summaryrefslogtreecommitdiffstats
path: root/crawl-ref/source/dgn-shoals.cc
blob: a3a2b12ea9cb6977b4a9da146a7115f77f21333e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
#include "AppHdr.h"

#include "branch.h"
#include "coord.h"
#include "coordit.h"
#include "dungeon.h"
#include "dgn-shoals.h"
#include "env.h"
#include "flood_find.h"
#include "items.h"
#include "maps.h"
#include "mon-place.h"
#include "mon-util.h"
#include "random.h"
#include "terrain.h"

#include <algorithm>
#include <vector>
#include <cmath>

const char *ENVP_SHOALS_TIDE_KEY = "shoals-tide-height";
const char *ENVP_SHOALS_TIDE_VEL = "shoals-tide-velocity";

inline short &shoals_heights(const coord_def &c)
{
    return (*env.heightmap)(c);
}

static std::vector<coord_def> _shoals_islands;

const int ISLAND_COLLIDE_DIST2 = 5 * 5;
const int N_PERTURB_ISLAND_CENTER = 50;
const int ISLAND_CENTER_RADIUS_LOW = 3;
const int ISLAND_CENTER_RADIUS_HIGH = 10;

const int N_PERTURB_OFFSET_LOW  = 25;
const int N_PERTURB_OFFSET_HIGH = 45;
const int PERTURB_OFFSET_RADIUS_LOW = 2;
const int PERTURB_OFFSET_RADIUS_HIGH = 7;

const int _shoals_margin = 6;

enum shoals_height_thresholds
{
    SHT_UNDEFINED = -10000,
    SHT_STONE = 230,
    SHT_ROCK  = 170,
    SHT_FLOOR = 0,
    SHT_SHALLOW_WATER = -14
};

enum tide_direction
{
    TIDE_RISING,
    TIDE_FALLING
};

static tide_direction _shoals_tide_direction;

static double _to_radians(int degrees)
{
    return degrees * M_PI / 180;
}

static dungeon_feature_type _shoals_feature_by_height(int height)
{
    return height >= SHT_STONE ? DNGN_STONE_WALL :
        height >= SHT_ROCK? DNGN_ROCK_WALL :
        height >= SHT_FLOOR? DNGN_FLOOR :
        height >= SHT_SHALLOW_WATER? DNGN_SHALLOW_WATER
        : DNGN_DEEP_WATER;
}

static dungeon_feature_type _shoals_feature_at(const coord_def &c)
{
    const int height = shoals_heights(c);
    return _shoals_feature_by_height(height);
}

static int _shoals_feature_height(dungeon_feature_type feat)
{
    switch (feat)
    {
    case DNGN_FLOOR:
        return SHT_FLOOR;
    case DNGN_SHALLOW_WATER:
        return SHT_SHALLOW_WATER;
    case DNGN_DEEP_WATER:
        return SHT_SHALLOW_WATER - 1;
    default:
        return 0;
    }
}

// Returns true if the given feature can be affected by Shoals tides.
static bool _shoals_tide_susceptible_feat(dungeon_feature_type feat)
{
    return (feat_is_water(feat) || feat == DNGN_FLOOR);
}

// Return true if tide effects can propagate through this square.
// NOTE: uses RNG!
static bool _shoals_tide_passable_feat(dungeon_feature_type feat)
{
    return (feat_is_watery(feat)
            // The Shoals tide can sometimes lap past the doorways of rooms
            // near the water. Note that the actual probability of the tide
            // getting through a doorway is this probability * 0.5 --
            // see _shoals_apply_tide.
            || (feat == DNGN_OPEN_DOOR && !one_chance_in(3))
            || (feat == DNGN_CLOSED_DOOR && one_chance_in(3)));
}

static void _shoals_init_heights()
{
    env.heightmap.reset(new grid_heightmap);
    for (rectangle_iterator ri(0); ri; ++ri)
        shoals_heights(*ri) = SHT_SHALLOW_WATER - 3;
}

static double _angle_fuzz()
{
    double fuzz = _to_radians(random2(15));
    return coinflip()? fuzz : -fuzz;
}

static coord_def _random_point_from(const coord_def &c, int radius,
                                    int directed_angle = -1)
{
    const double directed_radians(
        directed_angle == -1? 0.0 : _to_radians(directed_angle));
    int attempts = 70;
    while (attempts-- > 0)
    {
        const double angle =
            directed_angle == -1? _to_radians(random2(360))
            : ((coinflip()? directed_radians : -directed_radians)
               + _angle_fuzz());
        coord_def res = c + coord_def(radius * cos(angle),
                                      radius * sin(angle));
        if (res.x >= _shoals_margin && res.x < GXM - _shoals_margin
            && res.y >= _shoals_margin && res.y < GYM - _shoals_margin)
        {
            return res;
        }
    }
    return coord_def();
}

static coord_def _random_point(int offset = 0)
{
    return coord_def(random_range(offset, GXM - offset - 1),
                     random_range(offset, GYM - offset - 1));
}

static void _shoals_island_center(const coord_def &c, int n_perturb, int radius,
                                  int bounce_low, int bounce_high)
{
    for (int i = 0; i < n_perturb; ++i) {
        coord_def p = _random_point_from(c, random2(1 + radius));
        if (!p.origin())
            shoals_heights(p) += random_range(bounce_low, bounce_high);
    }
}

static coord_def _shoals_pick_island_spot()
{
    coord_def c;
    for (int i = 0; i < 15; ++i)
    {
        c = _random_point(_shoals_margin * 2);

        bool collides = false;
        for (int j = 0, size = _shoals_islands.size(); j < size; ++j)
        {
            const coord_def island = _shoals_islands[j];
            const coord_def dist = island - c;
            if (dist.abs() < ISLAND_COLLIDE_DIST2)
            {
                collides = true;
                break;
            }
        }
        if (!collides)
            break;
    }
    _shoals_islands.push_back(c);
    return c;
}

static void _shoals_build_island()
{
    coord_def c = _shoals_pick_island_spot();
    _shoals_island_center(c, N_PERTURB_ISLAND_CENTER,
                          random_range(ISLAND_CENTER_RADIUS_LOW,
                                       ISLAND_CENTER_RADIUS_HIGH),
                          40, 60);
    const int additional_heights = random2(4);
    for (int i = 0; i < additional_heights; ++i) {
        const int addition_offset = random_range(2, 10);

        coord_def offsetC = _random_point_from(c, addition_offset);
        if (!offsetC.origin())
            _shoals_island_center(offsetC, random_range(N_PERTURB_OFFSET_LOW,
                                                        N_PERTURB_OFFSET_HIGH),
                                  random_range(PERTURB_OFFSET_RADIUS_LOW,
                                               PERTURB_OFFSET_RADIUS_HIGH),
                                  25, 35);
    }
}

static void _shoals_init_islands(int depth)
{
    const int nislands = 20 - depth * 2;
    for (int i = 0; i < nislands; ++i)
        _shoals_build_island();
}

// Cliffs are usually constructed in shallow water adjacent to deep
// water (for effect).
static void _shoals_build_cliff()
{
    coord_def cliffc = _random_point(_shoals_margin * 2);
    if (in_bounds(cliffc))
    {
        const int length = random_range(6, 15);
        double angle = _to_radians(random2(360));
        for (int i = 0; i < length; i += 3)
        {
            int distance = i - length / 2;
            coord_def place = cliffc + coord_def(distance * cos(angle),
                                                 distance * sin(angle));
            coord_def fuzz = coord_def(random_range(-2, 2),
                                       random_range(-2, 2));
            place += fuzz;
            _shoals_island_center(place, random_range(40, 60), 3,
                                  100, 130);
        }
    }
}

static void _shoals_cliffs()
{
    const int ncliffs = random_range(0, 6, 2);
    for (int i = 0; i < ncliffs; ++i)
        _shoals_build_cliff();
}

static void _shoals_smooth_at(const coord_def &c, int radius,
                              int max_height = SHT_UNDEFINED)
{
    const int height = shoals_heights(c);
    if (max_height != SHT_UNDEFINED && height > max_height)
        return;

    int max_delta = radius * radius * 2 + 2;
    int divisor = 0;
    int total = 0;
    for (int y = c.y - radius; y <= c.y + radius; ++y) {
        for (int x = c.x - radius; x <= c.x + radius; ++x) {
            const coord_def p(x, y);
            if (!in_bounds(p))
                continue;
            const int nheight = shoals_heights(p);
            if (max_height != SHT_UNDEFINED && nheight > max_height)
                continue;
            const coord_def off = c - p;
            int weight = max_delta - off.abs();
            divisor += weight;
            total += nheight * weight;
        }
    }
    shoals_heights(c) = total / divisor;
}

static void _shoals_smooth()
{
    for (rectangle_iterator ri(0); ri; ++ri)
        _shoals_smooth_at(*ri, 1);
}

static void _shoals_smooth_water()
{
    for (rectangle_iterator ri(0); ri; ++ri)
        _shoals_smooth_at(*ri, 1, SHT_SHALLOW_WATER - 1);
}

static void _shoals_apply_level()
{
    for (rectangle_iterator ri(1); ri; ++ri)
        grd(*ri) = _shoals_feature_at(*ri);
}

static bool _has_adjacent_feat(coord_def c, dungeon_feature_type feat)
{
    for (adjacent_iterator ai(c); ai; ++ai)
        if (grd(*ai) == feat)
            return true;
    return false;
}

// Returns all points in deep water with an adjacent square in shallow water.
static std::vector<coord_def> _shoals_water_depth_change_points()
{
    std::vector<coord_def> points;
    for (rectangle_iterator ri(1); ri; ++ri)
    {
        coord_def c(*ri);
        if (grd(c) == DNGN_DEEP_WATER
            && _has_adjacent_feat(c, DNGN_SHALLOW_WATER))
            points.push_back(c);
    }
    return points;
}

static inline void _shoals_deepen_water_at(coord_def p, int distance)
{
    shoals_heights(p) -= distance * 7;
}

static void _shoals_deepen_water()
{
    std::vector<coord_def> pages[2];
    int current_page = 0;
    pages[current_page] = _shoals_water_depth_change_points();
    FixedArray<bool, GXM, GYM> seen_points(false);

    for (int i = 0, size = pages[current_page].size(); i < size; ++i)
        seen_points(pages[current_page][i]) = true;

    int distance = 0;
    while (!pages[current_page].empty())
    {
        const int next_page = !current_page;
        std::vector<coord_def> &cpage(pages[current_page]);
        std::vector<coord_def> &npage(pages[next_page]);
        for (int i = 0, size = cpage.size(); i < size; ++i)
        {
            coord_def c(cpage[i]);
            if (distance)
                _shoals_deepen_water_at(c, distance);

            for (adjacent_iterator ai(c); ai; ++ai)
            {
                coord_def adj(*ai);
                if (!seen_points(adj) && grd(adj) == DNGN_DEEP_WATER)
                {
                    npage.push_back(adj);
                    seen_points(adj) = true;
                }
            }
        }
        cpage.clear();
        current_page = next_page;
        distance++;
    }
}

static coord_def _pick_shoals_island()
{
    const int lucky_island = random2(_shoals_islands.size());
    const coord_def c = _shoals_islands[lucky_island];
    _shoals_islands.erase(_shoals_islands.begin() + lucky_island);
    return c;
}

struct point_sort_distance_from
{
    coord_def bad_place;
    point_sort_distance_from(coord_def c) : bad_place(c) { }
    bool operator () (coord_def a, coord_def b) const
    {
        const int dista = (a - bad_place).abs(), distb = (b - bad_place).abs();
        return dista >= distb;
    }
};

static coord_def _pick_shoals_island_distant_from(coord_def bad_place)
{
    ASSERT(!_shoals_islands.empty());

    std::sort(_shoals_islands.begin(), _shoals_islands.end(),
              point_sort_distance_from(bad_place));
    const int top_picks = std::min(4, int(_shoals_islands.size()));
    const int choice = random2(top_picks);
    coord_def chosen = _shoals_islands[choice];
    _shoals_islands.erase(_shoals_islands.begin() + choice);
    return chosen;
}

static void _shoals_furniture(int margin)
{
    if (at_branch_bottom())
    {
        const coord_def c = _pick_shoals_island();
        // Put all the stairs on one island.
        grd(c) = DNGN_STONE_STAIRS_UP_I;
        grd(c + coord_def(1, 0)) = DNGN_STONE_STAIRS_UP_II;
        grd(c - coord_def(1, 0)) = DNGN_STONE_STAIRS_UP_III;

        const coord_def p = _pick_shoals_island_distant_from(c);
        // Place the rune
        const map_def *vault = random_map_for_tag("shoal_rune");
        dgn_place_map(vault, false, true, p);

        const int nhuts = std::min(8, int(_shoals_islands.size()));
        for (int i = 2; i < nhuts; ++i)
        {
            // Place (non-rune) minivaults on the other islands
            do
                vault = random_map_for_tag("shoal");
            while (!vault);
            dgn_place_map(vault, false, true, _pick_shoals_island());
        }
    }
    else
    {
        // Place stairs randomly. No elevators.
        for (int i = 0; i < 3; ++i)
        {
            int x, y;
            do
            {
                x = margin + random2(GXM - 2*margin);
                y = margin + random2(GYM - 2*margin);
            }
            while (grd[x][y] != DNGN_FLOOR);

            grd[x][y]
              = static_cast<dungeon_feature_type>(DNGN_STONE_STAIRS_DOWN_I + i);

            do
            {
                x = margin + random2(GXM - 2*margin);
                y = margin + random2(GYM - 2*margin);
            }
            while (grd[x][y] != DNGN_FLOOR);

            grd[x][y]
                = static_cast<dungeon_feature_type>(DNGN_STONE_STAIRS_UP_I + i);
        }
    }
}

static void _shoals_deepen_edges()
{
    const int edge = 2;
    // Water of the edge of the screen is too deep to be exposed by tides.
    for (int y = 1; y < GYM - 2; ++y)
    {
        for (int x = 1; x <= edge; ++x)
        {
            shoals_heights(coord_def(x, y)) -= 800;
            shoals_heights(coord_def(GXM - 1 - x, y)) -= 800;
        }
    }
    for (int x = 1; x < GXM - 2; ++x)
    {
        for (int y = 1; y <= edge; ++y)
        {
            shoals_heights(coord_def(x, y)) -= 800;
            shoals_heights(coord_def(x, GYM - 1 - y)) -= 800;
        }
    }
}

void prepare_shoals(int level_number)
{
    dgn_Build_Method += make_stringf(" shoals+ [%d]", level_number);
    dgn_Layout_Type   = "shoals";

    const int shoals_depth = level_id::current().depth - 1;
    dgn_replace_area(0, 0, GXM-1, GYM-1, DNGN_ROCK_WALL, DNGN_OPEN_SEA);
    _shoals_init_heights();
    _shoals_islands.clear();
    _shoals_init_islands(shoals_depth);
    _shoals_cliffs();
    _shoals_smooth();
    _shoals_apply_level();
    _shoals_deepen_water();
    _shoals_deepen_edges();
    _shoals_smooth_water();
    _shoals_furniture(_shoals_margin);
}

// Search the map for vaults and set the terrain heights for features
// in the vault to reasonable levels.
void shoals_postprocess_level()
{
    if (!player_in_branch(BRANCH_SHOALS) || !env.heightmap.get())
        return;

    for (rectangle_iterator ri(1); ri; ++ri)
    {
        const coord_def c(*ri);
        if (!(dgn_Map_Mask(c) & MMT_VAULT))
            continue;

        const dungeon_feature_type feat(grd(c));
        if (!_shoals_tide_susceptible_feat(feat))
            continue;

        const dungeon_feature_type expected_feat(_shoals_feature_at(c));
        // It would be nice to do actual height contours within
        // vaults, but for now, keep it simple.
        if (feat != expected_feat)
            shoals_heights(c) = _shoals_feature_height(feat);
    }
}

// The raw tide height / TIDE_MULTIPLIER is the actual tide height. The higher
// the tide multiplier, the slower the tide advances and recedes. A multiplier
// of X implies that the tide will advance visibly about once in X turns.
const int TIDE_MULTIPLIER = 30;

const int LOW_TIDE = -18 * TIDE_MULTIPLIER;
const int HIGH_TIDE = 25 * TIDE_MULTIPLIER;
const int TIDE_DECEL_MARGIN = 8;
const int START_TIDE_RISE = 2;

static void _shoals_run_tide(int &tide, int &acc)
{
    tide += acc;
    tide = std::max(std::min(tide, HIGH_TIDE), LOW_TIDE);
    if ((tide == HIGH_TIDE && acc > 0)
        || (tide == LOW_TIDE && acc < 0))
        acc = -acc;
    bool in_decel_margin =
        (abs(tide - HIGH_TIDE) < TIDE_DECEL_MARGIN)
        || (abs(tide - LOW_TIDE) < TIDE_DECEL_MARGIN);
    if ((abs(acc) == 2) == in_decel_margin)
        acc = in_decel_margin? acc / 2 : acc * 2;
}

static coord_def _shoals_escape_place_from(coord_def bad_place,
                                           bool monster_free)
{
    int best_height = -1000;
    coord_def chosen;
    for (adjacent_iterator ai(bad_place); ai; ++ai)
    {
        coord_def p(*ai);
        const dungeon_feature_type feat(grd(p));
        if (!feat_is_solid(feat) && !feat_destroys_items(feat)
            && (!monster_free || !actor_at(p)))
        {
            if (best_height == -1000 || shoals_heights(p) > best_height)
            {
                best_height = shoals_heights(p);
                chosen = p;
            }
        }
    }
    return chosen;
}

static bool _shoals_tide_sweep_items_clear(coord_def c)
{
    int link = igrd(c);
    if (link == NON_ITEM)
        return true;

    const coord_def target(_shoals_escape_place_from(c, false));
    // Don't abort tide entry because of items. If we can't sweep the
    // item clear here, let dungeon_terrain_changed teleport the item
    // to the nearest safe square.
    if (!target.origin())
        move_item_stack_to_grid(c, target);
    return true;
}

static bool _shoals_tide_sweep_actors_clear(coord_def c)
{
    actor *victim = actor_at(c);
    if (!victim || victim->airborne() || victim->swimming())
        return true;

    if (victim->atype() == ACT_MONSTER)
    {
        monsters *mvictim = dynamic_cast<monsters *>(victim);
        // Plants and statues cannot be moved away; the tide cannot
        // drown them.
        if (mons_class_is_stationary(mvictim->type))
            return false;

        // If the monster doesn't need help, move along.
        if (monster_habitable_grid(mvictim, DNGN_DEEP_WATER))
            return true;
    }
    coord_def evacuation_point(_shoals_escape_place_from(c, true));
    // The tide moves on even if we cannot evacuate the tile!
    if (!evacuation_point.origin())
        victim->move_to_pos(evacuation_point);
    return true;
}

// The tide will attempt to push items and non-water-capable monsters to
// adjacent squares.
static bool _shoals_tide_sweep_clear(coord_def c)
{
    return _shoals_tide_sweep_items_clear(c)
        && _shoals_tide_sweep_actors_clear(c);
}

static void _shoals_apply_tide_feature_at(coord_def c,
                                          dungeon_feature_type feat)
{
    if (feat == DNGN_DEEP_WATER && !_shoals_tide_sweep_clear(c))
        feat = DNGN_SHALLOW_WATER;

    const dungeon_feature_type current_feat = grd(c);
    if (feat == current_feat)
        return;

    dungeon_terrain_changed(c, feat, true, false, true);
}

// Determines if the tide is rising or falling based on before and
// after features at the same square.
static tide_direction _shoals_feature_tide_height_change(
    dungeon_feature_type oldfeat,
    dungeon_feature_type newfeat)
{
    const int height_delta =
        _shoals_feature_height(newfeat) - _shoals_feature_height(oldfeat);
    // If the apparent height of the new feature is greater (floor vs water),
    // the tide is receding.
    return height_delta < 0? TIDE_RISING : TIDE_FALLING;
}

static void _shoals_apply_tide_at(coord_def c, int tide)
{
    const int effective_height = shoals_heights(c) - tide;
    dungeon_feature_type newfeat =
        _shoals_feature_by_height(effective_height);
    // Make sure we're not sprouting new walls.
    if (feat_is_wall(newfeat))
        newfeat = DNGN_FLOOR;
    const dungeon_feature_type oldfeat = grd(c);

    if (oldfeat == newfeat
        || (_shoals_feature_tide_height_change(oldfeat, newfeat) !=
            _shoals_tide_direction))
    {
        return;
    }

    _shoals_apply_tide_feature_at(c, newfeat);
}

static void _shoals_apply_tide(int tide)
{
    std::vector<coord_def> pages[2];
    int current_page = 0;

    // Start from corners of the map.
    pages[current_page].push_back(coord_def(1,1));
    pages[current_page].push_back(coord_def(GXM - 2, 1));
    pages[current_page].push_back(coord_def(1, GYM - 2));
    pages[current_page].push_back(coord_def(GXM - 2, GYM - 2));

    FixedArray<bool, GXM, GYM> seen_points(false);

    while (!pages[current_page].empty())
    {
        int next_page = !current_page;
        std::vector<coord_def> &cpage(pages[current_page]);
        std::vector<coord_def> &npage(pages[next_page]);

        for (int i = 0, size = cpage.size(); i < size; ++i)
        {
            coord_def c(cpage[i]);
            const bool was_wet(_shoals_tide_passable_feat(grd(c)));
            seen_points(c) = true;
            _shoals_apply_tide_at(c, tide);

            const bool is_wet(feat_is_water(grd(c)));
            // Only squares that were wet (before applying tide
            // effects!) can propagate the tide onwards. If the tide is
            // receding and just left the square dry, there's only a chance of
            // it continuing past and draining other squares through this one.
            if (was_wet && (is_wet || coinflip()))
            {
                for (adjacent_iterator ai(c); ai; ++ai)
                {
                    coord_def adj(*ai);
                    if (!in_bounds(adj))
                        continue;
                    if (!seen_points(adj))
                    {
                        const dungeon_feature_type feat = grd(adj);
                        if (_shoals_tide_susceptible_feat(feat))
                        {
                            npage.push_back(adj);
                            seen_points(adj) = true;
                        }
                    }
                }
            }
        }

        cpage.clear();
        current_page = next_page;
    }
}

static void _shoals_init_tide()
{
    if (!env.properties.exists(ENVP_SHOALS_TIDE_KEY))
    {
        env.properties[ENVP_SHOALS_TIDE_KEY] = short(0);
        env.properties[ENVP_SHOALS_TIDE_VEL] = short(2);
    }
}

void shoals_apply_tides(int turns_elapsed)
{
    if (!player_in_branch(BRANCH_SHOALS) || !turns_elapsed
        || !env.heightmap.get())
    {
        return;
    }

    const int TIDE_UNIT = HIGH_TIDE - LOW_TIDE;
    // If we've been gone a long time, eliminate some unnecessary math.
    if (turns_elapsed > TIDE_UNIT * 2)
        turns_elapsed = turns_elapsed % TIDE_UNIT + TIDE_UNIT;

    _shoals_init_tide();
    int tide = env.properties[ENVP_SHOALS_TIDE_KEY].get_short();
    int acc = env.properties[ENVP_SHOALS_TIDE_VEL].get_short();
    const int old_tide = tide;
    while (turns_elapsed-- > 0)
        _shoals_run_tide(tide, acc);
    env.properties[ENVP_SHOALS_TIDE_KEY] = short(tide);
    env.properties[ENVP_SHOALS_TIDE_VEL] = short(acc);
    if (old_tide / TIDE_MULTIPLIER != tide / TIDE_MULTIPLIER)
    {
        _shoals_tide_direction =
            tide > old_tide ? TIDE_RISING : TIDE_FALLING;
        _shoals_apply_tide(tide / TIDE_MULTIPLIER);
    }
}