aboutsummaryrefslogtreecommitdiffstats
path: root/src/lib.rs
blob: 3bfb9b1fc715c3e6811b4e7983934e1967e6ea0b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//! `textmode` is a library for terminal interaction built on top of a real
//! terminal parsing library. It allows you to do arbitrary drawing operations
//! on an in-memory screen, and then update the visible terminal output to
//! reflect the in-memory screen via an optimized diff algorithm when you are
//! finished. Being built on a real terminal parsing library means that while
//! normal curses-like operations are available:
//!
//! ```no_run
//! use textmode::Textmode;
//! # #[cfg(feature = "async")]
//! # #[tokio::main]
//! # fn main() -> textmode::Result<()> {
//! let mut tm = textmode::Output::new().await?;
//! tm.clear();
//! tm.move_to(5, 5);
//! tm.set_fgcolor(textmode::color::RED);
//! tm.write_str("foo");
//! tm.refresh().await?;
//! # Ok(())
//! # }
//! # #[cfg(not(feature = "async"))]
//! # fn main() -> textmode::Result<()> {
//! # let mut tm = textmode::blocking::Output::new()?;
//! # tm.clear();
//! # tm.move_to(5, 5);
//! # tm.set_fgcolor(textmode::color::RED);
//! # tm.write_str("foo");
//! # tm.refresh()?;
//! # Ok(())
//! # }
//! ```
//!
//! you can also write data containing arbitrary terminal escape codes to the
//! output and they will also do the right thing:
//!
//! ```no_run
//! # use textmode::Textmode;
//! # #[cfg(feature = "async")]
//! # fn main() -> textmode::Result<()> {
//! #     futures_lite::future::block_on(async { run().await })
//! # }
//! # #[cfg(feature = "async")]
//! # async fn run() -> textmode::Result<()> {
//! # let mut tm = textmode::Output::new().await?;
//! tm.write(b"\x1b[34m\x1b[3;9Hbar\x1b[m");
//! tm.refresh().await?;
//! # Ok(())
//! # }
//! # #[cfg(not(feature = "async"))]
//! # fn main() -> textmode::Result<()> {
//! # let mut tm = textmode::blocking::Output::new()?;
//! # tm.write(b"\x1b[34m\x1b[3;9Hbar\x1b[m");
//! # tm.refresh()?;
//! # Ok(())
//! # }
//! ```
//!
//! This module is split into two main parts: [`Output`](Output) and
//! [`Input`](Input). See the documentation for those types for more details.
//! Additionally, the [`blocking`] module provides an equivalent interface
//! with blocking calls instead of async.

#![warn(clippy::cargo)]
#![warn(clippy::pedantic)]
#![warn(clippy::nursery)]
#![warn(clippy::as_conversions)]
#![warn(clippy::get_unwrap)]
#![allow(clippy::cognitive_complexity)]
#![allow(clippy::missing_const_for_fn)]
#![allow(clippy::similar_names)]
#![allow(clippy::struct_excessive_bools)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::too_many_lines)]
#![allow(clippy::type_complexity)]

/// Blocking interface.
pub mod blocking;

pub mod color;
pub use vt100::Color;
mod error;
pub use error::{Error, Result};
mod key;
pub use key::Key;
mod private;

#[cfg(feature = "async")]
mod output;
#[cfg(feature = "async")]
pub use output::{Output, ScreenGuard};
#[cfg(feature = "async")]
mod input;
#[cfg(feature = "async")]
pub use input::{Input, RawGuard};

const INIT: &[u8] = b"\x1b7\x1b[?47h\x1b[2J\x1b[H\x1b[?25h";
const DEINIT: &[u8] = b"\x1b[?47l\x1b8\x1b[?25h";

/// Provides the methods used to manipulate the in-memory screen.
pub trait Textmode: private::Output {
    /// Returns the in-memory screen itself. This is the screen that will be
    /// drawn on the next call to `refresh`.
    fn screen(&self) -> &vt100::Screen {
        self.next().screen()
    }

    /// Writes a sequence of bytes, potentially containing terminal escape
    /// sequences, to the in-memory screen.
    fn write(&mut self, buf: &[u8]) {
        self.next_mut().process(buf);
    }

    /// Sets the terminal size for the in-memory screen.
    fn set_size(&mut self, rows: u16, cols: u16) {
        self.cur_mut().set_size(rows, cols);
        self.next_mut().set_size(rows, cols);
    }

    /// Writes a string of printable characters to the in-memory screen.
    fn write_str(&mut self, text: &str) {
        self.write(text.as_bytes());
    }

    /// Moves the in-memory screen's cursor.
    fn move_to(&mut self, row: u16, col: u16) {
        self.write(b"\x1b[");
        self.write_u16(row + 1);
        self.write(b";");
        self.write_u16(col + 1);
        self.write(b"H");
    }

    fn move_relative(&mut self, row_offset: i16, col_offset: i16) {
        let abs_row_offset = row_offset.unsigned_abs();
        let abs_col_offset = col_offset.unsigned_abs();
        if row_offset > 0 {
            self.write(b"\x1b[");
            self.write_u16(abs_row_offset);
            self.write(b"B");
        }
        if row_offset < 0 {
            self.write(b"\x1b[");
            self.write_u16(abs_row_offset);
            self.write(b"A");
        }
        if col_offset > 0 {
            self.write(b"\x1b[");
            self.write_u16(abs_col_offset);
            self.write(b"C");
        }
        if col_offset < 0 {
            self.write(b"\x1b[");
            self.write_u16(abs_col_offset);
            self.write(b"D");
        }
    }

    /// Clears the in-memory screen.
    fn clear(&mut self) {
        self.write(b"\x1b[2J");
    }

    /// Clears the line containing the cursor on the in-memory screen.
    fn clear_line(&mut self) {
        self.write(b"\x1b[K");
    }

    /// Clears the in-memory screen's currently active drawing attributes.
    fn reset_attributes(&mut self) {
        self.write(b"\x1b[m");
    }

    /// Sets the foreground color for subsequent drawing operations to the
    /// in-memory screen.
    fn set_fgcolor(&mut self, color: vt100::Color) {
        match color {
            vt100::Color::Default => {
                self.write(b"\x1b[39m");
            }
            vt100::Color::Idx(i) => {
                if i < 8 {
                    self.write(b"\x1b[");
                    self.write_u8(30 + i);
                } else if i < 16 {
                    self.write(b"\x1b[");
                    self.write_u8(82 + i);
                } else {
                    self.write(b"\x1b[38;5;");
                    self.write_u8(i);
                }
                self.write(b"m");
            }
            vt100::Color::Rgb(r, g, b) => {
                self.write(b"\x1b[38;2;");
                self.write_u8(r);
                self.write(b";");
                self.write_u8(g);
                self.write(b";");
                self.write_u8(b);
                self.write(b"m");
            }
        }
    }

    /// Sets the background color for subsequent drawing operations to the
    /// in-memory screen.
    fn set_bgcolor(&mut self, color: vt100::Color) {
        match color {
            vt100::Color::Default => {
                self.write(b"\x1b[49m");
            }
            vt100::Color::Idx(i) => {
                if i < 8 {
                    self.write(b"\x1b[");
                    self.write_u8(40 + i);
                } else if i < 16 {
                    self.write(b"\x1b[");
                    self.write_u8(92 + i);
                } else {
                    self.write(b"\x1b[48;5;");
                    self.write_u8(i);
                }
                self.write(b"m");
            }
            vt100::Color::Rgb(r, g, b) => {
                self.write(b"\x1b[48;2;");
                self.write_u8(r);
                self.write(b";");
                self.write_u8(g);
                self.write(b";");
                self.write_u8(b);
                self.write(b"m");
            }
        }
    }

    /// Sets whether subsequent text drawn to the in-memory screen should be
    /// bold.
    fn set_bold(&mut self, bold: bool) {
        if bold {
            self.write(b"\x1b[1m");
        } else {
            self.write(b"\x1b[22m");
        }
    }

    /// Sets whether subsequent text drawn to the in-memory screen should be
    /// italic.
    fn set_italic(&mut self, italic: bool) {
        if italic {
            self.write(b"\x1b[3m");
        } else {
            self.write(b"\x1b[23m");
        }
    }

    /// Sets whether subsequent text drawn to the in-memory screen should be
    /// underlined.
    fn set_underline(&mut self, underline: bool) {
        if underline {
            self.write(b"\x1b[4m");
        } else {
            self.write(b"\x1b[24m");
        }
    }

    /// Sets whether subsequent text drawn to the in-memory screen should have
    /// its colors inverted.
    fn set_inverse(&mut self, inverse: bool) {
        if inverse {
            self.write(b"\x1b[7m");
        } else {
            self.write(b"\x1b[27m");
        }
    }

    /// Sets whether the cursor should be visible.
    fn hide_cursor(&mut self, hide: bool) {
        if hide {
            self.write(b"\x1b[?25l");
        } else {
            self.write(b"\x1b[?25h");
        }
    }
}