summaryrefslogtreecommitdiffstats
path: root/crawl-ref/source/mon-pathfind.cc
diff options
context:
space:
mode:
authorRobert Vollmert <rvollmert@gmx.net>2009-11-16 15:49:44 +0100
committerRobert Vollmert <rvollmert@gmx.net>2009-11-16 15:49:44 +0100
commit0f68e18e6422e140cb992aa7b1723cacffaa980d (patch)
tree128fe788004e0aee6bb5358ec539acb080eb2290 /crawl-ref/source/mon-pathfind.cc
parent3dc8e63fb4797dae63c42c76365449016cb777ac (diff)
downloadcrawl-ref-0f68e18e6422e140cb992aa7b1723cacffaa980d.tar.gz
crawl-ref-0f68e18e6422e140cb992aa7b1723cacffaa980d.zip
Split monster_pathfind out into mon-pathfind.cc.
Diffstat (limited to 'crawl-ref/source/mon-pathfind.cc')
-rw-r--r--crawl-ref/source/mon-pathfind.cc535
1 files changed, 535 insertions, 0 deletions
diff --git a/crawl-ref/source/mon-pathfind.cc b/crawl-ref/source/mon-pathfind.cc
new file mode 100644
index 0000000000..a919adc204
--- /dev/null
+++ b/crawl-ref/source/mon-pathfind.cc
@@ -0,0 +1,535 @@
+#include "AppHdr.h"
+
+#include "mon-pathfind.h"
+
+#include "coord.h"
+#include "directn.h"
+#include "env.h"
+#include "mon-place.h"
+#include "mon-stuff.h"
+#include "mon-util.h"
+#include "monster.h"
+#include "terrain.h"
+#include "traps.h"
+
+/////////////////////////////////////////////////////////////////////////////
+// monster_pathfind
+
+// The pathfinding is an implementation of the A* algorithm. Beginning at the
+// destination square we check all neighbours of a given grid, estimate the
+// distance needed for any shortest path including this grid and push the
+// result into a hash. We can then easily access all points with the shortest
+// distance estimates and then check _their_ neighbours and so on.
+// The algorithm terminates once we reach the monster position since - because
+// of the sorting of grids by shortest distance in the hash - there can be no
+// path between start and target that is shorter than the current one. There
+// could be other paths that have the same length but that has no real impact.
+// If the hash has been cleared and the start grid has not been encountered,
+// then there's no path that matches the requirements fed into monster_pathfind.
+// (These requirements are usually preference of habitat of a specific monster
+// or a limit of the distance between start and any grid on the path.)
+
+int mons_tracking_range(const monsters *mon)
+{
+
+ int range = 0;
+ switch (mons_intel(mon))
+ {
+ case I_PLANT:
+ range = 2;
+ break;
+ case I_INSECT:
+ range = 4;
+ break;
+ case I_ANIMAL:
+ range = 5;
+ break;
+ case I_NORMAL:
+ range = LOS_RADIUS;
+ break;
+ default:
+ // Highly intelligent monsters can find their way
+ // anywhere. (range == 0 means no restriction.)
+ break;
+ }
+
+ if (range)
+ {
+ if (mons_is_native_in_branch(mon))
+ range += 3;
+ else if (mons_class_flag(mon->type, M_BLOOD_SCENT))
+ range++;
+ }
+
+ return (range);
+}
+
+//#define DEBUG_PATHFIND
+monster_pathfind::monster_pathfind()
+ : mons(), target(), range(0), min_length(0), max_length(0), dist(), prev()
+{
+}
+
+monster_pathfind::~monster_pathfind()
+{
+}
+
+void monster_pathfind::set_range(int r)
+{
+ if (r >= 0)
+ range = r;
+}
+
+coord_def monster_pathfind::next_pos(const coord_def &c) const
+{
+ return c + Compass[prev[c.x][c.y]];
+}
+
+// The main method in the monster_pathfind class.
+// Returns true if a path was found, else false.
+bool monster_pathfind::init_pathfind(const monsters *mon, coord_def dest,
+ bool diag, bool msg, bool pass_unmapped)
+{
+ mons = mon;
+
+ // We're doing a reverse search from target to monster.
+ start = dest;
+ target = mon->pos();
+ pos = start;
+ allow_diagonals = diag;
+ traverse_unmapped = pass_unmapped;
+
+ // Easy enough. :P
+ if (start == target)
+ {
+ if (msg)
+ mpr("The monster is already there!");
+
+ return (true);
+ }
+
+ return start_pathfind(msg);
+}
+
+bool monster_pathfind::init_pathfind(coord_def src, coord_def dest, bool diag,
+ bool msg)
+{
+ start = src;
+ target = dest;
+ pos = start;
+ allow_diagonals = diag;
+
+ // Easy enough. :P
+ if (start == target)
+ return (true);
+
+ return start_pathfind(msg);
+}
+
+bool monster_pathfind::start_pathfind(bool msg)
+{
+ // NOTE: We never do any traversable() check for the starting square
+ // (target). This means that even if the target cannot be reached
+ // we may still find a path leading adjacent to this position, which
+ // is desirable if e.g. the player is hovering over deep water
+ // surrounded by shallow water or floor, or if a foe is hiding in
+ // a wall.
+ // If the surrounding squares also are not traversable, we return
+ // early that no path could be found.
+
+ max_length = min_length = grid_distance(pos.x, pos.y, target.x, target.y);
+ for (int i = 0; i < GXM; i++)
+ for (int j = 0; j < GYM; j++)
+ dist[i][j] = INFINITE_DISTANCE;
+
+ dist[pos.x][pos.y] = 0;
+
+ bool success = false;
+ do
+ {
+ // Calculate the distance to all neighbours of the current position,
+ // and add them to the hash, if they haven't already been looked at.
+ success = calc_path_to_neighbours();
+ if (success)
+ return (true);
+
+ // Pull the position with shortest distance estimate to our target grid.
+ success = get_best_position();
+
+ if (!success)
+ {
+ if (msg)
+ {
+ mprf("Couldn't find a path from (%d,%d) to (%d,%d).",
+ target.x, target.y, start.x, start.y);
+ }
+ return (false);
+ }
+ }
+ while (true);
+}
+
+// Returns true as soon as we encounter the target.
+bool monster_pathfind::calc_path_to_neighbours()
+{
+ coord_def npos;
+ int distance, old_dist, total;
+
+ // For each point, we look at all neighbour points. Check the orthogonals
+ // last, so that, should an orthogonal and a diagonal direction have the
+ // same total travel cost, the orthogonal will be picked first, and thus
+ // zigzagging will be significantly reduced.
+ //
+ // 1 0 3 This means directions are looked at, in order,
+ // \ | / 1, 3, 5, 7 (diagonals) followed by 0, 2, 4, 6
+ // 6--.--2 (orthogonals). This is achieved by the assignment
+ // / | \ of (dir = 0) once dir has passed 7.
+ // 7 4 5
+ //
+ for (int dir = 1; dir < 8; (dir += 2) == 9 && (dir = 0))
+ {
+ // Skip diagonal movement.
+ if (!allow_diagonals && (dir % 2))
+ continue;
+
+ npos = pos + Compass[dir];
+
+#ifdef DEBUG_PATHFIND
+ mprf("Looking at neighbour (%d,%d)", npos.x, npos.y);
+#endif
+ if (!in_bounds(npos))
+ continue;
+
+ if (!traversable(npos))
+ continue;
+
+ // Ignore this grid if it takes us above the allowed distance.
+ if (range && estimated_cost(npos) > range)
+ continue;
+
+ distance = dist[pos.x][pos.y] + travel_cost(npos);
+ old_dist = dist[npos.x][npos.y];
+#ifdef DEBUG_PATHFIND
+ mprf("old dist: %d, new dist: %d, infinite: %d", old_dist, distance,
+ INFINITE_DISTANCE);
+#endif
+ // If the new distance is better than the old one (initialised with
+ // INFINITE), update the position.
+ if (distance < old_dist)
+ {
+ // Calculate new total path length.
+ total = distance + estimated_cost(npos);
+ if (old_dist == INFINITE_DISTANCE)
+ {
+#ifdef DEBUG_PATHFIND
+ mprf("Adding (%d,%d) to hash (total dist = %d)",
+ npos.x, npos.y, total);
+#endif
+ add_new_pos(npos, total);
+ if (total > max_length)
+ max_length = total;
+ }
+ else
+ {
+#ifdef DEBUG_PATHFIND
+ mprf("Improving (%d,%d) to total dist %d",
+ npos.x, npos.y, total);
+#endif
+
+ update_pos(npos, total);
+ }
+
+ // Update distance start->pos.
+ dist[npos.x][npos.y] = distance;
+
+ // Set backtracking information.
+ // Converts the Compass direction to its counterpart.
+ // 0 1 2 4 5 6
+ // 7 . 3 ==> 3 . 7 e.g. (3 + 4) % 8 = 7
+ // 6 5 4 2 1 0 (7 + 4) % 8 = 11 % 8 = 3
+
+ prev[npos.x][npos.y] = (dir + 4) % 8;
+
+ // Are we finished?
+ if (npos == target)
+ {
+#ifdef DEBUG_PATHFIND
+ mpr("Arrived at target.");
+#endif
+ return (true);
+ }
+ }
+ }
+ return (false);
+}
+
+// Starting at known min_length (minimum total estimated path distance), check
+// the hash for existing vectors, then pick the last entry of the first vector
+// that matches. Update min_length, if necessary.
+bool monster_pathfind::get_best_position()
+{
+ for (int i = min_length; i <= max_length; i++)
+ {
+ if (!hash[i].empty())
+ {
+ if (i > min_length)
+ min_length = i;
+
+ std::vector<coord_def> &vec = hash[i];
+ // Pick the last position pushed into the vector as it's most
+ // likely to be close to the target.
+ pos = vec[vec.size()-1];
+ vec.pop_back();
+
+#ifdef DEBUG_PATHFIND
+ mprf("Returning (%d, %d) as best pos with total dist %d.",
+ pos.x, pos.y, min_length);
+#endif
+
+ return (true);
+ }
+#ifdef DEBUG_PATHFIND
+ mprf("No positions for path length %d.", i);
+#endif
+ }
+
+ // Nothing found? Then there's no path! :(
+ return (false);
+}
+
+// Using the prev vector backtrack from start to target to find all steps to
+// take along the shortest path.
+std::vector<coord_def> monster_pathfind::backtrack()
+{
+#ifdef DEBUG_PATHFIND
+ mpr("Backtracking...");
+#endif
+ std::vector<coord_def> path;
+ pos = target;
+ path.push_back(pos);
+
+ if (pos == start)
+ return path;
+
+ int dir;
+ do
+ {
+ dir = prev[pos.x][pos.y];
+ pos = pos + Compass[dir];
+ ASSERT(in_bounds(pos));
+#ifdef DEBUG_PATHFIND
+ mprf("prev: (%d, %d), pos: (%d, %d)", Compass[dir].x, Compass[dir].y,
+ pos.x, pos.y);
+#endif
+ path.push_back(pos);
+
+ if (pos.x == 0 && pos.y == 0)
+ break;
+ }
+ while (pos != start);
+ ASSERT(pos == start);
+
+ return (path);
+}
+
+// Reduces the path coordinates to only a couple of key waypoints needed
+// to reach the target. Waypoints are chosen such that from one waypoint you
+// can see (and, more importantly, reach) the next one. Note that
+// can_go_straight() is probably rather too conservative in these estimates.
+// This is done because Crawl's pathfinding - once a target is in sight and easy
+// reach - is both very robust and natural, especially if we want to flexibly
+// avoid plants and other monsters in the way.
+std::vector<coord_def> monster_pathfind::calc_waypoints()
+{
+ std::vector<coord_def> path = backtrack();
+
+ // If no path found, nothing to be done.
+ if (path.empty())
+ return path;
+
+ dungeon_feature_type can_move;
+ if (mons_amphibious(mons))
+ can_move = DNGN_DEEP_WATER;
+ else
+ can_move = DNGN_SHALLOW_WATER;
+
+ std::vector<coord_def> waypoints;
+ pos = path[0];
+
+#ifdef DEBUG_PATHFIND
+ mpr(EOL "Waypoints:");
+#endif
+ for (unsigned int i = 1; i < path.size(); i++)
+ {
+ if (can_go_straight(pos, path[i], can_move))
+ continue;
+ else
+ {
+ pos = path[i-1];
+ waypoints.push_back(pos);
+#ifdef DEBUG_PATHFIND
+ mprf("waypoint: (%d, %d)", pos.x, pos.y);
+#endif
+ }
+ }
+
+ // Add the actual target to the list of waypoints, so we can later check
+ // whether a tracked enemy has moved too much, in case we have to update
+ // the path.
+ if (pos != path[path.size() - 1])
+ waypoints.push_back(path[path.size() - 1]);
+
+ return (waypoints);
+}
+
+bool monster_pathfind::traversable(const coord_def p)
+{
+ if (traverse_unmapped && grd(p) == DNGN_UNSEEN)
+ return (true);
+
+ if (mons)
+ return mons_traversable(p);
+
+ return (!feat_is_solid(grd(p)) && !feat_destroys_items(grd(p)));
+}
+
+// Checks whether a given monster can pass over a certain position, respecting
+// its preferred habit and capability of flight or opening doors.
+bool monster_pathfind::mons_traversable(const coord_def p)
+{
+ const monster_type montype = mons_is_zombified(mons) ? mons_zombie_base(mons)
+ : mons->type;
+
+ if (!mons->is_habitable_feat(grd(p)))
+ return (false);
+
+ // Monsters that can't open doors won't be able to pass them.
+ if (feat_is_closed_door(grd(p)) || grd(p) == DNGN_SECRET_DOOR)
+ {
+ if (mons_is_zombified(mons))
+ {
+ if (mons_class_itemuse(montype) < MONUSE_OPEN_DOORS)
+ return (false);
+ }
+ else if (mons_itemuse(mons) < MONUSE_OPEN_DOORS)
+ return (false);
+ }
+
+ // Your friends only know about doors you know about, unless they feel
+ // at home in this branch.
+ if (grd(p) == DNGN_SECRET_DOOR && mons->friendly()
+ && (mons_intel(mons) < I_NORMAL || !mons_is_native_in_branch(mons)))
+ {
+ return (false);
+ }
+
+ const trap_def* ptrap = find_trap(p);
+ if (ptrap)
+ {
+ const trap_type tt = ptrap->type;
+
+ // Don't allow allies to pass over known (to them) Zot traps.
+ if (tt == TRAP_ZOT
+ && ptrap->is_known(mons)
+ && mons->friendly())
+ {
+ return (false);
+ }
+
+ // Monsters cannot travel over teleport traps.
+ if (!can_place_on_trap(montype, tt))
+ return (false);
+ }
+
+ return (true);
+}
+
+int monster_pathfind::travel_cost(coord_def npos)
+{
+ if (mons)
+ return mons_travel_cost(npos);
+
+ return (1);
+}
+
+// Assumes that grids that really cannot be entered don't even get here.
+// (Checked by traversable().)
+int monster_pathfind::mons_travel_cost(coord_def npos)
+{
+ ASSERT(grid_distance(pos, npos) <= 1);
+
+ // Doors need to be opened.
+ if (feat_is_closed_door(grd(npos)) || grd(npos) == DNGN_SECRET_DOOR)
+ return 2;
+
+ const int montype = mons_is_zombified(mons) ? mons_zombie_base(mons)
+ : mons->type;
+
+ const bool airborne = mons_airborne(montype, -1, false);
+
+ // Travelling through water, entering or leaving water is more expensive
+ // for non-amphibious monsters, so they'll avoid it where possible.
+ // (The resulting path might not be optimal but it will lead to a path
+ // a monster of such habits is likely to prefer.)
+ // Only tested for shallow water since they can't enter deep water anyway.
+ if (!airborne && !mons_class_amphibious(montype)
+ && (grd(pos) == DNGN_SHALLOW_WATER || grd(npos) == DNGN_SHALLOW_WATER))
+ {
+ return 2;
+ }
+
+ // Try to avoid (known) traps.
+ const trap_def* ptrap = find_trap(npos);
+ if (ptrap)
+ {
+ const bool knows_trap = ptrap->is_known(mons);
+ const trap_type tt = ptrap->type;
+ if (tt == TRAP_ALARM || tt == TRAP_ZOT)
+ {
+ // Your allies take extra precautions to avoid known alarm traps.
+ // Zot traps are considered intraversable.
+ if (knows_trap && mons->friendly())
+ return (3);
+
+ // To hostile monsters, these traps are completely harmless.
+ return 1;
+ }
+
+ // Mechanical traps can be avoided by flying, as can shafts, and
+ // tele traps are never traversable anyway.
+ if (knows_trap && !airborne)
+ return 2;
+ }
+
+ return 1;
+}
+
+// The estimated cost to reach a grid is simply max(dx, dy).
+int monster_pathfind::estimated_cost(coord_def p)
+{
+ return (grid_distance(p, target));
+}
+
+void monster_pathfind::add_new_pos(coord_def npos, int total)
+{
+ hash[total].push_back(npos);
+}
+
+void monster_pathfind::update_pos(coord_def npos, int total)
+{
+ // Find hash position of old distance and delete it,
+ // then call_add_new_pos.
+ int old_total = dist[npos.x][npos.y] + estimated_cost(npos);
+
+ std::vector<coord_def> &vec = hash[old_total];
+ for (unsigned int i = 0; i < vec.size(); i++)
+ {
+ if (vec[i] == npos)
+ {
+ vec.erase(vec.begin() + i);
+ break;
+ }
+ }
+
+ add_new_pos(npos, total);
+}