite3* db){
+ sqlite3_create_function(
+ db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
+ );
+}
+
+#endif
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_expr.c *******************************************/
+/************** Begin file fts3_hash.c ***************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables used in SQLite.
+** We've modified it slightly to serve as a standalone hash table
+** implementation for the full-text indexing module.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+
+
+/*
+** Malloc and Free functions
+*/
+static void *fts3HashMalloc(int n){
+ void *p = sqlite3_malloc(n);
+ if( p ){
+ memset(p, 0, n);
+ }
+ return p;
+}
+static void fts3HashFree(void *p){
+ sqlite3_free(p);
+}
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "pNew" is a pointer to the hash table that is to be initialized.
+** keyClass is one of the constants
+** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
+** determines what kind of key the hash table will use. "copyKey" is
+** true if the hash table should make its own private copy of keys and
+** false if it should just use the supplied pointer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){
+ assert( pNew!=0 );
+ assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
+ pNew->keyClass = keyClass;
+ pNew->copyKey = copyKey;
+ pNew->first = 0;
+ pNew->count = 0;
+ pNew->htsize = 0;
+ pNew->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash *pH){
+ fts3HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ fts3HashFree(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ fts3HashElem *next_elem = elem->next;
+ if( pH->copyKey && elem->pKey ){
+ fts3HashFree(elem->pKey);
+ }
+ fts3HashFree(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+/*
+** Hash and comparison functions when the mode is FTS3_HASH_STRING
+*/
+static int fts3StrHash(const void *pKey, int nKey){
+ const char *z = (const char *)pKey;
+ int h = 0;
+ if( nKey<=0 ) nKey = (int) strlen(z);
+ while( nKey > 0 ){
+ h = (h<<3) ^ h ^ *z++;
+ nKey--;
+ }
+ return h & 0x7fffffff;
+}
+static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return strncmp((const char*)pKey1,(const char*)pKey2,n1);
+}
+
+/*
+** Hash and comparison functions when the mode is FTS3_HASH_BINARY
+*/
+static int fts3BinHash(const void *pKey, int nKey){
+ int h = 0;
+ const char *z = (const char *)pKey;
+ while( nKey-- > 0 ){
+ h = (h<<3) ^ h ^ *(z++);
+ }
+ return h & 0x7fffffff;
+}
+static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return memcmp(pKey1,pKey2,n1);
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** The C syntax in this function definition may be unfamilar to some
+** programmers, so we provide the following additional explanation:
+**
+** The name of the function is "ftsHashFunction". The function takes a
+** single parameter "keyClass". The return value of ftsHashFunction()
+** is a pointer to another function. Specifically, the return value
+** of ftsHashFunction() is a pointer to a function that takes two parameters
+** with types "const void*" and "int" and returns an "int".
+*/
+static int (*ftsHashFunction(int keyClass))(const void*,int){
+ if( keyClass==FTS3_HASH_STRING ){
+ return &fts3StrHash;
+ }else{
+ assert( keyClass==FTS3_HASH_BINARY );
+ return &fts3BinHash;
+ }
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** For help in interpreted the obscure C code in the function definition,
+** see the header comment on the previous function.
+*/
+static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
+ if( keyClass==FTS3_HASH_STRING ){
+ return &fts3StrCompare;
+ }else{
+ assert( keyClass==FTS3_HASH_BINARY );
+ return &fts3BinCompare;
+ }
+}
+
+/* Link an element into the hash table
+*/
+static void fts3HashInsertElement(
+ fts3Hash *pH, /* The complete hash table */
+ struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
+ fts3HashElem *pNew /* The element to be inserted */
+){
+ fts3HashElem *pHead; /* First element already in pEntry */
+ pHead = pEntry->chain;
+ if( pHead ){
+ pNew->next = pHead;
+ pNew->prev = pHead->prev;
+ if( pHead->prev ){ pHead->prev->next = pNew; }
+ else { pH->first = pNew; }
+ pHead->prev = pNew;
+ }else{
+ pNew->next = pH->first;
+ if( pH->first ){ pH->first->prev = pNew; }
+ pNew->prev = 0;
+ pH->first = pNew;
+ }
+ pEntry->count++;
+ pEntry->chain = pNew;
+}
+
+
+/* Resize the hash table so that it cantains "new_size" buckets.
+** "new_size" must be a power of 2. The hash table might fail
+** to resize if sqliteMalloc() fails.
+*/
+static void fts3Rehash(fts3Hash *pH, int new_size){
+ struct _fts3ht *new_ht; /* The new hash table */
+ fts3HashElem *elem, *next_elem; /* For looping over existing elements */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( (new_size & (new_size-1))==0 );
+ new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
+ if( new_ht==0 ) return;
+ fts3HashFree(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size;
+ xHash = ftsHashFunction(pH->keyClass);
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
+ next_elem = elem->next;
+ fts3HashInsertElement(pH, &new_ht[h], elem);
+ }
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. The hash for this key has
+** already been computed and is passed as the 4th parameter.
+*/
+static fts3HashElem *fts3FindElementByHash(
+ const fts3Hash *pH, /* The pH to be searched */
+ const void *pKey, /* The key we are searching for */
+ int nKey,
+ int h /* The hash for this key. */
+){
+ fts3HashElem *elem; /* Used to loop thru the element list */
+ int count; /* Number of elements left to test */
+ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
+
+ if( pH->ht ){
+ struct _fts3ht *pEntry = &pH->ht[h];
+ elem = pEntry->chain;
+ count = pEntry->count;
+ xCompare = ftsCompareFunction(pH->keyClass);
+ while( count-- && elem ){
+ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ }
+ }
+ return 0;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void fts3RemoveElementByHash(
+ fts3Hash *pH, /* The pH containing "elem" */
+ fts3HashElem* elem, /* The element to be removed from the pH */
+ int h /* Hash value for the element */
+){
+ struct _fts3ht *pEntry;
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ pEntry = &pH->ht[h];
+ if( pEntry->chain==elem ){
+ pEntry->chain = elem->next;
+ }
+ pEntry->count--;
+ if( pEntry->count<=0 ){
+ pEntry->chain = 0;
+ }
+ if( pH->copyKey && elem->pKey ){
+ fts3HashFree(elem->pKey);
+ }
+ fts3HashFree( elem );
+ pH->count--;
+ if( pH->count<=0 ){
+ assert( pH->first==0 );
+ assert( pH->count==0 );
+ fts3HashClear(pH);
+ }
+}
+
+/* Attempt to locate an element of the hash table pH with a key
+** that matches pKey,nKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){
+ int h; /* A hash on key */
+ fts3HashElem *elem; /* The element that matches key */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ if( pH==0 || pH->ht==0 ) return 0;
+ xHash = ftsHashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ h = (*xHash)(pKey,nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
+ return elem ? elem->data : 0;
+}
+
+/* Insert an element into the hash table pH. The key is pKey,nKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created. A copy of the key is made if the copyKey
+** flag is set. NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
+ fts3Hash *pH, /* The hash table to insert into */
+ const void *pKey, /* The key */
+ int nKey, /* Number of bytes in the key */
+ void *data /* The data */
+){
+ int hraw; /* Raw hash value of the key */
+ int h; /* the hash of the key modulo hash table size */
+ fts3HashElem *elem; /* Used to loop thru the element list */
+ fts3HashElem *new_elem; /* New element added to the pH */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( pH!=0 );
+ xHash = ftsHashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ hraw = (*xHash)(pKey, nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ elem = fts3FindElementByHash(pH,pKey,nKey,h);
+ if( elem ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ fts3RemoveElementByHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ }
+ return old_data;
+ }
+ if( data==0 ) return 0;
+ if( pH->htsize==0 ){
+ fts3Rehash(pH,8);
+ if( pH->htsize==0 ){
+ pH->count = 0;
+ return data;
+ }
+ }
+ new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) );
+ if( new_elem==0 ) return data;
+ if( pH->copyKey && pKey!=0 ){
+ new_elem->pKey = fts3HashMalloc( nKey );
+ if( new_elem->pKey==0 ){
+ fts3HashFree(new_elem);
+ return data;
+ }
+ memcpy((void*)new_elem->pKey, pKey, nKey);
+ }else{
+ new_elem->pKey = (void*)pKey;
+ }
+ new_elem->nKey = nKey;
+ pH->count++;
+ if( pH->count > pH->htsize ){
+ fts3Rehash(pH,pH->htsize*2);
+ }
+ assert( pH->htsize>0 );
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ fts3HashInsertElement(pH, &pH->ht[h], new_elem);
+ new_elem->data = data;
+ return 0;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_hash.c *******************************************/
+/************** Begin file fts3_porter.c *************************************/
+/*
+** 2006 September 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Implementation of the full-text-search tokenizer that implements
+** a Porter stemmer.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+
+
+
+/*
+** Class derived from sqlite3_tokenizer
+*/
+typedef struct porter_tokenizer {
+ sqlite3_tokenizer base; /* Base class */
+} porter_tokenizer;
+
+/*
+** Class derived from sqlit3_tokenizer_cursor
+*/
+typedef struct porter_tokenizer_cursor {
+ sqlite3_tokenizer_cursor base;
+ const char *zInput; /* input we are tokenizing */
+ int nInput; /* size of the input */
+ int iOffset; /* current position in zInput */
+ int iToken; /* index of next token to be returned */
+ char *zToken; /* storage for current token */
+ int nAllocated; /* space allocated to zToken buffer */
+} porter_tokenizer_cursor;
+
+
+/* Forward declaration */
+static const sqlite3_tokenizer_module porterTokenizerModule;
+
+
+/*
+** Create a new tokenizer instance.
+*/
+static int porterCreate(
+ int argc, const char * const *argv,
+ sqlite3_tokenizer **ppTokenizer
+){
+ porter_tokenizer *t;
+ t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
+ if( t==NULL ) return SQLITE_NOMEM;
+ memset(t, 0, sizeof(*t));
+ *ppTokenizer = &t->base;
return SQLITE_OK;
}
-/************** End of main.c ************************************************/
+/*
+** Destroy a tokenizer
+*/
+static int porterDestroy(sqlite3_tokenizer *pTokenizer){
+ sqlite3_free(pTokenizer);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is zInput[0..nInput-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int porterOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *zInput, int nInput, /* String to be tokenized */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ porter_tokenizer_cursor *c;
+
+ c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
+ if( c==NULL ) return SQLITE_NOMEM;
+
+ c->zInput = zInput;
+ if( zInput==0 ){
+ c->nInput = 0;
+ }else if( nInput<0 ){
+ c->nInput = (int)strlen(zInput);
+ }else{
+ c->nInput = nInput;
+ }
+ c->iOffset = 0; /* start tokenizing at the beginning */
+ c->iToken = 0;
+ c->zToken = NULL; /* no space allocated, yet. */
+ c->nAllocated = 0;
+
+ *ppCursor = &c->base;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** porterOpen() above.
+*/
+static int porterClose(sqlite3_tokenizer_cursor *pCursor){
+ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
+ sqlite3_free(c->zToken);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+/*
+** Vowel or consonant
+*/
+static const char cType[] = {
+ 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
+ 1, 1, 1, 2, 1
+};
+
+/*
+** isConsonant() and isVowel() determine if their first character in
+** the string they point to is a consonant or a vowel, according
+** to Porter ruls.
+**
+** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
+** 'Y' is a consonant unless it follows another consonant,
+** in which case it is a vowel.
+**
+** In these routine, the letters are in reverse order. So the 'y' rule
+** is that 'y' is a consonant unless it is followed by another
+** consonent.
+*/
+static int isVowel(const char*);
+static int isConsonant(const char *z){
+ int j;
+ char x = *z;
+ if( x==0 ) return 0;
+ assert( x>='a' && x<='z' );
+ j = cType[x-'a'];
+ if( j<2 ) return j;
+ return z[1]==0 || isVowel(z + 1);
+}
+static int isVowel(const char *z){
+ int j;
+ char x = *z;
+ if( x==0 ) return 0;
+ assert( x>='a' && x<='z' );
+ j = cType[x-'a'];
+ if( j<2 ) return 1-j;
+ return isConsonant(z + 1);
+}
+
+/*
+** Let any sequence of one or more vowels be represented by V and let
+** C be sequence of one or more consonants. Then every word can be
+** represented as:
+**
+** [C] (VC){m} [V]
+**
+** In prose: A word is an optional consonant followed by zero or
+** vowel-consonant pairs followed by an optional vowel. "m" is the
+** number of vowel consonant pairs. This routine computes the value
+** of m for the first i bytes of a word.
+**
+** Return true if the m-value for z is 1 or more. In other words,
+** return true if z contains at least one vowel that is followed
+** by a consonant.
+**
+** In this routine z[] is in reverse order. So we are really looking
+** for an instance of of a consonant followed by a vowel.
+*/
+static int m_gt_0(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/* Like mgt0 above except we are looking for a value of m which is
+** exactly 1
+*/
+static int m_eq_1(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 1;
+ while( isConsonant(z) ){ z++; }
+ return *z==0;
+}
+
+/* Like mgt0 above except we are looking for a value of m>1 instead
+** or m>0
+*/
+static int m_gt_1(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/*
+** Return TRUE if there is a vowel anywhere within z[0..n-1]
+*/
+static int hasVowel(const char *z){
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/*
+** Return TRUE if the word ends in a double consonant.
+**
+** The text is reversed here. So we are really looking at
+** the first two characters of z[].
+*/
+static int doubleConsonant(const char *z){
+ return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
+}
+
+/*
+** Return TRUE if the word ends with three letters which
+** are consonant-vowel-consonent and where the final consonant
+** is not 'w', 'x', or 'y'.
+**
+** The word is reversed here. So we are really checking the
+** first three letters and the first one cannot be in [wxy].
+*/
+static int star_oh(const char *z){
+ return
+ z[0]!=0 && isConsonant(z) &&
+ z[0]!='w' && z[0]!='x' && z[0]!='y' &&
+ z[1]!=0 && isVowel(z+1) &&
+ z[2]!=0 && isConsonant(z+2);
+}
+
+/*
+** If the word ends with zFrom and xCond() is true for the stem
+** of the word that preceeds the zFrom ending, then change the
+** ending to zTo.
+**
+** The input word *pz and zFrom are both in reverse order. zTo
+** is in normal order.
+**
+** Return TRUE if zFrom matches. Return FALSE if zFrom does not
+** match. Not that TRUE is returned even if xCond() fails and
+** no substitution occurs.
+*/
+static int stem(
+ char **pz, /* The word being stemmed (Reversed) */
+ const char *zFrom, /* If the ending matches this... (Reversed) */
+ const char *zTo, /* ... change the ending to this (not reversed) */
+ int (*xCond)(const char*) /* Condition that must be true */
+){
+ char *z = *pz;
+ while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
+ if( *zFrom!=0 ) return 0;
+ if( xCond && !xCond(z) ) return 1;
+ while( *zTo ){
+ *(--z) = *(zTo++);
+ }
+ *pz = z;
+ return 1;
+}
+
+/*
+** This is the fallback stemmer used when the porter stemmer is
+** inappropriate. The input word is copied into the output with
+** US-ASCII case folding. If the input word is too long (more
+** than 20 bytes if it contains no digits or more than 6 bytes if
+** it contains digits) then word is truncated to 20 or 6 bytes
+** by taking 10 or 3 bytes from the beginning and end.
+*/
+static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
+ int i, mx, j;
+ int hasDigit = 0;
+ for(i=0; i<nIn; i++){
+ int c = zIn[i];
+ if( c>='A' && c<='Z' ){
+ zOut[i] = c - 'A' + 'a';
+ }else{
+ if( c>='0' && c<='9' ) hasDigit = 1;
+ zOut[i] = c;
+ }
+ }
+ mx = hasDigit ? 3 : 10;
+ if( nIn>mx*2 ){
+ for(j=mx, i=nIn-mx; i<nIn; i++, j++){
+ zOut[j] = zOut[i];
+ }
+ i = j;
+ }
+ zOut[i] = 0;
+ *pnOut = i;
+}
+
+
+/*
+** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
+** zOut is at least big enough to hold nIn bytes. Write the actual
+** size of the output word (exclusive of the '\0' terminator) into *pnOut.
+**
+** Any upper-case characters in the US-ASCII character set ([A-Z])
+** are converted to lower case. Upper-case UTF characters are
+** unchanged.
+**
+** Words that are longer than about 20 bytes are stemmed by retaining
+** a few bytes from the beginning and the end of the word. If the
+** word contains digits, 3 bytes are taken from the beginning and
+** 3 bytes from the end. For long words without digits, 10 bytes
+** are taken from each end. US-ASCII case folding still applies.
+**
+** If the input word contains not digits but does characters not
+** in [a-zA-Z] then no stemming is attempted and this routine just
+** copies the input into the input into the output with US-ASCII
+** case folding.
+**
+** Stemming never increases the length of the word. So there is
+** no chance of overflowing the zOut buffer.
+*/
+static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
+ int i, j, c;
+ char zReverse[28];
+ char *z, *z2;
+ if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
+ /* The word is too big or too small for the porter stemmer.
+ ** Fallback to the copy stemmer */
+ copy_stemmer(zIn, nIn, zOut, pnOut);
+ return;
+ }
+ for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
+ c = zIn[i];
+ if( c>='A' && c<='Z' ){
+ zReverse[j] = c + 'a' - 'A';
+ }else if( c>='a' && c<='z' ){
+ zReverse[j] = c;
+ }else{
+ /* The use of a character not in [a-zA-Z] means that we fallback
+ ** to the copy stemmer */
+ copy_stemmer(zIn, nIn, zOut, pnOut);
+ return;
+ }
+ }
+ memset(&zReverse[sizeof(zReverse)-5], 0, 5);
+ z = &zReverse[j+1];
+
+
+ /* Step 1a */
+ if( z[0]=='s' ){
+ if(
+ !stem(&z, "sess", "ss", 0) &&
+ !stem(&z, "sei", "i", 0) &&
+ !stem(&z, "ss", "ss", 0)
+ ){
+ z++;
+ }
+ }
+
+ /* Step 1b */
+ z2 = z;
+ if( stem(&z, "dee", "ee", m_gt_0) ){
+ /* Do nothing. The work was all in the test */
+ }else if(
+ (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
+ && z!=z2
+ ){
+ if( stem(&z, "ta", "ate", 0) ||
+ stem(&z, "lb", "ble", 0) ||
+ stem(&z, "zi", "ize", 0) ){
+ /* Do nothing. The work was all in the test */
+ }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
+ z++;
+ }else if( m_eq_1(z) && star_oh(z) ){
+ *(--z) = 'e';
+ }
+ }
+
+ /* Step 1c */
+ if( z[0]=='y' && hasVowel(z+1) ){
+ z[0] = 'i';
+ }
+
+ /* Step 2 */
+ switch( z[1] ){
+ case 'a':
+ stem(&z, "lanoita", "ate", m_gt_0) ||
+ stem(&z, "lanoit", "tion", m_gt_0);
+ break;
+ case 'c':
+ stem(&z, "icne", "ence", m_gt_0) ||
+ stem(&z, "icna", "ance", m_gt_0);
+ break;
+ case 'e':
+ stem(&z, "rezi", "ize", m_gt_0);
+ break;
+ case 'g':
+ stem(&z, "igol", "log", m_gt_0);
+ break;
+ case 'l':
+ stem(&z, "ilb", "ble", m_gt_0) ||
+ stem(&z, "illa", "al", m_gt_0) ||
+ stem(&z, "iltne", "ent", m_gt_0) ||
+ stem(&z, "ile", "e", m_gt_0) ||
+ stem(&z, "ilsuo", "ous", m_gt_0);
+ break;
+ case 'o':
+ stem(&z, "noitazi", "ize", m_gt_0) ||
+ stem(&z, "noita", "ate", m_gt_0) ||
+ stem(&z, "rota", "ate", m_gt_0);
+ break;
+ case 's':
+ stem(&z, "msila", "al", m_gt_0) ||
+ stem(&z, "ssenevi", "ive", m_gt_0) ||
+ stem(&z, "ssenluf", "ful", m_gt_0) ||
+ stem(&z, "ssensuo", "ous", m_gt_0);
+ break;
+ case 't':
+ stem(&z, "itila", "al", m_gt_0) ||
+ stem(&z, "itivi", "ive", m_gt_0) ||
+ stem(&z, "itilib", "ble", m_gt_0);
+ break;
+ }
+
+ /* Step 3 */
+ switch( z[0] ){
+ case 'e':
+ stem(&z, "etaci", "ic", m_gt_0) ||
+ stem(&z, "evita", "", m_gt_0) ||
+ stem(&z, "ezila", "al", m_gt_0);
+ break;
+ case 'i':
+ stem(&z, "itici", "ic", m_gt_0);
+ break;
+ case 'l':
+ stem(&z, "laci", "ic", m_gt_0) ||
+ stem(&z, "luf", "", m_gt_0);
+ break;
+ case 's':
+ stem(&z, "ssen", "", m_gt_0);
+ break;
+ }
+
+ /* Step 4 */
+ switch( z[1] ){
+ case 'a':
+ if( z[0]=='l' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'c':
+ if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
+ z += 4;
+ }
+ break;
+ case 'e':
+ if( z[0]=='r' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'i':
+ if( z[0]=='c' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'l':
+ if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
+ z += 4;
+ }
+ break;
+ case 'n':
+ if( z[0]=='t' ){
+ if( z[2]=='a' ){
+ if( m_gt_1(z+3) ){
+ z += 3;
+ }
+ }else if( z[2]=='e' ){
+ stem(&z, "tneme", "", m_gt_1) ||
+ stem(&z, "tnem", "", m_gt_1) ||
+ stem(&z, "tne", "", m_gt_1);
+ }
+ }
+ break;
+ case 'o':
+ if( z[0]=='u' ){
+ if( m_gt_1(z+2) ){
+ z += 2;
+ }
+ }else if( z[3]=='s' || z[3]=='t' ){
+ stem(&z, "noi", "", m_gt_1);
+ }
+ break;
+ case 's':
+ if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ case 't':
+ stem(&z, "eta", "", m_gt_1) ||
+ stem(&z, "iti", "", m_gt_1);
+ break;
+ case 'u':
+ if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ case 'v':
+ case 'z':
+ if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ }
+
+ /* Step 5a */
+ if( z[0]=='e' ){
+ if( m_gt_1(z+1) ){
+ z++;
+ }else if( m_eq_1(z+1) && !star_oh(z+1) ){
+ z++;
+ }
+ }
+
+ /* Step 5b */
+ if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
+ z++;
+ }
+
+ /* z[] is now the stemmed word in reverse order. Flip it back
+ ** around into forward order and return.
+ */
+ *pnOut = i = strlen(z);
+ zOut[i] = 0;
+ while( *z ){
+ zOut[--i] = *(z++);
+ }
+}
+
+/*
+** Characters that can be part of a token. We assume any character
+** whose value is greater than 0x80 (any UTF character) can be
+** part of a token. In other words, delimiters all must have
+** values of 0x7f or lower.
+*/
+static const char porterIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+};
+#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to porterOpen().
+*/
+static int porterNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
+ const char **pzToken, /* OUT: *pzToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
+ const char *z = c->zInput;
+
+ while( c->iOffset<c->nInput ){
+ int iStartOffset, ch;
+
+ /* Scan past delimiter characters */
+ while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ /* Count non-delimiter characters. */
+ iStartOffset = c->iOffset;
+ while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ if( c->iOffset>iStartOffset ){
+ int n = c->iOffset-iStartOffset;
+ if( n>c->nAllocated ){
+ c->nAllocated = n+20;
+ c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
+ if( c->zToken==NULL ) return SQLITE_NOMEM;
+ }
+ porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
+ *pzToken = c->zToken;
+ *piStartOffset = iStartOffset;
+ *piEndOffset = c->iOffset;
+ *piPosition = c->iToken++;
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_DONE;
+}
+
+/*
+** The set of routines that implement the porter-stemmer tokenizer
+*/
+static const sqlite3_tokenizer_module porterTokenizerModule = {
+ 0,
+ porterCreate,
+ porterDestroy,
+ porterOpen,
+ porterClose,
+ porterNext,
+};
+
+/*
+** Allocate a new porter tokenizer. Return a pointer to the new
+** tokenizer in *ppModule
+*/
+SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &porterTokenizerModule;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_porter.c *****************************************/
+/************** Begin file fts3_tokenizer.c **********************************/
+/*
+** 2007 June 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is part of an SQLite module implementing full-text search.
+** This particular file implements the generic tokenizer interface.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+#ifndef SQLITE_CORE
+ SQLITE_EXTENSION_INIT1
+#endif
+
+
+/*
+** Implementation of the SQL scalar function for accessing the underlying
+** hash table. This function may be called as follows:
+**
+** SELECT <function-name>(<key-name>);
+** SELECT <function-name>(<key-name>, <pointer>);
+**
+** where <function-name> is the name passed as the second argument
+** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
+**
+** If the <pointer> argument is specified, it must be a blob value
+** containing a pointer to be stored as the hash data corresponding
+** to the string <key-name>. If <pointer> is not specified, then
+** the string <key-name> must already exist in the has table. Otherwise,
+** an error is returned.
+**
+** Whether or not the <pointer> argument is specified, the value returned
+** is a blob containing the pointer stored as the hash data corresponding
+** to string <key-name> (after the hash-table is updated, if applicable).
+*/
+static void scalarFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ fts3Hash *pHash;
+ void *pPtr = 0;
+ const unsigned char *zName;
+ int nName;
+
+ assert( argc==1 || argc==2 );
+
+ pHash = (fts3Hash *)sqlite3_user_data(context);
+
+ zName = sqlite3_value_text(argv[0]);
+ nName = sqlite3_value_bytes(argv[0])+1;
+
+ if( argc==2 ){
+ void *pOld;
+ int n = sqlite3_value_bytes(argv[1]);
+ if( n!=sizeof(pPtr) ){
+ sqlite3_result_error(context, "argument type mismatch", -1);
+ return;
+ }
+ pPtr = *(void **)sqlite3_value_blob(argv[1]);
+ pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
+ if( pOld==pPtr ){
+ sqlite3_result_error(context, "out of memory", -1);
+ return;
+ }
+ }else{
+ pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
+ if( !pPtr ){
+ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+ }
+
+ sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
+}
+
+#ifdef SQLITE_TEST
+
+
+/*
+** Implementation of a special SQL scalar function for testing tokenizers
+** designed to be used in concert with the Tcl testing framework. This
+** function must be called with two arguments:
+**
+** SELECT <function-name>(<key-name>, <input-string>);
+** SELECT <function-name>(<key-name>, <pointer>);
+**
+** where <function-name> is the name passed as the second argument
+** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
+** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
+**
+** The return value is a string that may be interpreted as a Tcl
+** list. For each token in the <input-string>, three elements are
+** added to the returned list. The first is the token position, the
+** second is the token text (folded, stemmed, etc.) and the third is the
+** substring of <input-string> associated with the token. For example,
+** using the built-in "simple" tokenizer:
+**
+** SELECT fts_tokenizer_test('simple', 'I don't see how');
+**
+** will return the string:
+**
+** "{0 i I 1 dont don't 2 see see 3 how how}"
+**
+*/
+static void testFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ fts3Hash *pHash;
+ sqlite3_tokenizer_module *p;
+ sqlite3_tokenizer *pTokenizer = 0;
+ sqlite3_tokenizer_cursor *pCsr = 0;
+
+ const char *zErr = 0;
+
+ const char *zName;
+ int nName;
+ const char *zInput;
+ int nInput;
+
+ const char *zArg = 0;
+
+ const char *zToken;
+ int nToken;
+ int iStart;
+ int iEnd;
+ int iPos;
+
+ Tcl_Obj *pRet;
+
+ assert( argc==2 || argc==3 );
+
+ nName = sqlite3_value_bytes(argv[0]);
+ zName = (const char *)sqlite3_value_text(argv[0]);
+ nInput = sqlite3_value_bytes(argv[argc-1]);
+ zInput = (const char *)sqlite3_value_text(argv[argc-1]);
+
+ if( argc==3 ){
+ zArg = (const char *)sqlite3_value_text(argv[1]);
+ }
+
+ pHash = (fts3Hash *)sqlite3_user_data(context);
+ p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
+
+ if( !p ){
+ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+
+ pRet = Tcl_NewObj();
+ Tcl_IncrRefCount(pRet);
+
+ if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){
+ zErr = "error in xCreate()";
+ goto finish;
+ }
+ pTokenizer->pModule = p;
+ if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){
+ zErr = "error in xOpen()";
+ goto finish;
+ }
+ pCsr->pTokenizer = pTokenizer;
+
+ while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
+ zToken = &zInput[iStart];
+ nToken = iEnd-iStart;
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
+ }
+
+ if( SQLITE_OK!=p->xClose(pCsr) ){
+ zErr = "error in xClose()";
+ goto finish;
+ }
+ if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
+ zErr = "error in xDestroy()";
+ goto finish;
+ }
+
+finish:
+ if( zErr ){
+ sqlite3_result_error(context, zErr, -1);
+ }else{
+ sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
+ }
+ Tcl_DecrRefCount(pRet);
+}
+
+static
+int registerTokenizer(
+ sqlite3 *db,
+ char *zName,
+ const sqlite3_tokenizer_module *p
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
+
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
+ sqlite3_step(pStmt);
+
+ return sqlite3_finalize(pStmt);
+}
+
+static
+int queryTokenizer(
+ sqlite3 *db,
+ char *zName,
+ const sqlite3_tokenizer_module **pp
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?)";
+
+ *pp = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
+ memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
+ }
+ }
+
+ return sqlite3_finalize(pStmt);
+}
+
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+
+/*
+** Implementation of the scalar function fts3_tokenizer_internal_test().
+** This function is used for testing only, it is not included in the
+** build unless SQLITE_TEST is defined.
+**
+** The purpose of this is to test that the fts3_tokenizer() function
+** can be used as designed by the C-code in the queryTokenizer and
+** registerTokenizer() functions above. These two functions are repeated
+** in the README.tokenizer file as an example, so it is important to
+** test them.
+**
+** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
+** function with no arguments. An assert() will fail if a problem is
+** detected. i.e.:
+**
+** SELECT fts3_tokenizer_internal_test();
+**
+*/
+static void intTestFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int rc;
+ const sqlite3_tokenizer_module *p1;
+ const sqlite3_tokenizer_module *p2;
+ sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
+
+ /* Test the query function */
+ sqlite3Fts3SimpleTokenizerModule(&p1);
+ rc = queryTokenizer(db, "simple", &p2);
+ assert( rc==SQLITE_OK );
+ assert( p1==p2 );
+ rc = queryTokenizer(db, "nosuchtokenizer", &p2);
+ assert( rc==SQLITE_ERROR );
+ assert( p2==0 );
+ assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
+
+ /* Test the storage function */
+ rc = registerTokenizer(db, "nosuchtokenizer", p1);
+ assert( rc==SQLITE_OK );
+ rc = queryTokenizer(db, "nosuchtokenizer", &p2);
+ assert( rc==SQLITE_OK );
+ assert( p2==p1 );
+
+ sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
+}
+
+#endif
+
+/*
+** Set up SQL objects in database db used to access the contents of
+** the hash table pointed to by argument pHash. The hash table must
+** been initialised to use string keys, and to take a private copy
+** of the key when a value is inserted. i.e. by a call similar to:
+**
+** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
+**
+** This function adds a scalar function (see header comment above
+** scalarFunc() in this file for details) and, if ENABLE_TABLE is
+** defined at compilation time, a temporary virtual table (see header
+** comment above struct HashTableVtab) to the database schema. Both
+** provide read/write access to the contents of *pHash.
+**
+** The third argument to this function, zName, is used as the name
+** of both the scalar and, if created, the virtual table.
+*/
+SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
+ sqlite3 *db,
+ fts3Hash *pHash,
+ const char *zName
+){
+ int rc = SQLITE_OK;
+ void *p = (void *)pHash;
+ const int any = SQLITE_ANY;
+ char *zTest = 0;
+ char *zTest2 = 0;
+
+#ifdef SQLITE_TEST
+ void *pdb = (void *)db;
+ zTest = sqlite3_mprintf("%s_test", zName);
+ zTest2 = sqlite3_mprintf("%s_internal_test", zName);
+ if( !zTest || !zTest2 ){
+ rc = SQLITE_NOMEM;
+ }
+#endif
+
+ if( rc!=SQLITE_OK
+ || (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
+ || (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
+#ifdef SQLITE_TEST
+ || (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
+ || (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
+ || (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
+#endif
+ );
+
+ sqlite3_free(zTest);
+ sqlite3_free(zTest2);
+ return rc;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenizer.c **************************************/
+/************** Begin file fts3_tokenizer1.c *********************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Implementation of the "simple" full-text-search tokenizer.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+
+
+
+typedef struct simple_tokenizer {
+ sqlite3_tokenizer base;
+ char delim[128]; /* flag ASCII delimiters */
+} simple_tokenizer;
+
+typedef struct simple_tokenizer_cursor {
+ sqlite3_tokenizer_cursor base;
+ const char *pInput; /* input we are tokenizing */
+ int nBytes; /* size of the input */
+ int iOffset; /* current position in pInput */
+ int iToken; /* index of next token to be returned */
+ char *pToken; /* storage for current token */
+ int nTokenAllocated; /* space allocated to zToken buffer */
+} simple_tokenizer_cursor;
+
+
+/* Forward declaration */
+static const sqlite3_tokenizer_module simpleTokenizerModule;
+
+static int simpleDelim(simple_tokenizer *t, unsigned char c){
+ return c<0x80 && t->delim[c];
+}
+
+/*
+** Create a new tokenizer instance.
+*/
+static int simpleCreate(
+ int argc, const char * const *argv,
+ sqlite3_tokenizer **ppTokenizer
+){
+ simple_tokenizer *t;
+
+ t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
+ if( t==NULL ) return SQLITE_NOMEM;
+ memset(t, 0, sizeof(*t));
+
+ /* TODO(shess) Delimiters need to remain the same from run to run,
+ ** else we need to reindex. One solution would be a meta-table to
+ ** track such information in the database, then we'd only want this
+ ** information on the initial create.
+ */
+ if( argc>1 ){
+ int i, n = strlen(argv[1]);
+ for(i=0; i<n; i++){
+ unsigned char ch = argv[1][i];
+ /* We explicitly don't support UTF-8 delimiters for now. */
+ if( ch>=0x80 ){
+ sqlite3_free(t);
+ return SQLITE_ERROR;
+ }
+ t->delim[ch] = 1;
+ }
+ } else {
+ /* Mark non-alphanumeric ASCII characters as delimiters */
+ int i;
+ for(i=1; i<0x80; i++){
+ t->delim[i] = !isalnum(i);
+ }
+ }
+
+ *ppTokenizer = &t->base;
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
+ sqlite3_free(pTokenizer);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int simpleOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *pInput, int nBytes, /* String to be tokenized */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ simple_tokenizer_cursor *c;
+
+ c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
+ if( c==NULL ) return SQLITE_NOMEM;
+
+ c->pInput = pInput;
+ if( pInput==0 ){
+ c->nBytes = 0;
+ }else if( nBytes<0 ){
+ c->nBytes = (int)strlen(pInput);
+ }else{
+ c->nBytes = nBytes;
+ }
+ c->iOffset = 0; /* start tokenizing at the beginning */
+ c->iToken = 0;
+ c->pToken = NULL; /* no space allocated, yet. */
+ c->nTokenAllocated = 0;
+
+ *ppCursor = &c->base;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** simpleOpen() above.
+*/
+static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
+ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
+ sqlite3_free(c->pToken);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to simpleOpen().
+*/
+static int simpleNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
+ const char **ppToken, /* OUT: *ppToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
+ simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
+ unsigned char *p = (unsigned char *)c->pInput;
+
+ while( c->iOffset<c->nBytes ){
+ int iStartOffset;
+
+ /* Scan past delimiter characters */
+ while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ /* Count non-delimiter characters. */
+ iStartOffset = c->iOffset;
+ while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ if( c->iOffset>iStartOffset ){
+ int i, n = c->iOffset-iStartOffset;
+ if( n>c->nTokenAllocated ){
+ c->nTokenAllocated = n+20;
+ c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated);
+ if( c->pToken==NULL ) return SQLITE_NOMEM;
+ }
+ for(i=0; i<n; i++){
+ /* TODO(shess) This needs expansion to handle UTF-8
+ ** case-insensitivity.
+ */
+ unsigned char ch = p[iStartOffset+i];
+ c->pToken[i] = ch<0x80 ? tolower(ch) : ch;
+ }
+ *ppToken = c->pToken;
+ *pnBytes = n;
+ *piStartOffset = iStartOffset;
+ *piEndOffset = c->iOffset;
+ *piPosition = c->iToken++;
+
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_DONE;
+}
+
+/*
+** The set of routines that implement the simple tokenizer
+*/
+static const sqlite3_tokenizer_module simpleTokenizerModule = {
+ 0,
+ simpleCreate,
+ simpleDestroy,
+ simpleOpen,
+ simpleClose,
+ simpleNext,
+};
+
+/*
+** Allocate a new simple tokenizer. Return a pointer to the new
+** tokenizer in *ppModule
+*/
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &simpleTokenizerModule;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenizer1.c *************************************/
+/************** Begin file rtree.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code for implementations of the r-tree and r*-tree
+** algorithms packaged as an SQLite virtual table module.
+**
+** $Id: rtree.c,v 1.14 2009/08/06 18:36:47 danielk1977 Exp $
+*/
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
+
+/*
+** This file contains an implementation of a couple of different variants
+** of the r-tree algorithm. See the README file for further details. The
+** same data-structure is used for all, but the algorithms for insert and
+** delete operations vary. The variants used are selected at compile time
+** by defining the following symbols:
+*/
+
+/* Either, both or none of the following may be set to activate
+** r*tree variant algorithms.
+*/
+#define VARIANT_RSTARTREE_CHOOSESUBTREE 0
+#define VARIANT_RSTARTREE_REINSERT 1
+
+/*
+** Exactly one of the following must be set to 1.
+*/
+#define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0
+#define VARIANT_GUTTMAN_LINEAR_SPLIT 0
+#define VARIANT_RSTARTREE_SPLIT 1
+
+#define VARIANT_GUTTMAN_SPLIT \
+ (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT)
+
+#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
+ #define PickNext QuadraticPickNext
+ #define PickSeeds QuadraticPickSeeds
+ #define AssignCells splitNodeGuttman
+#endif
+#if VARIANT_GUTTMAN_LINEAR_SPLIT
+ #define PickNext LinearPickNext
+ #define PickSeeds LinearPickSeeds
+ #define AssignCells splitNodeGuttman
+#endif
+#if VARIANT_RSTARTREE_SPLIT
+ #define AssignCells splitNodeStartree
+#endif
+
+
+#ifndef SQLITE_CORE
+ SQLITE_EXTENSION_INIT1
+#else
+#endif
+
+
+#ifndef SQLITE_AMALGAMATION
+typedef sqlite3_int64 i64;
+typedef unsigned char u8;
+typedef unsigned int u32;
+#endif
+
+typedef struct Rtree Rtree;
+typedef struct RtreeCursor RtreeCursor;
+typedef struct RtreeNode RtreeNode;
+typedef struct RtreeCell RtreeCell;
+typedef struct RtreeConstraint RtreeConstraint;
+typedef union RtreeCoord RtreeCoord;
+
+/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
+#define RTREE_MAX_DIMENSIONS 5
+
+/* Size of hash table Rtree.aHash. This hash table is not expected to
+** ever contain very many entries, so a fixed number of buckets is
+** used.
+*/
+#define HASHSIZE 128
+
+/*
+** An rtree virtual-table object.
+*/
+struct Rtree {
+ sqlite3_vtab base;
+ sqlite3 *db; /* Host database connection */
+ int iNodeSize; /* Size in bytes of each node in the node table */
+ int nDim; /* Number of dimensions */
+ int nBytesPerCell; /* Bytes consumed per cell */
+ int iDepth; /* Current depth of the r-tree structure */
+ char *zDb; /* Name of database containing r-tree table */
+ char *zName; /* Name of r-tree table */
+ RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
+ int nBusy; /* Current number of users of this structure */
+
+ /* List of nodes removed during a CondenseTree operation. List is
+ ** linked together via the pointer normally used for hash chains -
+ ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
+ ** headed by the node (leaf nodes have RtreeNode.iNode==0).
+ */
+ RtreeNode *pDeleted;
+ int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
+
+ /* Statements to read/write/delete a record from xxx_node */
+ sqlite3_stmt *pReadNode;
+ sqlite3_stmt *pWriteNode;
+ sqlite3_stmt *pDeleteNode;
+
+ /* Statements to read/write/delete a record from xxx_rowid */
+ sqlite3_stmt *pReadRowid;
+ sqlite3_stmt *pWriteRowid;
+ sqlite3_stmt *pDeleteRowid;
+
+ /* Statements to read/write/delete a record from xxx_parent */
+ sqlite3_stmt *pReadParent;
+ sqlite3_stmt *pWriteParent;
+ sqlite3_stmt *pDeleteParent;
+
+ int eCoordType;
+};
+
+/* Possible values for eCoordType: */
+#define RTREE_COORD_REAL32 0
+#define RTREE_COORD_INT32 1
+
+/*
+** The minimum number of cells allowed for a node is a third of the
+** maximum. In Gutman's notation:
+**
+** m = M/3
+**
+** If an R*-tree "Reinsert" operation is required, the same number of
+** cells are removed from the overfull node and reinserted into the tree.
+*/
+#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
+#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
+#define RTREE_MAXCELLS 51
+
+/*
+** An rtree cursor object.
+*/
+struct RtreeCursor {
+ sqlite3_vtab_cursor base;
+ RtreeNode *pNode; /* Node cursor is currently pointing at */
+ int iCell; /* Index of current cell in pNode */
+ int iStrategy; /* Copy of idxNum search parameter */
+ int nConstraint; /* Number of entries in aConstraint */
+ RtreeConstraint *aConstraint; /* Search constraints. */
+};
+
+union RtreeCoord {
+ float f;
+ int i;
+};
+
+/*
+** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
+** formatted as a double. This macro assumes that local variable pRtree points
+** to the Rtree structure associated with the RtreeCoord.
+*/
+#define DCOORD(coord) ( \
+ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
+ ((double)coord.f) : \
+ ((double)coord.i) \
+)
+
+/*
+** A search constraint.
+*/
+struct RtreeConstraint {
+ int iCoord; /* Index of constrained coordinate */
+ int op; /* Constraining operation */
+ double rValue; /* Constraint value. */
+};
+
+/* Possible values for RtreeConstraint.op */
+#define RTREE_EQ 0x41
+#define RTREE_LE 0x42
+#define RTREE_LT 0x43
+#define RTREE_GE 0x44
+#define RTREE_GT 0x45
+
+/*
+** An rtree structure node.
+**
+** Data format (RtreeNode.zData):
+**
+** 1. If the node is the root node (node 1), then the first 2 bytes
+** of the node contain the tree depth as a big-endian integer.
+** For non-root nodes, the first 2 bytes are left unused.
+**
+** 2. The next 2 bytes contain the number of entries currently
+** stored in the node.
+**
+** 3. The remainder of the node contains the node entries. Each entry
+** consists of a single 8-byte integer followed by an even number
+** of 4-byte coordinates. For leaf nodes the integer is the rowid
+** of a record. For internal nodes it is the node number of a
+** child page.
+*/
+struct RtreeNode {
+ RtreeNode *pParent; /* Parent node */
+ i64 iNode;
+ int nRef;
+ int isDirty;
+ u8 *zData;
+ RtreeNode *pNext; /* Next node in this hash chain */
+};
+#define NCELL(pNode) readInt16(&(pNode)->zData[2])
+
+/*
+** Structure to store a deserialized rtree record.
+*/
+struct RtreeCell {
+ i64 iRowid;
+ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
+};
+
+#ifndef MAX
+# define MAX(x,y) ((x) < (y) ? (y) : (x))
+#endif
+#ifndef MIN
+# define MIN(x,y) ((x) > (y) ? (y) : (x))
+#endif
+
+/*
+** Functions to deserialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The deserialized value is returned.
+*/
+static int readInt16(u8 *p){
+ return (p[0]<<8) + p[1];
+}
+static void readCoord(u8 *p, RtreeCoord *pCoord){
+ u32 i = (
+ (((u32)p[0]) << 24) +
+ (((u32)p[1]) << 16) +
+ (((u32)p[2]) << 8) +
+ (((u32)p[3]) << 0)
+ );
+ *(u32 *)pCoord = i;
+}
+static i64 readInt64(u8 *p){
+ return (
+ (((i64)p[0]) << 56) +
+ (((i64)p[1]) << 48) +
+ (((i64)p[2]) << 40) +
+ (((i64)p[3]) << 32) +
+ (((i64)p[4]) << 24) +
+ (((i64)p[5]) << 16) +
+ (((i64)p[6]) << 8) +
+ (((i64)p[7]) << 0)
+ );
+}
+
+/*
+** Functions to serialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The value returned is the number of bytes written
+** to the argument buffer (always 2, 4 and 8 respectively).
+*/
+static int writeInt16(u8 *p, int i){
+ p[0] = (i>> 8)&0xFF;
+ p[1] = (i>> 0)&0xFF;
+ return 2;
+}
+static int writeCoord(u8 *p, RtreeCoord *pCoord){
+ u32 i;
+ assert( sizeof(RtreeCoord)==4 );
+ assert( sizeof(u32)==4 );
+ i = *(u32 *)pCoord;
+ p[0] = (i>>24)&0xFF;
+ p[1] = (i>>16)&0xFF;
+ p[2] = (i>> 8)&0xFF;
+ p[3] = (i>> 0)&0xFF;
+ return 4;
+}
+static int writeInt64(u8 *p, i64 i){
+ p[0] = (i>>56)&0xFF;
+ p[1] = (i>>48)&0xFF;
+ p[2] = (i>>40)&0xFF;
+ p[3] = (i>>32)&0xFF;
+ p[4] = (i>>24)&0xFF;
+ p[5] = (i>>16)&0xFF;
+ p[6] = (i>> 8)&0xFF;
+ p[7] = (i>> 0)&0xFF;
+ return 8;
+}
+
+/*
+** Increment the reference count of node p.
+*/
+static void nodeReference(RtreeNode *p){
+ if( p ){
+ p->nRef++;
+ }
+}
+
+/*
+** Clear the content of node p (set all bytes to 0x00).
+*/
+static void nodeZero(Rtree *pRtree, RtreeNode *p){
+ if( p ){
+ memset(&p->zData[2], 0, pRtree->iNodeSize-2);
+ p->isDirty = 1;
+ }
+}
+
+/*
+** Given a node number iNode, return the corresponding key to use
+** in the Rtree.aHash table.
+*/
+static int nodeHash(i64 iNode){
+ return (
+ (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^
+ (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0)
+ ) % HASHSIZE;
+}
+
+/*
+** Search the node hash table for node iNode. If found, return a pointer
+** to it. Otherwise, return 0.
+*/
+static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
+ RtreeNode *p;
+ assert( iNode!=0 );
+ for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
+ return p;
+}
+
+/*
+** Add node pNode to the node hash table.
+*/
+static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
+ if( pNode ){
+ int iHash;
+ assert( pNode->pNext==0 );
+ iHash = nodeHash(pNode->iNode);
+ pNode->pNext = pRtree->aHash[iHash];
+ pRtree->aHash[iHash] = pNode;
+ }
+}
+
+/*
+** Remove node pNode from the node hash table.
+*/
+static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode **pp;
+ if( pNode->iNode!=0 ){
+ pp = &pRtree->aHash[nodeHash(pNode->iNode)];
+ for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
+ *pp = pNode->pNext;
+ pNode->pNext = 0;
+ }
+}
+
+/*
+** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
+** indicating that node has not yet been assigned a node number. It is
+** assigned a node number when nodeWrite() is called to write the
+** node contents out to the database.
+*/
+static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){
+ RtreeNode *pNode;
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
+ if( pNode ){
+ memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0));
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pNode->pParent = pParent;
+ pNode->isDirty = 1;
+ nodeReference(pParent);
+ }
+ return pNode;
+}
+
+/*
+** Obtain a reference to an r-tree node.
+*/
+static int
+nodeAcquire(
+ Rtree *pRtree, /* R-tree structure */
+ i64 iNode, /* Node number to load */
+ RtreeNode *pParent, /* Either the parent node or NULL */
+ RtreeNode **ppNode /* OUT: Acquired node */
+){
+ int rc;
+ RtreeNode *pNode;
+
+ /* Check if the requested node is already in the hash table. If so,
+ ** increase its reference count and return it.
+ */
+ if( (pNode = nodeHashLookup(pRtree, iNode)) ){
+ assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
+ if( pParent && !pNode->pParent ){
+ nodeReference(pParent);
+ pNode->pParent = pParent;
+ }
+ pNode->nRef++;
+ *ppNode = pNode;
+ return SQLITE_OK;
+ }
+
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
+ if( !pNode ){
+ *ppNode = 0;
+ return SQLITE_NOMEM;
+ }
+ pNode->pParent = pParent;
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pNode->iNode = iNode;
+ pNode->isDirty = 0;
+ pNode->pNext = 0;
+
+ sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
+ rc = sqlite3_step(pRtree->pReadNode);
+ if( rc==SQLITE_ROW ){
+ const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
+ memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
+ nodeReference(pParent);
+ }else{
+ sqlite3_free(pNode);
+ pNode = 0;
+ }
+
+ *ppNode = pNode;
+ rc = sqlite3_reset(pRtree->pReadNode);
+
+ if( rc==SQLITE_OK && iNode==1 ){
+ pRtree->iDepth = readInt16(pNode->zData);
+ }
+
+ assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) );
+ nodeHashInsert(pRtree, pNode);
+
+ return rc;
+}
+
+/*
+** Overwrite cell iCell of node pNode with the contents of pCell.
+*/
+static void nodeOverwriteCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iCell
+){
+ int ii;
+ u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ p += writeInt64(p, pCell->iRowid);
+ for(ii=0; ii<(pRtree->nDim*2); ii++){
+ p += writeCoord(p, &pCell->aCoord[ii]);
+ }
+ pNode->isDirty = 1;
+}
+
+/*
+** Remove cell the cell with index iCell from node pNode.
+*/
+static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
+ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ u8 *pSrc = &pDst[pRtree->nBytesPerCell];
+ int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
+ memmove(pDst, pSrc, nByte);
+ writeInt16(&pNode->zData[2], NCELL(pNode)-1);
+ pNode->isDirty = 1;
+}
+
+/*
+** Insert the contents of cell pCell into node pNode. If the insert
+** is successful, return SQLITE_OK.
+**
+** If there is not enough free space in pNode, return SQLITE_FULL.
+*/
+static int
+nodeInsertCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell
+){
+ int nCell; /* Current number of cells in pNode */
+ int nMaxCell; /* Maximum number of cells for pNode */
+
+ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
+ nCell = NCELL(pNode);
+
+ assert(nCell<=nMaxCell);
+
+ if( nCell<nMaxCell ){
+ nodeOverwriteCell(pRtree, pNode, pCell, nCell);
+ writeInt16(&pNode->zData[2], nCell+1);
+ pNode->isDirty = 1;
+ }
+
+ return (nCell==nMaxCell);
+}
+
+/*
+** If the node is dirty, write it out to the database.
+*/
+static int
+nodeWrite(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode->isDirty ){
+ sqlite3_stmt *p = pRtree->pWriteNode;
+ if( pNode->iNode ){
+ sqlite3_bind_int64(p, 1, pNode->iNode);
+ }else{
+ sqlite3_bind_null(p, 1);
+ }
+ sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
+ sqlite3_step(p);
+ pNode->isDirty = 0;
+ rc = sqlite3_reset(p);
+ if( pNode->iNode==0 && rc==SQLITE_OK ){
+ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
+ nodeHashInsert(pRtree, pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Release a reference to a node. If the node is dirty and the reference
+** count drops to zero, the node data is written to the database.
+*/
+static int
+nodeRelease(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode ){
+ assert( pNode->nRef>0 );
+ pNode->nRef--;
+ if( pNode->nRef==0 ){
+ if( pNode->iNode==1 ){
+ pRtree->iDepth = -1;
+ }
+ if( pNode->pParent ){
+ rc = nodeRelease(pRtree, pNode->pParent);
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeWrite(pRtree, pNode);
+ }
+ nodeHashDelete(pRtree, pNode);
+ sqlite3_free(pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the 64-bit integer value associated with cell iCell of
+** node pNode. If pNode is a leaf node, this is a rowid. If it is
+** an internal node, then the 64-bit integer is a child page number.
+*/
+static i64 nodeGetRowid(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell
+){
+ assert( iCell<NCELL(pNode) );
+ return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
+}
+
+/*
+** Return coordinate iCoord from cell iCell in node pNode.
+*/
+static void nodeGetCoord(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell,
+ int iCoord,
+ RtreeCoord *pCoord /* Space to write result to */
+){
+ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
+}
+
+/*
+** Deserialize cell iCell of node pNode. Populate the structure pointed
+** to by pCell with the results.
+*/
+static void nodeGetCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ int iCell,
+ RtreeCell *pCell
+){
+ int ii;
+ pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
+ for(ii=0; ii<pRtree->nDim*2; ii++){
+ nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
+ }
+}
+
+
+/* Forward declaration for the function that does the work of
+** the virtual table module xCreate() and xConnect() methods.
+*/
+static int rtreeInit(
+ sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
+);
+
+/*
+** Rtree virtual table module xCreate method.
+*/
+static int rtreeCreate(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
+}
+
+/*
+** Rtree virtual table module xConnect method.
+*/
+static int rtreeConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
+}
+
+/*
+** Increment the r-tree reference count.
+*/
+static void rtreeReference(Rtree *pRtree){
+ pRtree->nBusy++;
+}
+
+/*
+** Decrement the r-tree reference count. When the reference count reaches
+** zero the structure is deleted.
+*/
+static void rtreeRelease(Rtree *pRtree){
+ pRtree->nBusy--;
+ if( pRtree->nBusy==0 ){
+ sqlite3_finalize(pRtree->pReadNode);
+ sqlite3_finalize(pRtree->pWriteNode);
+ sqlite3_finalize(pRtree->pDeleteNode);
+ sqlite3_finalize(pRtree->pReadRowid);
+ sqlite3_finalize(pRtree->pWriteRowid);
+ sqlite3_finalize(pRtree->pDeleteRowid);
+ sqlite3_finalize(pRtree->pReadParent);
+ sqlite3_finalize(pRtree->pWriteParent);
+ sqlite3_finalize(pRtree->pDeleteParent);
+ sqlite3_free(pRtree);
+ }
+}
+
+/*
+** Rtree virtual table module xDisconnect method.
+*/
+static int rtreeDisconnect(sqlite3_vtab *pVtab){
+ rtreeRelease((Rtree *)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xDestroy method.
+*/
+static int rtreeDestroy(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc;
+ char *zCreate = sqlite3_mprintf(
+ "DROP TABLE '%q'.'%q_node';"
+ "DROP TABLE '%q'.'%q_rowid';"
+ "DROP TABLE '%q'.'%q_parent';",
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName
+ );
+ if( !zCreate ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ }
+ if( rc==SQLITE_OK ){
+ rtreeRelease(pRtree);
+ }
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xOpen method.
+*/
+static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ int rc = SQLITE_NOMEM;
+ RtreeCursor *pCsr;
+
+ pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
+ if( pCsr ){
+ memset(pCsr, 0, sizeof(RtreeCursor));
+ pCsr->base.pVtab = pVTab;
+ rc = SQLITE_OK;
+ }
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xClose method.
+*/
+static int rtreeClose(sqlite3_vtab_cursor *cur){
+ Rtree *pRtree = (Rtree *)(cur->pVtab);
+ int rc;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ sqlite3_free(pCsr->aConstraint);
+ rc = nodeRelease(pRtree, pCsr->pNode);
+ sqlite3_free(pCsr);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xEof method.
+**
+** Return non-zero if the cursor does not currently point to a valid
+** record (i.e if the scan has finished), or zero otherwise.
+*/
+static int rtreeEof(sqlite3_vtab_cursor *cur){
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ return (pCsr->pNode==0);
+}
+
+/*
+** Cursor pCursor currently points to a cell in a non-leaf page.
+** Return true if the sub-tree headed by the cell is filtered
+** (excluded) by the constraints in the pCursor->aConstraint[]
+** array, or false otherwise.
+*/
+static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){
+ RtreeCell cell;
+ int ii;
+ int bRes = 0;
+
+ nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
+ for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
+ RtreeConstraint *p = &pCursor->aConstraint[ii];
+ double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
+ double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
+
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ
+ );
+
+ switch( p->op ){
+ case RTREE_LE: case RTREE_LT: bRes = p->rValue<cell_min; break;
+ case RTREE_GE: case RTREE_GT: bRes = p->rValue>cell_max; break;
+ case RTREE_EQ:
+ bRes = (p->rValue>cell_max || p->rValue<cell_min);
+ break;
+ }
+ }
+
+ return bRes;
+}
+
+/*
+** Return true if the cell that cursor pCursor currently points to
+** would be filtered (excluded) by the constraints in the
+** pCursor->aConstraint[] array, or false otherwise.
+**
+** This function assumes that the cell is part of a leaf node.
+*/
+static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){
+ RtreeCell cell;
+ int ii;
+
+ nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
+ for(ii=0; ii<pCursor->nConstraint; ii++){
+ RtreeConstraint *p = &pCursor->aConstraint[ii];
+ double coord = DCOORD(cell.aCoord[p->iCoord]);
+ int res;
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ
+ );
+ switch( p->op ){
+ case RTREE_LE: res = (coord<=p->rValue); break;
+ case RTREE_LT: res = (coord<p->rValue); break;
+ case RTREE_GE: res = (coord>=p->rValue); break;
+ case RTREE_GT: res = (coord>p->rValue); break;
+ case RTREE_EQ: res = (coord==p->rValue); break;
+ }
+
+ if( !res ) return 1;
+ }
+
+ return 0;
+}
+
+/*
+** Cursor pCursor currently points at a node that heads a sub-tree of
+** height iHeight (if iHeight==0, then the node is a leaf). Descend
+** to point to the left-most cell of the sub-tree that matches the
+** configured constraints.
+*/
+static int descendToCell(
+ Rtree *pRtree,
+ RtreeCursor *pCursor,
+ int iHeight,
+ int *pEof /* OUT: Set to true if cannot descend */
+){
+ int isEof;
+ int rc;
+ int ii;
+ RtreeNode *pChild;
+ sqlite3_int64 iRowid;
+
+ RtreeNode *pSavedNode = pCursor->pNode;
+ int iSavedCell = pCursor->iCell;
+
+ assert( iHeight>=0 );
+
+ if( iHeight==0 ){
+ isEof = testRtreeEntry(pRtree, pCursor);
+ }else{
+ isEof = testRtreeCell(pRtree, pCursor);
+ }
+ if( isEof || iHeight==0 ){
+ *pEof = isEof;
+ return SQLITE_OK;
+ }
+
+ iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
+ rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ nodeRelease(pRtree, pCursor->pNode);
+ pCursor->pNode = pChild;
+ isEof = 1;
+ for(ii=0; isEof && ii<NCELL(pChild); ii++){
+ pCursor->iCell = ii;
+ rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+
+ if( isEof ){
+ assert( pCursor->pNode==pChild );
+ nodeReference(pSavedNode);
+ nodeRelease(pRtree, pChild);
+ pCursor->pNode = pSavedNode;
+ pCursor->iCell = iSavedCell;
+ }
+
+ *pEof = isEof;
+ return SQLITE_OK;
+}
+
+/*
+** One of the cells in node pNode is guaranteed to have a 64-bit
+** integer value equal to iRowid. Return the index of this cell.
+*/
+static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){
+ int ii;
+ for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){
+ assert( ii<(NCELL(pNode)-1) );
+ }
+ return ii;
+}
+
+/*
+** Return the index of the cell containing a pointer to node pNode
+** in its parent. If pNode is the root node, return -1.
+*/
+static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode *pParent = pNode->pParent;
+ if( pParent ){
+ return nodeRowidIndex(pRtree, pParent, pNode->iNode);
+ }
+ return -1;
+}
+
+/*
+** Rtree virtual table module xNext method.
+*/
+static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
+ Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab);
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ int rc = SQLITE_OK;
+
+ if( pCsr->iStrategy==1 ){
+ /* This "scan" is a direct lookup by rowid. There is no next entry. */
+ nodeRelease(pRtree, pCsr->pNode);
+ pCsr->pNode = 0;
+ }
+
+ else if( pCsr->pNode ){
+ /* Move to the next entry that matches the configured constraints. */
+ int iHeight = 0;
+ while( pCsr->pNode ){
+ RtreeNode *pNode = pCsr->pNode;
+ int nCell = NCELL(pNode);
+ for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){
+ int isEof;
+ rc = descendToCell(pRtree, pCsr, iHeight, &isEof);
+ if( rc!=SQLITE_OK || !isEof ){
+ return rc;
+ }
+ }
+ pCsr->pNode = pNode->pParent;
+ pCsr->iCell = nodeParentIndex(pRtree, pNode);
+ nodeReference(pCsr->pNode);
+ nodeRelease(pRtree, pNode);
+ iHeight++;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xRowid method.
+*/
+static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+
+ assert(pCsr->pNode);
+ *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
+
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xColumn method.
+*/
+static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ Rtree *pRtree = (Rtree *)cur->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+
+ if( i==0 ){
+ i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
+ sqlite3_result_int64(ctx, iRowid);
+ }else{
+ RtreeCoord c;
+ nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ sqlite3_result_double(ctx, c.f);
+ }else{
+ assert( pRtree->eCoordType==RTREE_COORD_INT32 );
+ sqlite3_result_int(ctx, c.i);
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Use nodeAcquire() to obtain the leaf node containing the record with
+** rowid iRowid. If successful, set *ppLeaf to point to the node and
+** return SQLITE_OK. If there is no such record in the table, set
+** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
+** to zero and return an SQLite error code.
+*/
+static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
+ int rc;
+ *ppLeaf = 0;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
+ if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
+ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
+ rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
+ sqlite3_reset(pRtree->pReadRowid);
+ }else{
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ }
+ return rc;
+}
+
+
+/*
+** Rtree virtual table module xFilter method.
+*/
+static int rtreeFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+
+ RtreeNode *pRoot = 0;
+ int ii;
+ int rc = SQLITE_OK;
+
+ rtreeReference(pRtree);
+
+ sqlite3_free(pCsr->aConstraint);
+ pCsr->aConstraint = 0;
+ pCsr->iStrategy = idxNum;
+
+ if( idxNum==1 ){
+ /* Special case - lookup by rowid. */
+ RtreeNode *pLeaf; /* Leaf on which the required cell resides */
+ i64 iRowid = sqlite3_value_int64(argv[0]);
+ rc = findLeafNode(pRtree, iRowid, &pLeaf);
+ pCsr->pNode = pLeaf;
+ if( pLeaf && rc==SQLITE_OK ){
+ pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid);
+ }
+ }else{
+ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
+ ** with the configured constraints.
+ */
+ if( argc>0 ){
+ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
+ pCsr->nConstraint = argc;
+ if( !pCsr->aConstraint ){
+ rc = SQLITE_NOMEM;
+ }else{
+ assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 );
+ for(ii=0; ii<argc; ii++){
+ RtreeConstraint *p = &pCsr->aConstraint[ii];
+ p->op = idxStr[ii*2];
+ p->iCoord = idxStr[ii*2+1]-'a';
+ p->rValue = sqlite3_value_double(argv[ii]);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pCsr->pNode = 0;
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+ }
+ if( rc==SQLITE_OK ){
+ int isEof = 1;
+ int nCell = NCELL(pRoot);
+ pCsr->pNode = pRoot;
+ for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){
+ assert( pCsr->pNode==pRoot );
+ rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof);
+ if( !isEof ){
+ break;
+ }
+ }
+ if( rc==SQLITE_OK && isEof ){
+ assert( pCsr->pNode==pRoot );
+ nodeRelease(pRtree, pRoot);
+ pCsr->pNode = 0;
+ }
+ assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) );
+ }
+ }
+
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xBestIndex method. There are three
+** table scan strategies to choose from (in order from most to
+** least desirable):
+**
+** idxNum idxStr Strategy
+** ------------------------------------------------
+** 1 Unused Direct lookup by rowid.
+** 2 See below R-tree query.
+** 3 Unused Full table scan.
+** ------------------------------------------------
+**
+** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy
+** 2 is used, idxStr is formatted to contain 2 bytes for each
+** constraint used. The first two bytes of idxStr correspond to
+** the constraint in sqlite3_index_info.aConstraintUsage[] with
+** (argvIndex==1) etc.
+**
+** The first of each pair of bytes in idxStr identifies the constraint
+** operator as follows:
+**
+** Operator Byte Value
+** ----------------------
+** = 0x41 ('A')
+** <= 0x42 ('B')
+** < 0x43 ('C')
+** >= 0x44 ('D')
+** > 0x45 ('E')
+** ----------------------
+**
+** The second of each pair of bytes identifies the coordinate column
+** to which the constraint applies. The leftmost coordinate column
+** is 'a', the second from the left 'b' etc.
+*/
+static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int rc = SQLITE_OK;
+ int ii, cCol;
+
+ int iIdx = 0;
+ char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
+ memset(zIdxStr, 0, sizeof(zIdxStr));
+
+ assert( pIdxInfo->idxStr==0 );
+ for(ii=0; ii<pIdxInfo->nConstraint; ii++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
+
+ if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ /* We have an equality constraint on the rowid. Use strategy 1. */
+ int jj;
+ for(jj=0; jj<ii; jj++){
+ pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
+ pIdxInfo->aConstraintUsage[jj].omit = 0;
+ }
+ pIdxInfo->idxNum = 1;
+ pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[jj].omit = 1;
+
+ /* This strategy involves a two rowid lookups on an B-Tree structures
+ ** and then a linear search of an R-Tree node. This should be
+ ** considered almost as quick as a direct rowid lookup (for which
+ ** sqlite uses an internal cost of 0.0).
+ */
+ pIdxInfo->estimatedCost = 10.0;
+ return SQLITE_OK;
+ }
+
+ if( p->usable && p->iColumn>0 ){
+ u8 op = 0;
+ switch( p->op ){
+ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
+ case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
+ case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
+ case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
+ case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
+ }
+ if( op ){
+ /* Make sure this particular constraint has not been used before.
+ ** If it has been used before, ignore it.
+ **
+ ** A <= or < can be used if there is a prior >= or >.
+ ** A >= or > can be used if there is a prior < or <=.
+ ** A <= or < is disqualified if there is a prior <=, <, or ==.
+ ** A >= or > is disqualified if there is a prior >=, >, or ==.
+ ** A == is disqualifed if there is any prior constraint.
+ */
+ int j, opmsk;
+ static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 };
+ assert( compatible[RTREE_EQ & 7]==0 );
+ assert( compatible[RTREE_LT & 7]==1 );
+ assert( compatible[RTREE_LE & 7]==1 );
+ assert( compatible[RTREE_GT & 7]==2 );
+ assert( compatible[RTREE_GE & 7]==2 );
+ cCol = p->iColumn - 1 + 'a';
+ opmsk = compatible[op & 7];
+ for(j=0; j<iIdx; j+=2){
+ if( zIdxStr[j+1]==cCol && (compatible[zIdxStr[j] & 7] & opmsk)!=0 ){
+ op = 0;
+ break;
+ }
+ }
+ }
+ if( op ){
+ assert( iIdx<sizeof(zIdxStr)-1 );
+ zIdxStr[iIdx++] = op;
+ zIdxStr[iIdx++] = cCol;
+ pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
+ pIdxInfo->aConstraintUsage[ii].omit = 1;
+ }
+ }
+ }
+
+ pIdxInfo->idxNum = 2;
+ pIdxInfo->needToFreeIdxStr = 1;
+ if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
+ return SQLITE_NOMEM;
+ }
+ assert( iIdx>=0 );
+ pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
+ return rc;
+}
+
+/*
+** Return the N-dimensional volumn of the cell stored in *p.
+*/
+static float cellArea(Rtree *pRtree, RtreeCell *p){
+ float area = 1.0;
+ int ii;
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
+ }
+ return area;
+}
+
+/*
+** Return the margin length of cell p. The margin length is the sum
+** of the objects size in each dimension.
+*/
+static float cellMargin(Rtree *pRtree, RtreeCell *p){
+ float margin = 0.0;
+ int ii;
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
+ }
+ return margin;
+}
+
+/*
+** Store the union of cells p1 and p2 in p1.
+*/
+static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii;
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
+ p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
+ }
+ }else{
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
+ p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
+ }
+ }
+}
+
+/*
+** Return true if the area covered by p2 is a subset of the area covered
+** by p1. False otherwise.
+*/
+static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii;
+ int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ RtreeCoord *a1 = &p1->aCoord[ii];
+ RtreeCoord *a2 = &p2->aCoord[ii];
+ if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
+ || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
+ ){
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/*
+** Return the amount cell p would grow by if it were unioned with pCell.
+*/
+static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
+ float area;
+ RtreeCell cell;
+ memcpy(&cell, p, sizeof(RtreeCell));
+ area = cellArea(pRtree, &cell);
+ cellUnion(pRtree, &cell, pCell);
+ return (cellArea(pRtree, &cell)-area);
+}
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
+static float cellOverlap(
+ Rtree *pRtree,
+ RtreeCell *p,
+ RtreeCell *aCell,
+ int nCell,
+ int iExclude
+){
+ int ii;
+ float overlap = 0.0;
+ for(ii=0; ii<nCell; ii++){
+ if( ii!=iExclude ){
+ int jj;
+ float o = 1.0;
+ for(jj=0; jj<(pRtree->nDim*2); jj+=2){
+ double x1;
+ double x2;
+
+ x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
+ x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
+
+ if( x2<x1 ){
+ o = 0.0;
+ break;
+ }else{
+ o = o * (x2-x1);
+ }
+ }
+ overlap += o;
+ }
+ }
+ return overlap;
+}
+#endif
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+static float cellOverlapEnlargement(
+ Rtree *pRtree,
+ RtreeCell *p,
+ RtreeCell *pInsert,
+ RtreeCell *aCell,
+ int nCell,
+ int iExclude
+){
+ float before;
+ float after;
+ before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
+ cellUnion(pRtree, p, pInsert);
+ after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
+ return after-before;
+}
+#endif
+
+
+/*
+** This function implements the ChooseLeaf algorithm from Gutman[84].
+** ChooseSubTree in r*tree terminology.
+*/
+static int ChooseLeaf(
+ Rtree *pRtree, /* Rtree table */
+ RtreeCell *pCell, /* Cell to insert into rtree */
+ int iHeight, /* Height of sub-tree rooted at pCell */
+ RtreeNode **ppLeaf /* OUT: Selected leaf page */
+){
+ int rc;
+ int ii;
+ RtreeNode *pNode;
+ rc = nodeAcquire(pRtree, 1, 0, &pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
+ int iCell;
+ sqlite3_int64 iBest;
+
+ float fMinGrowth;
+ float fMinArea;
+ float fMinOverlap;
+
+ int nCell = NCELL(pNode);
+ RtreeCell cell;
+ RtreeNode *pChild;
+
+ RtreeCell *aCell = 0;
+
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ if( ii==(pRtree->iDepth-1) ){
+ int jj;
+ aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell);
+ if( !aCell ){
+ rc = SQLITE_NOMEM;
+ nodeRelease(pRtree, pNode);
+ pNode = 0;
+ continue;
+ }
+ for(jj=0; jj<nCell; jj++){
+ nodeGetCell(pRtree, pNode, jj, &aCell[jj]);
+ }
+ }
+#endif
+
+ /* Select the child node which will be enlarged the least if pCell
+ ** is inserted into it. Resolve ties by choosing the entry with
+ ** the smallest area.
+ */
+ for(iCell=0; iCell<nCell; iCell++){
+ float growth;
+ float area;
+ float overlap = 0.0;
+ nodeGetCell(pRtree, pNode, iCell, &cell);
+ growth = cellGrowth(pRtree, &cell, pCell);
+ area = cellArea(pRtree, &cell);
+#if VARIANT_RSTARTREE_CHOOSESUBTREE
+ if( ii==(pRtree->iDepth-1) ){
+ overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
+ }
+#endif
+ if( (iCell==0)
+ || (overlap<fMinOverlap)
+ || (overlap==fMinOverlap && growth<fMinGrowth)
+ || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
+ ){
+ fMinOverlap = overlap;
+ fMinGrowth = growth;
+ fMinArea = area;
+ iBest = cell.iRowid;
+ }
+ }
+
+ sqlite3_free(aCell);
+ rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
+ nodeRelease(pRtree, pNode);
+ pNode = pChild;
+ }
+
+ *ppLeaf = pNode;
+ return rc;
+}
+
+/*
+** A cell with the same content as pCell has just been inserted into
+** the node pNode. This function updates the bounding box cells in
+** all ancestor elements.
+*/
+static void AdjustTree(
+ Rtree *pRtree, /* Rtree table */
+ RtreeNode *pNode, /* Adjust ancestry of this node. */
+ RtreeCell *pCell /* This cell was just inserted */
+){
+ RtreeNode *p = pNode;
+ while( p->pParent ){
+ RtreeCell cell;
+ RtreeNode *pParent = p->pParent;
+ int iCell = nodeParentIndex(pRtree, p);
+
+ nodeGetCell(pRtree, pParent, iCell, &cell);
+ if( !cellContains(pRtree, &cell, pCell) ){
+ cellUnion(pRtree, &cell, pCell);
+ nodeOverwriteCell(pRtree, pParent, &cell, iCell);
+ }
+
+ p = pParent;
+ }
+}
+
+/*
+** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
+*/
+static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
+ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
+ sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
+ sqlite3_step(pRtree->pWriteRowid);
+ return sqlite3_reset(pRtree->pWriteRowid);
+}
+
+/*
+** Write mapping (iNode->iPar) to the <rtree>_parent table.
+*/
+static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
+ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
+ sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
+ sqlite3_step(pRtree->pWriteParent);
+ return sqlite3_reset(pRtree->pWriteParent);
+}
+
+static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
+
+#if VARIANT_GUTTMAN_LINEAR_SPLIT
+/*
+** Implementation of the linear variant of the PickNext() function from
+** Guttman[84].
+*/
+static RtreeCell *LinearPickNext(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeCell *pLeftBox,
+ RtreeCell *pRightBox,
+ int *aiUsed
+){
+ int ii;
+ for(ii=0; aiUsed[ii]; ii++);
+ aiUsed[ii] = 1;
+ return &aCell[ii];
+}
+
+/*
+** Implementation of the linear variant of the PickSeeds() function from
+** Guttman[84].
+*/
+static void LinearPickSeeds(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ int *piLeftSeed,
+ int *piRightSeed
+){
+ int i;
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ float maxNormalInnerWidth = 0.0;
+
+ /* Pick two "seed" cells from the array of cells. The algorithm used
+ ** here is the LinearPickSeeds algorithm from Gutman[1984]. The
+ ** indices of the two seed cells in the array are stored in local
+ ** variables iLeftSeek and iRightSeed.
+ */
+ for(i=0; i<pRtree->nDim; i++){
+ float x1 = aCell[0].aCoord[i*2];
+ float x2 = aCell[0].aCoord[i*2+1];
+ float x3 = x1;
+ float x4 = x2;
+ int jj;
+
+ int iCellLeft = 0;
+ int iCellRight = 0;
+
+ for(jj=1; jj<nCell; jj++){
+ float left = aCell[jj].aCoord[i*2];
+ float right = aCell[jj].aCoord[i*2+1];
+
+ if( left<x1 ) x1 = left;
+ if( right>x4 ) x4 = right;
+ if( left>x3 ){
+ x3 = left;
+ iCellRight = jj;
+ }
+ if( right<x2 ){
+ x2 = right;
+ iCellLeft = jj;
+ }
+ }
+
+ if( x4!=x1 ){
+ float normalwidth = (x3 - x2) / (x4 - x1);
+ if( normalwidth>maxNormalInnerWidth ){
+ iLeftSeed = iCellLeft;
+ iRightSeed = iCellRight;
+ }
+ }
+ }
+
+ *piLeftSeed = iLeftSeed;
+ *piRightSeed = iRightSeed;
+}
+#endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */
+
+#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
+/*
+** Implementation of the quadratic variant of the PickNext() function from
+** Guttman[84].
+*/
+static RtreeCell *QuadraticPickNext(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeCell *pLeftBox,
+ RtreeCell *pRightBox,
+ int *aiUsed
+){
+ #define FABS(a) ((a)<0.0?-1.0*(a):(a))
+
+ int iSelect = -1;
+ float fDiff;
+ int ii;
+ for(ii=0; ii<nCell; ii++){
+ if( aiUsed[ii]==0 ){
+ float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
+ float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
+ float diff = FABS(right-left);
+ if( iSelect<0 || diff>fDiff ){
+ fDiff = diff;
+ iSelect = ii;
+ }
+ }
+ }
+ aiUsed[iSelect] = 1;
+ return &aCell[iSelect];
+}
+
+/*
+** Implementation of the quadratic variant of the PickSeeds() function from
+** Guttman[84].
+*/
+static void QuadraticPickSeeds(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ int *piLeftSeed,
+ int *piRightSeed
+){
+ int ii;
+ int jj;
+
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ float fWaste = 0.0;
+
+ for(ii=0; ii<nCell; ii++){
+ for(jj=ii+1; jj<nCell; jj++){
+ float right = cellArea(pRtree, &aCell[jj]);
+ float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
+ float waste = growth - right;
+
+ if( waste>fWaste ){
+ iLeftSeed = ii;
+ iRightSeed = jj;
+ fWaste = waste;
+ }
+ }
+ }
+
+ *piLeftSeed = iLeftSeed;
+ *piRightSeed = iRightSeed;
+}
+#endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */
+
+/*
+** Arguments aIdx, aDistance and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to the indexed values in aDistance. For
+** example, assuming the inputs:
+**
+** aIdx = { 0, 1, 2, 3 }
+** aDistance = { 5.0, 2.0, 7.0, 6.0 }
+**
+** this function sets the aIdx array to contain:
+**
+** aIdx = { 0, 1, 2, 3 }
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDistance(
+ int *aIdx,
+ int nIdx,
+ float *aDistance,
+ int *aSpare
+){
+ if( nIdx>1 ){
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDistance(aLeft, nLeft, aDistance, aSpare);
+ SortByDistance(aRight, nRight, aDistance, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+
+ while( iLeft<nLeft || iRight<nRight ){
+ if( iLeft==nLeft ){
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }else if( iRight==nRight ){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ float fLeft = aDistance[aLeft[iLeft]];
+ float fRight = aDistance[aRight[iRight]];
+ if( fLeft<fRight ){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ float left = aDistance[aIdx[jj-1]];
+ float right = aDistance[aIdx[jj]];
+ assert( left<=right );
+ }
+ }
+#endif
+ }
+}
+
+/*
+** Arguments aIdx, aCell and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to dimension iDim of the cells in aCell. The
+** minimum value of dimension iDim is considered first, the
+** maximum used to break ties.
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDimension(
+ Rtree *pRtree,
+ int *aIdx,
+ int nIdx,
+ int iDim,
+ RtreeCell *aCell,
+ int *aSpare
+){
+ if( nIdx>1 ){
+
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
+ SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+ while( iLeft<nLeft || iRight<nRight ){
+ double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
+ double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
+ double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
+ double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
+ if( (iLeft!=nLeft) && ((iRight==nRight)
+ || (xleft1<xright1)
+ || (xleft1==xright1 && xleft2<xright2)
+ )){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
+ float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
+ float xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
+ float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
+ assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
+ }
+ }
+#endif
+ }
+}
+
+#if VARIANT_RSTARTREE_SPLIT
+/*
+** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
+*/
+static int splitNodeStartree(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeNode *pLeft,
+ RtreeNode *pRight,
+ RtreeCell *pBboxLeft,
+ RtreeCell *pBboxRight
+){
+ int **aaSorted;
+ int *aSpare;
+ int ii;
+
+ int iBestDim;
+ int iBestSplit;
+ float fBestMargin;
+
+ int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
+
+ aaSorted = (int **)sqlite3_malloc(nByte);
+ if( !aaSorted ){
+ return SQLITE_NOMEM;
+ }
+
+ aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
+ memset(aaSorted, 0, nByte);
+ for(ii=0; ii<pRtree->nDim; ii++){
+ int jj;
+ aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
+ for(jj=0; jj<nCell; jj++){
+ aaSorted[ii][jj] = jj;
+ }
+ SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
+ }
+
+ for(ii=0; ii<pRtree->nDim; ii++){
+ float margin = 0.0;
+ float fBestOverlap;
+ float fBestArea;
+ int iBestLeft;
+ int nLeft;
+
+ for(
+ nLeft=RTREE_MINCELLS(pRtree);
+ nLeft<=(nCell-RTREE_MINCELLS(pRtree));
+ nLeft++
+ ){
+ RtreeCell left;
+ RtreeCell right;
+ int kk;
+ float overlap;
+ float area;
+
+ memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
+ memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
+ for(kk=1; kk<(nCell-1); kk++){
+ if( kk<nLeft ){
+ cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
+ }else{
+ cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
+ }
+ }
+ margin += cellMargin(pRtree, &left);
+ margin += cellMargin(pRtree, &right);
+ overlap = cellOverlap(pRtree, &left, &right, 1, -1);
+ area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
+ if( (nLeft==RTREE_MINCELLS(pRtree))
+ || (overlap<fBestOverlap)
+ || (overlap==fBestOverlap && area<fBestArea)
+ ){
+ iBestLeft = nLeft;
+ fBestOverlap = overlap;
+ fBestArea = area;
+ }
+ }
+
+ if( ii==0 || margin<fBestMargin ){
+ iBestDim = ii;
+ fBestMargin = margin;
+ iBestSplit = iBestLeft;
+ }
+ }
+
+ memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
+ memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
+ for(ii=0; ii<nCell; ii++){
+ RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
+ RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
+ RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
+ nodeInsertCell(pRtree, pTarget, pCell);
+ cellUnion(pRtree, pBbox, pCell);
+ }
+
+ sqlite3_free(aaSorted);
+ return SQLITE_OK;
+}
+#endif
+
+#if VARIANT_GUTTMAN_SPLIT
+/*
+** Implementation of the regular R-tree SplitNode from Guttman[1984].
+*/
+static int splitNodeGuttman(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeNode *pLeft,
+ RtreeNode *pRight,
+ RtreeCell *pBboxLeft,
+ RtreeCell *pBboxRight
+){
+ int iLeftSeed = 0;
+ int iRightSeed = 1;
+ int *aiUsed;
+ int i;
+
+ aiUsed = sqlite3_malloc(sizeof(int)*nCell);
+ memset(aiUsed, 0, sizeof(int)*nCell);
+
+ PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed);
+
+ memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell));
+ memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell));
+ nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]);
+ nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
+ aiUsed[iLeftSeed] = 1;
+ aiUsed[iRightSeed] = 1;
+
+ for(i=nCell-2; i>0; i--){
+ RtreeCell *pNext;
+ pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
+ float diff =
+ cellGrowth(pRtree, pBboxLeft, pNext) -
+ cellGrowth(pRtree, pBboxRight, pNext)
+ ;
+ if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
+ || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
+ ){
+ nodeInsertCell(pRtree, pRight, pNext);
+ cellUnion(pRtree, pBboxRight, pNext);
+ }else{
+ nodeInsertCell(pRtree, pLeft, pNext);
+ cellUnion(pRtree, pBboxLeft, pNext);
+ }
+ }
+
+ sqlite3_free(aiUsed);
+ return SQLITE_OK;
+}
+#endif
+
+static int updateMapping(
+ Rtree *pRtree,
+ i64 iRowid,
+ RtreeNode *pNode,
+ int iHeight
+){
+ int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
+ xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ return xSetMapping(pRtree, iRowid, pNode->iNode);
+}
+
+static int SplitNode(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int i;
+ int newCellIsRight = 0;
+
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+ RtreeCell *aCell;
+ int *aiUsed;
+
+ RtreeNode *pLeft = 0;
+ RtreeNode *pRight = 0;
+
+ RtreeCell leftbbox;
+ RtreeCell rightbbox;
+
+ /* Allocate an array and populate it with a copy of pCell and
+ ** all cells from node pLeft. Then zero the original node.
+ */
+ aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
+ if( !aCell ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+ aiUsed = (int *)&aCell[nCell+1];
+ memset(aiUsed, 0, sizeof(int)*(nCell+1));
+ for(i=0; i<nCell; i++){
+ nodeGetCell(pRtree, pNode, i, &aCell[i]);
+ }
+ nodeZero(pRtree, pNode);
+ memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
+ nCell++;
+
+ if( pNode->iNode==1 ){
+ pRight = nodeNew(pRtree, pNode, 1);
+ pLeft = nodeNew(pRtree, pNode, 1);
+ pRtree->iDepth++;
+ pNode->isDirty = 1;
+ writeInt16(pNode->zData, pRtree->iDepth);
+ }else{
+ pLeft = pNode;
+ pRight = nodeNew(pRtree, pLeft->pParent, 1);
+ nodeReference(pLeft);
+ }
+
+ if( !pLeft || !pRight ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+
+ memset(pLeft->zData, 0, pRtree->iNodeSize);
+ memset(pRight->zData, 0, pRtree->iNodeSize);
+
+ rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+
+ /* Ensure both child nodes have node numbers assigned to them. */
+ if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)))
+ || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
+ ){
+ goto splitnode_out;
+ }
+
+ rightbbox.iRowid = pRight->iNode;
+ leftbbox.iRowid = pLeft->iNode;
+
+ if( pNode->iNode==1 ){
+ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }else{
+ RtreeNode *pParent = pLeft->pParent;
+ int iCell = nodeParentIndex(pRtree, pLeft);
+ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
+ AdjustTree(pRtree, pParent, &leftbbox);
+ }
+ if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
+ goto splitnode_out;
+ }
+
+ for(i=0; i<NCELL(pRight); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pRight, i);
+ rc = updateMapping(pRtree, iRowid, pRight, iHeight);
+ if( iRowid==pCell->iRowid ){
+ newCellIsRight = 1;
+ }
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ if( pNode->iNode==1 ){
+ for(i=0; i<NCELL(pLeft); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
+ rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ }else if( newCellIsRight==0 ){
+ rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRight);
+ pRight = 0;
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pLeft);
+ pLeft = 0;
+ }
+
+splitnode_out:
+ nodeRelease(pRtree, pRight);
+ nodeRelease(pRtree, pLeft);
+ sqlite3_free(aCell);
+ return rc;
+}
+
+static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
+ int rc = SQLITE_OK;
+ if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){
+ sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode);
+ if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){
+ i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
+ rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ sqlite3_reset(pRtree->pReadParent);
+ if( rc==SQLITE_OK ){
+ rc = fixLeafParent(pRtree, pLeaf->pParent);
+ }
+ }
+ return rc;
+}
+
+static int deleteCell(Rtree *, RtreeNode *, int, int);
+
+static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
+ int rc;
+ RtreeNode *pParent;
+ int iCell;
+
+ assert( pNode->nRef==1 );
+
+ /* Remove the entry in the parent cell. */
+ iCell = nodeParentIndex(pRtree, pNode);
+ pParent = pNode->pParent;
+ pNode->pParent = 0;
+ if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1))
+ || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent))
+ ){
+ return rc;
+ }
+
+ /* Remove the xxx_node entry. */
+ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteNode);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
+ return rc;
+ }
+
+ /* Remove the xxx_parent entry. */
+ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteParent);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
+ return rc;
+ }
+
+ /* Remove the node from the in-memory hash table and link it into
+ ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
+ */
+ nodeHashDelete(pRtree, pNode);
+ pNode->iNode = iHeight;
+ pNode->pNext = pRtree->pDeleted;
+ pNode->nRef++;
+ pRtree->pDeleted = pNode;
+
+ return SQLITE_OK;
+}
+
+static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode *pParent = pNode->pParent;
+ if( pParent ){
+ int ii;
+ int nCell = NCELL(pNode);
+ RtreeCell box; /* Bounding box for pNode */
+ nodeGetCell(pRtree, pNode, 0, &box);
+ for(ii=1; ii<nCell; ii++){
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+ cellUnion(pRtree, &box, &cell);
+ }
+ box.iRowid = pNode->iNode;
+ ii = nodeParentIndex(pRtree, pNode);
+ nodeOverwriteCell(pRtree, pParent, &box, ii);
+ fixBoundingBox(pRtree, pParent);
+ }
+}
+
+/*
+** Delete the cell at index iCell of node pNode. After removing the
+** cell, adjust the r-tree data structure if required.
+*/
+static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
+ int rc;
+
+ if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
+ return rc;
+ }
+
+ /* Remove the cell from the node. This call just moves bytes around
+ ** the in-memory node image, so it cannot fail.
+ */
+ nodeDeleteCell(pRtree, pNode, iCell);
+
+ /* If the node is not the tree root and now has less than the minimum
+ ** number of cells, remove it from the tree. Otherwise, update the
+ ** cell in the parent node so that it tightly contains the updated
+ ** node.
+ */
+ if( pNode->iNode!=1 ){
+ RtreeNode *pParent = pNode->pParent;
+ if( (pParent->iNode!=1 || NCELL(pParent)!=1)
+ && (NCELL(pNode)<RTREE_MINCELLS(pRtree))
+ ){
+ rc = removeNode(pRtree, pNode, iHeight);
+ }else{
+ fixBoundingBox(pRtree, pNode);
+ }
+ }
+
+ return rc;
+}
+
+static int Reinsert(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int *aOrder;
+ int *aSpare;
+ RtreeCell *aCell;
+ float *aDistance;
+ int nCell;
+ float aCenterCoord[RTREE_MAX_DIMENSIONS];
+ int iDim;
+ int ii;
+ int rc = SQLITE_OK;
+
+ memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS);
+
+ nCell = NCELL(pNode)+1;
+
+ /* Allocate the buffers used by this operation. The allocation is
+ ** relinquished before this function returns.
+ */
+ aCell = (RtreeCell *)sqlite3_malloc(nCell * (
+ sizeof(RtreeCell) + /* aCell array */
+ sizeof(int) + /* aOrder array */
+ sizeof(int) + /* aSpare array */
+ sizeof(float) /* aDistance array */
+ ));
+ if( !aCell ){
+ return SQLITE_NOMEM;
+ }
+ aOrder = (int *)&aCell[nCell];
+ aSpare = (int *)&aOrder[nCell];
+ aDistance = (float *)&aSpare[nCell];
+
+ for(ii=0; ii<nCell; ii++){
+ if( ii==(nCell-1) ){
+ memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
+ }else{
+ nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
+ }
+ aOrder[ii] = ii;
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
+ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
+ }
+ }
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0);
+ }
+
+ for(ii=0; ii<nCell; ii++){
+ aDistance[ii] = 0.0;
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) -
+ DCOORD(aCell[ii].aCoord[iDim*2]);
+ aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
+ }
+ }
+
+ SortByDistance(aOrder, nCell, aDistance, aSpare);
+ nodeZero(pRtree, pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
+ RtreeCell *p = &aCell[aOrder[ii]];
+ nodeInsertCell(pRtree, pNode, p);
+ if( p->iRowid==pCell->iRowid ){
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ fixBoundingBox(pRtree, pNode);
+ }
+ for(; rc==SQLITE_OK && ii<nCell; ii++){
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ RtreeNode *pInsert;
+ RtreeCell *p = &aCell[aOrder[ii]];
+ rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+ sqlite3_free(aCell);
+ return rc;
+}
+
+/*
+** Insert cell pCell into node pNode. Node pNode is the head of a
+** subtree iHeight high (leaf nodes have iHeight==0).
+*/
+static int rtreeInsertCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int rc = SQLITE_OK;
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ if( nodeInsertCell(pRtree, pNode, pCell) ){
+#if VARIANT_RSTARTREE_REINSERT
+ if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
+ rc = SplitNode(pRtree, pNode, pCell, iHeight);
+ }else{
+ pRtree->iReinsertHeight = iHeight;
+ rc = Reinsert(pRtree, pNode, pCell, iHeight);
+ }
+#else
+ rc = SplitNode(pRtree, pNode, pCell, iHeight);
+#endif
+ }else{
+ AdjustTree(pRtree, pNode, pCell);
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }
+ }
+ return rc;
+}
+
+static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
+ int ii;
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
+ RtreeNode *pInsert;
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Select a currently unused rowid for a new r-tree record.
+*/
+static int newRowid(Rtree *pRtree, i64 *piRowid){
+ int rc;
+ sqlite3_bind_null(pRtree->pWriteRowid, 1);
+ sqlite3_bind_null(pRtree->pWriteRowid, 2);
+ sqlite3_step(pRtree->pWriteRowid);
+ rc = sqlite3_reset(pRtree->pWriteRowid);
+ *piRowid = sqlite3_last_insert_rowid(pRtree->db);
+ return rc;
+}
+
+#ifndef NDEBUG
+static int hashIsEmpty(Rtree *pRtree){
+ int ii;
+ for(ii=0; ii<HASHSIZE; ii++){
+ assert( !pRtree->aHash[ii] );
+ }
+ return 1;
+}
+#endif
+
+/*
+** The xUpdate method for rtree module virtual tables.
+*/
+static int rtreeUpdate(
+ sqlite3_vtab *pVtab,
+ int nData,
+ sqlite3_value **azData,
+ sqlite_int64 *pRowid
+){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_OK;
+
+ rtreeReference(pRtree);
+
+ assert(nData>=1);
+ assert(hashIsEmpty(pRtree));
+
+ /* If azData[0] is not an SQL NULL value, it is the rowid of a
+ ** record to delete from the r-tree table. The following block does
+ ** just that.
+ */
+ if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
+ i64 iDelete; /* The rowid to delete */
+ RtreeNode *pLeaf; /* Leaf node containing record iDelete */
+ int iCell; /* Index of iDelete cell in pLeaf */
+ RtreeNode *pRoot;
+
+ /* Obtain a reference to the root node to initialise Rtree.iDepth */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+
+ /* Obtain a reference to the leaf node that contains the entry
+ ** about to be deleted.
+ */
+ if( rc==SQLITE_OK ){
+ iDelete = sqlite3_value_int64(azData[0]);
+ rc = findLeafNode(pRtree, iDelete, &pLeaf);
+ }
+
+ /* Delete the cell in question from the leaf node. */
+ if( rc==SQLITE_OK ){
+ int rc2;
+ iCell = nodeRowidIndex(pRtree, pLeaf, iDelete);
+ rc = deleteCell(pRtree, pLeaf, iCell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+
+ /* Delete the corresponding entry in the <rtree>_rowid table. */
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
+ sqlite3_step(pRtree->pDeleteRowid);
+ rc = sqlite3_reset(pRtree->pDeleteRowid);
+ }
+
+ /* Check if the root node now has exactly one child. If so, remove
+ ** it, schedule the contents of the child for reinsertion and
+ ** reduce the tree height by one.
+ **
+ ** This is equivalent to copying the contents of the child into
+ ** the root node (the operation that Gutman's paper says to perform
+ ** in this scenario).
+ */
+ if( rc==SQLITE_OK && pRtree->iDepth>0 ){
+ if( rc==SQLITE_OK && NCELL(pRoot)==1 ){
+ RtreeNode *pChild;
+ i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
+ rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
+ if( rc==SQLITE_OK ){
+ rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
+ }
+ if( rc==SQLITE_OK ){
+ pRtree->iDepth--;
+ writeInt16(pRoot->zData, pRtree->iDepth);
+ pRoot->isDirty = 1;
+ }
+ }
+ }
+
+ /* Re-insert the contents of any underfull nodes removed from the tree. */
+ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
+ if( rc==SQLITE_OK ){
+ rc = reinsertNodeContent(pRtree, pLeaf);
+ }
+ pRtree->pDeleted = pLeaf->pNext;
+ sqlite3_free(pLeaf);
+ }
+
+ /* Release the reference to the root node. */
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRoot);
+ }else{
+ nodeRelease(pRtree, pRoot);
+ }
+ }
+
+ /* If the azData[] array contains more than one element, elements
+ ** (azData[2]..azData[argc-1]) contain a new record to insert into
+ ** the r-tree structure.
+ */
+ if( rc==SQLITE_OK && nData>1 ){
+ /* Insert a new record into the r-tree */
+ RtreeCell cell;
+ int ii;
+ RtreeNode *pLeaf;
+
+ /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
+ assert( nData==(pRtree->nDim*2 + 3) );
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
+ cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
+ if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ }
+ }else{
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){
+ cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
+ cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
+ if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ }
+ }
+
+ /* Figure out the rowid of the new row. */
+ if( sqlite3_value_type(azData[2])==SQLITE_NULL ){
+ rc = newRowid(pRtree, &cell.iRowid);
+ }else{
+ cell.iRowid = sqlite3_value_int64(azData[2]);
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
+ if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){
+ sqlite3_reset(pRtree->pReadRowid);
+ rc = SQLITE_CONSTRAINT;
+ goto constraint;
+ }
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ pRtree->iReinsertHeight = -1;
+ rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+constraint:
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** The xRename method for rtree module virtual tables.
+*/
+static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_NOMEM;
+ char *zSql = sqlite3_mprintf(
+ "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
+ "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
+ "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ );
+ if( zSql ){
+ rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+static sqlite3_module rtreeModule = {
+ 0, /* iVersion */
+ rtreeCreate, /* xCreate - create a table */
+ rtreeConnect, /* xConnect - connect to an existing table */
+ rtreeBestIndex, /* xBestIndex - Determine search strategy */
+ rtreeDisconnect, /* xDisconnect - Disconnect from a table */
+ rtreeDestroy, /* xDestroy - Drop a table */
+ rtreeOpen, /* xOpen - open a cursor */
+ rtreeClose, /* xClose - close a cursor */
+ rtreeFilter, /* xFilter - configure scan constraints */
+ rtreeNext, /* xNext - advance a cursor */
+ rtreeEof, /* xEof */
+ rtreeColumn, /* xColumn - read data */
+ rtreeRowid, /* xRowid - read data */
+ rtreeUpdate, /* xUpdate - write data */
+ 0, /* xBegin - begin transaction */
+ 0, /* xSync - sync transaction */
+ 0, /* xCommit - commit transaction */
+ 0, /* xRollback - rollback transaction */
+ 0, /* xFindFunction - function overloading */
+ rtreeRename /* xRename - rename the table */
+};
+
+static int rtreeSqlInit(
+ Rtree *pRtree,
+ sqlite3 *db,
+ const char *zDb,
+ const char *zPrefix,
+ int isCreate
+){
+ int rc = SQLITE_OK;
+
+ #define N_STATEMENT 9
+ static const char *azSql[N_STATEMENT] = {
+ /* Read and write the xxx_node table */
+ "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
+
+ /* Read and write the xxx_rowid table */
+ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
+
+ /* Read and write the xxx_parent table */
+ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
+ "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
+ "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
+ };
+ sqlite3_stmt **appStmt[N_STATEMENT];
+ int i;
+
+ pRtree->db = db;
+
+ if( isCreate ){
+ char *zCreate = sqlite3_mprintf(
+"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
+"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
+"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);"
+"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
+ zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
+ );
+ if( !zCreate ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3_exec(db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+
+ appStmt[0] = &pRtree->pReadNode;
+ appStmt[1] = &pRtree->pWriteNode;
+ appStmt[2] = &pRtree->pDeleteNode;
+ appStmt[3] = &pRtree->pReadRowid;
+ appStmt[4] = &pRtree->pWriteRowid;
+ appStmt[5] = &pRtree->pDeleteRowid;
+ appStmt[6] = &pRtree->pReadParent;
+ appStmt[7] = &pRtree->pWriteParent;
+ appStmt[8] = &pRtree->pDeleteParent;
+
+ for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
+ char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
+ if( zSql ){
+ rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3_free(zSql);
+ }
+
+ return rc;
+}
+
+/*
+** This routine queries database handle db for the page-size used by
+** database zDb. If successful, the page-size in bytes is written to
+** *piPageSize and SQLITE_OK returned. Otherwise, and an SQLite error
+** code is returned.
+*/
+static int getPageSize(sqlite3 *db, const char *zDb, int *piPageSize){
+ int rc = SQLITE_NOMEM;
+ char *zSql;
+ sqlite3_stmt *pStmt = 0;
+
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM;
+ }
+
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *piPageSize = sqlite3_column_int(pStmt, 0);
+ }
+ return sqlite3_finalize(pStmt);
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the r-tree virtual table.
+**
+** argv[0] -> module name
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> column names...
+*/
+static int rtreeInit(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* One of the RTREE_COORD_* constants */
+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */
+ char **pzErr, /* OUT: Error message, if any */
+ int isCreate /* True for xCreate, false for xConnect */
+){
+ int rc = SQLITE_OK;
+ int iPageSize = 0;
+ Rtree *pRtree;
+ int nDb; /* Length of string argv[1] */
+ int nName; /* Length of string argv[2] */
+ int eCoordType = (int)pAux;
+
+ const char *aErrMsg[] = {
+ 0, /* 0 */
+ "Wrong number of columns for an rtree table", /* 1 */
+ "Too few columns for an rtree table", /* 2 */
+ "Too many columns for an rtree table" /* 3 */
+ };
+
+ int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
+ if( aErrMsg[iErr] ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
+ return SQLITE_ERROR;
+ }
+
+ rc = getPageSize(db, argv[1], &iPageSize);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Allocate the sqlite3_vtab structure */
+ nDb = strlen(argv[1]);
+ nName = strlen(argv[2]);
+ pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
+ if( !pRtree ){
+ return SQLITE_NOMEM;
+ }
+ memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
+ pRtree->nBusy = 1;
+ pRtree->base.pModule = &rtreeModule;
+ pRtree->zDb = (char *)&pRtree[1];
+ pRtree->zName = &pRtree->zDb[nDb+1];
+ pRtree->nDim = (argc-4)/2;
+ pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
+ pRtree->eCoordType = eCoordType;
+ memcpy(pRtree->zDb, argv[1], nDb);
+ memcpy(pRtree->zName, argv[2], nName);
+
+ /* Figure out the node size to use. By default, use 64 bytes less than
+ ** the database page-size. This ensures that each node is stored on
+ ** a single database page.
+ **
+ ** If the databasd page-size is so large that more than RTREE_MAXCELLS
+ ** entries would fit in a single node, use a smaller node-size.
+ */
+ pRtree->iNodeSize = iPageSize-64;
+ if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
+ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
+ }
+
+ /* Create/Connect to the underlying relational database schema. If
+ ** that is successful, call sqlite3_declare_vtab() to configure
+ ** the r-tree table schema.
+ */
+ if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }else{
+ char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
+ char *zTmp;
+ int ii;
+ for(ii=4; zSql && ii<argc; ii++){
+ zTmp = zSql;
+ zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
+ sqlite3_free(zTmp);
+ }
+ if( zSql ){
+ zTmp = zSql;
+ zSql = sqlite3_mprintf("%s);", zTmp);
+ sqlite3_free(zTmp);
+ }
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+ sqlite3_free(zSql);
+ }
+
+ if( rc==SQLITE_OK ){
+ *ppVtab = (sqlite3_vtab *)pRtree;
+ }else{
+ rtreeRelease(pRtree);
+ }
+ return rc;
+}
+
+
+/*
+** Implementation of a scalar function that decodes r-tree nodes to
+** human readable strings. This can be used for debugging and analysis.
+**
+** The scalar function takes two arguments, a blob of data containing
+** an r-tree node, and the number of dimensions the r-tree indexes.
+** For a two-dimensional r-tree structure called "rt", to deserialize
+** all nodes, a statement like:
+**
+** SELECT rtreenode(2, data) FROM rt_node;
+**
+** The human readable string takes the form of a Tcl list with one
+** entry for each cell in the r-tree node. Each entry is itself a
+** list, containing the 8-byte rowid/pageno followed by the
+** <num-dimension>*2 coordinates.
+*/
+static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ char *zText = 0;
+ RtreeNode node;
+ Rtree tree;
+ int ii;
+
+ memset(&node, 0, sizeof(RtreeNode));
+ memset(&tree, 0, sizeof(Rtree));
+ tree.nDim = sqlite3_value_int(apArg[0]);
+ tree.nBytesPerCell = 8 + 8 * tree.nDim;
+ node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
+
+ for(ii=0; ii<NCELL(&node); ii++){
+ char zCell[512];
+ int nCell = 0;
+ RtreeCell cell;
+ int jj;
+
+ nodeGetCell(&tree, &node, ii, &cell);
+ sqlite3_snprintf(512-nCell,&zCell[nCell],"%d", cell.iRowid);
+ nCell = strlen(zCell);
+ for(jj=0; jj<tree.nDim*2; jj++){
+ sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);
+ nCell = strlen(zCell);
+ }
+
+ if( zText ){
+ char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
+ sqlite3_free(zText);
+ zText = zTextNew;
+ }else{
+ zText = sqlite3_mprintf("{%s}", zCell);
+ }
+ }
+
+ sqlite3_result_text(ctx, zText, -1, sqlite3_free);
+}
+
+static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
+ || sqlite3_value_bytes(apArg[0])<2
+ ){
+ sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
+ }else{
+ u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
+ sqlite3_result_int(ctx, readInt16(zBlob));
+ }
+}
+
+/*
+** Register the r-tree module with database handle db. This creates the
+** virtual table module "rtree" and the debugging/analysis scalar
+** function "rtreenode".
+*/
+SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db){
+ int rc = SQLITE_OK;
+
+ if( rc==SQLITE_OK ){
+ int utf8 = SQLITE_UTF8;
+ rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ int utf8 = SQLITE_UTF8;
+ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ void *c = (void *)RTREE_COORD_REAL32;
+ rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
+ }
+ if( rc==SQLITE_OK ){
+ void *c = (void *)RTREE_COORD_INT32;
+ rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
+ }
+
+ return rc;
+}
+
+#if !SQLITE_CORE
+SQLITE_API int sqlite3_extension_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3RtreeInit(db);
+}
+#endif
+
+#endif
+
+/************** End of rtree.c ***********************************************/
+/************** Begin file icu.c *********************************************/
+/*
+** 2007 May 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $
+**
+** This file implements an integration between the ICU library
+** ("International Components for Unicode", an open-source library
+** for handling unicode data) and SQLite. The integration uses
+** ICU to provide the following to SQLite:
+**
+** * An implementation of the SQL regexp() function (and hence REGEXP
+** operator) using the ICU uregex_XX() APIs.
+**
+** * Implementations of the SQL scalar upper() and lower() functions
+** for case mapping.
+**
+** * Integration of ICU and SQLite collation seqences.
+**
+** * An implementation of the LIKE operator that uses ICU to
+** provide case-independent matching.
+*/
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
+
+/* Include ICU headers */
+#include <unicode/utypes.h>
+#include <unicode/uregex.h>
+#include <unicode/ustring.h>
+#include <unicode/ucol.h>
+
+
+#ifndef SQLITE_CORE
+ SQLITE_EXTENSION_INIT1
+#else
+#endif
+
+/*
+** Maximum length (in bytes) of the pattern in a LIKE or GLOB
+** operator.
+*/
+#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
+# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
+#endif
+
+/*
+** Version of sqlite3_free() that is always a function, never a macro.
+*/
+static void xFree(void *p){
+ sqlite3_free(p);
+}
+
+/*
+** Compare two UTF-8 strings for equality where the first string is
+** a "LIKE" expression. Return true (1) if they are the same and
+** false (0) if they are different.
+*/
+static int icuLikeCompare(
+ const uint8_t *zPattern, /* LIKE pattern */
+ const uint8_t *zString, /* The UTF-8 string to compare against */
+ const UChar32 uEsc /* The escape character */
+){
+ static const int MATCH_ONE = (UChar32)'_';
+ static const int MATCH_ALL = (UChar32)'%';
+
+ int iPattern = 0; /* Current byte index in zPattern */
+ int iString = 0; /* Current byte index in zString */
+
+ int prevEscape = 0; /* True if the previous character was uEsc */
+
+ while( zPattern[iPattern]!=0 ){
+
+ /* Read (and consume) the next character from the input pattern. */
+ UChar32 uPattern;
+ U8_NEXT_UNSAFE(zPattern, iPattern, uPattern);
+ assert(uPattern!=0);
+
+ /* There are now 4 possibilities:
+ **
+ ** 1. uPattern is an unescaped match-all character "%",
+ ** 2. uPattern is an unescaped match-one character "_",
+ ** 3. uPattern is an unescaped escape character, or
+ ** 4. uPattern is to be handled as an ordinary character
+ */
+ if( !prevEscape && uPattern==MATCH_ALL ){
+ /* Case 1. */
+ uint8_t c;
+
+ /* Skip any MATCH_ALL or MATCH_ONE characters that follow a
+ ** MATCH_ALL. For each MATCH_ONE, skip one character in the
+ ** test string.
+ */
+ while( (c=zPattern[iPattern]) == MATCH_ALL || c == MATCH_ONE ){
+ if( c==MATCH_ONE ){
+ if( zString[iString]==0 ) return 0;
+ U8_FWD_1_UNSAFE(zString, iString);
+ }
+ iPattern++;
+ }
+
+ if( zPattern[iPattern]==0 ) return 1;
+
+ while( zString[iString] ){
+ if( icuLikeCompare(&zPattern[iPattern], &zString[iString], uEsc) ){
+ return 1;
+ }
+ U8_FWD_1_UNSAFE(zString, iString);
+ }
+ return 0;
+
+ }else if( !prevEscape && uPattern==MATCH_ONE ){
+ /* Case 2. */
+ if( zString[iString]==0 ) return 0;
+ U8_FWD_1_UNSAFE(zString, iString);
+
+ }else if( !prevEscape && uPattern==uEsc){
+ /* Case 3. */
+ prevEscape = 1;
+
+ }else{
+ /* Case 4. */
+ UChar32 uString;
+ U8_NEXT_UNSAFE(zString, iString, uString);
+ uString = u_foldCase(uString, U_FOLD_CASE_DEFAULT);
+ uPattern = u_foldCase(uPattern, U_FOLD_CASE_DEFAULT);
+ if( uString!=uPattern ){
+ return 0;
+ }
+ prevEscape = 0;
+ }
+ }
+
+ return zString[iString]==0;
+}
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the build-in LIKE operator. The first argument to the function is the
+** pattern and the second argument is the string. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(B, A). If there is an escape character E,
+**
+** A LIKE B ESCAPE E
+**
+** is mapped to like(B, A, E).
+*/
+static void icuLikeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zA = sqlite3_value_text(argv[0]);
+ const unsigned char *zB = sqlite3_value_text(argv[1]);
+ UChar32 uEsc = 0;
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+
+
+ if( argc==3 ){
+ /* The escape character string must consist of a single UTF-8 character.
+ ** Otherwise, return an error.
+ */
+ int nE= sqlite3_value_bytes(argv[2]);
+ const unsigned char *zE = sqlite3_value_text(argv[2]);
+ int i = 0;
+ if( zE==0 ) return;
+ U8_NEXT(zE, i, nE, uEsc);
+ if( i!=nE){
+ sqlite3_result_error(context,
+ "ESCAPE expression must be a single character", -1);
+ return;
+ }
+ }
+
+ if( zA && zB ){
+ sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc));
+ }
+}
+
+/*
+** This function is called when an ICU function called from within
+** the implementation of an SQL scalar function returns an error.
+**
+** The scalar function context passed as the first argument is
+** loaded with an error message based on the following two args.
+*/
+static void icuFunctionError(
+ sqlite3_context *pCtx, /* SQLite scalar function context */
+ const char *zName, /* Name of ICU function that failed */
+ UErrorCode e /* Error code returned by ICU function */
+){
+ char zBuf[128];
+ sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e));
+ zBuf[127] = '\0';
+ sqlite3_result_error(pCtx, zBuf, -1);
+}
+
+/*
+** Function to delete compiled regexp objects. Registered as
+** a destructor function with sqlite3_set_auxdata().
+*/
+static void icuRegexpDelete(void *p){
+ URegularExpression *pExpr = (URegularExpression *)p;
+ uregex_close(pExpr);
+}
+
+/*
+** Implementation of SQLite REGEXP operator. This scalar function takes
+** two arguments. The first is a regular expression pattern to compile
+** the second is a string to match against that pattern. If either
+** argument is an SQL NULL, then NULL Is returned. Otherwise, the result
+** is 1 if the string matches the pattern, or 0 otherwise.
+**
+** SQLite maps the regexp() function to the regexp() operator such
+** that the following two are equivalent:
+**
+** zString REGEXP zPattern
+** regexp(zPattern, zString)
+**
+** Uses the following ICU regexp APIs:
+**
+** uregex_open()
+** uregex_matches()
+** uregex_close()
+*/
+static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){
+ UErrorCode status = U_ZERO_ERROR;
+ URegularExpression *pExpr;
+ UBool res;
+ const UChar *zString = sqlite3_value_text16(apArg[1]);
+
+ /* If the left hand side of the regexp operator is NULL,
+ ** then the result is also NULL.
+ */
+ if( !zString ){
+ return;
+ }
+
+ pExpr = sqlite3_get_auxdata(p, 0);
+ if( !pExpr ){
+ const UChar *zPattern = sqlite3_value_text16(apArg[0]);
+ if( !zPattern ){
+ return;
+ }
+ pExpr = uregex_open(zPattern, -1, 0, 0, &status);
+
+ if( U_SUCCESS(status) ){
+ sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
+ }else{
+ assert(!pExpr);
+ icuFunctionError(p, "uregex_open", status);
+ return;
+ }
+ }
+
+ /* Configure the text that the regular expression operates on. */
+ uregex_setText(pExpr, zString, -1, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "uregex_setText", status);
+ return;
+ }
+
+ /* Attempt the match */
+ res = uregex_matches(pExpr, 0, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "uregex_matches", status);
+ return;
+ }
+
+ /* Set the text that the regular expression operates on to a NULL
+ ** pointer. This is not really necessary, but it is tidier than
+ ** leaving the regular expression object configured with an invalid
+ ** pointer after this function returns.
+ */
+ uregex_setText(pExpr, 0, 0, &status);
+
+ /* Return 1 or 0. */
+ sqlite3_result_int(p, res ? 1 : 0);
+}
+
+/*
+** Implementations of scalar functions for case mapping - upper() and
+** lower(). Function upper() converts its input to upper-case (ABC).
+** Function lower() converts to lower-case (abc).
+**
+** ICU provides two types of case mapping, "general" case mapping and
+** "language specific". Refer to ICU documentation for the differences
+** between the two.
+**
+** To utilise "general" case mapping, the upper() or lower() scalar
+** functions are invoked with one argument:
+**
+** upper('ABC') -> 'abc'
+** lower('abc') -> 'ABC'
+**
+** To access ICU "language specific" case mapping, upper() or lower()
+** should be invoked with two arguments. The second argument is the name
+** of the locale to use. Passing an empty string ("") or SQL NULL value
+** as the second argument is the same as invoking the 1 argument version
+** of upper() or lower().
+**
+** lower('I', 'en_us') -> 'i'
+** lower('I', 'tr_tr') -> 'ı' (small dotless i)
+**
+** http://www.icu-project.org/userguide/posix.html#case_mappings
+*/
+static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){
+ const UChar *zInput;
+ UChar *zOutput;
+ int nInput;
+ int nOutput;
+
+ UErrorCode status = U_ZERO_ERROR;
+ const char *zLocale = 0;
+
+ assert(nArg==1 || nArg==2);
+ if( nArg==2 ){
+ zLocale = (const char *)sqlite3_value_text(apArg[1]);
+ }
+
+ zInput = sqlite3_value_text16(apArg[0]);
+ if( !zInput ){
+ return;
+ }
+ nInput = sqlite3_value_bytes16(apArg[0]);
+
+ nOutput = nInput * 2 + 2;
+ zOutput = sqlite3_malloc(nOutput);
+ if( !zOutput ){
+ return;
+ }
+
+ if( sqlite3_user_data(p) ){
+ u_strToUpper(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
+ }else{
+ u_strToLower(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
+ }
+
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "u_strToLower()/u_strToUpper", status);
+ return;
+ }
+
+ sqlite3_result_text16(p, zOutput, -1, xFree);
+}
+
+/*
+** Collation sequence destructor function. The pCtx argument points to
+** a UCollator structure previously allocated using ucol_open().
+*/
+static void icuCollationDel(void *pCtx){
+ UCollator *p = (UCollator *)pCtx;
+ ucol_close(p);
+}
+
+/*
+** Collation sequence comparison function. The pCtx argument points to
+** a UCollator structure previously allocated using ucol_open().
+*/
+static int icuCollationColl(
+ void *pCtx,
+ int nLeft,
+ const void *zLeft,
+ int nRight,
+ const void *zRight
+){
+ UCollationResult res;
+ UCollator *p = (UCollator *)pCtx;
+ res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2);
+ switch( res ){
+ case UCOL_LESS: return -1;
+ case UCOL_GREATER: return +1;
+ case UCOL_EQUAL: return 0;
+ }
+ assert(!"Unexpected return value from ucol_strcoll()");
+ return 0;
+}
+
+/*
+** Implementation of the scalar function icu_load_collation().
+**
+** This scalar function is used to add ICU collation based collation
+** types to an SQLite database connection. It is intended to be called
+** as follows:
+**
+** SELECT icu_load_collation(<locale>, <collation-name>);
+**
+** Where <locale> is a string containing an ICU locale identifier (i.e.
+** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the
+** collation sequence to create.
+*/
+static void icuLoadCollation(
+ sqlite3_context *p,
+ int nArg,
+ sqlite3_value **apArg
+){
+ sqlite3 *db = (sqlite3 *)sqlite3_user_data(p);
+ UErrorCode status = U_ZERO_ERROR;
+ const char *zLocale; /* Locale identifier - (eg. "jp_JP") */
+ const char *zName; /* SQL Collation sequence name (eg. "japanese") */
+ UCollator *pUCollator; /* ICU library collation object */
+ int rc; /* Return code from sqlite3_create_collation_x() */
+
+ assert(nArg==2);
+ zLocale = (const char *)sqlite3_value_text(apArg[0]);
+ zName = (const char *)sqlite3_value_text(apArg[1]);
+
+ if( !zLocale || !zName ){
+ return;
+ }
+
+ pUCollator = ucol_open(zLocale, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "ucol_open", status);
+ return;
+ }
+ assert(p);
+
+ rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator,
+ icuCollationColl, icuCollationDel
+ );
+ if( rc!=SQLITE_OK ){
+ ucol_close(pUCollator);
+ sqlite3_result_error(p, "Error registering collation function", -1);
+ }
+}
+
+/*
+** Register the ICU extension functions with database db.
+*/
+SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){
+ struct IcuScalar {
+ const char *zName; /* Function name */
+ int nArg; /* Number of arguments */
+ int enc; /* Optimal text encoding */
+ void *pContext; /* sqlite3_user_data() context */
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ } scalars[] = {
+ {"regexp",-1, SQLITE_ANY, 0, icuRegexpFunc},
+
+ {"lower", 1, SQLITE_UTF16, 0, icuCaseFunc16},
+ {"lower", 2, SQLITE_UTF16, 0, icuCaseFunc16},
+ {"upper", 1, SQLITE_UTF16, (void*)1, icuCaseFunc16},
+ {"upper", 2, SQLITE_UTF16, (void*)1, icuCaseFunc16},
+
+ {"lower", 1, SQLITE_UTF8, 0, icuCaseFunc16},
+ {"lower", 2, SQLITE_UTF8, 0, icuCaseFunc16},
+ {"upper", 1, SQLITE_UTF8, (void*)1, icuCaseFunc16},
+ {"upper", 2, SQLITE_UTF8, (void*)1, icuCaseFunc16},
+
+ {"like", 2, SQLITE_UTF8, 0, icuLikeFunc},
+ {"like", 3, SQLITE_UTF8, 0, icuLikeFunc},
+
+ {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation},
+ };
+
+ int rc = SQLITE_OK;
+ int i;
+
+ for(i=0; rc==SQLITE_OK && i<(sizeof(scalars)/sizeof(struct IcuScalar)); i++){
+ struct IcuScalar *p = &scalars[i];
+ rc = sqlite3_create_function(
+ db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0
+ );
+ }
+
+ return rc;
+}
+
+#if !SQLITE_CORE
+SQLITE_API int sqlite3_extension_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3IcuInit(db);
+}
+#endif
+
+#endif
+
+/************** End of icu.c *************************************************/
+/************** Begin file fts3_icu.c ****************************************/
+/*
+** 2007 June 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements a tokenizer for fts3 based on the ICU library.
+**
+** $Id: fts3_icu.c,v 1.3 2008/09/01 18:34:20 danielk1977 Exp $
+*/
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+#ifdef SQLITE_ENABLE_ICU
+
+
+#include <unicode/ubrk.h>
+#include <unicode/utf16.h>
+
+typedef struct IcuTokenizer IcuTokenizer;
+typedef struct IcuCursor IcuCursor;
+
+struct IcuTokenizer {
+ sqlite3_tokenizer base;
+ char *zLocale;
+};
+
+struct IcuCursor {
+ sqlite3_tokenizer_cursor base;
+
+ UBreakIterator *pIter; /* ICU break-iterator object */
+ int nChar; /* Number of UChar elements in pInput */
+ UChar *aChar; /* Copy of input using utf-16 encoding */
+ int *aOffset; /* Offsets of each character in utf-8 input */
+
+ int nBuffer;
+ char *zBuffer;
+
+ int iToken;
+};
+
+/*
+** Create a new tokenizer instance.
+*/
+static int icuCreate(
+ int argc, /* Number of entries in argv[] */
+ const char * const *argv, /* Tokenizer creation arguments */
+ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
+){
+ IcuTokenizer *p;
+ int n = 0;
+
+ if( argc>0 ){
+ n = strlen(argv[0])+1;
+ }
+ p = (IcuTokenizer *)sqlite3_malloc(sizeof(IcuTokenizer)+n);
+ if( !p ){
+ return SQLITE_NOMEM;
+ }
+ memset(p, 0, sizeof(IcuTokenizer));
+
+ if( n ){
+ p->zLocale = (char *)&p[1];
+ memcpy(p->zLocale, argv[0], n);
+ }
+
+ *ppTokenizer = (sqlite3_tokenizer *)p;
+
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int icuDestroy(sqlite3_tokenizer *pTokenizer){
+ IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int icuOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *zInput, /* Input string */
+ int nInput, /* Length of zInput in bytes */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
+ IcuCursor *pCsr;
+
+ const int32_t opt = U_FOLD_CASE_DEFAULT;
+ UErrorCode status = U_ZERO_ERROR;
+ int nChar;
+
+ UChar32 c;
+ int iInput = 0;
+ int iOut = 0;
+
+ *ppCursor = 0;
+
+ if( nInput<0 ){
+ nInput = strlen(zInput);
+ }
+ nChar = nInput+1;
+ pCsr = (IcuCursor *)sqlite3_malloc(
+ sizeof(IcuCursor) + /* IcuCursor */
+ nChar * sizeof(UChar) + /* IcuCursor.aChar[] */
+ (nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */
+ );
+ if( !pCsr ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(IcuCursor));
+ pCsr->aChar = (UChar *)&pCsr[1];
+ pCsr->aOffset = (int *)&pCsr->aChar[nChar];
+
+ pCsr->aOffset[iOut] = iInput;
+ U8_NEXT(zInput, iInput, nInput, c);
+ while( c>0 ){
+ int isError = 0;
+ c = u_foldCase(c, opt);
+ U16_APPEND(pCsr->aChar, iOut, nChar, c, isError);
+ if( isError ){
+ sqlite3_free(pCsr);
+ return SQLITE_ERROR;
+ }
+ pCsr->aOffset[iOut] = iInput;
+
+ if( iInput<nInput ){
+ U8_NEXT(zInput, iInput, nInput, c);
+ }else{
+ c = 0;
+ }
+ }
+
+ pCsr->pIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status);
+ if( !U_SUCCESS(status) ){
+ sqlite3_free(pCsr);
+ return SQLITE_ERROR;
+ }
+ pCsr->nChar = iOut;
+
+ ubrk_first(pCsr->pIter);
+ *ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to icuOpen().
+*/
+static int icuClose(sqlite3_tokenizer_cursor *pCursor){
+ IcuCursor *pCsr = (IcuCursor *)pCursor;
+ ubrk_close(pCsr->pIter);
+ sqlite3_free(pCsr->zBuffer);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor.
+*/
+static int icuNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
+ const char **ppToken, /* OUT: *ppToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ IcuCursor *pCsr = (IcuCursor *)pCursor;
+
+ int iStart = 0;
+ int iEnd = 0;
+ int nByte = 0;
+
+ while( iStart==iEnd ){
+ UChar32 c;
+
+ iStart = ubrk_current(pCsr->pIter);
+ iEnd = ubrk_next(pCsr->pIter);
+ if( iEnd==UBRK_DONE ){
+ return SQLITE_DONE;
+ }
+
+ while( iStart<iEnd ){
+ int iWhite = iStart;
+ U8_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
+ if( u_isspace(c) ){
+ iStart = iWhite;
+ }else{
+ break;
+ }
+ }
+ assert(iStart<=iEnd);
+ }
+
+ do {
+ UErrorCode status = U_ZERO_ERROR;
+ if( nByte ){
+ char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pCsr->zBuffer = zNew;
+ pCsr->nBuffer = nByte;
+ }
+
+ u_strToUTF8(
+ pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */
+ &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */
+ &status /* Output success/failure */
+ );
+ } while( nByte>pCsr->nBuffer );
+
+ *ppToken = pCsr->zBuffer;
+ *pnBytes = nByte;
+ *piStartOffset = pCsr->aOffset[iStart];
+ *piEndOffset = pCsr->aOffset[iEnd];
+ *piPosition = pCsr->iToken++;
+
+ return SQLITE_OK;
+}
+
+/*
+** The set of routines that implement the simple tokenizer
+*/
+static const sqlite3_tokenizer_module icuTokenizerModule = {
+ 0, /* iVersion */
+ icuCreate, /* xCreate */
+ icuDestroy, /* xCreate */
+ icuOpen, /* xOpen */
+ icuClose, /* xClose */
+ icuNext, /* xNext */
+};
+
+/*
+** Set *ppModule to point at the implementation of the ICU tokenizer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &icuTokenizerModule;
+}
+
+#endif /* defined(SQLITE_ENABLE_ICU) */
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_icu.c ********************************************/
diff --git a/crawl-ref/source/util/sqlite/sqlite3.h b/crawl-ref/source/util/sqlite/sqlite3.h
index 8d6de5cf61..b33728a859 100644
--- a/crawl-ref/source/util/sqlite/sqlite3.h
+++ b/crawl-ref/source/util/sqlite/sqlite3.h
@@ -10,9 +10,25 @@
**
*************************************************************************
** This header file defines the interface that the SQLite library
-** presents to client programs.
-**
-** @(#) $Id: sqlite.h.in,v 1.201 2007/03/30 20:43:42 drh Exp $
+** presents to client programs. If a C-function, structure, datatype,
+** or constant definition does not appear in this file, then it is
+** not a published API of SQLite, is subject to change without
+** notice, and should not be referenced by programs that use SQLite.
+**
+** Some of the definitions that are in this file are marked as
+** "experimental". Experimental interfaces are normally new
+** features recently added to SQLite. We do not anticipate changes
+** to experimental interfaces but reserve the right to make minor changes
+** if experience from use "in the wild" suggest such changes are prudent.
+**
+** The official C-language API documentation for SQLite is derived
+** from comments in this file. This file is the authoritative source
+** on how SQLite interfaces are suppose to operate.
+**
+** The name of this file under configuration management is "sqlite.h.in".
+** The makefile makes some minor changes to this file (such as inserting
+** the version number) and changes its name to "sqlite3.h" as
+** part of the build process.
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
@@ -25,66 +41,187 @@
extern "C" {
#endif
+
/*
-** The version of the SQLite library.
+** Add the ability to override 'extern'
*/
-#ifdef SQLITE_VERSION
-# undef SQLITE_VERSION
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
#endif
-#define SQLITE_VERSION "3.3.16"
+
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+
/*
-** The format of the version string is "X.Y.Z<trailing string>", where
-** X is the major version number, Y is the minor version number and Z
-** is the release number. The trailing string is often "alpha" or "beta".
-** For example "3.1.1beta".
-**
-** The SQLITE_VERSION_NUMBER is an integer with the value
-** (X*100000 + Y*1000 + Z). For example, for version "3.1.1beta",
-** SQLITE_VERSION_NUMBER is set to 3001001. To detect if they are using
-** version 3.1.1 or greater at compile time, programs may use the test
-** (SQLITE_VERSION_NUMBER>=3001001).
+** These no-op macros are used in front of interfaces to mark those
+** interfaces as either deprecated or experimental. New applications
+** should not use deprecated interfaces - they are support for backwards
+** compatibility only. Application writers should be aware that
+** experimental interfaces are subject to change in point releases.
+**
+** These macros used to resolve to various kinds of compiler magic that
+** would generate warning messages when they were used. But that
+** compiler magic ended up generating such a flurry of bug reports
+** that we have taken it all out and gone back to using simple
+** noop macros.
*/
+#define SQLITE_DEPRECATED
+#define SQLITE_EXPERIMENTAL
+
+/*
+** Ensure these symbols were not defined by some previous header file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
#ifdef SQLITE_VERSION_NUMBER
# undef SQLITE_VERSION_NUMBER
#endif
-#define SQLITE_VERSION_NUMBER 3003016
/*
-** The version string is also compiled into the library so that a program
-** can check to make sure that the lib*.a file and the *.h file are from
-** the same version. The sqlite3_libversion() function returns a pointer
-** to the sqlite3_version variable - useful in DLLs which cannot access
-** global variables.
+** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
+**
+** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
+** the sqlite3.h file specify the version of SQLite with which
+** that header file is associated.
+**
+** The "version" of SQLite is a string of the form "W.X.Y" or "W.X.Y.Z".
+** The W value is major version number and is always 3 in SQLite3.
+** The W value only changes when backwards compatibility is
+** broken and we intend to never break backwards compatibility.
+** The X value is the minor version number and only changes when
+** there are major feature enhancements that are forwards compatible
+** but not backwards compatible.
+** The Y value is the release number and is incremented with
+** each release but resets back to 0 whenever X is incremented.
+** The Z value only appears on branch releases.
+**
+** The SQLITE_VERSION_NUMBER is an integer that is computed as
+** follows:
+**
+** <blockquote><pre>
+** SQLITE_VERSION_NUMBER = W*1000000 + X*1000 + Y
+** </pre></blockquote>
+**
+** Since version 3.6.18, SQLite source code has been stored in the
+** <a href="http://www.fossil-scm.org/">fossil configuration management
+** system</a>. The SQLITE_SOURCE_ID
+** macro is a string which identifies a particular check-in of SQLite
+** within its configuration management system. The string contains the
+** date and time of the check-in (UTC) and an SHA1 hash of the entire
+** source tree.
+**
+** See also: [sqlite3_libversion()],
+** [sqlite3_libversion_number()], [sqlite3_sourceid()],
+** [sqlite_version()] and [sqlite_source_id()].
+**
+** Requirements: [H10011] [H10014]
*/
-extern const char sqlite3_version[];
-const char *sqlite3_libversion(void);
+#define SQLITE_VERSION "3.6.18"
+#define SQLITE_VERSION_NUMBER 3006018
+#define SQLITE_SOURCE_ID "2009-09-11 14:05:07 b084828a771ec40be85f07c590ca99de4f6c24ee"
/*
-** Return the value of the SQLITE_VERSION_NUMBER macro when the
-** library was compiled.
+** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
+** KEYWORDS: sqlite3_version
+**
+** These interfaces provide the same information as the [SQLITE_VERSION],
+** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] #defines in the header,
+** but are associated with the library instead of the header file. Cautious
+** programmers might include assert() statements in their application to
+** verify that values returned by these interfaces match the macros in
+** the header, and thus insure that the application is
+** compiled with matching library and header files.
+**
+** <blockquote><pre>
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
+** assert( strcmp(sqlite3_libversion,SQLITE_VERSION)==0 );
+** </pre></blockquote>
+**
+** The sqlite3_libversion() function returns the same information as is
+** in the sqlite3_version[] string constant. The function is provided
+** for use in DLLs since DLL users usually do not have direct access to string
+** constants within the DLL. Similarly, the sqlite3_sourceid() function
+** returns the same information as is in the [SQLITE_SOURCE_ID] #define of
+** the header file.
+**
+** See also: [sqlite_version()] and [sqlite_source_id()].
+**
+** Requirements: [H10021] [H10022] [H10023]
*/
-int sqlite3_libversion_number(void);
+SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
+SQLITE_API const char *sqlite3_libversion(void);
+SQLITE_API const char *sqlite3_sourceid(void);
+SQLITE_API int sqlite3_libversion_number(void);
/*
-** Each open sqlite database is represented by an instance of the
-** following opaque structure.
+** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>
+**
+** SQLite can be compiled with or without mutexes. When
+** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
+** are enabled and SQLite is threadsafe. When the
+** [SQLITE_THREADSAFE] macro is 0,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite concurrently from more than one thread.
+**
+** Enabling mutexes incurs a measurable performance penalty.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by an application to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_MUTEX]. The return value of this function shows
+** only the default compile-time setting, not any run-time changes
+** to that setting.
+**
+** See the [threading mode] documentation for additional information.
+**
+** Requirements: [H10101] [H10102]
*/
-typedef struct sqlite3 sqlite3;
+SQLITE_API int sqlite3_threadsafe(void);
+/*
+** CAPI3REF: Database Connection Handle {H12000} <S40200>
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** is its destructor. There are many other interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
+*/
+typedef struct sqlite3 sqlite3;
/*
-** Some compilers do not support the "long long" datatype. So we have
-** to do a typedef that for 64-bit integers that depends on what compiler
-** is being used.
+** CAPI3REF: 64-Bit Integer Types {H10200} <S10110>
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
+**
+** Requirements: [H10201] [H10202]
*/
#ifdef SQLITE_INT64_TYPE
typedef SQLITE_INT64_TYPE sqlite_int64;
-#ifdef SQLITE_UINT64_TYPE
- typedef SQLITE_UINT64_TYPE sqlite_uint64;
-#else
typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
-#endif
#elif defined(_MSC_VER) || defined(__BORLANDC__)
typedef __int64 sqlite_int64;
typedef unsigned __int64 sqlite_uint64;
@@ -92,88 +229,124 @@ typedef struct sqlite3 sqlite3;
typedef long long int sqlite_int64;
typedef unsigned long long int sqlite_uint64;
#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
/*
** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point
+** substitute integer for floating-point.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
-# define double sqlite_int64
+# define double sqlite3_int64
#endif
/*
-** A function to close the database.
-**
-** Call this function with a pointer to a structure that was previously
-** returned from sqlite3_open() and the corresponding database will by closed.
-**
-** All SQL statements prepared using sqlite3_prepare() or
-** sqlite3_prepare16() must be deallocated using sqlite3_finalize() before
-** this routine is called. Otherwise, SQLITE_BUSY is returned and the
-** database connection remains open.
+** CAPI3REF: Closing A Database Connection {H12010} <S30100><S40200>
+**
+** This routine is the destructor for the [sqlite3] object.
+**
+** Applications should [sqlite3_finalize | finalize] all [prepared statements]
+** and [sqlite3_blob_close | close] all [BLOB handles] associated with
+** the [sqlite3] object prior to attempting to close the object.
+** The [sqlite3_next_stmt()] interface can be used to locate all
+** [prepared statements] associated with a [database connection] if desired.
+** Typical code might look like this:
+**
+** <blockquote><pre>
+** sqlite3_stmt *pStmt;
+** while( (pStmt = sqlite3_next_stmt(db, 0))!=0 ){
+** &nbsp; sqlite3_finalize(pStmt);
+** }
+** </pre></blockquote>
+**
+** If [sqlite3_close()] is invoked while a transaction is open,
+** the transaction is automatically rolled back.
+**
+** The C parameter to [sqlite3_close(C)] must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
+**
+** Requirements:
+** [H12011] [H12012] [H12013] [H12014] [H12015] [H12019]
*/
-int sqlite3_close(sqlite3 *);
+SQLITE_API int sqlite3_close(sqlite3 *);
/*
** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);
/*
-** A function to executes one or more statements of SQL.
-**
-** If one or more of the SQL statements are queries, then
-** the callback function specified by the 3rd parameter is
-** invoked once for each row of the query result. This callback
-** should normally return 0. If the callback returns a non-zero
-** value then the query is aborted, all subsequent SQL statements
-** are skipped and the sqlite3_exec() function returns the SQLITE_ABORT.
-**
-** The 1st parameter is an arbitrary pointer that is passed
-** to the callback function as its first parameter.
-**
-** The 2nd parameter to the callback function is the number of
-** columns in the query result. The 3rd parameter to the callback
-** is an array of strings holding the values for each column.
-** The 4th parameter to the callback is an array of strings holding
-** the names of each column.
-**
-** The callback function may be NULL, even for queries. A NULL
-** callback is not an error. It just means that no callback
-** will be invoked.
-**
-** If an error occurs while parsing or evaluating the SQL (but
-** not while executing the callback) then an appropriate error
-** message is written into memory obtained from malloc() and
-** *errmsg is made to point to that message. The calling function
-** is responsible for freeing the memory that holds the error
-** message. Use sqlite3_free() for this. If errmsg==NULL,
-** then no error message is ever written.
-**
-** The return value is is SQLITE_OK if there are no errors and
-** some other return code if there is an error. The particular
-** return value depends on the type of error.
-**
-** If the query could not be executed because a database file is
-** locked or busy, then this function returns SQLITE_BUSY. (This
-** behavior can be modified somewhat using the sqlite3_busy_handler()
-** and sqlite3_busy_timeout() functions below.)
-*/
-int sqlite3_exec(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be executed */
- sqlite3_callback, /* Callback function */
- void *, /* 1st argument to callback function */
- char **errmsg /* Error msg written here */
+** CAPI3REF: One-Step Query Execution Interface {H12100} <S10000>
+**
+** The sqlite3_exec() interface is a convenient way of running one or more
+** SQL statements without having to write a lot of C code. The UTF-8 encoded
+** SQL statements are passed in as the second parameter to sqlite3_exec().
+** The statements are evaluated one by one until either an error or
+** an interrupt is encountered, or until they are all done. The 3rd parameter
+** is an optional callback that is invoked once for each row of any query
+** results produced by the SQL statements. The 5th parameter tells where
+** to write any error messages.
+**
+** The error message passed back through the 5th parameter is held
+** in memory obtained from [sqlite3_malloc()]. To avoid a memory leak,
+** the calling application should call [sqlite3_free()] on any error
+** message returned through the 5th parameter when it has finished using
+** the error message.
+**
+** If the SQL statement in the 2nd parameter is NULL or an empty string
+** or a string containing only whitespace and comments, then no SQL
+** statements are evaluated and the database is not changed.
+**
+** The sqlite3_exec() interface is implemented in terms of
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
+** The sqlite3_exec() routine does nothing to the database that cannot be done
+** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
+**
+** The first parameter to [sqlite3_exec()] must be an valid and open
+** [database connection].
+**
+** The database connection must not be closed while
+** [sqlite3_exec()] is running.
+**
+** The calling function should use [sqlite3_free()] to free
+** the memory that *errmsg is left pointing at once the error
+** message is no longer needed.
+**
+** The SQL statement text in the 2nd parameter to [sqlite3_exec()]
+** must remain unchanged while [sqlite3_exec()] is running.
+**
+** Requirements:
+** [H12101] [H12102] [H12104] [H12105] [H12107] [H12110] [H12113] [H12116]
+** [H12119] [H12122] [H12125] [H12131] [H12134] [H12137] [H12138]
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
);
/*
-** Return values for sqlite3_exec() and sqlite3_step()
+** CAPI3REF: Result Codes {H10210} <S10700>
+** KEYWORDS: SQLITE_OK {error code} {error codes}
+** KEYWORDS: {result code} {result codes}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicates success or failure.
+**
+** New error codes may be added in future versions of SQLite.
+**
+** See also: [SQLITE_IOERR_READ | extended result codes]
*/
#define SQLITE_OK 0 /* Successful result */
/* beginning-of-error-codes */
#define SQLITE_ERROR 1 /* SQL error or missing database */
-#define SQLITE_INTERNAL 2 /* NOT USED. Internal logic error in SQLite */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
#define SQLITE_PERM 3 /* Access permission denied */
#define SQLITE_ABORT 4 /* Callback routine requested an abort */
#define SQLITE_BUSY 5 /* The database file is locked */
@@ -189,8 +362,8 @@ int sqlite3_exec(
#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
#define SQLITE_EMPTY 16 /* Database is empty */
#define SQLITE_SCHEMA 17 /* The database schema changed */
-#define SQLITE_TOOBIG 18 /* NOT USED. Too much data for one row */
-#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
#define SQLITE_MISMATCH 20 /* Data type mismatch */
#define SQLITE_MISUSE 21 /* Library used incorrectly */
#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
@@ -203,147 +376,1126 @@ int sqlite3_exec(
/* end-of-error-codes */
/*
-** Using the sqlite3_extended_result_codes() API, you can cause
-** SQLite to return result codes with additional information in
-** their upper bits. The lower 8 bits will be the same as the
-** primary result codes above. But the upper bits might contain
-** more specific error information.
+** CAPI3REF: Extended Result Codes {H10220} <S10700>
+** KEYWORDS: {extended error code} {extended error codes}
+** KEYWORDS: {extended result code} {extended result codes}
+**
+** In its default configuration, SQLite API routines return one of 26 integer
+** [SQLITE_OK | result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 and later) include
+** support for additional result codes that provide more detailed information
+** about errors. The extended result codes are enabled or disabled
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API.
+**
+** Some of the available extended result codes are listed here.
+** One may expect the number of extended result codes will be expand
+** over time. Software that uses extended result codes should expect
+** to see new result codes in future releases of SQLite.
**
-** To extract the primary result code from an extended result code,
-** simply mask off the lower 8 bits.
+** The SQLITE_OK result code will never be extended. It will always
+** be exactly zero.
+*/
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
+#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
+#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
+#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
+#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8) )
+
+/*
+** CAPI3REF: Flags For File Open Operations {H10230} <H11120> <H12700>
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the xOpen method of the
+** [sqlite3_vfs] object.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
+#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
+#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
+#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
+
+/*
+** CAPI3REF: Device Characteristics {H10240} <H11120>
+**
+** The xDeviceCapabilities method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of the these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+
+/*
+** CAPI3REF: File Locking Levels {H10250} <H11120> <H11310>
**
-** primary = extended & 0xff;
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object.
+*/
+#define SQLITE_LOCK_NONE 0
+#define SQLITE_LOCK_SHARED 1
+#define SQLITE_LOCK_RESERVED 2
+#define SQLITE_LOCK_PENDING 3
+#define SQLITE_LOCK_EXCLUSIVE 4
+
+/*
+** CAPI3REF: Synchronization Type Flags {H10260} <H11120>
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. If the lower four bits of the flag
+** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
+** If the lower four bits equal SQLITE_SYNC_FULL, that means
+** to use Mac OS X style fullsync instead of fsync().
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+/*
+** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
+**
+** An [sqlite3_file] object represents an open file in the
+** [sqlite3_vfs | OS interface layer]. Individual OS interface
+** implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
+
+/*
+** CAPI3REF: OS Interface File Virtual Methods Object {H11120} <S20110>
+**
+** Every file opened by the [sqlite3_vfs] xOpen method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
+**
+** If the xOpen method sets the sqlite3_file.pMethods element
+** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
+** may be invoked even if the xOpen reported that it failed. The
+** only way to prevent a call to xClose following a failed xOpen
+** is for the xOpen to set the sqlite3_file.pMethods element to NULL.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+** <ul>
+** <li> [SQLITE_LOCK_NONE],
+** <li> [SQLITE_LOCK_SHARED],
+** <li> [SQLITE_LOCK_RESERVED],
+** <li> [SQLITE_LOCK_PENDING], or
+** <li> [SQLITE_LOCK_EXCLUSIVE].
+** </ul>
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false otherwise.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves all opcodes less than 100 for its own use.
+** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+** <ul>
+** <li> [SQLITE_IOCAP_ATOMIC]
+** <li> [SQLITE_IOCAP_ATOMIC512]
+** <li> [SQLITE_IOCAP_ATOMIC1K]
+** <li> [SQLITE_IOCAP_ATOMIC2K]
+** <li> [SQLITE_IOCAP_ATOMIC4K]
+** <li> [SQLITE_IOCAP_ATOMIC8K]
+** <li> [SQLITE_IOCAP_ATOMIC16K]
+** <li> [SQLITE_IOCAP_ATOMIC32K]
+** <li> [SQLITE_IOCAP_ATOMIC64K]
+** <li> [SQLITE_IOCAP_SAFE_APPEND]
+** <li> [SQLITE_IOCAP_SEQUENTIAL]
+** </ul>
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+**
+** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
+** in the unread portions of the buffer with zeros. A VFS that
+** fails to zero-fill short reads might seem to work. However,
+** failure to zero-fill short reads will eventually lead to
+** database corruption.
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes {H11310} <S30800>
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
+** interface.
+**
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to. This capability
+** is used during testing and only needs to be supported when SQLITE_TEST
+** is defined.
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+#define SQLITE_GET_LOCKPROXYFILE 2
+#define SQLITE_SET_LOCKPROXYFILE 3
+#define SQLITE_LAST_ERRNO 4
+
+/*
+** CAPI3REF: Mutex Handle {H17110} <S20130>
**
-** New result error codes may be added from time to time. Software
-** that uses the extended result codes should plan accordingly and be
-** sure to always handle new unknown codes gracefully.
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
**
-** The SQLITE_OK result code will never be extended. It will always
-** be exactly zero.
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: OS Interface Object {H11140} <S20100>
+**
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system".
+**
+** The value of the iVersion field is initially 1 but may be larger in
+** future versions of SQLite. Additional fields may be appended to this
+** object when the iVersion value is increased. Note that the structure
+** of the sqlite3_vfs object changes in the transaction between
+** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not
+** modified.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** SQLite will guarantee that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname(). SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. Because of the previous sentence,
+** the [sqlite3_file] can safely store a pointer to the
+** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter is xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
+**
+** The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+** <ul>
+** <li> [SQLITE_OPEN_MAIN_DB]
+** <li> [SQLITE_OPEN_MAIN_JOURNAL]
+** <li> [SQLITE_OPEN_TEMP_DB]
+** <li> [SQLITE_OPEN_TEMP_JOURNAL]
+** <li> [SQLITE_OPEN_TRANSIENT_DB]
+** <li> [SQLITE_OPEN_SUBJOURNAL]
+** <li> [SQLITE_OPEN_MASTER_JOURNAL]
+** </ul>
+**
+** The file I/O implementation can use the object type flags to
+** change the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
+** <ul>
+** <li> [SQLITE_OPEN_DELETEONCLOSE]
+** <li> [SQLITE_OPEN_EXCLUSIVE]
+** </ul>
+**
+** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases, journals and for subjournals.
+**
+** The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** with the [SQLITE_OPEN_CREATE] flag, which are both directly
+** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
+** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
+** SQLITE_OPEN_CREATE, is used to indicate that file should always
+** be created, and that it is an error if it already exists.
+** It is <i>not</i> used to indicate the file should be opened
+** for exclusive access.
+**
+** At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. The xOpen method does not have to
+** allocate the structure; it should just fill it in. Note that
+** the xOpen method must set the sqlite3_file.pMethods to either
+** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
+** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
+** element will be valid after xOpen returns regardless of the success
+** or failure of the xOpen call.
+**
+** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. The file can be a
+** directory.
+**
+** SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. The exact size of the output buffer
+** is also passed as a parameter to both methods. If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), and xCurrentTime() interfaces
+** are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. The xCurrentTime()
+** method returns a Julian Day Number for the current date and time.
**
-** The extended result codes always have the primary result code
-** as a prefix. Primary result codes only contain a single "_"
-** character. Extended result codes contain two or more "_" characters.
*/
-#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
-#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
-#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
-#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
-#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
-#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
-#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
-#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
-#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
-#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+typedef struct sqlite3_vfs sqlite3_vfs;
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
+ /* New fields may be appended in figure versions. The iVersion
+ ** value will increment whenever this happens. */
+};
+
+/*
+** CAPI3REF: Flags for the xAccess VFS method {H11190} <H11140>
+**
+** These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. {END} They determine
+** what kind of permissions the xAccess method is looking for.
+** With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the file is both readable and writable.
+** With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1
+#define SQLITE_ACCESS_READ 2
/*
-** Enable or disable the extended result codes.
+** CAPI3REF: Initialize The SQLite Library {H10130} <S20000><S30100>
+**
+** The sqlite3_initialize() routine initializes the
+** SQLite library. The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.
+**
+** A call to sqlite3_shutdown() is an "effective" call if it is the first
+** call to sqlite3_shutdown() since the last sqlite3_initialize(). Only
+** an effective call to sqlite3_shutdown() does any deinitialization.
+** All other calls to sqlite3_shutdown() are harmless no-ops.
+**
+** Among other things, sqlite3_initialize() shall invoke
+** sqlite3_os_init(). Similarly, sqlite3_shutdown()
+** shall invoke sqlite3_os_end().
+**
+** The sqlite3_initialize() routine returns [SQLITE_OK] on success.
+** If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than [SQLITE_OK].
+**
+** The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
+** When [custom builds | built for other platforms]
+** (using the [SQLITE_OS_OTHER=1] compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return [SQLITE_OK] on success and some other [error code] upon
+** failure.
*/
-int sqlite3_extended_result_codes(sqlite3*, int onoff);
+SQLITE_API int sqlite3_initialize(void);
+SQLITE_API int sqlite3_shutdown(void);
+SQLITE_API int sqlite3_os_init(void);
+SQLITE_API int sqlite3_os_end(void);
/*
-** Each entry in an SQLite table has a unique integer key. (The key is
-** the value of the INTEGER PRIMARY KEY column if there is such a column,
-** otherwise the key is generated automatically. The unique key is always
-** available as the ROWID, OID, or _ROWID_ column.) The following routine
-** returns the integer key of the most recent insert in the database.
+** CAPI3REF: Configuring The SQLite Library {H14100} <S20000><S30200>
+** EXPERIMENTAL
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** The sqlite3_config() interface is not threadsafe. The application
+** must insure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running. Furthermore, sqlite3_config()
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** Note, however, that sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** The first argument to sqlite3_config() is an integer
+** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option]
+** in the first argument.
+**
+** When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
+** If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+**
+** Requirements:
+** [H14103] [H14106] [H14120] [H14123] [H14126] [H14129] [H14132] [H14135]
+** [H14138] [H14141] [H14144] [H14147] [H14150] [H14153] [H14156] [H14159]
+** [H14162] [H14165] [H14168]
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections {H14200} <S20000>
+** EXPERIMENTAL
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument). The
+** sqlite3_db_config() interface can only be used immediately after
+** the database connection is created using [sqlite3_open()],
+** [sqlite3_open16()], or [sqlite3_open_v2()].
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** configuration verb - an integer code that indicates what
+** aspect of the [database connection] is being configured.
+** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE].
+** New verbs are likely to be added in future releases of SQLite.
+** Additional arguments depend on the verb.
+**
+** Requirements:
+** [H14203] [H14206] [H14209] [H14212] [H14215]
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines {H10155} <S20120>
+** EXPERIMENTAL
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
+** By creating an instance of this object
+** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
+** during configuration, an application can specify an alternative
+** memory allocation subsystem for SQLite to use for all of its
+** dynamic memory needs.
+**
+** Note that SQLite comes with several [built-in memory allocators]
+** that are perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc and xFree methods must work like the
+** malloc() and free() functions from the standard C library.
+** The xRealloc method must work like realloc() from the standard C library
+** with the exception that if the second argument to xRealloc is zero,
+** xRealloc must be a no-op - it must not perform any allocation or
+** deallocation. SQLite guaranteeds that the second argument to
+** xRealloc is always a value returned by a prior call to xRoundup.
+** And so in cases where xRoundup always returns a positive number,
+** xRealloc can perform exactly as the standard library realloc() and
+** still be in compliance with this specification.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+** Every memory allocation request coming in through [sqlite3_malloc()]
+** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
+** that causes the corresponding memory allocation to fail.
+**
+** The xInit method initializes the memory allocator. (For example,
+** it might allocate any require mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+**
+** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. For all other methods, SQLite
+** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
+** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
+** it is by default) and so the methods are automatically serialized.
+** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
+** methods must be threadsafe or else make their own arrangements for
+** serialization.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options {H10160} <S20000>
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
+** <dd>There are no arguments to this option. This option disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread.</dd>
+**
+** <dt>SQLITE_CONFIG_MULTITHREAD</dt>
+** <dd>There are no arguments to this option. This option disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment as long as no two threads attempt to use the same
+** [database connection] at the same time. See the [threading mode]
+** documentation for additional information.</dd>
+**
+** <dt>SQLITE_CONFIG_SERIALIZED</dt>
+** <dd>There are no arguments to this option. This option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+** See the [threading mode] documentation for additional information.</dd>
+**
+** <dt>SQLITE_CONFIG_MALLOC</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.</dd>
+**
+** <dt>SQLITE_CONFIG_GETMALLOC</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example.</dd>
+**
+** <dt>SQLITE_CONFIG_MEMSTATUS</dt>
+** <dd>This option takes single argument of type int, interpreted as a
+** boolean, which enables or disables the collection of memory allocation
+** statistics. When disabled, the following SQLite interfaces become
+** non-operational:
+** <ul>
+** <li> [sqlite3_memory_used()]
+** <li> [sqlite3_memory_highwater()]
+** <li> [sqlite3_soft_heap_limit()]
+** <li> [sqlite3_status()]
+** </ul>
+** </dd>
+**
+** <dt>SQLITE_CONFIG_SCRATCH</dt>
+** <dd>This option specifies a static memory buffer that SQLite can use for
+** scratch memory. There are three arguments: A pointer an 8-byte
+** aligned memory buffer from which the scrach allocations will be
+** drawn, the size of each scratch allocation (sz),
+** and the maximum number of scratch allocations (N). The sz
+** argument must be a multiple of 16. The sz parameter should be a few bytes
+** larger than the actual scratch space required due to internal overhead.
+** The first argument should pointer to an 8-byte aligned buffer
+** of at least sz*N bytes of memory.
+** SQLite will use no more than one scratch buffer at once per thread, so
+** N should be set to the expected maximum number of threads. The sz
+** parameter should be 6 times the size of the largest database page size.
+** Scratch buffers are used as part of the btree balance operation. If
+** The btree balancer needs additional memory beyond what is provided by
+** scratch buffers or if no scratch buffer space is specified, then SQLite
+** goes to [sqlite3_malloc()] to obtain the memory it needs.</dd>
+**
+** <dt>SQLITE_CONFIG_PAGECACHE</dt>
+** <dd>This option specifies a static memory buffer that SQLite can use for
+** the database page cache with the default page cache implemenation.
+** This configuration should not be used if an application-define page
+** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option.
+** There are three arguments to this option: A pointer to 8-byte aligned
+** memory, the size of each page buffer (sz), and the number of pages (N).
+** The sz argument should be the size of the largest database page
+** (a power of two between 512 and 32768) plus a little extra for each
+** page header. The page header size is 20 to 40 bytes depending on
+** the host architecture. It is harmless, apart from the wasted memory,
+** to make sz a little too large. The first
+** argument should point to an allocation of at least sz*N bytes of memory.
+** SQLite will use the memory provided by the first argument to satisfy its
+** memory needs for the first N pages that it adds to cache. If additional
+** page cache memory is needed beyond what is provided by this option, then
+** SQLite goes to [sqlite3_malloc()] for the additional storage space.
+** The implementation might use one or more of the N buffers to hold
+** memory accounting information. The pointer in the first argument must
+** be aligned to an 8-byte boundary or subsequent behavior of SQLite
+** will be undefined.</dd>
+**
+** <dt>SQLITE_CONFIG_HEAP</dt>
+** <dd>This option specifies a static memory buffer that SQLite will use
+** for all of its dynamic memory allocation needs beyond those provided
+** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
+** There are three arguments: An 8-byte aligned pointer to the memory,
+** the number of bytes in the memory buffer, and the minimum allocation size.
+** If the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. If the
+** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
+** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.
+** The first pointer (the memory pointer) must be aligned to an 8-byte
+** boundary or subsequent behavior of SQLite will be undefined.</dd>
+**
+** <dt>SQLITE_CONFIG_MUTEX</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The argument specifies
+** alternative low-level mutex routines to be used in place
+** the mutex routines built into SQLite.</dd>
+**
+** <dt>SQLITE_CONFIG_GETMUTEX</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example.</dd>
+**
+** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
+** <dd>This option takes two arguments that determine the default
+** memory allocation lookaside optimization. The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection. This option sets the
+** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
+** verb to [sqlite3_db_config()] can be used to change the lookaside
+** configuration on individual connections.</dd>
+**
+** <dt>SQLITE_CONFIG_PCACHE</dt>
+** <dd>This option takes a single argument which is a pointer to
+** an [sqlite3_pcache_methods] object. This object specifies the interface
+** to a custom page cache implementation. SQLite makes a copy of the
+** object and uses it for page cache memory allocations.</dd>
+**
+** <dt>SQLITE_CONFIG_GETPCACHE</dt>
+** <dd>This option takes a single argument which is a pointer to an
+** [sqlite3_pcache_methods] object. SQLite copies of the current
+** page cache implementation into that object.</dd>
+**
+** </dl>
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+#define SQLITE_CONFIG_PCACHE 14 /* sqlite3_pcache_methods* */
+#define SQLITE_CONFIG_GETPCACHE 15 /* sqlite3_pcache_methods* */
+
+/*
+** CAPI3REF: Configuration Options {H10170} <S20000>
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
+** <dd>This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to an memory buffer to use for lookaside memory.
+** The first argument may be NULL in which case SQLite will allocate the
+** lookaside buffer itself using [sqlite3_malloc()]. The second argument is the
+** size of each lookaside buffer slot and the third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments. The buffer
+** must be aligned to an 8-byte boundary. If the second argument is not
+** a multiple of 8, it is internally rounded down to the next smaller
+** multiple of 8. See also: [SQLITE_CONFIG_LOOKASIDE]</dd>
+**
+** </dl>
+*/
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes {H12200} <S10700>
+**
+** The sqlite3_extended_result_codes() routine enables or disables the
+** [extended result codes] feature of SQLite. The extended result
+** codes are disabled by default for historical compatibility considerations.
+**
+** Requirements:
+** [H12201] [H12202]
*/
-sqlite_int64 sqlite3_last_insert_rowid(sqlite3*);
+SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
/*
+** CAPI3REF: Last Insert Rowid {H12220} <S10700>
+**
+** Each entry in an SQLite table has a unique 64-bit signed
+** integer key called the [ROWID | "rowid"]. The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. If
+** the table has a column of type [INTEGER PRIMARY KEY] then that column
+** is another alias for the rowid.
+**
+** This routine returns the [rowid] of the most recent
+** successful [INSERT] into the database from the [database connection]
+** in the first argument. If no successful [INSERT]s
+** have ever occurred on that database connection, zero is returned.
+**
+** If an [INSERT] occurs within a trigger, then the [rowid] of the inserted
+** row is returned by this routine as long as the trigger is running.
+** But once the trigger terminates, the value returned by this routine
+** reverts to the last value inserted before the trigger fired.
+**
+** An [INSERT] that fails due to a constraint violation is not a
+** successful [INSERT] and does not change the value returned by this
+** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.
+**
+** For the purposes of this routine, an [INSERT] is considered to
+** be successful even if it is subsequently rolled back.
+**
+** Requirements:
+** [H12221] [H12223]
+**
+** If a separate thread performs a new [INSERT] on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert [rowid],
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert [rowid].
+*/
+SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
+
+/*
+** CAPI3REF: Count The Number Of Rows Modified {H12240} <S10600>
+**
** This function returns the number of database rows that were changed
-** (or inserted or deleted) by the most recent SQL statement. Only
-** changes that are directly specified by the INSERT, UPDATE, or
-** DELETE statement are counted. Auxiliary changes caused by
-** triggers are not counted. Within the body of a trigger, however,
-** the sqlite3_changes() API can be called to find the number of
+** or inserted or deleted by the most recently completed SQL statement
+** on the [database connection] specified by the first parameter.
+** Only changes that are directly specified by the [INSERT], [UPDATE],
+** or [DELETE] statement are counted. Auxiliary changes caused by
+** triggers are not counted. Use the [sqlite3_total_changes()] function
+** to find the total number of changes including changes caused by triggers.
+**
+** Changes to a view that are simulated by an [INSTEAD OF trigger]
+** are not counted. Only real table changes are counted.
+**
+** A "row change" is a change to a single row of a single table
+** caused by an INSERT, DELETE, or UPDATE statement. Rows that
+** are changed as side effects of [REPLACE] constraint resolution,
+** rollback, ABORT processing, [DROP TABLE], or by any other
+** mechanisms do not count as direct row changes.
+**
+** A "trigger context" is a scope of execution that begins and
+** ends with the script of a [CREATE TRIGGER | trigger].
+** Most SQL statements are
+** evaluated outside of any trigger. This is the "top level"
+** trigger context. If a trigger fires from the top level, a
+** new trigger context is entered for the duration of that one
+** trigger. Subtriggers create subcontexts for their duration.
+**
+** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
+** not create a new trigger context.
+**
+** This function returns the number of direct row changes in the
+** most recent INSERT, UPDATE, or DELETE statement within the same
+** trigger context.
+**
+** Thus, when called from the top level, this function returns the
+** number of changes in the most recent INSERT, UPDATE, or DELETE
+** that also occurred at the top level. Within the body of a trigger,
+** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
-** statement within the body of the trigger.
-**
-** All changes are counted, even if they were later undone by a
-** ROLLBACK or ABORT. Except, changes associated with creating and
-** dropping tables are not counted.
-**
-** If a callback invokes sqlite3_exec() or sqlite3_step() recursively,
-** then the changes in the inner, recursive call are counted together
-** with the changes in the outer call.
-**
-** SQLite implements the command "DELETE FROM table" without a WHERE clause
-** by dropping and recreating the table. (This is much faster than going
-** through and deleting individual elements form the table.) Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-*/
-int sqlite3_changes(sqlite3*);
-
-/*
-** This function returns the number of database rows that have been
-** modified by INSERT, UPDATE or DELETE statements since the database handle
-** was opened. This includes UPDATE, INSERT and DELETE statements executed
-** as part of trigger programs. All changes are counted as soon as the
-** statement that makes them is completed (when the statement handle is
-** passed to sqlite3_reset() or sqlite_finalise()).
-**
-** SQLite implements the command "DELETE FROM table" without a WHERE clause
-** by dropping and recreating the table. (This is much faster than going
-** through and deleting individual elements form the table.) Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-*/
-int sqlite3_total_changes(sqlite3*);
-
-/* This function causes any pending database operation to abort and
-** return at its earliest opportunity. This routine is typically
+** statement within the body of the same trigger.
+** However, the number returned does not include changes
+** caused by subtriggers since those have their own context.
+**
+** See also the [sqlite3_total_changes()] interface and the
+** [count_changes pragma].
+**
+** Requirements:
+** [H12241] [H12243]
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and not meaningful.
+*/
+SQLITE_API int sqlite3_changes(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified {H12260} <S10600>
+**
+** This function returns the number of row changes caused by [INSERT],
+** [UPDATE] or [DELETE] statements since the [database connection] was opened.
+** The count includes all changes from all
+** [CREATE TRIGGER | trigger] contexts. However,
+** the count does not include changes used to implement [REPLACE] constraints,
+** do rollbacks or ABORT processing, or [DROP TABLE] processing. The
+** count does not include rows of views that fire an [INSTEAD OF trigger],
+** though if the INSTEAD OF trigger makes changes of its own, those changes
+** are counted.
+** The changes are counted as soon as the statement that makes them is
+** completed (when the statement handle is passed to [sqlite3_reset()] or
+** [sqlite3_finalize()]).
+**
+** See also the [sqlite3_changes()] interface and the
+** [count_changes pragma].
+**
+** Requirements:
+** [H12261] [H12263]
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query {H12270} <S30500>
+**
+** This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"
** or Ctrl-C where the user wants a long query operation to halt
** immediately.
**
-** It is safe to call this routine from a different thread that the
-** thread that is currently running the database operation.
+** It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a [database connection] that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
+** The sqlite3_interrupt(D) call is in effect until all currently running
+** SQL statements on [database connection] D complete. Any new SQL statements
+** that are started after the sqlite3_interrupt() call and before the
+** running statements reaches zero are interrupted as if they had been
+** running prior to the sqlite3_interrupt() call. New SQL statements
+** that are started after the running statement count reaches zero are
+** not effected by the sqlite3_interrupt().
+** A call to sqlite3_interrupt(D) that occurs when there are no running
+** SQL statements is a no-op and has no effect on SQL statements
+** that are started after the sqlite3_interrupt() call returns.
+**
+** Requirements:
+** [H12271] [H12272]
+**
+** If the database connection closes while [sqlite3_interrupt()]
+** is running then bad things will likely happen.
*/
-void sqlite3_interrupt(sqlite3*);
-
+SQLITE_API void sqlite3_interrupt(sqlite3*);
-/* These functions return true if the given input string comprises
-** one or more complete SQL statements. For the sqlite3_complete() call,
-** the parameter must be a nul-terminated UTF-8 string. For
-** sqlite3_complete16(), a nul-terminated machine byte order UTF-16 string
-** is required.
-**
-** This routine is useful for command-line input to see of the user has
-** entered a complete statement of SQL or if the current statement needs
-** to be continued on the next line. The algorithm is simple. If the
-** last token other than spaces and comments is a semicolon, then return
-** true. Actually, the algorithm is a little more complicated than that
-** in order to deal with triggers, but the basic idea is the same: the
-** statement is not complete unless it ends in a semicolon.
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} <S70200>
+**
+** These routines are useful during command-line input to determine if the
+** currently entered text seems to form a complete SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. These routines return 1 if the input string
+** appears to be a complete SQL statement. A statement is judged to be
+** complete if it ends with a semicolon token and is not a prefix of a
+** well-formed CREATE TRIGGER statement. Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator. Whitespace
+** and comments that follow the final semicolon are ignored.
+**
+** These routines return 0 if the statement is incomplete. If a
+** memory allocation fails, then SQLITE_NOMEM is returned.
+**
+** These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
+**
+** If SQLite has not been initialized using [sqlite3_initialize()] prior
+** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
+** automatically by sqlite3_complete16(). If that initialization fails,
+** then the return value from sqlite3_complete16() will be non-zero
+** regardless of whether or not the input SQL is complete.
+**
+** Requirements: [H10511] [H10512]
+**
+** The input to [sqlite3_complete()] must be a zero-terminated
+** UTF-8 string.
+**
+** The input to [sqlite3_complete16()] must be a zero-terminated
+** UTF-16 string in native byte order.
*/
-int sqlite3_complete(const char *sql);
-int sqlite3_complete16(const void *sql);
+SQLITE_API int sqlite3_complete(const char *sql);
+SQLITE_API int sqlite3_complete16(const void *sql);
/*
-** This routine identifies a callback function that is invoked
-** whenever an attempt is made to open a database table that is
-** currently locked by another process or thread. If the busy callback
-** is NULL, then sqlite3_exec() returns SQLITE_BUSY immediately if
-** it finds a locked table. If the busy callback is not NULL, then
-** sqlite3_exec() invokes the callback with two arguments. The
-** first argument to the handler is a copy of the void* pointer which
-** is the third argument to this routine. The second argument to
-** the handler is the number of times that the busy handler has
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {H12310} <S40400>
+**
+** This routine sets a callback function that might be invoked whenever
+** an attempt is made to open a database table that another thread
+** or process has locked.
+**
+** If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
+** is returned immediately upon encountering the lock. If the busy callback
+** is not NULL, then the callback will be invoked with two arguments.
+**
+** The first argument to the handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). The second argument to
+** the handler callback is the number of times that the busy handler has
** been invoked for this locking event. If the
-** busy callback returns 0, then sqlite3_exec() immediately returns
-** SQLITE_BUSY. If the callback returns non-zero, then sqlite3_exec()
-** tries to open the table again and the cycle repeats.
-**
-** The presence of a busy handler does not guarantee that
-** it will be invoked when there is lock contention.
-** If SQLite determines that invoking the busy handler could result in
-** a deadlock, it will return SQLITE_BUSY instead.
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
+** If the callback returns non-zero, then another attempt
+** is made to open the database for reading and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
@@ -351,174 +1503,493 @@ int sqlite3_complete16(const void *sql);
** because it is blocked by the second and the second process cannot
** proceed because it is blocked by the first. If both processes
** invoke the busy handlers, neither will make any progress. Therefore,
-** SQLite returns SQLITE_BUSY for the first process, hoping that this
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
** will induce the first process to release its read lock and allow
** the second process to proceed.
**
** The default busy callback is NULL.
**
-** Sqlite is re-entrant, so the busy handler may start a new query.
-** (It is not clear why anyone would every want to do this, but it
-** is allowed, in theory.) But the busy handler may not close the
-** database. Closing the database from a busy handler will delete
-** data structures out from under the executing query and will
-** probably result in a coredump.
+** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
+** when SQLite is in the middle of a large transaction where all the
+** changes will not fit into the in-memory cache. SQLite will
+** already hold a RESERVED lock on the database file, but it needs
+** to promote this lock to EXCLUSIVE so that it can spill cache
+** pages into the database file without harm to concurrent
+** readers. If it is unable to promote the lock, then the in-memory
+** cache will be left in an inconsistent state and so the error
+** code is promoted from the relatively benign [SQLITE_BUSY] to
+** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
+** forces an automatic rollback of the changes. See the
+** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
+** CorruptionFollowingBusyError</a> wiki page for a discussion of why
+** this is important.
+**
+** There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler. Note that calling [sqlite3_busy_timeout()]
+** will also set or clear the busy handler.
+**
+** The busy callback should not take any actions which modify the
+** database connection that invoked the busy handler. Any such actions
+** result in undefined behavior.
+**
+** Requirements:
+** [H12311] [H12312] [H12314] [H12316] [H12318]
+**
+** A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
*/
-int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
+SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
/*
-** This routine sets a busy handler that sleeps for a while when a
-** table is locked. The handler will sleep multiple times until
-** at least "ms" milleseconds of sleeping have been done. After
-** "ms" milleseconds of sleeping, the handler returns 0 which
-** causes sqlite3_exec() to return SQLITE_BUSY.
+** CAPI3REF: Set A Busy Timeout {H12340} <S40410>
+**
+** This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. {H12343} After "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
**
** Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
+**
+** There can only be a single busy handler for a particular
+** [database connection] any any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.
+**
+** Requirements:
+** [H12341] [H12343] [H12344]
*/
-int sqlite3_busy_timeout(sqlite3*, int ms);
+SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
/*
-** This next routine is really just a wrapper around sqlite3_exec().
-** Instead of invoking a user-supplied callback for each row of the
-** result, this routine remembers each row of the result in memory
-** obtained from malloc(), then returns all of the result after the
-** query has finished.
+** CAPI3REF: Convenience Routines For Running Queries {H12370} <S10000>
**
-** As an example, suppose the query result where this table:
+** Definition: A <b>result table</b> is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
+**
+** A result table might consist of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
+**
+** As an example of the result table format, suppose a query result
+** is as follows:
+**
+** <blockquote><pre>
** Name | Age
** -----------------------
** Alice | 43
** Bob | 28
** Cindy | 21
-**
-** If the 3rd argument were &azResult then after the function returns
-** azResult will contain the following data:
-**
-** azResult[0] = "Name";
-** azResult[1] = "Age";
-** azResult[2] = "Alice";
-** azResult[3] = "43";
-** azResult[4] = "Bob";
-** azResult[5] = "28";
-** azResult[6] = "Cindy";
-** azResult[7] = "21";
-**
-** Notice that there is an extra row of data containing the column
-** headers. But the *nrow return value is still 3. *ncolumn is
-** set to 2. In general, the number of values inserted into azResult
-** will be ((*nrow) + 1)*(*ncolumn).
-**
-** After the calling function has finished using the result, it should
-** pass the result data pointer to sqlite3_free_table() in order to
-** release the memory that was malloc-ed. Because of the way the
-** malloc() happens, the calling function must not try to call
-** free() directly. Only sqlite3_free_table() is able to release
-** the memory properly and safely.
-**
-** The return value of this routine is the same as from sqlite3_exec().
-*/
-int sqlite3_get_table(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be executed */
- char ***resultp, /* Result written to a char *[] that this points to */
- int *nrow, /* Number of result rows written here */
- int *ncolumn, /* Number of result columns written here */
- char **errmsg /* Error msg written here */
-);
-
-/*
-** Call this routine to free the memory that sqlite3_get_table() allocated.
+** </pre></blockquote>
+**
+** There are two column (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array names azResult. Then azResult holds this content:
+**
+** <blockquote><pre>
+** azResult&#91;0] = "Name";
+** azResult&#91;1] = "Age";
+** azResult&#91;2] = "Alice";
+** azResult&#91;3] = "43";
+** azResult&#91;4] = "Bob";
+** azResult&#91;5] = "28";
+** azResult&#91;6] = "Cindy";
+** azResult&#91;7] = "21";
+** </pre></blockquote>
+**
+** The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter. It returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the calling function has finished using the result, it should
+** pass the pointer to the result table to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or [sqlite3_errmsg()].
+**
+** Requirements:
+** [H12371] [H12373] [H12374] [H12376] [H12379] [H12382]
*/
-void sqlite3_free_table(char **result);
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
+);
+SQLITE_API void sqlite3_free_table(char **result);
/*
-** The following routines are variants of the "sprintf()" from the
-** standard C library. The resulting string is written into memory
-** obtained from malloc() so that there is never a possiblity of buffer
-** overflow. These routines also implement some additional formatting
+** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
+**
+** These routines are work-alikes of the "printf()" family of functions
+** from the standard C library.
+**
+** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. Both routines return a
+** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** In sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf(). This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer. We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
+** All of the usual printf() formatting options apply. In addition, there
+** is are "%q", "%Q", and "%z" options.
**
-** The strings returned by these routines should be freed by calling
-** sqlite3_free().
-**
-** All of the usual printf formatting options apply. In addition, there
-** is a "%q" option. %q works like %s in that it substitutes a null-terminated
+** The %q option works like %s in that it substitutes a null-terminated
** string from the argument list. But %q also doubles every '\'' character.
** %q is designed for use inside a string literal. By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**
-** For example, so some string variable contains text as follows:
+** For example, assume the string variable zText contains text as follows:
**
-** char *zText = "It's a happy day!";
+** <blockquote><pre>
+** char *zText = "It's a happy day!";
+** </pre></blockquote>
**
-** We can use this text in an SQL statement as follows:
+** One can use this text in an SQL statement as follows:
**
-** char *z = sqlite3_mprintf("INSERT INTO TABLES('%q')", zText);
-** sqlite3_exec(db, z, callback1, 0, 0);
-** sqlite3_free(z);
+** <blockquote><pre>
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+** </pre></blockquote>
**
** Because the %q format string is used, the '\'' character in zText
** is escaped and the SQL generated is as follows:
**
-** INSERT INTO table1 VALUES('It''s a happy day!')
+** <blockquote><pre>
+** INSERT INTO table1 VALUES('It''s a happy day!')
+** </pre></blockquote>
**
** This is correct. Had we used %s instead of %q, the generated SQL
** would have looked like this:
**
-** INSERT INTO table1 VALUES('It's a happy day!');
+** <blockquote><pre>
+** INSERT INTO table1 VALUES('It's a happy day!');
+** </pre></blockquote>
+**
+** This second example is an SQL syntax error. As a general rule you should
+** always use %q instead of %s when inserting text into a string literal.
+**
+** The %Q option works like %q except it also adds single quotes around
+** the outside of the total string. Additionally, if the parameter in the
+** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
+** single quotes) in place of the %Q option. So, for example, one could say:
+**
+** <blockquote><pre>
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+** </pre></blockquote>
+**
+** The code above will render a correct SQL statement in the zSQL
+** variable even if the zText variable is a NULL pointer.
+**
+** The "%z" formatting option works exactly like "%s" with the
+** addition that after the string has been read and copied into
+** the result, [sqlite3_free()] is called on the input string. {END}
**
-** This second example is an SQL syntax error. As a general rule you
-** should always use %q instead of %s when inserting text into a string
-** literal.
+** Requirements:
+** [H17403] [H17406] [H17407]
*/
-char *sqlite3_mprintf(const char*,...);
-char *sqlite3_vmprintf(const char*, va_list);
-char *sqlite3_snprintf(int,char*,const char*, ...);
+SQLITE_API char *sqlite3_mprintf(const char*,...);
+SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
/*
-** SQLite uses its own memory allocator. On many installations, this
-** memory allocator is identical to the standard malloc()/realloc()/free()
-** and can be used interchangable. On others, the implementations are
-** different. For maximum portability, it is best not to mix calls
-** to the standard malloc/realloc/free with the sqlite versions.
+** CAPI3REF: Memory Allocation Subsystem {H17300} <S20000>
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific VFS implementation. The
+** Windows VFS uses native malloc() and free() for some operations.
+**
+** The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_realloc().
+**
+** The sqlite3_realloc() interface attempts to resize a
+** prior memory allocation to be at least N bytes, where N is the
+** second parameter. The memory allocation to be resized is the first
+** parameter. If the first parameter to sqlite3_realloc()
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
+** If the second parameter to sqlite3_realloc() is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
+** sqlite3_realloc() returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if sufficient memory is unavailable.
+** If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc() and the prior allocation is freed.
+** If sqlite3_realloc() returns NULL, then the prior allocation
+** is not freed.
+**
+** The memory returned by sqlite3_malloc() and sqlite3_realloc()
+** is always aligned to at least an 8 byte boundary. {END}
+**
+** The default implementation of the memory allocation subsystem uses
+** the malloc(), realloc() and free() provided by the standard C library.
+** {H17382} However, if SQLite is compiled with the
+** SQLITE_MEMORY_SIZE=<i>NNN</i> C preprocessor macro (where <i>NNN</i>
+** is an integer), then SQLite create a static array of at least
+** <i>NNN</i> bytes in size and uses that array for all of its dynamic
+** memory allocation needs. {END} Additional memory allocator options
+** may be added in future releases.
+**
+** In SQLite version 3.5.0 and 3.5.1, it was possible to define
+** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
+** implementation of these routines to be omitted. That capability
+** is no longer provided. Only built-in memory allocators can be used.
+**
+** The Windows OS interface layer calls
+** the system malloc() and free() directly when converting
+** filenames between the UTF-8 encoding used by SQLite
+** and whatever filename encoding is used by the particular Windows
+** installation. Memory allocation errors are detected, but
+** they are reported back as [SQLITE_CANTOPEN] or
+** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
+**
+** Requirements:
+** [H17303] [H17304] [H17305] [H17306] [H17310] [H17312] [H17315] [H17318]
+** [H17321] [H17322] [H17323]
+**
+** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
+**
+** The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
*/
-void *sqlite3_malloc(int);
-void *sqlite3_realloc(void*, int);
-void sqlite3_free(void*);
+SQLITE_API void *sqlite3_malloc(int);
+SQLITE_API void *sqlite3_realloc(void*, int);
+SQLITE_API void sqlite3_free(void*);
-#ifndef SQLITE_OMIT_AUTHORIZATION
/*
-** This routine registers a callback with the SQLite library. The
-** callback is invoked (at compile-time, not at run-time) for each
-** attempt to access a column of a table in the database. The callback
-** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire
-** SQL statement should be aborted with an error and SQLITE_IGNORE
-** if the column should be treated as a NULL value.
+** CAPI3REF: Memory Allocator Statistics {H17370} <S30210>
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** routines, which form the built-in memory allocation subsystem.
+**
+** Requirements:
+** [H17371] [H17373] [H17374] [H17375]
*/
-int sqlite3_set_authorizer(
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator {H17390} <S20000>
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random [ROWID | ROWIDs] when inserting new records into a table that
+** already uses the largest possible [ROWID]. The PRNG is also used for
+** the build-in random() and randomblob() SQL functions. This interface allows
+** applications to access the same PRNG for other purposes.
+**
+** A call to this routine stores N bytes of randomness into buffer P.
+**
+** The first time this routine is invoked (either internally or by
+** the application) the PRNG is seeded using randomness obtained
+** from the xRandomness method of the default [sqlite3_vfs] object.
+** On all subsequent invocations, the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+**
+** Requirements:
+** [H17392]
+*/
+SQLITE_API void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks {H12500} <S70100>
+**
+** This routine registers a authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied.
+**
+** The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. The third through sixth parameters
+** to the callback are zero-terminated strings that contain additional
+** details about the action to be authorized.
+**
+** If the action code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+** If the action code is [SQLITE_DELETE] and the callback returns
+** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
+** [truncate optimization] is disabled and all rows are deleted individually.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call. Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** The authorizer callback must not do anything that will modify
+** the database connection that invoked the authorizer callback.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** When [sqlite3_prepare_v2()] is used to prepare a statement, the
+** statement might be re-prepared during [sqlite3_step()] due to a
+** schema change. Hence, the application should ensure that the
+** correct authorizer callback remains in place during the [sqlite3_step()].
+**
+** Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()], unless
+** as stated in the previous paragraph, sqlite3_step() invokes
+** sqlite3_prepare_v2() to reprepare a statement after a schema change.
+**
+** Requirements:
+** [H12501] [H12502] [H12503] [H12504] [H12505] [H12506] [H12507] [H12510]
+** [H12511] [H12512] [H12520] [H12521] [H12522]
+*/
+SQLITE_API int sqlite3_set_authorizer(
sqlite3*,
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
void *pUserData
);
-#endif
/*
-** The second parameter to the access authorization function above will
-** be one of the values below. These values signify what kind of operation
-** is to be authorized. The 3rd and 4th parameters to the authorization
-** function will be parameters or NULL depending on which of the following
-** codes is used as the second parameter. The 5th parameter is the name
-** of the database ("main", "temp", etc.) if applicable. The 6th parameter
+** CAPI3REF: Authorizer Return Codes {H12590} <H12500>
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes {H12550} <H12500>
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorize certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable. The 6th parameter to the authorizer callback
** is the name of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
-** input SQL code.
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
**
-** Arg-3 Arg-4
+** Requirements:
+** [H12551] [H12552] [H12553] [H12554]
*/
-#define SQLITE_COPY 0 /* Table Name File Name */
+/******************************************* 3rd ************ 4th ***********/
#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
@@ -540,7 +2011,7 @@ int sqlite3_set_authorizer(
#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
#define SQLITE_READ 20 /* Table Name Column Name */
#define SQLITE_SELECT 21 /* NULL NULL */
-#define SQLITE_TRANSACTION 22 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* Operation NULL */
#define SQLITE_UPDATE 23 /* Table Name Column Name */
#define SQLITE_ATTACH 24 /* Filename NULL */
#define SQLITE_DETACH 25 /* Database Name NULL */
@@ -549,418 +2020,916 @@ int sqlite3_set_authorizer(
#define SQLITE_ANALYZE 28 /* Table Name NULL */
#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
-#define SQLITE_FUNCTION 31 /* Function Name NULL */
+#define SQLITE_FUNCTION 31 /* NULL Function Name */
+#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
+#define SQLITE_COPY 0 /* No longer used */
/*
-** The return value of the authorization function should be one of the
-** following constants:
+** CAPI3REF: Tracing And Profiling Functions {H12280} <S60400>
+** EXPERIMENTAL
+**
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
+**
+** The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** The callback returns a UTF-8 rendering of the SQL statement text
+** as the statement first begins executing. Additional callbacks occur
+** as each triggered subprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.
+**
+** The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run.
+**
+** Requirements:
+** [H12281] [H12282] [H12283] [H12284] [H12285] [H12287] [H12288] [H12289]
+** [H12290]
*/
-/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */
-#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
-#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
+SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
/*
-** Register a function for tracing SQL command evaluation. The function
-** registered by sqlite3_trace() is invoked at the first sqlite3_step()
-** for the evaluation of an SQL statement. The function registered by
-** sqlite3_profile() runs at the end of each SQL statement and includes
-** information on how long that statement ran.
+** CAPI3REF: Query Progress Callbacks {H12910} <S60400>
**
-** The sqlite3_profile() API is currently considered experimental and
-** is subject to change.
-*/
-void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
-void *sqlite3_profile(sqlite3*,
- void(*xProfile)(void*,const char*,sqlite_uint64), void*);
-
-/*
-** This routine configures a callback function - the progress callback - that
-** is invoked periodically during long running calls to sqlite3_exec(),
-** sqlite3_step() and sqlite3_get_table(). An example use for this API is to
-** keep a GUI updated during a large query.
-**
-** The progress callback is invoked once for every N virtual machine opcodes,
-** where N is the second argument to this function. The progress callback
-** itself is identified by the third argument to this function. The fourth
-** argument to this function is a void pointer passed to the progress callback
-** function each time it is invoked.
-**
-** If a call to sqlite3_exec(), sqlite3_step() or sqlite3_get_table() results
-** in less than N opcodes being executed, then the progress callback is not
-** invoked.
-**
-** To remove the progress callback altogether, pass NULL as the third
-** argument to this function.
-**
-** If the progress callback returns a result other than 0, then the current
-** query is immediately terminated and any database changes rolled back. If the
-** query was part of a larger transaction, then the transaction is not rolled
-** back and remains active. The sqlite3_exec() call returns SQLITE_ABORT.
+** This routine configures a callback function - the
+** progress callback - that is invoked periodically during long
+** running calls to [sqlite3_exec()], [sqlite3_step()] and
+** [sqlite3_get_table()]. An example use for this
+** interface is to keep a GUI updated during a large query.
**
-******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
-*/
-void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
-
-/*
-** Register a callback function to be invoked whenever a new transaction
-** is committed. The pArg argument is passed through to the callback.
-** callback. If the callback function returns non-zero, then the commit
-** is converted into a rollback.
+** If the progress callback returns non-zero, the operation is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI progress dialog box.
**
-** If another function was previously registered, its pArg value is returned.
-** Otherwise NULL is returned.
+** The progress handler must not do anything that will modify
+** the database connection that invoked the progress handler.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
**
-** Registering a NULL function disables the callback.
+** Requirements:
+** [H12911] [H12912] [H12913] [H12914] [H12915] [H12916] [H12917] [H12918]
**
-******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
*/
-void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
/*
-** Open the sqlite database file "filename". The "filename" is UTF-8
-** encoded for sqlite3_open() and UTF-16 encoded in the native byte order
-** for sqlite3_open16(). An sqlite3* handle is returned in *ppDb, even
-** if an error occurs. If the database is opened (or created) successfully,
-** then SQLITE_OK is returned. Otherwise an error code is returned. The
-** sqlite3_errmsg() or sqlite3_errmsg16() routines can be used to obtain
+** CAPI3REF: Opening A New Database Connection {H12700} <S40200>
+**
+** These routines open an SQLite database file whose name is given by the
+** filename argument. The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object. If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned. The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error.
**
-** If the database file does not exist, then a new database is created.
-** The encoding for the database is UTF-8 if sqlite3_open() is called and
-** UTF-16 if sqlite3_open16 is used.
-**
-** Whether or not an error occurs when it is opened, resources associated
-** with the sqlite3* handle should be released by passing it to
-** sqlite3_close() when it is no longer required.
+** The default encoding for the database will be UTF-8 if
+** sqlite3_open() or sqlite3_open_v2() is called and
+** UTF-16 in the native byte order if sqlite3_open16() is used.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
+**
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. The flags parameter can take one of
+** the following three values, optionally combined with the
+** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
+** and/or [SQLITE_OPEN_PRIVATECACHE] flags:
+**
+** <dl>
+** <dt>[SQLITE_OPEN_READONLY]</dt>
+** <dd>The database is opened in read-only mode. If the database does not
+** already exist, an error is returned.</dd>
+**
+** <dt>[SQLITE_OPEN_READWRITE]</dt>
+** <dd>The database is opened for reading and writing if possible, or reading
+** only if the file is write protected by the operating system. In either
+** case the database must already exist, otherwise an error is returned.</dd>
+**
+** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
+** <dd>The database is opened for reading and writing, and is creates it if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().</dd>
+** </dl>
+**
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** combinations shown above or one of the combinations shown above combined
+** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
+** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
+** then the behavior is undefined.
+**
+** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
+** opens in the multi-thread [threading mode] as long as the single-thread
+** mode has not been set at compile-time or start-time. If the
+** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
+** in the serialized [threading mode] unless single-thread was
+** previously selected at compile-time or start-time.
+** The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
+** eligible to use [shared cache mode], regardless of whether or not shared
+** cache is enabled using [sqlite3_enable_shared_cache()]. The
+** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
+** participate in [shared cache mode] even if it is enabled.
+**
+** If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** If the filename is an empty string, then a private, temporary
+** on-disk database will be created. This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
+**
+** <b>Note to Windows users:</b> The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** sqlite3_open() or sqlite3_open_v2().
+**
+** Requirements:
+** [H12701] [H12702] [H12703] [H12704] [H12706] [H12707] [H12709] [H12711]
+** [H12712] [H12713] [H12714] [H12717] [H12719] [H12721] [H12723]
*/
-int sqlite3_open(
+SQLITE_API int sqlite3_open(
const char *filename, /* Database filename (UTF-8) */
sqlite3 **ppDb /* OUT: SQLite db handle */
);
-int sqlite3_open16(
+SQLITE_API int sqlite3_open16(
const void *filename, /* Database filename (UTF-16) */
sqlite3 **ppDb /* OUT: SQLite db handle */
);
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
/*
-** Return the error code for the most recent sqlite3_* API call associated
-** with sqlite3 handle 'db'. SQLITE_OK is returned if the most recent
-** API call was successful.
-**
-** Calls to many sqlite3_* functions set the error code and string returned
-** by sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16()
-** (overwriting the previous values). Note that calls to sqlite3_errcode(),
-** sqlite3_errmsg() and sqlite3_errmsg16() themselves do not affect the
-** results of future invocations.
-**
-** Assuming no other intervening sqlite3_* API calls are made, the error
-** code returned by this function is associated with the same error as
-** the strings returned by sqlite3_errmsg() and sqlite3_errmsg16().
+** CAPI3REF: Error Codes And Messages {H12800} <S60200>
+**
+** The sqlite3_errcode() interface returns the numeric [result code] or
+** [extended result code] for the most recent failed sqlite3_* API call
+** associated with a [database connection]. If a prior API call failed
+** but the most recent API call succeeded, the return value from
+** sqlite3_errcode() is undefined. The sqlite3_extended_errcode()
+** interface is the same except that it always returns the
+** [extended result code] even when extended result codes are
+** disabled.
+**
+** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
+** Memory to hold the error message string is managed internally.
+** The application does not need to worry about freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.
+**
+** When the serialized [threading mode] is in use, it might be the
+** case that a second error occurs on a separate thread in between
+** the time of the first error and the call to these interfaces.
+** When that happens, the second error will be reported since these
+** interfaces always report the most recent result. To avoid
+** this, each thread can obtain exclusive use of the [database connection] D
+** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
+** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
+** all calls to the interfaces listed here are completed.
+**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+**
+** Requirements:
+** [H12801] [H12802] [H12803] [H12807] [H12808] [H12809]
*/
-int sqlite3_errcode(sqlite3 *db);
+SQLITE_API int sqlite3_errcode(sqlite3 *db);
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
+SQLITE_API const char *sqlite3_errmsg(sqlite3*);
+SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
/*
-** Return a pointer to a UTF-8 encoded string describing in english the
-** error condition for the most recent sqlite3_* API call. The returned
-** string is always terminated by an 0x00 byte.
-**
-** The string "not an error" is returned when the most recent API call was
-** successful.
+** CAPI3REF: SQL Statement Object {H13000} <H13010>
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represents a single SQL statement.
+** This object is variously known as a "prepared statement" or a
+** "compiled SQL statement" or simply as a "statement".
+**
+** The life of a statement object goes something like this:
+**
+** <ol>
+** <li> Create the object using [sqlite3_prepare_v2()] or a related
+** function.
+** <li> Bind values to [host parameters] using the sqlite3_bind_*()
+** interfaces.
+** <li> Run the SQL by calling [sqlite3_step()] one or more times.
+** <li> Reset the statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+** <li> Destroy the object using [sqlite3_finalize()].
+** </ol>
+**
+** Refer to documentation on individual methods above for additional
+** information.
*/
-const char *sqlite3_errmsg(sqlite3*);
+typedef struct sqlite3_stmt sqlite3_stmt;
/*
-** Return a pointer to a UTF-16 native byte order encoded string describing
-** in english the error condition for the most recent sqlite3_* API call.
-** The returned string is always terminated by a pair of 0x00 bytes.
-**
-** The string "not an error" is returned when the most recent API call was
-** successful.
+** CAPI3REF: Run-time Limits {H12760} <S20600>
+**
+** This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct. The function returns the old limit.
+**
+** If the new limit is a negative number, the limit is unchanged.
+** For the limit category of SQLITE_LIMIT_XYZ there is a
+** [limits | hard upper bound]
+** set by a compile-time C preprocessor macro named
+** [limits | SQLITE_MAX_XYZ].
+** (The "_LIMIT_" in the name is changed to "_MAX_".)
+** Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper limit.
+**
+** Run time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** web browser that has its own databases for storing history and
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** New run-time limit categories may be added in future releases.
+**
+** Requirements:
+** [H12762] [H12766] [H12769]
*/
-const void *sqlite3_errmsg16(sqlite3*);
+SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
/*
-** An instance of the following opaque structure is used to represent
-** a compiled SQL statment.
+** CAPI3REF: Run-Time Limit Categories {H12790} <H12760>
+** KEYWORDS: {limit category} {limit categories}
+**
+** These constants define various performance limits
+** that can be lowered at run-time using [sqlite3_limit()].
+** The synopsis of the meanings of the various limits is shown below.
+** Additional information is available at [limits | Limits in SQLite].
+**
+** <dl>
+** <dt>SQLITE_LIMIT_LENGTH</dt>
+** <dd>The maximum size of any string or BLOB or table row.<dd>
+**
+** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
+** <dd>The maximum length of an SQL statement.</dd>
+**
+** <dt>SQLITE_LIMIT_COLUMN</dt>
+** <dd>The maximum number of columns in a table definition or in the
+** result set of a [SELECT] or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.</dd>
+**
+** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
+** <dd>The maximum depth of the parse tree on any expression.</dd>
+**
+** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
+** <dd>The maximum number of terms in a compound SELECT statement.</dd>
+**
+** <dt>SQLITE_LIMIT_VDBE_OP</dt>
+** <dd>The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement.</dd>
+**
+** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
+** <dd>The maximum number of arguments on a function.</dd>
+**
+** <dt>SQLITE_LIMIT_ATTACHED</dt>
+** <dd>The maximum number of [ATTACH | attached databases].</dd>
+**
+** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
+** <dd>The maximum length of the pattern argument to the [LIKE] or
+** [GLOB] operators.</dd>
+**
+** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
+** <dd>The maximum number of variables in an SQL statement that can
+** be bound.</dd>
+**
+** <dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
+** <dd>The maximum depth of recursion for triggers.</dd>
+** </dl>
*/
-typedef struct sqlite3_stmt sqlite3_stmt;
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+#define SQLITE_LIMIT_TRIGGER_DEPTH 10
/*
+** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
+** KEYWORDS: {SQL statement compiler}
+**
** To execute an SQL query, it must first be compiled into a byte-code
-** program using one of the following routines. The only difference between
-** them is that the second argument, specifying the SQL statement to
-** compile, is assumed to be encoded in UTF-8 for the sqlite3_prepare()
-** function and UTF-16 for sqlite3_prepare16().
-**
-** The first parameter "db" is an SQLite database handle. The second
-** parameter "zSql" is the statement to be compiled, encoded as either
-** UTF-8 or UTF-16 (see above). If the next parameter, "nBytes", is less
-** than zero, then zSql is read up to the first nul terminator. If
-** "nBytes" is not less than zero, then it is the length of the string zSql
-** in bytes (not characters).
-**
-** *pzTail is made to point to the first byte past the end of the first
-** SQL statement in zSql. This routine only compiles the first statement
-** in zSql, so *pzTail is left pointing to what remains uncompiled.
-**
-** *ppStmt is left pointing to a compiled SQL statement that can be
-** executed using sqlite3_step(). Or if there is an error, *ppStmt may be
-** set to NULL. If the input text contained no SQL (if the input is and
-** empty string or a comment) then *ppStmt is set to NULL.
-**
-** On success, SQLITE_OK is returned. Otherwise an error code is returned.
-*/
-int sqlite3_prepare(
+** program using one of these routines.
+**
+** The first argument, "db", is a [database connection] obtained from a
+** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
+** [sqlite3_open16()]. The database connection must not have been closed.
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
+** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
+** use UTF-16.
+**
+** If the nByte argument is less than zero, then zSql is read up to the
+** first zero terminator. If nByte is non-negative, then it is the maximum
+** number of bytes read from zSql. When nByte is non-negative, the
+** zSql string ends at either the first '\000' or '\u0000' character or
+** the nByte-th byte, whichever comes first. If the caller knows
+** that the supplied string is nul-terminated, then there is a small
+** performance advantage to be gained by passing an nByte parameter that
+** is equal to the number of bytes in the input string <i>including</i>
+** the nul-terminator bytes.
+**
+** If pzTail is not NULL then *pzTail is made to point to the first byte
+** past the end of the first SQL statement in zSql. These routines only
+** compile the first statement in zSql, so *pzTail is left pointing to
+** what remains uncompiled.
+**
+** *ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. If there is an error, *ppStmt is set
+** to NULL. If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
+** ppStmt may not be NULL.
+**
+** On success, [SQLITE_OK] is returned, otherwise an [error code] is returned.
+**
+** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
+** recommended for all new programs. The two older interfaces are retained
+** for backwards compatibility, but their use is discouraged.
+** In the "v2" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
+** behave a differently in two ways:
+**
+** <ol>
+** <li>
+** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. If the schema has changed in
+** a way that makes the statement no longer valid, [sqlite3_step()] will still
+** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is
+** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the
+** error go away. Note: use [sqlite3_errmsg()] to find the text
+** of the parsing error that results in an [SQLITE_SCHEMA] return.
+** </li>
+**
+** <li>
+** When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and you would have to make a second call to [sqlite3_reset()] in order
+** to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
+** </li>
+** </ol>
+**
+** Requirements:
+** [H13011] [H13012] [H13013] [H13014] [H13015] [H13016] [H13019] [H13021]
+**
+*/
+SQLITE_API int sqlite3_prepare(
sqlite3 *db, /* Database handle */
const char *zSql, /* SQL statement, UTF-8 encoded */
- int nBytes, /* Length of zSql in bytes. */
+ int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
const char **pzTail /* OUT: Pointer to unused portion of zSql */
);
-int sqlite3_prepare16(
+SQLITE_API int sqlite3_prepare_v2(
sqlite3 *db, /* Database handle */
- const void *zSql, /* SQL statement, UTF-16 encoded */
- int nBytes, /* Length of zSql in bytes. */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const void **pzTail /* OUT: Pointer to unused portion of zSql */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
);
-
-/*
-** Newer versions of the prepare API work just like the legacy versions
-** but with one exception: The a copy of the SQL text is saved in the
-** sqlite3_stmt structure that is returned. If this copy exists, it
-** modifieds the behavior of sqlite3_step() slightly. First, sqlite3_step()
-** will no longer return an SQLITE_SCHEMA error but will instead automatically
-** rerun the compiler to rebuild the prepared statement. Secondly,
-** sqlite3_step() now turns a full result code - the result code that
-** use used to have to call sqlite3_reset() to get.
-*/
-int sqlite3_prepare_v2(
+SQLITE_API int sqlite3_prepare16(
sqlite3 *db, /* Database handle */
- const char *zSql, /* SQL statement, UTF-8 encoded */
- int nBytes, /* Length of zSql in bytes. */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const char **pzTail /* OUT: Pointer to unused portion of zSql */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
);
-int sqlite3_prepare16_v2(
+SQLITE_API int sqlite3_prepare16_v2(
sqlite3 *db, /* Database handle */
const void *zSql, /* SQL statement, UTF-16 encoded */
- int nBytes, /* Length of zSql in bytes. */
+ int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
const void **pzTail /* OUT: Pointer to unused portion of zSql */
);
/*
-** Pointers to the following two opaque structures are used to communicate
-** with the implementations of user-defined functions.
+** CAPI3REF: Retrieving Statement SQL {H13100} <H13000>
+**
+** This interface can be used to retrieve a saved copy of the original
+** SQL text used to create a [prepared statement] if that statement was
+** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
+**
+** Requirements:
+** [H13101] [H13102] [H13103]
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object {H15000} <S20200>
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. A internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between between protected and unprotected
+** sqlite3_value objects even when not strictly required.
+**
+** The sqlite3_value objects that are passed as parameters into the
+** implementation of [application-defined SQL functions] are protected.
+** The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used with
+** [sqlite3_result_value()] and [sqlite3_bind_value()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
*/
-typedef struct sqlite3_context sqlite3_context;
typedef struct Mem sqlite3_value;
/*
-** In the SQL strings input to sqlite3_prepare() and sqlite3_prepare16(),
-** one or more literals can be replace by parameters "?" or "?NNN" or
-** ":AAA" or "@AAA" or "$VVV" where NNN is a integer, AAA is an identifer,
-** and VVV is a variable name according to the syntax rules of the
-** TCL programming language. The value of these parameters (also called
-** "host parameter names") can be set using the routines listed below.
-**
-** In every case, the first argument is a pointer to the sqlite3_stmt
-** structure returned from sqlite3_prepare(). The second argument is the
-** index of the host parameter name. The first host parameter as an index
-** of 1. For named host parameters (":AAA" or "$VVV") you can use
-** sqlite3_bind_parameter_index() to get the correct index value given
-** the parameter name. If the same named parameter occurs more than
-** once, it is assigned the same index each time.
+** CAPI3REF: SQL Function Context Object {H16001} <S20200>
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
+**
+** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a [parameter] that matches one of following
+** templates:
+**
+** <ul>
+** <li> ?
+** <li> ?NNN
+** <li> :VVV
+** <li> @VVV
+** <li> $VVV
+** </ul>
+**
+** In the templates above, NNN represents an integer literal,
+** and VVV represents an alphanumeric identifer. The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** The second argument is the index of the SQL parameter to be set.
+** The leftmost SQL parameter has an index of 1. When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_index()] API if desired. The index
+** for "?NNN" parameters is the value of NNN.
+** The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
+**
+** The third argument is the value to bind to the parameter.
+**
+** In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of <u>bytes</u> in the value, not the number of characters.
+** If the fourth parameter is negative, the length of the string is
+** the number of bytes up to the first zero terminator.
**
** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
-** text after SQLite has finished with it. If the fifth argument is the
-** special value SQLITE_STATIC, then the library assumes that the information
-** is in static, unmanaged space and does not need to be freed. If the
-** fifth argument has the value SQLITE_TRANSIENT, then SQLite makes its
-** own private copy of the data before the sqlite3_bind_* routine returns.
+** string after SQLite has finished with it. If the fifth argument is
+** the special value [SQLITE_STATIC], then SQLite assumes that the
+** information is in static, unmanaged space and does not need to be freed.
+** If the fifth argument has the value [SQLITE_TRANSIENT], then
+** SQLite makes its own private copy of the data immediately, before
+** the sqlite3_bind_*() routine returns.
+**
+** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeroes. A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** A negative value for the zeroblob results in a zero-length BLOB.
+**
+** The sqlite3_bind_*() routines must be called after
+** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
+** before [sqlite3_step()].
+** Bindings are not cleared by the [sqlite3_reset()] routine.
+** Unbound parameters are interpreted as NULL.
+**
+** These routines return [SQLITE_OK] on success or an error code if
+** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
+** index is out of range. [SQLITE_NOMEM] is returned if malloc() fails.
+** [SQLITE_MISUSE] might be returned if these routines are called on a
+** virtual machine that is the wrong state or which has already been finalized.
+** Detection of misuse is unreliable. Applications should not depend
+** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a
+** a logic error in the application. Future versions of SQLite might
+** panic rather than return SQLITE_MISUSE.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
+**
+** Requirements:
+** [H13506] [H13509] [H13512] [H13515] [H13518] [H13521] [H13524] [H13527]
+** [H13530] [H13533] [H13536] [H13539] [H13542] [H13545] [H13548] [H13551]
**
-** The sqlite3_bind_* routine must be called before sqlite3_step() and after
-** an sqlite3_prepare() or sqlite3_reset(). Bindings persist across
-** multiple calls to sqlite3_reset() and sqlite3_step(). Unbound parameters
-** are interpreted as NULL.
*/
-int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
-int sqlite3_bind_double(sqlite3_stmt*, int, double);
-int sqlite3_bind_int(sqlite3_stmt*, int, int);
-int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite_int64);
-int sqlite3_bind_null(sqlite3_stmt*, int);
-int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
-int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
-int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
+SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
/*
-** Return the number of host parameters in a compiled SQL statement. This
-** routine was added to support DBD::SQLite.
+** CAPI3REF: Number Of SQL Parameters {H13600} <S70300>
+**
+** This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** placeholders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN are used,
+** there may be gaps in the list.
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+**
+** Requirements:
+** [H13601]
*/
-int sqlite3_bind_parameter_count(sqlite3_stmt*);
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
/*
-** Return the name of the i-th name parameter. Ordinary parameters "?" are
-** nameless and a NULL is returned. For parameters of the form :AAA or
-** $VVV the complete text of the parameter name is returned, including
-** the initial ":" or "$". NULL is returned if the index is out of range.
+** CAPI3REF: Name Of A Host Parameter {H13620} <S70300>
+**
+** This routine returns a pointer to the name of the n-th
+** [SQL parameter] in a [prepared statement].
+** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.
+** Parameters of the form "?" without a following integer have no name
+** and are also referred to as "anonymous parameters".
+**
+** The first host parameter has an index of 1, not 0.
+**
+** If the value n is out of range or if the n-th parameter is
+** nameless, then NULL is returned. The returned string is
+** always in UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()] or
+** [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+**
+** Requirements:
+** [H13621]
*/
-const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
/*
-** Return the index of a parameter with the given name. The name
-** must match exactly. If no parameter with the given name is found,
-** return 0.
+** CAPI3REF: Index Of A Parameter With A Given Name {H13640} <S70300>
+**
+** Return the index of an SQL parameter given its name. The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero
+** is returned if no matching parameter is found. The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+**
+** Requirements:
+** [H13641]
*/
-int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
/*
-** Set all the parameters in the compiled SQL statement to NULL.
+** CAPI3REF: Reset All Bindings On A Prepared Statement {H13660} <S70300>
+**
+** Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** Use this routine to reset all host parameters to NULL.
+**
+** Requirements:
+** [H13661]
*/
-int sqlite3_clear_bindings(sqlite3_stmt*);
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
/*
-** Return the number of columns in the result set returned by the compiled
-** SQL statement. This routine returns 0 if pStmt is an SQL statement
-** that does not return data (for example an UPDATE).
+** CAPI3REF: Number Of Columns In A Result Set {H13710} <S10700>
+**
+** Return the number of columns in the result set returned by the
+** [prepared statement]. This routine returns 0 if pStmt is an SQL
+** statement that does not return data (for example an [UPDATE]).
+**
+** Requirements:
+** [H13711]
*/
-int sqlite3_column_count(sqlite3_stmt *pStmt);
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
/*
-** The first parameter is a compiled SQL statement. This function returns
-** the column heading for the Nth column of that statement, where N is the
-** second function parameter. The string returned is UTF-8 for
-** sqlite3_column_name() and UTF-16 for sqlite3_column_name16().
+** CAPI3REF: Column Names In A Result Set {H13720} <S10700>
+**
+** These routines return the name assigned to a particular column
+** in the result set of a [SELECT] statement. The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF-16 string. The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. The second parameter is the
+** column number. The leftmost column is number 0.
+**
+** The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
+**
+** If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+**
+** Requirements:
+** [H13721] [H13723] [H13724] [H13725] [H13726] [H13727]
*/
-const char *sqlite3_column_name(sqlite3_stmt*,int);
-const void *sqlite3_column_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
/*
-** The first argument to the following calls is a compiled SQL statement.
-** These functions return information about the Nth column returned by
+** CAPI3REF: Source Of Data In A Query Result {H13740} <S10700>
+**
+** These routines provide a means to determine what column of what
+** table in which database a result of a [SELECT] statement comes from.
+** The name of the database or table or column can be returned as
+** either a UTF-8 or UTF-16 string. The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the same information is requested
+** again in a different encoding.
+**
+** The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** The first argument to the following calls is a [prepared statement].
+** These functions return information about the Nth column returned by
** the statement, where N is the second function argument.
**
-** If the Nth column returned by the statement is not a column value,
-** then all of the functions return NULL. Otherwise, the return the
-** name of the attached database, table and column that the expression
-** extracts a value from.
+** If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. These routine might also return NULL if a memory allocation error
+** occurs. Otherwise, they return the name of the attached database, table
+** and column that query result column was extracted from.
**
-** As with all other SQLite APIs, those postfixed with "16" return UTF-16
-** encoded strings, the other functions return UTF-8. The memory containing
-** the returned strings is valid until the statement handle is finalized().
+** As with all other SQLite APIs, those postfixed with "16" return
+** UTF-16 encoded strings, the other functions return UTF-8. {END}
**
-** These APIs are only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
-*/
-const char *sqlite3_column_database_name(sqlite3_stmt*,int);
-const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
-const char *sqlite3_column_table_name(sqlite3_stmt*,int);
-const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
-const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
-const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
-
-/*
-** The first parameter is a compiled SQL statement. If this statement
-** is a SELECT statement, the Nth column of the returned result set
-** of the SELECT is a table column then the declared type of the table
-** column is returned. If the Nth column of the result set is not at table
-** column, then a NULL pointer is returned. The returned string is always
-** UTF-8 encoded. For example, in the database schema:
+** These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
**
-** CREATE TABLE t1(c1 VARIANT);
+** {A13751}
+** If two or more threads call one or more of these routines against the same
+** prepared statement and column at the same time then the results are
+** undefined.
**
-** And the following statement compiled:
+** Requirements:
+** [H13741] [H13742] [H13743] [H13744] [H13745] [H13746] [H13748]
**
-** SELECT c1 + 1, c1 FROM t1;
-**
-** Then this routine would return the string "VARIANT" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
+** If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
+** at the same time then the results are undefined.
*/
-const char *sqlite3_column_decltype(sqlite3_stmt *, int i);
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
/*
-** The first parameter is a compiled SQL statement. If this statement
-** is a SELECT statement, the Nth column of the returned result set
-** of the SELECT is a table column then the declared type of the table
-** column is returned. If the Nth column of the result set is not at table
-** column, then a NULL pointer is returned. The returned string is always
-** UTF-16 encoded. For example, in the database schema:
+** CAPI3REF: Declared Datatype Of A Query Result {H13760} <S10700>
**
-** CREATE TABLE t1(c1 INTEGER);
+** The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned. If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** The returned string is always UTF-8 encoded. {END}
**
-** And the following statement compiled:
+** For example, given the database schema:
+**
+** CREATE TABLE t1(c1 VARIANT);
+**
+** and the following statement to be compiled:
**
** SELECT c1 + 1, c1 FROM t1;
**
-** Then this routine would return the string "INTEGER" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).
+**
+** SQLite uses dynamic run-time typing. So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+**
+** Requirements:
+** [H13761] [H13762] [H13763]
*/
-const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
-/*
-** After an SQL query has been compiled with a call to either
-** sqlite3_prepare() or sqlite3_prepare16(), then this function must be
-** called one or more times to execute the statement.
-**
-** The return value will be either SQLITE_BUSY, SQLITE_DONE,
-** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
+/*
+** CAPI3REF: Evaluate An SQL Statement {H13200} <S10000>
+**
+** After a [prepared statement] has been prepared using either
+** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
+**
+** The details of the behavior of the sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "v2" interface
+** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
+** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "v2" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
+**
+** In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
+**
+** [SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. If the statement is a [COMMIT]
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a [COMMIT] and occurs within a
+** explicit transaction then you should rollback the transaction before
+** continuing.
+**
+** [SQLITE_DONE] means that the statement has finished executing
+** successfully. sqlite3_step() should not be called again on this virtual
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
**
-** SQLITE_BUSY means that the database engine attempted to open
-** a locked database and there is no busy callback registered.
-** Call sqlite3_step() again to retry the open.
+** If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
**
-** SQLITE_DONE means that the statement has finished executing
-** successfully. sqlite3_step() should not be called again on this virtual
-** machine.
-**
-** If the SQL statement being executed returns any data, then
-** SQLITE_ROW is returned each time a new row of data is ready
-** for processing by the caller. The values may be accessed using
-** the sqlite3_column_*() functions described below. sqlite3_step()
-** is called again to retrieve the next row of data.
-**
-** SQLITE_ERROR means that a run-time error (such as a constraint
+** [SQLITE_ERROR] means that a run-time error (such as a constraint
** violation) has occurred. sqlite3_step() should not be called again on
-** the VM. More information may be found by calling sqlite3_errmsg().
-**
-** SQLITE_MISUSE means that the this routine was called inappropriately.
-** Perhaps it was called on a virtual machine that had already been
-** finalized or on one that had previously returned SQLITE_ERROR or
-** SQLITE_DONE. Or it could be the case the the same database connection
-** is being used simulataneously by two or more threads.
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** With the legacy interface, a more specific error code (for example,
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
+**
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "v2" interface is recommended.
+**
+** Requirements:
+** [H13202] [H15304] [H15306] [H15308] [H15310]
*/
-int sqlite3_step(sqlite3_stmt*);
+SQLITE_API int sqlite3_step(sqlite3_stmt*);
/*
-** Return the number of values in the current row of the result set.
+** CAPI3REF: Number of columns in a result set {H13770} <S10700>
+**
+** Returns the number of values in the current row of the result set.
**
-** After a call to sqlite3_step() that returns SQLITE_ROW, this routine
-** will return the same value as the sqlite3_column_count() function.
-** After sqlite3_step() has returned an SQLITE_DONE, SQLITE_BUSY or
-** error code, or before sqlite3_step() has been called on a
-** compiled SQL statement, this routine returns zero.
+** Requirements:
+** [H13771] [H13772]
*/
-int sqlite3_data_count(sqlite3_stmt *pStmt);
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
/*
-** Values are stored in the database in one of the following fundamental
-** types.
+** CAPI3REF: Fundamental Datatypes {H10265} <S10110><S10120>
+** KEYWORDS: SQLITE_TEXT
+**
+** {H10266} Every value in SQLite has one of five fundamental datatypes:
+**
+** <ul>
+** <li> 64-bit signed integer
+** <li> 64-bit IEEE floating point number
+** <li> string
+** <li> BLOB
+** <li> NULL
+** </ul> {END}
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
+** SQLITE_TEXT.
*/
#define SQLITE_INTEGER 1
#define SQLITE_FLOAT 2
-/* #define SQLITE_TEXT 3 // See below */
#define SQLITE_BLOB 4
#define SQLITE_NULL 5
-
-/*
-** SQLite version 2 defines SQLITE_TEXT differently. To allow both
-** version 2 and version 3 to be included, undefine them both if a
-** conflict is seen. Define SQLITE3_TEXT to be the version 3 value.
-*/
#ifdef SQLITE_TEXT
# undef SQLITE_TEXT
#else
@@ -969,236 +2938,533 @@ int sqlite3_data_count(sqlite3_stmt *pStmt);
#define SQLITE3_TEXT 3
/*
-** The next group of routines returns information about the information
-** in a single column of the current result row of a query. In every
-** case the first parameter is a pointer to the SQL statement that is being
-** executed (the sqlite_stmt* that was returned from sqlite3_prepare()) and
-** the second argument is the index of the column for which information
-** should be returned. iCol is zero-indexed. The left-most column as an
-** index of 0.
-**
-** If the SQL statement is not currently point to a valid row, or if the
-** the colulmn index is out of range, the result is undefined.
+** CAPI3REF: Result Values From A Query {H13800} <S10700>
+** KEYWORDS: {column access functions}
+**
+** These routines form the "result set query" interface.
+**
+** These routines return information about a single column of the current
+** result row of a query. In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. The leftmost column of the result set has the index 0.
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** The sqlite3_column_type() routine returns the
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
+** returned by sqlite3_column_type() is only meaningful if no type
+** conversions have occurred as described below. After a type conversion,
+** the value returned by sqlite3_column_type() is undefined. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** The value returned does not include the zero terminator at the end
+** of the string. For clarity: the value returned is the number of
+** bytes in the string, not the number of characters.
+**
+** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero terminated. The return
+** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
+** pointer, possibly even a NULL pointer.
+**
+** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
+** but leaves the result in UTF-16 in native byte order instead of UTF-8.
+** The zero terminator is not included in this count.
+**
+** The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
+** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], then the behavior is undefined.
**
** These routines attempt to convert the value where appropriate. For
** example, if the internal representation is FLOAT and a text result
-** is requested, sprintf() is used internally to do the conversion
-** automatically. The following table details the conversions that
-** are applied:
-**
-** Internal Type Requested Type Conversion
-** ------------- -------------- --------------------------
-** NULL INTEGER Result is 0
-** NULL FLOAT Result is 0.0
-** NULL TEXT Result is an empty string
-** NULL BLOB Result is a zero-length BLOB
-** INTEGER FLOAT Convert from integer to float
-** INTEGER TEXT ASCII rendering of the integer
-** INTEGER BLOB Same as for INTEGER->TEXT
-** FLOAT INTEGER Convert from float to integer
-** FLOAT TEXT ASCII rendering of the float
-** FLOAT BLOB Same as FLOAT->TEXT
-** TEXT INTEGER Use atoi()
-** TEXT FLOAT Use atof()
-** TEXT BLOB No change
-** BLOB INTEGER Convert to TEXT then use atoi()
-** BLOB FLOAT Convert to TEXT then use atof()
-** BLOB TEXT Add a \000 terminator if needed
-**
-** The following access routines are provided:
-**
-** _type() Return the datatype of the result. This is one of
-** SQLITE_INTEGER, SQLITE_FLOAT, SQLITE_TEXT, SQLITE_BLOB,
-** or SQLITE_NULL.
-** _blob() Return the value of a BLOB.
-** _bytes() Return the number of bytes in a BLOB value or the number
-** of bytes in a TEXT value represented as UTF-8. The \000
-** terminator is included in the byte count for TEXT values.
-** _bytes16() Return the number of bytes in a BLOB value or the number
-** of bytes in a TEXT value represented as UTF-16. The \u0000
-** terminator is included in the byte count for TEXT values.
-** _double() Return a FLOAT value.
-** _int() Return an INTEGER value in the host computer's native
-** integer representation. This might be either a 32- or 64-bit
-** integer depending on the host.
-** _int64() Return an INTEGER value as a 64-bit signed integer.
-** _text() Return the value as UTF-8 text.
-** _text16() Return the value as UTF-16 text.
-*/
-const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
-int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
-int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
-double sqlite3_column_double(sqlite3_stmt*, int iCol);
-int sqlite3_column_int(sqlite3_stmt*, int iCol);
-sqlite_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
-const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
-const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
-int sqlite3_column_type(sqlite3_stmt*, int iCol);
-int sqlite3_column_numeric_type(sqlite3_stmt*, int iCol);
-sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
-
-/*
-** The sqlite3_finalize() function is called to delete a compiled
-** SQL statement obtained by a previous call to sqlite3_prepare()
-** or sqlite3_prepare16(). If the statement was executed successfully, or
-** not executed at all, then SQLITE_OK is returned. If execution of the
-** statement failed then an error code is returned.
-**
-** This routine can be called at any point during the execution of the
-** virtual machine. If the virtual machine has not completed execution
-** when this routine is called, that is like encountering an error or
-** an interrupt. (See sqlite3_interrupt().) Incomplete updates may be
-** rolled back and transactions cancelled, depending on the circumstances,
-** and the result code returned will be SQLITE_ABORT.
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. The following table details the conversions
+** that are applied:
+**
+** <blockquote>
+** <table border="1">
+** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
+**
+** <tr><td> NULL <td> INTEGER <td> Result is 0
+** <tr><td> NULL <td> FLOAT <td> Result is 0.0
+** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
+** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
+** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
+** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
+** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
+** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
+** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
+** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
+** <tr><td> TEXT <td> INTEGER <td> Use atoi()
+** <tr><td> TEXT <td> FLOAT <td> Use atof()
+** <tr><td> TEXT <td> BLOB <td> No change
+** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
+** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
+** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
+** </table>
+** </blockquote>
+**
+** The table above makes reference to standard C library functions atoi()
+** and atof(). SQLite does not really use these functions. It has its
+** own equivalent internal routines. The atoi() and atof() names are
+** used in the table for brevity and because they are familiar to most
+** C programmers.
+**
+** Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+** <ul>
+** <li> The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</li>
+** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</li>
+** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</li>
+** </ul>
+**
+** Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer points to will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
+**
+** The safest and easiest to remember policy is to invoke these routines
+** in one of the following ways:
+**
+** <ul>
+** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
+** </ul>
+**
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
+**
+** The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. The memory space used to hold strings
+** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned
+** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** If a memory allocation error occurs during the evaluation of any
+** of these routines, a default value is returned. The default value
+** is either the integer 0, the floating point number 0.0, or a NULL
+** pointer. Subsequent calls to [sqlite3_errcode()] will return
+** [SQLITE_NOMEM].
+**
+** Requirements:
+** [H13803] [H13806] [H13809] [H13812] [H13815] [H13818] [H13821] [H13824]
+** [H13827] [H13830]
*/
-int sqlite3_finalize(sqlite3_stmt *pStmt);
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
/*
-** The sqlite3_reset() function is called to reset a compiled SQL
-** statement obtained by a previous call to sqlite3_prepare() or
-** sqlite3_prepare16() back to it's initial state, ready to be re-executed.
-** Any SQL statement variables that had values bound to them using
-** the sqlite3_bind_*() API retain their values.
+** CAPI3REF: Destroy A Prepared Statement Object {H13300} <S70300><S30100>
+**
+** The sqlite3_finalize() function is called to delete a [prepared statement].
+** If the statement was executed successfully or not executed at all, then
+** SQLITE_OK is returned. If execution of the statement failed then an
+** [error code] or [extended error code] is returned.
+**
+** This routine can be called at any point during the execution of the
+** [prepared statement]. If the virtual machine has not
+** completed execution when this routine is called, that is like
+** encountering an error or an [sqlite3_interrupt | interrupt].
+** Incomplete updates may be rolled back and transactions canceled,
+** depending on the circumstances, and the
+** [error code] returned will be [SQLITE_ABORT].
+**
+** Requirements:
+** [H11302] [H11304]
*/
-int sqlite3_reset(sqlite3_stmt *pStmt);
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
/*
-** The following two functions are used to add user functions or aggregates
-** implemented in C to the SQL langauge interpreted by SQLite. The
-** difference only between the two is that the second parameter, the
-** name of the (scalar) function or aggregate, is encoded in UTF-8 for
-** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
+** CAPI3REF: Reset A Prepared Statement Object {H13330} <S70300>
+**
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
+** Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** {H11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
**
-** The first argument is the database handle that the new function or
-** aggregate is to be added to. If a single program uses more than one
-** database handle internally, then user functions or aggregates must
-** be added individually to each database handle with which they will be
-** used.
+** {H11334} If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
+** or if [sqlite3_step(S)] has never before been called on S,
+** then [sqlite3_reset(S)] returns [SQLITE_OK].
**
-** The third parameter is the number of arguments that the function or
-** aggregate takes. If this parameter is negative, then the function or
-** aggregate may take any number of arguments.
+** {H11336} If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
**
-** The fourth parameter is one of SQLITE_UTF* values defined below,
-** indicating the encoding that the function is most likely to handle
-** values in. This does not change the behaviour of the programming
-** interface. However, if two versions of the same function are registered
-** with different encoding values, SQLite invokes the version likely to
-** minimize conversions between text encodings.
+** {H11338} The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions {H16100} <S20200>
+** KEYWORDS: {function creation routines}
+** KEYWORDS: {application-defined SQL function}
+** KEYWORDS: {application-defined SQL functions}
+**
+** These two functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only difference between the
+** two is that the second parameter, the name of the (scalar) function or
+** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
+** for sqlite3_create_function16().
+**
+** The first parameter is the [database connection] to which the SQL
+** function is to be added. If a single program uses more than one database
+** connection internally, then SQL functions must be added individually to
+** each database connection.
+**
+** The second parameter is the name of the SQL function to be created or
+** redefined. The length of the name is limited to 255 bytes, exclusive of
+** the zero-terminator. Note that the name length limit is in bytes, not
+** characters. Any attempt to create a function with a longer name
+** will result in [SQLITE_ERROR] being returned.
+**
+** The third parameter (nArg)
+** is the number of arguments that the SQL function or
+** aggregate takes. If this parameter is -1, then the SQL function or
+** aggregate may take any number of arguments between 0 and the limit
+** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
+** parameter is less than -1 or greater than 127 then the behavior is
+** undefined.
+**
+** The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. Any SQL function implementation should be able to work
+** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
+** more efficient with one encoding than another. An application may
+** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
+** times with the same function but with different values of eTextRep.
+** When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+** If there is only a single implementation which does not care what text
+** encoding is used, then the fourth argument should be [SQLITE_ANY].
+**
+** The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].
**
** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
-** pointers to user implemented C functions that implement the user
-** function or aggregate. A scalar function requires an implementation of
-** the xFunc callback only, NULL pointers should be passed as the xStep
-** and xFinal parameters. An aggregate function requires an implementation
-** of xStep and xFinal, but NULL should be passed for xFunc. To delete an
-** existing user function or aggregate, pass NULL for all three function
-** callback. Specifying an inconstent set of callback values, such as an
-** xFunc and an xFinal, or an xStep but no xFinal, SQLITE_ERROR is
-** returned.
-*/
-int sqlite3_create_function(
- sqlite3 *,
+** pointers to C-language functions that implement the SQL function or
+** aggregate. A scalar SQL function requires an implementation of the xFunc
+** callback only, NULL pointers should be passed as the xStep and xFinal
+** parameters. An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL should be passed for xFunc. To delete an existing
+** SQL function or aggregate, pass NULL for all three function callbacks.
+**
+** It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing preferred text encodings. SQLite will use
+** the implementation that most closely matches the way in which the
+** SQL function is used. A function implementation with a non-negative
+** nArg parameter is a better match than a function implementation with
+** a negative nArg. A function where the preferred text encoding
+** matches the database encoding is a better
+** match than a function where the encoding is different.
+** A function where the encoding difference is between UTF16le and UTF16be
+** is a closer match than a function where the encoding difference is
+** between UTF8 and UTF16.
+**
+** Built-in functions may be overloaded by new application-defined functions.
+** The first application-defined function with a given name overrides all
+** built-in functions in the same [database connection] with the same name.
+** Subsequent application-defined functions of the same name only override
+** prior application-defined functions that are an exact match for the
+** number of parameters and preferred encoding.
+**
+** An application-defined function is permitted to call other
+** SQLite interfaces. However, such calls must not
+** close the database connection nor finalize or reset the prepared
+** statement in which the function is running.
+**
+** Requirements:
+** [H16103] [H16106] [H16109] [H16112] [H16118] [H16121] [H16127]
+** [H16130] [H16133] [H16136] [H16139] [H16142]
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
const char *zFunctionName,
int nArg,
int eTextRep,
- void*,
+ void *pApp,
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
);
-int sqlite3_create_function16(
- sqlite3*,
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
const void *zFunctionName,
int nArg,
int eTextRep,
- void*,
+ void *pApp,
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
);
/*
-** This function is deprecated. Do not use it. It continues to exist
-** so as not to break legacy code. But new code should avoid using it.
+** CAPI3REF: Text Encodings {H10267} <S50200> <H16100>
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
*/
-int sqlite3_aggregate_count(sqlite3_context*);
+#define SQLITE_UTF8 1
+#define SQLITE_UTF16LE 2
+#define SQLITE_UTF16BE 3
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* sqlite3_create_function only */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
/*
-** The next group of routines returns information about parameters to
-** a user-defined function. Function implementations use these routines
-** to access their parameters. These routines are the same as the
-** sqlite3_column_* routines except that these routines take a single
-** sqlite3_value* pointer instead of an sqlite3_stmt* and an integer
-** column number.
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
+**
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
+** the use of these functions. To help encourage people to avoid
+** using these functions, we are not going to tell you what they do.
*/
-const void *sqlite3_value_blob(sqlite3_value*);
-int sqlite3_value_bytes(sqlite3_value*);
-int sqlite3_value_bytes16(sqlite3_value*);
-double sqlite3_value_double(sqlite3_value*);
-int sqlite3_value_int(sqlite3_value*);
-sqlite_int64 sqlite3_value_int64(sqlite3_value*);
-const unsigned char *sqlite3_value_text(sqlite3_value*);
-const void *sqlite3_value_text16(sqlite3_value*);
-const void *sqlite3_value_text16le(sqlite3_value*);
-const void *sqlite3_value_text16be(sqlite3_value*);
-int sqlite3_value_type(sqlite3_value*);
-int sqlite3_value_numeric_type(sqlite3_value*);
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
+SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
+#endif
/*
-** Aggregate functions use the following routine to allocate
-** a structure for storing their state. The first time this routine
-** is called for a particular aggregate, a new structure of size nBytes
-** is allocated, zeroed, and returned. On subsequent calls (for the
-** same aggregate instance) the same buffer is returned. The implementation
-** of the aggregate can use the returned buffer to accumulate data.
+** CAPI3REF: Obtaining SQL Function Parameter Values {H15100} <S20200>
+**
+** The C-language implementation of SQL functions and aggregates uses
+** this set of interface routines to access the parameter values on
+** the function or aggregate.
+**
+** The xFunc (for scalar functions) or xStep (for aggregates) parameters
+** to [sqlite3_create_function()] and [sqlite3_create_function16()]
+** define callbacks that implement the SQL functions and aggregates.
+** The 4th parameter to these callbacks is an array of pointers to
+** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
+** each parameter to the SQL function. These routines are used to
+** extract values from the [sqlite3_value] objects.
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** object results in undefined behavior.
+**
+** These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
+**
+** The sqlite3_value_text16() interface extracts a UTF-16 string
+** in the native byte-order of the host machine. The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF-16 strings as big-endian and little-endian respectively.
+**
+** The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.
+**
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+**
+** Requirements:
+** [H15103] [H15106] [H15109] [H15112] [H15115] [H15118] [H15121] [H15124]
+** [H15127] [H15130] [H15133] [H15136]
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
+SQLITE_API double sqlite3_value_double(sqlite3_value*);
+SQLITE_API int sqlite3_value_int(sqlite3_value*);
+SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
+SQLITE_API int sqlite3_value_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
+
+/*
+** CAPI3REF: Obtain Aggregate Function Context {H16210} <S20200>
+**
+** The implementation of aggregate SQL functions use this routine to allocate
+** a structure for storing their state.
+**
+** The first time the sqlite3_aggregate_context() routine is called for a
+** particular aggregate, SQLite allocates nBytes of memory, zeroes out that
+** memory, and returns a pointer to it. On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function index,
+** the same buffer is returned. The implementation of the aggregate can use
+** the returned buffer to accumulate data.
+**
+** SQLite automatically frees the allocated buffer when the aggregate
+** query concludes.
+**
+** The first parameter should be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the callback routine that implements the aggregate function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
**
-** The buffer allocated is freed automatically by SQLite.
+** Requirements:
+** [H16211] [H16213] [H16215] [H16217]
*/
-void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
/*
-** The pUserData parameter to the sqlite3_create_function()
-** routine used to register user functions is available to
-** the implementation of the function using this call.
+** CAPI3REF: User Data For Functions {H16240} <S20200>
+**
+** The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function. {END}
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+**
+** Requirements:
+** [H16243]
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions {H16250} <S60600><S20200>
+**
+** The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** Requirements:
+** [H16253]
*/
-void *sqlite3_user_data(sqlite3_context*);
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
/*
-** The following two functions may be used by scalar user functions to
-** associate meta-data with argument values. If the same value is passed to
-** multiple invocations of the user-function during query execution, under
-** some circumstances the associated meta-data may be preserved. This may
+** CAPI3REF: Function Auxiliary Data {H16270} <S20200>
+**
+** The following two functions may be used by scalar SQL functions to
+** associate metadata with argument values. If the same value is passed to
+** multiple invocations of the same SQL function during query execution, under
+** some circumstances the associated metadata may be preserved. This may
** be used, for example, to add a regular-expression matching scalar
** function. The compiled version of the regular expression is stored as
-** meta-data associated with the SQL value passed as the regular expression
-** pattern.
-**
-** Calling sqlite3_get_auxdata() returns a pointer to the meta data
-** associated with the Nth argument value to the current user function
-** call, where N is the second parameter. If no meta-data has been set for
-** that value, then a NULL pointer is returned.
-**
-** The sqlite3_set_auxdata() is used to associate meta data with a user
-** function argument. The third parameter is a pointer to the meta data
-** to be associated with the Nth user function argument value. The fourth
-** parameter specifies a 'delete function' that will be called on the meta
-** data pointer to release it when it is no longer required. If the delete
-** function pointer is NULL, it is not invoked.
-**
-** In practice, meta-data is preserved between function calls for
+** metadata associated with the SQL value passed as the regular expression
+** pattern. The compiled regular expression can be reused on multiple
+** invocations of the same function so that the original pattern string
+** does not need to be recompiled on each invocation.
+**
+** The sqlite3_get_auxdata() interface returns a pointer to the metadata
+** associated by the sqlite3_set_auxdata() function with the Nth argument
+** value to the application-defined function. If no metadata has been ever
+** been set for the Nth argument of the function, or if the corresponding
+** function parameter has changed since the meta-data was set,
+** then sqlite3_get_auxdata() returns a NULL pointer.
+**
+** The sqlite3_set_auxdata() interface saves the metadata
+** pointed to by its 3rd parameter as the metadata for the N-th
+** argument of the application-defined function. Subsequent
+** calls to sqlite3_get_auxdata() might return this data, if it has
+** not been destroyed.
+** If it is not NULL, SQLite will invoke the destructor
+** function given by the 4th parameter to sqlite3_set_auxdata() on
+** the metadata when the corresponding function parameter changes
+** or when the SQL statement completes, whichever comes first.
+**
+** SQLite is free to call the destructor and drop metadata on any
+** parameter of any function at any time. The only guarantee is that
+** the destructor will be called before the metadata is dropped.
+**
+** In practice, metadata is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and SQL variables.
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+**
+** Requirements:
+** [H16272] [H16274] [H16276] [H16277] [H16278] [H16279]
*/
-void *sqlite3_get_auxdata(sqlite3_context*, int);
-void sqlite3_set_auxdata(sqlite3_context*, int, void*, void (*)(void*));
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
+SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
/*
-** These are special value for the destructor that is passed in as the
-** final argument to routines like sqlite3_result_blob(). If the destructor
+** CAPI3REF: Constants Defining Special Destructor Behavior {H10280} <S30100>
+**
+** These are special values for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. If the destructor
** argument is SQLITE_STATIC, it means that the content pointer is constant
-** and will never change. It does not need to be destroyed. The
+** and will never change. It does not need to be destroyed. The
** SQLITE_TRANSIENT value means that the content will likely change in
** the near future and that SQLite should make its own private copy of
** the content before returning.
@@ -1211,106 +3477,240 @@ typedef void (*sqlite3_destructor_type)(void*);
#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
/*
-** User-defined functions invoke the following routines in order to
-** set their return value.
-*/
-void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
-void sqlite3_result_double(sqlite3_context*, double);
-void sqlite3_result_error(sqlite3_context*, const char*, int);
-void sqlite3_result_error16(sqlite3_context*, const void*, int);
-void sqlite3_result_int(sqlite3_context*, int);
-void sqlite3_result_int64(sqlite3_context*, sqlite_int64);
-void sqlite3_result_null(sqlite3_context*);
-void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
-void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
-void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
-void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
-void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
-
-/*
-** These are the allowed values for the eTextRep argument to
-** sqlite3_create_collation and sqlite3_create_function.
+** CAPI3REF: Setting The Result Of An SQL Function {H16400} <S20200>
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
+**
+** The sqlite3_result_blob() interface sets the result from
+** an application-defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+**
+** The sqlite3_result_zeroblob() interfaces set the result of
+** the application-defined function to be a BLOB containing all zero
+** bytes and N bytes in size, where N is the value of the 2nd parameter.
+**
+** The sqlite3_result_double() interface sets the result from
+** an application-defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. SQLite interprets the error
+** message string from sqlite3_result_error() as UTF-8. SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 in native
+** byte order. If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. By default,
+** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** The sqlite3_result_toobig() interface causes SQLite to throw an error
+** indicating that a string or BLOB is to long to represent.
+**
+** The sqlite3_result_nomem() interface causes SQLite to throw an error
+** indicating that a memory allocation failed.
+**
+** The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** If the 3rd parameter to the sqlite3_result_text* interfaces
+** is negative, then SQLite takes result text from the 2nd parameter
+** through the first zero character.
+** If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or BLOB result when it has
+** finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces or to
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the content of the parameter nor call a destructor on the content
+** when it has finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained from
+** from [sqlite3_malloc()] before it returns.
+**
+** The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that the [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
+** the [sqlite3_context] pointer, the results are undefined.
+**
+** Requirements:
+** [H16403] [H16406] [H16409] [H16412] [H16415] [H16418] [H16421] [H16424]
+** [H16427] [H16430] [H16433] [H16436] [H16439] [H16442] [H16445] [H16448]
+** [H16451] [H16454] [H16457] [H16460] [H16463]
*/
-#define SQLITE_UTF8 1
-#define SQLITE_UTF16LE 2
-#define SQLITE_UTF16BE 3
-#define SQLITE_UTF16 4 /* Use native byte order */
-#define SQLITE_ANY 5 /* sqlite3_create_function only */
-#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
+SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
+SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
+SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+SQLITE_API void sqlite3_result_null(sqlite3_context*);
+SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
/*
-** These two functions are used to add new collation sequences to the
-** sqlite3 handle specified as the first argument.
+** CAPI3REF: Define New Collating Sequences {H16600} <S20300>
+**
+** These functions are used to add new collation sequences to the
+** [database connection] specified as the first argument.
**
** The name of the new collation sequence is specified as a UTF-8 string
-** for sqlite3_create_collation() and a UTF-16 string for
-** sqlite3_create_collation16(). In both cases the name is passed as the
-** second function argument.
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string for sqlite3_create_collation16(). In all cases
+** the name is passed as the second function argument.
**
-** The third argument must be one of the constants SQLITE_UTF8,
-** SQLITE_UTF16LE or SQLITE_UTF16BE, indicating that the user-supplied
+** The third argument may be one of the constants [SQLITE_UTF8],
+** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian or UTF-16 big-endian respectively.
+** UTF-16 little-endian, or UTF-16 big-endian, respectively. The
+** third argument might also be [SQLITE_UTF16] to indicate that the routine
+** expects pointers to be UTF-16 strings in the native byte order, or the
+** argument can be [SQLITE_UTF16_ALIGNED] if the
+** the routine expects pointers to 16-bit word aligned strings
+** of UTF-16 in the native byte order.
**
** A pointer to the user supplied routine must be passed as the fifth
-** argument. If it is NULL, this is the same as deleting the collation
-** sequence (so that SQLite cannot call it anymore). Each time the user
-** supplied function is invoked, it is passed a copy of the void* passed as
-** the fourth argument to sqlite3_create_collation() or
-** sqlite3_create_collation16() as its first parameter.
-**
-** The remaining arguments to the user-supplied routine are two strings,
-** each represented by a [length, data] pair and encoded in the encoding
+** argument. If it is NULL, this is the same as deleting the collation
+** sequence (so that SQLite cannot call it anymore).
+** Each time the application supplied function is invoked, it is passed
+** as its first parameter a copy of the void* passed as the fourth argument
+** to sqlite3_create_collation() or sqlite3_create_collation16().
+**
+** The remaining arguments to the application-supplied routine are two strings,
+** each represented by a (length, data) pair and encoded in the encoding
** that was passed as the third argument when the collation sequence was
-** registered. The user routine should return negative, zero or positive if
-** the first string is less than, equal to, or greater than the second
-** string. i.e. (STRING1 - STRING2).
+** registered. {END} The application defined collation routine should
+** return negative, zero or positive if the first string is less than,
+** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
+**
+** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** except that it takes an extra argument which is a destructor for
+** the collation. The destructor is called when the collation is
+** destroyed and is passed a copy of the fourth parameter void* pointer
+** of the sqlite3_create_collation_v2().
+** Collations are destroyed when they are overridden by later calls to the
+** collation creation functions or when the [database connection] is closed
+** using [sqlite3_close()].
+**
+** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
+**
+** Requirements:
+** [H16603] [H16604] [H16606] [H16609] [H16612] [H16615] [H16618] [H16621]
+** [H16624] [H16627] [H16630]
*/
-int sqlite3_create_collation(
+SQLITE_API int sqlite3_create_collation(
sqlite3*,
const char *zName,
int eTextRep,
void*,
int(*xCompare)(void*,int,const void*,int,const void*)
);
-int sqlite3_create_collation16(
+SQLITE_API int sqlite3_create_collation_v2(
sqlite3*,
const char *zName,
int eTextRep,
void*,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3*,
+ const void *zName,
+ int eTextRep,
+ void*,
int(*xCompare)(void*,int,const void*,int,const void*)
);
/*
+** CAPI3REF: Collation Needed Callbacks {H16700} <S20300>
+**
** To avoid having to register all collation sequences before a database
** can be used, a single callback function may be registered with the
-** database handle to be called whenever an undefined collation sequence is
-** required.
+** [database connection] to be called whenever an undefined collation
+** sequence is required.
**
** If the function is registered using the sqlite3_collation_needed() API,
** then it is passed the names of undefined collation sequences as strings
-** encoded in UTF-8. If sqlite3_collation_needed16() is used, the names
-** are passed as UTF-16 in machine native byte order. A call to either
-** function replaces any existing callback.
+** encoded in UTF-8. {H16703} If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** A call to either function replaces any existing callback.
**
-** When the user-function is invoked, the first argument passed is a copy
+** When the callback is invoked, the first argument passed is a copy
** of the second argument to sqlite3_collation_needed() or
-** sqlite3_collation_needed16(). The second argument is the database
-** handle. The third argument is one of SQLITE_UTF8, SQLITE_UTF16BE or
-** SQLITE_UTF16LE, indicating the most desirable form of the collation
-** sequence function required. The fourth parameter is the name of the
+** sqlite3_collation_needed16(). The second argument is the database
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
** required collation sequence.
**
-** The collation sequence is returned to SQLite by a collation-needed
-** callback using the sqlite3_create_collation() or
-** sqlite3_create_collation16() APIs, described above.
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+**
+** Requirements:
+** [H16702] [H16704] [H16706]
*/
-int sqlite3_collation_needed(
+SQLITE_API int sqlite3_collation_needed(
sqlite3*,
void*,
void(*)(void*,sqlite3*,int eTextRep,const char*)
);
-int sqlite3_collation_needed16(
+SQLITE_API int sqlite3_collation_needed16(
sqlite3*,
void*,
void(*)(void*,sqlite3*,int eTextRep,const void*)
@@ -1323,7 +3723,7 @@ int sqlite3_collation_needed16(
** The code to implement this API is not available in the public release
** of SQLite.
*/
-int sqlite3_key(
+SQLITE_API int sqlite3_key(
sqlite3 *db, /* Database to be rekeyed */
const void *pKey, int nKey /* The key */
);
@@ -1336,241 +3736,366 @@ int sqlite3_key(
** The code to implement this API is not available in the public release
** of SQLite.
*/
-int sqlite3_rekey(
+SQLITE_API int sqlite3_rekey(
sqlite3 *db, /* Database to be rekeyed */
const void *pKey, int nKey /* The new key */
);
/*
-** Sleep for a little while. The second parameter is the number of
-** miliseconds to sleep for.
+** CAPI3REF: Suspend Execution For A Short Time {H10530} <S40410>
+**
+** The sqlite3_sleep() function causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
**
-** If the operating system does not support sleep requests with
-** milisecond time resolution, then the time will be rounded up to
-** the nearest second. The number of miliseconds of sleep actually
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
** requested from the operating system is returned.
+**
+** SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object.
+**
+** Requirements: [H10533] [H10536]
*/
-int sqlite3_sleep(int);
+SQLITE_API int sqlite3_sleep(int);
/*
-** Return TRUE (non-zero) if the statement supplied as an argument needs
-** to be recompiled. A statement needs to be recompiled whenever the
-** execution environment changes in a way that would alter the program
-** that sqlite3_prepare() generates. For example, if new functions or
-** collating sequences are registered or if an authorizer function is
-** added or changed.
+** CAPI3REF: Name Of The Folder Holding Temporary Files {H10310} <S20000>
**
+** If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all temporary files
+** created by SQLite will be placed in that directory. If this variable
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** The [temp_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. Furthermore,
+** the [temp_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [temp_store_directory pragma] should be avoided.
*/
-int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API SQLITE_EXTERN char *sqlite3_temp_directory;
/*
-** Move all bindings from the first prepared statement over to the second.
-** This routine is useful, for example, if the first prepared statement
-** fails with an SQLITE_SCHEMA error. The same SQL can be prepared into
-** the second prepared statement then all of the bindings transfered over
-** to the second statement before the first statement is finalized.
+** CAPI3REF: Test For Auto-Commit Mode {H12930} <S60200>
+** KEYWORDS: {autocommit mode}
+**
+** The sqlite3_get_autocommit() interface returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. Autocommit mode is on by default.
+** Autocommit mode is disabled by a [BEGIN] statement.
+** Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
+**
+** If certain kinds of errors occur on a statement within a multi-statement
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out whether SQLite automatically rolled back the transaction after
+** an error is to use this function.
+**
+** If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+**
+** Requirements: [H12931] [H12932] [H12933] [H12934]
*/
-int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API int sqlite3_get_autocommit(sqlite3*);
/*
-** If the following global variable is made to point to a
-** string which is the name of a directory, then all temporary files
-** created by SQLite will be placed in that directory. If this variable
-** is NULL pointer, then SQLite does a search for an appropriate temporary
-** file directory.
+** CAPI3REF: Find The Database Handle Of A Prepared Statement {H13120} <S60600>
+**
+** The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. The [database connection]
+** returned by sqlite3_db_handle is the same [database connection] that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
**
-** Once sqlite3_open() has been called, changing this variable will invalidate
-** the current temporary database, if any.
+** Requirements: [H13123]
*/
-extern char *sqlite3_temp_directory;
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
/*
-** This function is called to recover from a malloc() failure that occured
-** within the SQLite library. Normally, after a single malloc() fails the
-** library refuses to function (all major calls return SQLITE_NOMEM).
-** This function restores the library state so that it can be used again.
+** CAPI3REF: Find the next prepared statement {H13140} <S60600>
**
-** All existing statements (sqlite3_stmt pointers) must be finalized or
-** reset before this call is made. Otherwise, SQLITE_BUSY is returned.
-** If any in-memory databases are in use, either as a main or TEMP
-** database, SQLITE_ERROR is returned. In either of these cases, the
-** library is not reset and remains unusable.
+** This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
**
-** This function is *not* threadsafe. Calling this from within a threaded
-** application when threads other than the caller have used SQLite is
-** dangerous and will almost certainly result in malfunctions.
+** The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
**
-** This functionality can be omitted from a build by defining the
-** SQLITE_OMIT_GLOBALRECOVER at compile time.
+** Requirements: [H13143] [H13146] [H13149] [H13152]
*/
-int sqlite3_global_recover(void);
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
/*
-** Test to see whether or not the database connection is in autocommit
-** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
-** by default. Autocommit is disabled by a BEGIN statement and reenabled
-** by the next COMMIT or ROLLBACK.
-*/
-int sqlite3_get_autocommit(sqlite3*);
-
-/*
-** Return the sqlite3* database handle to which the prepared statement given
-** in the argument belongs. This is the same database handle that was
-** the first argument to the sqlite3_prepare() that was used to create
-** the statement in the first place.
+** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} <S60400>
+**
+** The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is [COMMIT | committed].
+** Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
+** Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** The pArg argument is passed through to the callback.
+** If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
+**
+** If another function was previously registered, its
+** pArg value is returned. Otherwise NULL is returned.
+**
+** The callback implementation must not do anything that will modify
+** the database connection that invoked the callback. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the commit
+** or rollback hook in the first place.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** Registering a NULL function disables the callback.
+**
+** When the commit hook callback routine returns zero, the [COMMIT]
+** operation is allowed to continue normally. If the commit hook
+** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
+** The rollback hook is invoked on a rollback that results from a commit
+** hook returning non-zero, just as it would be with any other rollback.
+**
+** For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+** The rollback callback is not invoked if a transaction is
+** rolled back because a commit callback returned non-zero.
+** <todo> Check on this </todo>
+**
+** See also the [sqlite3_update_hook()] interface.
+**
+** Requirements:
+** [H12951] [H12952] [H12953] [H12954] [H12955]
+** [H12961] [H12962] [H12963] [H12964]
*/
-sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
/*
-** Register a callback function with the database connection identified by the
-** first argument to be invoked whenever a row is updated, inserted or deleted.
-** Any callback set by a previous call to this function for the same
-** database connection is overridden.
-**
-** The second argument is a pointer to the function to invoke when a
-** row is updated, inserted or deleted. The first argument to the callback is
-** a copy of the third argument to sqlite3_update_hook. The second callback
-** argument is one of SQLITE_INSERT, SQLITE_DELETE or SQLITE_UPDATE, depending
-** on the operation that caused the callback to be invoked. The third and
-** fourth arguments to the callback contain pointers to the database and
-** table name containing the affected row. The final callback parameter is
-** the rowid of the row. In the case of an update, this is the rowid after
-** the update takes place.
+** CAPI3REF: Data Change Notification Callbacks {H12970} <S60400>
+**
+** The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted.
+** Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted.
+** The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** The final callback parameter is the [rowid] of the row.
+** In the case of an update, this is the [rowid] after the update takes place.
**
** The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).
**
-** If another function was previously registered, its pArg value is returned.
-** Otherwise NULL is returned.
+** In the current implementation, the update hook
+** is not invoked when duplication rows are deleted because of an
+** [ON CONFLICT | ON CONFLICT REPLACE] clause. Nor is the update hook
+** invoked when rows are deleted using the [truncate optimization].
+** The exceptions defined in this paragraph might change in a future
+** release of SQLite.
+**
+** The update hook implementation must not do anything that will modify
+** the database connection that invoked the update hook. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the update hook.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** If another function was previously registered, its pArg value
+** is returned. Otherwise NULL is returned.
+**
+** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
+** interfaces.
+**
+** Requirements:
+** [H12971] [H12973] [H12975] [H12977] [H12979] [H12981] [H12983] [H12986]
*/
-void *sqlite3_update_hook(
+SQLITE_API void *sqlite3_update_hook(
sqlite3*,
- void(*)(void *,int ,char const *,char const *,sqlite_int64),
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
void*
);
/*
-** Register a callback to be invoked whenever a transaction is rolled
-** back.
+** CAPI3REF: Enable Or Disable Shared Pager Cache {H10330} <S30900>
+** KEYWORDS: {shared cache}
**
-** The new callback function overrides any existing rollback-hook
-** callback. If there was an existing callback, then it's pArg value
-** (the third argument to sqlite3_rollback_hook() when it was registered)
-** is returned. Otherwise, NULL is returned.
+** This routine enables or disables the sharing of the database cache
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.
**
-** For the purposes of this API, a transaction is said to have been
-** rolled back if an explicit "ROLLBACK" statement is executed, or
-** an error or constraint causes an implicit rollback to occur. The
-** callback is not invoked if a transaction is automatically rolled
-** back because the database connection is closed.
-*/
-void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
-
-/*
-** This function is only available if the library is compiled without
-** the SQLITE_OMIT_SHARED_CACHE macro defined. It is used to enable or
-** disable (if the argument is true or false, respectively) the
-** "shared pager" feature.
-*/
-int sqlite3_enable_shared_cache(int);
-
-/*
-** Attempt to free N bytes of heap memory by deallocating non-essential
-** memory allocations held by the database library (example: memory
-** used to cache database pages to improve performance).
+** Cache sharing is enabled and disabled for an entire process.
+** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
**
-** This function is not a part of standard builds. It is only created
-** if SQLite is compiled with the SQLITE_ENABLE_MEMORY_MANAGEMENT macro.
+** The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue use the sharing mode
+** that was in effect at the time they were opened.
+**
+** Virtual tables cannot be used with a shared cache. When shared
+** cache is enabled, the [sqlite3_create_module()] API used to register
+** virtual tables will always return an error.
+**
+** This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.
+**
+** Shared cache is disabled by default. But this might change in
+** future releases of SQLite. Applications that care about shared
+** cache setting should set it explicitly.
+**
+** See Also: [SQLite Shared-Cache Mode]
+**
+** Requirements: [H10331] [H10336] [H10337] [H10339]
*/
-int sqlite3_release_memory(int);
+SQLITE_API int sqlite3_enable_shared_cache(int);
/*
-** Place a "soft" limit on the amount of heap memory that may be allocated by
-** SQLite within the current thread. If an internal allocation is requested
-** that would exceed the specified limit, sqlite3_release_memory() is invoked
-** one or more times to free up some space before the allocation is made.
+** CAPI3REF: Attempt To Free Heap Memory {H17340} <S30220>
**
-** The limit is called "soft", because if sqlite3_release_memory() cannot free
-** sufficient memory to prevent the limit from being exceeded, the memory is
-** allocated anyway and the current operation proceeds.
+** The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. {END} Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
**
-** This function is only available if the library was compiled with the
-** SQLITE_ENABLE_MEMORY_MANAGEMENT option set.
-** memory-management has been enabled.
+** Requirements: [H17341] [H17342]
*/
-void sqlite3_soft_heap_limit(int);
+SQLITE_API int sqlite3_release_memory(int);
/*
-** This routine makes sure that all thread-local storage has been
-** deallocated for the current thread.
-**
-** This routine is not technically necessary. All thread-local storage
-** will be automatically deallocated once memory-management and
-** shared-cache are disabled and the soft heap limit has been set
-** to zero. This routine is provided as a convenience for users who
-** want to make absolutely sure they have not forgotten something
-** prior to killing off a thread.
+** CAPI3REF: Impose A Limit On Heap Size {H17350} <S30220>
+**
+** The sqlite3_soft_heap_limit() interface places a "soft" limit
+** on the amount of heap memory that may be allocated by SQLite.
+** If an internal allocation is requested that would exceed the
+** soft heap limit, [sqlite3_release_memory()] is invoked one or
+** more times to free up some space before the allocation is performed.
+**
+** The limit is called "soft", because if [sqlite3_release_memory()]
+** cannot free sufficient memory to prevent the limit from being exceeded,
+** the memory is allocated anyway and the current operation proceeds.
+**
+** A negative or zero value for N means that there is no soft heap limit and
+** [sqlite3_release_memory()] will only be called when memory is exhausted.
+** The default value for the soft heap limit is zero.
+**
+** SQLite makes a best effort to honor the soft heap limit.
+** But if the soft heap limit cannot be honored, execution will
+** continue without error or notification. This is why the limit is
+** called a "soft" limit. It is advisory only.
+**
+** Prior to SQLite version 3.5.0, this routine only constrained the memory
+** allocated by a single thread - the same thread in which this routine
+** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
+** applied to all threads. The value specified for the soft heap limit
+** is an upper bound on the total memory allocation for all threads. In
+** version 3.5.0 there is no mechanism for limiting the heap usage for
+** individual threads.
+**
+** Requirements:
+** [H16351] [H16352] [H16353] [H16354] [H16355] [H16358]
*/
-void sqlite3_thread_cleanup(void);
+SQLITE_API void sqlite3_soft_heap_limit(int);
/*
-** Return meta information about a specific column of a specific database
-** table accessible using the connection handle passed as the first function
-** argument.
+** CAPI3REF: Extract Metadata About A Column Of A Table {H12850} <S60300>
+**
+** This routine returns metadata about a specific column of a specific
+** database table accessible using the [database connection] handle
+** passed as the first function argument.
**
-** The column is identified by the second, third and fourth parameters to
+** The column is identified by the second, third and fourth parameters to
** this function. The second parameter is either the name of the database
** (i.e. "main", "temp" or an attached database) containing the specified
** table or NULL. If it is NULL, then all attached databases are searched
-** for the table using the same algorithm as the database engine uses to
+** for the table using the same algorithm used by the database engine to
** resolve unqualified table references.
**
-** The third and fourth parameters to this function are the table and column
-** name of the desired column, respectively. Neither of these parameters
+** The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively. Neither of these parameters
** may be NULL.
**
-** Meta information is returned by writing to the memory locations passed as
-** the 5th and subsequent parameters to this function. Any of these
-** arguments may be NULL, in which case the corresponding element of meta
-** information is ommitted.
+** Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
**
-** Parameter Output Type Description
-** -----------------------------------
+** <blockquote>
+** <table border="1">
+** <tr><th> Parameter <th> Output<br>Type <th> Description
**
-** 5th const char* Data type
-** 6th const char* Name of the default collation sequence
-** 7th int True if the column has a NOT NULL constraint
-** 8th int True if the column is part of the PRIMARY KEY
-** 9th int True if the column is AUTOINCREMENT
+** <tr><td> 5th <td> const char* <td> Data type
+** <tr><td> 6th <td> const char* <td> Name of default collation sequence
+** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
+** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
+** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
+** </table>
+** </blockquote>
**
+** The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid only until the next
+** call to any SQLite API function.
**
-** The memory pointed to by the character pointers returned for the
-** declaration type and collation sequence is valid only until the next
-** call to any sqlite API function.
+** If the specified table is actually a view, an [error code] is returned.
**
-** If the specified table is actually a view, then an error is returned.
-**
-** If the specified column is "rowid", "oid" or "_rowid_" and an
-** INTEGER PRIMARY KEY column has been explicitly declared, then the output
+** If the specified column is "rowid", "oid" or "_rowid_" and an
+** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. If there is no
-** explicitly declared IPK column, then the output parameters are set as
-** follows:
+** explicitly declared [INTEGER PRIMARY KEY] column, then the output
+** parameters are set as follows:
**
+** <pre>
** data type: "INTEGER"
** collation sequence: "BINARY"
** not null: 0
** primary key: 1
** auto increment: 0
+** </pre>
**
** This function may load one or more schemas from database files. If an
** error occurs during this process, or if the requested table or column
-** cannot be found, an SQLITE error code is returned and an error message
-** left in the database handle (to be retrieved using sqlite3_errmsg()).
+** cannot be found, an [error code] is returned and an error message left
+** in the [database connection] (to be retrieved using sqlite3_errmsg()).
**
** This API is only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
*/
-int sqlite3_table_column_metadata(
+SQLITE_API int sqlite3_table_column_metadata(
sqlite3 *db, /* Connection handle */
const char *zDbName, /* Database name or NULL */
const char *zTableName, /* Table name */
@@ -1579,28 +4104,36 @@ int sqlite3_table_column_metadata(
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if colums is auto-increment */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
);
/*
-****** EXPERIMENTAL - subject to change without notice **************
+** CAPI3REF: Load An Extension {H12600} <S20500>
**
-** Attempt to load an SQLite extension library contained in the file
-** zFile. The entry point is zProc. zProc may be 0 in which case the
-** name of the entry point defaults to "sqlite3_extension_init".
+** This interface loads an SQLite extension library from the named file.
**
-** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
+** {H12601} The sqlite3_load_extension() interface attempts to load an
+** SQLite extension library contained in the file zFile.
**
-** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
-** error message text. The calling function should free this memory
-** by calling sqlite3_free().
+** {H12602} The entry point is zProc.
**
-** Extension loading must be enabled using sqlite3_enable_load_extension()
-** prior to calling this API or an error will be returned.
+** {H12603} zProc may be 0, in which case the name of the entry point
+** defaults to "sqlite3_extension_init".
**
-****** EXPERIMENTAL - subject to change without notice **************
+** {H12604} The sqlite3_load_extension() interface shall return
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+**
+** {H12605} If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. {END} The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** {H12606} Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] prior to calling this API,
+** otherwise an error will be returned.
*/
-int sqlite3_load_extension(
+SQLITE_API int sqlite3_load_extension(
sqlite3 *db, /* Load the extension into this database connection */
const char *zFile, /* Name of the shared library containing extension */
const char *zProc, /* Entry point. Derived from zFile if 0 */
@@ -1608,52 +4141,63 @@ int sqlite3_load_extension(
);
/*
+** CAPI3REF: Enable Or Disable Extension Loading {H12620} <S20500>
+**
** So as not to open security holes in older applications that are
-** unprepared to deal with extension load, and as a means of disabling
-** extension loading while executing user-entered SQL, the following
-** API is provided to turn the extension loading mechanism on and
-** off. It is off by default. See ticket #1863.
+** unprepared to deal with extension loading, and as a means of disabling
+** extension loading while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
+**
+** Extension loading is off by default. See ticket #1863.
**
-** Call this routine with onoff==1 to turn extension loading on
-** and call it with onoff==0 to turn it back off again.
+** {H12621} Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
+**
+** {H12622} Extension loading is off by default.
*/
-int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
/*
-****** EXPERIMENTAL - subject to change without notice **************
-**
-** Register an extension entry point that is automatically invoked
-** whenever a new database connection is opened.
+** CAPI3REF: Automatically Load An Extensions {H12640} <S20500>
**
** This API can be invoked at program startup in order to register
** one or more statically linked extensions that will be available
-** to all new database connections.
+** to all new [database connections]. {END}
+**
+** This routine stores a pointer to the extension in an array that is
+** obtained from [sqlite3_malloc()]. If you run a memory leak checker
+** on your program and it reports a leak because of this array, invoke
+** [sqlite3_reset_auto_extension()] prior to shutdown to free the memory.
**
-** Duplicate extensions are detected so calling this routine multiple
-** times with the same extension is harmless.
+** {H12641} This function registers an extension entry point that is
+** automatically invoked whenever a new [database connection]
+** is opened using [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()].
**
-** This routine stores a pointer to the extension in an array
-** that is obtained from malloc(). If you run a memory leak
-** checker on your program and it reports a leak because of this
-** array, then invoke sqlite3_automatic_extension_reset() prior
-** to shutdown to free the memory.
+** {H12642} Duplicate extensions are detected so calling this routine
+** multiple times with the same extension is harmless.
**
-** Automatic extensions apply across all threads.
+** {H12643} This routine stores a pointer to the extension in an array
+** that is obtained from [sqlite3_malloc()].
+**
+** {H12644} Automatic extensions apply across all threads.
*/
-int sqlite3_auto_extension(void *xEntryPoint);
-
+SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));
/*
-****** EXPERIMENTAL - subject to change without notice **************
+** CAPI3REF: Reset Automatic Extension Loading {H12660} <S20500>
**
-** Disable all previously registered automatic extensions. This
-** routine undoes the effect of all prior sqlite3_automatic_extension()
-** calls.
+** This function disables all previously registered automatic
+** extensions. {END} It undoes the effect of all prior
+** [sqlite3_auto_extension()] calls.
**
-** This call disabled automatic extensions in all threads.
+** {H12661} This function disables all previously registered
+** automatic extensions.
+**
+** {H12662} This function disables automatic extensions in all threads.
*/
-void sqlite3_reset_auto_extension(void);
-
+SQLITE_API void sqlite3_reset_auto_extension(void);
/*
****** EXPERIMENTAL - subject to change without notice **************
@@ -1662,7 +4206,7 @@ void sqlite3_reset_auto_extension(void);
** to be experimental. The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
-** When the virtual-table mechanism stablizes, we will declare the
+** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
*/
@@ -1675,9 +4219,21 @@ typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
typedef struct sqlite3_module sqlite3_module;
/*
-** A module is a class of virtual tables. Each module is defined
-** by an instance of the following structure. This structure consists
-** mostly of methods for the module.
+** CAPI3REF: Virtual Table Object {H18000} <S20400>
+** KEYWORDS: sqlite3_module {virtual table module}
+** EXPERIMENTAL
+**
+** This structure, sometimes called a a "virtual table module",
+** defines the implementation of a [virtual tables].
+** This structure consists mostly of methods for the module.
+**
+** A virtual table module is created by filling in a persistent
+** instance of this structure and passing a pointer to that instance
+** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
+** The registration remains valid until it is replaced by a different
+** module or until the [database connection] closes. The content
+** of this structure must not change while it is registered with
+** any database connection.
*/
struct sqlite3_module {
int iVersion;
@@ -1697,8 +4253,8 @@ struct sqlite3_module {
int (*xNext)(sqlite3_vtab_cursor*);
int (*xEof)(sqlite3_vtab_cursor*);
int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
- int (*xRowid)(sqlite3_vtab_cursor*, sqlite_int64 *pRowid);
- int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite_int64 *);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
int (*xBegin)(sqlite3_vtab *pVTab);
int (*xSync)(sqlite3_vtab *pVTab);
int (*xCommit)(sqlite3_vtab *pVTab);
@@ -1706,28 +4262,32 @@ struct sqlite3_module {
int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
void **ppArg);
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
};
/*
+** CAPI3REF: Virtual Table Indexing Information {H18100} <S20400>
+** KEYWORDS: sqlite3_index_info
+** EXPERIMENTAL
+**
** The sqlite3_index_info structure and its substructures is used to
-** pass information into and receive the reply from the xBestIndex
-** method of an sqlite3_module. The fields under **Inputs** are the
+** pass information into and receive the reply from the [xBestIndex]
+** method of a [virtual table module]. The fields under **Inputs** are the
** inputs to xBestIndex and are read-only. xBestIndex inserts its
** results into the **Outputs** fields.
**
-** The aConstraint[] array records WHERE clause constraints of the
-** form:
+** The aConstraint[] array records WHERE clause constraints of the form:
**
-** column OP expr
+** <pre>column OP expr</pre>
**
-** Where OP is =, <, <=, >, or >=. The particular operator is stored
-** in aConstraint[].op. The index of the column is stored in
+** where OP is =, &lt;, &lt;=, &gt;, or &gt;=. The particular operator is
+** stored in aConstraint[].op. The index of the column is stored in
** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.
**
** The optimizer automatically inverts terms of the form "expr OP column"
-** and makes other simplificatinos to the WHERE clause in an attempt to
+** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** The aConstraint[] array only reports WHERE clause terms in the correct
** form that refer to the particular virtual table being queried.
@@ -1735,17 +4295,19 @@ struct sqlite3_module {
** Information about the ORDER BY clause is stored in aOrderBy[].
** Each term of aOrderBy records a column of the ORDER BY clause.
**
-** The xBestIndex method must fill aConstraintUsage[] with information
+** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter. If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.
**
-** The idxNum and idxPtr values are recorded and passed into xFilter.
-** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
+** The idxNum and idxPtr values are recorded and passed into the
+** [xFilter] method.
+** [sqlite3_free()] is used to free idxPtr if and only iff
+** needToFreeIdxPtr is true.
**
-** The orderByConsumed means that output from xFilter will occur in
+** The orderByConsumed means that output from [xFilter]/[xNext] will occur in
** the correct order to satisfy the ORDER BY clause so that no separate
** sorting step is required.
**
@@ -1756,24 +4318,23 @@ struct sqlite3_module {
*/
struct sqlite3_index_info {
/* Inputs */
- const int nConstraint; /* Number of entries in aConstraint */
- const struct sqlite3_index_constraint {
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
int iColumn; /* Column on left-hand side of constraint */
unsigned char op; /* Constraint operator */
unsigned char usable; /* True if this constraint is usable */
int iTermOffset; /* Used internally - xBestIndex should ignore */
- } *const aConstraint; /* Table of WHERE clause constraints */
- const int nOrderBy; /* Number of terms in the ORDER BY clause */
- const struct sqlite3_index_orderby {
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
int iColumn; /* Column number */
unsigned char desc; /* True for DESC. False for ASC. */
- } *const aOrderBy; /* The ORDER BY clause */
-
+ } *aOrderBy; /* The ORDER BY clause */
/* Outputs */
struct sqlite3_index_constraint_usage {
int argvIndex; /* if >0, constraint is part of argv to xFilter */
unsigned char omit; /* Do not code a test for this constraint */
- } *const aConstraintUsage;
+ } *aConstraintUsage;
int idxNum; /* Number used to identify the index */
char *idxStr; /* String, possibly obtained from sqlite3_malloc */
int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
@@ -1788,46 +4349,89 @@ struct sqlite3_index_info {
#define SQLITE_INDEX_CONSTRAINT_MATCH 64
/*
-** This routine is used to register a new module name with an SQLite
-** connection. Module names must be registered before creating new
-** virtual tables on the module, or before using preexisting virtual
-** tables of the module.
+** CAPI3REF: Register A Virtual Table Implementation {H18200} <S20400>
+** EXPERIMENTAL
+**
+** This routine is used to register a new [virtual table module] name.
+** Module names must be registered before
+** creating a new [virtual table] using the module, or before using a
+** preexisting [virtual table] for the module.
+**
+** The module name is registered on the [database connection] specified
+** by the first parameter. The name of the module is given by the
+** second parameter. The third parameter is a pointer to
+** the implementation of the [virtual table module]. The fourth
+** parameter is an arbitrary client data pointer that is passed through
+** into the [xCreate] and [xConnect] methods of the virtual table module
+** when a new virtual table is be being created or reinitialized.
+**
+** This interface has exactly the same effect as calling
+** [sqlite3_create_module_v2()] with a NULL client data destructor.
*/
-int sqlite3_create_module(
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module(
sqlite3 *db, /* SQLite connection to register module with */
const char *zName, /* Name of the module */
- const sqlite3_module *, /* Methods for the module */
- void * /* Client data for xCreate/xConnect */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData /* Client data for xCreate/xConnect */
);
/*
-** Every module implementation uses a subclass of the following structure
-** to describe a particular instance of the module. Each subclass will
-** be taylored to the specific needs of the module implementation. The
-** purpose of this superclass is to define certain fields that are common
-** to all module implementations.
+** CAPI3REF: Register A Virtual Table Implementation {H18210} <S20400>
+** EXPERIMENTAL
+**
+** This routine is identical to the [sqlite3_create_module()] method,
+** except that it has an extra parameter to specify
+** a destructor function for the client data pointer. SQLite will
+** invoke the destructor function (if it is not NULL) when SQLite
+** no longer needs the pClientData pointer.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object {H18010} <S20400>
+** KEYWORDS: sqlite3_vtab
+** EXPERIMENTAL
+**
+** Every [virtual table module] implementation uses a subclass
+** of the following structure to describe a particular instance
+** of the [virtual table]. Each subclass will
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
**
** Virtual tables methods can set an error message by assigning a
-** string obtained from sqlite3_mprintf() to zErrMsg. The method should
-** take care that any prior string is freed by a call to sqlite3_free()
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg. After the error message
** is delivered up to the client application, the string will be automatically
-** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
-** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
-** since virtual tables are commonly implemented in loadable extensions which
-** do not have access to sqlite3MPrintf() or sqlite3Free().
+** freed by sqlite3_free() and the zErrMsg field will be zeroed.
*/
struct sqlite3_vtab {
const sqlite3_module *pModule; /* The module for this virtual table */
- int nRef; /* Used internally */
+ int nRef; /* NO LONGER USED */
char *zErrMsg; /* Error message from sqlite3_mprintf() */
/* Virtual table implementations will typically add additional fields */
};
-/* Every module implementation uses a subclass of the following structure
-** to describe cursors that point into the virtual table and are used
+/*
+** CAPI3REF: Virtual Table Cursor Object {H18020} <S20400>
+** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
+** EXPERIMENTAL
+**
+** Every [virtual table module] implementation uses a subclass of the
+** following structure to describe cursors that point into the
+** [virtual table] and are used
** to loop through the virtual table. Cursors are created using the
-** xOpen method of the module. Each module implementation will define
+** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
+** by the [sqlite3_module.xClose | xClose] method. Cussors are used
+** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
+** of the module. Each module implementation will define
** the content of a cursor structure to suit its own needs.
**
** This superclass exists in order to define fields of the cursor that
@@ -1839,15 +4443,23 @@ struct sqlite3_vtab_cursor {
};
/*
-** The xCreate and xConnect methods of a module use the following API
+** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} <S20400>
+** EXPERIMENTAL
+**
+** The [xCreate] and [xConnect] methods of a
+** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
-int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
/*
+** CAPI3REF: Overload A Function For A Virtual Table {H18300} <S20400>
+** EXPERIMENTAL
+**
** Virtual tables can provide alternative implementations of functions
-** using the xFindFunction method. But global versions of those functions
+** using the [xFindFunction] method of the [virtual table module].
+** But global versions of those functions
** must exist in order to be overloaded.
**
** This API makes sure a global version of a function with a particular
@@ -1855,13 +4467,10 @@ int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
** before this API is called, a new function is created. The implementation
** of the new function always causes an exception to be thrown. So
** the new function is not good for anything by itself. Its only
-** purpose is to be a place-holder function that can be overloaded
-** by virtual tables.
-**
-** This API should be considered part of the virtual table interface,
-** which is experimental and subject to change.
+** purpose is to be a placeholder function that can be overloaded
+** by a [virtual table].
*/
-int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
/*
** The interface to the virtual-table mechanism defined above (back up
@@ -1869,13 +4478,1273 @@ int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
** to be experimental. The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
-** When the virtual-table mechanism stablizes, we will declare the
+** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
**
****** EXPERIMENTAL - subject to change without notice **************
*/
/*
+** CAPI3REF: A Handle To An Open BLOB {H17800} <S30230>
+** KEYWORDS: {BLOB handle} {BLOB handles}
+**
+** An instance of this object represents an open BLOB on which
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
+** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the BLOB.
+** The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
+*/
+typedef struct sqlite3_blob sqlite3_blob;
+
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O {H17810} <S30230>
+**
+** This interfaces opens a [BLOB handle | handle] to the BLOB located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same BLOB that would be selected by:
+**
+** <pre>
+** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
+** </pre> {END}
+**
+** If the flags parameter is non-zero, then the BLOB is opened for read
+** and write access. If it is zero, the BLOB is opened for read access.
+**
+** Note that the database name is not the filename that contains
+** the database but rather the symbolic name of the database that
+** is assigned when the database is connected using [ATTACH].
+** For the main database file, the database name is "main".
+** For TEMP tables, the database name is "temp".
+**
+** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
+** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
+** to be a null pointer.
+** This function sets the [database connection] error code and message
+** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
+** functions. Note that the *ppBlob variable is always initialized in a
+** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
+** regardless of the success or failure of this routine.
+**
+** If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.
+** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
+** Changes written into a BLOB prior to the BLOB expiring are not
+** rollback by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.
+**
+** Use the [sqlite3_blob_bytes()] interface to determine the size of
+** the opened blob. The size of a blob may not be changed by this
+** interface. Use the [UPDATE] SQL command to change the size of a
+** blob.
+**
+** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
+** and the built-in [zeroblob] SQL function can be used, if desired,
+** to create an empty, zero-filled blob in which to read or write using
+** this interface.
+**
+** To avoid a resource leak, every open [BLOB handle] should eventually
+** be released by a call to [sqlite3_blob_close()].
+**
+** Requirements:
+** [H17813] [H17814] [H17816] [H17819] [H17821] [H17824]
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
+
+/*
+** CAPI3REF: Close A BLOB Handle {H17830} <S30230>
+**
+** Closes an open [BLOB handle].
+**
+** Closing a BLOB shall cause the current transaction to commit
+** if there are no other BLOBs, no pending prepared statements, and the
+** database connection is in [autocommit mode].
+** If any writes were made to the BLOB, they might be held in cache
+** until the close operation if they will fit.
+**
+** Closing the BLOB often forces the changes
+** out to disk and so if any I/O errors occur, they will likely occur
+** at the time when the BLOB is closed. Any errors that occur during
+** closing are reported as a non-zero return value.
+**
+** The BLOB is closed unconditionally. Even if this routine returns
+** an error code, the BLOB is still closed.
+**
+** Calling this routine with a null pointer (which as would be returned
+** by failed call to [sqlite3_blob_open()]) is a harmless no-op.
+**
+** Requirements:
+** [H17833] [H17836] [H17839]
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB {H17840} <S30230>
+**
+** Returns the size in bytes of the BLOB accessible via the
+** successfully opened [BLOB handle] in its only argument. The
+** incremental blob I/O routines can only read or overwriting existing
+** blob content; they cannot change the size of a blob.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** Requirements:
+** [H17843]
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally {H17850} <S30230>
+**
+** This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.
+**
+** If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+** The size of the blob (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
+**
+** On success, SQLITE_OK is returned.
+** Otherwise, an [error code] or an [extended error code] is returned.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_write()].
+**
+** Requirements:
+** [H17853] [H17856] [H17859] [H17862] [H17863] [H17865] [H17868]
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
+/*
+** CAPI3REF: Write Data Into A BLOB Incrementally {H17870} <S30230>
+**
+** This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.
+**
+** If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
+**
+** This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. If N is
+** less than zero [SQLITE_ERROR] is returned and no data is written.
+** The size of the BLOB (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
+**
+** On success, SQLITE_OK is returned.
+** Otherwise, an [error code] or an [extended error code] is returned.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_read()].
+**
+** Requirements:
+** [H17873] [H17874] [H17875] [H17876] [H17877] [H17879] [H17882] [H17885]
+** [H17888]
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
+
+/*
+** CAPI3REF: Virtual File System Objects {H11200} <S20100>
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** Names are case sensitive.
+** Names are zero-terminated UTF-8 strings.
+** If there is no match, a NULL pointer is returned.
+** If zVfsName is NULL then the default VFS is returned.
+**
+** New VFSes are registered with sqlite3_vfs_register().
+** Each new VFS becomes the default VFS if the makeDflt flag is set.
+** The same VFS can be registered multiple times without injury.
+** To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.
+**
+** Requirements:
+** [H11203] [H11206] [H11209] [H11212] [H11215] [H11218]
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
+
+/*
+** CAPI3REF: Mutexes {H17000} <S20000>
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. The following
+** implementations are available in the SQLite core:
+**
+** <ul>
+** <li> SQLITE_MUTEX_OS2
+** <li> SQLITE_MUTEX_PTHREAD
+** <li> SQLITE_MUTEX_W32
+** <li> SQLITE_MUTEX_NOOP
+** </ul>
+**
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. The SQLITE_MUTEX_OS2,
+** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
+** are appropriate for use on OS/2, Unix, and Windows.
+**
+** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().
+**
+** {H17011} The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. {H17012} If it returns NULL
+** that means that a mutex could not be allocated. {H17013} SQLite
+** will unwind its stack and return an error. {H17014} The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MASTER
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_MEM2
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_LRU2
+** </ul>
+**
+** {H17015} The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. {H17016} But SQLite will only request a recursive mutex in
+** cases where it really needs one. {END} If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. {END} Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. {H17034} But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+**
+** {H17019} The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. {H17020} SQLite is careful to deallocate every
+** dynamic mutex that it allocates. {A17021} The dynamic mutexes must not be in
+** use when they are deallocated. {A17022} Attempting to deallocate a static
+** mutex results in undefined behavior. {H17023} SQLite never deallocates
+** a static mutex. {END}
+**
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. {H17024} If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. {H17025} The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. {H17026} Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** {H17027} In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. {A17028} If the same thread tries to enter any other
+** kind of mutex more than once, the behavior is undefined.
+** {H17029} SQLite will never exhibit
+** such behavior in its own use of mutexes.
+**
+** Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. {H17030} The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable behavior.
+**
+** {H17031} The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. {A17032} The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated. {H17033} SQLite will
+** never do either. {END}
+**
+** If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
+** sqlite3_mutex_leave() is a NULL pointer, then all three routines
+** behave as no-ops.
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Methods Object {H17120} <S20130>
+** EXPERIMENTAL
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the user has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the user
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** {H17001} The xMutexInit routine shall be called by SQLite once for each
+** effective call to [sqlite3_initialize()].
+**
+** The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. {H17003} The xMutexEnd()
+** interface shall be invoked once for each call to [sqlite3_shutdown()].
+**
+** The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+** <ul>
+** <li> [sqlite3_mutex_alloc()] </li>
+** <li> [sqlite3_mutex_free()] </li>
+** <li> [sqlite3_mutex_enter()] </li>
+** <li> [sqlite3_mutex_try()] </li>
+** <li> [sqlite3_mutex_leave()] </li>
+** <li> [sqlite3_mutex_held()] </li>
+** <li> [sqlite3_mutex_notheld()] </li>
+** </ul>
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case, the results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+**
+** The xMutexInit() method must be threadsafe. It must be harmless to
+** invoke xMutexInit() mutiple times within the same process and without
+** intervening calls to xMutexEnd(). Second and subsequent calls to
+** xMutexInit() must be no-ops.
+**
+** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
+** and its associates). Similarly, xMutexAlloc() must not use SQLite memory
+** allocation for a static mutex. However xMutexAlloc() may use SQLite
+** memory allocation for a fast or recursive mutex.
+**
+** SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
+** called, but only if the prior call to xMutexInit returned SQLITE_OK.
+** If xMutexInit fails in any way, it is expected to clean up after itself
+** prior to returning.
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines {H17080} <S20130> <S30800>
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. {H17081} The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. {H17082} The core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. {A17087} External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** {H17083} These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
+**
+** {X17084} The implementation is not required to provided versions of these
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
+**
+** {H17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. {END} This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But the
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. {H17086} The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Types {H17001} <H17000>
+**
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
+**
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
+*/
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MASTER 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
+
+/*
+** CAPI3REF: Retrieve the mutex for a database connection {H17002} <H17000>
+**
+** This interface returns a pointer the [sqlite3_mutex] object that
+** serializes access to the [database connection] given in the argument
+** when the [threading mode] is Serialized.
+** If the [threading mode] is Single-thread or Multi-thread then this
+** routine returns a NULL pointer.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files {H11300} <S30800>
+**
+** {H11301} The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. {H11302} The
+** name of the database is the name assigned to the database by the
+** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
+** database. {H11303} To control the main database file, use the name "main"
+** or a NULL pointer. {H11304} The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. {H11305} The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** {H11306} If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. {H11307} This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. {A11308} The underlying xFileControl method might
+** also return SQLITE_ERROR. {A11309} There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method. {END}
+**
+** See also: [SQLITE_FCNTL_LOCKSTATE]
+*/
+SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface {H11400} <S30800>
+**
+** The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. The first parameter is an operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes {H11410} <H11400>
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meanings are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+#define SQLITE_TESTCTRL_PENDING_BYTE 11
+#define SQLITE_TESTCTRL_ASSERT 12
+#define SQLITE_TESTCTRL_ALWAYS 13
+#define SQLITE_TESTCTRL_RESERVE 14
+
+/*
+** CAPI3REF: SQLite Runtime Status {H17200} <S60200>
+** EXPERIMENTAL
+**
+** This interface is used to retrieve runtime status information
+** about the preformance of SQLite, and optionally to reset various
+** highwater marks. The first argument is an integer code for
+** the specific parameter to measure. Recognized integer codes
+** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].
+** The current value of the parameter is returned into *pCurrent.
+** The highest recorded value is returned in *pHighwater. If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.
+** Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.
+**
+** This routine returns SQLITE_OK on success and a non-zero
+** [error code] on failure.
+**
+** This routine is threadsafe but is not atomic. This routine can be
+** called while other threads are running the same or different SQLite
+** interfaces. However the values returned in *pCurrent and
+** *pHighwater reflect the status of SQLite at different points in time
+** and it is possible that another thread might change the parameter
+** in between the times when *pCurrent and *pHighwater are written.
+**
+** See also: [sqlite3_db_status()]
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+
+
+/*
+** CAPI3REF: Status Parameters {H17250} <H17200>
+** EXPERIMENTAL
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+** <dl>
+** <dt>SQLITE_STATUS_MEMORY_USED</dt>
+** <dd>This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Scratch memory
+** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>
+**
+** <dt>SQLITE_STATUS_MALLOC_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_USED</dt>
+** <dd>This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of page cache
+** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.</dd>
+**
+** <dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_USED</dt>
+** <dd>This parameter returns the number of allocations used out of the
+** [scratch memory allocator] configured using
+** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not
+** in bytes. Since a single thread may only have one scratch allocation
+** outstanding at time, this parameter also reports the number of threads
+** using scratch memory at the same time.</dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of scratch memory
+** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The values
+** returned include overflows because the requested allocation was too
+** larger (that is, because the requested allocation was larger than the
+** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
+** slots were available.
+** </dd>
+**
+** <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [scratch memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>
+**
+** <dt>SQLITE_STATUS_PARSER_STACK</dt>
+** <dd>This parameter records the deepest parser stack. It is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>
+** </dl>
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8
+
+/*
+** CAPI3REF: Database Connection Status {H17500} <S60200>
+** EXPERIMENTAL
+**
+** This interface is used to retrieve runtime status information
+** about a single [database connection]. The first argument is the
+** database connection object to be interrogated. The second argument
+** is the parameter to interrogate. Currently, the only allowed value
+** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED].
+** Additional options will likely appear in future releases of SQLite.
+**
+** The current value of the requested parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for database connections {H17520} <H17500>
+** EXPERIMENTAL
+**
+** These constants are the available integer "verbs" that can be passed as
+** the second argument to the [sqlite3_db_status()] interface.
+**
+** New verbs may be added in future releases of SQLite. Existing verbs
+** might be discontinued. Applications should check the return code from
+** [sqlite3_db_status()] to make sure that the call worked.
+** The [sqlite3_db_status()] interface will return a non-zero error code
+** if a discontinued or unsupported verb is invoked.
+**
+** <dl>
+** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
+** <dd>This parameter returns the number of lookaside memory slots currently
+** checked out.</dd>
+** </dl>
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
+
+
+/*
+** CAPI3REF: Prepared Statement Status {H17550} <S60200>
+** EXPERIMENTAL
+**
+** Each prepared statement maintains various
+** [SQLITE_STMTSTATUS_SORT | counters] that measure the number
+** of times it has performed specific operations. These counters can
+** be used to monitor the performance characteristics of the prepared
+** statements. For example, if the number of table steps greatly exceeds
+** the number of table searches or result rows, that would tend to indicate
+** that the prepared statement is using a full table scan rather than
+** an index.
+**
+** This interface is used to retrieve and reset counter values from
+** a [prepared statement]. The first argument is the prepared statement
+** object to be interrogated. The second argument
+** is an integer code for a specific [SQLITE_STMTSTATUS_SORT | counter]
+** to be interrogated.
+** The current value of the requested counter is returned.
+** If the resetFlg is true, then the counter is reset to zero after this
+** interface call returns.
+**
+** See also: [sqlite3_status()] and [sqlite3_db_status()].
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for prepared statements {H17570} <H17550>
+** EXPERIMENTAL
+**
+** These preprocessor macros define integer codes that name counter
+** values associated with the [sqlite3_stmt_status()] interface.
+** The meanings of the various counters are as follows:
+**
+** <dl>
+** <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
+** <dd>This is the number of times that SQLite has stepped forward in
+** a table as part of a full table scan. Large numbers for this counter
+** may indicate opportunities for performance improvement through
+** careful use of indices.</dd>
+**
+** <dt>SQLITE_STMTSTATUS_SORT</dt>
+** <dd>This is the number of sort operations that have occurred.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance through careful use of indices.</dd>
+**
+** </dl>
+*/
+#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
+#define SQLITE_STMTSTATUS_SORT 2
+
+/*
+** CAPI3REF: Custom Page Cache Object
+** EXPERIMENTAL
+**
+** The sqlite3_pcache type is opaque. It is implemented by
+** the pluggable module. The SQLite core has no knowledge of
+** its size or internal structure and never deals with the
+** sqlite3_pcache object except by holding and passing pointers
+** to the object.
+**
+** See [sqlite3_pcache_methods] for additional information.
+*/
+typedef struct sqlite3_pcache sqlite3_pcache;
+
+/*
+** CAPI3REF: Application Defined Page Cache.
+** KEYWORDS: {page cache}
+** EXPERIMENTAL
+**
+** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
+** register an alternative page cache implementation by passing in an
+** instance of the sqlite3_pcache_methods structure. The majority of the
+** heap memory used by SQLite is used by the page cache to cache data read
+** from, or ready to be written to, the database file. By implementing a
+** custom page cache using this API, an application can control more
+** precisely the amount of memory consumed by SQLite, the way in which
+** that memory is allocated and released, and the policies used to
+** determine exactly which parts of a database file are cached and for
+** how long.
+**
+** The contents of the sqlite3_pcache_methods structure are copied to an
+** internal buffer by SQLite within the call to [sqlite3_config]. Hence
+** the application may discard the parameter after the call to
+** [sqlite3_config()] returns.
+**
+** The xInit() method is called once for each call to [sqlite3_initialize()]
+** (usually only once during the lifetime of the process). It is passed
+** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set
+** up global structures and mutexes required by the custom page cache
+** implementation.
+**
+** The xShutdown() method is called from within [sqlite3_shutdown()],
+** if the application invokes this API. It can be used to clean up
+** any outstanding resources before process shutdown, if required.
+**
+** SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. All other methods must be threadsafe
+** in multithreaded applications.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+**
+** The xCreate() method is used to construct a new cache instance. SQLite
+** will typically create one cache instance for each open database file,
+** though this is not guaranteed. The
+** first parameter, szPage, is the size in bytes of the pages that must
+** be allocated by the cache. szPage will not be a power of two. szPage
+** will the page size of the database file that is to be cached plus an
+** increment (here called "R") of about 100 or 200. SQLite will use the
+** extra R bytes on each page to store metadata about the underlying
+** database page on disk. The value of R depends
+** on the SQLite version, the target platform, and how SQLite was compiled.
+** R is constant for a particular build of SQLite. The second argument to
+** xCreate(), bPurgeable, is true if the cache being created will
+** be used to cache database pages of a file stored on disk, or
+** false if it is used for an in-memory database. The cache implementation
+** does not have to do anything special based with the value of bPurgeable;
+** it is purely advisory. On a cache where bPurgeable is false, SQLite will
+** never invoke xUnpin() except to deliberately delete a page.
+** In other words, a cache created with bPurgeable set to false will
+** never contain any unpinned pages.
+**
+** The xCachesize() method may be called at any time by SQLite to set the
+** suggested maximum cache-size (number of pages stored by) the cache
+** instance passed as the first argument. This is the value configured using
+** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter,
+** the implementation is not required to do anything with this
+** value; it is advisory only.
+**
+** The xPagecount() method should return the number of pages currently
+** stored in the cache.
+**
+** The xFetch() method is used to fetch a page and return a pointer to it.
+** A 'page', in this context, is a buffer of szPage bytes aligned at an
+** 8-byte boundary. The page to be fetched is determined by the key. The
+** mimimum key value is 1. After it has been retrieved using xFetch, the page
+** is considered to be "pinned".
+**
+** If the requested page is already in the page cache, then the page cache
+** implementation must return a pointer to the page buffer with its content
+** intact. If the requested page is not already in the cache, then the
+** behavior of the cache implementation is determined by the value of the
+** createFlag parameter passed to xFetch, according to the following table:
+**
+** <table border=1 width=85% align=center>
+** <tr><th> createFlag <th> Behaviour when page is not already in cache
+** <tr><td> 0 <td> Do not allocate a new page. Return NULL.
+** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
+** Otherwise return NULL.
+** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
+** NULL if allocating a new page is effectively impossible.
+** </table>
+**
+** SQLite will normally invoke xFetch() with a createFlag of 0 or 1. If
+** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
+** attempt to unpin one or more cache pages by spilling the content of
+** pinned pages to disk and synching the operating system disk cache. After
+** attempting to unpin pages, the xFetch() method will be invoked again with
+** a createFlag of 2.
+**
+** xUnpin() is called by SQLite with a pointer to a currently pinned page
+** as its second argument. If the third parameter, discard, is non-zero,
+** then the page should be evicted from the cache. In this case SQLite
+** assumes that the next time the page is retrieved from the cache using
+** the xFetch() method, it will be zeroed. If the discard parameter is
+** zero, then the page is considered to be unpinned. The cache implementation
+** may choose to evict unpinned pages at any time.
+**
+** The cache is not required to perform any reference counting. A single
+** call to xUnpin() unpins the page regardless of the number of prior calls
+** to xFetch().
+**
+** The xRekey() method is used to change the key value associated with the
+** page passed as the second argument from oldKey to newKey. If the cache
+** previously contains an entry associated with newKey, it should be
+** discarded. Any prior cache entry associated with newKey is guaranteed not
+** to be pinned.
+**
+** When SQLite calls the xTruncate() method, the cache must discard all
+** existing cache entries with page numbers (keys) greater than or equal
+** to the value of the iLimit parameter passed to xTruncate(). If any
+** of these pages are pinned, they are implicitly unpinned, meaning that
+** they can be safely discarded.
+**
+** The xDestroy() method is used to delete a cache allocated by xCreate().
+** All resources associated with the specified cache should be freed. After
+** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
+** handle invalid, and will not use it with any other sqlite3_pcache_methods
+** functions.
+*/
+typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
+struct sqlite3_pcache_methods {
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, void*, int discard);
+ void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+};
+
+/*
+** CAPI3REF: Online Backup Object
+** EXPERIMENTAL
+**
+** The sqlite3_backup object records state information about an ongoing
+** online backup operation. The sqlite3_backup object is created by
+** a call to [sqlite3_backup_init()] and is destroyed by a call to
+** [sqlite3_backup_finish()].
+**
+** See Also: [Using the SQLite Online Backup API]
+*/
+typedef struct sqlite3_backup sqlite3_backup;
+
+/*
+** CAPI3REF: Online Backup API.
+** EXPERIMENTAL
+**
+** This API is used to overwrite the contents of one database with that
+** of another. It is useful either for creating backups of databases or
+** for copying in-memory databases to or from persistent files.
+**
+** See Also: [Using the SQLite Online Backup API]
+**
+** Exclusive access is required to the destination database for the
+** duration of the operation. However the source database is only
+** read-locked while it is actually being read, it is not locked
+** continuously for the entire operation. Thus, the backup may be
+** performed on a live database without preventing other users from
+** writing to the database for an extended period of time.
+**
+** To perform a backup operation:
+** <ol>
+** <li><b>sqlite3_backup_init()</b> is called once to initialize the
+** backup,
+** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
+** the data between the two databases, and finally
+** <li><b>sqlite3_backup_finish()</b> is called to release all resources
+** associated with the backup operation.
+** </ol>
+** There should be exactly one call to sqlite3_backup_finish() for each
+** successful call to sqlite3_backup_init().
+**
+** <b>sqlite3_backup_init()</b>
+**
+** The first two arguments passed to [sqlite3_backup_init()] are the database
+** handle associated with the destination database and the database name
+** used to attach the destination database to the handle. The database name
+** is "main" for the main database, "temp" for the temporary database, or
+** the name specified as part of the [ATTACH] statement if the destination is
+** an attached database. The third and fourth arguments passed to
+** sqlite3_backup_init() identify the [database connection]
+** and database name used
+** to access the source database. The values passed for the source and
+** destination [database connection] parameters must not be the same.
+**
+** If an error occurs within sqlite3_backup_init(), then NULL is returned
+** and an error code and error message written into the [database connection]
+** passed as the first argument. They may be retrieved using the
+** [sqlite3_errcode()], [sqlite3_errmsg()], and [sqlite3_errmsg16()] functions.
+** Otherwise, if successful, a pointer to an [sqlite3_backup] object is
+** returned. This pointer may be used with the sqlite3_backup_step() and
+** sqlite3_backup_finish() functions to perform the specified backup
+** operation.
+**
+** <b>sqlite3_backup_step()</b>
+**
+** Function [sqlite3_backup_step()] is used to copy up to nPage pages between
+** the source and destination databases, where nPage is the value of the
+** second parameter passed to sqlite3_backup_step(). If nPage is a negative
+** value, all remaining source pages are copied. If the required pages are
+** succesfully copied, but there are still more pages to copy before the
+** backup is complete, it returns [SQLITE_OK]. If no error occured and there
+** are no more pages to copy, then [SQLITE_DONE] is returned. If an error
+** occurs, then an SQLite error code is returned. As well as [SQLITE_OK] and
+** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
+** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
+**
+** As well as the case where the destination database file was opened for
+** read-only access, sqlite3_backup_step() may return [SQLITE_READONLY] if
+** the destination is an in-memory database with a different page size
+** from the source database.
+**
+** If sqlite3_backup_step() cannot obtain a required file-system lock, then
+** the [sqlite3_busy_handler | busy-handler function]
+** is invoked (if one is specified). If the
+** busy-handler returns non-zero before the lock is available, then
+** [SQLITE_BUSY] is returned to the caller. In this case the call to
+** sqlite3_backup_step() can be retried later. If the source
+** [database connection]
+** is being used to write to the source database when sqlite3_backup_step()
+** is called, then [SQLITE_LOCKED] is returned immediately. Again, in this
+** case the call to sqlite3_backup_step() can be retried later on. If
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
+** [SQLITE_READONLY] is returned, then
+** there is no point in retrying the call to sqlite3_backup_step(). These
+** errors are considered fatal. At this point the application must accept
+** that the backup operation has failed and pass the backup operation handle
+** to the sqlite3_backup_finish() to release associated resources.
+**
+** Following the first call to sqlite3_backup_step(), an exclusive lock is
+** obtained on the destination file. It is not released until either
+** sqlite3_backup_finish() is called or the backup operation is complete
+** and sqlite3_backup_step() returns [SQLITE_DONE]. Additionally, each time
+** a call to sqlite3_backup_step() is made a [shared lock] is obtained on
+** the source database file. This lock is released before the
+** sqlite3_backup_step() call returns. Because the source database is not
+** locked between calls to sqlite3_backup_step(), it may be modified mid-way
+** through the backup procedure. If the source database is modified by an
+** external process or via a database connection other than the one being
+** used by the backup operation, then the backup will be transparently
+** restarted by the next call to sqlite3_backup_step(). If the source
+** database is modified by the using the same database connection as is used
+** by the backup operation, then the backup database is transparently
+** updated at the same time.
+**
+** <b>sqlite3_backup_finish()</b>
+**
+** Once sqlite3_backup_step() has returned [SQLITE_DONE], or when the
+** application wishes to abandon the backup operation, the [sqlite3_backup]
+** object should be passed to sqlite3_backup_finish(). This releases all
+** resources associated with the backup operation. If sqlite3_backup_step()
+** has not yet returned [SQLITE_DONE], then any active write-transaction on the
+** destination database is rolled back. The [sqlite3_backup] object is invalid
+** and may not be used following a call to sqlite3_backup_finish().
+**
+** The value returned by sqlite3_backup_finish is [SQLITE_OK] if no error
+** occurred, regardless or whether or not sqlite3_backup_step() was called
+** a sufficient number of times to complete the backup operation. Or, if
+** an out-of-memory condition or IO error occured during a call to
+** sqlite3_backup_step() then [SQLITE_NOMEM] or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] error code
+** is returned. In this case the error code and an error message are
+** written to the destination [database connection].
+**
+** A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() is
+** not a permanent error and does not affect the return value of
+** sqlite3_backup_finish().
+**
+** <b>sqlite3_backup_remaining(), sqlite3_backup_pagecount()</b>
+**
+** Each call to sqlite3_backup_step() sets two values stored internally
+** by an [sqlite3_backup] object. The number of pages still to be backed
+** up, which may be queried by sqlite3_backup_remaining(), and the total
+** number of pages in the source database file, which may be queried by
+** sqlite3_backup_pagecount().
+**
+** The values returned by these functions are only updated by
+** sqlite3_backup_step(). If the source database is modified during a backup
+** operation, then the values are not updated to account for any extra
+** pages that need to be updated or the size of the source database file
+** changing.
+**
+** <b>Concurrent Usage of Database Handles</b>
+**
+** The source [database connection] may be used by the application for other
+** purposes while a backup operation is underway or being initialized.
+** If SQLite is compiled and configured to support threadsafe database
+** connections, then the source database connection may be used concurrently
+** from within other threads.
+**
+** However, the application must guarantee that the destination database
+** connection handle is not passed to any other API (by any thread) after
+** sqlite3_backup_init() is called and before the corresponding call to
+** sqlite3_backup_finish(). Unfortunately SQLite does not currently check
+** for this, if the application does use the destination [database connection]
+** for some other purpose during a backup operation, things may appear to
+** work correctly but in fact be subtly malfunctioning. Use of the
+** destination database connection while a backup is in progress might
+** also cause a mutex deadlock.
+**
+** Furthermore, if running in [shared cache mode], the application must
+** guarantee that the shared cache used by the destination database
+** is not accessed while the backup is running. In practice this means
+** that the application must guarantee that the file-system file being
+** backed up to is not accessed by any connection within the process,
+** not just the specific connection that was passed to sqlite3_backup_init().
+**
+** The [sqlite3_backup] object itself is partially threadsafe. Multiple
+** threads may safely make multiple concurrent calls to sqlite3_backup_step().
+** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
+** APIs are not strictly speaking threadsafe. If they are invoked at the
+** same time as another thread is invoking sqlite3_backup_step() it is
+** possible that they return invalid values.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3 *pDest, /* Destination database handle */
+ const char *zDestName, /* Destination database name */
+ sqlite3 *pSource, /* Source database handle */
+ const char *zSourceName /* Source database name */
+);
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
+
+/*
+** CAPI3REF: Unlock Notification
+** EXPERIMENTAL
+**
+** When running in shared-cache mode, a database operation may fail with
+** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
+** individual tables within the shared-cache cannot be obtained. See
+** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
+** This API may be used to register a callback that SQLite will invoke
+** when the connection currently holding the required lock relinquishes it.
+** This API is only available if the library was compiled with the
+** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
+**
+** See Also: [Using the SQLite Unlock Notification Feature].
+**
+** Shared-cache locks are released when a database connection concludes
+** its current transaction, either by committing it or rolling it back.
+**
+** When a connection (known as the blocked connection) fails to obtain a
+** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
+** identity of the database connection (the blocking connection) that
+** has locked the required resource is stored internally. After an
+** application receives an SQLITE_LOCKED error, it may call the
+** sqlite3_unlock_notify() method with the blocked connection handle as
+** the first argument to register for a callback that will be invoked
+** when the blocking connections current transaction is concluded. The
+** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
+** call that concludes the blocking connections transaction.
+**
+** If sqlite3_unlock_notify() is called in a multi-threaded application,
+** there is a chance that the blocking connection will have already
+** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
+** If this happens, then the specified callback is invoked immediately,
+** from within the call to sqlite3_unlock_notify().
+**
+** If the blocked connection is attempting to obtain a write-lock on a
+** shared-cache table, and more than one other connection currently holds
+** a read-lock on the same table, then SQLite arbitrarily selects one of
+** the other connections to use as the blocking connection.
+**
+** There may be at most one unlock-notify callback registered by a
+** blocked connection. If sqlite3_unlock_notify() is called when the
+** blocked connection already has a registered unlock-notify callback,
+** then the new callback replaces the old. If sqlite3_unlock_notify() is
+** called with a NULL pointer as its second argument, then any existing
+** unlock-notify callback is cancelled. The blocked connections
+** unlock-notify callback may also be canceled by closing the blocked
+** connection using [sqlite3_close()].
+**
+** The unlock-notify callback is not reentrant. If an application invokes
+** any sqlite3_xxx API functions from within an unlock-notify callback, a
+** crash or deadlock may be the result.
+**
+** Unless deadlock is detected (see below), sqlite3_unlock_notify() always
+** returns SQLITE_OK.
+**
+** <b>Callback Invocation Details</b>
+**
+** When an unlock-notify callback is registered, the application provides a
+** single void* pointer that is passed to the callback when it is invoked.
+** However, the signature of the callback function allows SQLite to pass
+** it an array of void* context pointers. The first argument passed to
+** an unlock-notify callback is a pointer to an array of void* pointers,
+** and the second is the number of entries in the array.
+**
+** When a blocking connections transaction is concluded, there may be
+** more than one blocked connection that has registered for an unlock-notify
+** callback. If two or more such blocked connections have specified the
+** same callback function, then instead of invoking the callback function
+** multiple times, it is invoked once with the set of void* context pointers
+** specified by the blocked connections bundled together into an array.
+** This gives the application an opportunity to prioritize any actions
+** related to the set of unblocked database connections.
+**
+** <b>Deadlock Detection</b>
+**
+** Assuming that after registering for an unlock-notify callback a
+** database waits for the callback to be issued before taking any further
+** action (a reasonable assumption), then using this API may cause the
+** application to deadlock. For example, if connection X is waiting for
+** connection Y's transaction to be concluded, and similarly connection
+** Y is waiting on connection X's transaction, then neither connection
+** will proceed and the system may remain deadlocked indefinitely.
+**
+** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
+** detection. If a given call to sqlite3_unlock_notify() would put the
+** system in a deadlocked state, then SQLITE_LOCKED is returned and no
+** unlock-notify callback is registered. The system is said to be in
+** a deadlocked state if connection A has registered for an unlock-notify
+** callback on the conclusion of connection B's transaction, and connection
+** B has itself registered for an unlock-notify callback when connection
+** A's transaction is concluded. Indirect deadlock is also detected, so
+** the system is also considered to be deadlocked if connection B has
+** registered for an unlock-notify callback on the conclusion of connection
+** C's transaction, where connection C is waiting on connection A. Any
+** number of levels of indirection are allowed.
+**
+** <b>The "DROP TABLE" Exception</b>
+**
+** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
+** always appropriate to call sqlite3_unlock_notify(). There is however,
+** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
+** SQLite checks if there are any currently executing SELECT statements
+** that belong to the same connection. If there are, SQLITE_LOCKED is
+** returned. In this case there is no "blocking connection", so invoking
+** sqlite3_unlock_notify() results in the unlock-notify callback being
+** invoked immediately. If the application then re-attempts the "DROP TABLE"
+** or "DROP INDEX" query, an infinite loop might be the result.
+**
+** One way around this problem is to check the extended error code returned
+** by an sqlite3_step() call. If there is a blocking connection, then the
+** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
+** the special "DROP TABLE/INDEX" case, the extended error code is just
+** SQLITE_LOCKED.
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *pBlocked, /* Waiting connection */
+ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
+ void *pNotifyArg /* Argument to pass to xNotify */
+);
+
+
+/*
+** CAPI3REF: String Comparison
+** EXPERIMENTAL
+**
+** The [sqlite3_strnicmp()] API allows applications and extensions to
+** compare the contents of two buffers containing UTF-8 strings in a
+** case-indendent fashion, using the same definition of case independence
+** that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
+
+/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
@@ -1887,3 +5756,4 @@ int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
} /* End of the 'extern "C"' block */
#endif
#endif
+