summaryrefslogtreecommitdiffstats
path: root/src/crack.rs
blob: 344488b159cc55dd1091dc450574f46c6bd27225 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use std;
use std::ascii::AsciiExt;
use std::borrow::ToOwned;
use std::collections::{HashMap, HashSet};
use std::num::Float;

use data::ENGLISH_FREQUENCIES;
use primitives::{fixed_xor, unpad_pkcs7, hamming, repeating_key_xor};

#[derive(PartialEq,Eq,Debug)]
pub enum BlockCipherMode {
    ECB,
    CBC,
}

pub fn find_single_byte_xor_encrypted_string (inputs: &[Vec<u8>]) -> Vec<u8> {
    let mut min_diff = 100.0;
    let mut best_decrypted = vec![];
    for input in inputs {
        let (key, diff) = crack_single_byte_xor_with_confidence(input);
        if diff < min_diff {
            min_diff = diff;
            best_decrypted = repeating_key_xor(input, &[key]);
        }
    }
    return best_decrypted;
}

pub fn crack_single_byte_xor (input: &[u8]) -> Vec<u8> {
    let (key, _) = crack_single_byte_xor_with_confidence(input);
    return repeating_key_xor(input, &[key]);
}

pub fn crack_repeating_key_xor (input: &[u8]) -> Vec<u8> {
    let mut keysizes = vec![];
    for keysize in 2..40 {
        let distance1 = hamming(
            &input[(keysize * 0)..(keysize * 1)],
            &input[(keysize * 1)..(keysize * 2)]
        ) as f64;
        let distance2 = hamming(
            &input[(keysize * 1)..(keysize * 2)],
            &input[(keysize * 2)..(keysize * 3)]
        ) as f64;
        let distance3 = hamming(
            &input[(keysize * 2)..(keysize * 3)],
            &input[(keysize * 3)..(keysize * 4)]
        ) as f64;
        let distance = distance1 + distance2 + distance3 / 3.0;
        let normal_distance = distance / (keysize as f64);
        keysizes.push((keysize, normal_distance));
        if keysizes.len() > 5 {
            let (idx, _) = keysizes
                .iter()
                .enumerate()
                .fold(
                    (0, (0, 0.0)),
                    |(accidx, (accsize, accdist)), (idx, &(size, dist))| {
                        if dist > accdist {
                            (idx, (size, dist))
                        }
                        else {
                            (accidx, (accsize, accdist))
                        }
                    }
                );
            keysizes.swap_remove(idx);
        }
    }

    let mut min_diff = 100.0;
    let mut best_key = vec![];
    for (keysize, _) in keysizes {
        let (key, diff) = crack_repeating_key_xor_with_keysize(input, keysize);
        if diff < min_diff {
            min_diff = diff;
            best_key = key;
        }
    }

    return best_key;
}

pub fn find_aes_128_ecb_encrypted_string (inputs: &[Vec<u8>]) -> Vec<u8> {
    let mut max_dups = 0;
    let mut found = vec![];
    for input in inputs {
        let dups = count_duplicate_blocks(input, 16);
        if dups > max_dups {
            max_dups = dups;
            found = input.clone();
        }
    }
    return found;
}

pub fn detect_ecb_cbc<F> (f: &F, block_size: usize) -> BlockCipherMode where F: Fn(&[u8]) -> Vec<u8> {
    if block_size >= std::u8::MAX as usize {
        panic!("invalid block size: {}", block_size);
    }
    let block_size_byte = block_size as u8;
    let plaintext: Vec<u8> = (0..block_size_byte)
        .cycle()
        .take(block_size * 2)
        .flat_map(|n| std::iter::repeat(n).take(block_size + 1))
        .collect();
    let ciphertext = f(&plaintext[..]);

    if count_duplicate_blocks(&ciphertext[..], block_size) >= block_size {
        return BlockCipherMode::ECB;
    }
    else {
        return BlockCipherMode::CBC;
    }
}

pub fn crack_padded_aes_128_ecb<F> (f: &F) -> Vec<u8> where F: Fn(&[u8]) -> Vec<u8> {
    let block_size = find_block_size(f);
    if detect_ecb_cbc(f, block_size) != BlockCipherMode::ECB {
        panic!("Can only crack ECB-encrypted data");
    }

    let mut plaintext = vec![];

    let get_block = |input: &[u8], i| {
        let encrypted = f(input);
        let block_number = i / block_size;
        let low = block_number * block_size;
        let high = (block_number + 1) * block_size;
        encrypted[low..high].to_vec()
    };

    let mut i = 0;
    loop {
        let mut map = HashMap::new();

        let prefix: Vec<u8> = std::iter::repeat(b'A')
            .take(block_size - ((i % block_size) + 1))
            .collect();
        for c in 0..256 {
            let mut prefix_with_next_char = prefix.clone();
            for &c in plaintext.iter() {
                prefix_with_next_char.push(c);
            }
            prefix_with_next_char.push(c as u8);
            map.insert(get_block(&prefix_with_next_char[..], i), c as u8);
        }

        let next_char = map.get(&get_block(&prefix[..], i));
        if next_char.is_some() {
            plaintext.push(*next_char.unwrap());
        }
        else {
            break;
        }

        i += 1;
    }

    return unpad_pkcs7(&plaintext[..]).expect("invalid padding").to_vec();
}

pub fn crack_padded_aes_128_ecb_with_prefix<F> (f: &F) -> Vec<u8> where F: Fn(&[u8]) -> Vec<u8> {
    let (block_size, prefix_len) = find_block_size_and_fixed_prefix_len(f);
    let wrapped_f = |input: &[u8]| {
        let alignment_padding = block_size - (prefix_len % block_size);
        let padded_input: Vec<u8> = std::iter::repeat(b'A')
            .take(alignment_padding)
            .chain(input.iter().map(|x| *x))
            .collect();
        return f(&padded_input[..])
            .iter()
            .skip(prefix_len + alignment_padding)
            .map(|x| *x)
            .collect();
    };
    return crack_padded_aes_128_ecb(&wrapped_f);
}

pub fn crack_querystring_aes_128_ecb<F> (encrypter: &F) -> (String, Vec<Vec<u8>>) where F: Fn(&str) -> Vec<u8> {
    fn incr_map_element (map: &mut HashMap<Vec<u8>, usize>, key: Vec<u8>) {
        if let Some(val) = map.get_mut(&key) {
            *val += 1;
            return;
        }
        map.insert(key, 1);
    };

    // find blocks that correspond to "uid=10&role=user" or "role=user&uid=10"
    let find_uid_role_blocks = || {
        let mut map = HashMap::new();
        for c in 32..127 {
            let email_bytes: Vec<u8> = std::iter::repeat(c).take(9).collect();
            let email = std::str::from_utf8(&email_bytes[..]).unwrap();
            let ciphertext = encrypter(email);
            incr_map_element(&mut map, ciphertext[..16].to_vec());
            incr_map_element(&mut map, ciphertext[16..32].to_vec());
        }

        let mut most_common_blocks = vec![];
        for (k, v) in map {
            most_common_blocks.push((k, v));
            if most_common_blocks.len() > 2 {
                let (idx, _) = most_common_blocks
                    .iter()
                    .enumerate()
                    .fold(
                        (0, (vec![], 10000)),
                        |(aidx, (ablock, acount)), (idx, &(ref block, count))| {
                            if count < acount {
                                (idx, (block.clone(), count))
                            }
                            else {
                                (aidx, (ablock.clone(), acount))
                            }
                        }
                    );
                most_common_blocks.swap_remove(idx);
            }
        }

        if most_common_blocks.len() == 2 {
            let (ref block1, _) = most_common_blocks[0];
            let (ref block2, _) = most_common_blocks[1];
            return (block1.clone(), block2.clone());
        }
        else {
            panic!("couldn't find most common blocks");
        }
    };

    // encrypt:
    // email=..........admin<pcks7 padding>...............&uid=10&role=user
    let calculate_admin_block = |block1, block2| {
        for _ in 0..1000 {
            let email = "blorg@bar.admin\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b...............";
            let ciphertext = encrypter(email);
            if &ciphertext[48..64] == block1 || &ciphertext[48..64] == block2 {
                return ciphertext[16..32].to_vec();
            }
        }
        panic!("couldn't find a ciphertext with the correct role/uid block");
    };

    // find all possible encryptions with email=............ and then replace
    // the last block with the padded admin block above
    let calculate_possible_admin_ciphertexts = |admin_block: Vec<u8>| {
        let email = "blorg@bar.com";
        let mut possibles = vec![];
        while possibles.len() < 6 {
            let ciphertext = encrypter(email);
            let modified_ciphertext = ciphertext
                .iter()
                .take(32)
                .chain(admin_block.iter())
                .map(|x| *x)
                .collect();
            if !possibles.iter().any(|possible| possible == &modified_ciphertext) {
                possibles.push(modified_ciphertext);
            }
        }
        return (email.to_owned(), possibles);
    };

    let (block1, block2) = find_uid_role_blocks();
    let admin_block = calculate_admin_block(block1, block2);
    return calculate_possible_admin_ciphertexts(admin_block);
}

pub fn crack_cbc_bitflipping<F> (f: &F) -> Vec<u8> where F: Fn(&str) -> Vec<u8> {
    let mut ciphertext = f("AAAAAAAAAAAAAAAA:admin<true:AAAA");
    ciphertext[32] = ciphertext[32] ^ 0x01;
    ciphertext[38] = ciphertext[38] ^ 0x01;
    ciphertext[43] = ciphertext[43] ^ 0x01;
    return ciphertext;
}

pub fn crack_cbc_padding_oracle<F> (iv: &[u8], ciphertext: &[u8], f: &F) -> Vec<u8> where F: Fn(&[u8], &[u8]) -> bool {
    let mut prev = iv;
    let mut plaintext = vec![];
    for block in ciphertext.chunks(16) {
        let mut plaintext_block = vec![];
        'BYTE: for byte in 0..16u8 {
            for c_int in 0..256 {
                let c = (255 - c_int) as u8;
                let offset = (16 - byte - 1) as usize;
                let mut iv: Vec<u8> = prev
                    .iter()
                    .take(offset)
                    .map(|x| *x)
                    .collect();
                iv.push(prev[offset] ^ c ^ (byte + 1));
                for i in 0..(byte as usize) {
                    iv.push(prev[offset + i + 1] ^ plaintext_block[i] ^ (byte + 1));
                }
                if f(&iv[..], block) {
                    plaintext_block.insert(0, c);
                    continue 'BYTE;
                }
            }
            panic!("no byte found! ({})", byte);
        }
        for c in plaintext_block {
            plaintext.push(c);
        }
        prev = block;
    }
    return unpad_pkcs7(&plaintext[..]).unwrap().to_vec();
}

fn crack_single_byte_xor_with_confidence (input: &[u8]) -> (u8, f64) {
    let mut min_diff = 100.0;
    let mut best_key = 0;
    for a in 0..256u16 {
        let decrypted = fixed_xor(
            input,
            &std::iter::repeat(a as u8)
                .take(input.len())
                .collect::<Vec<u8>>()[..]
        );
        if !decrypted.is_ascii() {
            continue;
        }
        if decrypted.iter().any(|&c| c != b'\n' && (c < 0x20 || c > 0x7E)) {
            continue;
        }
        let lowercase = decrypted.to_ascii_lowercase();
        let mut frequencies = [0; 26];
        let mut total_frequency = 0;
        let mut extra_frequencies = 0;
        for c in lowercase {
            total_frequency += 1;
            if c >= 0x61 && c <= 0x7A {
                frequencies[(c - 0x61) as usize] += 1;
            }
            else {
                extra_frequencies += 1;
            }
        }

        let mut total_diff = 0.0;
        for (&english, &crypt) in ENGLISH_FREQUENCIES.iter().zip(frequencies.iter()) {
            let relative_frequency = (crypt as f64) / (total_frequency as f64);
            total_diff += (english - relative_frequency).abs();
        }
        total_diff += (extra_frequencies as f64) / (total_frequency as f64);

        if total_diff < min_diff {
            min_diff = total_diff;
            best_key = a as u8;
        }
    }

    return (best_key, min_diff);
}

fn crack_repeating_key_xor_with_keysize (input: &[u8], keysize: usize) -> (Vec<u8>, f64) {
    let strides: Vec<Vec<u8>> = (0..keysize)
        .map(|n| {
            // XXX sigh ):
            let mut elts = vec![];
            for (i, &c) in input.iter().enumerate() {
                if i % keysize == n {
                    elts.push(c);
                }
            }
            elts
        })
        .collect();
    let cracked: Vec<(u8, f64)> = strides
        .iter()
        .map(|input| crack_single_byte_xor_with_confidence(input))
        .collect();
    let diff = cracked
        .iter()
        .map(|&(_, diff)| diff)
        .fold(0.0, |acc, x| acc + x);
    let key = cracked
        .iter()
        .map(|&(c, _)| c)
        .collect();
    return (key, diff / (keysize as f64));
}

fn count_duplicate_blocks (input: &[u8], block_size: usize) -> usize {
    let mut set = HashSet::new();
    let mut dups = 0;
    for block in input.chunks(block_size) {
        if !set.insert(block) {
            dups += 1;
        }
    }
    return dups;
}

fn find_block_size<F> (f: &F) -> usize where F: Fn(&[u8]) -> Vec<u8> {
    let (block_size, _) = find_block_size_and_fixed_prefix_len(f);
    return block_size;
}

fn find_block_size_and_fixed_prefix_len<F> (f: &F) -> (usize, usize) where F: Fn(&[u8]) -> Vec<u8> {
    let fixed_prefix_len = find_fixed_block_prefix_len(f);
    let byte = b'A';
    let mut prev = f(&[b'f']);
    let mut len = 0;
    loop {
        let prefix: Vec<u8> = std::iter::repeat(byte)
            .take(len)
            .collect();
        let next = f(&prefix[..]);

        let prefix_len = shared_prefix_len(
            prev.iter(),
            next.iter()
        );
        if prefix_len > fixed_prefix_len {
            let block_size = prefix_len - fixed_prefix_len;
            return (block_size, fixed_prefix_len + block_size - (len - 1));
        }

        prev = next;
        len += 1;
    }
}

fn find_fixed_block_prefix_len<F> (f: &F) -> usize where F: Fn(&[u8]) -> Vec<u8> {
    let ciphertext1 = f(b"");
    let ciphertext2 = f(b"A");
    return shared_prefix_len(ciphertext1.iter(), ciphertext2.iter());
}

fn shared_prefix_len<I> (i1: I, i2: I) -> usize where I: Iterator, <I as Iterator>::Item: PartialEq {
    return i1
        .zip(i2)
        .take_while(|&(ref c1, ref c2)| { c1 == c2 })
        .count();
}