summaryrefslogtreecommitdiffstats
path: root/lib/Graph/Implicit.pm
blob: 9c07d731fee3ee71d0ae0fbde897794ae96a457f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/perl
use strict;
use warnings;
package Graph::Implicit;
use Heap::Simple;
use List::MoreUtils qw/apply/;

=for example

sub {
    map { [$_, $_->intrinsic_cost] }
        shift->grep_adjacent(sub { shift->is_walkable })
}

=cut

sub new {
    my $class = shift;
    my $edge_calculator = shift;
    return bless $edge_calculator, $class;
}

# generic information

sub vertices {
    my $self = shift;
    my ($start) = @_;
    my @vertices;
    $self->dfs($start, sub { push @vertices, $_[1] });
    return @vertices;
}

# XXX: probably pretty inefficient... can we do better?
sub edges {
    my $self = shift;
    my ($start) = @_;
    map { my $v = $_; map { [$v, $_] } $self->neighbors($v) }
        $self->vertices($start);
}

sub neighbors {
    my $self = shift;
    my ($from) = @_;
    return map { $$_[0] } $self->($from);
}

# more complicated graph properties

sub is_bipartite {
    my $self = shift;
    my ($from) = @_;
    my $ret = 1;
    BIPARTITE: {
        my %colors = ($from => 0);
        no warnings 'exiting';
        $self->bfs($from, sub {
            my $vertex = $_[1];
            apply {
                last BIPARTITE if $colors{$vertex} == $colors{$_};
                $colors{$_} = not $colors{$vertex};
            } $self->neighbors($vertex)
        });
        return 1;
    }
    return 0;
}

# traversal

# XXX: if we can generalize @bag to allow for a heap, then we can implement
# prim with this too
sub _traversal {
    my $self = shift;
    my ($start, $code, $insert, $remove) = @_;
    my @bag;
    my %marked;
    my %pred;
    $insert->(\@bag, [undef, $start]);
    while (@bag) {
        my ($pred, $vertex) = @{ $remove->(\@bag) };
        if (not exists $marked{$vertex}) {
            $code->($pred, $vertex);
            $pred{$vertex} = $pred if defined wantarray;
            $marked{$vertex} = 1;
            $insert->(\@bag, $_) for $self->neighbors($vertex);
        }
    }
    return \%pred;
}

sub bfs {
    my $self = shift;
    my ($start, $code) = @_;
    return $self->_traversal($start, $code,
                             sub { push @{ $_[0] }, $_[1] },
                             sub { shift @{ $_[0] } });
}

sub dfs {
    my $self = shift;
    my ($start, $code) = @_;
    return $self->_traversal($start, $code,
                             sub { push @{ $_[0] }, $_[1] },
                             sub { pop @{ $_[0] } });
}

sub iddfs {
}

# minimum spanning tree

sub boruvka {
}

sub prim {
}

sub kruskal {
}

# single source shortest path

sub dijkstra {
    my $self = shift;
    my ($from, $scorer) = @_;
    return $self->astar($from, sub { 0 }, $scorer);
}

sub astar {
    my $self = shift;
    my ($from, $heuristic, $scorer) = @_;

    my $pq = Heap::Simple->new(elements => "Any");
    my %neighbors;
    my ($max_vert, $max_score) = (undef, 0);
    my %dist = ($from => 0);
    my %pred = ($from => undef);
    $pq->key_insert(0, $from);
    while ($pq->count) {
        my $cost = $pq->top_key;
        my $vertex = $pq->extract_top;
        if ($scorer) {
            my $score = $scorer->($vertex);
            return (\%pred, $vertex) if $score eq 'q';
            ($max_vert, $max_score) = ($vertex, $score)
                if ($score > $max_score);
        }
        $neighbors{$vertex} = [$self->($vertex)]
            unless exists $neighbors{$vertex};
        for my $neighbor (@{ $neighbors{$vertex} }) {
            my ($vert_n, $weight_n) = @{ $neighbor };
            my $dist = $cost + $weight_n + $heuristic->($vertex, $vert_n);
            if (!defined $dist{$vert_n} || $dist < $dist{$vert_n}) {
                $dist{$vert_n} = $dist;
                $pred{$vert_n} = $vertex;
                $pq->key_insert($dist, $vert_n);
            }
        }
    }
    return \%pred, $max_vert;
}

sub bellman_ford {
}

# all pairs shortest path

sub johnson {
}

sub floyd_warshall {
}

# other (?)

sub topological_sort {
}

# misc utility functions

sub make_path {
    my ($pred, $end) = @_;
    my @path;
    while (defined $end) {
        push @path, $end;
        $end = $pred->{$end};
    }
    return reverse @path;
}

1;