summaryrefslogtreecommitdiffstats
path: root/crawl-ref/source/sha256.cc
blob: 96443587a0817b29c82b193d18dc496bb4c07b99 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*
   SHA256 hardening of PRNG written by Mikko Juola. This hashes MT-generated values (in 256 bit
   blocks) with SHA256 and uses the results as random values (in 32 bit blocks).

   sha256_genrand() generates cryptographically secure random numbers.

*/

#include "AppHdr.h"

#include <stdint.h>

typedef uint32_t u32;

#include "mt19937ar.h"

#ifdef MORE_HARDENED_PRNG

#include <stack>

#include <cstring>
#include <cstdio>
#include <cstdlib>

typedef struct
{
    char output[32];
} sha256state;

const u32 h[] = { 0x6a09e667,
                  0xbb67ae85,
                  0x3c6ef372,
                  0xa54ff53a,
                  0x510e527f,
                  0x9b05688c,
                  0x1f83d9ab,
                  0x5be0cd19 };

const u32 k[] = {
   0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
   0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
   0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
   0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
   0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
   0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
   0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
   0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 };

#define LSHIFT(value, bits) ( ((value) << (bits)) & 0xfffffffe )
#define RSHIFT(value, bits) ( ((value) >> (bits)) & 0x7fffffff )

#define LROTATE(value, bits) ( LSHIFT(value, bits) | RSHIFT(value, (sizeof(value) << 3) - (bits)) )
#define RROTATE(value, bits) ( RSHIFT(value, bits) | LSHIFT(value, (sizeof(value) << 3) - (bits)) )

#define STORE64H(x, y)                                                                     \
   { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);     \
     (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);     \
     (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);     \
     (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }

#define STORE32H(x, y)                                                                     \
     { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255);   \
       (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }

#define LOAD32H(x, y)                            \
     { x = ((unsigned long)((y)[0] & 255)<<24) | \
           ((unsigned long)((y)[1] & 255)<<16) | \
           ((unsigned long)((y)[2] & 255)<<8)  | \
           ((unsigned long)((y)[3] & 255)); }

void sha256chunk(const char* chunk, sha256state* ss);

// Only first 64 bytes of in_msg are used, if in_msg_len is greater than that.
// No padding is done. Result is undefined if in_msg and out_msg overlap.
void sha256(const char* in_msg, size_t in_msg_len, char* out_msg)
{
    sha256state* ss = (sha256state*) out_msg;
    for (int i1 = 0; i1 < 8; i1++)
        STORE32H(h[i1], &ss->output[i1 << 2]);

    if (in_msg_len < 64)
    {
        char chunk[64];
        memset(chunk, 0, 64);
        memcpy(chunk, in_msg, in_msg_len);
        sha256chunk(chunk, ss);
        return;
    }

    sha256chunk(in_msg, ss);
}

void sha256chunk(const char* chunk, sha256state* ss)
{
    u32 chunk_out[8];
    u32 w[64];
    u32 s0, s1, maj, t1, t2, ch;
    size_t i1;

    for (i1 = 0; i1 < 16; i1 ++)
        LOAD32H(w[i1], &chunk[i1 << 2]);

    for (i1 = 16; i1 < 64; i1++)
    {
        s0 = RROTATE(w[i1-15], 7) ^ RROTATE(w[i1-15], 18) ^ RSHIFT(w[i1-15], 3);
        s1 = RROTATE(w[i1-2], 17) ^ RROTATE(w[i1-2],  19) ^ RSHIFT(w[i1-2], 10);
        w[i1] = w[i1-16] + s0 + w[i1-7] + s1;
    }

    for (i1 = 0; i1 < 8; i1++)
        LOAD32H(chunk_out[i1], &ss->output[i1 << 2]);

    for (i1 = 0; i1 < 64; i1++)
    {
        s0 = RROTATE(chunk_out[0], 2) ^ RROTATE(chunk_out[0], 13) ^ RROTATE(chunk_out[0], 22);
        maj = (chunk_out[0] & chunk_out[1]) ^ (chunk_out[0] & chunk_out[2]) ^ (chunk_out[1] & chunk_out[2]);
        t2 = s0 + maj;
        s1 = RROTATE(chunk_out[4], 6) ^ RROTATE(chunk_out[4], 11) ^ RROTATE(chunk_out[4], 25);
        ch = (chunk_out[4] & chunk_out[5]) ^ ((~chunk_out[4]) & chunk_out[6]);
        t1 = chunk_out[7] + s1 + ch + k[i1] + w[i1];

        chunk_out[7] = chunk_out[6];
        chunk_out[6] = chunk_out[5];
        chunk_out[5] = chunk_out[4];
        chunk_out[4] = chunk_out[3] + t1;
        chunk_out[3] = chunk_out[2];
        chunk_out[2] = chunk_out[1];
        chunk_out[1] = chunk_out[0];
        chunk_out[0] = t1 + t2;
    }

    for (i1 = 0; i1 < 8; i1++)
    {
        u32 temp;
        LOAD32H(temp, &ss->output[i1 << 2]);
        temp += chunk_out[i1];
        STORE32H(temp, &ss->output[i1 << 2]);
    }
}

struct sha256mt_state
{
    // 256 bits
    u32 mt_sha256_block[8], mt_block[8];
    u32 mt_block_index;

    sha256mt_state()
    {
        mt_block_index = 0;
    }
};

sha256mt_state effective_state;

std::stack<sha256mt_state> sha256mt_state_stack;

void reset_sha256_state()
{
    effective_state.mt_block_index = 0;
}

void push_sha256_state()
{
    sha256mt_state_stack.push(effective_state);
    push_mt_state();
}

void pop_sha256_state()
{
    if (sha256mt_state_stack.empty())
        return;

    effective_state = sha256mt_state_stack.top();

    sha256mt_state_stack.pop();
    pop_mt_state();
}

unsigned long sha256_genrand()
{
    u32 &mt_block_index = effective_state.mt_block_index;
    u32 *mt_sha256_block = effective_state.mt_sha256_block;
    u32 *mt_block = effective_state.mt_block;

    // Needs some hashing
    if (!(mt_block_index % 8))
    {
        mt_block_index = 0;

        mt_block[0] = genrand_int32();
        mt_block[1] = genrand_int32();
        mt_block[2] = genrand_int32();
        mt_block[3] = genrand_int32();
        mt_block[4] = genrand_int32();
        mt_block[5] = genrand_int32();
        mt_block[6] = genrand_int32();
        mt_block[7] = genrand_int32();

        // This kind of casting from char to 32-bit values gives different
        // results on different endianess platforms but we are talking
        // about random numbers here so let's leave it simple.
        sha256((char*) mt_block, 32, (char*) mt_sha256_block);
    }

    return mt_sha256_block[mt_block_index++];
}
#else // MORE_HARDENED_PRNG
// Stub these to MT functions
void push_sha256_state()
{
    push_mt_state();
}

void pop_sha256_state()
{
    pop_mt_state();
}

void reset_sha256_state()
{
}

unsigned long sha256_genrand()
{
    return genrand_int32();
}
#endif

#ifdef NEVER
/*
Simple correctness test, should print this:
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

(the hash of an empty string, on unix systems try writing sha256sum and ctrl-d
*/
#include <cstdio>
#include <cstdlib>
int main(int argc, char* argv[])
{
    char msg[1];
    msg[0] = 0x80;

    char sha256out[32];
    memset(sha256out, 0, 32);
    sha256(msg, 1, sha256out);

    for (int i1 = 0; i1 < 32; i1++)
        printf("%x", (unsigned char) sha256out[i1]);
    printf("\n");
    return 0;
}
#endif

#ifdef SPEEDTEST
/* Generates 100000000 MT-generated, SHA256 hashed 32-bit random numbers if
   there are no arguments.
   Generates 100000000 MT-generated 32-bit random numbers if argument is '1'
*/

/* That's hundred million */
#define NUMBERS 100000000

#include <cstdio>
#include <cstdlib>
#include <sys/time.h>
#include <time.h>
int main(int argc, char* argv[])
{
    bool sha256test = true;
    if (argc > 1 && argv[1][0] == '1')
        sha256test = false;

    init_genrand(time(0));

    if (sha256test)
    {
        for (unsigned int i1 = 0; i1 < NUMBERS; i1++)
            sha256_genrand();
        return 0;
    }

    for (unsigned int i1 = 0; i1 < NUMBERS; i1++)
        genrand_int32();

    return 0;
}
#endif

#ifdef DIEHARD
/* When run, just outputs binary 4-byte random values. Useful for diehard tests */
/* If MORE_HARDENED_PRNG is not defined, it will use MT directly instead (because
   sha256 is not even compiled without that */
int main(int argc, char* argv[])
{
    init_genrand(time(0));

    while(true)
    {
        u32 value = sha256_genrand();
        fwrite(&value, sizeof(u32), 1, stdout);
    }

    return 0;
}
#endif