summaryrefslogtreecommitdiffstats
path: root/src/lib.rs
blob: e7f695dff56ef930269674ca3aeeb4ec4ebf16c0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
extern crate "rustc-serialize" as serialize;
extern crate openssl;

use std::ascii::AsciiExt;
use std::num::Float;

use serialize::base64::{ToBase64,STANDARD};

const ENGLISH_FREQUENCIES: [f64; 26] = [
    0.0804,
    0.0148,
    0.0334,
    0.0382,
    0.1249,
    0.0240,
    0.0187,
    0.0505,
    0.0757,
    0.0016,
    0.0054,
    0.0407,
    0.0251,
    0.0723,
    0.0764,
    0.0214,
    0.0012,
    0.0628,
    0.0651,
    0.0928,
    0.0273,
    0.0105,
    0.0168,
    0.0023,
    0.0166,
    0.0009,
];

pub fn to_base64 (bytes: &[u8]) -> String {
    return bytes.to_base64(STANDARD);
}

pub fn decrypt_aes_128_ecb (bytes: &[u8], key: &[u8]) -> Vec<u8> {
    return openssl::crypto::symm::decrypt(
        openssl::crypto::symm::Type::AES_128_ECB,
        key,
        vec![],
        bytes
    )
}

pub fn fixed_xor (bytes1: &[u8], bytes2: &[u8]) -> Vec<u8> {
    return bytes1.iter()
        .zip(bytes2.iter())
        .map(|(&a, &b)| { a ^ b })
        .collect();
}

pub fn repeating_key_xor (plaintext: &[u8], key: &[u8]) -> Vec<u8> {
    return fixed_xor(
        plaintext,
        &key
            .iter()
            .cycle()
            .take(plaintext.len())
            .map(|c| *c)
            .collect::<Vec<u8>>()[..]
    );
}

pub fn crack_single_byte_xor (input: &[u8]) -> Vec<u8> {
    let (key, _) = crack_single_byte_xor_with_confidence(input);
    return repeating_key_xor(input, &[key]);
}

pub fn find_single_byte_xor_encrypted_string (inputs: &[Vec<u8>]) -> Vec<u8> {
    let mut min_diff = 100.0;
    let mut best_decrypted = vec![];
    for input in inputs {
        let (key, diff) = crack_single_byte_xor_with_confidence(input);
        if diff < min_diff {
            min_diff = diff;
            best_decrypted = repeating_key_xor(input, &[key]);
        }
    }
    return best_decrypted;
}

pub fn crack_repeating_key_xor (input: &[u8]) -> Vec<u8> {
    let mut keysizes = vec![];
    for keysize in 2..40 {
        let distance1 = hamming(
            &input[(keysize * 0)..(keysize * 1)],
            &input[(keysize * 1)..(keysize * 2)]
        ) as f64;
        let distance2 = hamming(
            &input[(keysize * 1)..(keysize * 2)],
            &input[(keysize * 2)..(keysize * 3)]
        ) as f64;
        let distance3 = hamming(
            &input[(keysize * 2)..(keysize * 3)],
            &input[(keysize * 3)..(keysize * 4)]
        ) as f64;
        let distance = distance1 + distance2 + distance3 / 3.0;
        let normal_distance = distance / (keysize as f64);
        keysizes.push((keysize, normal_distance));
        if keysizes.len() > 5 {
            let (idx, _) = keysizes
                .iter()
                .enumerate()
                .fold(
                    (0, (0, 0.0)),
                    |(accidx, (accsize, accdist)), (idx, &(size, dist))| {
                        if dist > accdist {
                            (idx, (size, dist))
                        }
                        else {
                            (accidx, (accsize, accdist))
                        }
                    }
                );
            keysizes.swap_remove(idx);
        }
    }

    let mut min_diff = 100.0;
    let mut best_key = vec![];
    for (keysize, _) in keysizes {
        let strides: Vec<Vec<u8>> = (0..keysize)
            .map(|n| {
                // XXX sigh ):
                let mut elts = vec![];
                for (i, &c) in input.iter().enumerate() {
                    if i % keysize == n {
                        elts.push(c);
                    }
                }
                elts
            })
            .collect();
        let cracked: Vec<(u8, f64)> = strides
            .iter()
            .map(|input| crack_single_byte_xor_with_confidence(input))
            .collect();
        let diff = cracked
            .iter()
            .map(|&(_, diff)| diff)
            .fold(0.0, |acc, x| acc + x);
        let key = cracked
            .iter()
            .map(|&(c, _)| c)
            .collect();
        let normal_diff = diff / (keysize as f64);
        if normal_diff < min_diff {
            min_diff = normal_diff;
            best_key = key;
        }
    }

    return repeating_key_xor(input, &best_key[..]);
}

fn hamming (bytes1: &[u8], bytes2: &[u8]) -> u64 {
    count_bits(&fixed_xor(bytes1, bytes2)[..])
}

fn count_bits (bytes: &[u8]) -> u64 {
    bytes.iter().map(|&c| { count_bits_byte(c) }).fold(0, |acc, n| acc + n)
}

fn count_bits_byte (byte: u8) -> u64 {
    (((byte & (0x01 << 0)) >> 0)
    + ((byte & (0x01 << 1)) >> 1)
    + ((byte & (0x01 << 2)) >> 2)
    + ((byte & (0x01 << 3)) >> 3)
    + ((byte & (0x01 << 4)) >> 4)
    + ((byte & (0x01 << 5)) >> 5)
    + ((byte & (0x01 << 6)) >> 6)
    + ((byte & (0x01 << 7)) >> 7)) as u64
}

fn crack_single_byte_xor_with_confidence (input: &[u8]) -> (u8, f64) {
    let mut min_diff = 100.0;
    let mut best_key = 0;
    for a in 0..256u16 {
        let decrypted = fixed_xor(
            input,
            &std::iter::repeat(a as u8)
                .take(input.len())
                .collect::<Vec<u8>>()[..]
        );
        if !decrypted.is_ascii() {
            continue;
        }
        let lowercase = decrypted.to_ascii_lowercase();
        let mut frequencies = [0; 26];
        let mut total_frequency = 0;
        let mut extra_frequencies = 0;
        for c in lowercase {
            total_frequency += 1;
            if c >= 0x61 && c <= 0x7A {
                frequencies[(c - 0x61) as usize] += 1;
            }
            else {
                extra_frequencies += 1;
            }
        }

        let mut total_diff = 0.0;
        for (&english, &crypt) in ENGLISH_FREQUENCIES.iter().zip(frequencies.iter()) {
            let relative_frequency = (crypt as f64) / (total_frequency as f64);
            total_diff += (english - relative_frequency).abs();
        }
        total_diff += (extra_frequencies as f64) / (total_frequency as f64);

        if total_diff < min_diff {
            min_diff = total_diff;
            best_key = a as u8;
        }
    }

    return (best_key, min_diff);
}

#[test]
fn test_hamming () {
    assert_eq!(hamming(b"this is a test", b"wokka wokka!!!"), 37);
}